

An Autonomous Institute Affiliated to VTU, Belagavi Approved by AICTE, New Delhi Recognized by UGC under 2(f) & 12 (B)

TINKERING LAB

Course Title	ABILITY ENHANCEMENT COURSE (Tinkering Lab)		
Course Code	MVJ21AEC01	CIE	50 Marks
Total No. of Contact Hours	15 L: T: P:: 0 : 0 : 2	SEE	50 Marks
No. of Contact week	01	Total	100
Credits	01	Exam. Duration	3 hours

- To create workspaces that are suitable for young minds to learn innovation skills, develop ideas via hands-on activities, work and learn in a flexible environment.
- To empower students with skills of creativity, innovation, critical thinking, design thinking, social and cross-cultural collaboration and ethical leadership.
- To help build innovative solutions for unique problems, thereby supporting the nation's efforts to grow as a knowledge economy.

Module-1 Innovation Level-1	RBT Level L1, L2, L3	3 Hrs
Orientation / Training program		
To provide hands on session on various tools of different departments		

Evaluation parameters:

1. General Test and Viva Voce for equipment's handling.

2. Report Submission of Level-1

	RBT Level	
Module-2 Innovation Level -2	L1, L2, L3	5 Hrs

Foundation Skills for Innovation

Tinker CAD:(a simulation software for a beginner friendly environment that allows students to get used to the innovative tools, which they will use during any phase of innovation. It also helps students to visualize their ideas before train them in real life)

1.Multidisciplinary ideas to be framed and prototype (clay, thermo Cole, cardboard etc) need to be made

2.TinkerCAD- we will train the next generation of designers and engineers with the foundational skills for innovation: 3D design, electronics, and coding.

Evaluation parameters:

1. Problem / ideas, Simulation and prototype model

2. Report Submission of Level-2

Module-3 Innovation Level – 3 (Third year)	RBT Level	7Hrs
Module-5 Innovation Level – 5 (1 mrd year)	L1, L2, L3	/1115

Product Development

1. Developing the prototype model.

2. 3D printing and design : 3D Modelling of a single components - Assembly of CAD modeled Components - Exercise on CAD Data Exchange - Generation of .stlfiles - Identification of a product for Additive Manufacturing and its process plan - Printing of identified product on an available AM machine - Post processing of additively manufactured product - Inspection and defect analysis of the additively manufactured product - Comparison of Additively manufactured product with conventional manufactured counterpart.

Evaluation parameters:

1. Project evaluation by mentors and domain experts

2. Showcase the developed products in International and National Events.

3. Report Submission of Level-3.

Cours	Course outcomes: Students will be able to	
CO1	Understand the ethics in handlings the equipment and its safety precautions	
CO2	Promote innovative skill set among the young minds	
CO3	Develop CAD models for 3D printing	
CO4	Select a specific material for the given application	
CO5	Understand the innovative product development cycle	

Refer	Reference Books:	
1.	Materials Science and Engineering, William D. Callister Jr., John Wiley & Sons. Inc, 5th	
1.	Edition, 2001	
2.	Measurement Systems Applications and Design, Ernest O. Doebelin, 5 th Ed., McGraw Hill	
2.	Book Co	
3.	"Mechanics of Materials", by R.C.Hibbeler, Prentice Hall. Pearson Edu., 2005	
4.	"Manufacturing Technology", SeropeKalpakjain, Steuen. R. Sechmid, Pearson Education	
4.	Asia, 5th Ed. 2006.	
5.	'Machine Drawing with Auto CAD', GoutamPohit&GouthamGhosh, 1st Indian print Pearson	
5.	Education, 2005	
6.	Fundamentals of Metal Machining and Machine Tools, G. Boothroyd, McGraw Hill, 2000	
7.	"Mechanical workshop practice" by John K.C, PHI Learning Pvt. Ltd., 27-Aug-2010	
8.	Workshop Practice 2E. Author. Bawa. Publisher. Tata McGraw-Hill Education, 2009. ISBN.	
0.	0070671192, 9780070671195.	
9.	Arduino Cookbook: Recipes to Begin, Expand, and Enhance Your Projects	
2.	by Michael Margolis, Brian Jepson, et al. Jun 9, 2020	

Robotics and Industrial Automation lab

Course Title	ABILITY ENHANCEMENT COURSE		
	(Robotics and Industrial Automation lab)		
Course Code	MVJ21AEC02	CIE	50 Marks
Total No. of Contact Hours	15 L: T: P:0 : 0 : 2	SEE	50 Marks
No. of Contact week	01	Total	100
Credits	01	Exam. Duration	3 hours

Course objectives: This course will enable students,

- To understand the history, concept development and key components of robotics technologies.
- To understand various CAD and EDA tools for robotic design
- To obtain hands-on experience in design and manufacture of basic robots
- To familiarize with FDM 3D printing for model design
- To familiarize with Circuit design software for PCB layout design

Module-1	RBT Level	3Hrs
Miduile-1	L1, L2, L3	51118

Introduction: Introduction to Robotics, Microcontrollers, Drives for robots: Electric, hydraulic, and pneumatic. Sensors: Internal-External, Contact non-contact, position, velocity, force, torque, proximity and range, Actuators, Additive manufacturing.

Module 2	RBT Level	7Hrs
Module-2	L1, L2, L3	/ ПГS

Modelling and interface: Microcontroller interface with IDE and sensors, interfacing with actuators, chassis design and modelling, interfacing circuit design using EDA tools

Evaluation criteria: 3D modelling for Robot chassis, Circuit design for interface of components

Module-3	RBT Level	5 Hrs
	L1, L2, L3	

Devel	Developing and building a robot: Models of flexible links and joints, Robotic arm – Components and	
structu	structure, Types of joints and workspace, Design models for mechanic arms and lifting systems using	
Cprog	tool	
Evalu	ation criteria: Design robots for various applications, submission of report and product.	
Cours	se outcomes: Students will be able to	
CO1	Explain the fundamentals of robotics and its components	
CO2	Illustrate the Kinematics and Dynamics of robotics	
CO3	Elucidate the need and implementation of related Instrumentation & control in robotics	
CO4	Select the right material handling system for a given application	
CO5	Develop multidisciplinary robotics projects, Increase students' ability, competency and teamwork skills on dealing with real-life engineering problems	

Refere	Reference Books:	
1	Arduino Programming: 2 books in 1 - The Ultimate Beginner's & Intermediate Guide to Learn Arduino Programming Step by Step, Ryan Turner	
2	Sensors and Transducers, Patranabis D	
3	Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing, Ian Gibson, David Rosen. Brent Stucker, 2nd ed. 2015 Publisher-Springer Nature	
4	PCB Design and Layout Fundamentals for EMC, Roger Hu, 22 November 2019	

UAV LAB

Course Title	ABILITY ENHANCEMENT COURSE (UAV Lab)		
Course Code	MVJ21AEC03	CIE	50 Marks
Total No. of Contact Hours	15 L: T: P::0 :0 : 2	SEE	50 Marks
No. of Contact week	01	Total	100
Credits	01	Exam. Duration	3 hours

- Make the learner, to select and integrate the elements as remotely piloted aerial vehicle based on the given requirements
- Make the learner, to integrate the autopilot with other essential subsystems and to work with the ground control station effectively.
- Make the learner to familiarize with the integration of different sensors with flight controller

Module-1 Development of Remotely Piloted Aerial Vehicles	RBT Level L1, L2, L3	5 Hrs		
Introduction and essential elements, Functioning of Drone, Requirement Analysis, Airframe				
Selection, Power Rating, Motor and Propeller Selection, Integration, Calibration				
Module-2 Development of Autonomous Unmanned RBT Level				
Aerial Systems	L1, L2, L3	5 Hrs		
Flight Controller Pin Assignment, System Integration, Configuration, First Flight Settings, Mission Planning, Diagnostics with Mission Logs				
Module-3 Sensor Integration with Flight Controllers RBT Level				
and Applications	L1, L2, L3	5 Hrs		

Essential Payloads for Autonomous Mission, Gimbal / Camera, Video Transmission, Aerial Mapping, Agricultural Applications, IMU and Optical Sensor

Course outcomes: Students will be able to

CO1	Apply the knowledge of selection of the system
CO2	Describe the design concepts of UAVs'
CO3	Understand the issues and challenges of control and stability of different types of UAVs'
CO4	Understand the role of different sensors and autonomy in control and stability of UAV systems
CO5	Apply the knowledge of payload control

Evaluation Parameters:

- 1. Equipment Handling
- 2. Viva-Voce
- 3. Report Submission

Reference Books:

1	John Baichtal, "BUILDING YOUR OWN DRONES - A Beginner's Guide to Drones, UAVs,
1.	and ROVs", Que Publishing, 1st Edition, 2016, USA.
2	Reg Austin, "Unmanned Air Systems: UAV Design, Development and Deployment", Wiley
2.	Publishing, 1 st Edition, 2010.
2	Copter documentation – ArduPilot, Archived: PDF Guide, Archived: PDF Guides — Copter
3	documentation (ardupilot.org).

NI LABVIEW

Course Title	ABILITY ENHANCEMENT COURSE (NI LabVIEW)		
Course Code	MVJ21AEC04	CIE	50 Marks
Total No. of Contact Hours	15L: T: P: 0:0: 2	SEE	50 Marks
No. of Contact week	01	Total	100
Credits	01	Exam. Duration	3 hours

Course objective is to:

- Introduce the basics of LabVIEW environment and the concept of Data Flow programming
- Familiarize the common LabVIEW architectures.
- Familiarize the graphs and charts available in LabVIEW
- Handle errors

L1, L2, L3 3 Hrs

Introduction to Virtual Instrumentation, LabVIEW Programming and its advantages.

LabVIEW Environment: Front Panel, controls Palette, controls and indicators, Block diagram, terminals, controls, indicators and constants, Block diagram nodes, functions palette, searching for controls, Vis and functions.

Dataflow Programming: Wires, automatically wiring objects, Manually wiring objects

	RBT Level			
Module-2 Data Structures and tools	L1, L2, L3	3Hrs		
Data Structures: String, Numeric, Boolean, Dynamic, Arra	ys, Clusters	I		
Tools: Selecting a tool, Shortcut menus, Property dialog b	oxes, front panel window to	oolbar, Block		
diagram window toolbar				
Debugging tools: Fixing broken Vis, finding causes for broken Vis, common causes of broken Vis,				
fixing incorrect behavior, block diagram toolbar, probe tool				
RBT Level				
Module-3 Execution StructuresL1, L2, L33Hrs				
Loops – While, infinite, for, Case Structures				
Passing data between loop iterations: Shift registers, initializing shift registers and stacked shift				
registers.				
Module-4 Introduction to Graphs and Charts	RBT Level			

		L1, L2, L3	3Hrs
Wavef	form graphs and charts, XY graphs, Intensity graphs an	d charts, Digital waveform	graphs,
Mixed	signal graphs, 2D graphs, 3D graphs		
		RBT Level	
Modu	le-5 Handling errors	L1, L2, L3	3Hrs
Auton	natic error handling, Manual error handling, error cluste	ers.	
Cours	e outcomes: Students will be able to		
CO1	Apply knowledge to understand various controls & in and various debugging tools in LabVIEW.	ndicators, arrays, strings, le	pops, clusters
CO2	Understand data structures and implement VIs using arrays, strings, loops and clusters.		
CO3	Understand and use loop structures of LabVIEW		
CO4	Create user interfaces with charts and graphs in LabVIEW		
CO5	Implement error handling techniques in LabVIEW		

Reference Books:		
1.	LabVIEW for Everyone: Graphical Programming Made Easy and Fun Hardcover – 27 July 2006, Jeffrey Travis (Author), Jim Kring (Author) Prentice Hall; 3rd edition (27 July 2006), ISBN-13: 978-0131856721	
2.	Hands-On Introduction to LabVIEW for Scientists and Engineers, English, Paperback, Essick John,Oxford University Press IncISBN: 9780190853068, 9780190853068, Edition: 2018.	

CNC LAB

Course Title	ABILITY ENHANCEMENT COURSE (CNC LAB)		
Course Code	MVJ21AEC05	CIE	50 Marks
Total No. of Contact Hours	15 L: T: P:: 0 : 0 : 2	SEE	50 Marks
No. of Contact week	01	Total	100
Credits	01	Exam. Duration	3 hours

Course objective is to:

- Understand the working principle of the CNC Machines.
- Understand the driving characteristics of the driving system, feedback devices and the application of CNC Machines.
- Understand the dimension system and structure of the CNC Part Program.
- Understand the G Codes and M Codes and other functions of a CNC Part Program
- Understand the flow of the CAM system, and the characteristics of the process Tool Motion
- Understand the characteristics of the process data transmission in the CAM System.

	RBT Level	
Module-1 : CNC Turning	L1, L2, L3	7Hrs

Introduction to the basic programming skills of CNC turning center, Understanding of the basic structure of the CNC Part Program, Parts of a CNC Lathe Machine, Benefits of CNC Turning, Difference Between NC and CNC Machines, CNC Turning Process, understanding of the working principle of the CNC Machines, driving characteristics of the drive system, feedback devices and the application of CNC Machines, dimension system and structure of the CNC Part Program.

Lab Exercises: To develop a program involving step turning and taper turning.

	RBT Level	
Module-2 CNC Milling & Robot Programming	L1, L2, L3	8 Hrs

Introduction to the basic programming skills of CNC Milling Center, Program a CNC Machine to a basic level, understanding of G Codes and M Codes and other functions of a CNC Part Program, flow of the CAM system, characteristics of the process, Tool Motion characteristics, process of the data transmission in the CAM System. Introduction to types of Robot configuration and degrees of freedom, Develop the Programming code for 6 axis Robot arm for pick and place operations.

Lab Exercises: To develop three programs involving milling and drilling operations.

Course outcomes: Students will be able to

CO1 Understand the fundamentals of CNC Machine, part loading and initialization of coordinate system.

CO2	Develop the dimension system and structure of the CNC Part Program for parts.
CO3	Develop the G Codes and M Codes and other functions of a CNC Part Program for new parts and products
CO4	Apply the flow of the CAM system, and the characteristics of the process Tool Motion.
CO5	Develop the basic of robotics usage and programming the 6-axis robot

Refe	Reference Books:	
1	CAD/CAM Principles and Applications by P N Rao, Mc Graw Hill Publications	
2	Mastering CAD /CAM by Ibrahim Zeid, Mc Graw Hill Publications	
3	Automation, Production Systems, and Computer –Integrated Manufacturing by Mikell P. Groover	
4	Computer Control of Manufacturing Systems - YoramKoren.	

IOT LAB

Course Title	ABILITY ENHANCEMENT COURSE (IOT LAB)		
Course Code	MVJ21AEC06 CIE 50 Marks		50 Marks
Total No. of Contact Hours	15 L: T: P::0:0: 2	SEE	50 Marks
No. of Contact week	01	Total	100
Credits	01	Exam. Duration	3 hours

- Gain knowledge on IoT ecosystem and Arduino board.
- Interface Bluetooth, LED and OLED to Arduino board.
- Interface IR, Temperature, humidity sensors to Arduino board.
- Implement protocols MQTT, TCP, UDP

	RBT Level		
Module-1 Introduction to IoT	L1, L2, L3	3Hrs	
Introduction to IoT: IOT Challenges, Network Architecture and Design- Drivers Behind New			
Network Architectures, Security, IOT Reference Mo	odel, Simplified IOT Arc	chitecture.	
1.To interface Bluetooth with Arduino/Raspberry Pi	and write a program to	turn LED ON/OFF when	
'1'/'0' is received from smart phone using Bluetooth	h.		
2. To interface Digital sensor (IR) with Arduino and	l write a program to turn	ON LED when the push	
button is pressed or a sensor detection.			
Module-2 IoT Layers and functionality	RBT Level		
Niodule-2 101 Layers and functionality	L1, L2, L3	3Hrs	
1.IOT Network Architecture and Design Core IOT I	Functional Stack, Layer.		
2.Write a program on Arduino/ Raspberry Pi to sub	scribe to MQTT broker	for proximity data taken	
from proximity sensor and print it.			
3.Write a program to create TCP server on Arduino	/ Raspberry Pi and resp	ond with air quality data	
to TCP client when requested using air quality sense	or.		
Module-3 Data Collection, Storage and	RBT Level	3Hrs	
Computing using a Cloud Platform:	L1, L2, L3	51115	
Data Collection, Storage and Computing using a	Cloud Platform: Introd	uction, Cloud	
computing paradigm for data collection, storage and	computing, Cloud servi	ce models, IoT Cloud -	
based data collection.			
1. Implement a smart Irrigation system for Soil analy	ysis and fertilizer predic	tion using smart phone.	
2. Write a program on Arduino to retrive temperature and humidity data from things board cloud.			
RBT Level			
Module-4 Lab Experiments	L4, L5	3Hrs	
1. To interface motor using relay with Arduino and write a program to turn ON motor when push			
button is pressed.			
2. Interfacing LCD Display with Raspberry Pi /ARM	A 7 to display "Hello Wo	orld".	

4. Write a program on Arduino / Raspberry Pi to subscribe to MQTT broker for proximity data taken from proximity sensor and print it.

5. Write a program for fire detection using buzzers integrating smoke detectors with Arduino / Raspberry Pi.

	RBT Level	
Module – 5 Implementation	L4, L5	3Hrs

1. Develop IOT based smart street light system using Arduino / Raspberry Pi.

2. Illustrate remote healthcare monitoring with android interface and transferring patient's data over WSN.

3.Develop Smart Monitoring and Controlling of Appliances Using, Arduino / Raspberry Pi

4. Demonstrate an anti-theft system using magnetic sensors and alarms.

Cours	Course outcomes: Students will be able to		
CO1	Analyze different IOT Architecture and select them for a particular application.		
CO2	Evaluate the sensor data generated and map it to IOT protocol stack.		
CO3	Implement and execute programs using development tools.		
CO4	Develop an energy efficient system for WSN.		
CO5	Create a real life application involving Wireless Sensor Networks using IoT concepts.		

Refer	Reference Books:		
	Cisco, IOT Fundamentals – Networking Technologies, Protocols, Use Cases for IOT,		
1.	Pearson Education; First edition (16 August 2017). ISBN-10: 9386873745, ISBN-13: 978-		
	9386873743		
2.	Raj Kamal,"Internet of Things-Architecture and design principles", McGraw Hill Education.		
	ArshdeepBahga and Vijay Madisetti, 'Internet of Things - A Hands on Approach', Orient		
3.	Blackswan Private Limited - New Delhi; First edition (2015), ISBN-10: 8173719543, ISBN-		
	13: 978-8173719547		

ASTRONOMY CLUB

Course Title	ABILITY ENHANCEMENT COURSE		
Course The	(Astrono	my Club)	
Course Code	MVJ21AEC07	CIE	50 Marks
Total No. of Contact Hours	15L: T: P:: 0 : 0 : 2	SEE	50 Marks
No. of Contact week	01	Total	100
Credits	01	Exam.	3 hours
		Duration	5 110018

Course objective is to:

- To create workspaces that are suitable for young minds to learn innovation skills, develop ideas via hands-on activities, work and learn in a flexible environment.
- To empower students with skills of creativity, innovation, critical thinking, design thinking, social and cross-cultural collaboration and ethical leadership.
- To help build innovative solutions for unique problems, thereby supporting the nation's efforts to grow as a knowledge economy.

	RBT Level	
Module-1	L1, L2, L3	4 Hrs

Innovation Level-1

Orientation / Training program

To enhance the knowledge on introduction to the Big Bang Theory, Galaxies, Stars, Electromagnetic Spectrum, Space Communication, Types of telescopes.

Evaluation parameters:

- 1. General Test and Viva Voce for telescopes.
- 2. Report Submission of Level-1

		RBT Level		
Modu	le-2	L1, L2, L3	5 Hrs	
Innova	ation Level -2			
Found	ation Skills for Innovation			
Optica	al Telescope:			
reflecti a spher	Theoretical working principle of optical telescope. Elementary geometrical optics, refractive index; reflection and refraction at a plane boundary; total internal reflection. Image formation by reflection at a spherical boundary; concave and convex mirrors. Real and virtual images. Magnification. Image formation by refraction at a spherical boundary and by converging and diverging thin lenses.			
<u>Evalua</u>	ation parameters:			
1. Prob	blem / ideas			
2. Rep	ort Submission of Level-2			
		RBT Level		
Modu	le-3	L1, L2, L3	6 Hrs	
Innova	ation Level – 3			
Produ	ct Development			
Fabrica	ation of small optical telescope (Reflective telescope,	materials, measurements, l	ens Etc)	
Evalua	ation parameters:			
5	ect evaluation by mentors and domain experts			
2. Sho	wcase the developed products in International and Na	tional Events.		
3. Report Submission of Level-3.				
Course outcomes:				
001	Apply basic physical principles from a broad ra	nge of topics in physics t	o astronomical	
CO1	situations			

CO2	Demonstrate knowledge of the basic laws of physics that pertain to the study of the bodies of the solar system
CO3	Adequate knowledge to select the specific material for the telescope
CO4	Understand the innovative product development cycle of optical Telescope
CO5	Promote innovative skill set among the young minds

Refer	Reference Books:		
1.	Optics and Optical Instruments (Dover Books on Physics) 28 march 2003, by B.K Johnson.		
2.	Laboratory Exercises for Introductory Radio Astronomy with a Small Radio Telescope Paperback – Import, 10 December 2008 by Laura A Whitlock (Author), Kiley Pulliam (Author).		
3.	An Introduction to Astronomy Hardcover – 1 January 2018 by Forest Ray Moulton.		
4.	Astronomy For Beginners: The Introduction Guide to Space, Cosmos, Galaxies and Celestial Bodies Paperback – 8 October 2020.		

Software Development Lab/Club

Course Title	ABILITY ENHANCEMENT COURSE (Software Development Lab/Club)		
Course Code	MVJ21AEC08	CIE	50 Marks
Total No. of Contact Hours	15 L: T: P:: 0:0: 2	SEE	50 Marks
No. of Contact week	01	Total	100
Credits	01	Exam. Duration	3 hours

- Formulating the ideas for the real time problems
- Depicting their ideas using design tools
- Identifying the problem solving techniques
- Role of programming within the overall software development process
- Develop the capability for self-learning
- Encourage the students to work as an individual or as team

Module-1	RBT Level	211			
Modult-1	L1, L2, L3	3Hrs			
Introduction to Software Development process and Roles in	n the IT Industry, Hands o	on training on			
MS-Office: MS-Excel, MS-Power point					
	RBT Level				
Module 2	L1, L2, L3	3Hrs			
Introduction to Web -Technologies -Basics of HTML5, CS	S3, JavaScript Introduction	on to Bootstrap			
5 - JavaScript DOM Operations (Front-End) - Mini Project	-1				
	RBT Level	211			
Module-3	L1, L2, L3	3Hrs			
Introduction to Back-end -Basics of PHP & SQL, G-Mail SMPT Server, Basics of UI/UX, Mini					
Project-2(Back-End)					
Module 4	RBT Level				
	L1, L2, L3	3Hrs			
Introduction to various Deep learning algorithms (NLP, DI	Petc),Designing and imple	ementing various			
ML/DL algorithms in a range of real-world applications					
Module 5	RBT Level	3Hrs			
	L1, L2, L3				
Assessment – implementation and connectivity Final Proje	ct				
Course outcomes: Students will be able to					

CO1	Describe the elements of a basic software development process and illustrate the variety of different life cycles
CO2	Apply information technology principles and practices to real-world solutions
CO3	Develop a dynamic webpage by the use of java script and HTML
CO4	Analyze and evaluate websites from a usability and accessibility perspective
CO5	Demonstrate employability skills and a commitment to professionalism

Refer	Reference Books:			
1.	Online resource materials, Open-Source Software			
2.	Randy Connolly, Ricardo Hoar, "Fundamentals of Web development", 1st Edition,			
۷.	Pearson Education India. (ISBN:978-9332575271)			
3 Wilbert O. Galitz, "The Essential Guide to User Interface Design", John Wiley &				
5	Second Edition 2002.			
4	Introduction to Machine Learning with Python: A Guide for Data Scientists Book by			
	Andreas C. Müller and Sarah Guido			

IDEA BOX

Course Title	ABILITY ENHANO	CEMENT COURSE	
Course Thie	(Idea Box)		
Course Code	MVJ21AEC09	CIE	50 Marks
Total No. of Contact Hours	15L: T: P:: 0 : 0 : 2	SEE	50 Marks
No. of Contact week	01	Total	100
Credits	01	Exam. Duration	3hours

Course objective is to:

• To develop conceptual thinking skills to generate ideas and content to solve problems or create opportunities.

- To develop a research and workspace practice through inquiry and iteration.
- To develop critical thinking skills that will allow them to analyse and position their work.
- To develop collaboration skills to work in a team or group actively and effectively.

	RBT Level	
Module-1	L1, L2, L3	3Hrs
Perspective on how ideas are developed: Disco	ver how entrepreneurs come up with id	leas and th
processes they use to bring innovative ideas to ma	arket; Activity-On Developing Ideas	
RBT Level		
Module-2	L1, L2, L3	3Hrs
Types of innovation		
Understand the various innovation typologies bas	ed on different dimensions of the inno	vation spac
	RBT Level	
Module-3	L1, L2, L3	3Hrs
Uncertainty and decision making		
Gain an understanding of uncertainty and how it i	nfluences strategic decision making	
RBT Level		
Module-4	L1, L2, L3	3Hrs
Discovery strategies	I	I
Learn about the practice of navigating uncertainty	to discover new strategies to establish	n and grow
innovation in a corporate setting		
	RBT Level	
	L1, L2, L3	3Hrs
Module-5		
Module-5 Knowledge and resources		

Innova	Innovation evaluation and selection		
Discov	Discover strategies for assessing the feasibility of ideas		
Cours	Course outcomes: Students will be able to		
CO1	Demonstrate practical idea generation and work effectively in a team.		
CO2	Design appropriate primary and secondary market, competition and customer research.		
CO3	Generate, develop and pitch innovative new venture ideas		
CO4	Assess the practicality of creative ideas.		
CO5	Promote the business opportunity to potential stakeholders		

Refere	Reference Books:		
1.	Cracking Creativity by Michael Michalko		
2.	Steal like an Artist by Austin Kleon		
3.	IdeaSpotting: How to Find Your Next Great Idea by Sam Harrison		

Tomorrow's Engineers Club

Course Title	ABILITY ENHANC	CEMENT COURSE	
Course Thie	(Tomorrows Engineers Club)		
Course Code	MVJ21AEC10	CIE	50Marks
Total No. of Contact Hours	15L: T: P:: 0: 0 : 2	SEE	50Marks
No. of Contact week	01	Total	100
Credits	01	Exam. Duration	3hours

This course will enable students to,

- To take up Engineering as a team sport.
- To get involved with fellow students and give solutions for community defined problems.
- To think out of the box and discover new areas of interest.
- To network with industry professionals.
- To make students highly successful inside and outside the classroom.

Modulo 1 Engineering	RBT Level	
Module – 1 Engineering	L1, L2, L3	4Hrs
What is Engineering? What does an engineer do?, Main bra	anches of engineering	- Chemical

engineering, Civil engineering, Electrical engineering, Mechanical engineering, Bioengineering, Interdisciplinary engineering - Aerospace engineering, Marine engineering, Computer engineering, Methodology, Methodology, Problem solving, Computer usage, Social context, Code of ethics

	RBT Level	
Module-2 Engineering - Relationships with other disciplines	L1, L2, L3	2Hrs
Science, Medicine and biology, Art, Business, Political enginee engineering, Financial Engineering, Attributes of an Engineer	ering, Marketing engine	eering, Social
	RBT Level	
Module- 3 Issue Analysis and Identification	L1, L2, L3	3Hrs
Root causes analysis, Visioning exercise - What do we want our society/country to be like?, What specific features would act as indicators for our ideal society?, What needs to be changed for this to be achieved?, What are the obstacles that stop this happening?, Issue selection, Workout Session		
Module-4 Importance of Creativity & Innovation in Problem Solving	RBT Level L1, L2, L3	3 Hrs
Why are soft skills important? What is creativity?, Why is creativity important?, What is creative problem-solving?, How to improve your creative problem-solving skills, Creativity in leadership,		

Within team dynamics, Encouraging creativity, Innovation in Problem Solving - Framing, Diagnosing, Generating Solutions, Making Choices

	RBT Level	
Module-5 Idea to Product/Prototype	L1, L2, L3	3 Hrs
a		

Stories behind some of most important, useful inventions in human history, Great Inventions from India, Case studies: From Idea to Product Launch: The Story Behind TheDrawBag.com

Course outcomes: Students will be able to

CO1	Understand the key concepts of Creative Thinking, Innovation and Problem-Solving
CO2	Apply appropriate problem-solving frame work methodology
CO3	Develop the interpersonal skills required for effective performance in group situations
CO4	Implement a solution in a manner that addresses thoroughly in multiple contextual factors of the problem
CO5	Describe the roles and responsibilities of key stakeholders

Refere	Reference Books:	
1.	The Goal: A Process of Ongoing Improvement, Author: Eliyahu Goldratt	
2.	The Design of Everyday Things, Author: Donald Norman	
3.	Engineering in the Mind's Eye, Author: Eugene Ferguson	
4	Unwritten Laws of Engineering: With Revisions and Additions, Author: W. J. King	
5	She Engineers: Outsmart Bias, Unlock your Potential, and Create the Engineering Career of	
	your Dreams, Author: Stephanie Slocum	
6	The Seven Habits of Highly Effective People, Author: Stephen Covey	
7	The War of Art: Break Through the Blocks and Win Your Inner Creative Battles, Author:	
	Steven Pressfield, Cracking Creativity by Michael Michalko	

FOUNDATION SKILLS IN INTEGRATED PRODUCT DEVELOPMENT

Course Title	ABILITY ENHANCEMENT COURSE (FSIPD)		
Course Code	MVJ21AEC11	CIE	50Marks
Total No. of Contact Hours	15L: T: P:: 0 : 0 : 2	SEE	50Marks
No. of Contact week	01	Total	100
Credits	01	Exam. Duration	3hours

Course objective is to:

- To understand the global trends and development methodologies of various types of products and services
- To conceptualize, prototype and develop product management plan for a new product based on the type of the new product and development methodology integrating the hardware, software, controls, electronics, and mechanical systems
- To understand requirement engineering and know how to collect, analyse, and arrive at requirements for new product development and convert them into design specification
- To understand system modelling for system, sub-system and their interfaces and arrive at the optimum system specification and characteristics

	RBT Level	
Module-1	L1, L2, L3	3Hrs
Fundamentals of Product Development: - Introduction to Product Development Methodologies and		
Management – Overview of Products and Services – Types of Product Development – Overview of		
Product Development methodologies - Product Life Cycle - Product Development Planning and		
Management.		

Activity: - Identify a product from the market and prepare a review on the development of the product.

	RBT Level	
Module-2	L1, L2, L3	3Hrs
Requirements Engineering: -Requirement Engineering – Types of Requirements – Requirement		
Engineering -traceability Matrix and Analysis - Requirement	t Management.	
Activity: -Identify a product from the market and prepare a	write up on the requirements	s of the
product.		
	RBT Level	
Module-3	L1, L2, L3	3 Hrs
Systems Engineering: -System Design and Modelling -Intro	duction to System Modellin	ng – System
Optimization – System Specification – Sub-System Design -	- Interface Design.	
Activity: - For a product already available in market, design a new model as per your imagination.		
	RBT Level	
Module-4	L1, L2, L3	3 Hrs
Conceptualization – Industrial Design and User Interface D	esign – Introduction to Con	cept
generation Techniques – Challenges in Integration of Engine	ering Disciplines – Concep	t Screening
and Evaluation – Detailed $\mbox{Design}-\mbox{Component}$ Design and	Verification -Mechanical, E	lectronics
and Software Subsystems – High Level Design/Low Level I	Design of S/W Program	
Activity: - Based on the previous activity of new model desi	gn list out the concepts and	challenges
involved during the product design.		
	RBT Level	
Module-5	L1, L2, L3	3 Hrs
Testing: -S/W Testing- Hardware Schematic, Component design, Layout and Hardware Testing –		
Types of Prototypes- Prototyping – Introduction to Rapid Prototyping and Rapid Manufacturing –		
Types of Prototypes- Prototyping – Introduction to Rapid Pr	ototyping and Rapid Manuf	acturing –
Types of Prototypes- Prototyping – Introduction to Rapid Pr System Integration, Testing, Certification and Documentation		acturing –

Activity: - Choose a product in the market and prepare a write up of the testing involved before and after the launch of that product.

Cours	Course outcomes: Students will be able to	
CO1	Define, formulate and analyze a problem in context to business model.	
CO2	Interpret the fundamentals in design and development of a new product	
CO3	Explain the use of requirements elicitation techniques and their relevance to business situations	
CO4	Apply the principles of product architecture and industrial design to design and develop new products	
CO5	Acquire knowledge in project management practices in the development of new product	

Reference Books:	
1.	Karl T Ulrich and Stephen D Eppinger, "Product Design and Development", Tata McGraw Hill, Fifth Edition, 2011.
	John W Newstorm and Keith Davis, "Organizational Behavior", Tata McGraw Hill, Eleventh
2.	Edition, 2005.