VI SEMESTER

	Semester	: VI	
	DATA SCIE	NCE	
	(Theory	·)	
C οι	rse Code: MVJ21CG61	CIE Marks:100	
Cre	dits: L:T:P:S: 3:0:0:0	SEE Marks: 100	
Ηοι	ırs: 40L	SEE Duration: 3 Hrs	
C οι	rse Learning Objectives: The students will be	able to	
1	Understand the competitive advantages of	data science.	
2	Understand the big data framework.		
3	Learn data analysis methods.		
4	Learn stream computing.		

UNIT-I

8 H

r

8 H

r

8

н

r s

INTRODUCTION: What is Data Science? BigData and Data Science hype – and getting past the hype,

Whynow?-

Datafication,Currentlandscapeofperspectives,Skillsets.NeededStatisticalInference:Popul s

ations and samples, Statistical modeling, probability distributions, fitting a model,

-IntroductiontoR

Videolink:https://www.digimat.in/nptel/courses/video/106106179/L01.html

UNIT-II

ExploratoryDataAnalysisandtheDataScienceProcess:Basictools(plots,graphsandsummar y

statistics)ofEDA,PhilosophyofEDA,TheDataScienceProcess,CaseStudy:RealDirect(onliner

ealestatefirm).ThreeBasicMachineLearningAlgorithms:LinearRegression,kNearestNeigh

bors(k-NN),k-means

LaboratorySessions/Experimentallearning:VariousProgramsusingKNNAlgorithm

Videolink :https://nptel.ac.in/courses/106/107/106107220/

UNIT-III

OneMoreMachineLearningAlgorithmandUsageinApplications:Motivatingapplication: FilteringSpam,WhyLinearRegressionandk-NNarepoorchoicesforFilteringSpam,NaiveBayes and why itworks forFilteringSpam, Data

Wrangling: APIs and othertools for scrappingtheWeb

Laboratory Sessions/ Experimental learning: Experiment to analyze structured data and unstructured data.

Videolink:https://www.digimat.in/nptel/courses/video/111104098/L01.html

UNIT-IV FeatureGenerationandFeatureSelection(ExtractingMeaningFromData):Motivatingap plication: user(customer) retention.Feature Generation (brainstorming,role of domainexpertise, and place for imagination), Feature Selection algorithms. Filters; Wrappers; DecisionTrees;RandomForests.RecommendationSystems:BuildingaUser-FacingDataProduct,AlgorithmicingredientsofaRecommendationEngine,Dimensionalit yReduction,SingularValueDecomposition,PrincipalComponentAnalysis,Exercise:build yourownrecommendationsystem

8

Н

r

S

LaboratorySessions/Experimentallearning:Implementationofvariouscasestudies.

Videolink:https://www.youtube.com/watch?v=KTzXVnRInw4

UNIT-V	U			-V	
--------	---	--	--	----	--

MiningSocial-

NetworkGraphs:Socialnetworksasgraphs,Clusteringofgraphs,Directdiscoveryofcomm8
H
H
unitiesingraphs,Partitioningofgraphs,Neighborhoodpropertiesingraphs,DataVisualiza
tion:Basicprinciples,ideasandtoolsfordatavisualization.DataScienceand Ethical Issues,
Discussions on privacy, security, ethics, Next-generation data scientistsLaboratory
Sessions/Experimentallearning:VariouscasestudiestodifferentiateSQL
andNOSQLDatabases8
H
H
H

Videolink:https://www.digimat.in/nptel/courses/video/106106169/L01.html

Cours	Course Outcomes: After completing the course, the students will be able to			
CO1	Definedata scienceanditsfundamentals			
CO2	Demonstrate the process indatascience			
CO3	Explainmachinelearningalgorithms necessaryfordatasciences			
CO4	Illustrate the process of features election and analysis of data analysis algorithms			
CO5	Visualize the data and follow of ethics			

Reference Books

1. CathyO'NeilandRachelSchutt, "DoingDataScience", StraightTalkFromThe

	Frontline.O'Reilly,2014
2.	Jure Leskovek, Anand Rajaraman and Jeffrey Ullman, "Mining of Massive Datasets.
	v2.1",CambridgeUniversityPress,2014
3.	KevinP.Murphy, "MachineLearning: AProbabilisticPerspective", 2013.
4.	JiaweiHan, Micheline Kamberand Jian Pei, "Data Mining: Concepts and
	Techniques",ThirdEdition,2012.

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	P01	PO2	PO3	PO4	PO5	PO6	P07	P08	PO9	PO10	PO11	PO12
CO1	3	3	2	-	-	-	-	-	-	-	-	-
CO2	3	3	3	-	-	-	-	-	-	-	-	-
CO3	3	3	3	-	-	-	-	-	-	-	-	-
CO4	3	3	3	-	-	-	-	-	-	-	-	-
CO5	2	2	2	-	-	-	-	-	-	-	-	-

	Semester	: VI	
	WEB DEVELOPM (Theory and P		
C οι	Irse Code: MVJ21CG62	CIE Marks:50+50	
Credits: L:T:P: 3:0:1 SEE Marks: 50 +50			
Hours:40 L+ 26 P SEE Duration: 03+03 Ho			
C οι	rse Learning Objectives: The students will be	able to	
1	To understand different Internet Technolog	ies.	
2	To learn java-specific web services architecture		
3	3 To understand the SQL and JDBC		
4	To learn the AJAX and JSON		

UNIT-I

Website Basics, HTML5, CSS 3, Web 2.0: Web Essentials: Clients, Servers and
Communication ,The Internet, Basic Internet protocols, World wide web, HTTP8
HrsRequest Message , HTTP Response Message, Web Clients, Web Servers, HTML5 :
Tables, Lists, Image, HTML5 control elements , Semantic elements , Drag and Drop,
Audio, Video controls, CSS3: Inline, embedded and external style sheets, Rule
cascading, Inheritance, Backgrounds, Border Images, Colours, Shadows, Text,
Transformations8
Hrs

Video link / Additional online information:

https://www.youtube.com/watch?v=QEtWL4IWIL4

UNIT-II

Client side Programming: An Introduction to java Script, JavaScript DOM Model, Date
and Object, Regular Expression, Exception Handling, Validation, Built-in Objects, Event8
HrsHandling, DHTML with JavaScript, JSON introduction, Syntax, Function Files, Http
Request, SQL.8
Request, SQL.

Video link / Additional online information:

https://www.youtube.com/watch?v=uDwSnnhl1Ng&list=PLsyeobzWxl7qtP8Lo
 9TReqUMkiOp446cV

UNIT-III

Server Side Programming: Java Servlet Architecture, Servlet Life Cycle, Form GET and	8
POST actions, Session handling, Installing and Configuring Apache Tomcat Web Server,	Hrs
Database Connectivity: JDBC perspectives, JDBC Program Example, JSP: Understanding	

Java server page, JSP Standard Tag Library (JSTL), Creating HTML form using JSP Code.

Video link / Additional online information:

 <u>https://www.youtube.com/watch?v=7TOmdDJc14s&list=PLsyeobzWxl7pUPF2x</u> jjJiG4BKC9x GY46

UNIT-IV

PHP: Introduction to PHP, PHP using PHP, Variables, Program Control, Built-in
 Functions, Form Validation, Basic command with PHP examples, Connection to server,
 creating Database, Selecting Database, Listing Database, listing table names Creating a
 table, Inserting data, deleting data and tables, altering tables.

Video link / Additional online information :

https://www.youtube.com/watch?v=itRkLa2kq6w

UNIT-V

AJAX: Ajax client server architecture, Xml HTTP request object, Call back methods.8Advanced JavaScript and jQuery, JavaScript Pseudo-Classes, jQuery Foundations, WebHrsServices: Introduction, Java web services Basics, Creating, Publishing, Testing andDescribing a web services, Database driven web service from an application.

Video link / Additional online information

• https://www.youtube.com/watch?v=qk9MWbyRlhE

LABORATORY EXPERIMENTS

- 1. Create a web page with the following.
- a. Cascading style sheets.
- b. Embedded style sheets.

c. Inline style sheets.

Use our college information(Department of CSE) for the web pages.

2. Design HTML form for keeping student record and validate it using Java script.

3. Write an HTML program to design an entry form of student details and send it to store at database server like SQL, Oracle or MS Access.

4. Write a JavaScript code that displays text "TEXT-GROWING" with increasing font size in the interval of 100ms in RED COLOR, when the font size reaches 50pt it displays "TEXT-

SHRINKING" in BLUE color. Then the font size decreases to 5pt.

5. Assume four users user1, user2, user3 and user4 having the passwords pwd1, pwd2, pwd3 and pwd4 respectively. Write a servlet for doing the following. 1.Create a Cookie and add these four user id's and passwords to this Cookie. 2. Read the user id and passwords entered in the Login form and authenticate with the values available in the cookies.

- 6. Write a JSP which insert the details of the 3 or 4 users who register with the web site by using registration form. Authenticate the user when he submits the login form using the user name and password from the database.
- 7. Validate the form using PHP regular expression. PHP stores a form data in to database
- 8. Write a PHP program to display a digital clock which displays the current time of the server.
- 9. Creating simple application to access data base using JDBC Formatting HTML with CSS.
- 10. Write a Program for manipulating Databases and SQL with real time application

Any 10 experiments to be conducted

Cours	Course Outcomes: After completing the course, the students will be able to				
CO1	Construct a basic website using HTML and Cascading Style Sheets.				
CO2	Build dynamic web page with validation using Java Script objects and by applying different event handling mechanism				
CO3	Develop server side programs using Servlets and JSP.				
CO4	Construct simple web pages in PHP and to represent data in XML format.				
CO5	Use AJAX and web services to develop interactive web applications.				

Ref	Reference Books				
1.	Deitel and Deitel and Nieto, Internet and World Wide Web, How to Program, Prentice				
	Hall, 5th Edition, 2011.				
2.	Randy Connolly, Ricardo Hoar, "Fundamentals of Web Development", 1stEdition,				
	Pearson Education India. (ISBN:978-9332575271)				
3.	Stephen Wynkoop and John Burke — Running a Perfect Websitell, QUE, 2nd				
	Edition,1999				

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Laboratory- 50 Marks

The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are awarded 10 marks. Total marks for the laboratory is 50.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marksare executed by means of an examination.

The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level

	Semester	:: VI		
	MACHINE LEARN (Theory and P			
C οι	Irse Code: MVJ21CG63	CIE Marks:50+50		
Cre	dits: L:T:P: 3:0:1	SEE Marks: 50 +50		
Ηοι	Hours:40 L+ 26 P SEE Duration: 03+03 Hours			
Co ι	rse Learning Objectives: The students will be	able to		
1	Define machine learning and problems releve	vant to machine learning		
2	Differentiate supervised, unsupervised and reinforcement learning.			
3	Apply neural networks, Bayes classifier and k nearest neighbor, for problems appear inmachine learning.			
4	Perform statistical analysis of machine learn	ing techniques.		

UNIT-I			
Introduction: Well posed learning problems, Designing a Learning system,	8		
Perspective and Issues in Machine Learning.	Hrs		
Concept Learning: Concept learning task, Concept learning as search, Find-S			
algorithm, Version space, Candidate Elimination algorithm, Inductive Bias.			
Video link / Additional online information (related to module if any):			
 https://www.youtube.com/watch?v=rQ3oi9g8alY 			
UNIT-II			
Decision Tree Learning	011-		
Decision tree representation, Appropriate problems for decision tree learning, Basic	8Hr s		
decision tree learning algorithm, hypothesis space search in decision tree learning,			
Inductive bias in decision tree learning, Issues in decision tree learning.			
Video link / Additional online information (related to module if any):			
 https://www.youtube.com/watch?v=qDcI-FRnwSU 			
UNIT-III	0		
Bayesian Learning and Evaluating Hypotheses	8 Hrs		
Bayesian Learning: Introduction, Bayes theorem, Bayes theorem and concept	1113		
learning, MDL principle, Naive Bayes classifier, Bayesian belief networks, EM			

algorithm.

Evaluating Hypotheses: Estimating hypothesis accuracy, Basics of sampling theorem, General approach for deriving confidence intervals, Difference in error of two hypothesis

Video link / Additional online information (related to module if any):

• https://www.youtube.com/watch?v=480a_2jRdK0

UNIT-IV

Artificial Neural Networks and Instance based Learning

Artificial Neural Networks:Introduction, Neural Network representation,8HrAppropriate problems, Perceptrons, Backpropagation algorithm.Instanced BasedLearning:Introduction, k-nearest neighbor learning, locally weighted regression.8Hr

Video link:

https://www.youtube.com/watch?v=xbYgKoG4x2g&list=PL53BE265CE4A6C05
 6.

UNIT-V

8 Hrs

Reinforcement Learning and Deep Learning

Reinforcement Learning: Introduction, Learning Task, Q Learning.

Deep Learning: Introduction to Deep Learning-Reasons to go Deep Learning, Introduction to Convolutional Networks ,Restricted Boltzmann Machines,Deep Belief

Nets, Recurrent Nets.

Video link:

https://www.youtube.com/watch?v=TIIDzLZPyhY&list=PLyqSpQzTE6M_FwzHF

LABORATORY EXPERIMENTS

1. Implement and demonstrate the FIND-S algorithm for finding the most specific hypothesis based on a given set of training data samples. Read the training data from a .CSV file.

2. For a given set of training data examples stored in a .CSV file, implement and demonstrate the Candidate-Elimination algorithm to output a description of the set of all hypotheses consistent with the training examples.

- 3. Develop a program to demonstrate the prediction of values of a given dataset using Linear regression
- 4. Write a program to demonstrate the working of the decision tree based **ID3 algorithm**. Use an appropriate data set for building the decision tree and apply this knowledge to classify a new sample.
- 5. Build an Artificial Neural Network by implementing the **Backpropagation algorithm** and test the same using appropriate data sets.

- 6. Write a program to implement the **naïve Bayesian classifier** for a sample training data set stored as a .CSV file. Compute the accuracy of the classifier, considering few test data sets.
- 7. Assuming a set of documents that need to be classified, use the **naïve Bayesian Classifier** model to perform this task. Built-in Java classes/API can be used to write the program. Calculate the accuracy, precision, and recall for your data set.
- 8. Write a program to construct a **Bayesian network** considering medical data. Use this model to demonstrate the diagnosis of heart patients using standard Heart Disease Data Set. You can use Java/Python ML library classes/API.
- 9. Apply **EM algorithm** to cluster a set of data stored in a .CSV file. Use the same dataset for clustering using *k*-Means algorithm. Compare the results of these two algorithms and comment on the quality of clustering. You can add Java/Python ML library classes/API in the program.
- 10. Write a program to implement *k*-Nearest Neighbour algorithm to classify the iris data set. Print both correct and wrong predictions. Java/Python ML library classes can be used for this problem.
- 11. Implement the non-parametric **Locally Weighted Regression algorithm** in order to fit data points. Select appropriate data set for your experiment and draw graphs.

Any 11 experiments to be conducted

Cours	Course Outcomes: After completing the course, the students will be able to				
CO1	Identify the issues in machine learning and Algorithms for solving it.				
CO2	Explain theory of probability and statistics related to machine learning.				
CO3	Investigate concept learning, ANN, Bayes classifier, k nearest neighbor, Q, Learning.				
CO4	Identify the difference between Machine Learning and Deep Learning and using				
	scenario				
CO5	Explain the concepts of Q learning and deep learning				

Ref	erence Books
1.	Tom M. Mitchell, Machine Learning, India Edition 2013, McGraw Hill Education.
2.	Trevor Hastie, Robert Tibshirani, Jerome Friedman, h The Elements of Statistical
	Learning, 2nd edition, springer series in statistics.
3.	EthemAlpaydin, Introduction to machine learning, second edition, MIT press.

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the self -study are 20 (2 presentations are be held for 10

marks each). The marks obtained in test, quiz and self -studies are added to get marks out of 100 and report CIE for 50 marks.

Laboratory- 50 Marks

The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are awarded 10 marks. Total marks for the laboratory is 50.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marksare executed by means of an examination.

The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO1	3	-	-	-	1	-	-	-	-	-	-	2
CO2	3	3	3	-	-	-	-	-	1	-	1	2
CO3	3	2	2	1	3	-	-	-	-	-	1	3
CO4	3	2	3	-	-	-	-	-	-	2	3	2
CO5	3	2	3	-	-	-	-	-	-	2	3	2

		Semester: VI
BRA	IN COMPUTER INTERFACE	
		(Theory)
Cou	rse Code: MVJ21CG641	CIE Marks:100
Cre	dits: L:T:P:S: 3:0:0:0	SEE Marks: 100
Ηοι	irs: 40L	SEE Duration: 3 Hrs
Cou	rse Learning Objectives: The stuc	dents will be able to
1	Discuss different types of BCI sig	gnals from instruments
2	Discuss and compare different t	types of brain signals used for feature extraction
3	Discuss the major components	of BCI which makes up the system
4	Explain the applications based of	on BCI
5	Use the toolbox BCILAB	

UNIT-I							
What is BCI? How do BCI works, Brain computer interface types-Invasive,	8Hrs						
Partially invasive, Non-invasive, Brain signal for BCI signal-EEG, MEG, fNIRS, fMRI							
, Non brain signals for BCI							
Video link / Additional online information :							
https://nptel.ac.in/courses/108/108/108108167/							
UNIT-II							
EEG Process, Temporal characteristics, Spatial Characteristics, Oscillatory EEG	8Hrs						
activity, eventrelated potentials (ERP), slow cortical potentials (SCP), and							
neuronal potentials. Motor Imagery BCI							
Video link / Additional online information :							
https://www.youtube.com/watch?v=PWRGe3uyS4c							
UNIT-III							
Signal Processing-Spatial, temporal, spectral, spatio-temporal filters, Feature	8Hrs						
extraction, Machine Learning							
Video link / Additional online information :							
https://www.youtube.com/watch?v=PWRGe3uyS4c&t=214							
UNIT-IV							
BCI monitoring hardware and hardware, BCI application-P300 speller, neuro	8Hrs						
prosthetic devices							
Video link / Additional online information :							
https://www.youtube.com/watch?v=KfaGvb9YfVM							
UNIT-V							
Toolbox Architecture, Plug-in concepts, Implementing ERP Based BCI, ERP	8Hrs						

Analysis in BCI Lab

Video link / Additional online information :

https://www.youtube.com/watch?v=PWRGe3uyS4c&t=322

Cours	Course Outcomes: After completing the course, the students will be able to								
CO1	Acquire the brain signal in the format required for the specific application								
CO2	Preprocessing the signal for signal enhancement								
CO3	Extract the dominant and required features								
CO4	Classify and derive the control signals for BCI applications								
CO5	Apply the BCI knowledge for medical applications								

Reference Books

1.	R. Wolpaw and Elizabeth Winter Wolpaw, "Review of "Brain- Computer Interfaces,
	principles and practice", Biomed Engineering online
2.	Brain Computer Principles and Practices", Jonathan Wolpaw, Elizabeth Winter Wolpaw,
	Oxford University Press

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO1	2	1	1	-	1	1	2		-	-	-	-
CO2	3	3	3	3	2	-	-	-	-	-	-	-
CO3	1	-	-	1	1	-	2	3	3	3	3	-
CO4	3	3	2	2	2	-	-		-	-	-	3
CO5	3	3	3	3	3	2	-	-	3	3	3	3

	Semest	er: VI					
	VISUAL DESIGN & C	COMMUNICATION					
	(Theo	ory)					
Cou	rse Code: MVJ21CG642	CIE Marks:100					
Crea	Credits: L:T:P:S: 3:0:0:0 SEE Marks: 100						
Hou	Hours: 40L SEE Duration: 3 Hrs						
Cou	rse Learning Objectives: The students will	be able to					
1	Apply appropriate communication skills a	cross settings, purposes, and audiences.					
2	Demonstrate knowledge of communication theory and application.						

UNIT-I								
Need for and the Importance of Human and Visual Communication.	8Hrs							
Communication a expression, skill and process, Understanding Communication:								
SMRC-Model								
UNIT-II								
Communication as a process. Message, Meaning, Connotation, Denotation	8Hrs							
Culture/Codes etc Levels of communication: Technical, Semantic, and Pragmatic.								
The semiotic landscape: language and visual communication, narrative								
representation								
UNIT-III								
Fundamentals of Design: Definition. Approaches to Design, Centrality of Design,	8Hrs							
Elements of Design: Line, Shape, Space, Colour, Texture. Form Etc. Principles of								
Design: Symmetry. Rhythm, Contrast, Balance Mass/Scale etc. Design and								
Designers (Need, role, process, methodologies etc.)								
UNIT-IV								
Principles of Visual and other Sensory Perceptions. Colour psychology and theory	8Hrs							
(some aspects) Definition, Optical / Visual Illusions Etc Various stages of design								
process- problem identification, search for solution refinement, analysis, decision								
making, and implementation								
UNIT-V								
Basics of Graphic Design. Definition, Elements of GD, Design process-research, a	8Hrs							
source of concept, the process of developing ideas-verbal, visual, combination &								
thematic, visual thinking, associative techniques, materials, tools (precision								

instruments etc.) design execution, and presentation.

Course Outcomes: After completing the course, the students will be able toCO1Demonstrate critical and innovative thinkingCO2Display competence in oral, written, and visual communicationCO3Apply communication theories.

Reference Books

_	
1.	Communication between cultures - Larry A. Samovar, Richard E. Porter, Edwin R.
	McDaniel & Carolyn Sexton Roy, Monica Eckman, USA, 2012
2.	Introduction to Communication studies - John Fiske & Henry Jenkins 3rd edition,
	Routledge, Oxon 2011
3.	An Introduction to communication studies - Sheila Steinberg, Juta & Co., Cape Town,
	2007
4.	One World Many Voices: Our Cultures - Marilyn Marquis & Sarah Nielsen, Wingspan
	Press, California, 2010

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	1	-	1	1	2	-	-		-	-
CO2	3	3	3	3	2	-	-	-	-	-	-	-
CO3	1	-	-	1	1	-	2	3	3	3	3	-

	Semeste	er: VI				
	INFORMATION	I RETRIEVAL				
	(Theo	ry)				
Co ι	rse Code: MVJ21CG643	CIE Marks:100				
Credits: L:T:P:S: 3:0:0:0 SEE Marks: 100						
Ηοι	Hours: 40L SEE Duration: 3 Hrs					
Co ι	rse Learning Objectives: The students will b	e able to				
1	To understand the basics of Information Retrieval.					
2	To understand machine learning techniques for text classification and clustering.					
3	To understand various search engine system operations.					
4	To learn different techniques of recommender system.					

UNIT-I						
Information Retrieval – Early Developments – The IR Problem – The Users Task –	8 Hrs					
Information versus Data Retrieval – The IR System – The Software Architecture of						
the IR System – The Retrieval and Ranking Processes – The Web – The e-						
Publishing Era – How the web changed Search – Practical Issues on the Web –						
How People Search – Search Interfaces Today – Visualization in Search Interfaces.						
Video link / Additional online information (related to module if any):						
https://www.youtube.com/watch?v=fFxpSmyICwI						
UNIT-II						
Basic IR Models – Boolean Model – TF-IDF (Term Frequency/Inverse Document	8 Hrs					
Frequency) Weighting – Vector Model – Probabilistic Model – Latent Semantic						
Indexing Model – Neural Network Model – Retrieval Evaluation – Retrieval						
Metrics – Precision and Recall – Reference Collection – User-based Evaluation –						
Relevance Feedback and Query Expansion – Explicit Relevance Feedback.						
Video link / Additional online information (related to module if any):						
https://www.youtube.com/watch?v=m0oiAOgSQFw						
UNIT-III						
A Characterization of Text Classification – Unsupervised Algorithms: Clustering –	8 Hrs					
Naïve Text Classification – Supervised Algorithms – Decision Tree – k-NN						
Classifier – SVM Classifier – Feature Selection or Dimensionality Reduction –						
Evaluation metrics – Accuracy and Error – Organizing the classes – Indexing and						
Searching – Inverted Indexes – Sequential Searching – Multi-dimensional						
Indexing.						
Video link / Additional online information (related to module if any):						

https://www.youtube.com/watch?v=vuc93jbO2Dw							
The Web – Search Engine Architectures – Cluster based Architecture –	8Hrs						
Distributed Architectures – Search Engine Ranking – Link based Ranking – Simple							
Ranking Functions – Learning to Rank – Evaluations – Search Engine Ranking –							
Search Engine User Interaction – Browsing – Applications of a Web Crawler –							
Taxonomy – Architecture and Implementation – Scheduling Algorithms –							
Evaluation.							
Video link / Additional online information (related to module if any):							
https://www.youtube.com/watch?v=JjywDlY1OJk							
UNIT-V							
Recommender Systems Functions – Data and Knowledge Sources –	8Hrs						
Recommendation Techniques – Basics of Content-based Recommender Systems							
– High Level Architecture – Advantages and Drawbacks of Content-based							
Filtering – Collaborative Filtering – Matrix factorization models – Neighborhood							
models.							
Video link / Additional online information (related to module if any):							
https://www.youtube.com/watch?v=1JRrCEgiyHM							

Cours	Course Outcomes: After completing the course, the students will be able to						
CO1	Use an open source search engine framework and explore its capabilities						
CO2	Evaluate Boolean Model						
CO3	Apply appropriate method of classification or clustering.						
CO4	Design and implement innovative features in a search engine.						
CO5	Design and implement a recommender system.						

Refe	erence Books
1.	Ricardo Baeza-Yates and Berthier Ribeiro-Neto, -Modern Information Retrieval: The
	Concepts and Technology behind Search, Second Edition, ACM Press Books, 2011.
2.	Ricci, F, Rokach, L. Shapira, B.Kantor, —Recommender Systems Handbook, First Edition,
	2011.
3.	C. Manning, P. Raghavan, and H. Schütze, -Introduction to Information Retrieval,
	Cambridge University Press, 2008.
4.	Stefan Buettcher, Charles L. A. Clarke and Gordon V. Cormack, —Information Retrieval:
	Implementing and Evaluating Search Engines, The MIT Press, 2010.

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	-	-	-	-	-	1	-	2	-	-
CO2	3	2	2	1	-	-	-	-	-	2	-	1
CO3	2	3	1	3	-	1	1	1	-	1	-	2
CO4	3	2	2	1	-	2	-	-	-	-	2	1
CO5	2	2	3	3	-	1	2	1	2	-	1	2

	Seme	ester: VI						
	GPU COMPUTING							
	(Th	eory)						
Course Code: MVJ21CG644 CIE Marks:100								
Cree	dits: L:T:P:S: 3:0:0:0	SEE Marks: 100						
Hou	Hours: 40L SEE Duration: 3 Hrs							
Cou	rse Learning Objectives: The students wi	ll be able to						
1	To learn parallel programming with graphics processing units (GPUs).							
2	To introduce different GPU programming models.							

UNIT-I					
Evolution of GPU architectures – Understanding Parallelism with GPU –Typical	8Hrs				
GPU Architecture – CUDA Hardware Overview – Threads, Blocks, Grids, Warps,					
Scheduling – Memory Handling with CUDA: Shared Memory, Global Memory,					
Constant Memory and Texture Memory.					
Video link / Additional online information (related to module if any):					
https://nptel.ac.in/courses/106/105/106105220/					
UNIT-II					
Using CUDA – Multi GPU – Multi GPU Solutions – Optimizing CUDA Applications:	8Hrs				
Problem Decomposition, Memory Considerations, Transfers, Thread Usage,					
Resource Contentions.					
Video link / Additional online information (related to module if any):					
https://nptel.ac.in/courses/106/105/106105220/					
UNIT-III					
Common Problems: CUDA Error Handling, Parallel Programming Issues,	8 Hrs				
Synchronization, Algorithmic Issues, Finding and Avoiding Errors.					
Video link / Additional online information (related to module if any):					
https://nptel.ac.in/courses/106/105/106105220/					
UNIT-IV					
OpenCL Standard – Kernels – Host Device Interaction – Execution Environment –	8Hrs				
Memory Model – Basic OpenCL Examples.					
Video link / Additional online information (related to module if any):					
 http://www.nvidia.com/object/cuda_home_new.html 					
UNIT-V					
Parallel Patterns: Convolution, Prefix Sum, Sparse Matrix – Matrix Multiplication	8Hrs				

– Programming Heterogeneous Cluster.

Video link / Additional online information (related to module if any):

http://www.openCL.org

Cours	Course Outcomes: After completing the course, the students will be able to						
CO1	Describe GPU Architecture						
CO2	Write programs using CUDA, identify issues and debug them						
CO3	Implement efficient algorithms in GPUs for common application kernels, such as						
	matrix multiplication						
CO4	Write simple programs using OpenCL						
CO5	Identify efficient parallel programming patterns to solve problems						

Refe	erence Books							
1.	Shane Cook, CUDA Programming: A Developers Guide to Parallel Computing with GPUs							
	(Applications of GPU Computing), First Edition, Morgan Kaufmann, 2012.							
2.	David R. Kaeli, Perhaad Mistry, Dana Schaa, Dong Ping Zhang, Heterogeneous							
	computing with OpenCL, 3rd Edition, Morgan Kauffman, 2015.							
3.	Nicholas Wilt, CUDA Handbook: A Comprehensive Guide to GPU Programming, Addison							
	-Wesley, 2013.							
4.	Jason Sanders, Edward Kandrot, CUDA by Example: An Introduction to General Purpose							
	GPU Programming^, Addison – Wesley, 2010.							

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may

have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	P01	PO2	PO3	PO4	PO5	PO6	P07	P08	PO9	PO10	PO11	PO12
CO1	3	3	1	-	-	-	-	-	-	-	-	3
CO2	3	3	1	-	-	-	-	-	-	-	-	3
CO3	3	3	1	2	-	-	-	-	-	1	-	3
CO4	3	3	3	3	-	-	-	2	2	2	-	3
CO5	3	3	3	3	-	-	2	2	2	2	-	3

	S	emester: VI			
	VISUALIZA	ATION TECHNIQUES			
		(Theory)			
Course Code: MVJ21CG645 CIE Marks:100					
Crec	lits: L:T:P:S: 3:0:0:0	SEE Marks: 100			
Hou	rs: 40L	SEE Duration: 3 Hrs			
Cou	rse Learning Objectives: The students	s will be able to			
learn the value of visualization, specific techniques in information visualization					
1	scientific visualization, and how methods.	understand how to best leverage visualization			

UNIT-I	
Introduction –Visualization Stages –Computational Support –Issues –Different	8Hrs
Types of Tasks –Data representation –Limitation: Display Space, Rendering Time,	
Navigation Link.	
UNIT-II	
Human Factors –Foundation for a Science of Data Visualization –Environment-	8Hrs
Optics – Optimal Display –Overview about Lightness, Brightness, Contrast,	
Constancy, Color –Visual Attention that Pops Out –Types of Data –Data	
Complexity –The Encoding of Values – Encoding of Relation –Relation and	
Connection –Alternative Canvass	
UNIT-III	
Human Vision –Space Limitation –Time Limitations –Design –Exploration of	8Hrs
Complex Information Space – Figure Caption in Visual Interface – Visual Objects	
and Data Objects – Space Perception and Data in Space –Images, Narrative and	
Gestures for Explanation	
UNIT-IV	
Norman [*] s Action Cycle –Interacting with Visualization –Interaction for	8Hrs
Information Visualization –Interaction for Navigation –Interaction with Models –	00
Interacting with Visualization –Interactive 3D Illustrations with Images and Text –	
Personal View –Attitude – user perspective –Convergence –Sketching –	
Evaluation.	
UNIT-V	
	8Hrs
Design –Virtual Reality: Interactive Medical Application –Tactile Maps for visually	0115
challenged People – Animation Design for Simulation – Integrating Spatial and	
Nonspatial Data –Innovating the Interaction –Small Interactive Calendars –	
Selecting One from Many– Web Browsing Through a Key Hole –Communication	
Analysis –Archival Galaxies	

Cours	Course Outcomes: After completing the course, the students will be able to								
CO1	Understand the fundamentals of data visualization								
CO2	Acquire knowledge about the issues in data representation								
CO3	Visualize the complex engineering design.								
CO4	Design real time interactive information visualization system								

CO5 Apply the visualization techniques in practical applications

erence Books
Robert Spence, "Information Visualization: An Introduction", Third Edition, Pearson
Education, 2014
Colin Ware, "Information Visualization Perception for Design", ThirdEdition, Morgan
Kaufmann, 2012.
Robert Spence, "Information Visualization Design for Interaction", Second Edition,
Pearson Education, 2006
Benjamin B. Bederson, Ben shneiderman, "The Craft of Information Visualization",
Morgan Kaufmann, 2003.

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO1	3	-	-	-	1	-	-	-	-	-	-	2
CO2	3	3	3	2	-	-	-	-	1	-	1	2
CO3	2	2	2	1	3	-	-	-	-	-	1	3
CO4	3	2	3	2	1	-	-	-	-	2	3	2
CO5	3	2	3	1	-	-	-	-	-	2	3	2

	Semester	: VI				
ANG	ULAR JS AND NODE JS					
	(Theory&	Lab)				
Cou	rse Code: MVJ21AEC66	CIE Marks:100				
Crea	Credits: L:T:P:S: 2:0:0:0 SEE Marks: 100					
Hou	Hours: 40L SEE Duration: 3 Hrs					
Cou	rse Learning Objectives: The students will be	able to				
1	To learn the basics of Angular JS.					
2	To understand the Angular JS Modules					
3	To implement Forms, inputs and Services					
4	To implement Directives and Databases					
5	To understand basics of Node JS.					

UNIT-I	
Introduction To Angular JS: Introduction – Features – Angular JSModel-View-	6Hrs
Controller – Expression - Directives and Controllers.	
UNIT-II	
Angular JS Modules: Arrays – Working with ng-model – Working with Forms –	6Hrs
Form Validation – Error Handling with Forms – Nested Forms with ng-form –	
Other Form Controls.	
UNIT-III	
Directives& Building Databases: Part I- Filters – Using Filters in Controllers and	6Hrs
Services – Angular JS Services – Internal Angular JS Services – Custom Angular JS	
Services	
UNIT-IV	
Directives& Building Databases: Part-II- Directives – Alternatives to Custom	6Hrs
Directives – Understanding the Basic options – Interacting with Server –HTTP	
Services – Building Database, Front End and BackEnd	
UNIT-V	
Introduction to NODE .JS: Introduction –Using the Terminals – Editors –Building a	6Hrs
Webserver with Node – The HTTPModule – Views and Layouts.	

Cours	Course Outcomes: After completing the course, the students will be able to							
CO1	Describe the features of Angular JS.							
CO2	Recognize the form validations and controls.							
CO3	Implement Directives and Controllers							
CO4	Evaluate and create database for simple application.							
CO5	Plan and build webservers with node using Node .JS.							

Reference Books

y with
.4.
14.

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO1	3	-	-	-	1	-	-	-	-	-	-	2
CO2	3	3	3	2	-	-	-	-	1	-	1	2
CO3	2	2	2	1	3	-	-	-	-	-	1	3
CO4	3	2	3	2	1	-	-	-	-	2	3	2
CO5	3	2	3	1	-	-	-	-	-	2	3	2