VII SEMESTER

	Semester: VII						
FOUNDATION OF DATA SCIENCE							
Cou	CIE Marks:100						
Crec	lits: L:T:P:S:3:1:0:0		SEE Marks: 100				
Hou	rs: 40L+26T		SEE Duration: 3 Hrs				
Cou	rse Learning Objectives: The students	will be able to					
	To provide strong foundation for data science and application area related to information						
1	technology and understand the underlying core concepts and emerging technologies in data						
	science						

UNIT-I **INTRODUCTION TO DATA SCIENCE:** Definition – Big Data and Data Science 10 Hrs Hype – Why data science – Getting Past the Hype – The Current Landscape – Who is Data Scientist? - Data Science Process Overview - Defining goals - Retrieving data -Data preparation – Data exploration – Data modeling – Presentation. Video Links : https://www.youtube.com/watch?v=KMj49syT8JM&list=PLyqSpQzTE6MsBjDcT21Gpnj8grR2fDgc UNIT-II **BIG DATA:** Problems when handling large data – General techniques for handling large 10 Hrs data - Case study - Steps in big data - Distributing data storage and processing with Frameworks – Case study. Video Links: https://nptel.ac.in/courses/106/101/106101163/ **UNIT-III** MACHINE LEARNING: Machine learning - Modeling Process - Training model -10 Hrs Validating model - Predicting new observations -Supervised learning algorithms -Unsupervised learning algorithms. Video Links: https://nptel.ac.in/courses/106/101/106101163/ **UNIT-IV** DEEP LEARNING: Introduction - Deep Feed forward Networks - Regularization -10 Hrs Optimization of Deep Learning - Convolutional Networks - Recurrent and Recursive Nets – Applications of Deep Learning.

Video Links: https://nptel.ac.in/courses/106/101/106101163/

UNIT-V

DATA VISUALIZATION : Introduction to data visualization – Data visualization10 Hrsoptions – Filters – MapReduce – Dashboard development tools – Creating an interactive

dashboard with dc.js-summary.

Video Links: https://nptel.ac.in/courses/106/101/106101163/

Cours	se Outcomes: After completing the course, the students will be able to
CO1	Explore the fundamental concepts of data science.
CO2	Understand data analysis techniques for applications handling large data
CO3	Understand various machine learning algorithms used in data science process
CO4	Visualize and present the inference using various tools
CO5	Learn to think through the ethics surrounding privacy, data sharing and algorithmic decision-
	making

Refe	erence Books
1.	Introducing Data Science, Davy Cielen, Arno D. B. Meysman, Mohamed Ali, Manning
	Publications Co., 1st edition, 2016
2.	An Introduction to Statistical Learning: with Applications in R, Gareth James, Daniela Witten,
	Trevor Hastie, Robert Tibshirani, Springer, 1st edition, 2013
3.	Deep Learning, Ian Goodfellow, Yoshua Bengio, Aaron Courville, MIT Press, 1st edition, 2016
4.	Ethics and Data Science, D J Patil, Hilary Mason, Mike Loukides, O' Reilly, 1st edition, 2018

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE): Total marks: 50+50=100 **SEE** for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO/PSO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	3	1	2	-	-	-	-	-	-	-	2	1	-
CO2	3	3	2	3	1	-	-	-	-	-	-	2	2	2
CO3	3	3	2	3	1	-	-	-	-	-	-	2	3	-
CO4	3	3	2	3	2	-	-	-	-	-	-	2	3	-
CO5	3	3	2	3	2	-	-	-	-	-	-	2	3	1

	Semest	ter: VII	
	COMPUT	ER VISION	
Com	Professiona	I Elective II	
Cou Crea	rse Code: MVJ21A1/21 lits: L:T:P:S:3:0:0:0	SEE Marks: 100	
Hou	rs: 40L	SEE Duration: 3 Hrs	
Cou	rse Learning Objectives: The students will l	be able to	
1 Digit Over Orth Eilto	Computer Vision focuses on development of the visible world around us. This requires un multi-dimensional signal processing, featu modeling, stochastic optimization etc. Know explore and contribute to research and furt Applications range from Biometrics, Medica content, to surveillance, advanced rendering UN tal Image Formation and low-level processing rview and State-of-the-art, Fundamentals of ogonal, Euclidean, Affine, Projective, etc;	Falgorithms and techniques to analyze and inderstanding of the fundamental concepts are extraction, pattern analysis visual eledge of these concepts is necessary in the her developments in the field of computed al diagnosis, document processing, minin etc. IT-I ng of Image Formation, Transformation: Fourier Transform, Convolution and rem Processing	ad interpret s related to geometric his field, to ter vision. g of visual 8Hrs
	UN	IT-II	
Dept	th estimation and Multi-camera views		8Hrs
Pers _j Rect	ification, DLT, RANSAC, 3-D reconstruction	framework; Auto-calibration.	
	UNI	T-III	
Feat	ure Extraction		8Hrs
Edge Hess Anal	es - Canny, LOG, DOG; Line detectors (Ho sian Affine, Orientation Histogram, SIFT, lysis- Image Pyramids and Gaussian derivative	ugh Transform), Corners - Harris and SURF, HOG, GLOH, Scale-Space filters, Gabor Filters and DWT.	
Tree -	UNI	T-IV	011
imag	ge segmentation		онгs
Regi MRI	on Growing, Edge Based approaches to s Fs, Texture Segmentation; Object detection.	egmentation, Graph-Cut, Mean-Shift,	
	UN	IT-V	
Patt	ern Analysis		8Hrs

Function,	Supervised,	Un-supervised,	Semi-supervised;	Classifiers:	Bayes,	KNN,	ANN
models; [Dimensionalit	y Reduction: PC	CA, LDA, ICA; No	n-parametric	c method	ds.	

Cours	Course Outcomes: After completing the course, the students will be able to					
CO1	Understand the concepts of Digital Image Processing.					
CO2	Analyse Homography and stereopsis.					
CO3	Analyse Edges and Hough Transforms.					
CO4	Demonstrate the ideas of image Segmentation.					
CO5	Implement the concepts of Pattern Analysis.					

Refe	erence Books
1.	Richard Szeliski, Computer Vision: Algorithms and Applications, Springer-Verlag London
	Limited 2011.
2.	Computer Vision: A Modern Approach, D. A. Forsyth, J. Ponce, Pearson Education, 2003.
3.	Richard Hartley and Andrew Zisserman, Multiple View Geometry in Computer Vision, Second
	Edition, Cambridge University Press, March 2004.
4.	K. Fukunaga; Introduction to Statistical Pattern Recognition, Second Edition, Academic Press,
	Morgan Kaufmann, 1990.

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the entire syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	1	-	1	1	2	-	-	-	-	-
CO2	3	3	3	3	2	-	-	-	-	-	-	-
CO3	1	-	-	1	1	-	2	3	3	3	-	-
CO4	3	3	2	2	2	-	-	-	-	-	3	3
CO5	3	3	3	3	3	2	-	-	3	3	3	3

	Semester: `	VII		
	Professional Ele	ective II		
	INFORMATION R	ETRIEVAL		
Cou	rse Code:MVJ21AI722	CIE Marks:100		
Cred	its: L:T:P:S:3:1:0:0	SEE Marks: 100		
Hou	rs: 40L+26T	SEE Duration: 3 Hrs		
Cou	se Learning Objectives: The students will be ab	le to		
1	To understand the basics of Information Retr	ieval.		
2	To understand machine learning techniques f	or text classification and clustering.		
3	To understand various search engine system operations.			
4	To learn different techniques of recommende	r system		

UNIT-I			
INTRODUCTION: Information Retrieval - Early Developments - The IR Problem - The	8 Hrs		
Users Task - Information versus Data Retrieval - The IR System - The Software Architecture			
of the IR System - The Retrieval and Ranking Processes - The Web - The e-Publishing Era -			
How the web changed Search - Practical Issues on the Web - How People Search - Search			
Interfaces Today – Visualization in Search Interfaces.			
Video link / Additional online information (related to module if any):			
https://www.youtube.com/watch?v=fFxpSmyICwI			
UNIT-II			
MODELING AND RETRIEVAL EVALUATION: Basic IR Models - Boolean Model - TF-	8 Hrs		
IDF (Term Frequency/Inverse Document Frequency) Weighting - Vector Model - Probabilistic			
Model - Latent Semantic Indexing Model - Neural Network Model - Retrieval Evaluation -			
Retrieval Metrics - Precision and Recall - Reference Collection - User-based Evaluation -			
Relevance Feedback and Query Expansion – Explicit Relevance Feedback.			
Video link / Additional online information (related to module if any):			
https://www.youtube.com/watch?v=m0oiAOgSQFw			
UNIT-III			
TEXT CLASSIFICATION AND CLUSTERING: A Characterization of Text Classification -	8 Hrs		
Unsupervised Algorithms: Clustering - Naïve Text Classification - Supervised Algorithms -			
Decision Tree - k-NN Classifier - SVM Classifier - Feature Selection or Dimensionality			

Reduction – Evaluation metrics – Accuracy and Error – Organizing the classes – Indexing and Searching – Inverted Indexes – Sequential Searching – Multi-dimensional Indexing.

Video link / Additional online information (related to module if any):

https://www.youtube.com/watch?v=vuc93jbO2Dw

UNIT-IV

WEB RETRIEVAL AND WEB CRAWLING: The Web - Search Engine Architectures -	8 Hrs
Cluster based Architecture - Distributed Architectures - Search Engine Ranking - Link based	1
Ranking - Simple Ranking Functions - Learning to Rank - Evaluations - Search Engine	1
Ranking - Search Engine User Interaction - Browsing - Applications of a Web Crawler -	1
Taxonomy – Architecture and Implementation – Scheduling Algorithms – Evaluation.	1
Video link / Additional online information (related to module if any):	1

https://www.youtube.com/watch?v=JjywDlY1OJk

UNIT-V

RECOMMENDER SYSTEM: Recommender Systems Functions – Data and Knowledge	8 Hrs			
Sources - Recommendation Techniques - Basics of Content-based Recommender Systems -				
High Level Architecture - Advantages and Drawbacks of Content-based Filtering -				
Collaborative Filtering – Matrix factorization models – Neighborhood models.				
Video link / Additional online information (related to module if any):				
https://www.youtube.com/watch?v=1JRrCEgiyHM				

Cours	e Outcomes: After completing the course, the students will be able to
CO1	Use an open source search engine framework and explore its capabilities
CO2	Evaluate Boolean Model
CO3	Apply appropriate method of classification or clustering.
CO4	Design and implement innovative features in a search engine.
CO5	Design and implement a recommender system.

Refe	erence Books
1.	Ricardo Baeza-Yates and Berthier Ribeiro-Neto, -Modern Information Retrieval: The Concepts
	and Technology behind Search, Second Edition, ACM Press Books, 2011.
2.	Ricci, F, Rokach, L. Shapira, B.Kantor, -Recommender Systems Handbook, First Edition,
	2011.
3.	C. Manning, P. Raghavan, and H. Schütze, -Introduction to Information Retrieval, Cambridge
	University Press, 2008.

4. Stefan Buettcher, Charles L. A. Clarke and Gordon V. Cormack, —Information Retrieval: Implementing and Evaluating Search Engines, The MIT Press, 2010.

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO/PSO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	1	-	-	-	-	-	1	-	2	-	-	2	3
CO2	3	2	2	1	-	-	-	-	-	2	-	1	2	2
CO3	2	3	1	3	-	1	1	1	-	1	-	2	2	1
CO4	3	2	2	1	-	2	-	-	-	-	2	1	2	2
CO5	2	2	3	3	-	1	2	1	2	-	1	2	2	2

Semester: VII						
	Professional E	lective II				
	HIGH PERFORMANC	CE COMPUTING				
Course Code:MVJ21AI723 CIE Marks:100						
Cre	dits: L:T:P:S:3:1:0:0	SEE Marks: 100				
Hou	urs: 40L+26T	SEE Duration: 3 Hrs				
Cou	rse Learning Objectives: The students will be a	able to				
1	Improve the system performance					
2	2 Learn various distributed and parallel computing architecture					
3	Learn different computing technologies					

UNIT-I	
Grid Computing: Data & Computational Grids, Grid Architectures And Its Relations To Various	8 Hrs
Distributed Technologies. Autonomic Computing, Examples Of The Grid Computing Efforts	
(Ibm).	
Video link : <u>https://www.youtube.com/watch?v=GlobK-eWDSo</u>	
UNIT-II	
Cluster Setup & Its Advantages, Performance Models & Simulations; Networking Protocols &	8 Hrs
I/O, Messaging Systems. Process Scheduling, Load Sharing And Balancing; Distributed Shared	
Memory, Parallel I/O.	
Video link : <u>https://www.youtube.com/watch?v=9J4uXnSDias</u>	
UNIT-III	
Example Cluster System - Beowlf; Cluster Operating Systems: Compas And Nanos Pervasive	8 Hrs
Computing Concepts & Scenarios; Hardware & Software; Human – Machine Interface.	
Video link : <u>https://www.youtube.com/watch?v=GlobK-eWDSo</u>	
UNIT-IV	
Device Connectivity; Java for Pervasive Devices; Application Examples	8 Hrs
Video link : https://www.youtube.com/watch?v=bS6XqjBO99Q	
UNIT-V	
Classical Vs Quantum Logic Gates; One, Two & Three Qubit Quantum Gates; Fredkin &	8 Hrs
Toffoli Gates; Quantum Circuits; Quantum Algorithms.	
Videolink:https://nptel.ac.in/courses/115/101/115101092/	

Course Outcomes: After completing the course, the students will be able to

CO1 Understanding the concepts in grid computing

CO2	Ability to set up cluster and run parallel applications
CO3	Ability to understand the cluster projects and cluster OS
CO4	Understanding the concepts of pervasive computing
CO5	Understanding the concepts of quantum computing

Ref	Reference Books						
1.	"Selected Topics In Advanced Computing" Edited By Dr. P. Padmanabham And Dr. M.B.						
	Srinivas, 2005 Pearson Education.						
2.	J. Burkhardt et.al: 'pervasive computing' Pearson Education						
3.	Marivesar:' Approaching quantum computing', Pearson Education						
4.	Raj kumar Buyya:'High performance cluster computing', Pearson Education						

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

						CO-P	O/PSO	Mapp	ing					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	-	-	-	-	-	-	-	-	-	-	-
CO2	3	3	3	-	-	-	-	-	-	-	-	-	2	2
CO3	3	3	3	-	-	-	-	-	-	-	-	-	1	3
CO4	3	3	3	-	-	-	-	-	-	-	-	-	1	2
CO5	2	2	2	-	-	-	-	-	-	-	-	-	2	-

	Se	nester: VII				
	Profes	onal Elective II				
	BIG DA	A ANALYTICS				
Сог	ırse Code:MVJ21AI724		CIE Marks:100			
Cre	edits: L:T:P:S:3:1:0:0		SEE Marks: 100			
Но	urs: 40L+26T		SEE Duration: 3 Hrs			
Cou	rse Learning Objectives: The students	ill be able to	I			
1	The scope and essentiality of Big Data a	d Business Analytics	s.			
2	The technologies used to store, manage, and analyze big data in a Hadoop ecosystem.					
3	3 The techniques and principles in big data analytics with scalability and streaming capability.					
4	The hypothesis on the optimized busine	decisions in solving	g complex real-world problems			

UNIT-I

INTRODUCTION TO BIG DATA: Characteristics of Data, Evolution of Big Data, Definition8 Hrsof Big Data, Challenges with Big Data, Traditional Business Intelligence (BI) versus Big Data.8 HrsBig data analytics: Classification of Analytics, Importance and challenges facing big data,
Terminologies Used in Big Data Environments, The Big Data Technology Landscape.8Video link : https://www.digimat.in/nptel/courses/video/106104189/L01.html106

UNIT-II

INTRODUCTION TO HADOOP: Introducing Hadoop, RDBMS versus Hadoop, Distributed8 HrsComputing Challenges, History and overview of Hadoop, Use Case of Hadoop, HadoopDistributors, Processing Data with Hadoop, Interacting with Hadoop Ecosystem

Video link : https://www.digimat.in/nptel/courses/video/106104189/L04.html

UNIT-III

THE HADOOP DISTRIBUTED FILESYSTEM: Hadoop Distributed File System(HDFS):The8 HrsDesign of HDFS, HDFS Concepts, Basic Filesystem Operations, Hadoop Filesystems. The JavaInterface- Reading Data from a Hadoop URL, Reading Data Using the Filesystem API, WritingData. Data Flow- Anatomy of a File Read, Anatomy of a File Write, Limitations.Video link : https://www.digimat.in/nptel/courses/video/106104189/L04.html

UNIT-IV

UNDERSTANDING MAP REDUCE FUNDAMENTALS :Map Reduce Framework: Exploring **8 Hrs** the features of Map Reduce, Working of Map Reduce, Exploring Map and Reduce Functions, Techniques to optimize Map Reduce jobs, Uses of Map Reduce. Controlling MapReduce Execution with Input Format, Reading Data with custom Record Reader, Reader, Writer, Combiner, Partitioners, Map Reduce Phases, Developing simple MapReduce Application.

Video link :https://www.digimat.in/nptel/courses/video/106104189/L06.html

UNIT-V	

INTRODUCTION TO PIG : Introducing Pig: Pig architecture, Benefits, Installing Pig,8 HrsProperties of Pig, Running Pig, Getting started with Pig Latin, Working with operators in Pig,Working with functions in Pig.

Videolink: https://www.youtube.com/watch?v=qr_awo5vz0g

Cours	se Outcomes: After completing the course, the students will be able to
CO1	Explain the evolution of big data with its characteristics and challenges with traditional business intelligence.
CO2	Explain the big data technologies used to process and querying the bigdata in Hadoop, MapReduce and Pig.
CO3	Make use of appropriate components for processing, scheduling and knowledge extraction from large volumes in distributed Hadoop Ecosystem
CO4	Develop a Map Reduce application for optimizing the jobs.
CO5	Develop applications for handling huge volume of data using Pig Latin

Ref	erence Books
1.	Seema Acharya, Subhashini Chellappan,—BigData and Analytics, Wiley Publications,2nd Edition, 2014 DT Editorial Services,—BigData, DreamTechPress, 2 nd Edition, 2015.
2.	TomWhite, —Hadoop: The Definitive Guide, O'Reilly, 3 rd Edition, 2012.
3.	Big Data Black Book, Dreamtech publications, 1st Edition, 2017.
4.	Michael Minelli, Michele Chambers, Ambiga Dhiraj, —BigData, BigAnalytics: Emerging Business Intelligence and Analytic Trends for Today's Business, Wiley CIO Series, 1 st Edition, 2013.

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the entire syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

						CO-P	O/PSO	Mappi	ing					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2		-	-	-	-	-	-	-	-	-	2	-
CO2	2	2		-	-	-	-	-	-	-	-	-	2	2
CO3	2	3	2	2	-	-	-	-	-	-	-	-	1	3
CO4	1	2	3	-	-	-	-	-	-	-	-	-	1	2
CO5	1	2	2	2	-	-	-	-	-	-	-	-	2	-

	Semester: VII					
	Professional Ele	ective II				
	PERVASIVE CON	APUTING				
Cou	rse Code:MVJ21AI725	CIE Marks:100				
Cre	dits: L:T:P:S:3:1:0:0	SEE Marks: 100				
Hou	rs: 40L+26T	SEE Duration: 3 Hrs				
Cou	rse Learning Objectives: The students will be ab	le to				
1	Understand an insight into future developments in the field of pervasive computing.					
2	Provide an in-depth knowledge on pervasive computing and wireless networking.					
3	Describe the variety of pervasive services and app	plications.				

UNIT-I			
Pervasive Computing : Evolution of Pervasive Computing - Decentralization continues -	8 Hrs		
Applied Pervasive computing - Pervasive computing principles - Pervasive Information			
Technology - Smart Cards - Smart Labels.			
Video link : <u>https://www.youtube.com/watch?v=bS6XqjBO99Q</u>			
UNIT-II			
Embedded Controls: Smart sensors and Actuators - Smart Appliances - Appliances and Home	8 Hrs		
Networking -Automotive Computing. Operating Systems: Windows CE -Palm OS - Symbian			
EPOC - Java Card - Windows for Smart Cards.			
Video link : http://digimat.in/nptel/courses/video/108108147/L01.html			
UNIT-III			
Middleware Components: Programming Consumer Devices - Smart Card Programming -	8 Hrs		
Messaging Components - Database Components. Security: The importance of security -			
Cryptographic patterns and methods Cryptographic Tools-Secure socket layer			
Video link : <u>https://www.digimat.in/nptel/courses/video/117108048/L01.html</u>			
UNIT-IV			
Gateways, Device Management and Synchronization :Connectivity Gateway - Wireless	8 Hrs		
Gateway - Transcoding - Residential Gateway - Architecture and components of Web			
Application Servers - Web Sphere Application Server Web Sphere Everyplace Suite - Oracle			

Portal-to-Go - Tasks of Device Management Systems - Tivoli Device Support Infrastructure -User Profiles and Directory Services - Synchronization - The Challenge of Synchronizing Data -Industry Data Synchronization Standards -Today's Synchronization Solution

Video link :https://www.digimat.in/nptel/courses/video/106105183/L40.html

UNIT-V

Portals and Access Services: Internet Portals-Wireless Portal - Broadcasting Portal - Home8 HrsServices - Communication Services - Home Automation - Energy Services - Security Services -
Remote Home Healthcare Services - Travel and Business Services - Consumer Services8Video link: https://www.youtube.com/watch?v=oxMdDsud5vg8

Cours	Course Outcomes: After completing the course, the students will be able to				
CO1	Describe the principles of pervasive technology.				
CO2	Identify the functionalities of operating systems and middleware				
CO3	Analyze the device management and synchronization techniques.				
CO4	Explain the various gateways				
CO5	Choose the appropriate techniques to develop various pervasive applications.				

Ref	erence Books
1.	Asoke K Talukder, Roopa R Yavagal, "Mobile computing: Technology, Applications and Service Creation", Second Edition, Tata McGraw-Hill Publishing Company Limited, 2017, ISBN 978-0070144576
2.	UweHansmann, LotharMerk, Martin S. Nicklous, Thomas Stober, "Pervasive Computing Handbook", Second edition, Springer, 2003, ISBN 978-3-642-05525-6.
3.	MinyiGuo, Jingyu Zhou, Feilong Tang, Yao Shen, "Pervasive Computing: Concepts, Technologies and Applications", CRC Press, 2016, ISBN 9781466596276.

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the

entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

						CO-P	O/PSO	Mapp	ing					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2		-	-	-	-	-	-	-	-	-	2	-
CO2	2	2		-	-	-	-	-	-	-	-	-	2	2
CO3	2	3	2	2	-	-	-	-	-	-	-	-	1	3
CO4	1	2	3	-	-	-	-	-	-	-	-	-	1	2
CO5	1	2	2	2	-	-	-	-	-	-	-	-	2	-

	Semeste	er: VII			
	Professional	Elective III			
	NATURAL LANGUA	AGE PROCESSING			
Cou	rse Code:MVJ21AI731	CIE Marks:100			
Cre	dits: L:T:P:S:3:1:0:0	SEE Marks: 100			
Hou	urs: 40L+26T	SEE Duration: 3 Hrs			
Cou	rse Learning Objectives: The students will be	e able to			
1	Learn the fundamentals of natural language	ge processing			
2	Understand the use of CFG and PCFG in NLP				
3	Understand the role of semantics of sentences and pragmatics				
4	Gain knowledge in automated Natural La	nguage Generation and Machine Translation			

UNIT-I		
INTRODUCTION: Origins and challenges of NLP – Language Modelling: Grammar-based	8 Hrs	
LM, Statistical LM -Regular Expressions, Finite-State Automata - English Morphology,		
Transducers for lexicon and rules, Tokenization, Detecting and Correcting Spelling Errors,		
Minimum Edit Distance values of real symmetric matrices: Jacobi and Givens method.		
Laboratory Session: Word Analysis		
Applications: Text to Speech conversion		
Video link :https://nptel.ac.in/courses/106/105/106105158/		
UNIT-II		
WORD LEVEL AND SYNTACTIC ANALYSIS: N grams Models of Syntax - Counting	8 Hrs	
Words - Unsmoothed N grams-Smoothing-Back off Deleted Interpolation – Entropy – English		
Word Classes - Tag sets for English-Part of Speech Tagging-Rule Based Part of Speech Tagging		
- Stochastic Part of Speech Tagging - Transformation-Based Tagging -Issues in PoS tagging -		
Hidden Markov and Maximum Entropy models.		
Laboratory Session: Morphological Analyzer for a given word		
Applications: Speech to text conversion		
Video link : <u>https://nptel.ac.in/courses/106/105/106105158/</u>		
UNIT-III		
CONTEXT FREE GRAMMARS: Context-Free Grammars, Grammar rules for English, Tree	8 Hrs	
banks, Normal Forms for grammar - Dependency Grammar - Syntactic Parsing, Ambiguity,		
Dynamic Programming parsing - Shallow parsing Probabilistic CFG, Probabilistic CYK,		
Probabilistic Lexicalized CFGs - Feature structures, Unification of feature structures		

Laboratory Sessions: Chunking for a given sentence	
Applications: Compiler	
Video link : <u>https://www.youtube.com/watch?v=6b40kKe2SFg</u>	
UNIT-IV	
SEMANTICS AND PRAGMATICS: Representing Meaning - Meaning Structure of	8 Hrs
Language, -	
First Order Predicate Calculus-Representing Linguistically Relevant Concepts -SyntaxDriven	
Semantic Analysis - Semantic Attachments -Syntax Driven Analyzer- Robust Analysis -	
Lexemes and Their Senses - Internal Structure - Word Sense Disambiguation -Information	
Retrieval.	
Laboratory Session: Pragmatic Analysis of a given sentence	
Applications: Sentiment Analysis	
Video link :https://www.coursera.org/lecture/human-language/pragmatics-E8VXH	
UNIT-V	
LANGUAGE GENERATION AND DISCOURSEANALYSIS: Discourse segmentation,	8 Hrs
Coherence – Reference Phenomena, Anaphora Resolution using Hobbs and Centering	
Algorithm – Co reference Resolution – Resources: Porter Stemmer, Lemmatize, Penn Treebank,	
Brill's Tagger, Word Net, Prop Bank, Frame Net, Brown Corpus, and British National Corpus	
(BNC).	
Laboratory Session: Sentiment analysis on movie database	
Applications: Sentiment analysis	
Videolink:https://www.coursera.org/lecture/text-mining-analytics/5-6-how-to-do-	

Cours	Course Outcomes: After completing the course, the students will be able to			
CO1	To tag a given text with basic Language features.			
CO2	To design an innovative application using NLP components			
CO3	To implement a rule-based system to tackle morphology/syntax of a language			
CO4	To design a tag set to be used for statistical processing for real-time applications			
CO5	To compare the use of different statistical approaches for different types of NLP applications			

Refe	erence Books
1.	Daniel Jurafsky, James H. Martin-Speech and Language Processing: An Introduction to Natural
	Language Processing, Computational Linguistics and Speech, Pearson Publication, 2014.
2.	C. Manning and H. Schutze, "Foundations of Statistical Natural Language Processing", MITPress.

Cambridge, MA:1999

3. Steven Bird, Ewan Klein and Edward Loper, —Natural Language Processing with Python, First Edition, OReilly Media, 2009.

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the entire syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

						CO-P	O/PSO	Mapp	ing					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	-	-	-	-	-	-	-	-	-	-	-
CO2	3	3	3	-	-	-	-	-	-	-	-	-	2	2
CO3	3	3	3	-	-	-	-	-	-	-	-	-	1	3
CO4	3	3	3	-	-	-	-	-	-	-	-	-	1	2
CO5	2	2	2	-	-	-	-	-	-	-	-	-	2	-

	Semes	ter: VII			
	Professiona	l Elective III			
	HEALTHCAR	RE ANALYTICS			
Cou	rse Code:MVJ21AI732	CIE Marks:100			
Credits: L:T:P:S:3:1:0:0 SEE Marks: 10					
Hou	Hours: 40L+26T SEE Duration: 3 Hrs				
Cou	rse Learning Objectives: The students will	be able to			
1	Understand the health data formats, heal	th care policy and standards			
2	Learn the significance and need of data analysis and data visualization				
3	Understand the health data management frameworks				
4	Learn the use of machine learning and deep learning algorithms in healthcare				
5	Apply healthcare analytics for critical care applications				

UNIT-I	
INTRODUCTION TO HEALTHCARE ANALYSIS :Overview - History of Healthcare	8 Hrs
Analysis Parameters on medical care systems- Health care policy- Standardized code sets - Data	
Formats - Machine Learning Foundations: Tree Like reasoning , Probabilistic reasoning and	
Bayes Theorem, Weighted sum approach.	
Video link :https://www.digimat.in/nptel/courses/video/110104095/L01.html	
UNIT-II	
ANALYTICS ON MACHINE LEARNING : Machine Learning Pipeline – Pre-processing –	8 Hrs
$Visualization-Feature\ Selection-Training\ model\ parameter-Evaluation\ model\ :\ Sensitivity\ ,$	
Specificity , PPV ,NPV, FPR ,Accuracy , ROC , Precision Recall Curves , Valued target	
variablesPython: Variables and types, Data Structures and containers , Pandas Data Frame	
:Operations – Scikit –Learn : Pre-processing , Feature Selection.	
Video link :https://www.digimat.in/nptel/courses/video/106105152/L01.html	
UNIT-III	
HEALTH CARE MANAGEMENT: IOT- Smart Sensors – Migration of Healthcare Relational	8 Hrs
$database \ to \ NoSQL \ Cloud \ Database - Decision \ Support \ System - Matrix \ block \ Cipher \ System - Matrix \ block \ System - Matrix \ S$	
Semantic Framework Analysis - Histogram bin Shifting and Rc6 Encryption - Clinical	
Prediction Models – Visual Analytics for Healthcare.	
Video link : https://www.digimat.in/nptel/courses/video/110104095/L41.html	
UNIT-IV	
HEALTHCARE AND DEEP LEARNING: Introduction on Deep Learning - DFF network	8 Hrs

CNN- RNN for Sequences - Biomedical Image and Signal Analysis - Natural Language		
Processing and Data Mining for Clinical Data – Mobile Imaging and Analytics – Clinical		
Decision Support System.		
Video link :https://www.youtube.com/watch?v=W3_yaf3HvHU		
UNIT-V		
CASE STUDIES: Predicting Mortality for cardiology Practice –Smart Ambulance System	8 Hrs	
using IOT -Hospital Acquired Conditions (HAC) program- Healthcare and Emerging		
Technologies – ECG Data Analysis.		

Videolink: https://www.youtube.com/watch?v=UvQFH5RGOnU

Cours	se Outcomes: After completing the course, the students will be able to
CO1	Use machine learning and deep learning algorithms for health data analysis
CO2	Apply the data management techniques for healthcare data
CO3	Evaluate the need of healthcare data analysis in e-healthcare, telemedicine and other critical care applications
CO4	Design health data analytics for real time applications
CO5	Design emergency care system using health data analysis

Refe	erence Books
1.	Chandan K.Reddy, Charu C. Aggarwal, "Health Care data Analysis", First edition, CRC, 2015.
2.	Vikas Kumar, "Health Care Analysis Made Simple", Packt Publishing, 2018.
3.	Nilanjan Dey, Amira Ashour , Simon James Fong, Chintan Bhatl, "Health Care Data Analysis
	and Management, First Edition, Academic Press, 2018.

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2

assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the entire syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

						CO-P	O/PSO	Mappi	ing					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2		-	-	-	-	-	-	-	-	-	2	-
CO2	2	2		-	-	-	-	-	-	-	-	-	2	2
CO3	2	3	2	2	-	-	-	-	-	-	-	-	1	3
CO4	1	2	3	-	-	-	-	-	-	-	-	-	1	2
CO5	1	2	2	2	-	-	-	-	-	-	-	-	2	-

	Semester: V	/11					
	Professional Elective III						
	PATTERN RECO	GNITION					
Cou	rse Code:MVJ21AI733	CIE Marks:100					
Credits: L:T:P:S:3:1:0:0 SEE Marks: 100							
Hours: 40L+26T SEE Duration: 3 H							
Cou	rse Learning Objectives: The students will be ab	le to					
1	Identify areas where Pattern Recognition and Machine Learning can offer a solution.						
2	Describe the strength and limitations of some	techniques used in computational Machine					
2	Learning for classification, regression and density estimation problems						
3	Describe genetic algorithms, validation methods and sampling techniques						
4	Describe and model data to solve problems in	Describe and model data to solve problems in regression and classification					
5	Implement learning algorithms for supervised	tasks.					

UNIT-I		
Introduction:	8 Hrs	
Importance of pattern recognition, Features, Feature Vectors, and Classifiers, Supervised,		
Unsupervised, and Semi-supervised learning, Introduction to Bayes Decision Theory,		
Discriminant Functions and Decision Surfaces, Gaussian PDF and Bayesian Classification for		
Normal Distributions. L1, L2		
UNIT-II		
Data Transformation and Dimensionality Reduction:	8 Hrs	
Introduction, Basis Vectors, The Karhunen Loeve (KL) Transformation, Singular Value		
Decomposition, Independent Component Analysis (Introduction only). Nonlinear		
Dimensionality Reduction, Kernel PCA. L1, L2		
UNIT-III	I	
Estimation of Unknown Probability Density Functions:	8 Hrs	
Maximum Likelihood Parameter Estimation, Maximum a Posteriori Probability estimation,		
Bayesian Interference, Maximum Entropy Estimation, Mixture Models, Naive-Bayes Classifier,		
The Nearest Neighbor Rule. L1, L2, L3		
UNIT-IV		
Linear Classifiers:	8 Hrs	
Introduction, Linear Discriminant Functions and Decision Hyperplanes, The Perceptron		
Algorithm, Mean Square Error Estimate, Stochastic Approximation of LMS Algorithm, Sum of		
Error Estimate. L1, L2, L3		

UNIT-V	
Nonlinear Classifiers:	8 Hrs
The XOR Problem, The two Layer Perceptron, Three Layer Perceptron, Back propagation	
Algorithm, Basic Concepts of Clustering, Introduction to Clustering, Proximity Measures. L1,	
L2, L3	

Cours	se Outcomes: After completing the course, the students will be able to
CO1	Identify areas where Pattern Recognition and Machine Learning can offer a solution.
CO2	Describe the strength and limitations of some techniques used in computational Machine
	Learning for classification, regression and density estimation problems
CO3	Describe genetic algorithms, validation methods and sampling techniques
CO4	Describe and model data to solve problems in regression and classification
CO5	Implement learning algorithms for supervised tasks.

Refe	erence Books
1.	Pattern Recognition: Sergios Theodoridis, Konstantinos Koutroumbas, Elsevier India Pvt. Ltd (Pap
	Back), 4th edition
2.	The Elements of Statistical Learning: Trevor Hastie
3.	Pattern Classification: Richard O. Duda
4.	Pattern Recognition and Image Analysis Earl Gose: Richard Johnsonbaugh

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the entire syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding

up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO/PSO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2		-	-	-	-	-	-	-	-	-	2	-
CO2	2	2		-	-	-	-	-	-	-	-	-	2	2
CO3	2	3	2	2	-	-	-	-	-	-	-	-	1	3
CO4	1	2	3	-	-	-	-	-	-	-	-	-	1	2
CO5	1	2	2	2	-	-	-	-	-	-	-	-	2	-

	Semester: V	VII					
	Professional Ele	ctive III					
	VISION SYSTEMS AN	ID ROBOTICS					
Course Code:MVJ21AI734 CIE Marks:100							
Cred	redits: L:T:P:S:3:1:0:0 SEE Marks: 100						
Hour	Hours: 40L+26T SEE Duration: 3 Hrs						
Cour	se Learning Objectives: The students will be ab	le to					
1	Learn the basics of robotics.						
2	Understand the robot end effectors.						
3	Learn the techniques used in robot mechanics.						
4	Learn the fundamentals of machine vision systems and robot programming.						
5	Learn the basics of robotics.						

UNIT-I							
BASICS OF ROBOTICS: Introduction- Basic components of robot-Laws of robotics-	8 Hrs						
classification of robot-work space - accuracy resolution -repeatability of robot. Power							
transmission system: Rotary to rotary motion, Rotary to linear motion, Harmonics drives.							
UNIT-II							
ROBOT END EFFECTORS : Robot End effectors: Introduction- types of End effectors- Tools	8 Hrs						
as end effectors - Drive system for grippers - Mechanical gripper- types of gripper mechanism-							
gripper force analysis and gripper design - other types of gripper- special purpose grippers.							
UNIT-III							
ROBOT MECHANICS : Robot kinematics: Introduction- Matrix representation- rigid motion &	8 Hrs						
homogeneous transformation- forward & inverse kinematics- trajectory planning. Robot							
Dynamics: Introduction - Manipulator dynamics - Lagrange - Euler formulation- Newton -							
Euler formulation.							
UNIT-IV							
MACHINE VISION FUNDAMENTALS : Machine vision: image acquisition, digital images-	8 Hrs						
sampling and quantization-levels of computation Feature extraction-windowing technique-							
segmentation- Thresholding- edge detection- binary morphology - grey morphology - Camera							
calibration – Stereo Reconstruction.							
UNIT-V							
V ROBOT PROGRAMMING: Robot Languages- Classification of robot language-Computer	8 Hrs						
control and robot software-Val system and Languages- VAL language commands- motion							
control, hand control, program control, pick and place applications - palletizing applications							

using VAL, Robot welding application using VAL program- Rapid Language - basic commands Virtual robotics - VAL-II and AML – applications of robots

Cours	Course Outcomes: After completing the course, the students will be able to									
CO1	Able to know the basics of robotics.									
CO2	Able to understand the concepts of robot end effectors.									
CO3	Obtain forward, reverse kinematics and dynamics model of the industrial robot arm									
CO4	Develop the vision algorithms.									
CO5	Understand the robot programming and applications of robots.									

Refe	erence Books									
1.	Carsten Steger, Markus Ulrich, Christian Wiedemann, Machine Vision Algorithms and Applications, Second edition, Weinheim, WILEY-VCH, 2018									
2.	John J. Craig, Introduction to Robotics - Mechanics and Control, 3 rd Edition, Pearson Education Inc, 2013.									
3.	S.K. Saha, Introduction to Robotics, 4 th Edition, Tata McGraw Hill Education, 2011.									
4.	Ashitava Ghoshal, Robotics-Fundamental Concepts and Analysis, Oxford University Press, Sixth									
	impression, 2010.									

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the entire syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have

internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO/PSO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	-	-	-	-	-	-	-	-	-	-	2	-
CO2	2	2	-	-	-	-	-	-	-	-	-	-	2	2
CO3	2	3	3	2	-	-	-	-	-	-	-	-	1	3
CO4	2	2	1	-	-	-	-	-	-	-	-	-	1	2
CO5	3	1	2	2	-	-	-	-	-	-	-	1	2	-

Profess	ional Elective III				
DEEP LEAR	NING TECHNIQUES				
rse Code:MVJ21AI735	CIE Marks:100				
lits: L:T:P:S:3:1:0:0	SEE Marks: 100				
ours: 40L+26T SEE Duration: 3 Hrs					
rse Learning Objectives: The students	will be able to				
Learn feed forward deep networks					
Understand convolutional networks	and sequence modelling				
Study probabilistic models and auto encoders					
Expose the students to various deep generative models					
Study the various applications of de-	ep learning				
	DEEP LEAR rse Code:MVJ21AI735 lits: L:T:P:S:3:1:0:0 rs: 40L+26T rse Learning Objectives: The students v Learn feed forward deep networks Understand convolutional networks Study probabilistic models and auto Expose the students to various deep Study the various applications of de				

UNIT-I							
DEEP NETWORKS: Machine Learning Basics: Learning Algorithms - Supervised and	8 Hrs						
Unsupervised learning - Feed forward Deep networks - regularization - Optimization for							
training Deep models.							
Video link :http://www.deeplearning.net							
UNIT-II							
CONVOLUTIONAL NETWORKS AND SEQUENCE MODELLING : Convolutional	8 Hrs						
Networks - Convolution operation - Motivation Pooling - Basic Convolution function -							
$Algorithms-Recurrent\ and\ recursive\ nets\ :\ Recurrent\ neural\ networks-Bidirectional\ RNN-$							
Recursive Neural networks - Auto regressive networks - Long term dependencies - Temporal							
dependencies – Approximate search							
Video link :www.cs.toronto.edu/~fritz/absps/imagenet.pdf							
UNIT-III							
PROBABILISTIC MODELS AND AUTO ENCODERS : Structured Probabilistic models :	8 Hrs						
Challenges of unstructured modelling - using graphs to describe model structure - Learning							
$about\ dependencies-inference-Deep\ learning\ approach-Monte\ carlo\ models-Linear\ Factor$							
models and Auto encoders							
Video link :https://www.youtube.com/watch?v=wPz3MPl5jvY							
UNIT-IV							
DEEP GENERATIVE MODELS : Restricted Boltzmann Machines - Deep Belief networks -	8 Hrs						
Deep Boltzmann machine – Convolutional Boltzmann machine							
Video link :https://www.youtube.com/watch?v=W3_yaf3HvHU							

UNIT-V							
APPLICATIONS: Speech, Audio and Music processing - Language modelling and Natural	8 Hrs						
language processing - information retrieval - object recognition and computer vision - Multi							
modal and multi task learning							
Videolink: http://www.deeplearning.net							

Cours	Course Outcomes: After completing the course, the students will be able to									
CO1	Use feed forward deep networks									
CO2	Apply convolutional networks and sequence modelling for problem solving									
CO3	Use probabilistic models and auto encoders									
CO4	Use deep generative models for problem solving									
CO5	Apply the deep learning techniques									

Reference Books								
1.	Yoshua Bengio and Ian J.Goodfellow and Aaron Courville, "Deep Learning", MIT Press, 2015							
2.	Li Deng, Dong Yu, "Deep Learning: Methods and Applications", now publishers, 2014							

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the entire syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding

up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO/PSO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	-	-	-	-	-	-	-	-	-	-	2	-
CO2	2	2	-	-	-	-	-	-	-	-	-	-	2	2
CO3	2	3	3	2	-	-	-	-	-	-	-	-	1	3
CO4	2	2	1	-	-	-	-	-	-	-	-	-	1	2
CO5	3	1	2	2	-	-	-	-	-	-	-	1	2	-

	Se: Ope	nester: VII 1 Elective III						
	GAME DESIG	N & DEVELOPMENT						
Cou	rse Code: MVJ21AI741	CIE Marks:100						
Credits: L:T:P:S:3:0:0:0 SEE Marks: 100								
Hours: 40L SEE Duration: 3 Hrs								
Cou	rse Learning Objectives: The students v	ill be able to						
1	Understand the concepts of Game design	and development.						
2	Learn the processes, mechanics and issues in Game Design.							
3	Be exposed to the Core architectures of	Game Programming.						
4	Know about Game programming platfor	ns, frame works and engines. Learn to develop games.						

L'NIT-I							
0111-1							
3D Transformations, Quaternions, 3D Modeling and Rendering, Ray Tracing, Shader	8 Hrs						
Models, Lighting, Color, Texturing, Camera and Projections, Culling and							
Clipping, Character Animation, Physics-based Simulation, Scene Graphs.							
UNIT-II							
Game engine architecture, Engine support systems, Resources and File systems, Game	8 Hrs						
loop and real-time simulation, Human Interface devices, Collision and rigid body							
dynamics, Game profiling.							
UNIT-III							
Application layer, Game logic, Game views, managing memory, controlling the main							
loop, loading and caching game data, User Interface management, Game event							
management							
UNIT-IV							
2D and 3D Game development using Flash, DirectX, Java, Python, Game engines -	8Hrs						
Unity. DX Studio.							
UNIT-V							
Developing 2D and 3D interactive games using DirectX or Python - Isometric and Tile	8Hrs						
Based Games, Puzzle games, Single Player games, Multi Player games.							

Cours	Course Outcomes: After completing the course, the students will be able to						
CO1	Discuss the concepts of Game design and development.						
CO2	Design the processes, and use mechanics for game development.						
CO3	Explain the Core architectures of Game Programming						

CO4	Use Game programming platforms, frame works and engines.
CO5	Create interactive Games

Refe	erence Books
1.	Mike Mc Shaffrfy and David Graham, "Game Coding Complete", Fourth Edition, Cengage
	Learning, PTR, 2012
2.	Jason Gregory, "Game Engine Architecture", CRC Press / A K Peters, 2009
3.	David H. Eberly, "3D Game Engine Design, Second Edition: A Practical Approach to Real-
	Time Computer Graphics" 2 nd Editions, Morgan Kaufmann, 2006.
4.	Ernest Adams and Andrew Rollings, "Fundamentals of Game Design", 2 nd Edition Prentice
	Hall / New Riders, 2009.

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the entire syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	-	-	-	-	-	-	-	-	-
CO2	3	3	3	-	-	-	-	-	-	-	-	-
CO3	3	3	3	-	-	-	-	-	-	-	-	-
CO4	3	3	3	-	-	-	-	-	-	-	-	-
C05	2	2	3	-	-	-	-	-	-	-	-	-

	Semester: Open Electi							
	COMPUTER G	RAPHICS						
Cou	rse Code: MVJ21AI742	CIE Marks:100						
Credits: L:T:P:S:3:0:0:0 SEE Marks: 100								
Hou	Hours: 40L SEE Duration: 3 Hrs							
Cou	rse Learning Objectives: The students will be a	ible to						
1	Understand the two dimensional graphics and the	eir transformations						
2	Gain knowledge about graphics hardware device	es and software used.						
3	Appreciate illumination and color models.							
4	4 Understand the three dimensional graphics and their transformations.							
5	Be familiar with understand clipping techniques							

UNIT-I						
Survey of computer graphics, Overview of graphics systems - Video display devices,	8 Hrs					
Raster scan systems, Random scan systems, Graphics monitors and Workstations, Input						
devices, Hard copy Devices, Graphics Software; Output primitives - points and lines, line						
drawing algorithms, loading the frame buffer, line function; circle and ellipse generating						
algorithms; Pixel addressing and object geometry, filled area primitives.						
UNIT-II						
Two dimensional geometric transformations - Matrix representations and homogeneous	8 Hrs					
coordinates, composite transformations; Two dimensional viewing - viewing pipeline,						
viewing coordinate reference frame; widow-to-viewport coordinate transformation, Two						
dimensional viewing functions; clipping operations - point, line, and polygon clipping						
algorithms.						
UNIT-III						
Three dimensional concepts; Three dimensional object representations - Polygon	8 Hrs					
surfaces- Polygon tables- Plane equations - Polygon meshes; Curved Lines and surfaces,						
Quadratic surfaces; Blobby objects; Spline representations - Bezier curves and surfaces -						
B-Spline curves and surfaces.						
TRANSFORMATION AND VIEWING: Three dimensional geometric and modeling						
transformations - Translation, Rotation, Scaling, composite transformations; Three						
dimensional viewing - viewing pipeline, viewing coordinates, Projections, Clipping;						
Visible surface detection methods						
UNIT-IV						

UNIT-IV

Light sources - basic illumination models - halftone patterns and dithering techniques;	8Hrs					
Properties of light - Standard primaries and chromaticity diagram; Intuitive colour						
concepts - RGB colour model - YIQ colour model - CMY colour model - HSV colour						
model – HLS colour model; Colour selection.						
UNIT-V						
Design of Animation sequences - animation function - raster animation - key frame	8Hrs					
systems - motion specification -morphing - tweening.						
COMPUTER GRAPHICS REALISM: Tiling the plane – Recursively defined curves –						
Koch curves – C curves – Dragons – space filling curves – fractals – Grammar based						
models – fractals – turtle graphics – ray tracing.						

Cours	se Outcomes: After completing the course, the students will be able to
CO1	Design two dimensional graphics
CO2	Apply two dimensional transformations.
CO3	Design three dimensional graphics.
CO4	Apply three dimensional transformations.
CO5	Design animation sequences.

Refe	erence Books
1.	John F. Hughes, Andries Van Dam, Morgan Mc Guire ,David F. Sklar , James D. Foley, Steven
	K. Feiner and Kurt Akeley ,"Computer Graphics: Principles and Practice", , 3rd Edition,
	Addison- Wesley Professional, 2013. (UNIT I, II, III, IV)
2.	Donald Hearn and Pauline Baker M, "Computer Graphics", Prentice Hall, New Delhi, 2007
	(UNIT V).
3.	Donald Hearn and M. Pauline Baker, Warren Carithers,"Computer Graphics With Open GL", 4th
	Edition, Pearson Education, 2010.
4.	Hill F S Jr., "Computer Graphics", Maxwell Macmillan", 1990.

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks

each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the entire syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1											
CO2	1		2	2			1			2	2	
CO3	1							2	2	2	1	
CO4	1	2				2						2

	Semester	: VII								
	Open Elective III									
	INTRODUCTION TO HUMAN (COMPUTER INTERACTION								
Cour	se Code:MVJ21AI743	CIE Marks:100								
Cred	Credits: L:T:P:S:3:1:0:0 SEE Marks: 100									
Hou	Hours: 40L+26T SEE Duration: 3 Hrs									
Cour	se Learning Objectives: The students will be	able to								
1	Learn the foundations of Human Computer	Interaction.								
2	Be familiar with the design technologies for	or individuals and persons with disabilities.								
3	Be aware of mobile HCI.									
4	Learn the guidelines for user interface.									
5	Learn the foundations of Human Computer	Interaction.								

UNIT-I

 FOUNDATIONS OF HCI : The Human: I/O channels – Memory – Reasoning and problem
 8 Hrs

 solving; The computer: Devices – Memory – processing and networks; Interaction: Models –
 frameworks – Ergonomics – styles – elements – interactivity- Paradigms.

Video link / Additional online information (related to module if any):

https://www.youtube.com/watch?v=WW1g3UT2zww

UNIT-II

DESIGN & SOFTWARE PROCESS : Interactive Design basics – process – scenarios – **8 Hrs** navigation – screen design – Iteration and prototyping. HCI in software process – software life cycle – usability engineering – Prototyping in practice – design rationale. Design rules – principles, standards, guidelines, rules. Evaluation Techniques – Universal Design.

Video link / Additional online information (related to module if any):

https://www.youtube.com/watch?v=dNgK8CXzMSw

UNIT-III

MODELS& THEORIES: HCI Models: Cognitive models: Socio-Organizational issues and **8 Hrs** stakeholder requirements –Communication and collaboration models-Hypertext, Multimedia and WWW.

Video link / Additional online information (related to module if any):

https://www.youtube.com/watch?y-ayKhU701LyU					
https://www.youtube.com/watch?v=axKh0701Lx0					
UNIT-IV					
MOBILE HCI: Mobile Ecosystem: Platforms, Application frameworks- Types of Mobile	8 Hrs				
Applications: Widgets, Applications, Games- Mobile Information Architecture, Mobile 2.0,					
Mobile Design: Elements of Mobile Design, Tools. – Case Studies					
Video link / Additional online information (related to module if any):					
https://www.youtube.com/watch?v=o5bPWsfYkQo					
UNIT-V					
WEB INTERFACE DESIGN: Designing Web Interfaces - Drag & Drop, Direct Selection,	8 Hrs				
Contextual Tools, Overlays, Inlays and Virtual Pages, Process Flow – Case Studies.					
Video link / Additional online information (related to module if any):					
https://www.youtube.com/watch?v=QJ9ygdD2sIY					

Cours	Course Outcomes: After completing the course, the students will be able to							
CO1	Design effective dialog for HCI.							
CO2	Design effective HCI for individuals and persons with disabilities.							
CO3	Assess the importance of user feedback.							
CO4	Explain the HCI implications for designing multimedia/ ecommerce/ e-learning Web sites.							
CO5	Develop meaningful user interface.							

Refe	erence Books
1.	Alan Dix, Janet Finlay, Gregory Abowd, Russell Beale, -Human Computer Interaction, 3rd
	Edition, Pearson Education, 2004 (UNIT I, II & III)
2.	Brian Fling, —Mobile Design and Development, First Edition, O'Reilly Media Inc., 2009 (UNIT
	– IV)
3.	Bill Scott and Theresa Neil, —Designing Web Interfaces, First Edition, O'Reilly, 2009. (UNIT-
	V)

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be

more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO/PSO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	-	-	-	-	-	-	-	-	-	-	2	-
CO2	2	2	-	-	-	-	-	-	-	-	-	-	2	2
CO3	2	3	3	2	-	-	-	-	-	-	-	-	1	3
CO4	2	2	1	-	-	-	-	-	-	-	-	-	1	2
CO5	3	1	2	2	-	-	-	-	-	-	-	1	2	-

	Semester: \	VII				
	Open Electiv	e III				
	MOBILE APPLICATION	DEVELOPMENT				
Cours	se Code:MVJ21AI744	CIE Marks:100				
Credi	Credits: L:T:P:S:3:1:0:0 SEE Marks: 100					
Hours: 40L+26T SEE Duration: 3 Hrs						
Cours	se Learning Objectives: The students will be al	ole to				
1	Demonstrate their understanding of the funda	mentals of Android operating systems				
2	Demonstrate their skills of using Android sof	tware development tools				
	Demonstrate their ability to develop software	with reasonable complexity on mobile				
3	platform					
4	Demonstrate their understanding of the funda	mentals of Android operating systems				

UNIT-IIntroduction to Android Operating System: Android OS design and Features – Androiddevelopment framework, SDK features, Installing and running applications on Eclipseplatform, Creating AVDs, Types of Android applications, Best practices in Androidprogramming, Android tools. Android application components – Android Manifest file,Externalizing resources like values, themes, layouts, Menus etc, Android ApplicationLifecycle – Activities, Activity lifecycle, activity states, monitoring state changes

Video link / Additional online information (related to module if any):

https://www.youtube.com/watch?v=deq8mkt_cxQ

UNIT-II

Android User Interface: Measurements – Device and pixel density independent measuring
units Layouts – Linear, Relative, Grid and Table Layouts User Interface (UI) Components –
Editable and non editable Text Views, Buttons, Radio and Toggle Buttons, Checkboxes,
Spinners, Dialog and pickers Event Handling – Handling clicks or changes of various UI
components Fragments – Creating fragments, Lifecycle of fragments, Fragment states,
Adding fragments to Activity, adding, removing and replacing fragments with fragment
transactions, interfacing between fragments and Activities, Multi-screen Activities8 HrsApplications: Design a Simple Calculator AppVideo link (Additional online information (related to medulo if only))

Video link / Additional online information (related to module if any):

https://www.youtube.com/watch?v=PJ3RdfJ4Np8

UNIT-III

Intents and Broadcasts: Intent – Using intents to launch Activities, Explicitly starting new	8 Hrs
Activity, Implicit Intents, Passing data to Intents, Getting results from Activities, Native	
Actions, using Intent to dial a number or to send SMS Broadcast Receivers - Using Intent	
filters to service implicit Intents, Resolving Intent filters, finding and using Intents received	
within an Activity Notifications – Creating and Displaying notifications, Displaying Toast.	
Video link / Additional online information (related to module if any):	
https://nptel.ac.in/courses/106/106/106106147/	
UNIT-IV	
Persistent Storage: Files – Using application specific folders and files, creating files, reading	8 Hrs
data from files, listing contents of a directory Shared Preferences - Creating shared	
preferences, saving and retrieving data using Shared Preference Database - Introduction to	
SQLite database, creating and opening a database, creating tables, inserting retrieving and	
deleting data, Registering Content Providers, Using content Providers (insert, delete, retrieve	
and update)	
Video link / Additional online information (related to module if any):	
http://developer.android.com/develop/index.htm	
UNIT-V	<u> </u>
Advanced Topics: Alarms – Creating and using alarms Using Internet Resources –	8 Hrs
Connecting to internet resource, using download manager Location Based Services - Finding	
Current Location and showing location on the Map, updating location	
Video link / Additional online information (related to module if any):	
https://www.codeschool.com/learn/ios	

Cours	se Outcomes: After completing the course, the students will be able to
CO1	Understand the fundamentals of Android operating systems
CO2	Understand various layouts and designing UI.
CO3	Understand major Android components intents, broadcasting and notifications.
CO4	Understand basic concepts of SQLite database.
CO5	Understand how to utilize Location based services.

Refe	erence Books
1.	Charlie Collins, Michael Galpin and Matthias Kappler, "Android in Practice", DreamTech, 2012
2.	David Mark, Jack Nutting, Jeff LaMarche and Frederic Olsson, "Beginning iOS 6 Development:
	Exploring the iOS SDK", Apress, 2013.
3.	Google Developer Training, "Android Developer Fundamentals Course - Concept Reference",
	Google Developer Training Team, 2017.

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the entire syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO/PSO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	1	-	-	-	-	-	-	-	-	3	1	-
CO2	3	3	1	-	-	-	-	-	-	-	-	3	3	-
CO3	3	3	1	2	-	-	-	-	-	1	-	3	1	-
CO4	3	3	3	3	-	-	-	2	2	2	-	3	2	2
CO5	3	3	3	3	-	-	2	2	3	2	-	3	1	-

Semester: VII						
Open Elective III						
QUANTUM COMPUTING						
Course Code:MVJ21AI745 CIE Marks:100						
Credits: L:T:P:S:3:1:0:0 SEE Marks: 100						
Hours: 40L+26T SEE Duration: 3 Hrs						
ectives: The students will be able to						
e building blocks of a quantum computer.						
To understand the principles, quantum information and limitation of quantum operation						
e quantum error and its correction.						
the principles, quantum information and limitation of quantum in quantum error and its correction.	operati					

UNIT-I						
FUNDAMENTAL CONCEPTS: Global Perspectives, Quantum Bits, Quantum Computation,						
Quantum Algorithms, Quantum Information, Postulates of Quantum Mechanisms.						
Video Links : https://www.youtube.com/watch?v=3yoyVCAQH4M						
UNIT-II						
QUANTUM COMPUTATION : Quantum Circuits – Quantum algorithms, Single Orbit	8 Hrs					
operations, Control Operations, Measurement, Universal Quantum Gates, Simulation of						
Quantum Systems, Quantum Fourier transform, Phase estimation, Applications, Quantum search						
algorithms - Quantum counting - Speeding up the solution of NP - complete problems -						
Quantum Search for an unstructured database.						
Video Links: https://www.youtube.com/watch?v=OlatlIaqPj8						
UNIT-III						
QUANTUM COMPUTERS : Guiding Principles, Conditions for Quantum Computation,	8 Hrs					
Harmonic Oscillator Quantum Computer, Optical Photon Quantum Computer – Optical cavity						
Quantum electrodynamics, Ion traps, Nuclear Magnetic resonance.						
Video Links: https://www.youtube.com/watch?v=Nq4YZtINNAQ						
UNIT-IV						
QUANTUM INFORMATIONS: Quantum noise and Quantum Operations - Classical Noise	8 Hrs					
and Markov Processes, Quantum Operations, Examples of Quantum noise and Quantum						
Operations - Applications of Quantum operations, Limitations of the Quantum operations						
formalism, Distance Measures for Quantum information.						
Video Links: https://nptel.ac.in/courses/115/101/115101092/						
UNIT-V						
QUANTUM ERROR CORRECTION :Introduction, Shor code, Theory of Quantum Error -						
Correction, Constructing Quantum Codes, Stabilizer codes, Fault - Tolerant Quantum						
Computation, Entropy and information - Shannon Entropy, Basic properties of Entropy, Von						
Neumann, Strong Sub Additivity, Data Compression, Entanglement as a physical resource.						
Video Links:https://www.digimat.in/nptel/courses/video/115101092/L23.html						

Cours	Course Outcomes: After completing the course, the students will be able to								
CO1	Define and explain basic concepts in Quantum computing.								
CO2	Demonstrate applications of Quantum computing.								
CO3	Explain principles in the design of Quantum Computers								

CO4	Discuss applications and limitations of Quantum operations
CO5	Explain theory and concepts in Quantum error correction.

Reference Books

1.	Micheal A. Nielsen and Issac L. Chiang, "Quantum Computation and Quantum Information",
	Cambridge University Press, Fint South Asian Edition, 2002
2.	Bennett C.H., Bernstein E., Brassard G., Vazirani U., The strengths and weaknesses of quantum
	computation. SIAM Journal on Computing.
3.	Mika Hiravensalo, "Quantum computing" II edition, ACM computing classification, Springer-
	2004

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the entire syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO/PSO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	3	2	3	3	-	-	-	-	-	-	2	2	-
CO2	3	3	2	3	3	-	-	-	-	-	-	2	2	2
CO3	3	3	2	3	2	-	-	-	-	-	-	2	3	-
CO4	3	3	2	3	2	-	-	-	-	-	-	2	3	-
CO5	3	3	2	3	3	-	-	-	-	-	-	2	3	1

	Semester: VII										
	PROJECT PHASE – 1										
(Theory)											
Course Code: MVJ21AIPR75 CIE Marks:100											
Cred	Credits: L:T:P:S:3:0:0:0 SEE Marks: 100										
Hou	Hours: 40L SEE Duration: 3 Hrs										
Cou	Course Learning Objectives: The students will be able to										
1	To support independent learning.										
	To develop interactive, communication, organization, time management, and presentation										
2	skills.										
3	To impart flexibility and adaptability										
4	To expand intellectual capacity, credibility, judgment, intuition.										
5	To train students to present the topic of	ar without any fear, face audience									
-	confidently, enhance communication skill, involve in group discussion to present and exchange ideas										

Project Work Phase - I Each student of the project batch shall involve in carrying out the project work jointly in constant consultation with internal guide, co-guide, and external guide and prepare the project report as per the norms avoiding plagiarism.

Cours	Course Outcomes: After completing the course, the students will be able to										
CO1	Describe the project and be able to defend it.										
CO2	Learn to use modern tools and techniques										
CO3	Develop skills to work in a team to achieve common goal. Develop skills of project										
	management and finance.										
CO4	Develop skills of self-learning, evaluate their learning and take appropriate actions to improve										
	it.										
CO5	Prepare them for life-long learning to face the challenges and support the technological										
	changes to meet the societal needs.										
	č										

Scheme of Evaluation

Internal Marks: The Internal marks (50 marks) evaluation shall be based on Phase wise completion of the project work, Project report, Presentation and Demonstration of the actual/model/prototype of the project.

CIE Marks Breakup for Major Project during VII Semester :

Relevance of the Topic	10 Marks
Report	20 Marks
Evaluation by Guide	25 Marks
Presentation	30 Marks
Viva- Voce	15 Marks
Total	100 Marks

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	3	3	2	1	1	2	1	1	2
CO2	2	2	2	3	3	2	1	1	2	1	2	2
CO3	2	2	2	3	3	2	1	1	2	1	2	2
CO4	2	2	2	3	3	2	1	1	2	1	2	2
CO5	2	2	2	3	3	2	1	1	2	1	2	2