Course Title	PAVEMENT DESIGN AND ANALYSIS	Semester	II
Course Code	MVJ19CTE21	CIE	50
Total No. of Contact Hours	60 L:T:P::40:10:10	SEE	50
No. of Contact Hours/week	4	Total	100
Credits	4	Exam. Duration	3 Hrs

- Identify and categorize the factors affecting design and performance of pavements.
- Explain the basic methods and concepts used to analyse flexible and rigid pavements.
- Explain different design methods for flexible and rigid pavement design.
- Explain Structural and functional requirements of flexible and rigid pavements.

Module-1	L3,L4 & L5	12 Hrs.
Introduction: Factors Affecting Pavement Design, Variables Considered i	n Pavement Desig	n, Types c
Pavements, Functions of Individual Layers, Classification of Axle Types, T	ire Pressure, Conta	ct Pressure
EAL and ESWL Concept, Lane Distributions & Vehicle Damage Factors,	Effect of Transien	t & Movin
Loads.		
Video link / Additional online information:		
 https://youtu.be/exctAga2KXY 		
• https://youtu.be/E3LVFRCbero		
• https://youtu.be/0yEBWxhms1I		
Module-2	L3,L4 & L5	12 Hrs.
Stresses And Deflections In Flexible Pavements: Stresses and deflecti	ons in homogene	ous masses
Burmister's two-layer theory, three layer and multilayer theories, Problems of	on above.	
Video link / Additional online information:		
• https://youtu.be/a-2XUcbdJiw		
• https://www.civil.iitb.ac.in/~kvkrao/uploads/5/9/3/7/59372049/ce742	llec4.pdf	
• https://www.civil.iitb.ac.in/~kvkrao/uploads/5/9/3/7/59372049/ce742	llec3.pdf	
Module-3	L1, L2 & L3	12 Hrs.
Flexible Pavement: Design Methods Principle, design steps, advantages	and applications	of differen

Asphalt	Institute methods		
Video li	nk / Additional online information :		
•]	nttps://www.youtube.com/watch?v=uJntLOgEHD4		
•]	nttps://youtu.be/exctAga2KXY		
•]	nttps://youtu.be/uJntLOgEHD4		
•]	nttps://youtu.be/JFBhIF09-8s		
	Module-4	L3,L4 & L5	12 Hrs.
Stresse	5 In Rigid Pavements: Factors affecting design and performance	e of pavements.	Types o
stresses	and causes, factors influencing the stresses, general considerations	s in rigid pavem	ent analysis
EWL, w	wheel load stresses, warping stresses, frictional stresses, combined stre	esses. Problems of	n above.
Video li	nk / Additional online information:		
•]	nttps://youtu.be/exctAga2KXY		
•]	https://www.civil.iitb.ac.in/~kvkrao/uploads/5/9/3/7/59372049/ce742	lec_8_11.pdf	
•]	http://www.cdeep.iitb.ac.in/webpage_data/nptel/Civil%20Engineering	g/	
,	Fransportation%20Engg%20I/29-Ltexhtml/nptel_ceTEI_L29.pdf		
	Module-5	L3,L4 & L5	12 Hrs.
Rigid P	avement Design: Types of joints in cement concrete pavements and	their functions, je	oint spacing
design o	of CC pavement for roads and runways, design of joint details for lo	ongitudinal joints	, contraction
joints a	nd expansion joints. IRC method of design by stress ratio meth	nod. Design of a	continuously
reinforc	ed concrete pavements. Problems on above		
Video li	nk / Additional online information:		
•]	nttps://youtu.be/GxXONAINMBE		
•]	nttps://youtu.be/pe7ycTC1W_M		
•]	nttps://youtu.be/CX-qs752-x4		
Course	outcomes: On completion of the course, students would be able to		
CO1	Understand the various factors affecting design and performance o	f pavements.	
CO2	Compute the stresses and deflections in flexible pavement layer loads.	rs under the action	on of whee
	Design the thickness of flexible pavements by different method	ods under differe	ent exposure
CO3			

Γ	CO4	Factors affecting design and performance of pavements. Types of stresses and causes.
	CO5	Design the thickness of concrete pavements and joints associated with CC pavements in addition
	CO5	to the computation of stresses in CC pavements.

Referen	nce Books:
1.	Yoder, E.J., and Witczak, 'Principles of Pavement Design', 2nd ed. John Wiley and Sons, 1975
2.	Yang H Huang, `Design of Functional Pavements', McGraw Hill BookCo.
3.	Khanna and Justo, 'Test Book of Highway Engineering 'Nemchand brothers, Roorke-2004.
4.	Huang, 'Pavement Analysis', Elsevier Publications
5.	Pavement and Surfacing for Highway & Airports, Micheal Sargious, Applied SciencePublishers Limited.
6	Concrete Pavements, AF Stock, Elsevier, Applied Science Publishers.

				(CO-PO	Mapp	ing					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	3	3	-	2	-	2	-	-	1	2	-	1
CO2	3	3	-	1	-	-	2	-	1	1	-	1
CO3	3	3	-	1	-	1	-	-	1	1	-	1
CO4	3	3	1	2	1	-	1	-	1	1	1	1
CO5	3	3	1	2	1	-	1	-	1	1	-	1

Course Title	TRANSPORTATION ECONOMICS AND EVALUATION	Semester	Π
Course Code	MVJ19CTE22	CIE	50
Total Contact Hours	60 L : T : P :: 40 : 00 : 20	SEE	50
Contact Hours/week	4	Total	100
Credits	4	Exam. Duration	3 Hrs

- Explain the basic terminology of economics and its application in transportation
- Define the concept and components involved in economic evaluation
- Explain the various methods of economic analysis and ranking of alternatives
- Illustrate the method of economic evaluation for transportation projects

Module-1	L3	12 Hrs.

Prerequisites: Knowledge on demand and supply of goods

Principles of Economics: Supply and demand models, Consumer's surplus and social surplus criteria, and framework for social accounting: accounting rate of interest, social opportunity cost, rate of interest, social time preference rate of interest, accounting prices of goods and services, measuring input costs, applications on social accounting.

Experimental learning:

• In-situ investigation of demand and supply of various goods

Applications:

• Designing the suitable transport facility for the required demand of different goods

Video link:

• https://nptel.ac.in/courses/110/105/110105141/

Module-2	L3 & L4	12 Hrs.

Prerequisites: Knowledge on cost and benefits for the passenger

Transport Costs and Benefits:

Fixed and variable cost, cost of improvement, maintenance cost, cost estimating methods, accounting for inflation, external costs, Direct benefits: reduced vehicle operation costs, value of travel time savings, value of increased comfort and convenience, cost of accident reduction, reduction in maintenance cost.

Experimental learning:

- In-situ evaluation of construction cost and maintains cost for different pavement layers.
- In-situ evaluation of benefits offered to the road user.

Applications:

• In evaluation of cost required to construct the pavement with suitable benefits to the road user

Video link:

• https://nptel.ac.in/courses/105/107/105107123/

Module-3	L3	13 Hrs.			
Prerequisites: Knowledge on evaluation of transport cost					
Project Evaluation:					
Framework of evaluation, transport planning evaluation at urban and regional levels, other					
evaluation procedures, environmental evaluation, safety evaluation, projec	t financing.				
Experimental learning:					
• Transportation planning to improving the benefits to the road user					
• Evaluation of environmental effects caused by different class of vel	nicles				
Applications:					
• In providing the suitable environment for the health and safety of p	eople				
Video link:					
• https://nptel.ac.in/courses/105/107/105107067/					
Module-4	L3	12 Hrs.			
Prerequisites: Knowledge on economic analysis with different models					
Economic Analysis:					
Generation and screening of project alternatives, different methods of econ	omic analysis: ar	nnual cost			
and benefit ratio methods, discounted cash flow methods, shadow pricing	techniques, deter	rmination			
of IRR and NPV, examples of economic analysis, application economic th	neory in traffic as	signment			
problem.					

Experimental learning:

• In-situ evaluation of Traffic problems associated with economics

Applications:

• Application economic theory in traffic assignment problem

Video link:		
• https://nptel.ac.in/courses/105/101/105101008/		
Module-5	L6	11 Hrs.
Prerequisites: Knowledge on environmental affects		
Environmental impact assessment :		
Basic Concepts, Objectives, Transportation Related Environmental Impa	cts – Vehicula	r Impacts –
Safety and Capacity Impacts - Roadway Impacts - Construction Impact	ts, Environme	ental Impact
Assessment - Environmental Impact Statement, Environment Audit,	Typical case	studies on
environmental assessment.		
Experimental learning:		
• Evaluation of environmental effects caused by different class of vel	nicles	
Environmental auditing		
Applications:		
• In providing the suitable environment for the health and safety of p	eople	
Video link:		
• https://nptel.ac.in/courses/105/107/105107067/		

Cour	Course outcomes: On completion of the course, students would be able to				
CO1	Able to understand the importance of economics in transportation engineering.				
CO2	Able to understand the relation of cost and benefits to the passengers for travel.				
CO3	Able to draw the framework for planning the safety programs for travellers.				
CO4	Able to recognise economy related problems and able to provide the solutions.				
CO5	Understanding the importance of environmental impacts related to transportation engineering				

Reference Books:

1.	Ian G. Heggie, Transportation Engineering Economics, McGraw Hill
2.	Winfrey R, Highway Economic Analysis, International Textbook Company
3.	Road User Cost Study, Central Road Research Institute, New Delhi.
4.	Dickey J.W, Project Appraisal for Developing Countries, John Wiley
5.	L R Kadiyali, Traffic Engineering and Transport Planning, Khanna Publishers.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	-	-	1	3	1	-	-	-	1	2
CO2	3	-	-	-	2	-	-	-	1	1	1	1
CO3	3	-	2	-	1	3	-	-	-	1	1	1
CO4	1	3	2	1	1	1	-	-	-	-	-	-
CO5	1	-	-	-	2	1	3	-	-	1	1	2

Course Title	RAILWAYS AND AIRWAYS	Semester	Π
Course Code	MVJ19CTE23	CIE	50
Total No. of Contact Hours	60 L:T:P::40:10:10	SEE	50
No. of Contact Hours/week	4	Total	100
Credits	4	Exam. Duration	3 Hrs

- Provides the basic knowledge about the railways, components
- Provide the basic knowledge about the geometric design of points and crossings.
- Provides the basic knowledge about airports, runways, taxiways and its design.
- Provide basic knowledge about heliports, characteristics, design of heliports.

		Mo	odule-1			L	.3	12 Hrs.
D	1 • .	•		1.	T 1	. •	a :	C 1 1

Permanent way and its requirements, Gauges and types, Typical cross sections, Coning of wheels and Tilting of rails, Components- Types, sections length- Defects- wear- creep- welding- joints. Track fitting and fastener, Calculation of quantity of materials, Tractive resistances and hauling capacity- Numerical examples

Laboratory Sessions/ Experimental learning:

• Collecting the information on Types of Components used in the nearest Railway station or railway track.

Applications:

• Understand The Permanent Way and complexities involved in the permanent way

Video link / Additional online information:

• https://nptel.ac.in/courses/105107123/

Madula 2	Ι 2	12 Urg
Mouule-2	LJ	12 1115.

Geometric Design: Necessity, Safe speed on curves. Cant, cant deficiency, negative cant, safe speed, Transition curve, gradient, grade compensation Points and Crossings: Components of a turnout, design of turnouts, types of switches, crossings, track junctions. Stations and yards. Signaling: Objects and types of signals. Fouling mark, buffer stop, level crossing, track defects- Numerical examples. Laboratory Sessions/ Experimental learning:

• Collecting the information on types of switches and turnouts used in nearest railway track/station.

Applications:

• Understanding the relation between safety and Geometric aspects of railway track.

Video link / Additional online information:

• https://nptel.ac.in/courses/105107123/

Module-3	L3	12 Hrs.

Railway sections and yards - Purpose, site selection, facilities, requirements, classification, platforms, building areas, types of yards, foot over bridges, subways, cranes, weigh bridge, loading gauge, end loading ramps, locomotive sheds, ash-pits, water columns, turntable, triangles, buffer stop, scotch block. Train accidents, derailments and its causes

Laboratory Sessions/ Experimental learning:

• Analyzing the types of yards and platforms at a nearby railway station.

Applications:

• Understanding the challenges faced for Site selection of a railway station and providing other required facilities.

Video link / Additional online information:

• https://nptel.ac.in/courses/105107123/

		Module-4		L3		12 Hrs.
T 1 1	 	• • • •	1 0	 1 .	c	•

Introduction: Layout of an airport with component parts and functions, Site selection for airport, Aircraft characteristics affecting the design and planning of airport, Airport classification, Runway orientation using wind rose- Numerical examples. Runway: Basic runway length-Corrections and examples.

Laboratory Sessions/ Experimental learning:

• Layout planning of Airport (sketch) considering Bangalore city with justifications.

Applications:

• Understanding the challenges faced for Site selection of an airport taking into consideration air craft characteristics.

Video link / Additional online information:

• https://nptel.ac.in/courses/105107123/

	Module-5	L3	12 Hrs.
Taxiwa	ay: Factors affecting the layout - geometrics of taxiway-Desig	gn of exit taxiway	- Numerical
examp	es. Visual aids- Airport marking – lighting-Instrumental Land	ing System. Helipor	rts and their
Design	: Introduction, Helicopter characteristics, planning of heliports,	Visual aids of helij	ports
Applic	ations:		
٠	To design the geometrics of Taxiway by taking different factor	s into consideratior	1.
Video	ink / Additional online information:		
٠	https://nptel.ac.in/courses/105107123/		
Course	e outcomes: On completion of the course, students would be ab	le to	
CO1	To Describe about railways, The Permanent way and its differ	rent components	
CO2	To analyse the importance of Geometric Design in safety of R	lailways	
CO3	Analyse the points and crossings.		
CO4	Describe about airports design and runways.		
CO5	Analyze the design taxiways and heliports		

Reference Books:								
1.	Saxena and Arora, "Railway Engineering" Dhanpat Rai and Sons, New Delhi							
2.	M M Agarwal," Indian Railway Track", Jaico Publications, Bombay							
3.	Khanna Arora and Jain, "Airport Planning and Design", Nem Chand Bros, Roorkee							

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	2	_	1	1	-	1	1	1	1	1
CO2	2	2	2	1	-	2	1	1	1	2	1	1
CO3	3	3	2	2	2	3	2	-	1	1	1	1
CO4	2	2	2	1	_	2	1	1	2	1	1	1
CO5	2	2	1	1	-	2	1	2	1	1	1	1

Course Title	THEORIES OF TRAFFIC FLOW	Semester	II
Course Code	MVJ19CTE241	CIE	50
Total Contact Hours	60 L : T : P :: 40 : 10 : 10	SEE	50
Contact Hours/week	3	Total	100
Credits	3	Exam. Duration	3 Hrs

- Learn the relationships and the types of flow theories.
- Learn the concept of Macroscopic and Microscopic traffic flow models.
- Learn the application of probabilistic aspects of vehicle arrivals, queuing theory.
- Learn the principles of application of GIS in traffic flow theory.

Module-1	138,15	12 Hrs
Woude-1	L3 & L5	12 111 5.

Prerequisites: Knowledge on traffic flow patterns

Traffic Stream Parameters: Fundamental diagram of volume-speed-density surface. Discrete and continuous probability distributions. Merging manoeuvres - critical gaps and their distribution.

Experimental learning:

- Average daily traffic data
- Space mean and time mean studies

Applications:

- Traffic volume studies helps in estimation of highway usage
- Traffic speed helps in allotting the speed limits in an highway

Video link:

• https://nptel.ac.in/courses/105/101/105101008/

Module-2	L3 & L4	14 Hrs.

Prerequisites: Knowledge on macroscopic models and bottleneck

Macroscopic Models: Macroscopic Models - Heat flow and fluid flow analogies - Shock waves and bottleneck control approach.

Experimental learning:

- In-situ identification of bottleneck in the highway
- In-situ identification of shock waves in the highway

Applications:

 Reduction in accident rates in the highways Determination of slow moving vehicles Video link: https://nptel.ac.in/courses/105/101/105101008/ Module-3 L3 & L4 10 Hrs. Prerequisites: Knowledge on microscopic models and distribution of traffic Microscopic Models: Microscopic Models - Application of queuing theory - regular, random and Erlang arrival and service time distributions - Queue discipline - Waiting time in single channel queues and extension to multiple channels. Experimental learning: In-situ evaluation of traffic que in the Toll and arrival pattern Applications: Identification of time spent in que Video link: https://nptel.ac.in/courses/105/101/105101008/ Module-4 L3 & L4 12 Hrs. Prerequisites: Knowledge on traffic models Traffic models: Linear And Non-Linear Car Following Models - Determination of car following variables - Acceleration noise. Experimental learning: Floating car method Applications: Identification of traffic speed Video link: https://nptel.ac.in/courses/105/101/105101008/ Module-5 L3 & L4 12 Hrs. Prerequisites: Knowledge on intelligent transportation engineering Moder for an intelligent transportation engineering Gographical Information System - Global Positioning System - Intelligent transportation System. 			
Video link: • https://nptel.ac.in/courses/105/101/105101008/ Module-3 L3 & L4 10 Hrs. Prerequisites: Knowledge on microscopic models and distribution of traffic Microscopic Models: Microscopic Models - Application of queuing theory - regular, random and Erlang arrival and service time distributions - Queue discipline - Waiting time in single channels queues and extension to multiple channels. Experimental learning: • In-situ evaluation of traffic que in the Toll and arrival pattern Applications: • Identification of time spent in que Video link: • https://nptel.ac.in/courses/105/101/105101008/ Module-4 L3 & L4 12 Hrs. Prerequisites: Knowledge on traffic models Traffic models - Determination of car following variables - Acceleration noise. Experimental learning: • Floating car method Applications: • Identification of traffic speed Video link: • Identification of traffic speed Video link: • Identification of traffic speed Video link: • Identification of traffic speed Video link: • I.3 & L4 12 Hrs. Prerequisites: Knowledge on intelligent transportation engineering Module-5 L3 & L4 12 Hrs. Prerequisites: Knowledge on intelligent transportation engineering Module -5 L3 & L4 12 Hrs. <th>Reduction in accident rates in the highways</th> <th></th> <th></th>	Reduction in accident rates in the highways		
 https://nptel.ac.in/courses/105/101/105101008/ Module-3 L3 & L4 10 Hrs. Prerequisites: Knowledge on microscopic models and distribution of traffic Microscopic Models: Microscopic Models - Application of queuing theory - regular, random and Erlang arrival and service time distributions - Queue discipline - Waiting time in single channels queues and extension to multiple channels. Experimental learning: In-situ evaluation of traffic que in the Toll and arrival pattern Applications: Identification of time spent in que Video link: https://nptel.ac.in/courses/105/101/105101008/ Module-4 L3 & L4 12 Hrs. Prerequisites: Knowledge on traffic models Traffic models: Linear And Non-Linear Car Following Models - Determination of car following variables - Acceleration noise. Experimental learning: Floating car method Applications: Identification of traffic speed Video link: Identification of traffic speed Video link: Identification of traffic speed Video link: https://nptel.ac.in/courses/105/101/105101008/ 	C C		
Module-3 L3 & L4 10 Hrs. Prerequisites: Knowledge on microscopic models and distribution of traffic Microscopic Models: Microscopic Models - Application of queuing theory - regular, random and Erlang arrival and service time distributions - Queue discipline - Waiting time in single channel queues and extension to multiple channels. Experimental learning: In-situ evaluation of traffic que in the Toll and arrival pattern Applications: Identification of time spent in que Video link: Identification of time spent in que Module-4 L3 & L4 12 Hrs. Prerequisites: Knowledge on traffic models Traffic models: Linear And Non-Linear Car Following Models - Determination of car following variables -Acceleration noise. Experimental learning: Floating car method L3 & L4 12 Hrs. Prerequisites: Knowledge on traffic speed Video link: Identification of traffic speed Video link: Identification of traffic speed Video link: Identification of traffic speed Video link: Identification of traffic speed Video link: https://nptel.ac.in/courses/105/101/105101008/ Identification System - Global Positioning System - Intelligent Transportation engineering: Geographical Information System - Global			
Prerequisites: Knowledge on microscopic models and distribution of traffic Microscopic Models: Microscopic Models - Application of queuing theory - regular, random and Erlang arrival and service time distributions - Queue discipline - Waiting time in single channel queues and extension to multiple channels. Experimental learning: • In-situ evaluation of traffic que in the Toll and arrival pattern Applications: • Identification of time spent in que Video link: • https://nptel.ac.in/courses/105/101/105101008/ Module-4 L3 & L4 12 Hrs. Prerequisites: Knowledge on traffic models Traffic models: Linear And Non-Linear Car Following Models - Determination of car following variables -Acceleration noise. Experimental learning: • Floating car method Applications: • Identification of traffic speed Video link: • https://nptel.ac.in/courses/105/101/105101008/ Frerequisites: Knowledge on intelligent transportation engineering Modrue-5 L3 & L4 12 Hrs. Prerequisites: Knowledge on intelligent transportation engineering Moder 10 Automatic Toll			I
Microscopic Models: Microscopic Models - Application of queuing theory - regular, random and Erlang arrival and service time distributions - Queue discipline - Waiting time in single channels queues and extension to multiple channels. Experimental learning: • In-situ evaluation of traffic que in the Toll and arrival pattern Applications: • Identification of time spent in que Video link: • Identification of time spent in que Video link: • https://nptel.ac.in/courses/105/101/105101008/ Module-4 L3 & L4 12 Hrs. Prerequisites: Knowledge on traffic models Traffic models - Determination of car following variables - Acceleration noise. Experimental learning: • Floating car method Applications: • Identification of traffic speed Video link: • https://nptel.ac.in/courses/105/101/105101008/ Experimental learning: • Floating car method Applications: • Identification of traffic speed Video link: • https://nptel.ac.in/courses/105/101/105101008/ Prerequisites: Knowledge on intelligent transportation engineering Moder 10 kas L4 12 Hrs. Prerequisites: Knowledge on intelligent Transportation Systems - Area Traffic Control - Automatic Toll			10 Hrs.
Erlang arrival and service time distributions - Queue discipline - Waiting time in single channel queues and extension to multiple channels. Experimental learning: • In-situ evaluation of traffic que in the Toll and arrival pattern Applications: • Identification of time spent in que Video link: • https://nptel.ac.in/courses/105/101/105101008/ Module-4 L3 & L4 12 Hrs. Prerequisites: Knowledge on traffic models Traffic models: Linear And Non-Linear Car Following Models - Determination of car following variables - Acceleration noise. Experimental learning: • Floating car method Applications: • Identification of traffic speed Video link: • https://nptel.ac.in/courses/105/101/105101008/ L3 & L4 12 Hrs. Prerequisites: Knowledge on intelligent transportation engineering Module-5 L3 & L4 12 Hrs. Prerequisites: Knowledge on intelligent transportation engineering Modern tool in transportation engineering: Geographical Information System – Global Positioning System – Intelligent Transportation Systems - Area Traffic Control – Automatic Toll			
queues and extension to multiple channels. Experimental learning: • In-situ evaluation of traffic que in the Toll and arrival pattern Applications: • Identification of time spent in que Video link: • https://nptel.ac.in/courses/105/101/105101008/ Module-4 L3 & L4 12 Hrs. Prerequisites: Knowledge on traffic models Traffic models: Linear And Non-Linear Car Following Models - Determination of car following variables - Acceleration noise. Experimental learning: • Floating car method Applications: • Identification of traffic speed Video link: • https://nptel.ac.in/courses/105/101/105101008/ Identification of traffic speed Video link: • https://nptel.ac.in/courses/105/101/105101008/ I 3 & L4 I 2 & K 1 & 12 Hrs. Prerequisites: Knowledge on intelligent transportation engineering Modern tool in transportation engineering: Geographical Information System – Global Positioning System – Intelligent Transportation Systems - Area Traffic Control – Automatic Toll			
Experimental learning: In-situ evaluation of traffic que in the Toll and arrival pattern Applications: Identification of time spent in que Video link: https://nptel.ac.in/courses/105/101/105101008/ Module-4 L3 & L4 12 Hrs. Prerequisites: Knowledge on traffic models Traffic models: List and Non-Linear Car Following Models - Determination of car following variables - Acceleration noise. Experimental learning: Floating car method Applications: Identification of traffic speed Video link: 12 Hrs. Prerequisites: Knowledge on intelligent transportation engineering Module-5 L3 & L4 12 Hrs.		ng time in sing	gle channel
 In-situ evaluation of traffic que in the Toll and arrival pattern Applications: Identification of time spent in que Identification of time spent in que Video link: https://nptel.ac.in/courses/105/101/105101008/ Module-4 L3 & L4 12 Hrs. Prerequisites: Knowledge on traffic models Traffic models: Linear And Non-Linear Car Following Models - Determination of car following variables - Acceleration noise. Experimental learning: Floating car method Applications: Identification of traffic speed Video link: Identification of traffic speed Module-5 Ita & L4 12 Hrs. Module-5 L3 & L4 Ita & L4 Ita K L4 <	queues and extension to multiple channels.		
 In-situ evaluation of traffic que in the Toll and arrival pattern Applications: Identification of time spent in que Identification of time spent in que Video link: https://nptel.ac.in/courses/105/101/105101008/ Module-4 L3 & L4 12 Hrs. Prerequisites: Knowledge on traffic models Traffic models: Linear And Non-Linear Car Following Models - Determination of car following variables - Acceleration noise. Experimental learning: Floating car method Applications: Identification of traffic speed Video link: Identification of traffic speed Module-5 Ita & L4 12 Hrs. Module-5 L3 & L4 Ita & L4 Ita K L4 <	Experimental learning		
Applications: Identification of time spent in que Video link: https://nptel.ac.in/courses/105/101/105101008/ Module-4 L3 & L4 12 Hrs. Prerequisites: Knowledge on traffic models Traffic models - Determination of car following variables - Acceleration noise. Image: Car following Models - Determination of car following variables - Acceleration noise. Experimental learning: Floating car method Image: Car following Models - Determination of traffic speed Video link: Identification of traffic speed Image: Car following Models - Determination of traffic speed Video link: Identification of traffic speed Image: Car following Models - Determination of traffic speed Video link: Identification of traffic speed Image: Car following Models - Determination of traffic speed Video link: Image: Car following Models - Determination of traffic speed Image: Car following Models - Determination of traffic speed Video link: Image: Car following Models - Determination of traffic speed Image: Car following Models - Determination of traffic speed Module-5 L3 & L4 12 Hrs. Prerequisites: Knowledge on intelligent transportation engineering Image: Car following Models - Determination System - Global Positioning System - Intelligent Transportation Systems - Area Traffic Control - Automatic Tollowing Models - Determinatic Tollowing Mode			
 Identification of time spent in que Video link: https://nptel.ac.in/courses/105/101/105101008/ Module-4 L3 & L4 12 Hrs. Prerequisites: Knowledge on traffic models Traffic models: Linear And Non-Linear Car Following Models - Determination of car following variables -Acceleration noise. Experimental learning: Floating car method Applications: Identification of traffic speed Video link: https://nptel.ac.in/courses/105/101/105101008/	· · ·		
Video link: https://nptel.ac.in/courses/105/101/105101008/ Module-4 L3 & L4 12 Hrs. Prerequisites: Knowledge on traffic models Traffic models - Determination of car following variables - Acceleration noise. Image: Control of car following Models - Determination of car following variables - Acceleration noise. Experimental learning: • Floating car method Applications: • Identification of traffic speed Video link: • https://nptel.ac.in/courses/105/101/105101008/ Module-5 L3 & L4 12 Hrs. Prerequisites: Knowledge on intelligent transportation engineering Modern tool in transportation engineering: Geographical Information System – Global Positioning System – Intelligent Transportation Systems - Area Traffic Control – Automatic Toll			
 https://nptel.ac.in/courses/105/101/105101008/ Module-4 L3 & L4 12 Hrs. Prerequisites: Knowledge on traffic models Traffic models: Linear And Non-Linear Car Following Models - Determination of car following variables - Acceleration noise. Experimental learning: Floating car method Applications: Identification of traffic speed Video link: https://nptel.ac.in/courses/105/101/105101008/			
Module-4 L3 & L4 12 Hrs. Prerequisites: Knowledge on traffic models Traffic models: Linear And Non-Linear Car Following Models - Determination of car following variables - Acceleration noise. Experimental earning: Floating car method Applications: • Identification of traffic speed Video link: • https://nptel.ac.in/courses/105/101/105101008/ Module-5 L3 & L4 12 Hrs. Prerequisites: Knowledge on intelligent transportation engineering Modern tool in transportation engineering: Geographical Information System – Global Positioning System – Intelligent Transportation Systems - Area Traffic Control – Automatic Toll			
Prerequisites: Knowledge on traffic models Traffic models: Linear And Non-Linear Car Following Models - Determination of car following variables -Acceleration noise. Experimental learning: • Floating car method Applications: • Identification of traffic speed Video link: • https://nptel.ac.in/courses/105/101/105101008/ Prerequisites: Knowledge on intelligent transportation engineering Modern tool in transportation engineering: Geographical Information System – Global Positioning System – Intelligent Transportation Systems - Area Traffic Control – Automatic Toll			10 11
Traffic models: Linear And Non-Linear Car Following Models - Determination of car following variables - Acceleration noise. Experimental learning: • Floating car method Applications: • Identification of traffic speed Video link: • https://nptel.ac.in/courses/105/101/105101008/ Module-5 L3 & L4 12 Hrs. Prerequisites: Knowledge on intelligent transportation engineering Modern tool in transportation engineering: Geographical Information System – Global Positioning System – Intelligent Transportation Systems - Area Traffic Control – Automatic Toll		L3 & L4	12 Hrs.
variables - Acceleration noise. Experimental learning: • Floating car method Applications: • Identification of traffic speed Video link: • https://nptel.ac.in/courses/105/101/105101008/ Module-5 L3 & L4 12 Hrs. Prerequisites: Knowledge on intelligent transportation engineering Modern tool in transportation engineering: Geographical Information System – Global Positioning System – Intelligent Transportation Systems - Area Traffic Control – Automatic Toll			
Experimental learning: • Floating car method Applications: • Identification of traffic speed Video link: • https://nptel.ac.in/courses/105/101/105101008/ Module-5 L3 & L4 12 Hrs. Prerequisites: Knowledge on intelligent transportation engineering Modern tool in transportation engineering: Geographical Information System – Global Positioning System – Intelligent Transportation Systems - Area Traffic Control – Automatic Toll		mination of car	r tollowing
 Floating car method Applications: Identification of traffic speed Video link: https://nptel.ac.in/courses/105/101/105101008/ Module-5 I 3 & L4 I 2 Hrs. Prerequisites: Knowledge on intelligent transportation engineering Modern tool in transportation engineering: Geographical Information System – Global Positioning System – Intelligent Transportation Systems - Area Traffic Control – Automatic Toll	variables - Acceleration holse.		
 Floating car method Applications: Identification of traffic speed Video link: https://nptel.ac.in/courses/105/101/105101008/ Module-5 I 3 & L4 I 2 Hrs. Prerequisites: Knowledge on intelligent transportation engineering Modern tool in transportation engineering: Geographical Information System – Global Positioning System – Intelligent Transportation Systems - Area Traffic Control – Automatic Toll	Experimental learning:		
Applications: • Identification of traffic speed Video link: • https://nptel.ac.in/courses/105/101/105101008/ Module-5 L3 & L4 12 Hrs. Prerequisites: Knowledge on intelligent transportation engineering Isometry of the system - Global Positioning System - Intelligent Transportation Systems - Area Traffic Control - Automatic Toll			
 Identification of traffic speed Video link: https://nptel.ac.in/courses/105/101/105101008/ Module-5 L3 & L4 12 Hrs. Prerequisites: Knowledge on intelligent transportation engineering Modern tool in transportation engineering: Geographical Information System – Global Positioning System – Intelligent Transportation Systems - Area Traffic Control – Automatic Toll 			
Video link: • https://nptel.ac.in/courses/105/101/105101008/ Module-5 L3 & L4 Prerequisites: Knowledge on intelligent transportation engineering Modern tool in transportation engineering: Geographical Information System – Global Positioning System – Intelligent Transportation Systems - Area Traffic Control – Automatic Toll			
Module-5 L3 & L4 12 Hrs. Prerequisites: Knowledge on intelligent transportation engineering Geographical Information System – Global Modern tool in transportation engineering: Geographical Information System – Global Positioning System – Intelligent Transportation Systems - Area Traffic Control – Automatic Toll	-		
Module-5L3 & L412 Hrs.Prerequisites: Knowledge on intelligent transportation engineeringModern tool in transportation engineering: Geographical Information System – GlobalPositioning System – Intelligent Transportation Systems - Area Traffic Control – Automatic Toll			
Modern tool in transportation engineering: Geographical Information System – Global Positioning System – Intelligent Transportation Systems - Area Traffic Control – Automatic Toll		L3 & L4	12 Hrs.
Positioning System – Intelligent Transportation Systems - Area Traffic Control – Automatic Toll	Prerequisites: Knowledge on intelligent transportation engineering		
	Modern tool in transportation engineering: Geographical Inform	nation System	– Global
Collection – Smart Cards – Collision Detection System.		•	

Experimental learning:

• In-situ Automatic Toll Collection

Applications:

• In highways the travel time can be saved, helps in arriving the destination

Video link:

• https://nptel.ac.in/courses/105/101/105101008/

Course outcomes: On completion of the course, students would be able toCO1Able to apply the flow theories to field situations such as toll booths, diversion measures etc.CO2Able to understand various problems enforced by bottleneck and shock waves on highwayCO3Able to understand various car following theoriesCO4Able to apply the concepts of vehicle arrivals to field situations such as exit ramps, entry
ramps etc by queuing theoryCOAble to appreciate the application of GIS techniques in traffic engineering.

Refer	rence Books:
1.	Drew, D.R., Traffic Flow Theory and Control, McGrawHill.,1978TRB,
2.	Traffic Flow Theory - A Monograph, SR165, 1975.
3.	Burrough P.A. and Rachel A. McDonell, Principles of Geographical Information Systems, Oxford Publication, 2004

				(CO-PO	Mapp	ing					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	-	3	-	1	-	-	-	-	2	1
CO2	2	1	1	-	3	1	-	-	-	-	-	1
CO3	3	1	2	-	1	1	-	-	-	-	1	-
CO4	1	2	-	-	1	3	-	-	-	-	1	1
CO5	1	3	2	1	-	1	-	-	-	-	1	1

Course Title	GEOMETRIC DESIGN OF TRANSPORTATION FACILITIES	Semester	II
Course Code	MVJ19CTE242	CIE	50
Total Contact Hours	60 L : T : P :: 40 : 10 : 10	SEE	50
Contact Hours/week	3	Total	100
Credits	3	Exam. Duration	3 Hrs

- Learn the importance of geometric design elements and the cross sectional elements.
- Learn the importance of sight distances and the components of horizontal and vertical alignment.
- Learn about the various types of intersections and their suitability.
- Learn about the various types of facilities for pedestrians, cycles, buses and parking.

Module-1	L3	14 Hrs.

Prerequisites: Knowledge on classification of highway

Introduction: Functional Classification of Highway systems, Objectives of highway geometric design, elements of geometric design, design controls and criteria. Cross Section Elements: Pavement surface characteristics– skid resistance, cross slope, unevenness, light reflecting characteristics. Width considerations for carriageway, formation, shoulders, kerbs, traffic barriers, medians, frontage roads, right of way. Facilities for pedestrians and bicycles.

Experimental learning:

- In-situ determination of skid resistance of the pavement surface, cross slope and unevenness Applications:
 - In highway for the safety improvement

Video link:

• https://nptel.ac.in/courses/105/101/105101087/

Module-2	L3 & L4	12 Hrs.

Prerequisites: Knowledge on the geometric design

Sight Distances: Types, analysis, factors affecting and design of stopping sight distance, intermediate sight distance and overtaking distance. Horizontal Alignment: Design speed, stability at curves, analysis and design of super elevation, extra widening of pavements, design of transition curves, curvature at intersections

Experimental learning:

- In-situ determination of stopping sight distance, intermediate sight distance, overtaking sight distance of the pavement.
- In-situ determination of cross scope of horizontal curve in the pavement.

Applications:

• In highway for the safe and economical journey of the passenger.

Video link:

• https://nptel.ac.in/courses/105/101/105101087/

Module-3	L3 & L4	12 Hrs.

Prerequisites: Knowledge on the valley curve and summit curve

Vertical alignment:

Classification of grades, change of gradients, and design of summit curves for sight distance consideration, design of valley curves for comfort and sight distance considerations. Combination of vertical and horizontal alignment including design of hairpin bends, design standards for expressways and hill roads. IRC standards and guidelines.

Experimental learning:

- In-situ determination of stopping sight distance, intermediate sight distance, overtaking sight distance in the vertical curves.
- In-situ determination of cross drainage in vertical curve.

Applications:

• In highway for the safe and economical journey of the passenger.

Video link:

• https://nptel.ac.in/courses/105/101/105101087/

Module-4	L3 & L4	12 Hrs.

Prerequisites: Knowledge on at-grade and graded intersection

Types of intersections:Characteristics and design considerations of at-grade intersections; different types of islands, channelization, median openings. Rotary intersections – warrants, design and suitability. Grade separated intersections - types, warrants and suitability. Interchanges and ramps.

Experimental learning: In-situ determination of at grade intersection and grade separated intersection.

Applications:

• In highway for the safe and economical journey of the passenger.

Video link:

• https://nptel.ac.in/courses/105/101/105101087/

Module-5	L3	10 Hrs.
Prerequisites: Knowledge on importance of IRC recommendations		

Miscellaneous Facilities: Pedestrian facilities especially on urban – types, IRC specification. Bicycle tracks -types, guidelines, and IRC design standards. Bus bays - types, guidelines and IRC design standards. Parking facilities - types, guidelines and IRC design standards.

Experimental learning:

• In-situ determination of different classification of parking space studies.

Applications:

• In highway for the safe and economical journey of the passenger.

Video link:

• https://nptel.ac.in/courses/105/101/105101087/

Cours	se outcomes: On completion of the course, students would be able to
CO1	Able to understand importance and design geometric elements.
CO2	Able to understand sight distances and the components of horizontal curves.
CO3	Able to understand components of vertical curves and to design.
CO4	Able to understand the design of intersections in a roadway.
CO5	Able to understand IRC recommendations for highway.

Refer	rence Books:
1	AASHO,"A Policy on Geometric Design of Highways an d Streets'
1.	American Association of State Highway and Transportation Officials, Washington D.C.
2.	Khanna, S.K., Justo, C.E.G., and Veeraragavan, A., 'Highway Engineering', Nem Chand and
Ζ.	Bros, Roorkee, 2014.
3.	DSIR`, Roads in Urban Areas', HMSO, London.
4.	Jack E Leish and Associates, 'Planning and Design Guide: At-Grade Intersections'.
	Illinois.Relevant IRC publications

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	3	-	1	2	1	-	-	-	-	1
CO2	3	2	2	1	-	-	-	-	-	-	1	1
CO3	2	3	3	1	1	-	1	-	-	-	-	1
CO4	2	3	1	-	-	1	-	-	-	-	1	1
CO5	1	2	-	-	-	3	1	-	-	-	1	1

Course Title	TRANSPORTATION SYSTEMS	Semester	Π
Course Code	MVJ19CTE243	CIE	50
Total No. of Contact Hours	60 L:T:P::40:00:20	SEE	50
No. of Contact Hours/week	3	Total	100
Credits	3	Exam. Duration	3 Hrs

Course objective

- List the various types of roads and road patterns; explain the importance of 20 year road Development plans and current road projects in the country.
- Explain the factors affecting development of harbours and ports and elements in harbour and Port planning.
- Categorize various the national waterways in the country with their important characteristics.
- Explain the need of urban mass transportation in developing countries and compare the various Modes of urban mass transportation systems.

Module-1							L3	12 I	Hrs.
Introduction:	Importance	of	transportation	systems,	Different	modes,	character	istics,	their
integration and comparison Highway systems - Road type and classification, road patterns, phasing									

road development in India, salient features of 3rd and 4th twenty year road development plans, Present scenario of road development in India and in Karnataka.

Video link / Additional online information:

- https://nptel.ac.in/courses/105101087/
- https://pib.gov.in/newsite/PrintRelease.aspx?relid=91384
- http://pmgsy.nic.in/downloads/vision2025.pdf
- https://kship.in/en/project_past_works.aspx

Module-2	L3	12 Hrs.

Railways systems: – Role of railways in transportation, Advantages of railways, Indian railways, classification, present scenario of railway development in India, Modernization of railways, development of high and super high speed railways.

Video link / Additional online information:

• https://youtu.be/37WMS483T7Y

•	https://nptel.ac.in/courses/105107123/								
	Module-3	L3	12 Hrs.						
Airpo	rts: .Overview of air transportation, Role of FAA and ICAO, a	air transport in I	ndia, types of						
airport	s, Heliports, STOL ports, complexities in airport planning, e	elements of airp	oort planning,						
airport	master plan, environmental impact.								
* 7* 1									
Video	link / Additional online information:								
•	https://youtu.be/WUq3uN4MDms	10	10.11						
	Module-4	L3	12 Hrs.						
	urs and Ports :Development of harbours and ports in In								
	aining development, elements of harbour and port planning, r	ole of harbours	and ports in						
transpo	ortation, National waterways, characteristics.								
Video	link / Additional online information:								
•	https://www.youtube.com/watch?v=3YY9FUVtG-4								
•	https://www.youtube.com/watch?v=gT0rAkmNuD8								
	Module-5	L3	12 Hrs.						
Urban	transportation systems: Importance of collective tr	ansportation v	/s individual						
transpo	ortation, freight transportation, Physical system components of u	rban transportati	ion, Overview						
of Ma	ss rapid transit, Light rail transit, Personal rapid transit, guid	ed way systems	s, Para transi						
system	s, Mono rail, bus rapid transit systems								
Video	link / Additional online information:								
•	https://youtu.be/YAEyLOCU-8I								
•	https://nptel.ac.in/courses/105/106/105106058/								
Cours	e outcomes: On completion of the course, students would be abl	e to							
	List, explain and compare the various modes of transportation		e merits and						
CO1	Demerits.		e ments und						
	Classify the various types of roads and road patterns, list the sa	lient features of	20 year road						
CO2	Development plans and discuss on current road projects in the country.								
CO3	List and discuss on factors affecting development of harbours a	and ports and ex	plain on						
CUS	elements in harbour and port planning.								

CO4	List the various the national waterways in the country and explain their important									
	characteristics.									
CO5	Explain the need of urban mass transportation in developing countries and compare the									
0.05	various modes of urban mass transportation systems.									

Refere	ence Books:
1	Khanna, S.K., Justo, C.E.G., and Veeraragavan, A., 'Highway Engineering', Nem
1.	ChandandBros, Roorkee
2.	S.C.Saxena and S.P.Arora "A text book of Railway Engineering", Dhanpat Rai publications
3.	Alan Black, Urban Mass Transportation Planning, McGraw-Hill, 1995.
4.	Vukan R. Vuchic, Urban Transit Systems and Technology, Wiley and Son, New York, 2005

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	3	-	-	1	-	-	1	2	-	1
CO2	3	1	-	1	-	-	1	-	1	1	-	1
CO3	3	3	-	1	-	-	-	-	1	1	-	1
CO4	3	3	3	2	1	-	2	-	1	1	1	1
CO5	3	3	1	2	1	-	-	1	1	1	-	1

Course Title	PAVEMENT MANAGEMENT SYSTEM	Semester	Π
Course Code	MVJ19CTE251	CIE	50
Total No. of Contact Hours	60 L : T : P :: 40 : 0 : 20	SEE	50
No. of Contact Hours/week	3	Total	100
Credits	3	Exam. Duration	3 Hrs

- Discuss the need of PMS in planning and maintaining the flexible pavements.
- Discuss the performance of pavements, causes of failure, rating methods.
- Formulate the development and application of models for pavement management.
- Discuss the need of application of methods of prioritization and application of innovative methods
- Discuss the application of Road Asset Management

		Module-1			L3	12 Hrs.
	~	4	-			

Pre requisites: Concept of management, Highway engineering

Introduction: Definition -Components of Pavement Management Systems, Essential features. Pavement Management Levels and functions: Ideal PMS- Network and Project levels of PMS-Influence Levels- PMS Functions- Function of Pavement evaluation.

Laboratory Sessions/ Experimental learning:

• Field Surveys to identify the types of pavement failures

Applications:

- Pavement management schedule maintenance of good roads to keep them in good condition
- Understand the concept of ideal pavement management system that can apply in real engineering problems

Video link / Additional online information:

- https://nptel.ac.in/courses/105105107/
- https://nptel.ac.in/courses/105104098/

Module-2	L3	12 Hrs.					
Pavement Performance: Serviceability Concept- Development of Serviceability Index-PSI-RCI-							
Roughness- Roughness Components- Evaluation-Equipment- Universal	Roughnes	s standard-					

Techniques-IRI – Application of Roughness Data in Network level and Project Level.

Evaluation of Pavement Structural capacity: Basics- NDT and Analysis—Condition Surveys-Distress- Destructive Structural Analysis- Application in Network and Project Levels-Methods and Equipment- Combined Measures of Pavement Quality-Concept-Methods of developing a combined index-limitations.

Laboratory Sessions/ Experimental learning:

- NDT tests for pavement evaluation
- Field Surveys to identify the roughness data

Applications:

- Understanding the present condition of pavement and future performance based on expected traffic value can be predicted
- Practical problems faced during the evaluation can be understood and feasible solutions can be expected taking into consideration in the real time problems

Video link / Additional online information:

• http://nptel.ac.in

Module-3	L3, L4	12 Hrs.

Pre requisites: Causes of pavement distress

Evaluation of Pavement Distress and Functional Aspects: Principles- Condition survey- Survey Methodology-Types of Distress-Examples-Equipment-Indexes-Applications of Distress data-Pavement Safety-Components –Evaluation-Basic Concepts of Skid resistance-Methods of measuring skid resistance- Effect of Time ,Traffic and Climate on Skid resistance. Establishing Criteria - Rehabilitation and Maintenance.

Laboratory Sessions/ Experimental learning:

• Field Surveys to identify the types of distress

Applications:

- Practical challenges and difficulties in conduction of pavement surveys and its possible outcomes
- Understand the basic concept of pavement distress and study of varies application of distress data

Video link / Additional online information:

• http://nptel.ac.in

	Module-4	L3, L4	12 Hrs.
Exper	t Systems and Pavement Management: Implementation of Paveme	nt Managen	nent Systems.
Labora	tory Sessions/ Experimental learning:		
•	Bump Indicator for roughness survey		
Applic	ations:		
•	Pavement management system can help transportation departmen	ts to make	cost-effective
	decisions		
Video	link / Additional online information:		
•	http://nptel.ac.in		
	Module-5	L3	12 Hrs.
Road A	Asset Management: Management, Data and Modelling, Planning Ap	oplication	
Labora	tory Sessions/ Experimental learning:		
•	Use of SPSS software in pavement management		
•	Modeling methods		
Applic	ations:		
•	Computer technology has improved the detail and accuracy of road a	measuremei	nt technology
•	Pavement management incorporates life cycle cost into a more syste	ematic appr	oach to mino
	and major road maintenance and reconstruction projects		
٠	Application of road asset management in highway engineering problem	lems	
Video	link / Additional online information:		
•	http://nptel.ac.in		
Cours	e outcomes: On completion of the course, students would be able to		
CO1	Identify the factors influencing performance of pavement.		
CO2	Carry out structural and functional evaluation of pavements		
CO3	Explain the use of models for pavement management.		
CO4	Develop a framework for efficient payement management system		

- CO4 Develop a framework for efficient pavement management system
- CO5 To apply Road Asset Management

Refere	ence Books:
1.	Ralph Haas and Ronald W. Hudson, 'Pavement Management System', McGraw Hill Book
1.	Co.1978.
2	Ralph Haas, Ronald Hudson Zanieswki. 'Modern Pavement Management, Kreiger
2.	Publications, New York, 1992.
3.	PIARC Guidelines
4.	Proceedings of North American Conference on Managing Pavement, USA,2004.
5	Proceedings of International Conference on Structural Design of Asphalt Pavements
5.	NCHRP, TRR and TRB Special Reports, USA,2006.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	-	-	-	-	1	-	1	1	-	2
CO2	3	3	1	1	-	-	2	-	-	1	-	1
CO3	3	3	-	1	2	-	-	-	1	1	-	1
CO4	3	3	1	2	1	-	1	-	1	1	-	1
CO5	3	3	1	2	1	-	-	-	1	1	-	1

Course Title	TRANSPORTATION STRUCTURES	Semester	Π
Course Code	MVJ19CTE252	CIE	50
Total No. of Contact Hours	60 L:T:P::40:0:20	SEE	50
No. of Contact Hours/week	3	Total	100
Credits	3	Exam. Duration	3 Hrs

- Classify the various transportation structures, explain the principles of design methods and list the steps involved in the design of various transportation structures.
- Gain the knowledge of various loads acting on the bridge
- Gain the knowledge of sub-structure design criteria
- Discussed the design code of pre-stressed concrete bridges
- Identify the input parameters required for design of transportation structures and design and evaluate a transportation structures based on the data given.

Module-1	L3	12Hrs.
Introduction: Principles of Planning of Elevated Rail Transit System, grade	separatio	n structures,
pedestrian crossing and sub- ways.		
Laboratory Sessions/ Experimental learning:		
• Impact test on aggregates		
Applications:		
• Understanding the main principles of planning in structures		
• Understand the basic information about structures		
Video link / Additional online information:		
• http://nptel.ac.in		
Module-2	L3	12Hrs.
Pre requisites: Loads on structures		
Landa an Deidana David landa line landa demania effects of articles	1 .	r 1 c

Loads on Bridges: Dead loads, live loads, dynamic effects of vehicles, longitudinal forces, centrifugal forces, wind loads, earth quake forces, stream flow pressure, load combinations, design examples.

Laboratory Sessions/ Experimental learning:		
• Dynamic loadings using loading frame test		
Applications:		
• Understand the major loads considered in the bridge design		
• Understand the basic factor considered in bridge construction		
Video link / Additional online information:		
• http://nptel.ac.in		
Module-3	L3	12Hrs.
Design of Bridge Slabs: Longitudinally reinforced deck slabs, transversely rein	nforced br	idge slabs.
Sub-Structure Design: Foundation investigation, bearings, bridge pier design,	and abutr	nent design
Examples.		
Laboratory Sessions/ Experimental learning:		
Bending and Deflection test		
Applications:		
• Understand the basic information about bridge construction		
Practical knowledge regarding the sub-structure design		
Video link / Additional online information:		
• http://nptel.ac.in		
		1011
Module-4	L3	12Hrs.
Design of Reinforced Concrete Bridges: Design procedures for T- beam, box examples.	girder bri	idges desigi
Laboratory Sessions/ Experimental learning:		
Direct tension testing		
• Testing of structural elements of bridge structure		
• Testing of structural elements of bridge structure Applications:		
Applications:	es	
Applications:Understand the importance of bridge design process	es	

Module-5	L3	12Hrs.
Design of Pre-stressed Concrete Bridges: Design code, design examples.		
Segmental Box bridges: precast sections, criteria, design examples		
Laboratory, Sassions/Experimental learning		
Laboratory Sessions/ Experimental learning:		
Non-destructive load test		
• Design of concrete bridges using software		
Applications:		
• Understand the design criteria for segmental box bridges		
• Understand the specifications of pre-stressed concrete bridges		
Video link / Additional online information:		
• https://nptel.ac.in/courses/105/106/105106117/		

Course	Course outcomes: On completion of the course, students would be able to					
CO1	Decide the selection of transportation structures, list the factors affecting design of various					
	transportation structures and generate the input parameters required for design.					
CO2	Analyse and design various loads acting on the bridge					
CO3	Analyse and design foundation for bridges					
CO4	Summarize the design methodology and arrive at design values for various transportation					
	structures.					
CO5	Able to understand the behaviour of pre-stressed sections					

Refere	ence Books:
1.	Raina,R.K, 'Principles of Design of RCC Bridges, Tata McGraw Hill,1999.
2.	Krishnaraju 'Bridge Engineering', UPD Publishers, New Delhi,2000.
3.	Conrad P. Heins and Richard A. Lawrie, `Design of Modern Concrete Highway Bridges, John Wiley and Sons, 1999.
4.	Baider Bakhtand Leslie, G.Jaeger, Bridge Analysis Simplified, McGrawHill Book Co,1998.
5.	Johnson Victor, 'Bridge Engineering', Oxford IBH, NewDelhi, 2000.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	1	-	-	-	1	-	1	1	-	1
CO2	3	3	2	1	-	-	-	-	1	1	-	1
CO3	3	3	2	1	-	-	-	-	1	1	-	1
CO4	3	3	2	2	1	-	-	-	1	1	-	1
CO5	3	3	2	2	1	-	-	-	1	1	-	1

Course Title	APPLIED STATISTICS	Semester	II
Course Code	MVJ19CTE253	CIE	50
Total No. of Contact Hours	60 L:T:P::40:0:20	SEE	50
No. of Contact Hours/week	3	Total	100
Credits	3	Exam. Duration	3 Hrs

- Explain different statistical methods used in transportation engineering problems, measures of central tendency, correlations methods.
- Illustrate the use of probability and discrete distributions in transportation engineering problems.
- Explain significance testing to check goodness offit.
- Explain time series analysis.
- Explain different graphical methods and statistical software packages useful in transportation engineering field.

Module-1	L3	12 Hrs.			
Introduction: Statistical methods, scope and limitations, population	n and sample,	frequency			
Distribution- measure of central tendency-measures of Dispersion- standard deviation, coefficient of					
variation, skewness. Variables - scatter diagram, Curve fitting methods, correlation linear regression,					
multiple linear regressions. Multivariate data analysis.					

Laboratory Sessions/ Experimental learning:

• Data analysis using graphical representation

Applications:

- Test and verification of principles or hypothesis
- Understand to draw histogram for the given frequency distribution of travel time of vehicle

Video link / Additional online information:

• https://nptel.ac.in/courses/105/105/105105150/

Module-2	L3	12 Hrs.				
Probability: Review, Addition & Multiplication Rules, random Variat	oles, Discrete dist	tributions-				
Binomial & Poisson Distributions, Continuous Distribution – Uniform, Exponential, Gamma& normal						
Distributions, applications in Highway engineering problems.						

Laboratory Sessions/ Experimental learning:

• Data collection for solving traffic engineering problems

Applications:

- Understand the usage of Regression methods to construct model related to Highway related problems
- To understand and study the highway engineering problems

Video link / Additional online information:

• https://nptel.ac.in/courses/105/103/105103027/

• https://hpter.ac.in/courses/105/105/105/05027/							
Module-3	L3	12 Hrs.					
Statistical decisions: Hypothesis testing, significance levels – Tests co	ncerning Mean,	testing the					
equality of means of two populations, tests concerning the variance. Chi-	square Test for g	goodness of					
fit. Confidence Interval.							
Laboratory Sessions/ Experimental learning:							
• Use of statistics and its analysis in resolving transportation related p	roblems						
Applications:							
• Theory of probability provides a deductive framework for evaluating	g the probability	of different					
types of events in transportation system							
Video link / Additional online information:							
• https://nptel.ac.in/courses/105/105/105105138/							
Module-4	L3	12 Hrs.					
Time series analysis: Introduction –moving average- Problems.		1					
Laboratory Sessions/ Experimental learning:							
Data analysis using Scilab							
Applications:							
• Application of time series analysis for traffic forecasting							
• Application of time series analysis for dataset produced by transport	ation system						
Video link / Additional online information:							
• https://nptel.ac.in/courses/103/106/103106123/							

Module-5	L3	12 Hrs.
Optimization technique and applications: Graphical Method –Simple:	K Method-Big-M	method-2-
Phase Simplexmethod-applications in Highway engineering problems	Use of mathem	atical and
statistical software packages.		
Laboratory Sessions/ Experimental learning:		
Graphical method of optimization techniques		
• Data analysis using SPSS software		
Applications:		
• Understand the application of mathematical and statistical softwar	e's in highway e	ngineering

• Understand the application of mathematical and statistical software's in highway engineering problems

Video link / Additional online information:

• https://nptel.ac.in/courses/111/105/111105077/

Cours	Course outcomes: On completion of the course, students would be able to							
CO1	Able to use appropriate statistical method in transportation engineering problems.							
CO2	Capable of applying the rule of probability and discrete distributions in solving problems.							
CO3	Capable of testing the goodness of fit by using statistical decision.							
CO4	Able to understand the time series analysis							
CO5	Able to apply the knowledge of optimization technique and use statistical software in analysis of transportation engineering problems.							

Refer	rence Books:
1.	Gupta,S.C.and Kapoor V.K. Fundamentals of Mathematical statistics,(2000)
2.	Sultan Chandand Sons, 1978. MedhiJ (1982) Introduction to statistics. New age publications, New Delhi
3.	WalpoleR.E.andR.H.Mayers (1982) ProbabilityandstatisticsforEngineersandScientists
5.	WileyIntl.2002.
4.	Johnson Rand G.Bhattacharya (1985): Statistics- principles and methods. JohnWiley,NY
5.	Ross S.M.Probability and statistics for Engineers.WileyInt.Edition.(2002)

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	1	-	2	2
CO2	3	2	-	-	-	-	-	-	2	-	2	2
CO3	3	1	-	-	1	-	-	-	1	-	1	2
CO4	3	2	-	1	1	-	-	-	1	-	1	2
CO5	3	1	-	-	1				1	-	-	2

Course Title	REMOTE SENSING AND GIS IN ENGINEERING	Semester	Π
Course Code	MVJ19CTE261	CIE	50
Total No. of Contact Hours	60 L: T : P :: 40 : 0 : 20	SEE	50
No. of Contact Hours/week	3	Total	100
Credits	3	Exam. Duration	3 Hours

- Understand the basic concepts of remote sensing.
- Analyse satellite imagery and extract the required units.
- Extract the GIS data and prepare the thematic maps
- Use the thematic maps for various applications.

Module-1	L3 & L4	12 Hrs.
Introduction to Remote Sensing: Definition - History & Concepts - Elect	ctromagnetic	Radiation
(Source, Mode of Energy transfer, Radiation Principles, Black body radiation	on); Electro	Magnetic
Radiation (EMR): EMR Spectrum - EMR Interaction with Atmosphere (Al	osorption, So	cattering &

Atmospheric windows) - EMR Interaction with Earth surface (Absorption & reflection) - Spectral Response pattern - Energy budgeting in Remote Sensing.

Laboratory Sessions/ Experimental learning:

- Introduction to Working Principles of software
- Arial photograph interpretation

Applications:

• Provides Basic knowledge of Geographical Information Systems

Module-2	L3 & L4	12 Hrs.				
Sensors and Platforms: Resolutions (Spectral, Spatial, Temporal, Radiometric) – Platforms Sensors						
- Scanning & Orbiting Mechanism of Satellites and Data Acquisition. Optical Remote Sensing:						
Basic concepts -Optical sensors and scanners. Thermal & Microwave Remote Sensing: Thermal						
Remote Sensing: Basic concepts - Thermal sensors & scanners - Therma	al Inertia. N	Microwave				
Remote Sensing: Basic concepts Microwave sensors and Radiometers - C	Geometric cl	naracters -				
Radargrammetry (SLAR / SAR) - LIDAR -Hyper spectral Remote Sensing: b	asic concepts	8				

Laboratory Sessions/ Experimental learning:

- Analog to Digital Conversion Scanning methods
- Digital database creation Point features, Line features, Polygon features

Applications:

• Teaching knowledge of creation of different shape files

Module-3	L3 & L4	12 Hrs.				
Remote Sensing Satellites: LANDSAT Series - IRS Series - IRS-P series - C	Cartosat - Sp	ot Series -				
ASTER, MODIS - IKONOS - QUICKBIRD - ORBVIEW -ERS - Meteorological Satellites -Shutt						
Mission - Developments of Remote Sensing in India - Future Remote Sensing	Missions					

Laboratory Sessions/ Experimental learning:

- Data Editing-Removal of errors Overshoot, Undershoot, Snapping
- Data Collection and Integration, Non-spatial data attachment working with tables

Applications:

• Provides knowledge on accesses of Digital image processing

Video link / Additional online information:

• https://nptel.ac.in/courses/105103193/

		M	odule-4				L	3 & L4	12 Hrs.
 	~	 	•	a .	_	a			0.070

Introduction to Geographical Information System (GIS): Definition - Usefulness of GIS -Components of GIS - Computer Hardware, Software Modules and Organizational Context of GIS. Data Structure: Data Structure in GIS - Types of Data (Points, Lines and Polygons) - Data Base Structures (Raster Data Structures and Vector data Structures) - Data Conversion (Vector to Raster and Raster to Vector)

Laboratory Sessions/ Experimental learning:

- Dissolving and Merging
- Clipping, Intersection and Union

Applications:

• Provides knowledge on accesses of Base Map Creation

Module-5	L3 & L4	12 Hrs.
Integrated Applications of Remote sensing and GIS: Applications in	Land use L	and cover
analysis, change detection, Water Resources, Urban Planning, Environmen	ntal Plannin	g, Natural
Resource Management and Traffic Management. Location Based Services and	its Applicat	ions

Laboratory Sessions/ Experimental learning:

- Point Data collection using GPS with different datum
- Line data collection using GPS and measurements

Applications:

• Gives knowledge of incorporation of GPS and GIS

Video link / Additional online information:

• https://nptel.ac.in/courses/121107009/

Course outcomes:CO1Collect data and delineate various elements from the satellite imagery using their spectral
signatureCO2Analyse different features of ground information to create raster or vector data.CO3Understand and apply sustainability concepts in construction practices, designs, product
developments and processes across various engineering disciplines.CO4Perform digital classification and create different thematic maps for solving specific
problemsCO5Make decision based on the GIS analysis on thematic maps.

Reference Books:										
1.	Chor Pang Lo and Albert K.W Yeung, "Concepts & Techniques of GIS", PHI, 2006									
2.	John R. Jensen, "Remote sensing of the environment", An earth resources perspective –									
	2nd edition – by Pearson Education 2007									
3.	Anji Reddy M., "Remote sensing and Geographical information system", B.S. Publications									
	2008									
4	Peter A. Burrough, Rachael A. McDonnell, and Christopher D. Lloyd, "Principals of Geo									
	physical Information system", Oxford Publications 2004									
5	S Kumar, "Basics of remote sensing & GIS", Laxmi publications 2005									

CO-PO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	2	3	-	-	-	-	_	2	1	_	2	1	
CO2	2	3	-	-	-	-	-	2	1	-	2	2	
CO3	3	2	2	2	2	1	2	3	2	2	2	2	
CO4	3	2	2	2	3	2	2	2	2	3	3	3	
CO5	3	3	3	3	3	2	3	2	2	3	3	3	

Course Title	SUSTAINABILITY CONCEPTS IN ENGINEERING	Semester	Π
Course Code	MVJ19CTE262	CIE	50
Total No. of Contact Hours	60 L : T : P :: 40 : 00 : 20	SEE	50
No. of Contact Hours/week	3	Total	100
Credits	3	Exam. Duration	3 Hrs

Course objective is to:

- Learn about the principles, indicators and general concept of sustainability.
- Apprehend the local, regional and global impacts of unsustainable designs, products and processes.
- Apply the sustainability concepts in engineering
- Know built environment frameworks and their use
- Understand how building and design is judged and valued by clients and stakeholders and how to implement sustainability.

Module-1								L3	12 H	lrs.
Introduction:	Sustainability	-	Introduction,	Need	and	concept	of	sustainat	oility,	Social-
environmental	and economic	sus	stainability co	ncepts.	Susta	inable de	velo	pment, N	exus	between

Technology and Sustainable development, Challenges for Sustainable Development, Nexus between environmental agreements and Protocols - Clean Development Mechanism (CDM), Environmental legislations in India - Water Act, Air Act.

Applications:

- Knowledge of the scope of the subject.
- Knowledge about dynamics of sustainable systems.

- https://nptel.ac.in/courses/127/105/127105018/
- https://nptel.ac.in/courses/107/103/107103081/

Module-2	L3	14 Hrs.		
Global Environmental Issue: Air Pollution, Effects of Air Pollution; Water pollution- sources				
Sustainable wastewater treatment, Solid waste - sources, impacts of solid waste, Zero waste concept.				
Resource degradation, Climate change, Regional and Local Environmental Issues. Carbon credits				
and carbon trading, carbon foot print Carbon sequestration – Carbon ca	apture and st	torage (CCS).		

Environmental management standards, ISO 14000 series, Life Cycle Analysis (LCA) - Scope and Goal, Bio-mimicking.

Laboratory Sessions/ Experimental learning:

- Pollution assessment tests for different areas and give remedies to control it.
- Applications:
 - Understanding the various environmental pollutions, its effects and how to overcome the global environmental issues.
 - Getting an idea to improve urban infrastructure.

Video link / Additional online information:

- https://nptel.ac.in/courses/127/105/127105018/
- https://nptel.ac.in/courses/107/103/107103081/

Module-3	L3	12Hrs.

Sustainable Design:

Basic concepts of sustainable habitat, Green buildings, green materials for building construction, material selection for sustainable design, green building certification- GRIHA & IGBC Certification for buildings, Energy efficient building design- Passive solar design technique, Thermal storage, Cooling strategies, high performance insulation. Sustainable cities, Sustainable transport.

Laboratory Sessions/ Experimental learning:

• Conduct any sustainability event in the campus (ex: Technical talk, Documentary/film etc)

Applications:

- Knowledge about Sustainable design and green construction.
- Understanding the design of energy efficient building.

Video link / Additional online information:

- https://nptel.ac.in/courses/127/105/127105018/
- https://nptel.ac.in/courses/107/103/107103081/

	Module-4	L3 & L4	10Hrs.
--	----------	---------	--------

Clean Technology and Energy:

Energy sources: Basic concepts-Conventional and non-conventional, solar energy, Fuel cells, Wind energy, Small hydro plants, bio-fuels, Energy derived from oceans, Geothermal energy. Rainwater harvesting.

Laboratory Sessions/ Experimental learning:

• Industrial visit of any of the energy sources and make a report on it.

Applications:

• Understanding the various application of different energy sources

Video link / Additional online information:

- https://nptel.ac.in/courses/127/105/127105018/
- https://nptel.ac.in/courses/107/103/107103081/

Module-5	L3	12 Hrs.

Green Engineering:

Green Engineering concepts, Sustainable Urbanization, industrialization and poverty reduction; Social and technological change, Industrial Processes: Material selection, Pollution Prevention, Industrial Ecology, Industrial symbiosis.

Laboratory Sessions/ Experimental learning:

• Develop a sustainability project for a green campus

Applications:

• Understanding the concept of green engineering and how it is applicable for the sustainability in society.

Video link / Additional online information:

- https://nptel.ac.in/courses/127/105/127105018/
- https://nptel.ac.in/courses/107/103/107103081/

Course outcomes: On completion of the course, students would be able to

CO1	Learn the sustainability concepts, understand the role and responsibility of engineers in sustainable development
CO2	Quantify sustainability, and resource availability, Rationalize the sustainability based on scientific merits
CO3	Understand and apply sustainability concepts in construction practices, designs, product developments and processes across various engineering disciplines
CO4	Application of engineering knowledge in utilization of natural resources for the production materials.
CO5	Make a decision in applying green engineering concepts and become a lifelong advocate of sustainability in society

Refere	nce Books:
1.	Allen, D. T. and Shonnard, D. R., Sustainability Engineering: Concepts, Design and Case Studies, Prentice Hall.
2.	Bradley. A.S; Adebayo, A.O., Maria, P. Engineering applications in sustainable design and development, Cengage Learning
3.	Environment Impact Assessment Guidelines, Notification of Government of India, 2006
4.	Mackenthun, K.M., Basic Concepts in Environmental Management, Lewis Publication, 1998
5.	Sustainable Engineering Practice: An Introduction, Committee on Sustainability, American Society of Civil Engineers
6.	Daniel A. Vallero and Chris Brasier, "Sustainable Design: The Science of Sustainability and Green Engineering", Wiley-Blackwell

					CO-P	O Map	oping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	-	-	3	1	1	-	1	-	-	1
CO2	3	-	-	-	1	1	-	-	2	1	1	-
CO3	1	2	3	1	-	1	-	-	-	-	-	1
CO4	3	1	1	1	2	-	-	-	1	-	-	-
CO5	1	1	1	-	-	1	-	-	3	-	-	1

High-3, Medium-2, Low-1

Course Title	OCCUPATIONAL HEALTH AND SAFETY MANAGEMENT	Semester	П
Course Code	MVJ19CTE263	CIE	50
Total No. of Contact Hours	60 L: T: P: : 40 : 0 : 20	SEE	50
No. of Contact Hours/week	3	Total	100
Credits	3	Exam. Duration	3 Hrs

Course objective is to:

- To understand the concepts of global scenario of Health & safety.
- Students should be able to analyses and solve basic ergonomical issues.
- To be efficient in the operation of industrial hygiene equipment.
- To illustrate the importance and need of Fire & Safety.
- Students should be able to know the basics of fire and its classification.

	Module-1	L3	12 Hrs.
D			

Prerequisites: Basic knowledge about various types of hazards

Physical and Chemical Hazards: Recognition, Evaluation and Control of Physical Hazards- Noise and Vibration - Effects and Control

Measures- Thermal Stress - Parameter Control, Radiation - Types - Source - Effect and Control Illumination & Lighting. Recognition, Evaluation and Control of Chemical Hazards- Types - Dust-Fumes -Mist -Vapor-Fog etc., Air Contaminants- Evaluation - Types of Sampling-Air Sampling System-Method Analysis-Control Measures.

Laboratory Sessions/ Experimental learning:

- Measurement of Sound/Noise Level at Various Location and Compare it with Standard Values Permissible for Exposure.
- Determination of SPM and RSPM Present in Working Atmosphere during the Working Period with the help of Respirable Dust Sampler.
- Determination of SPM and Oxides of Sulphur and Nitrogen from the Stack/Chimney using Stack Monitoring kit.
- Determination of pH, TDS, Temperature, DO of water with the help of Multiparameter Monitoring Instrument

Applications:

• Documentation of the report on noise level in the working environment

- Documentation of report on SPM and RSPM present in air
- Preparation of water quality analysis report

Video link / Additional online information:

- Hazard terminologies, hazard identification, methods, risk determination, https://www.youtube.com/watch?v=JkTbfVkKGCI#action=share
- Hazard classification and assessment, evaluation, control, https://nptel.ac.in/courses/114106017/
- Hazard analysis necessity, hazard evaluation and control https://www.youtube.com/watch?v=WMPodFzWsSs

Module-2	L3	12 Hrs.
programinitan Paris idea about enconomical insues		

Prerequisites: Basic idea about ergonomical issues

Occupational Health: Concept and Spectrum of Health-Functional Units and Activities of Occupational Health Services-Occupational and Work-related Disease-Levels of Prevention of Diseases - Notifiable Occupational Diseases such as Silicosis- Asbestosis- Pneumoconiosis--Aluminosis and Anthrax. Lead-Nickel, Chromium and Manganese Toxicity-Gas Poisoning (such as CO, Ammonia, Coal Dust etc.,) their effects and Prevention- Cardio Pulmonary Resuscitation-Audiology-Hearing Conservation Programme-Effects of Ultra Violet Radiation and Infrared Radiation on Human Systems Industrial Toxicology-Local and Systemic and Chronic Effects Temporary and Cumulative Effects- Carcinogens Entry into Human System Ergonomics, Personnel Protective Equipment, Personnel Monitoring.

Laboratory Sessions/ Experimental learning:

- A study on analysis of occupational health hazards in a working place
- A study on health monitoring programs out in industries

Applications:

- Preparation of a detailed report on identification of occupational health issues of workers in a working place (manufacturing/service-based industries).
- Preparation of a detailed report on identification of occupational health issues of workers in a corporate sector

- Occupational health, safety concern, integrity of the system, risk assessment, https://nptel.ac.in/courses/110105094/
- Risk assessment: process, identification, individual and societal,

https://www.youtube.com/watch?v=DxZ2rX0AtcM#action=share

A manual for primary health care workers, occupational related diseases, disease detection, occupational ergonomics, accident prevention, psychological factors, effects, https://www.who.int/occupational_health/regions/en/oehemhealthcareworkers.pdf

Module-3	L3	12 Hrs.
----------	----	---------

Prerequisites: Basic knowledge about ergonomical issues

Personal Hygiene and First Aid: Hygiene Concepts-Correct and Clean Dresses-Clean Body -Washing - Good Habits-Oral and Stomach Hygiene-Cleaning - Compressed Air and Degreasing Agents-Long Hair and Nails and Torn and loosely Hanging Clothes-Smoking - Lavatories Maintenance- Living in Unhygienic Areas. First aid concept- -First Aid Boxes-Legal Requirements, Industrial Hygiene, Medical Surveillance, Medical Surveillance Program Development, Recommended Medical Programme, Emergency Treatment, Non-Emergency Treatment, Exposures to Hazardous Materials.

Laboratory Sessions/ Experimental learning:

- Demonstration and training on the usage of personal protective equipments, breathing apparatus, Emergency evacuation drill etc.
- First Aid training and demonstration

Applications:

- Documentation of the report on first aid training and demonstration
- Awareness program on the utilization of the facilities provided to maintain the health of workers in working places

- Importance of first aid, injuries, fractures, poisoning, prevention of occupational diseases and accidents, health education, occupational health for women and children https://www.who.int/occupational_health/regions/en/oehemhealthcareworkers.pdf
- Safety assurance and assessment, Health, Safety and Environment (HSE), hazardous waste release procedure, hazard identification plan, organising safety, https://nptel.ac.in/content/storage2/nptel_data3/html/mhrd/ict/text/114106039/lec9.pdf
- Human body health hygiene, safety and first aid, biology reaction, https://www.youtube.com/watch?v=MeQuR6N1YQ4
- Employee welfare, welfare measures inside the working place, workers health services https://nptel.ac.in/content/storage2/nptel_data3/html/mhrd/ict/text/122105020/lec10.pdf

•	• First aid training, https://www.youtube.com/watch?v=qahukkDYFbk											
•	• First aid - emergency medical services, injuries, fi								aid	kit,		
	https://www.youtube.com/watch?v=Q62UwEPPnrg											
	Module-4								12	Hrs.		

Prerequisites: Importance and need of Fire & Safety

Fire safety: Sources of Ignition- Principles of Fire Extinguishing, Various Classes of Fires, types of Fire Extinguishers, Fire Stoppers, Hydrant Pipes, Hoses, Monitors, Fire Watchers, Maintenance of Fire Trucks, Foam Generators, Escape from Fire, Rescue Operations, Fire Drills, Notice, First Aid for burns

Industrial fire Protection System, Sprinkler-Hydrants -Stand Pipes, Special Fire Suppression Systems (Deluge and Emulsifier), Selection Criteria of the above Installations, Reliability, Maintenance, Evaluation and Standards, Alarm and Detection Systems, Other Suppression Systems (CO2 System - Foam System, Dry Chemical Powder (DCP) System, Halon System), Need For Halon Replacement, Smoke Venting, Portable Extinguishers, Flammable Liquids, Tank Farms, Indices of Inflammability, Fire Fighting Systems

Fire Load, Fire Resistant Material and Fire Testing, Structural Fire Protection, Structural Integrity, Exits and Egress, Fire Certificates, Fire Safety requirements for high-rise Buildings

Laboratory Sessions/ Experimental learning:

- Laying out and Rolling of fire hoses, Priming of water from fire tenders using suction hose, static tank Hydrant fire drills, Site visit.
- Identification rehearsals of Portable extinguishers, Filling of DCP powder in Portable Extinguisher and wearing Protective clothing, Mock drills

Applications:

- A detailed report on classification of fire extinguishers
- Documentation on fire prevention solutions, fire detection systems, emergency lighting, means of escape for both onshore and offshore premises, and detailed individual evacuation plans.

- Fire protection: basic concept, fire resistance, introduction of combustion process, https://nptel.ac.in/courses/105102176/
- Fire protection, services and maintenance, management of building, https://www.youtube.com/watch?v=n6HAyxdup_U#action=share

٠	Fire:	Effect	of	enclosure,	fire	load,	standard		fire,	fire	resistance,		
	https://www.youtube.com/watch?v=krnmHKZ87Wg#action=share												
•	Fire	safety: urban		planning,	planning, interna		planning,		occi	upancy,	zoning,		
	https://www.youtube.com/watch?v=eAKTwc3_ixE#action=share												
•	Fire	safety:		escape	а	und	refuge,		planning,		exit,		
	https:/	/www.you	tube.con	n/watch?v=C)6CYQ	t9vi_Y#	action=s	share					
•	Fire	safety:	Internal	l planning	, de	tection	and	suppr	ession,	flame	e spread,		
	http://	www.yout	ube.com	/watch?v=e3	Orj5X	Dj2M#a	ction=sh	are					

Module-5	L3	12 Hrs.

Prerequisites: Basic Knowledge of Industrial Safety

Safety Policies, OSHAS and Radiation control: Importance of Safety, health and environment. Health safety and environmental policy, fundamentals of safety, classification of accidents, Managements responsibility, objectives of safety management, National safety council, Employees state insurance act 1948, approaches to prevent accidents, principles of safety management, safety organization, safety auditing, maintenance of safety, measurements of safety performance, industrial noise and noise control, Industrial Psychology, Industrial accidents and prevention. Introduction to OSHAS 18001 AND OSHA.

Radiation Shielding - Radiation Dose - Dose Measurements - Units of Exposure-Exposure Limits-Barriers for Control of Radioactivity Release, Control of Radiation Exposure to Plant Personnel, Health Physics Surveillance - Waste Management and Disposal Practices – Environmental, Releases.

Laboratory Sessions/ Experimental learning:

- A performance study on responsibility of management for safety in industries, safe guarding the workers
- A study on OSHAS by considering a case-study

Applications:

- Documentation on an effective safety management in a manufacturing industry from workers health point of view.
- Detailed report on OSHAS certification

- OSHAS laboratory safety guidance: Types of hazards, safety hazards, laboratory standards, https://www.osha.gov/Publications/laboratory/OSHA3404laboratory-safety-guidance.pdf
- OSHAS 18001: Integrity:- machines, processes, human system, example of an heat metal

transfer, safety and health philosophy of an organization, https://nptel.ac.in/courses/110105094/

- OSHAS 18001: Part I lecture, https://www.youtube.com/watch?v=RrxFmErOTk#action=share
- OSHAS 18001: Part II lecture, safety and health philosophy, of an organization, https://www.youtube.com/watch?v=n7oUOUCIblg#action=share
- OSHAS 18001: Part III lecture, case-study of a steel plant, behavioral safety and process safety, https://www.youtube.com/watch?v=8GmIoIIsJ7w#action=share

Course outcomes: On completion of the course, students would be able to									
CO1	Gains the knowledge about the various types of hazards and their control measures								
CO2	Gains the knowledge about the occupational health issues								
CO3	Able to analyse and solve occupational health issues								
CO4	Able to know the basics of fire and its precautions, active and passive fire protection system in building or other industries/ premises.								
CO5	To render the concept of safety analysis and confined space								

Refere	nce Books:
1.	Risk assessment- A Practical Guide, 1993, Institution of Occupational Safety and Health,
1.	United Kingdom
2.	Hand Book Of Fire Technology By: R.S. Gupta, Orient Longman Publishers, Second
۷.	Edition, 2005
3.	Hand Book Of Fire And Explosion Protection Engineering By: Dennis P Nolan, Crest
5.	Publishing House, First Edition, 2007
4.	Fire Protection And PreventionBy: Brendra Mohan San, Publishers: UBS Publishers &
4.	Distributors Pvt Ltd., Edition: First Edition, Year of Publication: 2008
5.	Industrial safety management By: L.M. Deshmukh, Publishers: Tata Megraw Hill ,New
5.	Delhi, Year: 2006,First Edition
6.	Industrial safety health and environment Management system By: R.K. Jain & Sunil S. Rao,
0.	Publishers: Khanna Publishers, Year: 2008, Edition: Second
7.	A Handbook on health, Safety and Environment, SC Bhatia
8.	S Rao, H L Saluja- Electrical Safety, Fire Safety Engineering and Safety Management

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1		2				2	2				3	1
CO2		2				2	2				3	1
CO3	2	3	2	2	2	3	1		2	3		1
CO4		2			3	2	2		2	2	3	1
CO5	2	3	2	2		2		3	2	1	1	1

High-3, Medium-2, Low-1

Course Title	TRANSPORTATION ENGINEEERING LAB	Semester	Π
Course Code	MVJ19CTEL27	CIE	50
Total No. of Contact Hours	01 Hour Tutorial (Instruction) 03 Hours Laboratory	SEE	50
No. of Contact Hours/week	04	Total	100
Credits	02	Exam. Duration	3 Hrs

Course objective is to:

- Illustrate application of soft computing techniques for solving transportation problems
- Illustrate the application of software for analyzing traffic survey datae, evaluation of Pavement functional and structural condition
- Explain and illustrate generation of models for transportation planning
- Introduce the methods of designing geometry of highways using computer software

Prerequisites: Material properties, theory of stress & strain

1	1 1 / 2	
S.NO	Experiments	L3,L4
1	Experimenting Classified volume count survey	
2	Conducting Moving car method of speed and delay studies.	
3	Conducting Origin and destination studies	
4	Conducting Spot speed studies	
5	Conducting Highway capacity Estimation Studies and LoS study	
6	Conducting Pedestrian Survey	
7	Conducting Parking Survey.	
8	Conducting Road inventory and Pavement Condition Studies.	
9	Design of horizontal alignment, vertical alignment.	
10	Generating cross section and design of intersections.	
11	Design of flexible pavement using IRC-37:2012, Kenpave analysis	
Video L	ink:	
•]	nttps://nptel.ac.in/courses/105101008/	
•]	nttps://nptel.ac.in/courses/105105107/	
Course	outcomes:	
CO1	Examine and arrive at required output from traffic surveys	

	Identify the adequacy of the pavement performance- functional and structural, Analyse and									
CO2	generate models for transportation planning									
CO3	Design the geometry of highways.									
Refere	nce Books:									
1.	User Manuals of various packages									
2.	Relevant IRC publications									
3.	C.S.Papacostas and P.D.Prevedouros "Transportation engineering & Planning", PHI									
5.	learning									
4.	Khanna, S.K., Justo, C.E.G., and Veeraragavan, A., 'Highway Engineering', Nem Chandand									
4.	Bros, Roorkee.									
5.	Yang H Huang, `Design of Functional Pavements', McGraw Hill Book Co.									

	CO-PO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	2	1	1	-	2	1	1	2	2	1	2		
CO2	3	3	3	3	1	1	1	1	2	1	2	2		
CO3	3	3	3	3	2	1	-	1	2	1	2	2		
CO4	3	2	3	2	-	1	1	1	2	1	1	2		

High-3, Medium-2, Low-1