Course Title	ADVANCED DESIGN OF STEEL STRUCTURES	Semester	II
Course Code	MVJ19CSE21	CIE	50
Total No. of Contact Hours	60 L : T : P :: 40 : 0 : 20	SEE	50
No. of Contact Hours/Week	4	Total	100
Credits	4	Exam Duration	3Hrs

Course objective is to: This course will enable the students to

- Understand the background to the design provisions for hot-rolled and cold-formed steel structures, including the main differences between them
- Design different types of structures and to detail the structures
- Proficiency in applying the provisions for design of columns, beams, beam-columns
- Design structural sections for adequate fire resistance

			Module-1						L3, L4, L5	12Hrs	
• •,	77	1 1	• 1 6 1	. 1	CD	•	60.	10.			

Prerequisites: Knowledge in the fundamentals of Design of Steel Structures

Laterally Unrestrained Beams: Lateral Buckling of Beams, Factors affecting lateral stability, IS 800 code provisions, Design Approach. Lateral buckling strength of Cantilever beams, continuous beams, beams with continuous and discrete lateral restraints, Mono- symmetric and non- uniform beams – Design Examples. Concepts of -Shear Center, Warping, Uniform and Non-Uniform torsion.

Laboratory Sessions/ Experimental learning:

- Analysing the failure of restrained beam due to Lateral Torsional Buckling
- Analysing the failure of unrestrained beam due to Lateral Torsional Buckling

Applications:

- Construction of Laterally restrained Beams to act Against Lateral Torsional Buckling
- Better Load withstanding Capability Utilizing Beam by application of load at Shear Centre Video link / Additional online information:
 - https://nptel.ac.in/courses/105105162/

|--|

Prerequisites: Knowledge in the fundamentals of Design of Steel Structures

Beam- Columns in Frames: Behaviour of Short and Long Beam - Columns, Effects of Slenderness Ratio and Axial Force on Modes of Failure, Biaxial bending, Strength of Beam Columns, Sway and

Non-Sway Frames, Strength and Stability of rigid jointed frames, Effective Length of Columns-, Methods in IS 800 - Examples.

Laboratory Sessions/ Experimental learning:

- Experimental investigation of Long & Short column against axial force, and Biaxial Bending.
- Determining strength of Columns in Sway and Non-sway frames.
- Determining strength of Rigid Jointed Frames.

Applications:

- Developing Long Beam to act against biaxial bending.
- Obtaining the beam of Better strength in rigid jointed Frames.

Video link / Additional online information:

- https://nptel.ac.in/content/storage2/courses/105105104/pdf/m7l17.pdf
- https://nptel.ac.in/content/storage2/courses/105105104/pdf/m10l27.pdf

Module-3		12Hrs
Would-5	15, 14, 15	121115

Prerequisites: Knowledge in the fundamentals of Design of Steel Structures

Steel Beams with Web Openings: Shape of the web openings, practical guide lines, and Force distribution and failure patterns, Analysis of beams with perforated thin and thick webs, Design of laterally restrained castellated beams for given sectional properties, Vierendeel girders (design for given analysis results)

Laboratory Sessions/ Experimental learning:

- Determining the failure pattern of the steel beams with web openings.
- Analysis of Beam with perforated thin and thick webs.

Applications:

- Developing the beams with web openings with better strength.
- Developing the better properties of castelled beams and Vierendeel girders.

Video link / Additional online information:

• http://www2.ku.edu/~iri/publications/sm23a.pdf

Module-4	L3, L4, L5	12Hrs

Prerequisites: Knowledge in the fundamentals of Design of Steel Structures

Cold formed steel sections: Techniques and properties, Advantages, Typical profiles, Stiffened and unstiffened elements, Local buckling effects, effective section properties, IS 801& 811 code provisions- numerical examples, beam design, column design. Cavity walls, walls with piers.

- Determining the strength of Steel section in Stiffened and Unstiffened Condition
- Determining the Buckling Strength of Steel sections

Applications:

- Utilizing the Stiffened section as better strength criteria compared to unstiffened sections
- Cold Formed Steel sections have wide uses do to its better strength Properties

Video link / Additional online information:

- https://nptel.ac.in/courses/105106113/
- https://nptel.ac.in/content/storage2/courses/105106113/5_cold_form_steel/10_examples.pdf

Module-5	L3, L4, L5	12Hrs

Prerequisites: Knowledge in the fundamentals of Design of Steel Structures

Fire resistance: Fire resistance level, Period of Structural Adequacy, Properties of steel with temperature, Limiting Steel temperature, Protected and unprotected members, Methods of fire protection, Fire resistance ratings- Numerical Examples.

Laboratory Sessions/ Experimental learning:

- Determining the strength of Steel section against Fire Resistance.
- Testing different Methods of Fore Resistance.

Applications:

- Using Different Methods of Fire Resistance members to increase the strength.
- Utilizing the steel structures with better fire resistance properties can be obtained.

- https://nptel.ac.in/content/storage2/courses/downloads_new/105102176/noc18_ce30_ Assignment4.pdf
- https://nptel.ac.in/content/storage2/nptel_data3/html/mhrd/ict/text/105102176/lec9.pdf

Course	Course outcomes: On completion of the course, students would be able to				
CO1	Achieve knowledge of design and development of problem solving skills.				
CO2	Understand the principles of Structural Design				
CO3	Design and develop analytical skills.				
CO4	Summarize the principles of Structural Design and detailing				
CO5	Understands the structural performance.				

Refere	nce Books:
1.	N. Subramanian, "Design of Steel Structures", Oxford,IBH, 5 th Edition 2015.
2.	Duggal.S.K., Design of Steel structures. 3 rd Edition 2017.
3	Srinath. L.S., Advanced Mechanics of Solids, Tata McGraw-Hill Publishing Co ltd., New
5.	Delhi 3. IS 1641, 1642,1643
4.	IS 800: 2007, IS 811
5.	INSDAG Teaching Resource Chapter 11 to 20

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	-	-	-	-	-	1	-	1
CO2	3	3	3	2	-	-	-	-	-	1	-	1
CO3	3	3	1	1	-	-	-	-	-	1	-	1
CO4	3	1	-	-	-	-	-	-	-	-	-	1
CO5	3	2	-	-	-	-	-	-	-	-	-	1

	FINITE ELEMENT				
Course Title	METHOD OF ANALYSIS	Semester	II		
Course Code	CIE	50			
Total No. of Contact Hours	60 L : T : P :: 40 : 0 :20	SEE	50		
No. of Contact Hours/Week	4	Total	100		
Credits	4	Exam Duration	3Hrs		
Course objective is to: This c	ourse will enable the students to				
• Make students to learn	principles of Analysis of Stress an	nd Strain			
• Predict the stress-strain	behaviour of continuum				
• Evaluate the stress and	strain parameters				
• Study the inter relation	s of stress and strain parameters of	f the continuum			
Mod	lule-1	L3	12 Hrs		
Basic concepts of elasticity –	· Kinematic and Static variables for	or various types of struc	ctural problems		
– approximate method of stru	ctural analysis – Rayleigh – Ritz	method – Finite differ	ence method –		
Finite element method. Var	riation method and minimizatio	n of Energy approad	ch of element		
formulation. Principles of fin	nite element method – advantage	es & disadvantages –	Finite element		
procedure. Finite elements use	ed for one, two & three dimensior	nal problems – Elemen	t aspect ratio –		
mesh refinement vs. higher ord	der elements – Numbering of node	s to minimize band wic	lth.		
Laboratory Sessions/ Experime	ental learning:				
• Solve a beam using Ra	yleigh-Ritz method				
Applications:					
• Numerical analysis on	structures (Beams, Columns and s	o on)			
Video link / Additional online information :					
• Rayleigh - Ritz method - https://nptel.ac.in/courses/105/108/105108141/					
Module-2 L3, L4, L5 12 Hrs					
Nodal displacement paramet	ters – Convergence criterion – Co	mpatibility requirement	its – Geometric		
invariance - Shape function - Polynomial form of displacement function. Generalized and Natural					
coordinates – Lagrangian inte	rpolation function – shape function	ons for one, two & thr	ee dimensional		
elements.					

• Derive shape function using all the methods and differentiate the methods.

Applications:

• Numerical analysis of structures (Beams, Columns and so on).

Video link / Additional online information:

• Shape functions - http://www.nptelvideos.in/2012/12/finite-element-method.html

Module-3	L4, L5	12 Hrs
Isoparametric elements, Internal nodes and higher order e	elements, Serendipity a	nd Lagrangian

family of Finite Elements, Sub-parametric and Super- parametric elements, Condensation of internal nodes, Jacobean transformation Matrix. Development of strain-displacement matrix and stiffness matrix, consistent load vector, numerical integration

Laboratory Sessions/ Experimental learning:

• Do a case study on any two commercial softwares and identify the elements incorporated in it. Applications:

• Numerical analysis on structures

Video link / Additional online information:

• Isoparametric elements - https://nptel.ac.in/courses/105/105/105105041

Module-4	L3, L4, L5	12 Hrs
A	of one & true dime	natonal nuchlana

Application of Finite Element Method for the analysis of one & two dimensional problems, Analysis of simple beams and plane trusses, Application to plane stress / strain / axisymmetric problems using CST & Quadrilateral Elements

Laboratory Sessions/ Experimental learning:

• Do a case study on application of FEM in 1D, 2D beams and trusses.

Applications:

• Numerical analysis on structures

Video link / Additional online information:

• Beams and Trusses - https://nptel.ac.in/courses/105/105/105105041

Mod	ule-5		L3	, L4, L5	5	12 Hrs	
 		 -		~ ~			

Application of Finite Element Method for the analysis of two dimensional and three dimensional frame elements, Techniques for Non – linear Analysis.

• Model making of Plates and Shells for Studying FEM characteristics

Applications:

• Behavior of Plates and Shells using Numerical Analysis

Video link / Additional online information:

• Plates and Shells - https://nptel.ac.in/courses/105/105/105105041

Course outcomes: On completion of the course, students would be able to

CO1 Ac	nieve knowled	lge of design	and developmen	nt of problem	solving skills.
--------	---------------	---------------	----------------	---------------	-----------------

CO2	Understand the	principles	of stress-st	train be	ehaviour	of continuum

CO3	Design and develop analytical skills.
CO4	Describe the state of stress in a continuum

CO5 Understand the concepts of elasticity and plasticity.

Refe	rence Books:
1.	Krishnamoorthy C S, "Finite Element Analysis"- Tata McGraw Hill 2 nd Edition 2015.
2	Desai C and Abel J F, "Introduction to the Finite Element Method"- East West Press Pvt. Ltd.,
۷.	1972
3	Bathe K J, "Finite Element Procedures in Engineering Analysis"- Prentice Hall 3 rd Edition
5.	2015.
4	Rajasekaran. S, "Finite Element Analysis in Engineering Design"-Wheeler Publishing, 4th
4.	Edition 2013.
5	Cook R D, Malkan D S & Plesta M.E, "Concepts and Application of Finite Element Analysis" -
5.	3rd Edition, John Wiley and Sons Inc., 1989
6	Shames I H and Dym C J, "Energy and Finite Element Methods in Structural Mechanics"-
0.	McGraw Hill, New York, 1985

					CO-	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	-	-	-	-	-	1	-	1
CO2	3	2	1	3	-	-	3	-	-	1	-	1
CO3	3	3	1	1	-	-	3	-	-	1	-	1
CO4	3	1	-	-	-	3		2	-	-	-	1
CO5	3	2	-	-	-	3		1	-	-	-	1

Course Title	EARTHQUAKE RESISTANCE STRUCTURES	Semester	II
Course Code	MVJ19CSE23	CIE	50
Total No. of Contact Hours	60 L: T : P :: 40 : 0 : 20	SEE	50
No. of Contact Hours/week	4	Total	100
Credits	4	Exam. Duration	3Hrs

Course objective is to:

- The objective of this course is to make students to learn principles of engineering seismology.
- To design the reinforced concrete buildings for earthquake resistance.
- To evaluate the seismic response of the structures

Introduction: Introduction to engineering seismology, Geological and tectonic features of India, Origin and propagation of seismic waves, characteristics of earthquake and its quantification – Magnitude and Intensity scales, seismic instruments. Earthquake Hazards in India, Earthquake Risk Evaluation and Mitigation. Structural behaviour under gravity and seismic loads, Lateral load resisting structural systems, Requirements of efficient earthquake resistant structural system, damping devises, base isolation systems.

Applications:

• Epicentral location, seismic zonation

Video link:

• https://nptel.ac.in/courses/105102016/

	Module-2	L3, L4, L5	12Hrs.
TL -		0 (1 /* 1

The Response history and strong motion characteristics. Response Spectrum – elastic and inelastic response spectra, tripartite (D-V-A) response spectrum, use of response spectrum in earthquake resistant design. Computation of seismic forces in multi-storied buildings – using procedures (Equivalent lateral force and dynamic analysis) as per IS 1893–2002.

Video link:

• https://nptel.ac.in/courses/105102016/

Module-3	L4, L5	12Hrs.
Structural Configuration for earthquake resistant design, Cond	cept of plan irreg	gularities and
vertical irregularities, Soft storey, Torsion in buildings. Design pro-	ovisions for these	e in IS-1893.
Effect of infill masonry walls on frames, modelling concepts of infil	l masonry walls.	Behaviour of
masonry buildings during earthquakes, failure patterns, strength of	masonry in shear	and flexure,
Slenderness concept of masonry walls, concepts for earthquake resist	ant masonry build	dings – codal
provisions.		
Video link:		
• https://nptel.ac.in/courses/105102016/		
Module-4	L4, L5	12Hrs.
Design of Reinforced concrete buildings for earthquake resistance	e-Load combination	ons, Ductility
and energy absorption in buildings. Confinement of concrete for du	ctility, design of	columns and
beams for ductility, ductile detailing provisions as per IS 1893–2002.	. Structural beha	viour, design
and ductile detailing of shear walls.		
Video link:		
• https://nptel.ac.in/courses/105102016/		
Module-5	L3, L5	12Hrs.
Seismic response control concepts – Seismic demand, seismic car	acity. Overview	of linear and
nonlinear procedures of seismic analysis. Static Push over analysis	. Performance B	ased Seismic

Video link:

• https://nptel.ac.in/courses/105102016/

Course	e outcomes:
CO1	Understand the principles of engineering seismology
CO2	Apply the concept of Earthquake Resistant Design & concept of lateral load distribution on buildings.
CO3	To analyse earthquake characteristics and associated effects on structures, including linear responses

CO4	Understand the concepts of earthquake resistance of reinforced concrete buildings.
CO5	Understand the concepts of Seismic response control.

Refere	nce Books:
1.	Dynamics of Structures – Theory and Application to Earthquake Engineering- 2 nd ed. – Anil
	K. Chopra, Pearson Education, 7 th Edition 2018.
2	Earthquake Resistant Design of Building Structures, Vinod Hosur, WILEY (india), 3rd
2.	Edition 2016.
3	Earthquake Resistant Design of Structures, Duggal, Oxford University Press, 5th Edition
5.	2017.
1	Earthquake resistant design of structures - Pankaj Agarwal, Manish Shrikande - PHI India,
4	4 th Edition 2016.
5	Seismic Design of Reinforced Concrete and Masonry Buildings, T Paulay and M J N
C	Priestley, John Wiley and Sons
6	Codal Provisions IS 1893–2002, IS 4928–1993, IS 13827–1992, IS: 13920–1997, IS:
0	13935–1993.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	3	1	-	-	-	-	-	1	-	1
CO2	3	3	1	2	3	-	-	-	-	1	-	1
CO3	3	3	2	1	-	3	3	2	-	1	-	1
CO4	3	1	-	-	-	3	3	2	1	2	-	1
CO5	3	2	-	3	-	3	1	1	3	1	-	1

	ADVANCED DESIGN OF PRE-				
Course Title	STRESSED CONCRETE	Semester	II		
	STRUCTURES				
Course Code	MVJ19CSE241	CIE	50		
Total No. of Contact Hours	60 L : T : P :: 40 : 0 : 20	SEE	50		
No. of Contact Hours/Week	3	Total	100		
Credits	3	Exam Duration	3Hrs		
Course objective is to: This	course will enable the students to	L			
• Understand the genera	al mechanical behaviour of prestressed	concrete.			
• Able to analyze and d	esign for deflection and crack control of	of prestressed concr	ete members		
• Perform analysis and	design of prestressed concrete member	S			
• Be able to analyze tra	nsfer and development length as well a	s prestress losses.			
Module-1L3, L412 Hrs					
Losses of Prestress: Loss of prestress in pre-tensioned and posttensioned members due to various					
causes like elastic shortening	of concrete, shrinkage of concrete, cre	eep of concrete, rela	xation of steel,		
slip in anchorage, bending of	member and frictional loss - Analysis	of sections for flexe	ure.		
Experimental learning: Con	npare the effect of various losses in PS	C members			
Applications:					
• Knowledge of losses	is important while calculating the jacki	ng forces.			
Video link:					
• https://www.youtube.	com/watch?v=2pfHyPy3R_w				
Module-2		L3, L4	12 Hrs		
Design of Section for Flo	exure: Allowable stresses, Elastic	design of simple	beams having		
rectangular and I-section for flexure, kern lines, cable profile and cable layout.					
Design of Sections for Shear: Shear and Principal stresses, Improving shear resistance by different					
prestressing techniques horizontal, sloping and vertical prestressing, Analysis of rectangular and I-					
beam, Design of shear reinforcement, Indian code provisions					
Experimental learning:					
• Learn to apply prestre	ssing loads in StaadPro				
Applications:					

• Useful in calculating flexural and shear stresses in any PSC memb	er.	
Video link:		
 https://www.youtube.com/watch?v=BIJTWBlguHs 		
Module-3	L3, L4	12 Hrs
Deflections of Prestressed Concrete Beams: Short term deflection	ns of uncrac	ked members,
Prediction of long-term deflections, load-deflection curve for a PSC bea	m, IS code re	quirements for
maximum deflections		
Laboratory Sessions :		
· Practical outlook on construction of Prestressed Concrete Beams	by field visi	t (mandatory
and marks considered for CIE).		
Experimental learning:		
• Preparing Excel sheets on load–deflection curve for a PSC beam		
Applications:		
• To calculate the deflections in various PSC members.		
Video link:		
• https://www.youtube.com/watch?v=l5RA6XMOtuU		
Module-4	L3, L4	12Hrs
Transfer of Prestress in Pretensioned Members: Transmission of	prestressing f	orce by bond,
		-
Transmission length, Flexural bond stresses, IS code provisions, Anch	orage zone s	tresses in post
Transmission length, Flexural bond stresses, IS code provisions, Anch tensioned members, stress distribution in End block, Anchorage zone rein	orage zone s forcements.	tresses in post
Transmission length, Flexural bond stresses, IS code provisions, Anch tensioned members, stress distribution in End block, Anchorage zone rein	orage zone s forcements.	tresses in post
Transmission length, Flexural bond stresses, IS code provisions, Anch tensioned members, stress distribution in End block, Anchorage zone rein Experimental learning:	orage zone s forcements.	tresses in post
 Transmission length, Flexural bond stresses, IS code provisions, Anch tensioned members, stress distribution in End block, Anchorage zone rein Experimental learning: Learn to apply poststressing loads in StaadPro 	orage zone s	tresses in post
 Transmission length, Flexural bond stresses, IS code provisions, Anch tensioned members, stress distribution in End block, Anchorage zone rein Experimental learning: Learn to apply poststressing loads in StaadPro Applications: 	orage zone s	tresses in post
 Transmission length, Flexural bond stresses, IS code provisions, Anch tensioned members, stress distribution in End block, Anchorage zone rein Experimental learning: Learn to apply poststressing loads in StaadPro Applications: To design anchorage blocks in any PSC Member 	orage zone s	tresses in post
 Transmission length, Flexural bond stresses, IS code provisions, Anch tensioned members, stress distribution in End block, Anchorage zone rein Experimental learning: Learn to apply poststressing loads in StaadPro Applications: To design anchorage blocks in any PSC Member Video link: 	orage zone s	tresses in post
 Transmission length, Flexural bond stresses, IS code provisions, Anch tensioned members, stress distribution in End block, Anchorage zone rein Experimental learning: Learn to apply poststressing loads in StaadPro Applications: To design anchorage blocks in any PSC Member Video link: https://www.youtube.com/watch?v=ztiFxoi-O-Y 	orage zone s	tresses in post
Transmission length, Flexural bond stresses, IS code provisions, Anch tensioned members, stress distribution in End block, Anchorage zone rein Experimental learning: • Learn to apply poststressing loads in StaadPro Applications: • To design anchorage blocks in any PSC Member Video link: • https://www.youtube.com/watch?v=ztiFxoi-O-Y Module-5	orage zone s forcements.	tresses in post
Transmission length, Flexural bond stresses, IS code provisions, Anch tensioned members, stress distribution in End block, Anchorage zone rein Experimental learning: • Learn to apply poststressing loads in StaadPro Applications: • To design anchorage blocks in any PSC Member Video link: • https://www.youtube.com/watch?v=ztiFxoi-O-Y Module-5 Statically Indeterminate Structures: Advantages and disadvantages	orage zone s forcements. L3, L4 of continuou	tresses in post 12 Hrs s PSC beams,
Transmission length, Flexural bond stresses, IS code provisions, Anch tensioned members, stress distribution in End block, Anchorage zone rein Experimental learning: • Learn to apply poststressing loads in StaadPro Applications: • To design anchorage blocks in any PSC Member Video link: • https://www.youtube.com/watch?v=ztiFxoi-O-Y Module-5 Statically Indeterminate Structures: Advantages and disadvantages Primary and secondary moments, P and C lines, Linear transformation	orage zone s forcements. L3, L4 of continuou	tresses in post 12 Hrs s PSC beams, lant and non-
Transmission length, Flexural bond stresses, IS code provisions, Anch tensioned members, stress distribution in End block, Anchorage zone rein Experimental learning: • Learn to apply poststressing loads in StaadPro Applications: • To design anchorage blocks in any PSC Member Video link: • https://www.youtube.com/watch?v=ztiFxoi-O-Y Module-5 Statically Indeterminate Structures: Advantages and disadvantages Primary and secondary moments, P and C lines, Linear transformate concordant cable profiles, Analysis of continuous beams.	orage zone s forcements. L3, L4 of continuou ation, concord	tresses in post 12 Hrs s PSC beams, lant and non-

Experimental learning:

• Generate excel sheets for analysis of continuous beams.

Applications:

• To analyze various PSC continuous beams.

Video link:

• https://www.youtube.com/watch?v=zYEjDnVnnHs

Course	Course outcomes: On completion of the course, students would be able to				
CO1	Calculate losses due to pre-tensioning and post-tensioning in PSC members.				
CO2	Design of PSC members for flexure and shear.				
CO3	Calculate the short term and long-term deflections in prestressed concrete				
CO4	Calculate Transmission length, flexural bond stresses and anchorage zone stresses.				
CO5	Analyze various PSC Continuous beams.				

Refere	nce Books:
1	Krishna Raju, "Prestressed concrete", Tata Mc Graw Hill Book – Co, New Delhi, 6 th Edition
1.	2018.
2	T.Y. Lin and Burn, "Design of prestress concrete structures", John Wiley, New York, 3rd
2.	Edition 2010
3.	S. Ramamrutham, "Prestressed concrete", Dhanpat Rai & Sons, Delhi,10 th Edition 2019.
4.	Prestressed Concrete by N.Rajagopalan, Alpha Science, 2 nd Edition 2005.
5.	Prestressed Concrete Structures by P. Dayaratnam, Oxford & Ibh, 6 th Edition 2018.
6.	IS :1343 – 2012, "Indian Standard Prestressed Concrete Code of Practice"- BIS New Delhi.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	1	1	-	-	1	-	1	-	1
CO2	3	3	2	2	2	-	-	1	-	1	-	1
CO3	3	3	2	2	2	-	-	1	-	1	-	1
CO4	3	3	2	2	2	-	-	1	-	1	-	1
CO5	3	3	2	2	2	-	-	1	-	1	-	1

Course Title	STABILITY OF STRUCTURES	Semester	II
Course Code	MVJ19CSE242	CIE	50
Total No. of Contact Hours	60 L : T : P :: 40 : 0 : 20	SEE	50
No. of Contact Hours/Week	3	Total	100
Credits	3	Exam Duration	3Hrs

Course objective is to: This course will enable the students to

- The objective of this course is to make students to learn principles of stability of structures.
- To analyse the structural elements for stability. To evaluate the use of strain energy in plate bending and stability.

Module-1	L3	12 Hrs

Prerequisites: Knowledge in the fundamentals of Strength of Materials and Structural Analysis

Beam – column – Differential equation. Beam column subjected to lateral concentrated load, several concentrated loads, Continuous lateral load. Application of trigonometric series, Euler's formulation using fourth order differential equation for pined – pined, fixed – fixed, fixed – free and fixed – pinned column. Imperfection factor.

Laboratory Sessions/ Experimental learning:

- Analysing the Beam due to Several Concentrated load and comparing result with Equation.
- Analysing the Beam due to Different supports and comparing result with Equation.

Applications:

- The Experimental results can be estimated with Differential equation.
- The Beam and Column deflection for different supports can be determined using the equation.

Video link / Additional online information:

• https://nptel.ac.in/courses/105104160/-

Module-2	L3	12 Hrs
		1

Prerequisites: Knowledge in the fundamentals of Strength of Materials and Structural Analysis

Buckling of frames and continuous beams. Elastic Energy method: Approximate calculation of critical loads for a cantilever. Exact critical load for hinged – hinged column using energy approach. Buckling of bar on elastic foundation. Buckling of cantilever column under distributed loads. Determination of critical loads by successive approximation. Bars with varying cross section. Effect of shear force on critical load. Column subjected to non – conservative follower and pulsating forces.

• Determining the Buckling characteristics of Cantilever due to critical load.

Applications:

- Critical buckling load can be estimated by this method.
- The strength of the beam can be improved by determining the shear force at different cross section.

Video link / Additional online information:

• https://nptel.ac.in/courses/105101085/downloads/lec-25.pdf

Module-3 L3, L4 12 Hrs	
------------------------	--

Prerequisites: Knowledge in the fundamentals of Strength of Materials and Structural Analysis **Stability analysis by finite element approach** – deviation of shape function for a two nodded Bernoulli – Euler beam element (lateral and translation of) – element stiffness and element geometric stiffness matrices – assembled stiffness and geometric stiffness matrices for a discretised column with different boundary condition – calculation of critical loads for a discretised (two elements) column (both ends built in). Buckling of pin jointed frames (maximum of two active DOF) – symmetrical single bay portal frame. Stability analyis of truss.

Laboratory Sessions/ Experimental learning:

- Determining the critical loads for a column using FEM method.
- Determining the Buckling of pin jointed frames using FEM method.

Applications:

- The finite element method represents a powerful alternative approach for stability analysis which is accurate.
- Critical load can be easily determined by FEM method for discretized structure.

Video link / Additional online information:

• https://nptel.ac.in/courses/105105041/

Module-4	L3	12 Hrs

Prerequisites: Knowledge in the fundamentals of Strength of Materials and Structural Analysis

Lateral buckling of beams – differential equation – pure bending – cantilever beam with tip load – simply supported beam of I section subjected to central concentrated load. Pure Torsion of thin – walled bars of open cross section. Non – uniform Torsion of thin – walled bars of open cross section.

- Determining the loads carrying capacity in I section due to central concentrated load.
- Determining the loads carrying capacity in cantilever beam with tip load

Applications:

- By the approach of equation load acting on the cantilever beam can be determined easily.
- The load value on I-Section can be determined with the help of equations.

Video link / Additional online information:

• https://nptel.ac.in/content/storage2/courses/105106112/6_beams/6_examples.pdf

Module-5	L3	12 Hrs

Prerequisites: Knowledge in the fundamentals of Strength of Materials and Structural Analysis Expression for strain energy in plate bending with in plate forces (linear and non – linear). Buckling of simply supported rectangular plate – uniaxial load and biaxial load. Buckling of uniformly compressed rectangular plate simply supported along two opposite sides perpendicular to the direction of compression and having various edge condition along the other two sides.

Laboratory Sessions/ Experimental learning:

- Experimental investigation on uniaxial and biaxial buckling.
- Determining the Buckling of uniformly compressed rectangular plate simply supported along two opposite sides.

Applications:

• Buckling of the simply supported due to uniaxial and biaxial loading condition can be easily determined by this method.

Video link / Additional online information:

 $\bullet \ https://nptel.ac.in/content/storage2/nptel_data3/html/mhrd/ict/text/112106065/lec8.pdf$

Course outcomes: On completion of the course, students would be able to

CO1	Achieve knowledge of design and development of problem solving skills.
CO2	Understand the principles of strength and stability
CO3	Design and develop analytical skills.
CO4	Appraise the Stability analysis by finite element approach.
CO5	Understand the concepts of Lateral buckling of beams

Reference Books: 1. Stephen P.Timoshenko, James M Gere, "Theory of Elastic Stability"-2nd Edition, McGraw –

	Hill, New Delhi, 8 th Edition 2013.
2.	T Robert D Cook et.al, "Concepts and Applications of Finite Element Analysis"-3rd Edition, John Wiley and Sons, New York, 7 th Edition 2014.
3.	S.Rajashekar, "Computations and Structural Mechanics"-Prentice – Hall, India, 6 th Edition 2018.
4.	Ray W Clough and J Penzien, "Dynamics of Structures" - 2nd Edition, McGraw Hill, New Delhi, 5 th Edition 2017.
5.	H.Zeiglar, "Principles of Structural Stability"-Blaisdall Publications, 4th Edition 2014.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	1	3	3	-	-	1	-	1
CO2	3	3	3	2	-	2	3	3	1	1	-	1
CO3	2	3	3	1	2	1	1	1	-	2	3	1
CO4	2	2	2	0	1	-	3	2	3	1	3	1
CO5	3	1	1	-	-	2	3	-	-	1	-	1

		1			
Course Title	DESIGN OF PRECAST & COMPOSITE STRUCTURES	Semester	II		
Course Code	MVJ19CSE243	CIE	50		
Total No. of Contact Hours	60 L : T : P :: 40 : 0 : 20	SEE	50		
No. of Contact Hours/Week	3	Total	100		
Credits	3	Exam Duration	3Hrs		
Course objective is to: This co	ourse will enable the students to				
• Learn principles of prec	ast materials preparation				
• Implement the Design of	f Precast Concepts.				
• Evaluate different method	ods of Analysis of precast materials.				
N	Iodule-1	L3, L4	12 Hrs		
Concepts, components, Struct	tural Systems and Design of precas	t concrete floors: No	eed and types		
of precast construction, Modul	lar coordination, Precast elements-F	loor, Beams, Colum	ns and walls.		
Structural Systems and connect	ions.				
Design of precast Concrete F	loors: Theoretical and Design Exam	ples of Hollow core	slabs. Precast		
Concrete Planks, floor with con	nposite toppings with and without pro	ops.			
		-			
Laboratory Sessions/ Experime	ntal learning:				
• Experiments on the Sei	smic Performance of Hollow-Core F	loor Systems in Pred	cast Concrete		
Buildings.					
Applications:					
• Understanding the scope	e of the subject.				
• Understanding the desig	gn and Construction of precast concre	te floors.			
Video link / Additional online i	nformation:				
• https://www.youtube.com/watch?v=Jr43y9WYxkI					
Module-2 L3, L4 12 Hrs					
Design of precast reinforced and prestressed Concrete beams: Theoretical and Design Examples					
of ITB –Full section precast, Semi Precast, propped and un propped conditions. Design of RC Nibs.					

• Testing of precast beams for behaviour of concrete

Applications:

• Understanding the design and construction of precast reinforced and prestressed concrete beams.

Video link / Additional online information:

• https://www.youtube.com/watch?v=pjwrXLWhISE

		10.77				
Module-3	L3	12 Hrs				
Design of precast concrete columns and walls: Design of braced and unbraced columns with corbels						
subjected to pattern and full loading. Design of Corbels. Design of R	subjected to pattern and full loading. Design of Corbels. Design of RC walls subjected to Vertical,					
Horizontal loads and moments, Design of vertical ties and horizontal joints.						
Laboratory Sessions/ Experimental learning:						
• Experimental testing of precast concrete panel connections.						
Applications:						
• Knowledge about the design and Construction of precast concre	te columns and	walls				
Module-4	L3	12 Hrs				
Design of Precast Connections and Structural Integrity: Beam	bearing, Sock	et Connection,				
Structural integrity, Avoidance of progressive collapse, Design of Struc	tural Ties.					
Laboratory Sessions/ Experimental learning:						
Experimental Investigation on Precast Wall Connections						
Applications:						
• Obtaining the structure with better connection to withstand loads	S.					
Video link / Additional online information (related to module if any):						
• https://www.youtube.com/watch?v=uiQzx1YFOBs						
Module-5	L4	12 Hrs				
Design of Steel Concrete Composite Floors and Beams Composite	Floors: Profiled	Sheeting with				
concrete topping, Design method, Bending and Shear Resistance of C	composite Slabs	, Serviceability				

concrete topping, Design method, Bending and Shear Resistance of Composite Slabs, Serviceability Criteria, Design Example Composite Beams: Elastic Behavior, Ultimate Load behavior of Composite beams, Stresses and deflection in service and vibration, Design Example of Simply Supported beams.

• Experimental Investigation on Steel Concrete Composite Floor Slab

Applications:

- Knowledge about composite material and construction
- Design of steel concrete composite floors and beams can be done.
- Behavior of precast composite structures against loads.

Video link / Additional online information:

• https://nptel.ac.in/courses/105/108/105108124/

Course outcomes: On completion of the course, students would be able to

CO1	Achieve knowledge of design and development of problem solving skills.
CO2	Understand the principles of precasted elements.
CO3	Design and develop analytical skills.
CO4	Summarize the Probability distributions
CO5	Understand the concepts of prestressed elements.

Refere	nce Books:
1.	Structural Precast Concrete Handbook, CIDB, Singapore, 7th Edition 2017.
2.	INSDAG Teaching Resource Chapter 21 to 24: www.steel-insdag.org
3	IS 15916 (2011): Building Design and Erection Using Prefabricated Concrete -Code of
5.	Practice [CED 51: Planning, Housing and pre-fabricated construction]
4.	IS 1343-2012, IS 456-2000, IS 800-20075.
5	IS 11384 (1985):Code of Practice for Composite Construction in Structural Steel and
5.	Concrete [CED 38: Special Structures]

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	2	3	-	-	-	-	-	1	-	1
CO2	3	1	2	3	-	-	-	-	-	1	-	1
CO3	3	3	3	3	-	3	3	2	-	1	-	1
CO4	3	1	-	-	-	3	3	2	-	-	-	1
CO5	3	2	-	-	-	3	1	1	-	-	-	1

Course Title	RELIABILITY ANALYSIS OF STRUCTURES	Semester	Ш
Course Code	MVJ19CSE244	CIE	50
Total No. of Contact Hours	60 L : T : P :: 40 : 0 : 20	SEE	50
No. of Contact Hours/Week	3	Total	100
Credits	3	Exam Duration	3Hrs

Course objective is to: This course will enable the students to

- The objective of this course is to make students to learn principles of reliability.
- To implement the Probability Concepts for the Reliability Analysis.
- To evaluate different methods of reliability analysis.

Module-1

L3, L4 12 Hrs

Preliminary Data Analysis: Graphical representation- Histogram, frequency polygon, Measures of central tendency- grouped and ungrouped data, measures of dispersion, measures of asymmetry. Curve fitting and Correlation: Fitting a straight line, curve of the form y = abx, and parabola, Coefficient of correlation.

Laboratory Sessions/ Experimental learning:

• Prepare excel sheets on preliminary data analysis

Applications:

• Implement probability concepts for Reliability analysis

Module-2	L3, L4	12 Hrs
Drobability Concentry Dandem events Comple snoos and events Vann diagon		

Probability Concepts: Random events-Sample space and events, Venn diagram and event space, Measures of probability-interpretation, probability axioms, addition rule, multiplication rule, conditional probability, probability tree diagram, statistical independence, total probability theorem and Baye's theorem.

Laboratory Sessions/ Experimental learning:

• Prepare excel sheets on preliminary data analysis

Applications:

• Implement probability concepts for Reliability analysis

Module-3	L.	3, L4	12 Hrs				
Random variables: Probability mass function, probability density	function	, Math	ematical				
expectation, Chebyshev's theorem. Probability distributions: Discrete distributions- Binomial and							
poison distributions, Continuous distributions- Normal, Log normal distributions.							
Laboratory Sessions/ Experimental learning:							
• Do a case study on random variables for Probability mass fun-	ction, pro	bability	density				
function							
Applications:							
• Implement probability concepts for Reliability analysis							
Video link / Additional online information:							
• Probability - https://nptel.ac.in/content/syllabus_pdf/114106041.pdf							
Module-4	L3, L4	, L5	12 Hrs				
Reliability Analysis: Measures of reliability-factor of safety, safety	margin, re	eliability	y index,				
performance function and limiting state. Reliability Methods-First Order	Second N	/Ioment	Method				
(FOSM), Point Estimate Method (PEM), and Advanced First Order S	Second M	Ioment	Method				
(Hasofer-Lind's method).							
Laboratory Sessions/ Experimental learning:							
• Do a case study on random variables for Probability mass fun-	ction, pro	bability	density				
function							
Applications:							
Reliability analysis for structures							
Video link / Additional online information:							
• Reliability estimates - https://nptel.ac.in/content/syllabus_pdf/11410	6041.pdf						
Module-5	L3, L4	, L5	12 Hrs				
System reliability: Influence of correlation coefficient, redundant and non-	-redundan	t system	is series,				
parallel and combined systems, Uncertainty in reliability assessments- Confidence limits, Bayesian							
revision of reliability. Simulation Techniques: Monte Carlo simulation	- Statistic	al expe	eriments,				
sample size and accuracy, Generation of random numbers- random number	ers with st	tandard	uniform				
distribution, continuous random variables, discrete random variables.							

• Do a case study on system reliability analysis.

Applications:

• Reliability analysis for structures

Video link / Additional online information:

• Reliability - https://nptel.ac.in/content/syllabus_pdf/114106041.pdf

Course	e outcomes: On completion of the course, students would be able to
CO1	Achieve knowledge of design and development of problem solving skills.
CO2	Understand the principles of reliability
CO3	Design and develop analytical skills.
CO4	Summarize the Probability distributions
CO5	Understand the concepts of System reliability.

Refere	nce Books:
1	Ranganathan, R. (1999). "Structural Reliability Analysis and design"- Jaico publishing house,
1.	Mumbai, India, 5 nd Edition.
2	Ang, A. H. S., and Tang, W. H. (1984). "Probability concepts in engineering planning and
2.	design"- Volume –I, John Wiley and sons, Inc, New York, 5 th Edition 2015.
2	Milton, E. Harr (1987). "Reliability based design in civil engineering"- Mc Graw Hill book
3.	Co, 3 rd Edition.
	Nathabdndu, T., Kottegoda, and Renzo Rosso (1998). Statistics, "Probability and reliability
4.	for Civil and Environmental Engineers"- Mc Graw Hill international edition, Singapore,
	2 nd Edition.
5	Achintya Haldar and Sankaran Mahadevan (2000). "Probability, Reliability and Statistical
Э.	methods in Engineering design"- John Wiley and Sons. Inc, 4 th Edition.
6	Thoft-christensen, P., and Baker, M., J., (1982), "Structural reliability theory and its
0.	applications"- Springer-Verlag, Berlin, NewYork, 4th Edition.

F												
CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	3	2	-	-	-	-	-	1	-	1
CO2	3	1	3	2	-	2	-	-	-	1	-	1
CO3	3	3	1	1	-	3	3	3	-	1	-	1
CO4	3	3	-	-	-	3	3	3	-	-	-	1
CO5	3	2	-	-	-	3	3	1	-	-	-	1

Course Title	ADVANCED STRUCTURAL ANALYSIS	Semester	II
Course Code	MVJ19CSE251	CIE	50
Total No. of Contact Hours	60 L : T : P :: 40 : 0 : 20	SEE	50
No. of Contact Hours/Week	3	Total	100
Credits	3	Exam Duration	3Hrs

Course objective is to: This course will enable the students to

- Students will be given provided with the knowledge of mathematics, science, and engineering in the in the analysis of following structural systems curved beams.
- Beams on elastic foundation, shear centre and unsymmetrical bending and buckling of nonprismatic columns and beam column.

Module-1	L3	12 Hrs

Prerequisites: Knowledge in the fundamentals of Strength of Materials & Basic Structural analysis **Curved Beams** Curved beams, Introduction, assumptions, derivation of WINKLER BACH equation, Radius to the neutral surface of simple geometric figures, Limitation, Stress distribution in open curved members such as Hooks and chain links, Stress distribution in closed rings and chain links. Deformations of open and closed rings.

Laboratory Sessions/ Experimental learning:

- Experiments on Stress analysis of Curved Beams using strain Guages.
- Determination of geometrical influence of Curved beams due to laoding.

Applications:

• Static and Dynamic analysis of curved beams can be done.

Video link / Additional online information:

• https://nptel.ac.in/content/storage2/courses/105106049/lecnotes/mainch10.html

Module-2	L3,L4	12 Hrs

Prerequisites: Knowledge in the fundamentals of Strength of Materials & Basic Structural analysis Beams on Elastic Foundations

Governing differential equation for elastic line, Interpretation of constants, Infinite beam with point load, moment & UDL with problems. Semi-infinite beams with point load and moment UDL with problems over fixed and hinged support conditions.

• Experiments on influence of foundation mass on Different loading Condition.

• Comparing the equations with experimental result sue to different loading condition on beams. Applications:

- By the use of equations loads on the foundations can be predicted.
- Critical loading can be avoided hence the foundation can be completely utilized.

Video link / Additional online information:

• https://nptel.ac.in/content/storage2/courses/105106049/lecnotes/mainch11.html

Module-3	L3,L4	12 Hrs

Prerequisites: Knowledge in the fundamentals of Strength of Materials & Basic Structural analysis Shear Center

Concept of shear centre in torsion induced bending of beams, expression to the Shear Centre for Symmetrical and Unsymmetrical Sections, Derivation of shear centre for angles, channel, semicircular and built-up sections with numerical problems

Laboratory Sessions/ Experimental learning:

• Determining the location of Shear Centre by Application of load.

Applications:

- Torsion is critical if not taken care. Hence application of load at shear center reduces torsion.
- The Strength of the structure can be completely utilized by this method.

Video link / Additional online information:

- https://nptel.ac.in/content/storage2/nptel_data3/html/mhrd/ict/text/112101095/lec33.pdf
- https://www.youtube.com/watch?v=3Hg0OWZGUbE

	Module-4 L3, L4 12 Hrs
--	--

Prerequisites: Knowledge in the fundamentals of Strength of Materials & Basic Structural analysis **Unsymmetrical Bending (Asymmetrical Bending)**

Theory behind unsymmetrical bending, Assumptions, obtaining the stresses in beams, simply supported and cantilever unsymmetrical beams subjected to inclined loading, Deflections of unsymmetrical simply supported and cantilever beams with numerical problems.

Laboratory Sessions/ Experimental learning:

- Experiment on Unsymmetrical Bending on simply supported beam due to Inclined Loading.
- Experiment on Unsymmetrical Bending on Cantilever beam due to Inclined Loading

Applications:

- Unsymmetrical bending can be mitigated due to inclined loading by this method.
- Stress analysis on the beam can be determined in simply supported and Cantilever beams.

Video link / Additional online information:

- https://nptel.ac.in/content/storage2/nptel_data3/html/mhrd/ict/text/114106043/lec23.pdf
- https://www.youtube.com/watch?v=mbJEQHXz5WA

Module-5	L3, L4	12 Hrs

Prerequisites: Knowledge in the fundamentals of Strength of Materials & Basic Structural analysis Buckling of Non Prismatic Columns and Beam-Column

Principle behind Euler's theory of buckling, Governing differential equation applied to buckling of columns and evaluation of constants for various boundary conditions, Obtaining the characteristic equation for the buckling load of non-prismatic compound columns, Analysis of Beam-column, conceptual theory of magnification stresses and deformations subjected to axial and different types of lateral loads with numerical problems.

Laboratory Sessions/ Experimental learning:

- Experiment on Buckling of Non-Prismatic columns.
- Analysis of Stresses in Beam Column Axial load and different Lateral Load.

Applications:

- Torsion is critical if not taken care. Hence application of load at shear center reduces torsion.
- The Strength of the structure can be completely utilized by this method.

Video link / Additional online information:

• https://nptel.ac.in/content/storage2/courses/105105109/pdf/m112.pdf

Course outcomes: On completion of the course, students would be able to

CO1	Apply Winkler Bach and Strain Energy principles to obtain stresses and deformation in curved members.							
CO2	Derive the expressions to Foundation pressure, Deflection, Slope, BM and SF of infinite and							
001	semi-infinite Beams resting on Elastic Foundation.							
CO3	Obtain the equations for the shear centre for symmetrical and unsymmetrical from							
000	fundamental.							
CO4	Extrapolate the bending theory to calculate the stresses and deformations in unsymmetrical							
00.	bending.							
CO5	5 Develop the characteristic equation for the buckling load of compound column and stresse							
000	and deformations in beam-column.							

Refer	ence Books:
1.	azirani V N and Ratwani M M "Advanced theory of structures and Matrix Method". 5th Edition,2014
2.	HetenyiM."Beams on elastic foundation" 3rd printing, University of Michigan, USA, 1952. 2 nd Edition
3.	Alexander Chatjes "Principles of Structural stability theory", Prentice – Hall of India, New Delhi, 2 nd Edition,1974.
4.	Sterling Kinney "Indeterminate Structural Analysis", Oxford & IBH publishers, 5 th edition,2016

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	3	-	1	2	1	-	2	-	2	1	2
CO2	3	-	-	3	-	-	1	2	3			2
CO3	3	3	1	1	2	2	2	3	1	3	1	1
CO4	3	1	3	-	-	2	-	1	3	2	1	2
CO5	3	2	-	1	2	1	2	1	-	-	-	1

Course Title	DESIGN OF HIGH RISE STRUCTURES	Semester	П
Course Code	MVJ19CSE252	CIE	50
Total No. of Contact Hours	60 L: T: P: 40: 0: 20	SEE	50
No. of Contact Hours/week	3	Total	100
Credits	3	Exam Duration	3Hrs

Course objective is to:

- Learn principles of stability of high rise buildings.
- Design the tall buildings for earthquake and wind resistance.
- Gain knowledge of behaviour of structural systems.
- Evaluate the performance of tall structures for strength and stability.
- Introduce to the code provisions.

			Mo	odule	e-1]	L 3	12 H	lrs
	 		0			1	0						

Prerequisites: Knowledge in the fundamentals of special concrete.

Design Criteria: Design philosophy, loading, sequential loading, and materials – high performance concrete, fibre reinforced concrete, lightweight concrete, design mixes. Loading and Movement: Gravity loading- dead and live load, methods of live load reduction, Impact gravity loading, construction loads.

Laboratory Sessions/Experimental learning:

- Development of design mixes for high performance, fibre reinforced and lightweight concrete.
- Testing of concrete blocks with different design mixes.

Applications:

- Understanding of characteristics of concrete materials used for the construction of high-rise structures.
- Importance of each individual loads to be considered on high rise structures.

Video link / Additional online information:

• https://www.sefindia.org/forum/files/design_of_tall_buildings_preliminary_design_124.pdf-Introduction to tall buildings.

- https://www.youtube.com/watch?v=XCun_ewg-I8 (Lecture 1)- An overview of tall buildings
- https://www.youtube.com/watch?v=8iHKKM4enic (Lecture 2)- Design philosophy.
- https://www.youtube.com/watch?v=EqWxCDsr1qU (Lecture 7)- Analysis by gravity loads.

	L3, L4 &	
Module-2	L5	12 Hrs

Prerequisites: Knowledge in the fundamentals of structural dynamics.

Wind loading: static and dynamic approach, analytical and wind tunnel experimentation method.Earthquake loading: Equivalent lateral force, modal analysis, combinations of loading, working stress design, Limit state design, Plastic design.

Laboratory Sessions/Experimental learning:

- Experimental investigation on wind load analysis of high-rise structures by wind tunnel experimentation method. (Multidisciplinary learning with Aeronautical Engineering Department)
- Model making to understand the structural behavior of high-rise structures under wind and seismic loading.

Applications:

- Better understanding of wind pressure distribution on high-rise structures with different boundary conditions by wind tunnel experiment.
- Importance of method of analysis under wind and earthquake loading.

Video link / Additional online information:

- https://www.youtube.com/watch?v=rjvM6rR8BZ8 (Lecture 3- Part I & 2)- Design criteria.
- https://www.youtube.com/watch?v=hREd8TjRw_8 (Lecture 8- Part III)- Analysis of lateral loads.

			Module-3			L2, L3	12 Hrs
D 1		a .	• •	-	 	• • • • •	1 0 1 1 1

Behaviour of Various Structural Systems: Factors affecting growth, height and structural form; high rise behaviour, rigid frames, braced frames, in-filled frames, shear walls, coupled shear walls, wall-frames, tubular, cores, outrigger – braced and hybrid mega system.

Laboratory Sessions/Experimental learning:

- Case study on behavior of various structural systems in high rise structures.
- Analysis and design of high-rise structures with various structural systems.

Applications:

- Understanding the performance of high-rise structures under each structural system.
- Gives better knowledge of optimal structural system that could be employed in a high-rise structure.

Video link / Additional online information: Information on various structural systems.

- https://www.sefindia.org/forum/files/design_of_tall_buildings_preliminary_design_124.pdf
- https://www.youtube.com/watch?v=XCun_ewg-I8 (Lecture 1)

Madula 4	L3, L4 &	12 IIm
Module-4	L5	12 HFS

Analysis and Design: Modelling for approximate analysis, accurate analysis and reduction techniques, analysis of building as total structural system considering overall integrity and major subsystem interaction, analysis for member forces; drift and twist, computerized general three-dimensional analyses. Structural elements: sectional shapes, properties and resisting capacities, design, deflection, cracking, pre-stressing, shear flow. Design for differential movement, creep and shrinkage effects, temperature effects and fire.

Laboratory Sessions/Experimental learning:

- Analytical investigation of forces, lateral displacement and twisting of members of high-rise structures.
- Software analysis and design to understand seismic performance of high-rise structures along with seismic design aspects.

Applications:

- Knowledge on various analytical procedures in accessing overall structural integrity.
- Understanding various secondary effects in high-rise structures.

Video link / Additional online information: Preliminary design of tall structures

• https://www.youtube.com/watch?v=-86A8kVKzwQ (Lecture 5)

Module-5	L3 & L4	12 Hrs
Propagaisites: Knowledge in the fundamentals of structural dynamics		

Prerequisites: Knowledge in the fundamentals of structural dynamics.

Stability of Tall Buildings: Overall buckling analysis of frames, wall frames, approximate methods, second order effects of gravity of loading, P-Delta analysis, simultaneous first order and P-Delta analysis, Transnational, Torsional instability, out of plum effects, stiffness of member in stability, effect of foundation rotation.

- Analyzing the stability of high-rise buildings by buckling and P-Delta effect using structural software.
- Experiencing construction of high-rise structures at site.

Applications:

- Gain knowledge on analytical approaches with respect to stability of the high-rise structures.
- Practical outlook on construction of high-rise structures.

Video link / Additional online information:

https://www.youtube.com/watch?v=hREd8TjRw_8 (Lecture 8- Part III)- Analysis of lateral loads.

Course outco	omes: On completion of the course, students would be able to
CO1	Familiarize with the problems associated with the large heights of structures with respect to different loads and materials.
CO2	Analyse the structure subjected to lateral loads.
CO3	Design and develop analytical skills.
CO4	Summarize the behavior of various structural systems
CO5	Understand the concepts of overall buckling and P-Delta analysis.

Refere	nce Books:
1	Taranath B.S, "Structural Analysis and Design of Tall Buildings"- McGraw Hill, 3rd Edition
1.	2011.
2.	Wilf gang Schuller, "High rise building structures"- John Wiley, 4th Edition 2012.
3	Bryan Stafford Smith & Alexcoull, "Tall building structures Analysis and Design"- John
5.	Wiley, 2nd Edition 2017.
1	T. Y Lin & D.Stotes Burry, "Structural concepts and system for Architects and Engineers"-
4.	John Wiley, 4 ^h Edition 2015.
5	Lynn S.Beedle, "Advances in Tall Buildings"- CBS Publishers and Distributors, 6 th Edition
5.	2015.
	Dr. Y.P. Gupta – Editor, "Proceedings National Seminar on High Rise Structures- Design and
6.	Construction practices for middle level cities"- New Age International Limited, 7th Edition
	2014.
7	IS 1893(Part 1):2016 "Criteria for Earthquake Resistant Design of Structures"- (6th
7.	revision) BIS, New Delhi.

0	IS 875(Part 3):2015 "Code of Practice for Design Loads (Other than Earthquake) f	for
8.	Buildings and Structures - Part 3: Wind Loads (3rd revision) BIS, New Delhi.	

	CO-PO Mapping														
CO/	PO1	PO2	PO3	PO/	PO5	PO6	PO7	PO8	POQ	PO10	PO11	PO12			
РО	101	102	105	104	105	100	107	100	10)	1010	1011	1012			
CO1	3	2	-	2	-	-	-	-	-	1	-	1			
CO2	3	3	2	1	-	1	-	-	-	1	-	1			
CO3	3	3	2	2	-		2	1	1	1	-	1			
CO4	3	3	-	2	1	1	1	1	2	1	-	1			
CO5	3	3	-	2	1	1	1	1	2	1	-	1			

Course Title	DESIGN OF INDUSTRIAL STRUCTURES	Semes	ter		II	
Course Code	MVJ19CSE253	CIE 50				
Total No. of Contact Hours	60 L: T: P: 40: 0: 20	SEE 5				
No. of Contact Hours/Week	3	Total 10				
Credits	3 Exam Duration				3Hrs	
Course objective is to:						
• Learn principles of des	ign of industrial building.					
• Design different compo	onents of industrial structures and	detail th	ne structures.			
• Design industrial stora	ge structures.					
• Design various cold for	rmed light gauge sections.					
• Evaluate the performan	nce of the Pre- engineered building	gs.				
]	Module-1		L3, L4 & L	5	12 Hrs	
Prerequisites: Knowledge in the	he fundamentals of design of steel	structu	res.			
components namely, girders, t Laboratory Sessions/Experime • Modelling and design o	russes, gable frames. ental learning: of industrial components of buildi	ngs und	er gravity and w	ind le	oads.	
Applications:						
• Understanding of princ	siples of design of industrial build	ing as po	er the code prov	ISION	8.	
• Find out the response of	information.	gravity	and lateral loads	5.		
Video link / Additional online						
Video link / Additional online	information:	aindana	and traces			
 Video link / Additional online https://nptel.ac.in/cours https://www.iere.oo.in/ 	ses/105106113/- Design of gantry	girders	and trusses.	fΓ	action of	
 Video link / Additional online https://nptel.ac.in/cours https://www.iare.ac.in/ Industrial building (gir 	ses/105106113/- Design of gantry sites/default/files/lecture_notes/le	girders c%20no	and trusses. tes%20ASD.pd	f- D	esign of	
 Video link / Additional online https://nptel.ac.in/cours https://www.iare.ac.in/ Industrial building (girs) 	ses/105106113/- Design of gantry sites/default/files/lecture_notes/le ders, trusses and frames)	girders c%20no	and trusses. tes%20ASD.pd:	f- D	esign of	
 Video link / Additional online https://nptel.ac.in/course https://www.iare.ac.in/ Industrial building (girse 	ses/105106113/- Design of gantry sites/default/files/lecture_notes/le ders, trusses and frames) Module-2	girders c%20no	and trusses. tes%20ASD.pd L3 & L4	f- D	esign of 12 Hrs	
 Video link / Additional online https://nptel.ac.in/course https://www.iare.ac.in/ Industrial building (girse Prerequisites: Knowledge in the Analysis and design of gantry	ses/105106113/- Design of gantry sites/default/files/lecture_notes/le ders, trusses and frames) Module-2 he fundamentals of design of steel column (stepped column / column	girders c%20no	and trusses. tes%20ASD.pd: L3 & L4 res. racket) purling	f- D	besign of 12 Hrs	

• Draft the detailing of gantry column, purlins, girts and bracings.

Applications:

- Understanding of behavior of different components of industrial structure.
- Learn to detail various components of an industrial building.

Video link / Additional online information:

- https://nptel.ac.in/courses/105106113/- Design of gantry column.
- https://www.iare.ac.in/sites/default/files/lecture_notes/lec%20notes%20ASD.pdf- Design of bracings with connections.

Module-3	L4, L5	12 Hrs

Design of silos and bunkers – Design of square bunker – Jansen's and Airy's theories IS Codal provisions, design of side plates, stiffeners, Hooper, longitudinal beams. Design of cylindrical silo – Side plates, ring girder, stiffeners.

Laboratory Sessions/Experimental learning:

- Design of Bunkers from FE based software subjected to wind load.
- Modelling and design of silos under dynamic loads.

Applications:

• Understanding of theoretical and design concepts of bunkers and silos with supporting components.

Video link / Additional online information:

• https://www.iare.ac.in/sites/default/files/lecture_notes/lec%20notes%20ASD.pdf- Design of steel bunkers and silos.

Module-4	L4	12 Hrs

Forms of light gauge sections, Effective width computation of unstiffened, stiffened, multiple stiffened compression elements of cold formed light gauge sections. Concept of local buckling of thin elements. Limiting width to thickness ratio. Post buckling strength.

Laboratory Sessions/Experimental learning:

• Investigation of numerical and finite element analysis of buckling behavior of light gauge sections under compression.

Applications:

• Gives in depth knowledge of influence of local buckling on the structural behavior of light gauge sections.

Video link / Additional online information:

• https://nptel.ac.in/courses/105106113/- Introduction to light gauge sections, local buckling.

Module-5	L3 & L4	12 Hrs
		-

Design of compression and tension members of cold formed light gauge sections, Design of flexural members (Laterally restrained / laterally unrestrained), Concept of Pre- engineered buildings.

Laboratory Sessions/Experimental learning:

- Experimental and analytical investigation on different forms of light gauge sections under different loading and boundary conditions.
- Case study on pre-engineered buildings.

Applications:

- Learn design of compression and tension members of cold formed light gauge sections.
- Better knowledge on concepts of pre-engineered buildings.

Video link / Additional online information:

• https://nptel.ac.in/courses/105106113/- Design of tension members, flexural members.

Course	e outcomes: On completion of the course, students would be able to
CO1	Understand the industrial building and the components.
CO2	Summarize the principles of structural design and detailing.
CO3	Design the silos, bunkers and bins along with supporting structures.
CO4	Design cold formed steel structures as per code provisions.
CO5	Understand the concepts of Pre- engineered buildings.

Refere	nce Books:
1	Bureau of Indian Standards, IS 800-2007, IS 875-1987, IS-801-1975. Steel Tables, SP 6 (1) -
1.	1984
2.	N Subramanian- "Design of Steel Structure" oxford University Press,4 th Edition, (2018).
3	B.C. Punmia, A.K. Jain "Design of Steel Structures", Laxmi Publications, New Delhi. 2 nd
3.	revised Edition 2012.
4.	Ramchandra and Virendra Gehlot "Design of Steel Structures "Vol 1 (11 th edition, 2012) and

	Vol 2 (0 th newiged edition 2015). Scientific Dublishers, Ledhaun
	vol.2 (9 revised edition, 2015), Scientific Publishers, Joanpur.
5.	Duggal "Limit State Design of Steel Structures" TMH 3rd Edition 2019.
	Reimbert, M. L., & Reimbert, A. M. (1987). Silos. Theory and practice. Vertical silos,
6.	
	horizontal silos (retaining walls) (No. Ed. 2). Lavoisier Publishing.

					CO-P	O Map	ping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	1	-	-	-	1	1	1	1	1
CO2	3	3	3	3	-	1	-	1	1	3	1	1
CO3	3	2	3	2	-	-	-	1	1	1	1	2
CO4	3	2	3	2	-	-	-	1	1	1	1	2
CO5	3	2	-	1	-	-	-	1	1	1	1	1

Course Title	STRUCTURAL HEALTH	C	п
Course little	MONITORING	Semester	
Course Code	MVJ19CSE254	CIE	50
Total No. of Contact Hours	60 L : T : P :: 40 : 0 : 20	SEE	50
No. of Contact Hours/Week	3	Total	100
Credits	3	Exam Duration	3Hrs
Course objective is to: This c	ourse will enable the students to	1	
• Learn the fundamental	s of structural health monitoring.		
• Examines the use of lo	w-cost, long term monitoring systems t	o keep civil infrastru	ucture under
constant surveillance.			
• Ensure the structural in	tegrity.		
• Develop the tools and	skills the students will learn in this cour	rse can be implemen	ted to
develop sustainable ma	intenance and rehabilitation schemes a	nd programs.	
	Module-1	L3	12 Hrs
Introduction to Structural H	lealth Monitoring (SHM):Definition	& motivation for SH	IM, SHM - a
way for smart materials and st	ructures, SHM and bio mimetic - analo	g between the nervo	ous system of
a man and a structure with SI	HM, SHM as a part of system manage	ment, Passive and A	Active SHM,
NDE, SHM and NDECS, basi	c components of SHM, materials for se	nsor design.	
Laboratory Sessions/ Experim	ental learning.		
• Identify the scope of S	HM and various applications on it		
Applications:	interventions upprodutions on it.		
• Understanding the basi	cs of SHM		
Knowledge of the score	e of the subject		
Video link / Additional online	information:		
• https://nptel.ac.in/cours	ses/114/106/114106046/		
 https://nptel.ac.in/courses/112/104/112104160/ 			
	Module-2	L3.L4	12 Hrs
Application of SHM in Civil	Engineering: Introduction to capaciti	ve methods, capacit	ive probe for
cover concrete, SHM of a brid	ge, applications for external post tension	oned cables, monitor	ing historical
buildings.			

• Performance assessment of various structures and structural components

Video link / Additional online information:

- https://nptel.ac.in/courses/114/106/114106046/
- https://nptel.ac.in/courses/112/104/112104160/

Module-3	L3	12 Hrs

Non Destructive Testing of Concrete Structures: Introduction to NDT- Situations and contexts, where NDT is needed, classification of NDT procedures, visual Inspection, half-Cell electrical potential methods, Schmidt Rebound Hammer Test, resistivity measurement, electromagnetic methods, radiographic Testing, ultrasonic testing, Infra-Red thermography, ground penetrating radar, radio isotope gauges, other methods.

Laboratory Sessions/ Experimental learning:

• Perform various Nondestructive test on concrete

Applications:

- Strength estimation of concrete
- Corrosion assessment and monitoring
- Detecting defects in concrete structure

Video link / Additional online information:

- https://nptel.ac.in/courses/114/106/114106046/
- https://nptel.ac.in/courses/112/104/112104160/

Module-4	L3, L4	12 Hrs
----------	--------	--------

Condition Survey & NDE of Concrete Structure: Definition and objective of Condition survey, stages of condition survey (Preliminary, Planning, Inspection and Testing stages), possible defects in concrete structures, quality control of concrete structures - Definition and need, Quality control applications in concrete structures, NDT as an option.

Laboratory Sessions/ Experimental learning:

• Collection of data on the structural integrity of structures in the campus(Identification of cracks, various repair techniques, Application of NDT, Retrofitting of structures)

Applications:

- Understanding the defects in concrete structures
- Identify the need of quality control in concrete structures

Video link / Additional online information:

- https://nptel.ac.in/courses/114/106/114106046/
- https://nptel.ac.in/courses/112/104/112104160/

Module-5	L3, L4, L5	12 Hrs
Rehabilitation and Retrofitting of Concrete Structure: Repair r	ehabilitation &	retrofitting of
structures, damage assessment of concrete structures, Materials a	and methods for	or repairs and
rehabilitation, modeling of repaired composite structure, structural anal	ysis and design	-Importance of
re-analysis, execution of rehabilitation strategy, Case studies.		

Laboratory Sessions/ Experimental learning:

• Collection of different case studies as a group work

Applications:

- Better knowledge on various repair techniques.
- Performance enhancement of an existing structures

Video link / Additional online information:

- https://nptel.ac.in/courses/114/106/114106046/
- https://nptel.ac.in/courses/112/104/112104160/

Course outcomes: On completion of the course, students would be able to

CO1	Diagnosis the distress in the structure understanding the causes and factors.
CO2	Assess the health of structure using static field methods.
CO3	Assess the health of structure using dynamic field tests.
CO4	Suggest repairs and rehabilitation measures of the structure
CO5	Understand the concepts of Retrofitting of structure.

Refere	nce Books:
1.	Guide Book on Non-destructive Testing of Concrete Structures", Training course series No. 17. International Atomic Energy Agency, Vienna, 4 th Edition 2002.
2	Daniel Balageas, Claus - Peter Fritzenami Alfredo Guemes, "Structural Health Monitoring",
۷.	Published by ISTE Ltd., U.K. 5 th Edition 2006.
3.	Douglas E Adams "Health Monitoring of Structural Materials and Components-Methods with
	Applications", John Wiley and Sons, 6 th Edition 2007.
	Hand book on "Repair and Rehabilitation of RCC Building", Published by Director General,
4.	CPWD, Govt. of India, 4 th Edition 2002.

5.	J. P. Ou, H. Li and Z. D. Duan, "Structural Health Monitoring and Intelligent Infrastructure",
	Vol1, Taylor and Francis Group, London, UK, 6 th Edition 2006.
6.	Victor Giurglutiu, Academic "Structural Health Monitoring with Wafer Active Sensors",
	Academic Press Inc, 5 th Edition 2007.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	2	2	1	-	2	-	1	-	1
CO2	2			2	-	-	1	2	3	1	2	1
CO3	3	3	1	1	2	2	3	3	3	1	-	1
CO4	3	1	3	-	-	-	3	3	1	3	3	3
CO5	3	2	-	1	2	3	2	1	-	-	-	1

Course Title	REMOTE SENSING AND GIS IN ENGINEERING	Semester	Π
Course Code	MVJ19CSE261	CIE	50
Total No. of Contact Hours	60 L: T : P :: 40 : 0 : 20	SEE	50
No. of Contact Hours/week	3	Total	100
Credits	3	Exam. Duration	3 Hours

Course objective is to:

- Understand the basic concepts of remote sensing.
- Analyse satellite imagery and extract the required units.
- Extract the GIS data and prepare the thematic maps
- Use the thematic maps for various applications.

Module-1	L3 & L4	12 Hrs.
Introduction to Remote Sensing: Definition - History & Concepts - Ele	ctromagnetic	Radiation

(Source, Mode of Energy transfer, Radiation Principles, Black body radiation); **Electro Magnetic Radiation (EMR):** EMR Spectrum - EMR Interaction with Atmosphere (Absorption, Scattering & Atmospheric windows) - EMR Interaction with Earth surface (Absorption & reflection) - Spectral Response pattern - Energy budgeting in Remote Sensing.

Laboratory Sessions/ Experimental learning:

- Introduction to Working Principles of software
- Arial photograph interpretation

Applications:

• Provides Basic knowledge of Geographical Information Systems

Module-2	L3 & L4	12 Hrs.
Sensors and Platforms: Resolutions (Spectral, Spatial, Temporal, Radiometric	c) – Platforr	ns Sensors
- Scanning & Orbiting Mechanism of Satellites and Data Acquisition. Op	tical Remote	e Sensing:
Basic concepts -Optical sensors and scanners. Thermal & Microwave Rem	ote Sensing	g: Thermal
Remote Sensing: Basic concepts - Thermal sensors & scanners - Therma	al Inertia. N	Aicrowave
Remote Sensing: Basic concepts Microwave sensors and Radiometers - C	Geometric cl	naracters -
Radargrammetry (SLAR / SAR) - LIDAR -Hyper spectral Remote Sensing: ba	asic concepts	5

- Analog to Digital Conversion Scanning methods
- Digital database creation Point features, Line features, Polygon features

Applications:

• Teaching knowledge of creation of different shape files

Module-3	L3 & L4	12 Hrs.
Remote Sensing Satellites: LANDSAT Series - IRS Series - IRS-P series - C	Cartosat - Sp	ot Series -
ASTER, MODIS - IKONOS - QUICKBIRD - ORBVIEW -ERS - Meteorolog	gical Satellite	es -Shuttle
Mission - Developments of Remote Sensing in India - Future Remote Sensing	Missions	

Laboratory Sessions/ Experimental learning:

- Data Editing-Removal of errors Overshoot, Undershoot, Snapping
- Data Collection and Integration, Non-spatial data attachment working with tables

Applications:

• Provides knowledge on accesses of Digital image processing

Video link / Additional online information:

• https://nptel.ac.in/courses/105103193/

Module-4	L3 & L4	12 Hrs.
Introduction to Geographical Information System (GIS): Definition -	Usefulness	of GIS -

Introduction to Geographical Information System (GIS): Definition - Usefulness of GIS -Components of GIS - Computer Hardware, Software Modules and Organizational Context of GIS. Data Structure: Data Structure in GIS - Types of Data (Points, Lines and Polygons) - Data Base Structures (Raster Data Structures and Vector data Structures) - Data Conversion (Vector to Raster and Raster to Vector)

Laboratory Sessions/ Experimental learning:

- Dissolving and Merging
- Clipping, Intersection and Union

Applications:

• Provides knowledge on accesses of Base Map Creation

Module-5	L3 & L4	12 Hrs.
Integrated Applications of Remote sensing and GIS: Applications in	Land use L	and cover
analysis, change detection, Water Resources, Urban Planning, Environmen	ntal Plannin	g, Natural
Resource Management and Traffic Management. Location Based Services and	its Applicat	ions

- Point Data collection using GPS with different datum
- Line data collection using GPS and measurements

Applications:

• Gives knowledge of incorporation of GPS and GIS

Video link / Additional online information:

• https://nptel.ac.in/courses/121107009/

Course outcomes:CO1Collect data and delineate various elements from the satellite imagery using their spectral
signatureCO2Analyse different features of ground information to create raster or vector data.CO3Understand and apply sustainability concepts in construction practices, designs, product
developments and processes across various engineering disciplines.CO4Perform digital classification and create different thematic maps for solving specific
problemsCO5Make decision based on the GIS analysis on thematic maps.

Refere	nce Books:
1.	Chor Pang Lo and Albert K.W Yeung, "Concepts & Techniques of GIS", PHI, 2006
2.	John R. Jensen, "Remote sensing of the environment", An earth resources perspective – 2nd edition – by Pearson Education 2007
3.	Anji Reddy M., "Remote sensing and Geographical information system", B.S. Publications 2008
4	Peter A. Burrough, Rachael A. McDonnell, and Christopher D. Lloyd, "Principals of Geo physical Information system", Oxford Publications 2004
5	S Kumar, "Basics of remote sensing & GIS", Laxmi publications 2005

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	-	-	-	-	-	2	1	-	2	1
CO2	2	3	-	-	-	-	-	2	1	-	2	2
CO3	3	2	2	2	2	1	2	3	2	2	2	2
CO4	3	2	2	2	3	2	2	2	2	3	3	3
CO5	3	3	3	3	3	2	3	2	2	3	3	3

Course Title	SUSTAINABILITY CONCEPTS IN ENGINEERING	Semester	II
Course Code	MVJ19CSE262	CIE	50
Total No. of Contact Hours	60 L : T : P :: 40 : 00 : 20	SEE	50
No. of Contact Hours/week	3	Total	100
Credits	3	Exam. Duration	3 Hrs

Course objective is to:

- Learn about the principles, indicators and general concept of sustainability.
- Apprehend the local, regional and global impacts of unsustainable designs, products and processes.
- Apply the sustainability concepts in engineering
- Know built environment frameworks and their use
- Understand how building and design is judged and valued by clients and stakeholders and how to implement sustainability.

Module-1								L3	12 H	lrs.
Introduction:	Sustainability	-	Introduction,	Need	and	concept	of	sustainab	oility,	Social-
environmental	and economic	SIL	stainability cor	icents	Susta	inable der	velo	nment N	exus	between

environmental and economic sustainability concepts. Sustainable development, Nexus between Technology and Sustainable development, Challenges for Sustainable Development. Multilateral environmental agreements and Protocols - Clean Development Mechanism (CDM), Environmental legislations in India - Water Act, Air Act.

Applications:

- Knowledge of the scope of the subject.
- Knowledge about dynamics of sustainable systems.

- https://nptel.ac.in/courses/127/105/127105018/
- https://nptel.ac.in/courses/107/103/107103081/

Module-2	L3	14 Hrs.					
Global Environmental Issue: Air Pollution, Effects of Air Pollution; Water pollution- sources,							
Sustainable wastewater treatment, Solid waste – sources, impacts of solid waste, Zero waste concept.							
Resource degradation, Climate change, Regional and Local Environment	ital Issues. C	Carbon credits					
and carbon trading, carbon foot print Carbon sequestration - Carbon ca	apture and s	torage (CCS).					

Environmental management standards, ISO 14000 series, Life Cycle Analysis (LCA) - Scope and Goal, Bio-mimicking.

Laboratory Sessions/ Experimental learning:

- Pollution assessment tests for different areas and give remedies to control it.
- Applications:
 - Understanding the various environmental pollutions, its effects and how to overcome the global environmental issues.
 - Getting an idea to improve urban infrastructure.

Video link / Additional online information:

- https://nptel.ac.in/courses/127/105/127105018/
- https://nptel.ac.in/courses/107/103/107103081/

Module-3	L3	12Hrs.

Sustainable Design:

Basic concepts of sustainable habitat, Green buildings, green materials for building construction, material selection for sustainable design, green building certification- GRIHA & IGBC Certification for buildings, Energy efficient building design- Passive solar design technique, Thermal storage, Cooling strategies, high performance insulation. Sustainable cities, Sustainable transport.

Laboratory Sessions/ Experimental learning:

• Conduct any sustainability event in the campus (ex: Technical talk, Documentary/film etc)

Applications:

- Knowledge about Sustainable design and green construction.
- Understanding the design of energy efficient building.

Video link / Additional online information:

- https://nptel.ac.in/courses/127/105/127105018/
- https://nptel.ac.in/courses/107/103/107103081/

Module-4	L3 & L4	10Hrs.

Clean Technology and Energy:

Energy sources: Basic concepts-Conventional and non-conventional, solar energy, Fuel cells, Wind energy, Small hydro plants, bio-fuels, Energy derived from oceans, Geothermal energy. Rainwater harvesting.

• Industrial visit of any of the energy sources and make a report on it.

Applications:

• Understanding the various application of different energy sources

Video link / Additional online information:

- https://nptel.ac.in/courses/127/105/127105018/
- https://nptel.ac.in/courses/107/103/107103081/

|--|

Green Engineering:

Green Engineering concepts, Sustainable Urbanization, industrialization and poverty reduction; Social and technological change, Industrial Processes: Material selection, Pollution Prevention, Industrial Ecology, Industrial symbiosis.

Laboratory Sessions/ Experimental learning:

• Develop a sustainability project for a green campus

Applications:

• Understanding the concept of green engineering and how it is applicable for the sustainability in society.

Video link / Additional online information:

- https://nptel.ac.in/courses/127/105/127105018/
- https://nptel.ac.in/courses/107/103/107103081/

Course outcomes: On completion of the course, students would be able to

CO1	Learn the sustainability concepts, understand the role and responsibility of engineers in
COI	sustainable development
CO2	Quantify sustainability, and resource availability, Rationalize the sustainability based on
002	scientific merits
CO2	Understand and apply sustainability concepts in construction practices, designs, product
COS	developments and processes across various engineering disciplines
CO4	Application of engineering knowledge in utilization of natural resources for the production
CO4	materials.
CO5	Make a decision in applying green engineering concepts and become a lifelong advocate of
	sustainability in society

Refere	nce Books:
1	Allen, D. T. and Shonnard, D. R., Sustainability Engineering: Concepts, Design and Case
1.	Studies, Prentice Hall.
2	Bradley. A.S; Adebayo, A.O., Maria, P. Engineering applications in sustainable design and
Ζ.	
	development, Cengage Learning
3.	Environment Impact Assessment Guidelines, Notification of Government of India, 2006
0.	
4.	Mackenthun, K.M., Basic Concepts in Environmental Management, Lewis Publication, 1998
_	Sustainable Engineering Practice: An Introduction, Committee on Sustainability, American
5.	Service of Circil Engineering
	Society of Civil Engineers
	Daniel A. Vallero and Chris Brasier, "Sustainable Design: The Science of Sustainability
6.	, <u> </u>
	and Green Engineering", Wiley-Blackwell

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	-	-	3	1	1	-	1	-	-	1
CO2	3	-	-	-	1	1	-	-	2	1	1	-
CO3	1	2	3	1	-	1	-	-	-	-	-	1
CO4	3	1	1	1	2	-	-	-	1	-	-	-
CO5	1	1	1	-	-	1	-	-	3	-	-	1

Course Title	OCCUPATIONAL HEALTH AND SAFETY MANAGEMENT	Semester	II
Course Code	MVJ19CSE263	CIE	50
Total No. of Contact Hours	60 L: T: P: : 40 : 0 : 20	SEE	50
No. of Contact Hours/week	3	Total	100
Credits	3	Exam. Duration	3 Hrs

Course objective is to:

- To understand the concepts of global scenario of Health & safety.
- Students should be able to analyses and solve basic ergonomical issues.
- To be efficient in the operation of industrial hygiene equipment.
- To illustrate the importance and need of Fire & Safety.
- Students should be able to know the basics of fire and its classification.

				Modul	e-1			L3	12 Hrs.
n	 D .	1	1 1	1		0.1	1		

Prerequisites: Basic knowledge about various types of hazards

Physical and Chemical Hazards: Recognition, Evaluation and Control of Physical Hazards- Noise and Vibration - Effects and Control

Measures- Thermal Stress - Parameter Control, Radiation - Types - Source - Effect and Control Illumination & Lighting. Recognition, Evaluation and Control of Chemical Hazards- Types - Dust-Fumes -Mist -Vapor-Fog etc., Air Contaminants- Evaluation - Types of Sampling-Air Sampling System-Method Analysis-Control Measures.

Laboratory Sessions/ Experimental learning:

- Measurement of Sound/Noise Level at Various Location and Compare it with Standard Values Permissible for Exposure.
- Determination of SPM and RSPM Present in Working Atmosphere during the Working Period with the help of Respirable Dust Sampler.
- Determination of SPM and Oxides of Sulphur and Nitrogen from the Stack/Chimney using Stack Monitoring kit.
- Determination of pH, TDS, Temperature, DO of water with the help of Multiparameter Monitoring Instrument

Applications:

• Documentation of the report on noise level in the working environment

- Documentation of report on SPM and RSPM present in air
- Preparation of water quality analysis report

Video link / Additional online information:

- Hazard terminologies, hazard identification, methods, risk determination, https://www.youtube.com/watch?v=JkTbfVkKGCI#action=share
- Hazard classification and assessment, evaluation, control, https://nptel.ac.in/courses/114106017/
- Hazard analysis necessity, hazard evaluation and control https://www.youtube.com/watch?v=WMPodFzWsSs

Module-2	L3	12 Hrs.					
anninitant Dania idan about anon amigal insura							

Prerequisites: Basic idea about ergonomical issues

Occupational Health: Concept and Spectrum of Health-Functional Units and Activities of Occupational Health Services-Occupational and Work-related Disease-Levels of Prevention of Diseases - Notifiable Occupational Diseases such as Silicosis- Asbestosis- Pneumoconiosis--Aluminosis and Anthrax. Lead-Nickel, Chromium and Manganese Toxicity-Gas Poisoning (such as CO, Ammonia, Coal Dust etc.,) their effects and Prevention- Cardio Pulmonary Resuscitation-Audiology-Hearing Conservation Programme-Effects of Ultra Violet Radiation and Infrared Radiation on Human Systems Industrial Toxicology-Local and Systemic and Chronic Effects Temporary and Cumulative Effects- Carcinogens Entry into Human System Ergonomics, Personnel Protective Equipment, Personnel Monitoring.

Laboratory Sessions/ Experimental learning:

- A study on analysis of occupational health hazards in a working place
- A study on health monitoring programs out in industries

Applications:

- Preparation of a detailed report on identification of occupational health issues of workers in a working place (manufacturing/service-based industries).
- Preparation of a detailed report on identification of occupational health issues of workers in a corporate sector

- Occupational health, safety concern, integrity of the system, risk assessment, https://nptel.ac.in/courses/110105094/
- Risk assessment: process, identification, individual and societal,

https://www.youtube.com/watch?v=DxZ2rX0AtcM#action=share

• A manual for primary health care workers, occupational related diseases, disease detection, occupational ergonomics, accident prevention, psychological factors, effects, https://www.who.int/occupational_health/regions/en/oehemhealthcareworkers.pdf

Module-3	L3	12 Hrs.
M. JJ. 2	т э	10 II
Iviodule-3	L3	12 Hrs.

Prerequisites: Basic knowledge about ergonomical issues

Personal Hygiene and First Aid: Hygiene Concepts-Correct and Clean Dresses-Clean Body -Washing - Good Habits-Oral and Stomach Hygiene-Cleaning - Compressed Air and Degreasing Agents-Long Hair and Nails and Torn and loosely Hanging Clothes-Smoking - Lavatories Maintenance- Living in Unhygienic Areas. First aid concept- -First Aid Boxes-Legal Requirements, Industrial Hygiene, Medical Surveillance, Medical Surveillance Program Development, Recommended Medical Programme, Emergency Treatment, Non-Emergency Treatment, Exposures to Hazardous Materials.

Laboratory Sessions/ Experimental learning:

- Demonstration and training on the usage of personal protective equipments, breathing apparatus, Emergency evacuation drill etc.
- First Aid training and demonstration

Applications:

- Documentation of the report on first aid training and demonstration
- Awareness program on the utilization of the facilities provided to maintain the health of workers in working places

- Importance of first aid, injuries, fractures, poisoning, prevention of occupational diseases and accidents, health education, occupational health for women and children https://www.who.int/occupational_health/regions/en/oehemhealthcareworkers.pdf
- Safety assurance and assessment, Health, Safety and Environment (HSE), hazardous waste release procedure, hazard identification plan, organising safety, https://nptel.ac.in/content/storage2/nptel_data3/html/mhrd/ict/text/114106039/lec9.pdf
- Human body health hygiene, safety and first aid, biology reaction, https://www.youtube.com/watch?v=MeQuR6N1YQ4
- Employee welfare, welfare measures inside the working place, workers health services https://nptel.ac.in/content/storage2/nptel_data3/html/mhrd/ict/text/122105020/lec10.pdf

				L3	12	2 Hrs.				
	https://www.youtube.com/watch?v=Q62UwEPPnrg									
•	• First aid - emergency medical services, injuries, fir									kit,
٠	• First aid training, https://www.youtube.com/watch?v=qahukkDYFbk									

Prerequisites: Importance and need of Fire & Safety

Fire safety: Sources of Ignition- Principles of Fire Extinguishing, Various Classes of Fires, types of Fire Extinguishers, Fire Stoppers, Hydrant Pipes, Hoses, Monitors, Fire Watchers, Maintenance of Fire Trucks, Foam Generators, Escape from Fire, Rescue Operations, Fire Drills, Notice, First Aid for burns

Industrial fire Protection System, Sprinkler-Hydrants -Stand Pipes, Special Fire Suppression Systems (Deluge and Emulsifier), Selection Criteria of the above Installations, Reliability, Maintenance, Evaluation and Standards, Alarm and Detection Systems, Other Suppression Systems (CO2 System - Foam System, Dry Chemical Powder (DCP) System, Halon System), Need For Halon Replacement, Smoke Venting, Portable Extinguishers, Flammable Liquids, Tank Farms, Indices of Inflammability, Fire Fighting Systems

Fire Load, Fire Resistant Material and Fire Testing, Structural Fire Protection, Structural Integrity, Exits and Egress, Fire Certificates, Fire Safety requirements for high-rise Buildings

Laboratory Sessions/ Experimental learning:

- Laying out and Rolling of fire hoses, Priming of water from fire tenders using suction hose, static tank Hydrant fire drills, Site visit.
- Identification rehearsals of Portable extinguishers, Filling of DCP powder in Portable Extinguisher and wearing Protective clothing, Mock drills

Applications:

- A detailed report on classification of fire extinguishers
- Documentation on fire prevention solutions, fire detection systems, emergency lighting, means of escape for both onshore and offshore premises, and detailed individual evacuation plans.

- Fire protection: basic concept, fire resistance, introduction of combustion process, https://nptel.ac.in/courses/105102176/
- Fire protection, services and maintenance, management of building, https://www.youtube.com/watch?v=n6HAyxdup_U#action=share

٠	Fire:	Effect	of e	enclosure,	fire	load,	stand	lard	fire,	fire	resistance,
	https:/	/www.you	tube.com	/watch?v=k	rnmHI	KZ87Wg	#action	=share	e		
•	Fire	Fire safety: urban		planning.	planning, in		ternal planning,		occupancy,		zoning,
	https://www.youtube.com/watch?v=eAKTwc3_ixE#action=share										
•	Fire	re safety:		escape	ape and		refuge,		planning,		exit,
	https://www.youtube.com/watch?v=O6CYQt9vi_Y#action=share										
•	Fire	safety:	Internal	planning	, de	tection	and	supp	ression,	flam	e spread,
	http://www.voutube.com/watch?v=e3Ori5XDi2M#action=share										

Module-5	L3	12 Hrs.

Prerequisites: Basic Knowledge of Industrial Safety

Safety Policies, OSHAS and Radiation control: Importance of Safety, health and environment. Health safety and environmental policy, fundamentals of safety, classification of accidents, Managements responsibility, objectives of safety management, National safety council, Employees state insurance act 1948, approaches to prevent accidents, principles of safety management, safety organization, safety auditing, maintenance of safety, measurements of safety performance, industrial noise and noise control, Industrial Psychology, Industrial accidents and prevention. Introduction to OSHAS 18001 AND OSHA.

Radiation Shielding - Radiation Dose - Dose Measurements - Units of Exposure- Exposure Limits-Barriers for Control of Radioactivity Release, Control of Radiation Exposure to Plant Personnel, Health Physics Surveillance - Waste Management and Disposal Practices – Environmental, Releases.

Laboratory Sessions/ Experimental learning:

- A performance study on responsibility of management for safety in industries, safe guarding the workers
- A study on OSHAS by considering a case-study

Applications:

- Documentation on an effective safety management in a manufacturing industry from workers health point of view.
- Detailed report on OSHAS certification

- OSHAS laboratory safety guidance: Types of hazards, safety hazards, laboratory standards, https://www.osha.gov/Publications/laboratory/OSHA3404laboratory-safety-guidance.pdf
- OSHAS 18001: Integrity:- machines, processes, human system, example of an heat metal

transfer, safety and health philosophy of an organization, https://nptel.ac.in/courses/110105094/

- OSHAS 18001: Part I lecture, https://www.youtube.com/watch?v=RrxFmErOTk#action=share
- OSHAS 18001: Part II lecture, safety and health philosophy, of an organization, https://www.youtube.com/watch?v=n7oUOUCIblg#action=share
- OSHAS 18001: Part III lecture, case-study of a steel plant, behavioral safety and process safety, https://www.youtube.com/watch?v=8GmIoIIsJ7w#action=share

Course outcomes: On completion of the course, students would be able to									
CO1	Gains the knowledge about the various types of hazards and their control measures								
CO2	Gains the knowledge about the occupational health issues								
CO3	Able to analyse and solve occupational health issues								
CO4	Able to know the basics of fire and its precautions, active and passive fire protection system								
007	in building or other industries/ premises.								
CO5	To render the concept of safety analysis and confined space								

Refere	nce Books:
1	Risk assessment- A Practical Guide, 1993, Institution of Occupational Safety and Health,
1.	United Kingdom
2	Hand Book Of Fire Technology By: R.S. Gupta, Orient Longman Publishers, Second
2.	Edition, 2005
3	Hand Book Of Fire And Explosion Protection Engineering By: Dennis P Nolan, Crest
з.	Publishing House, First Edition, 2007
4	Fire Protection And PreventionBy: Brendra Mohan San, Publishers: UBS Publishers &
4.	Distributors Pvt Ltd., Edition: First Edition, Year of Publication: 2008
5	Industrial safety management By: L.M. Deshmukh, Publishers: Tata Megraw Hill ,New
5.	Delhi, Year: 2006, First Edition
6	Industrial safety health and environment Management system By: R.K. Jain & Sunil S. Rao,
0.	Publishers: Khanna Publishers, Year: 2008, Edition: Second
7.	A Handbook on health, Safety and Environment, SC Bhatia
8.	S Rao, H L Saluja- Electrical Safety, Fire Safety Engineering and Safety Management

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1		2				2	2				3	1
CO2		2				2	2				3	1
CO3	2	3	2	2	2	3	1		2	3		1
CO4		2			3	2	2		2	2	3	1
CO5	2	3	2	2		2		3	2	1	1	1

Course	Title	STRUCTURAL SOFTWARE LAB-2	Semester	II					
Course	Code	MVJ19CSEL27	CIE	50					
Total N	lo. of Contact Hours	01 Hour Tutorial (Instruction) 03 Hours Laboratory	SEE	50					
No. of	Contact Hours/Week	4	Total	100					
Credits	s	2	Exam Duration	3Hrs					
Course	e objective is to: This	course will enable the students to	I						
•	Learn the application	of ETABS in Dynamic Analysis.							
•	Learn the application	of ANSYS in Structural analysis problems	8						
•	Learn the application	of FEM							
SL.NC)	Experiments	L4, L5, L6						
1	Conducting Seismic analysis of multi-storied buildings using ETABS.								
2	Demonstration to .	ANSYS and its application in various analy	sis problems.						
Video l	ink / Additional onlin	e information:							
•	https://www.youtube.	.com/watch?v=k2rAFEUNrTc							
•	https://www.youtube.	com/watch?v=LOtuwW9-G68							
Course	e outcomes: On comp	letion of the course, students would be able	to						
	CO1 Understand the general considerations of analysis.								
CO1		Achieve Knowledge application of ETABS.							
CO1 CO2	Achieve Knowledge	e application of ETABS.							
CO1 CO2 CO3	Achieve Knowledge Understand the prin	e application of ETABS. ciples FEM							

Reference Books:												
1.	Mukhopadhaya M, "structural dynamics Vibrations" Oxford IBH, 2 nd Edition 2014.											
2.	Mario Paz "Structural Dynamics" CBS publishers,5th Edition 2004											
3.	Timoshenko S, Van-Nostrand "Vibration Problems in Engineering" C, 5 th Edition 2006											
CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	2	2	3	-	-	1	2	1	1	3	1
CO2	3	3	1	-	2	-	3	2	3	3	2	3
CO3	1	2	1	3	-	3	2	3	1	1	3	2
CO4	3	2	-	1	1	1	3	1	-	-	1	1
CO5	2	1	2	3	2	2	3	1	2	_	-	1