VII SEMESTER

Semester:VII								
	INTERNET OF THINGS & LAB							
	(Theory	and Practice)						
Cou	rse Code: MVJ21CG71	CIE Marks:50+50						
Credits: L:T:P: 3:0:1 SEE Marks: 50 +50								
Hou	Hours:40 L+ 26 P SEE Duration: 03+03 Hours							
Cou	rse Learning Objectives: The students w	vill be able to						
1	To learn the basic issues, policy and challenges in the Internet.							
	To get an idea of some of the application areas where Internet of Things can be							
2	applied.							
3	To understand the cloud and internet environment.							
4	To understand the various modes of co	mmunications with Internet.						

UNIT-I					
Introduction to IoT: Definition – Foundations – Challenges and Issues -	8 Hrs				
Identification - Security. Components in internet of things: Control Units -					
Sensors – Communication modules –Power Sources – Communication	l				
Technologies – RFID – Bluetooth – Zigbee – Wifi – Rflinks – Mobile Internet –	l				
Wired Communication-IoT Platform Overview-Raspberry pi-Arduino boards.*	l				
Video link / Additional online information (related to module if any):	l				
 http://www.theinternetofthings.eu/what-is-the-internet-of-things. 	l				
	L				
UNIT-II					
IoT Protocols: Protocol Standardization for IoT-M2M and WSN Protocols-SCADA	8 Hrs				
and RFID Protocols-Issues with IoT Standardization-Protocols-IEEE 802.15.4-	l				
BACNet Protocol-Zigbee Architecture - Network layer – APS Layer – Security.*	l				
Video link / Additional online information (related to module if any):					
https://inductiveautomation.com/resources/article/what-is-scada	L				
UNIT-III					
Resource Management in the Internet of Things: Clustering - Software Agents -	8Hrs				
Data Synchronization - Clustering Principles in an Internet of Things Architecture					

Data Synchronization - Clustering Principles in an Internet of Things Architecture - The Role of Context - Design Guidelines -Software Agents for Object – Data Synchronization- Types of Network Architectures - Fundamental Concepts of Agility and Autonomy-Enabling Autonomy and Agility by the Internet of Things -The Evolution from the RFID-based EPC Network to an Agent based Internet of

Things- Agents for the Behaviour of Objects.*	
Video link / Additional online information (related to module if any):	
RFID Applications:	
https://www.digiteum.com/rfid-technology-internet-of-things	
UNIT-IV	Olling
Case Study and IOI Application Development: IOI applications in nome-	onrs
infrastructures security-Industries- IoT electronic equipment's. Use of Big Data	
and Visualization in IoT Industry 4.0 concepts - Sensors and sensor Node -	
Interfacing using Raspberry Pi/Arduino- Web Enabled Constrained Devices.*	
Video link / Additional online information (related to module if any):	
 https://www.simform.com/home-automation-using-internet-of-things/ 	
UNIT-V	
Web of Things: Web of Things versus Internet of Things-Architecture	8 Hrs
Standardization for WoT-Platform Middleware for WoT- WoT Portals and	
Business Intelligence-Cloud of Things: Grid/SOA and Cloud Computing-Cloud	
Standards –Cloud of Things Architecture-Open Source e-Health sensor platform.	
Video link / Additional online information (related to module if any):	
https://www.water-io.com/iot-vs-wot	
Ι ΔΒΟΒΔΤΟΡΥ ΕΧΡΕΡΙΜΕΝΤS	
1. Familiarization with Arduino/Raspberry Pi and perform necessary software insta	llation.
2. To interface LED/Buzzer with Arduino/Raspberry Pi and write a program to tur	n ON LE
for 1 sec after every 2 seconds.	
3. To interface motor using relay with Arduno/Raspberry Pl and write a program t motor when push button is pressed.	o turn O
4. To interface OLED with Arduino/Raspberry Pi and write a program to print ter	nperatur
and humidity readings on it.	
5. To interface Bluetooth with Arduino/Raspberry Pi and write a program to se	nd sense
6. To interface Push button/Digital sensor (IR/LDR) with Arduino / Raspberry Pi ar	nd write
program to turn ON LED when push button is pressed or at sensor detection.	
7. To interface DHT11 sensor with Arduino/Raspberry Pi and write a program	n to prii
temperature and humidity readings.	I I
8. Write a program on Arduino/Raspberry Pi to publish temperature data to MQTT 9. To interface Bluetooth with Arduino/Raspberry Pi and write a program to	Droker.
ON/OFF when '1'/'0' is received from smartphone using Bluetooth.	

Cours	Course Outcomes: After completing the course, the students will be able to				
CO1	Identify the components of IoT.				
CO2	Analyze various protocols of IoT.				
CO3	Design portable IoT using appropriate boards				
CO4	Develop schemes for the applications of IOT in real time scenarios.				
CO5	Design business Intelligence and Information Security for WoT				

Reference Books

1	Honbo Zhou, "The Internet of Things in the Cloud: A Middleware Perspective" -CRC
	Press-2012.
2	Dieter Uckelmann, Mark Harrison, "Architecting the Internet of Things", Springer2011.
3.	ArshdeepBahga, Vijay Madisetti, "Internet of Things (A Hands-On-Approach)", VPT,
	2014.
4.	Olivier Hersent, David Boswarthick, Omar Elloumi, "The Internet of Things – Key
	applications and Protocols", Wiley, 2012.

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Laboratory- 50 Marks

The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are awarded 10 marks. Total marks for the laboratory is 50.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marksare executed by means of an examination.

The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80

marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Semester: VII							
	ARTIFICIAL INTELLIGENCE						
	(Theory)						
Cou	ourse Code: MVJ21CG721 CIE Marks:100						
Cred	Credits: L:T:P:S: 3:0:0:0 SEE Marks: 100						
Hou	Hours: 40L SEE Duration: 3 Hrs						
Cou	Course Learning Objectives: The students will be able to						
1	Describe the basic principles, techniques, and applications of Artificial Intelligence						
2	Analyze and explain different AI learning methods						
3	Compare and contrast different AI techniques available.						

UNIT-I INTRODUCTION: What Is AI? The Foundations of Artificial Intelligence ,The History of Artificial Intelligence, The State of the Art .

8Hrs

Intelligent Agents : Agents and Environments ,Good Behavior: The Concept of Rationality ,The Nature of Environments, The Structure of Agents.Knowledge Representation Issues, Using Predicate Logic, Representing knowledge using Rules.

Video Links

https://www.youtube.com/watch?v=3MW3ICnkQ9k

UNIT-II **PROLOG**- The natural Language of Artificial Intelligence: Introduction, Converting 8Hrs English to Prolog Facts and Rules, Goals, Prolog Terminology, Variables, Control Structures, Arithmetic operators, Matching in Prolog, Backtracking, Cuts, Recursion, Lists, Dynamic databases, Input/Output and Streams Using Predicate Logic: Representing simple facts in logic, representing instance and ISA relationships, Computable Functions and Predicates, Resolution, Natural Deduction. Video Links: https://www.youtube.com/watch?v=pzUBrJLIESU UNIT-III Heuristic search techniques: Generate and test, Hill Climbing, Best First Search, 8Hrs Problem Reduction, Constraint Satisfaction, Means-ends Analysis. Weak Slot- and- Filler Structures: Semantic Nets , Frames.

Strong slot-and Filler Structures- Conceptual Dependency, Scripts.

Video Links:	
https://www.youtube.com/watch?v=ieZr TpRwnQ	
UNIT-IV	
Game Playing : Overview, Minimax Search Procedure, Adding alpha beta cut off,	8Hrs
Additional Refinements, Iterative Deepening, References on Specific games.	
Learning: What is learning?, Forms of learning, Rote learning, learning by taking	
advice, Learning in problem solving, Induction leaning, Explanation based	
learning, Discovery, A Video Links:	
https://www.youtube.com/watch?v= i-IZcbWkpsnalogy, Formal learning Theory,	
Neural Network Learning.	
UNIT-V	
Natural Language Processing: Syntactic Processing, Semantic Analysis, Discourse	8Hrs
and Pragmatic processing, Statistical Natural language processing and Spell	
checking.	
Genetic Algorithms: A peek into the biological world, Genetic	
Algorithms(GAs), Significance of genetic operators, termination parameters,	
niching and speciation, evolving neural network, theoretical grounding.	
Video Links:	
https://www.youtube.com/watch?y=zG8AJhVy5NY	

Cours	Course Outcomes: After completing the course, the students will be able to				
CO1	Identify AI based problems and understand Intelligent agents				
CO2	Apply predicate logic and heuristic techniques to solve AI problems.				
CO3	Understand the different representation of knowledge.				
CO4	Understand the concepts of learning and Natural Language Processing.				
CO5	Understand Genetic Algorithms and solve AI problems using PROLOG.				

Refe	erence Books
1.	Artificial Intelligence: A Modern Approach, Stuart Rusell, Peter Norving, Pearson
	Education 2nd Edition
2.	E. Rich , K. Knight & S. B. Nair - Artificial Intelligence, 3/e, McGraw Hill.
3.	Dan W. Patterson, Introduction to Artificial Intelligence and Expert Systems – Prentice
	Hal of India.
4.	G. Luger, "Artificial Intelligence: Structures and Strategies for complex problem
	Solving", Fourth Edition, Pearson Education, 2002.

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	P07	P08	PO9	PO10	PO11	PO12
CO1	2	3	1	2	-	-	-	-	-	-	-	2
CO2	3	3	2	3	1	-	-	-	-	-	-	2
CO3	3	3	2	3	1	-	-	-	-	-	-	2
CO4	3	3	2	3	2	-	-	-	-	-	-	2
CO5	3	3	2	3	2	-	-	-	-	-	-	2

	Semester: VII							
	AGILE TECHNOLOGIES							
	(Theor	ry)						
Cou	rse Code: MVJ21CG722	CIE Marks:100						
Cred	lits: L:T:P:S: 3:0:0:0	SEE Marks: 100						
Hou	rs: 40L	SEE Duration: 3 Hrs						
Cou	rse Learning Objectives: The students will b	e able to						
1	Discuss the essence of agile development r	nethods.						
2	Carry out all stages of an agile software process in a team, to produce working							
Z	software.							
3	Provide practical knowledge of how to manage a project using Scrum framework.							
4	Use test driven development to ensure software quality.							
5	Should be able to demonstrate a more advanced capability to apply lean and agile							
5	development techniques to solve complex problems.							

8Hrs
8 Hrs
8Hrs
8Hrs

 UNIT-V

 Industry Trends: Market scenario and adoption of Agile, Agile ALM, Roles in an Agile project, Agile applicability, Agile in Distributed teams, Business benefits,
 8Hrs

Challenges in Agile, Risks and Mitigation, Agile projects on Cloud, Balancing Agility with Discipline, Agile rapid development technologies.

Cours	Course Outcomes: After completing the course, the students will be able to					
CO1	Understand the background and driving forces for taking an Agile approach to					
	software development					
CO2	Understand the business value of adopting Agile approaches.					
CO3	Drive development with unit tests using Test Driven Development					
CO4	Deploy automated build tools, version control and continuous integration					
CO5	Apply design principles and refactoring to achieve Agility.					

Reference Books

1.	Ken Schawber, Mike Beedle," Agile Software Development with Scrum", Pearson
	Education.
2.	Lisa Crispin, Janet Gregory, "Agile Testing: A Practical Guide for Testers and Agile
	Teams", Addison Wesley.
3.	Robert C. Martin, "Agile Software Development, Principles, Patterns and Practices",
	Prentice Hall
4.	Robert Spalding: "Storage Networks the Complete Reference", Tata McGraw-Hill, 2011.

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both

questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-F	PO Map	oping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	-	-	-	-	-	-	-	-	3
CO2	3	2	1	-	-	-	-	-	-	-	-	3
CO3	3	2	`1	-	-	-	-	-	-	-	-	3
CO4	3	2	1	-	-	-	-	-	-	-	-	3
CO5	3	2	1	-	-	-	-	-	-	-	-	3

	Semester: VII							
	SPATIAL INFORMATION SYSTEM							
	(Theory)						
Cour	rse Code: MVJ21CG723	CIE Marks:100						
Cred	lits: L:T:P:S: 3:0:0:0	SEE Marks: 100						
Hou	rs: 40L	SEE Duration: 3 Hrs						
Cour	rse Learning Objectives: The students will be	able to						
1	Expose the students with concepts of cartography as major components of input and output related to cartography							
2	To provide exposure to data models and data structures in GIS and to introduce various Raster and Vector Analysis capabilities.							
3	To expose the concept of quality and design of cartographic outputs in open GIS environment							

UNIT-I	
Definition of Map - Mapping Organsiation in India- Classification based on	8 Hrs
Function, Scale, Characteristics – Ellipsoid and Geoid – Co-ordinate Systems -	
Rectangular and Geographic Coordinates – UTM and UPS - Projection – Function -	
Types of Map Projections – Transformations – Function - Affine transformation -	
Choice of Map Projection – Evolution of cartography- Geo-Spatial, Spatial and	
Non-spatial data – Definition of GIS – Evolution GIS – Components of GIS.	
UNIT-II	
Point, Line Polygon / Area, elevation and surface –Tessellations - Attributes and	8Hrs
Levels of Measurement - Data Sources – Ground and Remote Sensing survey –	
Collateral data collection – Input: Map scanning and digitization, Registration and	
Georeferencing - Concepts of RDBMS - Raster Data Model - Grid - Data	
Encoding - Data Compression – Vector Data Model – Topological properties – Arc	
Node Data Structure – Raster Vs. Vector Comparison – File Formats for Raster	
and Vector – Data conversion between Raster and vector	
UNIT-III	

Raster Data analysis: Local, Neighborhood and Regional Operations – Map	8Hrs
Algebra – Vector Data Analysis: Topological Analysis, point-in-polygon, Line-in-	
polygon, Polygon-in-Polygon – Proximity Analysis: buffering, Thiessen Polygon –	
Non-topological analysis: Attribute data Analysis- concepts of SQL– ODBC	

UNIT-IV

Network – Creating Network Data - Origin, Destination, Stops, Barriers – Closest	8Hrs
Facility Analysis, Service Area Analysis, OD Cost matrix analysis, Shortest Path	
Analysis – Address Geocoding – Surface Analysis – DEM, DTM - Point data to	
Surface interpolation – DEM Representaiton - Applications	
UNIT-V	
Map Compilation – Cartographic functionalities for Map Design – Symbolization –	8Hrs
Conventional signs and symbols – Spatial Data Quality – Lineage, Positional	
Accuracy, Attribute Accuracy, Completeness, Logical Consistency - Meta Data -	
Web based GIS: Definition, Merits - Architecture – Map Server – Spatial Data	

Infrastructure – Spatial Data Standards

Cours	Course Outcomes: After completing the course, the students will be able to					
CO1	Acquire knowledge about cartographic principles, spatial data models and spatial					
	analysis.					
CO2	Understand the cartographic outputs in open GIS environment					
CO3	Understand Network and Surface Analysis					
CO4	Design Raster and Vector Data Analysis					
CO5	Compare Gis Data Models And Data Input					

Ref	Reference Books								
1.	C.P. Lo, Albert K.W. Yeung, Concepts and Techniques of Geographic Information								
	Systems, 2nd Edition, Prentice Hall, 2006, ISBN-13: 9780131495029								
2.	John Jensen, Ryan Jensen, Introductory Geographic Information Systems, International								
	Edition, Pearson Publishers, 2012, ISBN-10: 0136147763, ISBN-13: 9780136147763								
3.	Kang-tsung Chang, Introduction to Geographic Information Systems with Data Set CD-								
	ROM, 6th Edition, Mc Graw Hill, 2013, ISBN-10: 0077805402,. ISBN-13: 978-								
	0077805401								

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	-	-	-	-	-	-	-	-	-
CO2	3	3	3	-	-	-	-	-	-	-	-	-
CO3	3	3	3	-	-	-	-	-	-	-	-	-
CO4	3	3	3	-	-	-	-	-	-	-	-	-
CO5	2	2	2	-	-	-	-	-	-	-	-	-

	Se	mester: VII							
	COMPUTATIONAL PHOTOGRAMMETRY								
		(Theory)							
Cou	Course Code: MVJ21CG724 CIE Marks:100								
Crea	Credits: L:T:P:S: 3:0:0:0 SEE Marks: 100								
Hou	Hours: 40L SEE Duration: 3 Hrs								
Cou	rse Learning Objectives: The students	will be able to							
	To introduce basics and concepts of aerial photography, acquisition and mapping from								
T	aerial photographs using different types of stereo plotters								

UNIT-I	
Principles - Stereoscopic depth perception – aerial photo-aerial camera -Scale –	8Hrs
overlaps – stereoscopy – concepts – viewing and measuring system – principle of	
floating mark – methods of parallax measurement – vertical photographs –	
geometry, scale, parallax equations, planimetric mapping – Tilted photograph –	
Geometry, Coordinate system, Scale, Planimetric mapping	

UNIT-II										
	Coordinate systems for Photogrammetry - Map projections, Datums and	8Hrs								
	conversions- 2D Coordinate transformations-Collinearity and Space resection-									
	Analytical stereomodel and relative orientation- Three dimensional Coordinate									
	transformations									

UNIT-III	
Concepts of interior, relative, absolute orientation - direct georeferencing -	8Hrs
object, image relation - collinearity and coplanarity conditions - effect of	
orientation elements - Elements and principles of Aerotriangulation -	
Independent Models-Simultaneous bundle adjustment - ortho mosaic	

UI	Nľ	T-I	IV	

Digital cameras- CCD camera- full frame, frame transfer, interline CCD camera -				
Time delay integration- spectral sensitivity of CCD sensor - geometry and				
radiometry problem of CCD image - Image Generation - Data Compression -				
formats – Georeferencing - Stereo viewing - Display modes - image matching				
techniques - Image measurements.				
UNIT-V				

Review of space resection & intersection - Automatic tie point generation -Automatic Block triangulation, feature collection and plotting–DEM Generation accuracy of DEMs, Orthorectification - regular & irregular data collection methods - contour generation - watershed delineation - Satellite Photogrammetry principles – missions - stereo image products

Course Outcomes: After completing the course, the students will be able toCO1Acquire knowledge about photogrammetry principles, methods and products
generation strategies in both Analytical and digital photogrammetry system.

CO2 Understand the problem related to generation of products and solving them.

Ref	Reference Books									
1.	Edward M. Mikhail, James S.Bethel, J.Chris McGlone, Introduction on "Modern									
	Photogrammetry", John Wiley & Sons, Inc., 2001, ISBN 0-471-30924-9									
2.	Francis h. Moffitt, Edward M. Mikhail, Photogrammetry, TBS The Book Service Ltd,									
	Third Edition,1980, ISBN 070022517X, 9780700225170									
3.	Karl Kraus, Photogrammetry, Fundamentals and standard processes, Dümmler, 2000,									
	ISBN 978 3 11019007 6									
4.	MichealKasser and Yves Egels, "Digital Photogrammetry", Taylor and Francis, 2003,									
	ISBN 0203305957, 9780203305959									

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	1	-	1	1	2	-	-	-	-	-
CO2	3	3	3	3	2	-	-	-	-	-	-	-

	Semester: VII										
	COGNITIVE SCIENCE										
(Theory)											
Cou	Course Code: MVJ21CG725 CIE Marks:100										
Crea	dits: L:T:P:S: 3:0:0:0	SEE Marks: 100									
Hou	ırs: 40L	SEE Duration: 3 Hrs									
Cou	rse Learning Objectives: The students will be ab	le to									
1	To learn the basics of Cognitive Science with focus on acquisition, representation, and use of knowledge by individual minds, brains, and machines, as well as groups institutions, and other social entities.										
2	 To study the mind and intelligence, embracing psychology, artificial intelligence, neuroscience and linguistics 										
3	3 To appreciate the basics of cognitive Psychology										
4	To understand the role of Neuro science in Cog	nitive field									

UNIT-I	
The Cognitive view –Some Fundamental Concepts – Computers in Cognitive	8Hrs
Science – Applied Cognitive Science – The Interdisciplinary Nature of Cognitive	
Science – Artificial Intelligence: Knowledge representation -The Nature of	
Artificial Intelligence - Knowledge Representation – Artificial Intelligence: Search,	
Control, and Learning	
UNIT-II	
Cognitive Psychology – The Architecture of the Mind - The Nature of Cognitive	8Hrs
Psychology- A Global View of The Cognitive Architecture- Propositional	
Representation- Schematic Representation Cognitive Processes, Working	
Memory, and Attention- The Acquisition of Skill- The Connectionist Approach to	
Cognitive Architecture	
UNIT-III	
Brain and Cognition Introduction to the Study of the Nervous System – Neural	8 Hrs
Representation – Neuropsychology- Computational Neuroscience - The	
Organization of the mind - Organization of Cognitive systems - Strategies for Brain	
mapping – A Case study: Exploring mindreading	
UNIT-IV	
Language Acquisition: Milestones in Acquisition – Theoretical Perspectives-	8Hrs
Semantics and Cognitive Science - Meaning and Entailment - Reference - Sense	
Semantics and cognitive Science – Meaning and Entaiment – Neterence – Sense	
- Cognitive and Computational Models of Semantic Processing – Information	
 Cognitive and Computational Models of Semantic Processing – Information Processing Models of the Mind- Physical symbol systems and language of 	
 Cognitive and Cognitive Science – Meaning and Entaiment – Reference – Sense Cognitive and Computational Models of Semantic Processing – Information Processing Models of the Mind- Physical symbol systems and language of thought- Applying the Symbolic Paradigm- Neural networks and distributed 	

UNIT-V							
Reasoning – Decision Making – Computer Science and AI: Foundations & Robotics	8Hrs						
- New Horizons - Dynamical systems and situated cognition- Challenges -							
Emotions and Consciousness – Physical and Social Environments - Applications							

Course Outcomes: After completing the course, the students will be able to												
CO1	Explain, and analyze the major concepts, philosophical and theoretical perspectives,											
	empirical findings, and historical trends in cognitive science, related to cultural											
	diversity and living in a global community.											
CO2	Use cognitive science knowledge base to create their own methods for answering											
	novel questions of either a theoretical or applied nature,											
CO3	Proficient with basic cognitive science research methods, including both theory-											
	driven and applied research design, data collection, data analysis, and data											
	interpretation.											

Ref	Reference Books								
1.	Cognitive Science: An Introduction, Second Edition by Neil Stillings, Steven E. Weisler,								
	Christopher H. Chase and Mark H. Feinstein ,1995								
2.	Cognitive Science: An Introduction to the Science of the Mind ,José Luis Bermúdez,								
	Cambridge University Press, New York,2010								
3.	Cognitive Psychology, Robert L. Solso, Otto H. MacLin and M. Kimberly MacLin, 2007,								
	Pearson Education								
4.	Cognitive Science: An Introduction to the Study of Mind (2006) by J. Friedenberg and G.								
	Silverman								

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five

questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO1	3	1	2	1	-	-	-	-	-	-	-	-
CO2	3	2	1	3	3	2	-	-	2	-	1	-
CO3	3	2	1	3	-	2	-	-	2	-	-	-

	ç	emester: VII							
	MOBILE AND PERVASIVE COMPLITING								
		(Theory)							
Cou	rse Code: MVJ21CG731	CIE Marks:100							
Cred	Credits: L:T:P:S: 3:0:0:0 SEE Marks: 100								
Hou	Hours: 40L SEE Duration: 3 Hrs								
Cou	rse Learning Objectives: The student	ts will be able to							
1	To understand the basics of Mobile computing and Personal computing								
2	To learn the role of wireless networks in Mobile Computing and Pervasive Computing								
3	To study about the underlying wireless networks.								
4	To understand the architectures of mobile and pervasive applications								
5	To become familiar with the pervasive devices and mobile computing platforms.								

UNIT-I	
Differences between Mobile Communication and Mobile Computing – Contexts	8Hrs
and Names – Functions – Applications and Services – New Applications – Making	
Legacy Applications Mobile Enabled – Design Considerations – Integration of	
Wireless and Wired Networks – Standards Bodies – Pervasive Computing – Basics	
and Vision – Principles of Pervasive Computing – Categories of Pervasive Devices	
UNIT-II	
Migration to 3G Networks – IMT 2000 and UMTS – UMTS Architecture – User	8Hrs
Equipment – Radio Network Subsystem – UTRAN – Node B – RNC functions –	
USIM – Protocol Stack – CS and PS Domains – IMS Architecture – Handover –	
3.5G and 3.9G a brief discussion – 4G LAN and Cellular Networks – LTE – Control	
Plane – NAS and RRC – User Plane – PDCP, RLC and MAC – WiMax IEEE 802.16d/e	
 WiMax Internetworking with 3GPP 	
UNIT-III	
Sensor Networks – Role in Pervasive Computing – In Network Processing and	8Hrs
Data Dissemination – Sensor Databases – Data Management in Wireless Mobile	
Environments – Wireless Mesh Networks – Architecture – Mesh Routers – Mesh	
Clients – Routing – Cross Layer Approach – Security Aspects of Various Layers in	
WMN – Applications of Sensor and Mesh networks	
with Applications of sensor and mean networks	
UNIT-IV	
UNIT-IV Adaptability – Mechanisms for Adaptation - Functionality and Data – Transcoding	8Hrs
UNIT-IV Adaptability – Mechanisms for Adaptation - Functionality and Data – Transcoding – Location Aware Computing – Location Representation – Localization Techniques	8Hrs
UNIT-IV Adaptability – Mechanisms for Adaptation - Functionality and Data – Transcoding – Location Aware Computing – Location Representation – Localization Techniques – Triangulation and Scene Analysis – Delaunay Triangulation and Voronoi graphs –	8Hrs
UNIT-IV Adaptability – Mechanisms for Adaptation - Functionality and Data – Transcoding – Location Aware Computing – Location Representation – Localization Techniques – Triangulation and Scene Analysis – Delaunay Triangulation and Voronoi graphs – Types of Context – Role of Mobile Middleware – Adaptation and Agents – Service	8Hrs
UNIT-IV Adaptability – Mechanisms for Adaptation - Functionality and Data – Transcoding – Location Aware Computing – Location Representation – Localization Techniques – Triangulation and Scene Analysis – Delaunay Triangulation and Voronoi graphs – Types of Context – Role of Mobile Middleware – Adaptation and Agents – Service Discovery Middleware	8Hrs
UNIT-IV Adaptability – Mechanisms for Adaptation - Functionality and Data – Transcoding – Location Aware Computing – Location Representation – Localization Techniques – Triangulation and Scene Analysis – Delaunay Triangulation and Voronoi graphs – Types of Context – Role of Mobile Middleware – Adaptation and Agents – Service Discovery Middleware UNIT-V	8Hrs

Three tier architecture - Model View Controller Architecture - Memory	8Hrs
Management – Information Access Devices – PDAs and Smart Phones – Smart	
Cards and Embedded Controls – J2ME – Programming for CLDC – GUI in MIDP –	
Application Development ON Android and iPhone.	

Cours	Course Outcomes: After completing the course, the students will be able to						
CO1	Deploy 3G networks						
CO2	Develop suitable algorithms for 4G networks.						
CO3	Use sensor and mesh networks to develop mobile computing environment.						
CO4	Develop mobile computing applications based on the paradigm of context aware						
	computing.						
CO5	Identify architecture for Application Development						

Refe	erence Books
1.	Asoke K Talukder, Hasan Ahmed, Roopa R Yavagal, "Mobile Computing: Technology,
	Applications and Service Creation", Second Edition, Tata McGraw Hill, 2010.
2.	Reto Meier, "Professional Android 2 Application Development", Wrox Wiley, 2010.
3.	Pei Zheng and Lionel M Li, 'Smart Phone & Next Generation Mobile Computing',
	Morgan Kaufmann Publishers, 2006
4.	Frank Adelstein, 'Fundamentals of Mobile and Pervasive Computing', TMH, 2005

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both

questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO1	3	-	-	-	1	-	-	-	-	-	-	2
CO2	3	3	3	-	-	-	-	-	1	-	1	2
CO3	3	2	2	1	3	-	-	-	-	-	1	3
CO4	3	2	3	-	-	-	-	-	-	2	3	2
CO5	3	2	3	-	-	-	-	-	-	2	3	2

Semester: VII							
COMPOTER AP							
	(Theory)						
Course Code: MVJ21CG732	CIE Marks:100						
Credits: L:T:P:S: 3:0:0:0	SEE Marks: 100						
Hours: 40L	SEE Duration: 3 Hrs						
Course Learning Objectives: The students will be able to							
1 To impart knowledge on computer §	graphics which are used routinely in diverse areas						

as science, engineering, medicine, etc

UNIT-I					
Output primitives (points, lines, curves etc.,), 2-D & 3-D transformation	8Hrs				
(Translation, scaling, rotation) windowing - view ports - clipping transformation					
UNIT-II					
Introduction to curves - Analytical curves: line, circle and conics – synthetic curves: Hermite cubic spline- Bezier curve and B-Spline curve – curve manipulations. Introduction to surfaces - Analytical surfaces: Plane surface, ruled surface, surface of revolution and tabulated cylinder – synthetic surfaces: Hermite bicubic surface- Bezier surface and B-Spline surface- surface manipulations.	8Hrs				
UNIT-III					
NURBS- Basics- curves, lines, arcs, circle and bi linear surface. Regularized Boolean set operations - primitive instancing - sweep representations - boundary representations – constructive solid Geometry - comparison of representations - user interface for solid modeling.	8 Hrs				
UNIT-IV					
Hidden – Line – Surface – solid removal algorithms shading – coloring. Introduction to parametric and variational geometry based software's and their principles creation of prismatic and lofted parts using these packages.	8 Hrs				
UNIT-V					
Assembly modeling - interferences of positions and orientation - tolerances analysis – mass property calculations - mechanism simulation. Graphics and computing standards– Open GL Data Exchange standards – IGES, STEP etc– Communication standards.	8Hrs				

Course Outcomes: After completing the course, the students will be able toCO1It helps the students to get familiarized with the computer graphics application in

	design.
CO2	This understanding reinforces the knowledge being learned and shortens the overall
	learning curve which is necessary to solve CAE problems that arise in engineering
Refe	erence Books
1.	David F. Rogers, James Alan Adams "Mathematical elements for computer graphics"
	second edition, Tata McGraw-Hill edition.2003
2.	Donald Hearn and M. Pauline Baker "Computer Graphics", Prentice Hall, Inc., 1992
3.	Foley, Wan Dam, Feiner and Hughes – Computer graphics principles & practices,
	Pearson Education – 2003.
4.	Ibrahim Zeid Mastering CAD/CAM – McGraw Hill, International Edition, 2007

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	P07	P08	PO9	PO10	PO11	PO12
CO1	2	2	2	-	-	-	-	-	-	-	-	-
CO2	2	2	3	-	-	-	-	-	-	-	-	-

	Semester: VII							
	GAME DESIGN & DEVELOPMENT							
		(Theory)						
Cou	rse Code: MVJ21CG733	CIE Marks:100						
Crec	lits: L:T:P:S: 3:0:0:0	SEE Marks: 100						
Hou	Hours: 40L SEE Duration: 3 Hrs							
Cou	rse Learning Objectives: The student	s will be able to						
1	Understand the concepts of Game design and development.							
2	Learn the processes, mechanics and issues in Game Design.							
3	Be exposed to the Core architectures of Game Programming.							
4	Know about Game programming pla games.	atforms, frame works and engines. Learn to develop						

UNIT-I	
3D Transformations, Quaternions, 3D Modeling and Rendering, Ray Tracing,	8 Hrs
Shader Models, Lighting, Color, Texturing, Camera and Projections, Culling and	
Clipping, Character Animation, Physics-based Simulation, Scene Graphs.	
UNIT-II	
Game engine architecture, Engine support systems, Resources and File systems,	8 Hrs
Game loop and real-time simulation, Human Interface devices, Collision and rigid	
body dynamics, Game profiling.	
UNIT-III	
Application layer, Game logic, Game views, managing memory, controlling the	8Hrs
main loop, loading and caching game data, User Interface management, Game	
event management	
UNIT-IV	
2D and 3D Game development using Flash, DirectX, Java, Python, Game engines -	8Hrs
Unity. DX Studio.	
UNIT-V	
Developing 2D and 3D interactive games using DirectX or Python – Isometric and	8Hrs
Tile Based Games, Puzzle games, Single Player games, Multi Player games.	

Cours	Course Outcomes: After completing the course, the students will be able to				
CO1	Discuss the concepts of Game design and development.				
CO2	Design the processes, and use mechanics for game development.				
CO3	Explain the Core architectures of Game Programming				

CO4	Use Game programming platforms, frame works and engines.					
CO5	Create interactive Games					
Refer	Reference Books					

1.	Mike Mc Shaffrfy and David Graham, "Game Coding Complete", Fourth							
	Edition, Cengage Learning, PTR, 2012							
2.	Jason Gregory, "Game Engine Architecture", CRC Press / A K Peters, 2009							
3.	David H. Eberly, "3D Game Engine Design, Second Edition: A Practical Approach to Real-							
	Time Computer Graphics" 2 nd Editions, Morgan Kaufmann, 2006.							
4.	Ernest Adams and Andrew Rollings, "Fundamentals of Game Design", 2 nd Edition							
	Prentice Hall / New Riders, 2009.							

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	-	-	-	-	-	-	-	-	-
CO2	3	3	3	-	-	-	-	-	-	-	-	-
CO3	3	3	3	-	-	-	-	-	-	-	-	-
CO4	3	3	3	-	-	-	-	-	-	-	-	-
C05	2	2	3	-	-	-	-	-	-	-	-	-

	Sei	mester: VII					
	COMPU	ITER GRAPHICS					
		Theory)					
Cou	irse Code: MVJ21CG734	CIE Marks:100					
Cre	dits: L:T:P:S: 3:0:0:0	SEE Marks: 100					
Hours: 40L SEE Duration: 3 Hrs							
Cou	rse Learning Objectives: The students	will be able to					
1	Understand the two dimensional grap	phics and their transformations					
2	Gain knowledge about graphics hardware devices and software used.						
3	Appreciate illumination and color models.						
4	Understand the three dimensional gr	Understand the three dimensional graphics and their transformations.					
5	Be familiar with understand clipping t	Be familiar with understand clipping techniques.					

UNIT-I

Survey of computer graphics, Overview of graphics systems – Video display devices, Raster scan systems, Random scan systems, Graphics monitors and Workstations, Input devices, Hard copy Devices, Graphics Software; Output primitives – points and lines, line drawing algorithms, loading the frame buffer, line function; circle and ellipse generating algorithms; Pixel addressing and object geometry, filled area primitives.	5
UNIT-II	
Two dimensional geometric transformations – Matrix representations and homogeneous coordinates, composite transformations; Two dimensional viewing – viewing pipeline, viewing coordinate reference frame; widow-to-viewport coordinate transformation, Two dimensional viewing functions; clipping operations – point, line, and polygon clipping algorithms.	5
UNIT-III	
Three dimensional concepts; Three dimensional object representations – Polygonsurfaces- Polygon tables- Plane equations – Polygon meshes; Curved Lines andsurfaces, Quadratic surfaces; Blobby objects; Spline representations – Beziercurves and surfaces -B-Spline curves and surfaces. TRANSFORMATION AND VIEWING: Three dimensional geometric and modelingtransformations – Translation, Rotation, Scaling, composite transformations;Three dimensional viewing – viewing pipeline, viewing coordinates, Projections,Clinping: Visible surface detection methods	5

UNIT-IV	
Light sources – basic illumination models – halftone patterns and dithering techniques; Properties of light – Standard primaries and chromaticity diagram; Intuitive colour concepts – RGB colour model – YIQ colour model – CMY colour model – HSV colour model – HLS colour model; Colour selection.	8Hrs
UNIT-V	
Design of Animation sequences – animation function – raster animation – key	8Hrs
frame systems – motion specification –morphing – tweening.	
COMPUTER GRAPHICS REALISM: Tiling the plane – Recursively defined curves – Koch curves – C curves – Dragons – space filling curves – fractals – Grammar based models – fractals – turtle graphics – ray tracing.	

Cours	se Outcomes: After completing the course, the students will be able to
CO1	Design two dimensional graphics
CO2	Apply two dimensional transformations.
CO3	Design three dimensional graphics.
CO4	Apply three dimensional transformations.
CO5	Design animation sequences.

Reference Books

1.	John F. Hughes, Andries Van Dam, Morgan Mc Guire ,David F. Sklar , James D. Foley,
	Steven K. Feiner and Kurt Akeley ,"Computer Graphics: Principles and Practice", , 3rd
	Edition, Addison- Wesley Professional, 2013. (UNIT I, II, III, IV)

- **2.** Donald Hearn and Pauline Baker M, "Computer Graphics", Prentice Hall, New Delhi, 2007 (UNIT V).
- **3.** Donald Hearn and M. Pauline Baker, Warren Carithers, "Computer Graphics With Open GL", 4th Edition, Pearson Education, 2010.
- **4.** Hill F S Jr., "Computer Graphics", Maxwell Macmillan", 1990.

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	P01	PO2	PO3	PO4	PO5	PO6	P07	P08	PO9	PO10	PO11	PO12
CO1	1											
CO2	1		2	2			1			2	2	
CO3	1							2	2	2	1	
CO4	1	2				2						2

	Se	mester: VII				
	3D /	ANIMATION				
		(Theory)				
Cou	rse Code: MVJ21CG735	CIE Marks:100				
Crea	dits: L:T:P:S: 3:0:0:0	SEE Marks: 100				
Hou	ırs: 40L	SEE Duration: 3 Hrs				
Cou	rse Learning Objectives: The students	will be able to				
1	To Understand fundamental properties of animation					
2	To educate the basic of animation history					
3	To develop a simple 3D model in a software					
4	To understand the topology of 3D mode					
5	To educate the basic physical propert	ty of different 3D objects and environment.				

UNIT-I					
3D animation, animation industry, history of 3D animation, concept of modelling, texturing, rigging, animation, lighting and rendering. Different type of video formats, pixels vector and raztor, file formats, colour depth, bit depth, frame rate, time and	8 Hrs				
Story – developing story for 3D Script, screen play, storyboard, animatic, pre visualization, design. Character, conflict, goal, story telling principles, basic shot framing, camera movement in 3D, global surroundings. Working principles of producer, director, animator.	8Hrs				
UNIT-III					
Understanding the differences between NURBS and Polygon, topology of objects, working with references, Reading anatomy- human and living organisms, breaking human anatomy into different parts. Face, facial expressions, eye movement, lip movement, Character definition. Basic poses, Curve editor.	8 Hrs				
UNIT-IV					
Timing movement of object or character, space and scale.Law of inertia, movement laws, newton"s third law, working with gravity, action – reaction, motion weight and gravity, jump, walk and run.	8Hrs				
UNIT-V					
Rigging – pivot positions, FK and IK, parenting, deformers, scripting, expressions, rigging workflow. Keyframe, Graph editor, dope sheet, animation techniques, basic lighting, lighting and attributes, motion capture technology, real time rendering.	8Hrs				

Course Outcomes: After completing the course, the students will be able to			
CO1	Students will be able to understand the physics behind the 3D animation		
CO2	Students will understand the basic movement of character		
CO3	Students will develop the idea for the 3D animation movie		

CO4	Students will understand the physics behind the different types of forces
CO5	Students will rig a character and animate it.

Ref	erence Books
1.	Ami Chopine, "3D art essentials" Taylor & Francis" 2012.
2.	Beane A. "3D animation essentials". John Wiley & Sons; 2012.
3.	Cabrera C. "An Essential Introduction to Maya Character Rigging with DVD". Routledge;
	2012.
4.	King R. "3D Animation for the Raw Beginner Using Autodesk Maya 2e". CRC Press;
	2019.

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO1	3	1	2	1	-	-	-	-	-	-	-	-

CO2	3	2	1	3	3	2	-	-	2	-	1	-
CO3	3	2	1	3	-	2	-	-	2	-	-	-
Llick 2 Mardines 2 Louis 4												

	Semester: VII				
	РНОТ	OGRAPHY			
	(Т	heory)			
Cou	rse Code: MVJ21CG741	CIE Marks:100			
Crec	lits: L:T:P:S: 3:0:0:0	SEE Marks: 100			
Hou	rs: 40L	SEE Duration: 3 Hrs			
Cou	rse Learning Objectives: The students w	vill be able to			
1	To create opportunities for profession and art of photography	al and creative expression through the practice			
2	To understand the concept of lighting				
3	3 To educate the importance of photo journalism				
4	To inculcate aesthetic sense involved i	n creativity			
5	To educate the student about different	genres of photography			

UNIT-I	
History of Photography, History of camera, Different camera formats, working of	8Hrs
an SLR and DSLR Cameras. Features and functions of SLR and DSLR Cameras.	
Various camera controls. Zonesystem. Exposure. Image sensors. Different storage	
formats.	
UNIT-II	
Different type of Lenses - Basic Shots and Camera Angles, Photographic	8Hrs
Composition - View point and Camera angle-Eye Level, Low and High, Balance-	
Aspects of Balancing, Shapes and Lines, Pattern, Volume, Lighting, Texture, Tone,	
Contrast- and Colour, Framing, various Perspectives.	
UNIT-III	

Colour Theory, Colour Temperature, Electromagnetic spectrum, Different types of	8Hrs
Lights based on Manufacturing and photography purpose, Different lighting	
patterns, Light equipments, Light Reflectors and Diffusers for Portraits and other	
genres of photography, Light Meters and Light measurement Units. Uses of	
various Filters.	

UNIT-IV

Basics of News Photography-Essential elements of News, Importance of News		
photographs, Types of News photographs Spot News, Feature, Planning for News		
Photography-Planning of shooting script, Shooting script techniques, Layout		
design, Qualities for a Photojournalist, Picture stories and Lens required for News		
Photography.		
UNIT-V		
Basic shooting and Lighting Techniques and Equipments required for different	8Hrs	

Basic shooting and Lighting Techniques and Equipments required for different
genres of Photography like Black and White, Landscape, Cityscape, Architecture,
Advertising, Fashion, Food, Automobile, Sports, Travel, Children, Portrait, Still
Life, Event, Silhouette, Festival and Themes.8Hrs

Cours	e Outcomes: After completing the course, the students will be able to
CO1	Students will learn the principles of good composition in photography

CO2	Students will develop an individual style in representing the society through
	photographs.
CO3	Students will understand the function of camera.
CO4	Students will develop an individual style in representing the society through photographs.
CO5	Students will be able to understand the advanced camera operations.

Reference Books

1.	Ansel Adams, The Negative, Bulfinch press, Fourteenth Edition, 2008
2.	Bryan Peterson, Understanding exposure, Amphoto books, 4th edition, 2016.
3.	BalakrishnaAiyer, Digital Photojournalism, Authors press, 2005
4.	Ben long, Complete Digital Photography, Charles River Media, Third Edition, 2005

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-F	PO Map	oping					
CO/PO	P01	PO2	PO3	PO4	PO5	PO6	P07	P08	PO9	PO10	PO11	PO12
CO1	3	1	2	1	-	-	-	-	-	-	-	-
CO2	3	2	1	3	3	2	-	-	2	-	1	-
CO3	3	2	1	3	-	2		-	2	-	-	-
CO4	3	3	2	3	3	2	-	-	2	2	2	-
CO5	3	2	3	3	3	2	-	-	2	2	2	2

	Semester: VII				
	VIDEO PRODUCTION TECHNIQUES				
		Theory)			
Cou	rse Code: MVJ21CG742	CIE Marks:100			
Crea	lits: L:T:P:S: 3:0:0:0	SEE Marks: 100			
Hou	Hours: 40L SEE Duration: 3 Hrs				
Cou	rse Learning Objectives: The students	will be able to			
1	To understand the basic and evaluation of videography				
2	To understand the audio recording knowledge for various production techniques				
	To inculcate the production aesthetic sense in terms of lighting, composition, soun				
3	³ and usage of equipment.				
4	To gain knowledge of studio equipment usage and benefits				
5	To create opportunities for creative expression through the practice and production of programmes				

UNIT-I		
History of Video Cameras, Different camera formats, working of an Video	8 Hrs	
Camera. Features and functions video cameras, Shots and Camera angles used in		
various production process.		
UNIT-II		
Basics of sound recording. Different types of microphones and factors governing	8 Hrs	
their selection. In built microphones in cameras, Mixing of Sound. Audio		
sweetening practical. Sound manipulation. Outdoor sound recording vs Studio		
recording.		
UNIT-III		
Lighting patterns, light equipment"s and accessories, reflectors, light	8Hrs	
measurement, control of light. Lighting for different programs, Design		
considerations, Economical Sets, Virtual Sets, Make-ups and costumes.		
UNIT-IV		
Lighting in the studio, Different camera mounting equipment"s, Single and Multi-	8 Hrs	
cameraproduction, Production control room, Use of Video mixer, Chromo keying		
and other visual effects. Editing the production – The Art and techniques of		
Editing.		
UNIT-V		
Different genres of Video programmes, Talk shows, Interviews, short film making,		
Public service announcements and Corporate films. Broadcast distribution,		
Online distribution, Festivals and Competitions		

Cours	Course Outcomes: After completing the course, the students will be able to			
CO1	recognize the principles of production techniques			
CO2	expertise in both indoor and outdoor production.			
CO3	produce social responsible programmes to create change in the society			

CO4	follow ethical and social and also represent the society in a good way.
CO5	Students become experts in handling camera and related equipments

Ref	erence Books				
1.	Albert Moran and Michael Keane, Television across Asia: Television Industries,				
	Programme formats & Globalisation, Routledge Curzon, Taylor & Francis Group, 2004				
2.	Belavadi Vasuki, "Video Production," Oxford University Press, 2012				
3.	Gerald Millerson, Television Production, 15th Edition, Focal Press, 2012.				
4.	Herbert Zettl, Television Production Handbook, 10th Edition, Wadsworth				
	Publications, 2009.				

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-I	PO Maj	oping					
CO/PO	P01	PO2	PO3	PO4	PO5	PO6	P07	P08	PO9	PO10	PO11	PO12
CO1	3	1	2	1	-	-	-	-	-	-	-	-
CO2	3	2	1	3	3	2	-	-	2	-	1	-
CO3	3	2	1	3	-	2	-	-	2	-	-	-
CO4	3	3	2	3	3	2	-	-	2	2	2	-
CO5	3	2	3	3	3	2	-	-	2	2	2	2

	Semester	: VII		
	EDITING TECH	NIQUES		
	(Theor	()		
Cou	rse Code: MVJ21CG743	CIE Marks:100		
Credits: L:T:P:S: 3:0:0:0		SEE Marks: 100		
Hours: 40L		SEE Duration: 3 Hrs		
Cou	Course Learning Objectives: The students will be able to			
1	1 To appreciate editing as creative element for storytelling			
2	2 To understand procedures, techniques, and standard practices in video editing			
3	To understand the aesthetic principles and concepts of video editing			

UNIT-I	
Definition of editing, the historical development of editing theory, audience manipulation through editing, Understanding the trends in the editing industry- New technologies in post production. Film and video formats, the principles and formats of digital video, Hardware and software requirements for nonlinear editing, introduction to various operating systems, overview of software available for editing.	8Hrs
UNIT-II	
Roles and responsibilities of editors, skills required for an successful editor, Working Principles - Considering Script as an Architeure, Understanding directional intent, Camera angles and movement, reading light, reading the actor, understanding stories and their purpose. Copyright and ethical issues in editing.	8Hrs
UNIT-III	
Definition of Shot, Scene and Sequence, Five Shot Rule, Editing Decisions, Editing Opportunities, Six Elements of Edit, Five Types of Edit, Working Practices, Importance of tone, pace and rhythm. Establishing Continuity.	
UNIT-IV	
Styles in editing, Techniques in editing, Editing to Manipulate Time, Editing Transitions, Graphics, Animation and Plug-Ins Continuity Editing and Complexity Editing, Dynamics of Sound – discovering the beat, sound as a character, invisible sound, tone and pitch and creative usage of sound in editing. Usage of Colours based on gender, culture and personalities. Planning the nonlinear editing process: Budgeting time, personnel and space.	8Hrs
UNIT-V	
Digital Story telling - Editing styles for reality programs - News, features, bulletins, documentaries, reality shows; Editing styles fictional Narratives –Short Films, Serials, Films; Editing Styles for PSAs, Advertisements and Music Videos. Editing for sports and other live and recorded events	8Hrs

Cours	Course Outcomes: After completing the course, the students will be able to			
CO1	Students will be able to understand the different principles of editing			
CO2	Students will learn the application of various styles and methods of editing in their			

	video projects
CO3	Students will understand the aesthetic reason for the edit choices made by
	film/video makers.
CO4	Students will understand the role of editor
CO5	Students will be able to edit the video projects.

Ref	erence Books
1.	Bryce Button, Nonlinear Editing: Storytelling, Aesthetics, & Craft, Focal Press, 2002
2.	Dancyger Ken, The Technique of Film and Video Editing – History, Theory and Practice.
	Focal Press, 2005.
3.	Koppelman Charles, Behind The Seen - How Walter Murch Edited Cold Mountain on
	Final Cut Pro - Pearson Publications, 2014.
4.	Lumet Sidney, Making Movies, Random House, New York, 1995.

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	P01	PO2	PO3	PO4	PO5	PO6	P07	P08	PO9	PO10	PO11	PO12
CO1	3	1	2	1	-	-	-	-	-	-	-	-
CO2	3	2	1	3	3	2	-	-	2	-	1	-
CO3	3	2	1	3	-	2	-	-	2	-	-	-
CO4	3	3	2	3	3	2	-	-	2	2	2	-
CO5	3	2	3	3	3	2	-	-	2	2	2	2

	S	emester: VII						
	MOTION GRAPHICS							
		(Theory)						
Cou	rse Code: MVJ21CG744	CIE	Marks:100					
Cred	lits: L:T:P:S: 3:0:0:0	SEE	Marks: 100					
Hours: 40L SEE Duration: 3 Hrs								
Cou	Course Learning Objectives: The students will be able to							
1	To become visually literate, including competence with the non-verbal languages of a		on-verbal languages of art					
1	and design							
	To develop visual, verbal, and writ	ten responses to visual	phenomena, and organize					
2	² perception and conceptualizations both rationally and intuitively							
3	To learn the basic principles of story	boarding and project ma	pping					
4	To educate the concept of tracking							
5	To understand the usage of 3D in liv	e action						

UNIT-I	
General principles of motion graphics, - Different software"s used for motion	8Hrs
graphics, Photoshop, Final cut pro, Premier Pro, After effects, Combustion, Nuke.	
- Create Pipeline for production Exercise for each software differently	
Creating a story board	
UNIT-II	
Understanding and working with the keying concepts, Working with different	8 Hrs
types of keyer Working with Roto shots, Removing the blue/green screen using	
different keyers, Working with 2D tracking Working with planar tracking	
UNIT-III	
Working with RGB, colour waveform, colour histogram, Curves Understanding the	8Hrs
alpha value, Colour grading of Computer generated objects, Adding the lights and	
shadow Matching light space and adjusting for brightness and colour Mask the	
region Working with layer and node based software's.	
UNIT-IV	
Camera tracking in different software"s - Combining of graphics elements into the	8Hrs
live action Create and modify 3D objects, Importing 3D materials to various	
software, Create a 3D title	
UNIT-V	
Understanding audio properties, Working with different levels of audio, Different	8Hrs
type of audio formats, Working with multi track audio, Rendering the final mix	
down audio, Lip sync with the visual, Export the final output.	

Cours	se Outcomes: After completing the course, the students will be able to
CO1	Students will able to shoot the graphics video on their own
CO2	Students will be able to assemble the green /blue mate footage
CO3	Students will be able to work with the 3D environment digitally
CO4	Students will be able to work with the audio

CO5	Students will understand the concept of rendering
-----	---

Ref	erence Books
1.	Blazer L. Animated storytelling: Simple steps for creating animation and motion
	graphics. Peachpit Press; 2015.
2.	Ian Crook, Peter Beare, Motion Graphics: Principles and Practices from the Ground Up,
	Bloomsbury Publishing, 2017.
3.	Jackson C. After Effects for Designers: Graphic and Interactive Design in Motion. Focal
	Press; 2018.
4.	Jon Krasner, Motion Graphic Design: Applied History and Aesthetics Focal press, 2013.

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-I	PO Maj	oping					
CO/PO	P01	PO2	PO3	PO4	PO5	PO6	P07	P08	PO9	PO10	PO11	PO12
CO1	3	1	2	1	-	-	-	-	-	-	-	-
CO2	3	2	1	3	3	2	-	-	2	-	1	-
CO3	3	2	1	3	-	2	-	-	2	-	-	-
CO4	3	3	2	3	3	2		-	2	2	2	-
CO5	3	2	3	3	3	2	-	-	2	2	2	2

	S	emester: VII				
	COM	IPUTER VISIO	N			
		(Theory)				
Cou	rse Code: MVJ21CG745			CIE M	arks:100	
Cred	lits: L:T:P:S: 3:0:0:0			SEE M	arks: 100	
Hou	rs: 40L			SEE D	uration: 3 Hrs	
Cou	se Learning Objectives: The student	s will be able	to			
	This course will enable students to					
1	Computer Vision focuses on development of algorithms and techniques to analyze and interpret the visible world around us. This requires understanding of the fundamental concepts related to multi-dimensional signal processing, feature extraction, pattern analysis visual geometric modeling, stochastic optimization etc. Knowledge of these concepts is necessary in this field, to explore and contribute to research and further developments in the field of computer vision. Applications range from Biometrics, Medical diagnosis, document processing, mining of visual content, to surveillance, advanced rendering etc.				halyze and ndamental n, pattern e of these nd further iometrics, rveillance,	
		UNIT-I				
Digital Image Formation and low-level processing				8Hrs		
Over	view and State-of-the-art, Fu	ndamentals	of	Image	Formation,	

Transformation: Orthogonal, Euclidean, Affine, Projective, etc; Fourier Transform, Convolution and Filtering, Image Enhancement, Restoration, Histogram Processing

UNIT-II

Depth estimation and Multi-camera views			
Perspective, Binocular Stereopsis: Camera and Epipolar Geometry; Homography,			
Rectification, DLT, RANSAC, 3-D reconstruction framework; Auto-calibration.			

UNIT-III

8Hrs

Edges - Canny, LOG, DOG; Line detectors (Hough Transform), Corners - Harris and Hessian Affine, Orientation Histogram, SIFT, SURF, HOG, GLOH, Scale-Space Analysis- Image Pyramids and Gaussian derivative filters, Gabor Filters and DWT.

Feature Extraction

UNIT-IV

Image Segmentation					
Region Growing, Edge Based approaches to segmentation, Graph-Cut, Mean-					
Shift, MRFs, Texture Segmentation; Object detection.					

UNIT-V	
Pattern Analysis	8Hrs
Clustering: K-Means, K-Medoids, Mixture of Gaussians, Classification:	
Discriminant Function, Supervised, Un-supervised, Semi-supervised; Classifiers:	
Bayes, KNN, ANN models; Dimensionality Reduction: PCA, LDA, ICA; Non-	
parametric methods.	

Course Outcomes: After completing the course, the students will be able to

CO1 Understand the concepts of Digital Image Processing.

- CO2 Analyse Homography and stereopsis.
- CO3 Analyse Edges and Hough Transforms.
- CO4 Demonstrate the ideas of image Segmentation.

CO5	Implement the concepts of Pattern Analysis.
-----	---

Ref	erence Books
1.	Richard Szeliski, Computer Vision: Algorithms and Applications, Springer-Verlag London
	Limited 2011.
2.	Computer Vision: A Modern Approach, D. A. Forsyth, J. Ponce, Pearson Education,
	2003.
3.	Richard Hartley and Andrew Zisserman, Multiple View Geometry in Computer Vision,
	Second Edition, Cambridge University Press, March 2004.
4.	K. Fukunaga; Introduction to Statistical Pattern Recognition, Second Edition, Academic
	Press, Morgan Kaufmann, 1990.

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	1	-	1	1	2	-	-	-	-	-
CO2	3	3	3	3	2	-	-	-	-	-	-	-
CO3	1	-	-	1	1	-	2	3	3	3	-	-
CO4	3	3	2	2	2	-	-	-	-	-	3	3
CO5	3	3	3	3	3	2	-	-	3	3	3	3

	Semester: VII									
PROJECT PHASE – 1										
	(Theory)									
Cour	Course Code: MVJ21CGPR75 CIE Marks:100									
Cred	Credits: L:T:P:S: 3:0:0:0 SEE Marks: 100									
Hou	rs: 40L	SEE Duration: 3 Hrs								
Course Learning Objectives: The students will be able to										
1	To support independent learning.									
2	To develop interactive, communication, organization, time management, and presentation skills.									
3	To impart flexibility and adaptability									
4	To expand intellectual capacity, credibility, judgment, intuition.									
5	To train students to present the topic of project work in a seminar without any fear, face audience confidently, enhance communication skill, involve in group discussion to present and exchange ideas									

Project Work Phase - I

Each student of the project batch shall involve in carrying out the project work jointly in constant consultation with internal guide, co-guide, and external guide and prepare the project report as per the norms avoiding plagiarism.

Cours	e Outcomes: After completing the course, the students will be able to
CO1	Describe the project and be able to defend it.
CO2	Learn to use modern tools and techniques
CO3	Develop skills to work in a team to achieve common goal. Develop skills of project management and finance.
CO4	Develop skills of self-learning, evaluate their learning and take appropriate actions to improve it.
CO5	Prepare them for life-long learning to face the challenges and support the technological changes to meet the societal needs.

Scheme of Evaluation

Internal Marks: The Internal marks (50 marks) evaluation shall be based on Phase wise completion of the project work, Project report, Presentation and Demonstration of the actual/model/prototype of the project.

CIE Marks Breakup for Major Project during VII Semester :

Relevance of the Topic

10 Marks

Report	20 Marks
Evaluation by Guide	25 Marks
Presentation	30 Marks
Viva- Voce	15 Marks
Total	100 Marks

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	3	3	2	1	1	2	1	1	2
CO2	2	2	2	3	3	2	1	1	2	1	2	2
CO3	2	2	2	3	3	2	1	1	2	1	2	2
CO4	2	2	2	3	3	2	1	1	2	1	2	2
CO5	2	2	2	3	3	2	1	1	2	1	2	2