

MVJ College of Engineering, Whitefield, Bangalore

An Autonomous Institution, Affiliated to VTU, Belagavi Scheme of Teaching and Examination 2021 Outcome Based Education (OBE) and Choice Based Credit System (CBCS) Effective from the academic year 2021-22

I SEMESTER B.E. (PHYSICS GROUP)

					Teachi	ng hou	rs/week			Exam	ination		
S. No		Course	Course Title	Teaching Department	Theory Lecture	Tutorial	Practical/Drawi ng	Self-Study Component	ration in Hours	CIE Marks	SEE Marks	Total marks	Credits
	Туре	Code			L	т	Р	S	DU				
1	BSC	MVJ21MAT11	Calculus and Linear Algebra with python	Mathematics	3	1	1		5	50	50	100	4
2	BSC	MVJ21PHY12	Engineering Physics	Physics	2	2	0		4	50	50	100	3
3	ESC	MVJ21EE13	Basic Electrical Engineering	Electrical & Electronics Engineering	2	2	0		4	50	50	100	3
4	ESC	MVJ21CV14	Elements of Civil Engineering &Mechanics	Civil Engineering	2	2	0		4	50	50	100	3
5	ESC	MVJ21EGR15	Engineering Graphics	Mechanical Engineering	2	2	0		4	50	50	100	3
6	BSC	MVJ21PHYL16	Engineering Physics Lab	Physics	0	0	2		2	50	50	100	1
7	ESC	MVJ21EEL17	Basic Electrical Engineering Lab	Electrical & Electronics Engineering	0	0	2		2	50	50	100	1
8	HSMC	MVJ21EGH18	Business communication	Humanities	1	0	0		1	50	50	100	1
9	AEC	MVJ21AEC19	Ability Enhancement Course		1	0	0		1	50	50	100	1
				Total	13	9	5		27	450	450	900	20

Note: BSC: Basic Science, ESC: Engineering Science, HSMC: Humanity and Social Science

					Teachir	ng houi	s/week			Exam	ination		
S. No		Course	Course Title	Teaching Department	Theory Lecture	Tutorial	Practical/Dra wing	Self-Study Component	ation in Hours	CIE Marks	SEE Marks	otal marks	Credits
	Туре	Code			L	т	Р	S	Dura				
1	BSC	MVJ21MAT21	Advanced Calculus and Numerical Methods with Python	Mathematics	3	1	1		5	50	50	100	4
2	BSC	MVJ21PHY22	Engineering Physics	Physics	2	2	0		4	50	50	100	3
3	ESC	MVJ21EE23	Basic Electrical Engineering	Electrical & Electronics Engineering	2	2	0		4	50	50	100	3
4	ESC	MVJ21CV24	Elements of Civil Engineering &Mechanics	Civil Engineering	2	2	0		4	50	50	100	3
5	ESC	MVJ21EGR25	Engineering Graphics	Mechanical Engineering	2	2	0		4	50	50	100	3
6	BSC	MVJ21PHYL26	Engineering Physics Lab	Physics	0	0	2		2	50	50	100	1
7	ESC	MVJ21EEL27	Basic Electrical Engineering Lab	Electrical & Electronics Engineering	0	0	2		2	50	50	100	1
8	HSMC	MVJ21EGH28	Professional Writing	Humanities	1	0	0		1	50	50	100	2
9	AEC	MVJ21AEC29	Ability Enhancement Course		1	0	0		1	50	50	100	1
				Total	13	9	5		27	450	450	900	20

Note: BSC: Basic Science, ESC: Engineering Science, HSMC: Humanity and Social Science

Course Title	ALGEBRA WITH PYTHON	Semester	1		
Course Code	MVJ21MAT11	CIE	50		
Total No. of Contact Hours	50 L:T:P::3:1:1	SEE	50		
No. of Contact Hours/week	5	Total	100		
Credits	4	Exam. Duration	3 Hours		
Course objective is to:					
This course Engineering Mathe	matics-I will enable students:				
• To familiarize the importa	int tools of calculus and differentia	l equations that are	e essential		
in all branches of enginee	ring.				
To develop the knowledge	e of matrices and linear algebra in a	a comprehensive m	anner		
Module-1		L1 & L2	10 Hours		
Differential Calculus-1:			L		
Review of elementary differen	tial calculus, Polar curves - angle b	etween the radius	vector and		
tangent, angle between two curv	es, pedal equation. Curvature and	radius of curvature	- Cartesian		
and polar forms-applications to e	evolutes and involutes				
Self Study : Centre and Circle of C	Curvature				
Laboratory Sessions- Plotting of s	tandard Cartesian curves using Pyt	hon			
Applications: Differential Calculus	s is applied in all Science and Engin	eering			
		5			
Video link :					
https://www.khanacademy.org/			L - 01 - 11		
nttps://www.youtube.com/watc	n?v=s6F5y]Y6 WK&IIst=PLWLSJNQW		10 Hours		
Differential Calculus-2:			10 110013		
Maclaurin's series expansions	for one variable, indeterminate fo	orms (1^{∞} , 0^{0} , ∞^{0})	- L'Hospital's		
rule. Partial differentiation;	Total derivatives-differentiatio	n of composite	functions,		
Jacobians, Maxima and minima for a function of two variables- problems.					
Self Study : Other indeterminate forms					
Laboratory Sessions: Obtaining p Applications: Differential Calculu	artial derivative of some standard t s is applied in all Science and Engin	unctions using Pyt eering.	hon		

Video link: <u>https://www.khanacademy.org/</u> <u>https://www.youtube.com/watch?v=s6F5yjY6jWk&list=PLMLsjhQWWlUqBoTCQDtYlloI-o-9hxp11</u>

Module-3	L1 & L2	10 Hours			
Double and triple integrals. Evaluation of double integrals, change o	f order of int	agration and			
changing into polar co-ordinatos. Applications to find area and volume					
Changing into polar co-ordinates. Applications to find area and volume.					
Beta and Gamma functions: Definitions, Relation between beta and gam	ima functions -	problems.			
Self Study: Finding Area and Volume of Integrals.					
Laboratory Sessions: Evaluation of the double integral using Python					
Applications : Several physical applications of the definite integral are of	common in en	gineering and			
physics like Areas between Curves, Arc length of curve and surface area.					
Video link					
nttps://www.youtube.com/watchv=db7d_a0wiUg&list=PLU6SqdYcYstLoKyzF_dwxAQt8lli6VC54					
https://www.khanacademy.org/math/ap-calculus-ab/ab-integration-new/ab-6-1/v/introduction-to- integral-calculus					
Module-4	L1.L2 & L3	10 Hours			
Ordinary differential equations of first order:	, &	10 110010			
Exact and reducible to exact differential equations, Bernoulli's equation	on, Application	s of ODE's-			
orthogonal trajectories and Newton's law of cooling.					
Nonlinear differential equations: Introduction to general and singular so	olutions; Solva	ble for p;			
Clairaut's and reducible to Clairaut's equations.					
Self Study :L-R circuits					
Laboratory Sessions: Problems on Ordinary differential equation using	Python				
Applications: Cooling/Warming Law, series circuit, Survivability wi	th AIDS, Drai	ning a tank,			
Determining the current or charge in the circuit.					
Video link:					
https://users.math.msu.edu/users/gnagy/teaching/ode.pdf					
https://www.mathsisfun.com/calculus/differential-equations.html					
Module-5	L1,L2 & L3	10 Hours			
Linear Algebra:		L			
Rank of a matrix-echelon form, Solution of system of linear equations – Gauss-elimination method					
and Gauss-Seidel method, Eigen values and eigenvectors using Rayleigh's power method,					
Diagonalization of a square matrix of order two.					

Self Study :Gauss – Jordan Method
Laboratory Sessions: Solving system of Linear equations using Python
Applications:Used in all science and Engineering Like-Heat Distribution, Coding
Theory,GamesNetworking,Image compression

Video link :<u>https://www.math.ust.hk/~machas/matrix-algebra-for-engineers.pdf</u> https://www.khanacademy.org/math/linear-algebra

Course outcomes:

CO1	Apply the knowledge of calculus to solve problems related to polar curves and its						
001	applications in determining the bentness of a curve.						
<u> </u>	Learn the notion of partial differentiation to calculate rates of change of multivariate						
02	functions and solve problems related to composite functions and Jacobians.						
<u> </u>	Apply the concept of change of order of integration and variables to evaluate multiple						
COS	integrals and their usage in computing the area and volumes.						
CO4	Solve first order linear/nonlinear differential equation analytically using standard methods.						
COL	Make use of matrix theory for solving system of linear equations and compute eigenvalues						
CUS	and eigenvectors required for matrix diagonalization process.						

Text Books:

1	B.S. Grewal: Higher Engineering Mathematics, Khanna Publishers, 43rd Ed., 2015.				
2	E. Kreyszig: Advanced Engineering Mathematics, John Wiley & Sons, 10th Ed., 2015.				
2	G. B. Gururajachar: Calculus and Linear Algebra, Academic Excellent Series Publication,				
5	2018-19				
Referen	Reference Books:				
1	N.P.Bali and Manish Goyal: A Text Book of Engineering Mathematics, Laxmi Publishers, 7th				
L L	Ed., 2010.				
2	B.V.Ramana: "Higher Engineering Mathematics" Tata McGraw-Hill, 2006.				
2	H. K. Dass and Er. RajnishVerma: "Higher Engineering Mathematics", S. Chand publishing,				
5	1stedition, 2011.				

CIE Assessment:

CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation. Generally, there will

be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be

awarded will be the average of three tests

- Quizzes (10 marks)
- Assignments/ Self study assignment/seminars (10 Marks)

SEE Assessment:

- i. Question paper for the SEE consists two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.
- ii. Part B also covers the entire syllabus consisting of five questions having choices and may contain subdivisions, each carrying 16 marks. Students have to answer five full questions.
- iii. One question must be set from each unit. The duration of examination is 3 hours.

CO-PO N	Ларрin	g										
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	0	3	0	0	0	0	0	0	1	1
CO2	2	3	0	3	0	0	0	0	0	0	1	1
CO3	2	2	0	2	0	0	0	0	0	0	1	0
CO4	3	2	0	3	0	0	0	0	0	0	0	1
CO5	3	3	0	2	0	0	0	0	0	0	0	0

Course Title	ADVANCED CALCULUS AND NUMERICAL METHODS WITH PYTHON	Semester	11
Course Code	MVJ21MAT21	CIE	50
Total No. of Contact Hours	50 L:T:P::3:1:1	SEE	50
No. of Contact Hours/week	5	Total	100
Credits	4	Exam. Duration	3 Hours

Course objective is to:

This course viz., Advance Calculus and Numerical Methods aims to prepare the students:

- To familiarize the important tools of vector calculus, ordinary/partial differential equations and power series required to analyze the engineering problems.
- To apply the knowledge of interpolation/extrapolation and numerical integration technique whenever analytical methods fail or very complicated, to offer solutions

|--|

Vector Calculus:

Vector Differentiation: Scalar and vector fields. Gradient, curl and divergence, solenoidal and irrotational vector fields- problems, Vector identities.

Vector Integration: Line integrals, Theorems of Green, Gauss divergence and Stokes. Applications to work done by a force and flux.

Self Study : Physical Interpretation of Curl and Divergence, Directional Derivative

Laboratory Sessions-To demonstrate the physical interpretation of gradient, divergence and curl using

Python

Applications: Vector Calculus is applied in all Science and Engineering .Used in 2-D and 3-D gaming theory. Video link :

https://www.slideshare.net/raghuram401/vector-calculus-20955340

https://www.slideshare.net/jacobblackvampire/rajatshukla

https://www.youtube.com/watch?v=sO9Z2RSeH4s

Module-2	L1 & L2	10 Hours
Differential Frenchisers of higher and an		

Differential Equations of higher order:

Second order linear ODE's with constant coefficients-Inverse differential operators, Cauchy's and

Legendre homogeneous equations. Applications to L-C-R circuits.

Self Study : Method of Variation of Parameter

Laboratory Sessions: Finding complementary function of constant coefficient second and higher order

ordinary differential equations using Python

Applications: Differential equation has highest application in all field of science and engineering

Videolink: https://www.slideshare.net/ayeshajavednoori/application-of-higher	<u>-order-different</u>	ial-equations				
https://www.math24.net/topics-higher-order-differential-equations/						
Module-3	L1 & L2	10 Hours				
Partial Differential Equations:						
Formation of PDE's by elimination of arbitrary constants and functions, Solution of non-homogeneous PDE						
by direct integration, Homogeneous PDE's involving derivative with respect to one independent variable						
only. Derivation of one dimensional heat and wave equations and solutions by the method of separation of						
variables.						
Self Study: More number of engineering application problems on heat and wa	ve equations					
Laboratory Sessions: Solutions to the problems on different types of Parti	al differential e	quations using				
Python						
Applications: Tangent Plane and Linear approximation .To find Local Maxima a	and Minima					
Video link : <u>http://tutorial.math.lamar.edu/Classes/DE/IntroPDE.aspx</u>						
https://www.khanacademy.org/						
http://www.nptelvideos.in/						
https://www.classcentral.com/						
Module-4	L1,L2 & L3	10 Hours				
Infinite Series: Series of positive terms-convergence and divergence. P-s	series test, cor	nparison test				
D'Alembert's ratio test and Cauchy's root test – examples.						
Power Series solutions-Recurrence relation, Series solution of Bessel's different	ntial equation le	ading to J _n (x)-				

Bessel's function of first kind, orthogonality. Series solution of Legendre's differential equation leading to $P_n(x)$ -Legendre polynomials. Rodrigue's formula- problems.

Self Study : Proofs of D'Alembert's ratio test and Cauchy's root test

Laboratory Sessions: Illustration of convergent, divergent and oscillatory sequences using Python.

Applications: Series solution helps in understand the derivative in term of series solution using Power series and Frobenius Method.

Video link:

http://easymathseasytricks./

http://www.nptelvideos.in/

https://www.classcentral.com/

Module	-5	L1,L2 & L3	10 Hours				
Numeri	cal Methods:						
Finite d	fferences: Interpolation and Extrapolation using Newton's forward an	d backward diff	erence formula				
Newtor	's divided difference and Lagrange's formula.						
Solution	of polynomial and transcendental equations– Newton-Raphson and F	Regula-Falsi met	hods-				
Problen	15.						
Numeri	cal integration: Simpson's (1/3)rd and (3/8)th rules, Weddle's rule– Pro	oblems.					
Self Stu	dy : Proof's of Newton Raphson and Regula-Falsi Method						
Laborat	ory Sessions: Solving algebraic equation (Regula-Falsi and Newton-Rap	hsonmethods)	using Python				
Applica	ions: Use of Numerical Methods help in reducing the theoretical work						
http://v	/ww.nptelvideos.in/						
http://v	vww.class-central.com/subject/math						
Course	outcomes:						
601	Illustrate the applications of multivariate calculus to understand	the solenoidal	and irrotationa				
01	vectors and also exhibit the inter dependence of line, surface and volume integrals.						
603	Demonstrate various physical models through higher order differe	ential equations	and solve such				
02	linear ordinary differential equations.						
60 2	Construct a variety of partial differential equations and solution	by exact meth	nods/method o				
CO3	separation of variables.						
	Evaluin the applications of infinite cories and obtain cories so	lution of ordir	any differenti				

CO4	Explain	the	applications	of	infinite	series	and	obtain	series	solution	of	ordinary	differential
001	equation	ns.											

CO5 Apply the knowledge of numerical methods in the modeling of various physical and engineering phenomena.

Text Bo	oks:
1	B.S. Grewal: Higher Engineering Mathematics, Khanna Publishers, 43rd Ed., 2015.
2	E. Kreyszig: Advanced Engineering Mathematics, John Wiley & Sons,10th Ed., 2015.
3	G. B. Gururajachar: Advanced calculus and Numerical Methods, Academic Excellent Series Publication, 2018-19.
Referen	ice Books:
1	N.P.Bali and Manish Goyal: A Text Book of Engineering Mathematics, Laxmi Publishers, 7th Ed., 2010.
2	B.V.Ramana: "Higher Engineering Mathematics" Tata McGraw-Hill, 2006.
3	H. K. Dass and Er. RajnishVerma: "Higher Engineering Mathematics", S. Chand publishing, 1stedition, 2011.

CIE Assessment:

CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation. Generally, there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of three tests

- Quizzes (10 marks)
- Assignments/ Self- study/ Seminars (10 Marks)

SEE Assessment:

- iv. Question paper for the SEE consists two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.
- v. Part B also covers the entire syllabus consisting of five questions having choices and may contain subdivisions, each carrying 16 marks. Students have to answer five full questions.
- vi. One question must be set from each unit. The duration of examination is 3 hours.

CO-PO M	lapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	0	2	0	0	0	0	0	0	1	1
CO2	3	3	0	2	0	0	0	0	0	0	1	1
CO3	3	3	0	3	0	0	0	0	0	0	0	1
CO4	2	2	0	3	0	0	0	0	0	0	1	1
CO5	2	2	0	2	0	0	0	0	0	0	0	1

Course Title	ENGINEERING PHYSICS	Semester	1/11
Course Code	MVJ21PHY12/22	CIE	50
Total No. of Contact Hours	40 L:T:P::2:2:0	SEE	50
No. of Contact Hours/week	4	Total	100
Credits	3	Exam. Duration	3 HOURS

Course objective is to: Enable students

- Learn the basic concepts in physics which are very essential in understanding and solving engineering related Challenges
- Gain better knowledge of newer concepts in modern Physics for the better appreciation of modern technology.

Module-1	RBT Level	Hrs.		
Oscillations and Waves				
Free oscillations: Definition of SHM, Derivation of Equation for SHM,				
Mechanical Simple Harmonic Oscillators, (Mass suspended to spring), (Pre-				
requisite: Complex notation and phasor representation of SHM), Equation of motion				
for Free oscillations, Natural frequency of oscillations.				
Damped oscillations. Theory of damped oscillations: over damping, critical				
damping and under damping, Quality factor. Numerical problems.				
Shock waves: Mach number, Properties of shock waves, Control volume,				
Laws of conservation of mass, energy and momentum. Construction and				
working of Reddy Shock Tube, Applications of shock waves. Numerical				
problems.		o		
Self-Learning topics: Forced oscillations, LC oscillations.	LI, LZ, LJ	0		
Teaching Learning Process :Chalk and Board, PowerPoint presentation, and Videos				
Laboratory Sessions/ Experimental learning:				
1. Verification of Hooke's law				
2. Calculating the time period of oscillations of springs in Series and parallel				
Related to Higher semester subjects: Introduction to aerospace engineering(AE) ,Aerodynamics-I(AS), Engineering Geology(CV), Earthquake engineering (CV),Dynamics of Machines(ME), Advanced Vibrations(ME)				

		1
Video link / Additional online information:		
https://www.youtube.com/watch?time_continue=29&v=oITD-		
mpsU4E&feature=emb logo		
https://www.youtube.com/watch?time_continue=420&v=T3XguAI-		
I5c&feature=emb_logo		
https://www.youtube.com/watch?v=bO2Z308uFpo		
Module-2	RBT Level	Hrs.
Elastic Properties of materials		
Elasticity : Concept of elasticity, Plasticity, Stress, Strain, Tensile stress, Shear		
stress, Strain hardening and strain softening, failure (fracture/ fatigue),		
Hooks law, Different elastic moduli: Poisson ratio, Expression for Young's		
Modulus (Y), Bulk Modulus (K), and Rigidity modulus (n) in terms of β .		
Relation between Y, n, K.		
Bending of Beams:		
Definition of beams, different types of beams, Definition of neutral		
surface/plane and neutral axis, Bending moment: expression for bending		
moment in terms of moment of inertia, Bending moment for circular and		
rectangular cross sections. Single cantilever: derivation of expression for		
Young's Modulus.		
Torsion of a cylinder:		
Expression for couple per unit twist for a solid cylinder (Derivation),	L1, L2, L3	9
Torsional pendulum, Expression of period of Oscillations.		
Numerical problems.		
Self-Learning topics: Young's Modulus of materials by Uniform Bending		
Method		
Teaching Learning Process :Chalk and Board, PowerPoint presentation, and Videos		
Experimental learning: Model making of types of beams.		
Related to Higher semester subjects: Mechanics of Materials(AE)Aerospace Materials(AE),Material Science(CH), Strength of Materials(CV), MECHANICS OF MATERIALS(ME), MARERIAL SCIENCE(ME), THEORY OF ELASTICITY (Elective)(ME),		

Video link / Additional online information:		
https://youtu.be/ITuWnrl3aKI		
https://youtu.be/JGK8i0X55Mc		
https://www.youtube.com/watch?v=R6yC-rkrYz4		
Module-3	RBT Level	Hrs.
Quantum Mechanics		
Wave Mechanics:		
Brief discussion on Phase velocity, group velocity, Relation between phase		
velocity and group velocity (No derivation).		
Quantum Mechanics:		
Failure of classical physics - Black body radiation, Wien's displacement law,		
Wien's law, Rayleigh jeans law, Planck's law of Radiation. Compton effect.		
De-Broglie hypothesis, matter waves, characteristics of matter waves.		
Heisenberg's uncertainty principle (HUP) – Statement, Different forms.		
Application of HUP - non confinement of electrons in the atomic nucleus.		
Wave function (WF), Physical Significance of WF, Normalization.		
Schrodinger's time independent wave equation, particle in a 1-D Infinite		
potential well- Derivation of WF. Probability densities and Energy Eigen		
values of a particle in a 1-D Infinite potential well in first three energy levels.	L1. L2. L3	8
Numerical problems.	,,	
Introduction to Quantum Computing: Difference between classical computing		
and quantum computing, Advantages and disadvantages of Quantum computing.		
Self-Learning topics: Quantum logic gates		
Teaching Learning Process :Chalk and Board, PowerPoint presentation, and Videos		
Related to Higher semester subjects: Introduction to astrophysics and Space Environment(AS), Electron Devices/ digital electronics(ECE) Video link / Additional online information:		
https://nptel.ac.in/courses/115101107/		
https://nptel.ac.in/courses/115102023/		
https://nptel.ac.in/courses/115104096/		
https://oyc.yale.edu/physics/phys-201/lecture-19		
https://ocw.mit.edu/courses/physics/8-05-quantum-physics-ii-fall-		
2013/video-lectures/lecture-1-wave-mechanics/		

Module-4	RBT Level	Hrs.
Lasers and Optical Fibers		
Lasers: Interaction of radiation with matter – Spontaneous and Stimulated		
processes. Einstein's A, B coefficients - derivation of energy density.		
Requisites of a Laser system. Principle, construction and working of CO_2		
Laser.		
Semiconductor Lasers – GaAs Laser. Application of Lasers - Laser range		
finder, Compact Disc, Retinal reconstruction surgery, Numerical problems.		
Optical Fibers: Propagation mechanism, angle of acceptance. Numerical		
aperture. Modes of propagation and types of rays - Meridional rays and		
Skew ray. Classification of optical fibers. Attenuation: causes of attenuation		
and mention of expression for attenuation coefficient. Discussion of block		
diagram of Point to Point communication. Merits and demerits. Numerical		
problems.		
Self-Learning topics: Optical amplifiers.		
Teaching Learning Process : Chalk and Board, PowerPoint presentation,		
and Videos		
Experimental learning:	L1, L2, L3	8
1. Demonstration of directionality of Laser light.		
2. Model of point to point communication.		
Related to Higher semester subjects: Space vehicle Design(AS) – Laser		
cutting , Highway Engineering(CV)—laser drilling, cutting of metals,		
Optical fibre communication -(ECE)		
Video link / Additional online information:		
https://www.youtube.com/watch?v=PK4yFaGHSFc&list=PLU0oJASIjGxdZMty		
<u>pwhvGrnmuzNnNdcKt</u>		
https://www.youtube.com/watch?v=saVE7pMhaxk		
https://www.youtube.com/watch?v=urbZ8CTceu0		
https://www.youtube.com/watch?v=_qixt0NLc9I		

	Module-5	RBT Lovel	Hrs
			1115.
Currential	crystal physics and value science		
Crystal	s: Review of Bravais lattices, Directions and planes in crystals, Miller		
indices	, Expression for inter planar spacing, Numerical problems.		
Liquid	Crystals: Types of liquid crystals, Application – LCD		
Nano-S	cience: Introduction to Nano-science, Mesoscopic state. Top-down		
and Bo	ttom –up approach. Ball milling.		
Carbon	Nano Tubes (CNT) – Structures, Properties, Mentioning of any 3		
Engine	ering Applications of CNT.		
SEM: P	rinciple, Construction, Working and applications.		
Self-Lea	arning topics: TEM,STEM(Scanning tunnelling electron microscope)		
Teachi	ng Learning Process : Chalk and Board, PowerPoint presentation, and		
Videos			
Experir	nental learning:	L1, L2, L3	7
	1. Model making of different crystal structures.		
	2. Demo of sol-gel method of synthesis of nanoparticles (Zn O)		
Related to Higher semester subjects: Composite of Materials (AE), MATERIAL SCIENCE (CH), Solid Waste Management (CV), and MATERIAL SCIENCE (ME).			
Video l	ink / Additional online information:		
https://	/www.youtube.com/watch?v=J8Bo9BHxesE		
https://	/www.youtube.com/watch?v=1vsNxkdlcXw		
https:/	/www.youtube.com/watch?v=k61wjab7iUs		
https:/	/www.voutube.com/watch?v=ebQ38bbgQ_4&list=PLbM\/og//i5plTdei		
https:/	/www.voutube.com/watch?v=mC0rVNIMz00		
<u>mups./</u>	www.youtube.com/watch?v=mcormini29Q		
Course	outcomes:		
	Course outcomes: On completion of this course, students are able to:		
CO1 Understand various types of oscillations and their implications, the role of Shock wa			
	various fields.		
CO2	Recognize the elastic properties of materials for engineering application	ons.	
	Compute Eigen values, Eigen functions, momentum of Atomic and s	ubatomic particle	s using
CO3 Time independent 1-D Schrodinger's wave equation.			

CO4	Apprehend theoretical background of laser, construction and working of different types of
004	laser and its applications in optical fibers.
CO5	Understand various concepts of crystal structure and the basics of Nanoscience.
Assess	ment Details (both CIE and SEE)
The we	ightage of Continuous Internal Evaluation (CIE) is 50% and of Semester End Exam (SEE) is 50%.
The stu	ident has to obtain a minimum of 40% marks individually both in CIE and SEE to pass. Theory
Semest	er End Exam (SEE) is conducted for 100 marks (3 Hours duration). Based on this, grades will be
awarde	ed.
Contin	uous Internal Evaluation:
1. Meti	nods suggested: Test, Open Book test, Written Quiz, Seminar, Report writing etc.
2. The	class teacher has to decide the topic for closed book test, open book test, Written Quiz and
Semina	r. In the beginning of the semester, the teacher has to announce the methods of CIE for the
subject	
Somos	ter End Examination:
Theory	SEE will be conducted by the institution involving the Board of examiners as per the scheduled
time ta	ble.
1. The	question paper will have two parts: Part A and Part B.
2. Part	A will contain 1or 2 marks questions for a total of 20 marks.
Par	t B will contain 5 questions of 16 marks each.
3. Ther	e will be 2 questions from each module in Part B with internal choice. Each of the two questions
under a	a module (with a maximum of 3 sub-questions), should have a mix of topics under that module.
Text Bo	ooks:
	A Taxt back of Engineering Diverses, M.N. Avadhanulu and D.G. Kehirsagar, 10th revised Ed. S. Chand &
1.	Company Ltd, New Delhi
2.	Engineering Physics-Gaur and Gupta-Dhanpat Rai Publications-2017
3.	Nano: The Essentials: Understanding Nanoscience and Nanotechnology- T. Pradeep, Tata
4.	A Text book of Engineering Physics-S.P.Basavaraju

Reference Books:				
1	Introduction to Mechanics — MK Verma: 2nd Ed, University Press(India) Pvt Ltd, Hyderabad			
1.	2009			

2.	Lasers and Non Linear Optics – BB laud, 3rd Ed, New Age International Publishers 2011
3	Solid State Physics-S O Pillai, 8th Ed- New Age International Publishers-2018
Δ	Nano: The Essentials: Understanding Nanoscience and Nanotechnology- T. Pradeep, Tata
4	McGraw Hill- 2008 Ed

CO-PO M	lapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	-	-	3
CO2	3	2	-	-	-	-	-	-	-	-	-	3
CO3	3	1	-	-	-	-	-	-	-	-	-	3
CO4	3	2	-	-	-	-	-	-	-	-	-	3
CO5	3	1	-	-	-	-	-	-	-	-	-	3

Course Title	Basic Electrical Engineering	Semester	I
Course Code	MVJ21EE13/ MVJ21EE23	CIE	50
Total No. of Contact Hours	40	SEE	50
No. of Contact Hours/week	4 L: T : P :: 2 : 2 : 0	Total	100
Credits	3	Exam. Duration	3Hrs

Course objective is to:

- Introduction to electric power system and Electricity billing
- Application of Ohm's law and Kirchhoff's laws to DC circuits.
- Analysis of single phase AC series circuits and three phase balanced circuits.
- Construction, working and performance of electrical machines and transformer.
- Concepts of electrical wiring, circuit protecting device and earthing.
- Introduction to moving coil and moving iron type measuring instruments

Module-1	L1,L2	08Hrs.

Introduction to Electrical Power system: Introduction to generation, transmission and distribution of electrical power. AC and DC power. Concept of grid and need for interconnection of grids, conditions for grid connection, types of loads,

Domestic wiring: Service mains, meter board and distribution board, necessity of earthing, energy efficient lamps, Fuse and Miniature circuit breaker (MCB), merits and demerits.

Safety measures: Electric Shock, Safety Precautions to avoid shock.

Electricity bill: Power rating of household appliances including air conditioners, PCs, laptop, printer etc. Definition of "unit" used for consumption of electrical energy, two - part electricity tariff

Laboratory Sessions/ Experimental learning: Calculation of electricity bill for domestic consumers.

Applications: Calculation of electricity bill, Electrical safety

Web Link and Video Lectures:

- 1. https://nptel.ac.in/courses/108/102/108102047/
- 2. https://www.electricaleasy.com/2016/01/electricity-rates-or-tariff.html

Module-2	L1,L2,L3	08Hrs.			
D.C. Circuits: Ohm's law, Kirchhoff's laws, current and voltage division rule (Self study contents) analysis of					
series, parallel and series-parallel circuits excited by independent voltage sources, power and energy.					
Single phase AC circuits: Generation of sinusoidal voltage, definition of average value, r.m.s. value, form					
factor and peak factor of sinusoidal varying voltage and current, p	hasor representation of alt	ernating			
quantities, analysis with phasor diagram of R-L, R-C and R-L-C series circ	uits, real				
power, reactive power, apparent power and power factor.					
Laboratory Sessions/ Experimental learning: Simulation of circuits using	software.				
Applications: Analysis of electrical circuits.					
Web Link and Video Lectures:					
1. https://www.khanacademy.org/					
2. http://www.nptelvideos.in/					
3. https://www.classcentral.com/					
Module-3	L1,L2,L3	08Hrs.			
D.C. machines : Faraday's laws, Lenz's law, Fleming's rules, statically and dynamically induced emfs (Self study					
contents) working principle of a D.C. machine as a generator and a moto	or. constructional details in b	rief			

D.C. motor: Back emf, torque equation, type of DC motors and applications, necessity of starter for a DC motor

Transformers: Self-inductance, mutual inductance and coupling coefficient, Principle of operation and construction of single phase transformers (core and shell types), EMF equation, losses and efficiency.

Laboratory Sessions/ Experimental learning: Demonstration of machines.

Application: Understanding the fundamental operation of different electrical machines.

Web Link and Video Lectures:

- 1. https://www.khanacademy.org/
- 2. http://www.nptelvideos.in/
- 3. https://www.classcentral.com/

T 1	Module-4	L1,L2,L3	08Hrs.
inree p	hase AC circuits: Necessity and advantages of three phase systems, phase	e sequence, re	lationship
betwee	n line and phase quantities in balanced star and delta connections, power in th	nree phase circ	uits.
Three p	hase induction motors: Constructional details, production of rotating mag	gnetic field, p	rinciple o
operatio	on, slip, types and applications, necessity and types of starter.		
Laborat	ory Sessions/ Experimental learning:		
1.	Measurement of power for 3-phase circuits using software.		
Applica	ion: Understanding the fundamental operation of mostly used industrial mac	hine.	
Web Lir	k and Video Lectures:		
1.	nttps://www.khanacademy.org/		
2.	http://www.nptelvideos.in/		
3.	https://www.classcentral.com/		
	Module-5	L1,L2,L3	08Hrs.
Veasur	ing Instruments: Construction and working of moving iron type and movin	g coil type ins	truments
advanta	ges and disadvantages, Construction and working of wattmeter, energy meter	r and megger.	
Laborat	ory Sessions/ Experimental learning:		
1.	Demonstration of measuring instruments.		
2.	Layout of house wiring with following requirements:		
	No. of Rooms-02. Each room has 1 distribution board, 2 fans or 1 AC	, 3 lamp loads	and 2
	power sockets.		
Applica	power sockets. .ion: Understanding the fundamentals electrical wiring.		
Applica Web Lir	power sockets. ion: Understanding the fundamentals electrical wiring. k and Video Lectures:		
Applica Web Lir 1.	power sockets. ion: Understanding the fundamentals electrical wiring. k and Video Lectures: https://www.khanacademy.org/		
Applica Web Lir 1. 2.	power sockets. ion: Understanding the fundamentals electrical wiring. k and Video Lectures: https://www.khanacademy.org/ http://www.nptelvideos.in/		
Applica Web Lir 1. 2. 3.	power sockets. Sion: Understanding the fundamentals electrical wiring. k and Video Lectures: https://www.khanacademy.org/ http://www.nptelvideos.in/ https://www.classcentral.com/		
Applica Web Lir 1. 2. 3.	power sockets. Sion: Understanding the fundamentals electrical wiring. k and Video Lectures: https://www.khanacademy.org/ http://www.nptelvideos.in/ https://www.classcentral.com/		
Applica Web Lir 1. 2. 3.	power sockets. Sion: Understanding the fundamentals electrical wiring. k and Video Lectures: https://www.khanacademy.org/ http://www.nptelvideos.in/ https://www.classcentral.com/		
Applica Web Lir 1. 2. 3.	power sockets. Sion: Understanding the fundamentals electrical wiring. k and Video Lectures: https://www.khanacademy.org/ http://www.nptelvideos.in/ https://www.classcentral.com/		
Applica Web Lir 1. 2. 3.	power sockets. Sion: Understanding the fundamentals electrical wiring. k and Video Lectures: https://www.khanacademy.org/ http://www.nptelvideos.in/ https://www.classcentral.com/		

Course o	utcomes: At the end of the course, the student will be able to
C103.1	Understand the concepts of generation, transmission and distribution of electric power, Electricity billing and safety measures.
C103.2	Analyze DC and single phase AC circuits.
C103.3	Understand the construction and principle of operation of electrical machines and single
	phase transformers.
C103.4	Understand three phase AC circuits and principle of operation of induction motor.
C103.5	Understand the working of measuring instruments and house wiring.
Fext Boo	ks:
1.	E. Hughes, "Electrical And Electronic Technology", Pearson, International Students Tenth
	Edition.
2.	C Kulshreshtha, "Basic Electrical Engineering", Tata McGraw Hill, Revised first Edition.
.	
Referen	CE BOOKS:
1.	M V Rao, "Basic Electrical Engineering".
2.	Ashfaq Husain, "Fundamentals of Electrical Engineering", Dhanpat Rai & Co. Third Edition
CIE Ass	essment:
CIE is	based on quizzes, tests, assignments/seminars and any other form of evaluation. Generally, there wi
be: Three	e Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarde
will be th	e average of three tests
- Qu	izzes/mini tests (4 marks)
- M	ini Project / Case Studies (8 Marks)
Activitie	s/Experimentations related to courses (8 Marks)
SEE Asse	essment:
i. C	Question paper for the SEE consists two parts i.e. Part A and Part B. Part A is compulsory and consist
o	f objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering
t	he whole syllabus.
ii. P	art B also covers the entire syllabus consisting of five questions having choices and may contain sub
d	ivisions, each carrying 16 marks. Students have to answer five full questions.
iii. C	One question must be set from each unit. The duration of examination is 3 hours.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C103.1	3	1	1	-	-	1	3	-	2	-	-	1
C103.2	3	3	2	-	-	-	-	-	2	-		2
C103.3	3	2	1	-	-	-	-	-	-	-	-	1
C103.4	2	1	-	-	-	-	-	-	-	-	-	
C103.5	2	1	-	-	-	-	-	-	2	-	-	1

Course Title	ELEMENTS OF CIVIL ENGINEERING & MECHANICS	Semester	1/11
Course Code	MVJ21CV14/24	CIE	50
Total No. of Contact Hours	40 L:T:P::2:2:0	SEE	50
No. of Contact Hours/week	4	Total	100
Credits	3	Exam. Duration	3 Hours

Course objective is to:

- Learn Scope of various fields of Civil Engineering, basics of Engineering Mechanics Concepts.
- Verify the Equilibrium condition of Coplanar Concurrent Force System
- Solve the problems associated with Forces / Loads and Moments with different support conditions
- Analyze the force and motion of bodies under kinematics
- Calculate the First and Second area moment for regular geometrical cross sections

Prerequisites: Knowledge of Mathematics (Integration, Vector Algebra), Knowledge of Physics-

Units and Measurements, Motion in a Straight Line, Centroid, forces.

Module-1	L1, L2, L3	8 Hours

Introduction: Application of Mechanics in various disciplines of Engineering. (Online Mode) **Scope of different fields of Civil Engineering:** Surveying, Building Materials, Construction Technology,

Geotechnical Engineering, Structural Engineering, Hydraulics

Engineering, Transportation Engineering. (Online Mode)

Engineering Mechanics: Introduction - Idealization of bodies - particle, Continuum, rigid body, point force, Newton's laws of motion, Concept of force & its Characteristics, internal and external force, force system & types of force systems, Parallelogram law: concept and Numerical Problems, Principle of Transmissibility of forces, Principle of Superposition and Physical independence of forces. Resolution and composition of force, resultant of coplanar concurrent forces - concept and Numerical Problems. Moment of a force about a point and about an axis, couple, characteristics of couple, moment of couple, Numerical Problems.

Laboratory Sessions/ Experimental learning: (Self-Learning)

• Determination of Resultant of concurrent and non-concurrent forces by graphical method

Applications: (Self-Learning)

- Resultant force for Ship Movement
- Resultant moment of a Couple

Video link / Additional online information: (Self-Learning)				
Fundamental Law: https://nptel.ac.in/courses/122104014/				
Concurrent force : https://nptel.ac.in/courses/115104094/				
Module-2	L1, L2, L3	8 Hours		
Resultant of coplanar forces: Varignon's theorem (Principle of moments) (On	line Mode): Resu	ultant of		
coplanar non-concurrent forces by method of resolution- Numerical Problems	S.			
Equilibrium: Concept of equilibrium, Free body diagram, conditions of equilib	rium of concurre	ent and non-		
concurrent co planar force system. Triangle law-concept and Polygon law of f	orces-concept, L	ame's		
Theorem-concept (Online Mode) and Numerical Problems. Graphical Method	to find Resultan	t of concurrent		
and non-concurrent forces Graphical Method to justify the Equilibrium of cop	lanar concurrent	t and non-		
concurrent force systems.				
Laboratory Sessions/ Experimental learning: (Self-Learning)				
Model Making of Principle of Moment under given loading condition	I			
Applications: (Self-Learning)				
Equilibrium condition of Rigid body				
Cantilever Beam Support Reaction				
Video link / Additional online information: (Self-Learning)				
• Varignon's theorem: https://nptel.ac.in/courses/115104094/				
Equilibrium: https://nptel.ac.in/courses/122104015/				
Module-3	L1, L2, L3	8 Hours		
Support Reactions: Types of Loads and Supports, Introduction to statically of	determinate and	indeterminate		
beams (Online Mode), Numerical Problems on support reactions for static	ally determinate	e beams (point		
load, uniformly distributed load, uniformly varying loads and moments).				
Friction: Introduction, coefficient of friction, limiting friction, angle of friction,	, angle of repose	, cone of		
friction; laws of Dry (Coulomb) friction (Online Mode), Numerical Problems or	n single and mult	ti- body system		
on horizontal and incline planes and ladder friction.				
Laboratory Sessions/ Experimental learning: (Self-Learning)				
• Determine the coefficient of friction between different surfaces on a	an inclined plane			
Applications: (Self-Learning)				

- Motion of Piston in Cylinder
- Screw Jack for uplifting of objects

Video link / Additional online information: (Self-Learning)

• Law of Friction: <u>https://nptel.ac.in/courses/113108083/</u>

Module-4	L1, L2, L3	8 Hours
Kinematics: Definitions, Displacement, Average velocity, Instantaneous	velocity, Speed	, Acceleration,
Average acceleration, Variable acceleration, Acceleration due to gravity,	rectilinear mot	tion, Projectile
Motion (Online Mode) - Numerical Problems.		
Dynamics: D' Alembert's principle and its application in plane motion an	nd connected be	odies including
pulleys (Online Mode) -Numerical Problems.		
Laboratory Sessions/ Experimental learning: (Self-Learning)		
Conducting Linear motion of object under given condition of gravitat	ion and Projecti	les
Applications: (Self-Learning)		
Motion of Lift		
Lifting of open storage containers		
Video link / Additional online information: (Self-Learning)		
• Dynamics: https://nptel.ac.in/courses/112/106/112106180/		
Module-5	L1, L2, L3	8 Hours
Centroids and Centre of gravity: Concept, centroid of line and regular geome	trical area, centr	oid of irregular
lamina by method of integration, centroids of composite Areas and built	up sections (C	Online Mode) -
Numerical Problems.		
Moment of inertia: Regular shapes by integration method, polar moment	of inertia, radi	us of gyration,
Parallel and Perpendicular axis theorem, moment of inertia of composite area	as and built-up s	ections (Online
Mode) – Numerical Problems. Practical verification of significance of Centroid	of different type	es of lamina.
Laboratory Sessions/ Experimental learning: (Self-Learning)		
Verification of significance of Centroid of different types of plane lam	ina	
Applications: (Self-Learning)		
Axis of Symmetry		
Bending Resistance of the Beam		
Video link / Additional online information: (Self-Learning)		
Centroid: http://www.pptelvideos.in/2012/12/engineering-mechanics-drgsara	vana- kumar.htn	nl

Course	outcomes: On completion of the course, students would be able to
CO1	Understand and appreciate the applications of Mechanics in various disciplines of Engineering
CO2	Compute the resultant and the effect of the Forces on bodies
CO3	Calculate the support reactions of statically determinate beams.
CO4	Comprehend the basics of dynamic analysis with D' Alembert's Principle
CO5	Find the centroid and moment of inertia of composite areas and built-up sections

Text Bo	poks:
1	Shesha Prakash M N, Ganesh B. Mogaveer, "Elements of Civil Engineering and
	EngineeringMechanics", PHI Learning Private Limited, Delhi, 3 rd Edition (2017).
2	Bhavikatti S S, "Elements of civil engineering and mechanics", New age international
Z	publishers, 3 rd Edition (2009).
Referen	nce Books:
1	Andy Ruina and Rudra Pratap, "Introduction to Statics and Dynamics", Oxford University
	Press (2002).
	Kalbanura R.K. "Elements of sivil anginaaring and anginaaring machanics" Eastern back

2	Konapare B K, Elements of elvir engineering and engineering meenanics , Eastern book
	promoters Belgaum, Belagavi (2010).
2	Beer, F.P and Johnston Jr. E.R., "Vector Mechanics for Engineers (In SI Units): Statics and
3	Dynamics", Tata McGraw-Hill Publishing company, New Delhi, 8th Edition (2004).
4	Egor P Popov, "Engineering Mechanics of Solids", Pearson Publishing, 2 nd Edition (2006)

Scheme of Evaluation:		
Details		Marks
Average of three Internal Assessment (IA) Tests of 30 Marks		30
each i.e. Σ (Marks Obtained in each test) / 3		
Quizzes		2x2=4
Activities / Experimentations related to courses		8
Mini Projects / Case Studies		8
Semester End Examination	SEE (50)	50
	Total	100

CO-PO N	lapping	5										
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	1	-	-	-	1	-	-	1	-	1
CO2	3	3	1	2	-	-	1	-	-	1	-	2
CO3	3	3	1	2	-	-	-	-	-	1	-	2
CO4	3	3	1	2	-	-	1	-	-	1	-	2
CO5	3	3	1	2	-	-	1	-	-	1	-	2

Course Title	ENGINEERING GRAPHICS	Semester	1/11
Course Code	MVJ21EGR15/25	CIE	50
Total No. of Contact Hours	40 L : T : P : 2:0:2	SEE	50
No. of Contact Hours/week	04	Total	100
Credits	03	Exam. Duration	3 Hours

Course objective is to:

- To understand the concept of projection systems; standards and conventions.
- To develop the views of basic geometrical entities points, lines, planes and solids.
- To enhance speed and accuracy in use of drawing instruments and sketching capabilities.
- To acquire the skill of expressing two and three dimensional objects as pictorial views.
- Exposure to Engineering communication.

Module-1	RBT Level	8 Hrs
	""	

Introduction to Engineering Graphics: Orthographic projection- Principal planes-First angle projection-projection of points.

Projection of lines and Basic constructions of plane surface

Projection of straight lines (only First angle projections) inclined to both the principal planes – Determination of true lengths and true inclinations by rotating line method. Midpoint problems. Construction of triangle, square, pentagon and hexagon.

Introduction to software commands and basic constructions of the planes in the software.

Laboratory Sessions/ Experimental learning:

• Prepare models of quadrants with thin sheets of appropriate material to better understand quadrant system, first angle and third angle projections

Applications: Engineering drawing of components in various angles of projections.

Video link / Additional online information :

https://www.youtube.com/watch?v=TEzGnqhKpFI

https://www.youtube.com/watch?v=kbllxkkmAW0&t=8s

https://www.youtube.com/watch?v=fK4h5gM73w8&list=PLIhUrsYr8yHxEk_Jv8yOatn3Dcr6KYK3j

Module-2	RBT Level L1, L2, L3	8 Hrs
Orthographic Projections: Introduction, Definitions - Planes of projection, reference	line and con	ventions
employed, Projections of points in all the four quadrants, Projections of straight	lines (located	in first

quadrant/first angle only), True and apparent lengths, True and apparent inclinations to reference planes.

Orthographic Projections of Plane Surfaces (First Angle Projection Only).Introduction, Definitions - projections of plane surfaces-triangle, square, rectangle, rhombus, pentagon, hexagon and circle, planes in different positions by change of position method only.

Laboratory Sessions/ Experimental learning:

• Preparation of models on different planes like triangle, square, rectangle, pentagon, hexagon, and circular of given size using thin cardboard

Applications: Drawing of different planes in real time engineering applications can be given to students.

Video link / Additional online information:

https://www.youtube.com/watch?v=6I764RCCsrw

https://www.youtube.com/watch?v=o1YPja2wCYQ

https://www.youtube.com/watch?v=AoNIOxnxDO0&list=PLIhUrsYr8yHx7TVB51jN3HZVyW3R6RiBg

https://www.youtube.com/watch?v=op-fPNGqOQM&t=27s

Madula 2	RBT Level	
WOddle-S	L1, L2, L3	0 11 3

Projections of Solids (First angle Projection only): Introduction, Definitions - Projections of right regular tetrahedron, hexahedron (cube), prisms & pyramids (triangular, square, pentagonal, & hexagonal), cylinders, cone and problems on freely suspended solids.

Laboratory Sessions/ Experimental learning:

 Preparation of models on different solids like prisms and pyramids of triangular, square, rectangular, pentagon, and hexagon along with tetra hadron, hexa hadron, circular cone of given size using thin cardboard

Applications: Section of solids can be explained based on the basic concepts of solids.

Video link / Additional online information:

https://www.youtube.com/watch?v=YV4RZNQ2yB8&list=PLIhUrsYr8yHxARPzEFz1nXgt8j6xF_tEm

https://www.youtube.com/watch?v=6grlJ0XS3iA

https://www.youtube.com/watch?v=QHogS8XvfQk

Modulo 4	RBT Level	
Module-4	L1, L2, L3	0 11 5
Development of Lateral Surfaces of Solids: Introduction, development of right reg	ular prisms, p	yramids,
cylinders and cones resting with base on HP.		
Development of lateral surfaces of above solids, their frustums and truncations.		

Laboratory Sessions/ Experimental learning:

• Using sheet metal students are advised to prepare models like tray, funnel, cone, cylinder & other real time models given using knowledge of development of lateral surfaces.

Applications: Construction of chimneys, bends, cones/funnels and other hollow channels can be analyzed.

Video link / Additional online information :

https://www.youtube.com/watch?v=hljpRonTkIs&list=PLIhUrsYr8yHwdB96ft6c0Uwc4SDCLuG1v

Madula F	RBT Level	0.11mg
Wodule-5	L1, L2, L3	8 Hrs
Isometric Projection (Using Isometric Scale Only): Introduction, Isometric scale, Isome	tric projection	of simple
plane figures, Isometric projection of tetrahedron, hexahedron (cube), right regular pris	ms, pyramids,	cylinders,
cones, spheres, cut spheres and combination of two solids.		
Laboratory Sessions/ Experimental learning:		
Taking many ment and drawing of simple machanical blacks like Divergence	hladi (haaning	housing)

 Taking measurement and drawing of simple mechanical blocks like Plummer block (bearing housing), tool post of lathe, vice of shaping machine etc. and drawing 2D and isometric drawings

Applications:

- Conversion of simple isometric models into orthographic views both in sketch book and solid edge
- Analysis and observation of different views when three or more solids are placed one above the other can be analyzed.

Video link / Additional online information :

https://www.youtube.com/watch?v=77ufJXvXUk4&list=PLIhUrsYr8yHxVky7bfrnbRcdXcHjT_K83

Note: Related to Planes and Solid students will be advised to make model using wood i.e. Basics of carpentry can be explained.

Course	e outcomes:
CO1	Draw orthographic projections of basic geometrical entities in various positions and translate the
	geometric information of engineering objects into engineering drawings.
CO2	Create sketches and Isometric projections of solids
CO3	Develop lateral surfaces of solids and appreciate their applications in the industry.
CO4	Use modern engineering tool (CAD software) necessary for engineering practice.

Text B	Text Books:			
1.	K.R. Gopalakrishna, "Engineering Graphics", 32nd edition, 2005- Subash Publishers, Bangalore.			
	S. Trymbaka Murthy, "Computer Aided Engineering Drawing", I.K. International Publishing House			
2.	Pvt. Ltd., New Delhi, 3rd revised edition-2006.			

3.	A Primer on Computer Aided Engineering Drawing-2006, Published by VTU, Belagavi								
Refere	Reference Books:								
	Luzadder Warren J., Duff John M., "Fundamentals of Engineering Drawing with an Introduction to								
1.	Interactive Computer Graphics for Design and Production", Eastern Economy Edition, 2005- Prentice-								
	Hall of India Pvt. Ltd., New Delhi.								
	N.D. Bhatt & V.M. Panchal, "Engineering Drawing", 48th edition, 2005- Charotar Publishing House,								
2.	Gujarat.								
	M H Annaiah, C N Chandrappa and B Sudheer PremKumar, "Computer Aided Engineering Drawing"								
3.	Fifth edition, New Age International Publishers.								

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	1	2	2	-	-	1	1	1	2
CO2	3	2	3	2	2	2	-	1	1	1	-	1
CO3	1	2	3	3	2	2	-	1	1	1	-	1
CO4	1	2	3	3	3	2	-	1	1	-	1	2

	Continuous Internal Evaluation (CIE):						
	Evaluation Method	Course with Assignment					
Manual Drawing	anual Drawing Test (3 CIE to be conducted – Best of two CIE should be considered)						
Preparation of at	least two models in workshop as hands-on sessions	10					
Mock Test – to b	e conducted for 100 marks and scaled down to 10	10					
	Total	50					
	Scheme of Evaluation:						
Question No.	From Modules	Marks Allocated					
1	Module 2 - [Choice between (Points & Lines) or Planes]	30					
2	Module 3 - [Solids]	40					
3	3 Module 4 - [Development] or Module 5 [Isometric]						
	Total	100					

Course Title	Engineering Physics Lab	Semester	1/11
Course Code	MVJ21PHYL16/26	CIE	50
Total No. of Contact Hours	15 L : T : P :: 0 :0 : 2	SEE	50
No. of Contact Hours/week	2	Total	100
Credits	1	Exam. Duration	2 Hours

Course objective is to:

• Course objectives: To realise experimentally, the mechanical, electrical and thermal properties of materials of materials, concept of waves and oscillations

• Design simple circuits and hence study the characteristic of semiconductor devices.

SI No	Experiment Name	RBT Level	Hours
1	Measurement of wavelength of laser using diffraction grating	L3	1
2	Determination of Planck's constant.	L3	1
3	Determination of spring constants In series and Parallel Combination	L3	1
4	Verification of Stefan's law.	L3	1
5	Determination of resonant frequency and quality factor in series and parallel combinations of LCR Circuit	L3	1
6	Determination Of Young's Modulus Of A Given Beam By Uniform Bending	L3	2
7	Determination of dielectric constant of given capacitor	L3	1
8	Study Of V-I Characteristics of Given Photo Diode In Reverse Bias	L3	1
9	Determination Of Young's Modulus Of A Given Beam By Single Cantilever Experiment.	L3	2
10	Determination Of Radius Of Curvature Of Given Plano Convex Lens by Newton Rings Method.	L3	2
11	Determination The Acceptance Angle And Numerical Aperture Of An Optical Fibre	L3	1
12	Determination Of Moment Of Inertia And Rigidity Modulus Of The Given Wire.	L3	1
		·	
Course	outcomes:		
CO1	Apprehend the concepts of interference of light, the diffraction of lig	ht.	

CO2Understand the principles of operations of optical fibers and semiconductor devices such
as photo diodesCO3Determine the elastic modulus and moment of inertia of given materials with the help of
suggested procedures

CO4	Recognize the resonance concepts and its practical applications
CO5	Understand the importance of measurement procedure honest recording and representing the data, reproduction of final results

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam

(SEE) is 50%.

The student has to obtain minimum of 50% marks individually both in CIE and SEE to pass.

Continuous Internal Evaluation:

- Weekly evaluation of conduction, record submission will have a weightage of 40 marks for the semester.
- 2. Two lab internal tests of 50 marks each will be conducted. Average of which will be reduced by a factor of 5 amounting to 10 marks.

Hence, total lab internal will be for 50 marks.

Semester End Examination:

Lab SEE will be conducted by the institution involving the Board of examiners as per

scheduled time table.

- 1. The question paper will contain 2 lab experiments of 50marks each without any choice.
- 2. The total of which will be reduced by a factor of 2 amounting to 50 marks.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	-	-	1	-	-	-	2	2	-	3
CO2	3	1	-	-	1	-	-	-	2	2	-	3
CO3	3	1	-	-	-	-	-	-	2	2	-	3
CO4	3	1	-	-	-	-	-	-	2	2	-	3
CO5	3	1	-	-	-	-	-	-	2	2	-	3

Course Title	Basic Electrical Engineering Laboratory	Semester	1/11
Course Code	MVJ21EEL17/ MVJ21EEL27	CIE	50
Total No. of Contact Hours	15	SEE	50
No. of Contact Hours/week	2, L:T:P::0:0:2	Total	100
Credits	1	Exam. Duration	2 Hours

Course objective is to:

- To provide exposure to common electrical components such as Resistors, capacitors and inductors, types of wires and measuring instruments.
- To measure power and power factor measurement of different types of lamps and three phase circuits.
- To explain measurement of impedance for R-Land R-C circuits. To determine power consumed in a 3 phase load.

1Verification of KCL and KVL for DC circuitsL312Measurement of current, power and power factor of incandescent lamp, fluorescent lamp, and LED lamp.L323Measurement of resistance and inductance of a choke coil using 3- voltmeter methodL32
2 Measurement of current, power and power factor of incandescent lamp, fluorescent lamp, and LED lamp. L3 2 3 Measurement of resistance and inductance of a choke coil using 3- voltmeter method L3 2
3 Measurement of resistance and inductance of a choke coil using 3- voltmeter method 2
4 Determination of phase and line quantities in three phase star and L3 2 delta connected loads.
5Measurement of three-phase power using two-wattmeter method.L32
6Two way and three-way control of lamp and formation of truth table.L31
7Study of effect of open and short circuit in simple circuits.L31
8Inverse time characteristics of fuse and MCB.L31
Demonstration experiments
1Demonstration of cutout sections of electrical machines (DC machines, Induction machines and synchronous machines).L21
2 Understanding of SMPS L2 1
3 Phase relationship between V and I in single phase RLC circuits. L2 1
Course outcomes:
Identify the common electrical components and measuring instruments used for conducting
Experiments in the electrical laboratory.

• Explain methods of controlling a lamp from different places

C107.2	Compare power factor of different types of lamps.
C107.3	Determine impedance of an electrical circuit and power consumed in a 3-phase load.
C107.4	Understand two way and three-way control of lamps.
C107.5	Demonstrate the working of Protective devices

Scheme of Evaluation

SEE :

Examinations will be conducted for 100 marks and scaled-down to 50. The weight age shall be, Write-up : 20 marks

Conduction : 40 marks

Analysis of results : 20 marks

Viva : 20

CIE :

Regular Lab work :20

Record writing :5

Lab Tests(Minimum 2 tests shall be conducted for 15 marks and average of two will be taken) Viva 10 marks

CO-PO Mapping												
CO/PO	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C107.1	3	2	-	1	-	-	-	-	3	2	-	1
C107.2	3	3	-	1	-	-	-	-	3	2	-	1
C107.3	3	2	-	1	-	-	-	-	3	2	-	1
C107.4	3	1	-	1	-	-	-	-	3	2	-	1
C107.5	3	2	-	1	-	-	-	-	3	2	-	1

Course Title	Business Communication	Semester	I
Course Code	MVJ21EGH18	CIE	50
Total No. of Contact Hours	15 L: T:P: 1:0:0	SEE	50
No. of Contact Hours/week	01	Total	100
Credits	01	Exam. Duration	3 Hours

Course objective is to help students:

- To enhance their English vocabulary and language proficiency
- To communicate effectively and with self-confidence, in any given situation
- To master the Functional aspects of the language
- To acquire proficiency in basic English grammar and essential language skills
- To identify the nuances of phonetics, intonation and enhance their pronunciation skills

Madula 1	RBT Level	Hours
	L1 L2 L3	3hrs
Introduction to Technical Communication		
1.1 Fundamentals of Communication Skills		
1.2 Barriers to effective communication		
1.3 The hallmark of effective communication		
1.4 Distortion in Communication		
1.5 Different styles in Communication – Formal and Informal		
1.6 Types of Communication – oral, written, non-verbal		
1.7 Interpersonal Communication Skills		
1.8 Developing Interpersonal Skills		
1.9 Information Transfer: Oral Presentation		
Video Links/Any other special information (Papers): (For additional stud	y of the concep	ots)
https://youtu.be/-Y-R9hDI7IU		

	RBT Level	Hours		
Module-2	L1 L2 L3	3 hrs		
Introduction to Listening Skills and Phonetics				
1.1 Introduction to Phonetics				
1.2 Phonetic symbols and transcription				
1.3 Sounds Mispronounced				
1.4 Speech Sounds: Vowels, Consonants and Diphthongs				
1.5 Silent Letters				
1.6 The magic 'e'				
1.7 Homophones and Homonyms				
1.8 Aspiration and Pronunciation of 'The'				
1.9 Listening Comprehension				
1.10 Articles: Use of Articles; common errors in the use of Articles				
Video Links/Any other special information (Papers): (For additional stud	y of the conce	pts)		
https://youtu.be/T8LXnYpgMc4 https://youtu.be/adjaW0YSI	InU https:	//youtu.be/-		
8g_TKJ6oiw				
	DPT Loval	Hours		
Module-3	L1 L2 L3	3 hrs		
Developing Listening Skills				
1.1 Importance of listening in communication				
1.2. Techniques for effective listening				
1.3 Incongruencies in English pronunciation				
1.4 Word Accent - Rules for Word Accent, Stress Shift				
1.5 Sentence stress				
1.6 Standard pronunciation				
1.7 Plural forms				

1.8 Question forms and intonation			
1.9 Prepositions, and those Prepositions often confused			
1.10 Prepositional phrases			
1.11 Listening Comprehension			
Video Links/Any other special information (Papers): (For additional stud	y of the conce	ots)	
https://youtu.be/-8g_TKJ6oiw			
Module-4	RBT Level	Hours	
	L1 L2 L3	3 hrs	
Speaking Skills and Vocabulary-1			
1.1 Vocabulary used in everyday situations			
1.2 Word formation - Prefixes and Suffixes			
1.3 Contractions			
1.4 Words often confused			
1.5 Question Tags			
1.6 Synonyms			
1.7 Antonyms			
1.8 Spelling Rules and Words often Misspelt			
1.9 The sequence of Tenses			
Video Links/Any other special information (Papers): (For additional stud	y of the conce	ots)	
https://youtu.be/w1v3ddhojSs			
Module-5	RBT Level	Hours	
	L1 L2 L3	3 hrs	
Speaking Skills and Vocabulary-2			
1.1 Extempore Speaking / Public Speaking – Guidelines			
1.2 Overcoming fears and inhibitions			
1.3 Voice modulation			
1.4 Mother Tongue Influence (MTI)			
1.5 Techniques for Neutralization of Mother Tongue Influence			

1.6 Listening Comprehension

1.7 Common Errors in Pronunciation

1.8 Speaking in given situations – opening bank account, visiting doctor, attending an interview, gathering information, making plans, making choices, congratulating, expressing appreciation and apologizing etc.

Video Links/Any other special information (Papers): (For additional study of the concepts)

https://youtu.be/Y4TbGPhQ7Ik https://youtu.be/JIKU_WT0Bls

Experiential Learning:

Language Lab:

To augment LSRW and GV skills (Listening, Speaking, Reading, Writing, Grammar and Vocabulary) through tests, activities, exercises etc. via comprehensive web-based learning and assessment systems.

Course	Course outcomes:		
CO1	Use English that is grammatically correct and identify the nuances of phonetics, intonation and		
	flawless pronunciation		
CO2	Enhance the repertoire of English vocabulary		
CO3	Identify common errors in spoken and written communication		
CO4	Understand and improve non-verbal communication and kinesics		
CO5	Perform with confidence at campus recruitment, engineering and all other competitive examinations		

Text Bo	ooks:
1	English Communication Made Easy by Chitra Laxman – Sathyasri Printers Pvt. Ltd.
Referen	ice Books:
1	Technical Communication by Gajendra Singh Chauhan and Et al, Cengage learning India Pvt Limited [Latest Revised Edition] - 2018.
2	Communication Skills by Sanjay Kumar and Pushpa Lata, Oxford University Press - 2018
3	High School English Grammar & Composition by Wren and Martin, S Chandh & Company Ltd. 2015
4	English Language Communication Skills - Lab Manual cum Workbook, Cengage learning India Pvt. Limited [Latest Revised Edition] – 2018
5	Technical Communication - Principles and Practice, Third Edition by Meenakshi Raman and Sangeetha Sharron, Oxford University Press 2017
6	Effective Technical Communication - Second Edition by M Ashraf Rizvi, McGraw Hill Education (India) Private Limited – 2018

CIE Assessment:

CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation. Generally, there will be: three internal assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of the three tests

- Assignments (20 marks)

SEE Assessment:

vii. Question paper for the SEE consists of two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for a total of 20 marks, covering the whole syllabus.

- viii. Part B also covers the entire syllabus consisting of five questions having choices and may contain subdivisions, each carrying 16 marks. Students have to answer all the five questions.
- ix. One question will be set from each unit. The duration of the examination is 3 hours.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	-	-	-	-	-	-	-	-	1	-	-
CO2	-	-	-	-	-	-	-	-	-	1	-	-
CO3	-	-	-	-	-	-	-	-	-	2	-	-
CO4	-	-	-	-	-	-	-	-	-	1	-	-
CO5	-	-	-	-	-	-	-	-	-	3	-	-

Course Title	Professional Writing	Semester	11
Course Code	MVJ20EGH28	CIE	50
Total No. of Contact Hours	15 L:T:P::1:0:0	SEE	50
No. of Contact Hours/week	01	Total	100
Credits	01	Exam. Duration	3 Hours

Course objective:

- To use English vocabulary aptly and flawlessly, and ensure language proficiency
- To achieve better Technical writing and Presentation skills
- To Identify the common errors in Spoken and Written English
- To acquire Employment and Workplace communication skills

Module 1	RBT Level	Hours
	L1 L2 L3	3hrs
Introduction to Technical Communication		
1.1 Subject Verb Agreement (Concord Rules with Exercises)		
1.2 Common errors in Subject-verb agreement, Noun-pronoun agreement		
1.3 Common errors in the use of Adjectives, Adverbs and Conjun	ctions; misplad	ced modifiers
1.4 Word Order, errors due to the confusion of words		
1.5 Anagrams, palindromes, puns		
1.6 Idioms and phrases – common errors		
1.7. Honing reading skills		
Video Links/Any other special information(Papers): (For additional study of the	e concepts)	
https://youtu.be/-Y-R9hDI7IU		
Module-2	RBT Level	Hours
Nourc-2	L1 L2 L3	3hrs
The Nuances of Writing		
1.1 Organizing Principles of Paragraphs in Documents		

1.2	Developing	hints into	organized	paragraphs
-----	------------	------------	-----------	------------

- 1.3 Dialogue writing
- 1.4 Contextual vocabulary
- 1.5 Importance of proper Punctuation
- 1.6 One-word substitutes
- 1.7 Polishing writing skills similes and metaphors
- 1.8 The Art of Condensation (Precis writing)
- 1.9 Word collocations
- 1.10 Redundancy and jargon in writing
- 1.11 Techniques in creative writing
- 1.12 Common Errors due to Indianism in English Communication
- Video Links/Any other special information(Papers): (For additional study of the concepts)

https://youtu.be/T8LXnYpqMc4 https://youtu.be/adjaW0YSInU https://youtu.be/-8g_TKJ6oiw

	RBT Level	Hours		
Module-3	L1 L2 L3	3 hrs		
Honing Writing Skills				
1.1 Effective Technical Reading and Writing Practices				
1.2 Tips for good and effective writing				
1.3 Parallelism in sentence structures				
1.4 Describing processes				
1.5 Interpretation of non-verbal data – pie-charts, flow charts etc.				
1.6 Use of Passive Voice in Report writing				
1.7 Report writing				
1.8 Sentence Improvement Exercises, Cloze Test and Theme Detection Exercise	S.			
Video Links/Any other special information(Papers): (For additional study of the	e concepts)			
https://youtu.be/w1v3ddhojSs				
Module-4	RBT Level	Hours		
	L1 L2 L3	3hrs		
Writing Emails and Letters				
1.1 Components of a Formal Letter				
1.2 Formats and Types of Business Letters				
1.3 Email Writing – Dos and Don'ts				

Practice in writing various types of emails

Video Links/Any other special information (Papers): (For additional study of the concepts)

https://youtu.be/-8g_TKJ6oiw

Module-5	RBT Level L1 L2 L3	Hours 3 hrs	
Non-Verbal Communication			

1.1 Significance of non-verbal communication

- 1.2 Body Language
- 1.3 Group Discussion
- 1.4. Describing people
- 1.5. Describing events and scenes
- 1.4 Presentation skills and Formal Presentations by Students

Video Links/Any other special information(Papers): (For additional study of the concepts)

https://youtu.be/Y4TbGPhQ7Ik https://youtu.be/JIKU WT0Bls

Experiential Learning:

Language Lab:

To augment LSRW and GV skills (Listening, Speaking, Reading, Writing, Grammar and Vocabulary) through tests, activities, exercises etc. via comprehensive web-based learning and assessment systems.

Course	outcomes:
CO1	Identify common errors in Spoken and Written communication
CO2	Reach higher levels of perfection in English vocabulary and language
CO3	Improve nature and style of sensible writing and acquire employment and workplace communication skills
CO4	Improve Technical Communication Skills through Technical Reading and Writing practices
CO5	Perform well at campus recruitment, engineering and other competitive examinations

Text Books:

1	English Communication Made Easy by Chitra Laxman – Sathyasri Printers Pvt. Ltd.								
Reference Books:									
1	Technical Communication by Gajendra Singh Chauhan and Et al, Cengage learning India Pvt Limited [Latest Revised Edition] - 2018.								

2	Communication Skills by Sanjay Kumar and Pushpa Lata, Oxford University Press - 2018
3	High School English Grammar & Composition by Wren and Martin, S Chandh & Company Ltd. 2015
4	English Language Communication Skills - Lab Manual cum Workbook, Cengage learning India Pvt. Limited [Latest Revised Edition] - 2018
5	Technical Communication - Principles and Practice, Third Edition by Meenakshi Raman and Sangeetha Sharron, Oxford University Press 2017
6	Effective Technical Communication - Second Edition by M Ashraf Rizvi, McGraw Hill Education (India) Private Limited - 2018

CIE Assessment:

CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation. Generally, there will be: three internal assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of the three tests

- Assignments (20marks)

SEE Assessment:

- x. Question paper for the SEE consists of two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.
- xi. Part B also covers the entire syllabus consisting of five questions having choices and may contain subdivisions, each carrying 16 marks. Students have to answer all the five questions.
- xii. One question must be set from each unit. The duration of examination is 3 hours.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO1	-	-	-	-	-	-	-	-	-	1	-	-
CO2	-	-	-	-	-	-	-	-	-	1	-	-
CO3	-	-	-	-	-	-	-	-	-	1	-	-
CO4	-	-	-	-	-	-	-	-	-	2	-	-
CO5	-	-	-	-	-	-	-	-	-	3	-	-