FOR

Bachelor of Engineering in

Computer Science and Engineering
(Data Science)
(Scheme 2020)
III - IV Semester Syllabus

Engineering A Better Tomorrow
An Autonomous Institute

INSTITUTION VISION

To become an Institution of Academic excellence with International standards.

INSTITUTION MISSION

The Vision will be realized by

- Impart quality education along with Industrial exposure.
- Provide world class facilities to undertake research activities relevant to Industrial and professional needs.
- Promote entrepreneurship and value added education that is socially relevant with economic benefits.

Department of Computer Science and Engineering (Data Science)

Our Vision:

To be recognized as a department of repute in the area of Computer Science and Engineering (Data Science), by adopting a top-notch teaching-learning process and imparting knowledge to equip students with the capabilities that are required for professional, industrial, and research areas, so that they can serve society.

Our Mission:

1. Foster Innovation and Technical Competence: To impart quality education in Computer Science and Engineering(Data Science), by
adopting modern teaching-learning processes, using innovation techniques that enable students to become technically competent.
2. Create Competitive Software Professionals: To provide training programs that bridge the gap between industry and academia, to produce competitive software professionals.
3. Promote Personal and Professional Growth: To create a scholarly environment that enables value addition to staff and students so that they can achieve personal and professional growth.

Program Outcomes (POs)

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
2. Problem analysis: Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.
6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
11.Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
12.Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Program Educational Objectives (PEO)

13. IT Proficiency: Our Graduates will excel as IT experts, with extensive knowledge to analyze and design solutions to Data Science problems.
14. Social and moral principles: Our Graduates will work comfortably in a team, display professionalism and ethical values, familiarize themselves with current trends, and become responsible Engineers.
15. Higher education: Our Graduates will be confident of pursuing higher studies, armed with a sound knowledge of fundamental concepts and skills in basic sciences and IT disciplines.

Program Specific Outcomes (PSO)

1. PSO1.Software Expertise: Our Graduates will have the ability to understand, analyze and develop computer programs in areas related to algorithms, machine learning, python, data science, web design, DBMS, and networking, for efficient design of computer-based systems of varying complexities.
2. PSO2.Core Competence: Our Graduates will possess the ability to compete in the real-world, to provide solutions for real-world problems, with a broad range of programming languages and open-source platforms in various computing domains.
Program Outcomes:

- Engineering knowledge: Apply the knowledge of Mathematics, Science, Engineering fundamentals and an Engineering specialization, to solving complex engineering problems.
- Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems, reaching substantiated conclusions using the first principles of Mathematics, Natural sciences, and Engineering sciences.
- Design/ Development of solutions: Design solutions for complex engineering problems, and design system components or processes that meet specified needs,with appropriate consideration for public health and safety, along with cultural, societal, and environmental considerations.
- Investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information thus garnered, to provide valid conclusions.
- Modern tool usage: Create, select, and apply appropriate techniques, resources and modern engineering and IT tools, including prediction and modelling, to complex engineering activities, with an understanding of the limitations.
- The Engineer and society: Apply to reason informed by contextual knowledge, to assess societal, health, safety, legal and cultural issues, and the consequent responsibilities relevant to professional engineering practice.

4

- Environment and sustainability: Understand the impact of professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for, sustainable development.
- Ethics: Apply ethical principles, and commit to professional ethics and responsibilities conforming to the norms of engineering practice.
- Individual and teamwork: Function effectively as an individual, and as a member or leader in diverse teams.
- Communication: Communicate effectively with the engineering community and with the society at large, on complex engineering activities, such as being able to comprehend and write effective reports or design documentation, make effective presentations, and give and receive clear instructions.
- Project management and finance: Demonstrate knowledge and understanding of Engineering and Management principles and apply these to one's own work, as a member or leader in a team, to manage projects, in multidisciplinary environments.
- Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent life-long learning, in the broadest context of technological changes.

MVJ COLLEGE OF ENGINEERING, BENGALURU
(An Autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi, Approved by AICTE, Recognised by UGC under 2(f) and 12 (B), Accredited by NBA \& NAAC)

RULES AND REGULATIONS GOVERNING
THE DEGREE OF BACHELOR OF ENGINEERING (B.E.)
(Registration, Attendance, Examinations, Evaluation and Award of Grades)
Effective from the academic year 2020-21

Clause No.	Title	Page No.
1.	Short title and Commencement	1
2.	Definitions of Key Words	1
3.	Preamble	4
4.	Program Duration and Total Credits	4
5.	Eligibility for Admission	5
6.	Academic Administration	7
7.	Academic Year	13
8.	General Structure of Credit Allocation	15
9.	Registration	16
10.	Attendance Requirement	19
11.	Projects	20
12.	Seminars	21
13.	Field training/Industrial Internship	21
14.	Research at UG level	22
15.	Examination and Evaluation	22
16.	Grade Card	31
17.	Temporary Withdrawal	35
18.	Academic Performance Evaluation	36
19.	Vertical Progression	37
20.	Award of Degree	39
21.	Academic Counselling Cell	40
22.	Students Counselling Cell	40
23.	Malpractice in Examinations	40
24.	Rules and Discipline	43
25.	Ragging and Punishment	44
26.	Disciplinary Actions and Related Matters	44
27.	Activity Point Programme	45
28.	Termination from the Program	45
29.	Migration of Students	46
30.	Award of Ranks, Medals and Prizes	47

MVJ COLLEGE OF ENGINEERING, BENGALURU
(An Autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi, Approved by AICTE, Recognised by UGC under 2(f) and 12(B),

Accredited by NBA \& NAAC)

Index of Scheme and Syllabus for

Bachelor of Engineering in Computer Science and
Engineering (Data Science)
(Scheme 2020)
III - IV Semester

SI. No.	Semester	Page No.
1.	III Semester Scheme and Syllabus	49
2.	IV Semester Scheme and Syllabus	82

1			Short title and Commencement: These Rules and Regulationsmay be called as "MVJCE Rules and Regulations" Governing B.E. Programmes for Implementation of academic autonomy. It will be in effect from the date of notification from UGC and VTU.
2			Definitions of Key Words The following are the definitions/descriptions that have been followed for the different terms used in the Regulations of B.E. Programmes: a. Affiliating University: Visvesvaraya Technological University (VTU), Belagavi. b. Academic Autonomy: means freedom granted by the Affiliating University to the college in all aspects conducting of its academic programmes for promoting academic excellence. c. Autonomous College: means a college notified as an autonomous college by the affiliating University as per its statutes i.e. VTU statutes on Autonomous Colleges (Amended) 2015 and further amended from time to time as per UGC regulations and guidelines. d. Statutes: means VTU statutes on Autonomous Colleges (Amended) 2015 and further amended from time to time. e. Commission:means University Grants Commission (UGC). f. Council:means All India Council for Technical Education (AICTE). g. Course Instructor: Teaching staff of the college appointed based on the norms laid down by the Affiliating University/Council. h. Proctor: Faculty member of the college appointed as per the norms. i. Programme:refers toain a particular stream/ branch of Engineering/branch of specialization leading to award of Degree. It comprises events/activities, comprising of lectures/ tutorials/ laboratory work/field work, outreach activities/ project work/ vocational training/viva/seminars/Internship/ assignments/presentations/self-study etc., or a combination of some of these. j. Branch: Means Specialization or discipline of B.E. Degree Programme, such as Civil Engineering, Mechanical Engineering, etc. k. Academic Year: Means two main consecutive semesters (odd followed by an even) and a Supplementary (Summer) semester constitute one academic year. I. Semester: The B.E. Degree Programme is of four academic years comprising of eight Semesters in case of students admitted to I year/ I semester of the B.E. programme and three academic years comprising of six Semesters in case of students admitted to II year/ III semester of the B.E.programme (Admission through Lateral entry scheme), with the year being divided into two main Semesters, Odd and Even of 19 to 20 weeks (with

working days greater than or equal to 90) and a Supplementary (Summer) semester of 8 weeks. The odd semester may be scheduled from August, whereas even semestermay be scheduled from January and Supplementary (Summer) semester starting from May/June of the year.
m. Course: Usually referred as 'paper' or 'subject' and is a component of a programme. All courses need not carry the same weightage. The courses should define learning objectives and learning outcomes. A course may be designed to comprise lectures/ tutorials/ laboratory work/ field work/ outreach activities/project work/ vocational training/viva/seminars/term papers/assignments/ presentations/ self-study etc., or a combination of some of these.
n. Credit: Refers to a unit by which the course work is measured. It also determines the number of hours of instructions required per week.
o. Audit Courses (Non-Credit Course)/Mandatory Courses: Means Knowledge/ Skill enhancing courses without the benefit of a grade or credit for a course.
p. Choice Based Credit System (CBCS): Refers to customizing the course work for a student, through the prescribed courses (i.e., Core, Elective and soft skill courses).
q. Course Registration: Refers to formal registration for the courses in each Semester (Credits) by every student under the supervision of a Proctor (also called as Faculty Advisor, Mentor, Counselor etc.,) at the Institution.
r. Course Evaluation: Continuous Internal Evaluation (CIE) and Semester End Examinations (SEE) to constitute the major evaluation components prescribed for each Course, with only those students satisfying a minimum standard in CIE are being permitted to appear in SEE of the Course. CIE and SEE to carry equal weightage of 50:50 respectively, to enable each Course to be evaluated for 100 marks, irrespective of its Credits.
s. Continuous Internal Evaluation (CIE): Refers to evaluation of student's achievement in the learning process. CIE shall be conducted by the Course Instructor and include midterm/weekly/fortnightly class tests, homework, problem solving, group discussion, quiz, mini-project, activities \& seminar throughout the Semester, with weightage for the different components being fixed. CIE through tests called the 'Internal Assessment Tests'.
t. Semester end examinations (SEE): Refers to examination conducted at the college level at par with University level examination covering the entire Course Syllabus.
u. Credit Based System (CBS): Refers to quantification of course work, after a student completes teaching - learning process, followed by qualifying in both CIE and SEE. Under the CBS, the requirement for awarding a degree is prescribed in terms of total number of credits to be earned by the students.

a) Students admitted to $1^{\text {st }}$ year B.E. programme

i. Students admitted to $1^{\text {st }}$ year B.E. shall complete the programme within a period of eight academic years from the date of first admission, failing which student has to discontinue the Course.
ii. Student who has not obtained eligibility to $3^{\text {rd }}$ semester even after three academic years

			from the date of admission to $1^{\text {st }}$ semester shall discontinue the programme or get readmitted to $1^{\text {st }}$ year of the programme iii. Student who gets admitted to $3^{\text {rd }}$ semester in three or less than three years shall complete the programme with or without break within eight academic years from the date of admission to $1^{\text {st }}$ year, failing to which shall discontinue the programme or seek fresh admission following the prevailing admission procedure at that time. b) Students admitted II Year B.E. under lateral entry i. Students admitted II Year B.E. under lateral entry scheme shall complete the Programme within a period of six academic years from the date of first admission, failing which student has to discontinue the programme. ii. A student who has not obtained the eligibility to $5^{\text {th }}$ semester even after two academic years from the date of admission shall discontinue the Programme or get readmitted to $3^{\text {rd }}$ semester of the programme iii. Student who gets admitted to $5^{\text {th }}$ semester in two or less than two years shall complete the programme with or without break within six academic years from the date of admission to $1^{\text {st }}$ year, failing to which shall discontinue the programme or seek fresh admission following the prevailing admission procedure at that time.
5			Eligibility for Admission (As per the Government/University orders issued from time to time)
	5.1		For Regular students i. Admission to I year/ I semester Bachelor Degree in Engineering/ shall be open to the students who have passed the II PUC/ XII Standard/ Equivalent Examination with English as one of the Languages and obtained a Minimum of 45% of Marks in aggregate in Physics and Mathematics along with Chemistry / Bio-Technology / Biology / Electronics / Computer Science. ii. In case of SC/ST, Category -1 and $O B C(2 A, 2 B, 3 A$ and $3 B)$ category students from Karnataka (Karnataka candidates only) the minimum marks for eligibility shall be 40%. iii. With regard to the qualification earned from foreign countries, Equivalence certificate from the Association of Indian Universities and Eligibility Certificate from Affiliating University is Mandatory for admission to B.E. programme. In case of any dispute about the equivalence in qualification earned from foreign countries, the decision of the Affiliating University's Equivalence committee shall be the final in establishing the eligibility of the student.
	5.2		For Lateral Entry students i. Admission to II year/ III semester Bachelor Degree in Engineering/ Technology (Lateral Entry) shall be open to the Diploma holders and B.Sc. graduates.

			ii. Must have passed Diploma or equivalent examination as recognized by University and secured not less than forty-five percentage (45\%) marks in the final year examination (fifth and sixth semesters) in the appropriate branch of engineering. In case of SC/ST and OBC students from Karnataka the minimum marks for eligibility shall be forty percent (40\%). iii. Those candidates who have completed Diploma from other than Karnataka state shall provide the Equivalence/ Eligibility Certificate from the Director of Technical Education, Karnataka. B.Sc. Graduates i. Must have passed B.Sc. degree from a recognized University under the UGC or equivalent qualification as recognized by University and secured not less than forty-five percentage (45\%) marks in aggregate (considering the marks of all six semesters). In case of SC/ST and OBC students from Karnataka (Karnataka candidates) the minimum marks for eligibility shall be forty percent (40\%). Candidates must have studied Mathematics as subject of study at XII Standard. ii. Those students, who have passed a qualifying examination other than the PUC II examination of the Pre-University Education Board of Karnataka, have to obtain eligibility certificate for seeking admission to B.E. Degree Programme from Visvesvaraya Technological University, Belagavi.
6			Academic Administration Academic administration is monitored by the following academic committees / officers of the institute: - Governing Council (GC) - Academic Council (AC) - Institute Academic Affairs Committee (IAAC) - Departmental Academic Affairs Committee (DAAC) - Joint Board of Studies (JBoS) - Board of Studies (BoS) - Board of Examiners (BoE) - Programme Accreditation Committee (PAC) - Malpractice Enquiry Committee (MEC) - Grievance Redressal Cell (GRC) - Internal Quality Assurance Cell (IQAC) - Disciplinary Committee (DC) - Student Counseling Cell (SCC) - Departmental Project Evaluation Committee (DPEC)

		(DSEC) for the evaluation of student seminars and Industrial training/field training. Responsible for identification of courses to be offered during evening / summer semester, allotment of guides for mini and major projects and recommending a course to be studied by students having shortage of credits for award of degree. Approval of registration to different soft core course of failed students. Structure of DAAC Chairman : Head of the Department Members : Three senior faculty members appointed by Head of the Department Convener: Faculty member appointed by Head of the Department
6.5		Joint Board of Studies (JBoS): Responsible for discussing common academic issues and recommend to academic issues and recommend to academic council for approval. Structure of JBoS Chairman : Principal Members : Chairmen of all Boards of Studies Invitees : Controller of Examination \& Training \& Placement Officer Member Secretary : Dean (Academic)
6.6		Board of Studies (BoS): Structure of BoS Chairman : Head of the Department Members : All members of DAAC Convener : Convener DAAC - Two experts from outside the Institute - One expert from outside the Institute nominated by the Vice-Chancellor from a panel of six recommended by Principal. - One representative from industry/corporate sector/allied area relating to placement to be nominated by the AC. - One post graduate meritorious alumnus to be nominated by Principal as member - Chairman co-opts the following members. Co-opted: Experts from outside the Institute whenever special courses of studies are to be formulated. - Other members of the faculty of the same Department. The term of nominated members shall be three years. The functions of BoS are to: - Prepare the syllabi for various courses keeping in view the objectives of the institute, interest of the stakeholders and State / National/International and societal requirements

	for the consideration and approval of academic council. - Suggest Head of Department for improving teaching and evaluation techniques - Prepare panel of experts for appointment as examiners - Guide the department with respect to teaching, extension and other academic activities in the departments - Perform any other function assigned by the AC
6.7	Board of Examiners (BoE) Structure of BoE Chairman : Head of the Department Members : Two or three faculty members covering different areas of specialization, recommended by HoDOne /Two experts from other institutions. Convener: Faculty member appointed by Head of the Department The functions of BoE are to: - Scrutinize the question papers - Forward the panel of examiners for each course to the Controller of Examination - Prepare and approve the detailed scheme of evaluation pertaining to practical courses - Analyze the semester end examination results of all the semesters.
6.8	Programme Accreditation Committee (PAC): Responsible for measuring the attainment of Cos (Course Outcomes), and Pos (Programme Outcomes) of each of the programme offered in the department and presenting the report to IAAC, PAC is constituted separately for each programme. Structure of PAC Chairman : Head of the Department Members : Two Associate Professors Two or Three Assistant Professors Convener : Faculty member appointed by Head of the Department

6.9		Malpractice Enquiry Committee (MEC): To conduct enquiry of the students involved in malpractice and decide the nature of punishment to be awarded depending upon the gravity of the offence. Structure of MEC Chairman : Principal Members : Dean (Academic) : Vice-Principal : Registrar : Respective Head of Department/s : Legal advisor Member Secretary : Controller of Examinations
6.10		Grievance Redressal Cell (GRC): Receives written complaints from thestakeholders regarding any kind of academic grievances. Examines the genuineness of the complaint and suggest remedies. Forward the recommendations to the chairperson of $A C$ for implementation. Structure of AGC Chairman : Dean (Academic) Members : Vice-Principal : Registrar : Two or Three Senior faculty members appointed by Principal Member Secretary : Dean of Student Welfare

6.11		Internal Quality Assurance Cell (IQAC): - Development and application of quality benchmarks. - Parameters for various academic and administrative activities of the institution. - Facilitating the creation of a learner-centric environment conducive to quality education and faculty maturation to adopt the required knowledge and technology for participatory teaching and learning process. - Collection and analysis of feedback from all stakeholders on quality-related institutional processes. - Dissemination of information on various quality parameters to all stakeholders. - Organizing inter and intra institutional workshops, seminars on quality related themes and promotion of quality circles. - Documentation of the various programmes/activities leading to quality improvement. - Acting as a nodal agency of the Institution for coordinating quality-related activities, including adoption and dissemination of best practices. - Development and maintenance of institutional database through MIS for the purpose of maintaining / enhancing the institutional quality. - Periodical conduct of Academic and Administrative Audit and its follow-up. - Preparation and submission of the Annual Quality Assurance Report (AQAR) as per guidelines and parameters of NAAC/NBA. Structure of IQAC Chairman : Principal Members : Dean (Academic) : Three Senior faculty members appointed by Principal : One member from Management : Few Senior administrative officers : One/ Two Nominees from local Society, Students and Alumni : One/ Two Nominees from Employers /Industrialists/Stakeholders : Registrar Member Secretary :Vice-Principal
6.12		Disciplinary Committee (DC): Conduct enquiry pertaining to indiscipline and award suitable punishment. Structure of DC Chairman : Principal Members : Head of Department/s : Vice-Principal : Registrar

	: Dean of Student Welfare Invitees: Controller of Examinations Member Secretary: Dean (Academic)
6.13	Student Counselling Cell (SCC): "Adolescence is a period when individual is over whelmed by a number of simultaneous developments, to meet this situation proper guidance is needed in this period. The teacher and institute encourage the development of effective maturity by providing the counselling and guidance". Whereas i feel dropping and withdrawal be advised by course co-ordinators.
6.14	Departmental Project Evaluation Committee (DPEC): Structure of DPEC Chairman: Head of the Department Members : Two faculty members and guide Convener: Faculty member nominated by Head of the Department The functions of DPEC are to: - Evaluate project - Furnish the details of evaluation to concerned HoD
6.15	Departmental Seminar Evaluation Committee (DSEC): Structure of DPEC Chairman : Head of the Department Members: Two faculty members and guide Convener: Faculty member nominated by Head of the Department The functions of DSEC are to: - Evaluate Technical seminar - Furnish the details of evaluation to concerned HoD
6.16	Interdisciplinary Project Evaluation Committee (IPEC): Structure of IPEC Chairman : Nominated by IAAC Members : Two faculty members from each department Minimum six faculty nominated by Chairman Convener : Faculty member nominated by the Chairman The functions of IPEC are to: - Evaluate interdisciplinary projects - Furnish the details of evaluation to concerned HoDs
6.17	The following officials are also involved in academic administration.

			Controller of Examination (COE): Responsible for preparation of examination manual, all matters pertaining to smooth conduct of examinations, evaluation and grading, publication of results and printing of grade cards, provisional degree certificates and transcripts. Responsible for maintaining all records pertaining to examinations. Dean of Academic Affairs (DAA): Responsible for receiving, processing and maintaining all records pertaining to undergraduate program and post graduate programs including curricula, courses offered, academic calendar, records of drop, withdraw, rejection of results and long leave of students. Preparation of first year, OE/HS timetable Dean of Student Welfare (DSW): Attend to all student related problems and disciplinary matters.						
7			Academic Year The breakup of academic year for regular semesters and supplementary (Summer) semester are given in the Tables 7.1 and 7.2. Details of vacation are given in Table 7.3. Table 7.1: Break-up of academic year for regular semesters						
			SI. No. Action Plan Odd Semester $\mathbf{1}$ Registration of courses (before the commencem ent of the semester)		OddSemester2 days(before thecommencement of thesemester)		Even Semester		
			Semester (before the commence ment of the semester)						
			2	Course Work	16 weeks		16 weeks		
			3 4	Examination preparation holidays Semester End Examination	1 week		1 week $2 \text { to } 3$ weeks		
				Total	$19 \text { to } 20$ weeks	1 to 2 weeks	$19 \text { to } 20$ weeks	10 weeks	
			Table 7.2: Break-up of summer semester						
			SI.No.	Action Plan		Summer Semester			
			1	Registration of courses		1 day (The next working day after the announcement of even semester examination results)			
			2	Course Work		7 weeks			

| \mid | | $\mathbf{3}$ | Examination preparation
 holidays | 1 weeks |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | Semester End Examination | 1 weeks | | |
| | Vacation | 1 weeks | | |
| | Total | $\mathbf{1 0}$ weeks | | |

Table 7.3: Details of vacations

Between odd and even semester	2 weeks		
Between even and odd semester (which includes one week vacation between summer \& odd semester	10 weeks		
	Total	$\mathbf{1 2 \text { weeks }}$	
:---			

9			Registration Students should register, for the courses as per the scheme of study, in each of the semester/s (odd / even) with the respective proctors. The dates for registration are specified in academic calendar of the Institute published before the commencement of academic year. Registration by the students should be completed within the dates specified in the academic calendar. Registration after the last date is not permitted. Students should be present in person to obtain the approval (Form-1) from the proctor for registered courses.
	9.1		Registration procedure i. On the day of registration, the students have to approach the concerned proctor. ii. Proctor will counsel the students and will advise the students regarding the courses to be registered during the current semester taking into account the performance of the student during the previous semester/s. iii. Students have to register through online mode using their credentials. iv. A print copy of the filled registration form (Form-1) shall be submitted to the Proctor along with fee paid receipt. v. The proctor will enroll the students for the courses as indicated in the registration form.
	9.2		Eligibility requirements for Registration to an academic year i. He/she should not have obtained ' F ' grades in credit courses five times consecutively. ii. For the registration to odd semester, the total number of courses Withdrawn (W), Dropped (DP), Not Eligible (NE), Failed (F), Incomplete grade (I) and X grade should not exceed 4. iii. CGPA should be ≥ 5 at end of academic year. iv. Dues of the previous semester to the Institution, Hostel and Library are to be paid. v. Should not have any disciplinary proceeding pending against the candidate. Illustrations: a) A candidate seeking eligibility to $3^{\text {rd }}$ semester should not have W, DP, NE, F, I or X grade in more than four courses of first, second and supplementary semesters taken together excluding mandatory courses. b) A candidate seeking eligibility to $5^{\text {th }}$ semester should not have W, DP, NE, F, I or X grade in more than four courses of $1^{\text {st }}$ to $4^{\text {th }}$ semesters and supplementary semester put together excluding mandatory courses. c) A candidate seeking eligibility to $7^{\text {th }}$ semester should have passed in all the courses of $1^{\text {st }}$ and $2^{\text {nd }}$ semesters and should not have W, DP, NE, F, I or X grade in more than four courses of $3^{\text {rd }}$ to $6^{\text {th }}$ semesters and supplementary semester put together excluding mandatory courses.

			institute in its calendar of events. For I semester B.E. \& lateral entry students, the attendance is reckoned from their date of admission. For all other semesters, attendance will be counted from the date of commencement of class as announced in the institute academic calendar. v. It is mandatory on the part of the students to regularly check the status of their attendance with the respective faculty.
11			Projects Projects consist of mini project spread over V \& VI semesters and Major project spread over VII \& VIII semesters.
	11.1		A. Mini Project The aim is to bring out creativity and innovation in the students preferably in the form of a working model. This project can be taken up by a group of students (normally four members) from the same or different departments. If the project demands, more man power, then the number of students in the group can be relaxed by the Heads of the concerned departments. i. The project is spread over two semesters (V \& VI) and evaluated at the end of each semester. ii. No credit is allocated during V semester. iii. Mini project is evaluated during the VI semester for 100 marks ($50 \% \mathrm{CIE}$ and $50 \% \mathrm{SEE}$) iv. DAAC assigns guides for mini projects. v. Interdisciplinary projects have a guide from each of the participating departments.
	11.2		B. Major Project i. It is spread over VII and VIII semesters and evaluated at the end of each semester for the assignment credits. ii. The project may be based on; - Design aspects - Theoretical/Analytical Modelling - Computer Simulation - Developing Working Model iii. The project could be part of the research activity carried out in the department. iv. The literature survey should be one of the components of the project. v. The project can be carried outside the institute in a recognized industry/research lab. vi. Head of the Department and DAAC assign guides for the major project. - The project can be taken up by a group of students (normally four members) from the same or different departments. - Interdisciplinary projects have a guide from each of the participating departments.

		- The students should maintain a project diary consisting of day-to-day work carried out by them with monitoring by the guide on weekly basis. vii. Project Report completed in all respects and approved by the guide and HoD must be submitted at least one week before the commencement of theory examination of VIII semester. Reports submitted after the last date will not be evaluated in the even semester and I grade will be awarded to major project. The students have to register during supplementary semester or subsequent semester. viii. Plagiarism check has been made mandatory. The project report shall be summarily rejected, if the plagiarized content (similarity index excluding self-written research papers, common definitions) is $\mathbf{> 2 5 \%}$. In such cases students have to resubmit the project report with prescribed fee within fortnight from the date of rejection. ix. Two chances shall be given for the resubmission. After two chances if the plagiarism level found unacceptable then, students have to repeat the project work entirely by reregistering during subsequent academic year.
12		Seminars Students of VII semester have to present a technical seminar on emerging area in the respective discipline.
13		Field training/Industrial Internship Students have to undergo this training for a period of 6 weeks (minimum) during the vacation between even and odd semesters of II and III year or III and IV year. Those students who are unable to complete during these periods will have to undergo the industrial training after the VIII semester and the VIII semester Grade Card will be issued only after the successful completion of industrial training by that student.
14		Research Initiative at UG level Students who have CGPA of 8.5 and above up to $4^{\text {th }}$ semester and would like to pursue research work during $5^{\text {th }} \& 6^{\text {th }}$ semesters are required to identify the area of research and the guide. The students have to submit the application to the concerned Head of the Department in the prescribed format (Form-6) available in the department. Students are exempted from studying one Open Elective and one Professional Elective course in $5^{\text {th }}$ and $6^{\text {th }}$ semesters.
15		Examination and Evaluation Evaluation of a student in each course is a continuous process, which is based on: - Continuous Internal Evaluation (CIE): 50\% of the marks allotted for the course. - Semester End Examination (SEE): 50\% of the marks allotted for the course.
	15.1	Pattern of question papers for theory courses

	15.1.1	Internal Assessment (IA) i. There will be three mandatory tests. ii. Question paper for the IA consists two parts i.e. Part A and part B. Part A will be a compulsory question consists of objective type or short answer type questions of 1 or 2 marks each for a total of 6 marks covering the syllabus during the periods specified. iii. Part B also covers the syllabus during the periods specified consists of two questions of 12 marks each having choices and may contain sub-divisions. Students have to answer two full questions. iv. Duration of each test is 90 minutes
	15.1.2	Semester End examination i. Question paper for the SEE consists two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus. ii. Part B also covers the entire syllabus consisting of five questions having choices and may contain sub-divisions, each carrying 16 marks. Students have to answer five full questions. iii. One question must be set from each unit. iv. The duration of examination is 3 hours.
15.2		Examination and evaluation in theory courses
	15.2.1	Continuous Internal Evaluation (CIE) CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation. Generally, there will be: - Quizzes/mini tests (4 marks) - Mini Project / Case Studies (8 Marks) - Activities/Experimentations related to courses (8 Marks) - Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of three tests a) First test is conducted at the end of sixth week from the beginning of the semester. The syllabus for this test is the syllabus covered in the first six weeks. The duration will be of 90 minutes. b) Second test is conducted at the end of tenth week. The syllabus for this examination is the syllabus covered between first test and second test. The duration will be of 90 minutes. c) Third test is conducted at the end of fifteenth week. The syllabus for this examination is the syllabus covered between second test and third test. The duration will be of 90 minutes.

$\left.\begin{array}{|l|l|l|l|}\hline \text { 15.2.2 } & \begin{array}{l}\text { Semester End Examination (SEE) } \\ \text { i. Semester End Examination is conducted as per the academic calendar of the Institution. } \\ \text { The examination is conducted for } 100 \text { marks and is reduced to } 50 \text { marks for computation } \\ \text { of grades. } \\ \text { ii. A student has to obtain a minimum of } 40 \% \text { (i.e., 20/50 marks) of the marks allotted to } \\ \text { SEE, failing which F or X grade will be awarded for that course. WhereasX grade is } \\ \text { awarded to a student who has minimum attendance of } 85 \% \text { and minimum of } 90 \% \text { in CIE. }\end{array} \\ \text { iii. SEE answer scripts are evaluated by the internal examiners normally the Course } \\ \text { Instructor appointed by the Controller of Examination and normally 20\% of the scripts } \\ \text { moderated by the external examiners appointed by the Controller of Examination in } \\ \text { consultation with respective BoEs. }\end{array}\right\}$

		literature survey and preliminary requirements/specifications/flow chart/design steps pertaining to the chosen project. Also, the students in the project batch have to submit a report to the respective guide. The breakup of marks for CIE for major project at the end of VII semester is given in Table 15.4.3 Table 15.4.3 CIE marks break up for major project (during VII semester) CIE for report shall be awarded only on submission of report covering the literature survey and problem definition. Two credits are assigned for the work done during VII semester. However, there is no SEE for major project during VII semester.
	15.4.4	CIE for major project during VIII semester Major project is evaluated for 100 marks (50% CIE \& 50\% for SEE) during VIII semester. The breakup of CIE marks is given in table 15.4.5
	15.4.5	Co-curricular Activities (Max of five marks) Weightage of 5 marks is given for co-curricular activities, with an objective of inculcating in students, the culture of preparing and presenting papers, encouraging them to apply the technical knowledge for solving real life problems and motivating them towards self-study. - 2 marks for presenting paper in National / International conference by maximum of two authors. - Additional 2 marks for every additional paper presentation but not in the same conference and the paper should not be same. - 2 marks for participation in hobby project exhibition. - Additional 2 marks for participation in hobby project exhibition held at different technical institutions or different project. - 3 marks for obtaining any prize other than first prize. - 4 marks for obtaining first prize. - 5 marks for publication in journals. - 3 marks for every certification obtained from reputed companies like IBM, Microsoft and other organizations approved by the department. - Additional 3 marks for every additional certification.

	15.8	Extended (Revaluation)Evaluation The students, who have not satisfied with the evaluation in SEE, can apply for Extended Evaluation on payment of prescribed fee within the stipulated time as notified by the institute. Extended Evaluation is carried out by external examiners independently (who have not evaluated the answer script earlier). The highest marks among earlier awarded marks and theawarded by the external examiners is considered as the final marks in SEE for award of grade.
	15.9	Rejection of Results i. A student may reject his/her results of all the courses registered in a semester of an academic year if he/she is not satisfied with the result of any semester, subject to the condition that the maximum duration for the completion of the course as mentioned in Table 4.1 is not exceeded. The rejection is permitted only once during the entire program of study ii. Student who desire to reject the SEE results of a semester shall reject the total performance in all courses of semester (including CIE marks) either rejecting or retaining the CIE marks. iii. Student who desire to reject the total SEE performance of an odd/even semester including CIE marks, have to repeat that semester of prevailing scheme by taking readmission during the subsequent academic year/s. However, student is governed by clause 4 iv. If the student rejects the SEE permanence of odd semester excluding CIE marks shall be permitted to register the courses of next immediate even semester. v. If the student rejects the SEE permanence of even semester excluding CIE marks shall not be permitted to register the courses of next immediate odd semester as per clause 19. In such cases student shall take admission to the next odd semester of prevailing scheme during the subsequent academic year/s after obtaining eligibility. However, student is governed by clause 4 vi. Application for Rejection of results shall be submitted in the prescribed format (Form-5) to respective Head of the department within a week from the date of announce of results. Same shall be approved by the Principal. vii. Rejection of the performance of VII semester project work is not permitted viii. Students who opt for rejection of results shall not be eligible for award of ranks and Honours Degree.
16		Grade card

	If a student has a minimum attendance of 85% and a minimum 90% in CIE and has obtained < 40% marks in SEE, in regular even or odd semester, then, he/she will be awarded X grade. - Such a student is permitted to appear for SEE conducted during that academic year. - If such a student fails to obtain E grade or above in regular or summer semester, he/she will be awarded F grade. The student should re-register for the same course in its entirety whenever the course is offered. - If such a student fails to appear for SEE either in even semester or in summer semester of that academic year, X grade will be automatically converted into ' F 'grade. - However, a student who has been awarded X-grade also has the option of: i. Reregistering of such courses either during summer semester or whenever the courses are offered. ii. Audit the courses during summer semester of that academic year by paying prescribed fees. iii. X-grade is not awarded during supplementary semester SEE.
16.4	Dropping of the courses (DP)* - Student, who wants to drop a theory course, has to apply in a prescribed format (Form-3) through concerned teacher, Proctor and Head of the Department to the Dean (Academic) for permission. - Students are not permitted to drop theory course that are integrated with laboratory course in that semester/any other semester. - Mandatory courses cannot be dropped. - The dropping of course is allowed within the date specified in the academic calendar of that semester, usually eight weeks from the commencement of the semester. A student is allowed to drop a maximum of two courses. If the student drops the course within specified date, the fee for the course dropped will be adjusted for subsequent registration of the same course. The course dropped will not be indicated in the grade card. - Dropping of laboratory course(s) is not allowed. - Any re-registered course cannot be dropped. * A student can drop and or withdraw maximum of two courses.

	16.5		Withdrawal Grade (W)* A student, who wants to withdraw a theory course, has to apply in the prescribed proforma(Form-4) through the faculty who teaches the course, Proctor and Head of the Department to the Dean (Academic) for the permission to withdraw. A student is not allowed to withdrawn/drop same course more than once. Withdrawal of practical course(s) is not allowed. - Students are not permitted to withdraw theory courses that are integrated with laboratory course wither in that semester or in any other semester. - Withdrawal of a course is allowed within the specified date in the academic calendar. A student is not permitted to withdraw any course after the specified date in the academic calendar. - If a student withdraws the course after eight weeks from the commencement of the semester and up to fourteenth week, the registration fee will be forfeited. - Students have to reregister the withdrawn course after paying the prescribed fees in the summer semester or in the subsequent semesters during which the course is offered. - Transitional grades like withdrawal, incomplete and X grade are not awarded during summer semester.
	16.6		Not Eligible Grade (NE) Grade NE is awarded to the students who fail to secure attendance at least 85% and CIE of 40\%.
	16.7		Make-up Examination: The students who has been awarded with ' X ' or ' I ' gradesare eligible to attend make-up examinations as per the dates notified in Academic Calendar of the institution.
17			Temporary Withdrawal Student shall be permitted to withdraw temporarily on the grounds like, prolonged illness, grave calamity in the family or any other serious happening. The withdrawal hall be for periods which are integral multiples of a semester, provided that, i. Student applies to the college within at least 6 weeks of the commencement of semester or from the date student last attended the classes, whichever is later, stating the fully the reasons for such a withdrawal along with supporting documents endorsed by the parents/guardians ii. Such withdrawal shall be permitted only under the provisions of clause 4 iii. Student availing temporary withdrawal shall be required to pay tuition and other fee. iv. Student will be entitled to avail temporary withdrawal facility only once during the programme. Any concession for the student shall be approved the Academic Council of

		II	MJXXX012	2:0:0	F	0	00	$\begin{gathered} =274 / 4 \\ 1 \\ =6.68 \end{gathered}$
		II	MJXXX013	0:2:0	B	8	$2 \times 8=16$	
			Total	$\begin{gathered} 25 \\ \left(23^{*}\right) \end{gathered}$		Total	157	
		Supplement ary	MJXXX002	3:2:0	D	6	$5 \times 6=30$	SGPA =
		Supplement ary	MJXXX004	0:1:1	C	7	$2 \times 7=14$	
		Supplement ary	MJXXX012	2:0:0	D	6	$2 \times 6=12$	$\begin{gathered} \text { CGPA } \\ =330 / 5 \end{gathered}$
			Total	9		Total	56	$\begin{gathered} 0 \\ =6.60 \end{gathered}$

Note: Minimum CGPA to be earned at the end of each academic year is 5.0. SGPA and CGPA are normally calculated to the second decimal position, so that the CGPA, in particular, can be made use of in preparing the rank list of the student's performance at the college. If two students get the same CGPA, the tie would be resolved by considering the number of times a student has obtained higher SGPA and if it is still not resolved, the number of times a student has obtained higher grades like S, A, B etc., would be considered.

19	
	19

Vertical Progression

19.1

For Regular students

i. The CGPA has to be ≥ 5.00 at the end of each the academic year. However, failure to secure a minimum CGPA of 5.00 at the end of any academic year for the first time shall attract warning before approval to continue in the semester to follow.
ii. Faculty Advisor (Mentor) / Head of the Department shall advice the students to maintain a CGPA of ≥ 5.00.
iii. Should not have ' F ' Grade in more than FOUR courses (Excluding Non-Credit Mandatory Courses).
iv. For admission to 3rd Semester student should not have ' F ' Grade in more than FOUR courses in 1st,2ndand supplementary semesters put together
v. For admission to 5th Semester students can carry any FOUR courses of 1st and 2nd year i.e. 1st to 4th and supplementary semesters put together.
vi. For admission to 7th B.E. the students should have completed all the courses of first year and can carry any FOUR courses of 2 nd and 3 rd year i.e. 3 rd to 6 thand supplementary semesters put together.

For Diploma Holders (Lateral Entry)

i. The CGPA has to be ≥ 5.00 at the end of the academic year. However, failure to secure a minimum CGPA of 5.00 at the end of any academic year for the first time shall attract

		warning before approval to continue in the semester to follow. ii. Faculty Advisor (Mentor) / Head of the Department shall advice the students to maintain a CGPA of ≥ 5.00 at the end of each semester. iii. Should not have ' F ' Grade in more than FOUR courses (Excluding Non-Credit Mandatory Courses). iv. For admission to $5^{\text {th }}$ Semester students can carry any FOUR courses of 2 nd year i.e. 3rd, 4thand supplementary semesters put together. v. For admission to $7^{\text {th }}$ semester B.E. the students should have completed all the courses of first year and can carry any FOUR courses of 2 nd and 3 rd year i.e. 3rd to 6thand supplementary semesters put together. vi. Students admitted to Bachelor of Engineering at the III semester level will have to study mandatory non-credit courses "Additional Mathematics-1" in III semester and "Additional Mathematics-2" in V semester respectively. However, a pass or fail in this is not considered in vertical progression provided the attendance and CIE requirements are satisfied. vii. If student fails to satisfies attendance and CIE requirements has to reregister for the course to make him/herself to appear for SEE viii.Completion of "Additional Mathematics-1 and Additional Mathematics-2" is mandatory for award of degree.
19.3		For B.Sc. students (Lateral Entry) i. The CGPA has to be ≥ 5.00 at the end of the academic year. However, failure to secure a minimum CGPA of 5.00 at the end of any academic year for the first time shall attract warning before approval to continue in the semester to follow. ii. Faculty Advisor (Mentor) / Head of the Department shall advice the students to maintain a CGPA of ≥ 5.00 at the end of each semester. iii. Should not have ' F ' Grade in more than FOUR courses (Excluding Non-Credit Mandatory Courses). iv. For admission to 5th Semester students can carry any FOUR courses of 2 nd year i.e. 3 rd, 4th and supplementary semesters put together. v. For admission to 7th B.E. the students should have completed all the courses of first year and can carry any FOUR courses of 2nd and 3rd year i.e. 3rd to 6th and supplementary semesters put together. vi. Students admitted to Bachelor of Engineering at the III semester level will have to study additional courses. Like 'Engineering Graphics and Elements of Civil Engineering and Mechanics' in addition to the regular courses from III to VIII semester. However, a pass or fail in these is not considered in vertical progression provided the attendance and CIE

		requirements are satisfied. vii. If student fails to satisfies attendance and CIE requirements has to reregister for the course to make him/herself to appear for SEE viii. Completion of mandatory non-credit courses "Engineering Graphics and Elements of Civil Engineering and Mechanics are mandatory for award of degree.
20		Award of Degree
	20.1	Degree is awarded to students satisfying the following requirements: i. Students have registered for courses totalling to credits given in Table 4.1. ii. Should not have any transitional grades (I, W, X, NE, DP) in any of the courses. iii. Should have CGPA ≥ 5.00 at the end of last semester. In case, if the students not fulfil this requirement are permitted to appear again for SEE in full or Part of the previous year theory course/s by rejecting the performance of them (other than internship, technical seminar, project and laboratories) for any number of times subject to the provision of maximum duration of the programme, to make up the CGPA greater than or equal to 5.00 for the award of degree. iv. Should have passed in all the prescribed mandatory courses. v. Should have earned the desired number of activity points as per the AICTE' activity point programme as per clause 27 vi. Should not have any pending disciplinary proceedings. vii. Should not have dues to the institute.
	20.2	For award of B.E. (Honours) degree A student shall be declared to have completed the Programme B.E. degree and shall be eligible to get B.E. degree with Honours, provided, i. Should have undergone the stipulated Course work of all the semesters under the same scheme of Teaching and Examinations and has earned prescribed number of credits as per clause 4 ii. Should have maintained CGPA ≥ 8.5 without any backlogs. iii. Has earned additional 18 or more credits by earning final score $\geq 60 \%$ through University approved online courses like Swayam. NPTEL etc.
21		Academic Counselling Cell After the first test, the faculty in-charge reports to the HoD, about the students who have scored less than the minimum requirement of 40% in first two quizzes and first test. HoD, faculty in-charge and proctor counsel such students and advise them regarding the course to be dropped so that, he/she can concentrate on other courses and perform better. The HoD and proctor takes an undertaking from such students to the effect that he/she:

			- Shall attend all lectures, tutorials and laboratory classes regularly. - Shall not miss any quizzes and Tests. - Shall submit assignments regularly. - Shall work hard to improve his/her academic performance.		
22			Students Counselling Cell The functions of Students Counselling Cell are to, i. Identify academically deficient and disturbed/distressed students through proctors and counsel them. Monitoring of such students with the help of psychiatrist and medical officer. ii. Explore ways and means to help the students to come out psychological issues. iii. Assign student mentor for regular monitoring of academic activities		
23			Malpractice in Examinations Penalties and punishments to the students involved in malpractice during the examination.		
			Sl. No.	Nature of Malpractice	Penalty to be imposed
			1.	Any form of revealing the identity of the candidate in the answer script of Semester End	Fine of Rs. 2500/- and award of F grade for that course.
			2.	Possession of Manuscript printed or typed matter, Books or notes and written matter on Calculator / Instrument Box / electronic / wireless devices / Mobile phones, pen drives etc., or having any other written matter on the person (For Example, Palm, Hand, Leg, Cloths, Socks etc.,).	To deny the benefit of performance of the examination of all the courses for which the candidate has appeared by awarding ' F ' Grade in all the courses (both attended and to be attended of the particular examination conducted including arrear course if any), debar them for a further number of chances extending up to two semesters of examinations in all the courses including the arrears courses.
			3.	Detection of identical answers in the answer scripts of different Candidates or allowing a candidate to copy from his/her answer script.	To deny the benefit of performance of the examinations of all the courses for which the candidate has appeared by awarding ' F ' Grade in all the courses (both attended and to be attended of the particular examination conducted including arrear course if any), debar them for a further number of chances extending up to two semesters of examinations in all the courses including the arrears courses.

			In order to maintain the sanctity and decorum in the campus and hostels, the following rules of discipline are observed by students: - The students should behave courteously with the members of the staff. - They should maintain silence in the library, classrooms and work quietly in drawing halls, laboratories and workshops. - Students coming late to the classes are not permitted to enter the class rooms. - They should not meddle with the machines, equipment and tools in the laboratories and workshops without the permission of the staff members in charge. They will be responsible for the damages and will have to pay for their replacement. - They should not absent themselves from the classes without the prior permission of the Principal. - Students should take the entire test without fail. - Students are forbidden from pasting posters in the institute premises and causing any damage to the property of the institute. - Smoking, consumption of alcoholic beverages and drugs are strictly forbidden. - Students are not to affix any notice or remove any office notice from the notice boards. - Use of Cell Phone is banned in classrooms, laboratories, library and in academic corridor. - Students using vehicles are required to leave them in parking places provided and are forbidden from parking in other places inside the campus causing disturbance to the classes.
25			Ragging and Punishment
	25.1		Ragging: Ragging means causing, inducing, compelling, forcing a student either by way of practical joke or otherwise, to do any act which detracts from human dignity or violates his/her person or exposes him/her to ridicule or to forebear from doing any lawful act by intimidating, wrongfully restraining, wrongfully confining, or injuring him/her or by using criminal force, extortion. The following perverse actions also constitute the ragging. i) Forcing to: Address seniors as SIRs, perform mass drills, copy class notes and practical records for seniors, and carry out various errands. Do menial jobs for seniors, Drink alcohol and consume drugs. Do acts with sexual overtones and homosexual acts leading to physical injury/mental torture or death. ii) Stripping / Kissing iii) Any other related or allied acts of commission would also from ragging.

| 25.2 | Punishment for Errant Students (Raggers)
 i) Filing of First Information Report (FIR) with the local police as per the Supreme Court
 direction.
 ii) Publishing the photographs of errant students (raggers) on the Notice Boards and in Local
 Newspapers.
 iii) Imprisonment for a term extendable up to one year or a fine of Rs. 2000/- or both. |
| :--- | :--- | :--- | :--- |
| $\mathbf{2 6}$ iv) Rustication, dismissal and expulsion from the Institute. | |

			iv. Must have passed in all courses of previous semesters v. Shall adhere to the prevailing regulations governing transfer of students at the University
	29.3		Change of University i. Students seeking Change of College from one University (other than VTU) to an Autonomous college at beginning of 3rd and 5th semester subject to the availability of seats within the approved intake. ii. The students seeking transfer as per clause 29.3 (i) shall have to obtain No Objection certificate from the University by producing No Objection certificates from both the colleges during the period as notified by VTU. iii. No transfer is permitted to 7th semester B.E. programme. iv. Must have passed in all courses of previous semesters v. Complete additional course/s, if any, as per decision of Board of Studies on establishing matching equivalence between two schemes. Number of such additional courses shall not be more than four. A grade card shall be issued to that effect. Additional course/s shall not be considered for vertical progression, calculation of SGPA and CGPA. However, a pass in the additional course/s is mandatory for award of degree. vi. Shall earn the credits and complete the program within the maximum duration as per clause 4 vii. If the number of credits earned is less than the prescribed after the completion of all semesters of the programme under prevailing scheme, student shall register for a course or courses which are not studied earlier and make up the credits earned equal to or greater than required for the award of degree viii. If earned credits are more than prescribed, then CGPA shall be proportionally reduced to prescribed programme credits.
30			Award of Ranks, Medals and Prizes
	30.1		i. For award of ranks in a specialization of B.E. the CGPA secured by the student from III to VIII semesters shall be considered ii. The additional credits earned for award of Honours degree shall not have any bearing for the declaration of rank iii. A student shall be eligible for a rank at the time of award of degree provided, the student, a) Has passed all the courses of I to VIII semesters in first attempt only in case student

		admitted to I year of the programme b) Has passed the courses (including mandatory non-credit) of III to VIII semesters in first attempt only in case student admitted to II year of the programme under lateral entry scheme. c) Not a repeater in any semester due to rejection of result/shortage of attendance etc d) Completed the course without any break/discontinuity e) Has not been transferred from any autonomous/ non-autonomous/University f) Total number of ranks awarded shall be 10% of the total students appeared for VIII the examination to a maximum of 10 ranks in a specialization g) Ranks in a specialization shall be awarded only if a minimum of 10 should have appeared in the VIII semester examinations h) In case fractional number of ranks, shall be rounded to higher integer only when the first decimal place is greater than or equal to 5 .
30.2		i. Ranks will be awarded based on the merit of the students as determined by CGPA. If more than one candidate has the same CGPA, then tie shall be resolved by considering number of times student has obtained higher SGPA. If it is not resolved even at this stage, then the award of rank shall be based on number of S -grades/number of A grades/any other relevant criteria. ii. Ranks and awards are given for those students who were not involved in malpractice in test/quiz/examination and on whom no disciplinary action taken.
30.3		Medals and Prizes shall be awarded based on the conditions stipulated by the Donor subject to the provisions of regulations framed for such awards.

MVJ College of Engineering, Whitefield, Bangalore

An Autonomous Institution, Affiliated to VTU, Belagavi

Scheme of Teaching and Examination 2020-21
Outcome Based Education (OBE) and Choice Based Credit System (CBCS)
Effective from the academic year 2020-21
Department of Data Science
III SEMESTER B.E. (6 Theory, 2 Labs, 1 Kannada/CPH, 1 MATDIP, 1 AICTE Activity)

S No	Course		Course Title	Teaching Department	Teaching hours/week			Examination				\%	
					馬		g000000						
	Type	Code			L	T					P		
1	BSC	MVJ20MIS31/CD31		Discrete Math \& Probability Theory	Mathematics	2	2	0	3	50	50	100	3
2	PCC	MVJ20CD32	Data Structure	DS Dept	3	2	0	3	50	50	100	4	
3	PCC	MVJ20CD33	Software Testing	DS Dept	3	1	0	3	50	50	100	3	
4	PCC	MVJ20CD34	Python Programming	DS Dept	3	1	0	3	50	50	100	3	
5	PCC	MVJ20CD35	Optimization Methods	DS Dept	4	0	0	3	50	50	100	3	
6	PCC	MVJ20CD36	Professional Ethics in computing	DS Dept	4	0	0	3	50	50	100	3	
7	PCC	MVJ20ISL37/CDL37	Data Structure Lab	DS Dept	0	1	2	3	50	50	100	2	
8	PCC	MVJ20CDL38	Python Programming Lab	DS Dept	0	1	2	3	50	50	100	2	
9	HSMC	MVJ20KAN39	Kannada	Humanities	1	0	0	3	50	50	100	1	
9	HSMC	MVJ20CPH39	CPH	Humanities	1	0	0	3	50	50	100	1	
10	HSMC	MVJ20UHV310	UHV-I	DS Dept	1	0	0	3	50	50	100	1	
11	NCMC	MVJ20MATDIP31	Additional Mathematics-1	Mathematics					50	50	100	-	
12	NCMC	AICTE Activity for 80-90 hours (20 points)		-	-	-	-	-	-	-	-	-	
				Total	21	8	4	30	500	500	1000	25	

Note: BSC: Basic Science, PCC: Professional Core Course, HSMC: Humanity and Social Science
MVJ20MXXDIP301- Mandatory non-credit course, NCMC: Non-credit mandatory course

Course Title	Discrete Math \& Probability Theory	Semester	III
Course Code	MVJ20MCD31	CIE	50
Total No. of Contact Hours	40	SEE	50
No. of Contact Hours/week	4 (L:T:P :: 2:2:0)	Total	100
Credits	3	Exam. Duration	3 Hours

Course objective is to:

- Prepare for a background in abstraction, notation, and critical thinking for the mathematics most directly related to computer science.
- Understand and apply mathematical induction, combinatorics, discrete probability, sequence and recurrence, elementary number theory.
- Understand and apply probability distribution, sampling theory and joint probability distributions.

Module-1	L1,L2,L3	12 Hours

Properties of the Integers: The Well Ordering Principle - Mathematical Induction. Principles of Counting: Fundamental Principles of Counting, The Rules of Sum and Product, Permutations, Combinations - The Binomial and Multinomial Theorem, Combinations with Repetition.

Application: Distribution with repetition.
Video Link:

1. http://nptel.ac.in/courses.php?disciplineID=111
2. http://www.class-central.com/subject/math(MOOCs)
3. http://academicearth.org/

Module-2
The Principle of Inclusion and Exclusion: The Principle of Inclusion and Exclusion, Generalizations of the Principle. Derangements - Nothing is in its Right Place, Rook Polynomials.

Recurrence Relations: First Order Linear Recurrence Relation, The Second Order Linear Homogeneous Recurrence Relation with Constant Coefficients.

Application: Arrangement with forbidden position.
Video Link:

1. http://nptel.ac.in/courses.php?disciplineID=111
2. http://www.class-central.com/subject/math(MOOCs)
3. http://academicearth.org/

Module-3	L1,L2,L3	12 Hours

Relations: Cartesian Products, Relations, Properties of Relations, Computer Recognition -Zero-One Matrices and Directed Graphs, Partial Orders - Hasse Diagrams, Equivalence Relations and Partitions.
Functions: Plain and One to One, Onto Functions. The Pigeon-hole Principle, Function Composition and Inverse Functions.
Application: Zero-one matrix and Hasse diagram

Video Link:

1. http://nptel.ac.in/courses.php?disciplineID=111
2. http://www.class-central.com/subject/math(MOOCs)
3. http://academicearth.org/

Module-4	L1,L2,L3	12 Hours

Probability Distributions: Random variables (discrete and continuous), probability mass/density functions. Binomial distribution, Poisson distribution. Exponential and normal distributions, problems.
Joint probability distribution: Joint Probability distribution for two discrete random variables, expectation, covariance, correlation coefficient.
Application: Finding correlation between random variables.
Video Link:

1. http://nptel.ac.in/courses.php?disciplineID=111
2. http://www.class-central.com/subject/math(MOOCs)
3. http://academicearth.org/

Module-5
Sampling Theory: Sampling, Sampling distributions, standard error, test of hypothesis for means and proportions, confidence limits for means, student's t-distribution and Chisquare distribution.

Coding Theory: Coding of binary information and error detection, decoding and error detection.

Application: Testing the level of significance $\mathcal{\&}$ the goodness of fit for large sample and small sample.

Video Link:

1. http://nptel.ac.in/courses.php?disciplineID=111
2. http://www.class-central.com/subject/math(MOOCs)
3. http://academicearth.org/

Course outcomes:	
CO1	Demonstrate the application of discrete structures in different fields of computer Science.
CO2	Solve problems using recurrence relations and generating functions.
CO3	Solving logical problem using concepts of relations and functions.
CO4	Develop probability distribution of discrete, continuous random variables and joint probability distribution occurring in digital signal processing, information theory and Design engineering.
CO5	Demonstrate testing of hypothesis of sampling distributions.

Reference Books:

1.

Ralph P. Grimaldi: Discrete and Combinatorial Mathematics, 5th Edition, Pearso Education. 2004.
2.
B.S. Grewal, "Higher Engineering Mathematics" Khanna Publishers, 43rd Edition, 2013.
3. Ramana B. V., "Higher Engineering Mathematics", Tata Mc Graw-Hill, 2006.
4. Kenneth H. Rosen: Discrete Mathematics and its Applications, 6th Edition, McGraw Hill, 2007
5. Basavaraj S Anami and Venakanna S Madalli: Discrete Mathematics - A Concept based approach, Universities Press, 2016.

CO-PO Mapping												
CO/P	PO	PO1	PO1	PO1								
\bigcirc	1	2	3	4	5	6	7	8	9	0	1	2
CO1	3	3	0	3	0	0	0	0	0	0	1	1
CO 2	2	3	0	3	0	0	0	0	0	0	1	1
CO3	2	3	0	3	0	0	0	0	0	0	1	1
CO4	3	3	0	3	0	0	0	0	0	0	1	1
CO5	3	3	0	3	0	0	0	0	0	0	1	1

High-3, Medium-2, Low-1

Course Title	Data Structure	Semester	III
Course Code	MVJ20CD32	CIE	50
Total No. of Contact Hours	50	SEE	50
No. of Contact Hours/week	$5(\mathrm{~L}: \mathrm{T}: \mathrm{P}:: 3: 2: 0)$	Total	100
Credits	4	Exam. Duration	3 Hours

Course objective is to:

- Understand the various techniques of sorting and searching
- Design and implement arrays, stacks, queues, and linked lists
- Understand the complex data structures such as trees and graphs

Module-1	L1,L2,L3	12 Hours

Basic Terminologies: Elementary Data Organizations, Data Structure Operations: insertion, deletion, traversal etc.; Analysis of an Algorithm, Asymptotic Notations, Time-Space trade off. Searching: Linear Search and Binary Search Techniques and their complexity analysis.

Laboratory Sessions/ Experimental learning:

- Implementation of searching Techniques

Applications: Array data type used in a programming language to specify a variable that can be indexed. Array data structure is used for arrangement of items at equally spaced and sequential addresses in computer memory makes it easier to perform operations like sorting, merging, traversal, retrievals

Video link / Additional online information:
https://www.tutorialspoint.com/data_structures_algorithms/array_data_structure.htm

Module-2
L1,L2,L3
ADT Stack and its operations: Algorithms and their complexity analysis, Applications of Stacks: Expression Conversion and evaluation - corresponding algorithms and complexity analysis. ADT queue, Types of Queue: Simple Queue, Circular Queue, Priority Queue; Operations on each types of Queues: Algorithms and their analysis.

Laboratory Sessions/ Experimental learning:

- Stack ADT to perform push and pop operations.
- Stack ADT for Expression Evaluation
- Array Implementation of Queue ADT

Applications: Expression Handling, Backtracking Procedure
Video link / Additional online information :
https://www.tutorialspoint.com/data_structures_algorithms/stack_algorithm.htm https://www.tutorialspoint.com/data_structures_algorithms/dsa_queue.htm

Module-3
L1,L2,L3
Singly linked lists: Representation in memory, Algorithms of several operations: Traversing, Searching, Insertion into, Deletion from linked list; Linked representation of Stack and Queue, Header nodes, Doubly linked list: operations on it and algorithmic analysis; Circular Linked Lists: all operations their algorithms and the complexity analysis

Laboratory Sessions/ Experimental learning:

- Implementation of linked list techniques(SLL,DLL,CLL)

Applications: The cache in your browser that allows you to hit the BACK button where a linked list of URLs can be implemented. A linked list would be a reasonably good choice for implementing a linked list of file names, undo functionality in Photoshop

Video link / Additional online information :
https://www.tutorialspoint.com/data_structures_algorithms/linked_list_algorithms.htm https://www.tutorialspoint.com/data_structures_algorithms/doubly_linked_list_algorithm.htm

Module-4
L1,L2,L3
12
Hours
Basic Tree Terminologies, Different types of Trees: Binary Tree, Threaded Binary Tree, Binary Search Tree, AVL Tree; Tree operations on each of the trees and their algorithms with Complexity analysis. Applications of Binary Trees. B Tree, B+ Tree: definitions, algorithms and analysis.

Laboratory Sessions/ Experimental learning:

- Develop a program to create a Binary Search Tree and to Traverse the tree.

Applications: Store hierarchical data, like folder structure, organization structure, XML/HTML data. Binary Search Tree is a tree that allows fast search, insert, delete on a sorted data. It also allows finding closest item. Heap is a tree data structure which is implemented using arrays and used to implement priority queues.

Video link / Additional online information:
https://www.tutorialspoint.com/data_structures_algorithms/tree_data_structure.htm https://www.tutorialspoint.com/data_structures_algorithms/binary_search_tree.htm

Module-5	L1,L2,L3	12 Hours
Introduction to graph - types of graphs - Graph representations - Traversal algorithms- Depth First Search (DFS) and Breadth First Search (BFS) - Shortest path algorithms, Transitive closure, Minimum Spanning Tree, Topological sorting. Laboratory Sessions/ Experimental learning: - Implement shortest path Algorithms Applications: The link structure of a website could be represented by a directed graph: the vertices are the web pages available at the website and a directed edge from page A to page B exists if and only if A contains a link to B. Graph colouring concept can be applied in job scheduling problems of CPU, jobs are assumed as vertices of the graph and there will be an edge between two jobs that cannot be executed simultaneously and there will be one-one relationship between feasible scheduling of graphs. Video link / Additional online information: https://www.tutorialspoint.com/data_structures_algorithms/graph_data_structure.htm		

Course outcomes:

CO1	Implement all the operations of linear data structures to store and retrieve the given data.
CO 2	Create a hierarchical data structure to represent the given data using tree data structure.
CO 3	Compare efficiency of various searching techniques using different tree data structures.
CO 4	Apply stack, Queue, Lists, Trees and Graph concepts in problem solving
CO 5	Implement all data structures in a high-level language for problem solving

Reference Books:

1. Seymour Lipschutz and Vijayalakshmi Pai G A, -Data Structures\|, Tata McGraw Hill, New Delhi, 2013.
2. Ellis Horowitz, Sartaj Sahni, Susan Anderson Freed, Fundamentals of Data Structures in C, Second Edition, Universities Press, 2008.
3. Mark Allen Weiss, Data Structures and Algorithm Analysis in C, Second Edition, Pearson Education, 2015

CO-PO Mapping												
CO/P	PO	PO1	PO1	PO1								
\bigcirc	1	2	3	4	5	6	7	8	9	0	1	2
CO1	3	3	3	2	3	0	0	0	0	2	0	0
CO2	3	3	3	2	3	0	0	0	0	2	0	0
CO 3	3	3	2	2	3	0	0	0	0	2	0	0
CO4	3	3	2	2	3	0	0	0	0	2	0	0
CO5	3	3	3	2	3	0	0	0	0	2	0	0

High-3, Medium-2, Low-1

Course Title	Software Testing	Semester	III
Course Code	MVJ20CD33	CIE	50
Total No. of Contact Hours	40	SEE	50
No. of Contact Hours/week	$4(\mathrm{~L}: \mathrm{T}: \mathrm{P}:: 3: 1: 0)$	Total	100
Credits	3	Exam. Duration	3 Hours

Course objective is to:

- Understand HTML and CSS for designing web pages.
- Understand basics of JavaScript as a programming language.
- Understand the Document Object Model and enable them to create dynamic web pages that react to user input.
- Understand installing and configuring Apache Server and incorporating backend support for their web pages.
- Get exposure to the newer features available as part of the HTML standard

Module-1	L1,L2,L3	12 Hours

Syllabus Content: Basics of Software Testing: Basic definitions, Software Quality, Requirements, Behaviour and Correctness, Correctness versus Reliability, Testing and Debugging, Test cases, Insights from a Venn diagram, Identifying test cases, Testgeneration Strategies, Test Metrics, Error and fault taxonomies, Levels of testing, Testing and Verification, Static Testing. Problem Statements: Generalized pseudocode, the triangle problem, the NextDate function, the commission problem, the SATM (Simple Automatic Teller Machine) problem, the currency converter, Saturn windshield wiper

Application: software systems
Video Link: https://www.youtube.com/watch?v=cv6GvRCIuTs

Module-2	L1,L2,L3	12 Hours
Syllabus Content:		
Black Box Testing Types of Black Box Testing Techniques: Boundary Value Testing,		
Normal Boundary Value Testing Robust Boundary Value Testing, Worst-Case Boundary		
Value Testing, Special Value Testing, Examples, Random Testing Guidelines for Boundary		
Value Testing		
Equivalence Class Testing Equivalence Classes, Traditional Equivalence Class Testing		
Improved Equivalence Class Testing, Equivalence Class Test Cases for the Triangle		

Problem, Equivalence Class Test Cases for the NextDate Function, Equivalence Class Test Cases for the Commission Problem, Edge Testing Decision Table-Based Testing Decision Tables, Decision Table Techniques Test Cases for the Triangle Problem, Test Cases for the Next Date Function, Test Cases for the Commission Problem

Application: Multilanguage support and compatibility Testing
Video Link: https://www.youtube.com/watch?v=2MRU2oRUIDo

Module-3	L1,L2,L3	12 Hours

Syllabus Content:
Evaluating Test Cases Mutation Testing, Fuzzing, Fishing Creel Counts and Fault Insertion Software Technical Reviews Economics of Software Reviews, Roles in a Review Types of Reviews, Contents of an Inspection Packet, An Industrial Strength Inspection Process, Effective Review Culture,Inspection Case Study

Application: Pit mutation testing
Video Link: https://www.youtube.com/watch?v=mZjPzIX9YJY

Module-4	L1,L2,L3	12 Hours

Syllabus Content:

Integration and Component-Based Software Testing: Overview, Integration testing strategies, Testing components and assemblies. System, Acceptance and Regression Testing: Overview, System testing, Acceptance testing, Usability, Regression testing, Regression test selection techniques, Test case prioritization and selective execution. Levels of Testing, Integration Testing: Traditional view of testing levels, Alternative lifecycle models, The SATM system, Separating integration and system testing, A closer look at the SATM system, Decomposition-based, call graph-based, Path-based integration

Application: Online delivery system
Video Link: https://www.coursera.org/lecture/engineeringandroidapps/integration-testing-FbJOF

Module-5	L1,L2,L3	12 Hours

Syllabus Content:
Software test automation - skill needed for automation - scope of automation - design and architecture for automation - requirements for a test tool - challenges in automation

- Test metrics and measurements - project, progress and productivity metrics.

Application: TestSigma

Video Link: https://www.edureka.co/blog/test-automation-strategy/

Practical Experiments:

1. Study of any testing tool.
2. Study of any web testing tool
3. Study of any bug tracking tool
4. Study of any test management tool.
5. Case study on Selenium.

Course outcomes:

CO1	Apply the concepts of Quality Engineering.
CO2	Design Test cases for various black box testing techniques
CO3	Plan, employ and measure proper Quality approaches applied.
CO4	Apply the appropriate technique for the design of flow graph.
CO5	Create automation test scripts

Text/Reference Books:
Paul C. Jorgensen: Software Testing, A Craftsman's Approach, 4th Edition,

1. Auerbach Publications, 2013.
2. and Techniques, Wiley India, 2009.
3. Aditya P Mathur: Foundations of Software Testing, Pearson Education, 2008
4. Software Testing - Ron Patton, 2nd edition, Pearson Education, 2004

CO-PO Mapping															
CO / P	PO 1	PO	PO												
O	1	2	3	4	5	6	7	8	9	0	1	2			
CO 1				2		2		2				1			
CO 2		3		2		2		2				2			
CO 3		3		2		2		2				3			
CO 4		3		2		2		2				2			
CO5		3		2		2		2				3			

High-3, Medium-2, Low-1

Course Title	Python Programming	Semester	III
Course Code	MVJ20CD34	CIE	50
Total No. of Contact Hours	40	SEE	50
No. of Contact Hours/week	4 (L:T:P::3:1:0)	Total	100
Credits	3	Exam. Duration	3 Hours

Course objective is to: This course will enable students to

- Learn fundamental features of object-oriented language
- Design, write, debug, run Python Programs
- Develop console -based applications using Python
- Develop console \& windows applications using Python.
- Introduce event driven Graphical User Interface (GUI) programming using Python built in functions

Module-1	L1,L2,L3	12 Hours

Syllabus Content:
Why should you learn to write programs, Introduction to Python, Variables, expressions and statements, Conditional execution, Functions.

Application:

- In learning and implementing small project process

Video Link:

1. https://www.py4e.com/
2. http://greenteapress.com/wp/think-python/

Module-2	L1,L2,L3	12 Hours

Syllabus Content: Iteration, Strings, Files.
Application:

- Pattern recognition and Reading resultant column in supervised learning data set Video Link:

1. https://www.codecademy.com/learn/learn-python
2. http://www.tutorialspoint.com/python/

Module-3	L1,L2,L3	12 Hours

Syllabus Content:

Lists, Dictionaries, Tuples, Regular Expressions.
Application:

- Handling query languages and Managing Large set of data with respect to database Video Link:

1. https://www.programiz.com/python-programming/class
2. https://www.udemy.com/course/web-scraping-with-python-beautifulsoup/

Module-4	L1,L2,L3	12 Hours

Syllabus Content:
Classes and objects, Classes and functions, Classes and methods.
Application:

- Designing games and puzzles

Video Link:

1. https://datatofish.com/json-string-to-csv-python/
2. https://automatetheboringstuff.com/

Module-5	L1,L2,L3	12 Hours

Syllabus Content:
Networked programs, Using Web Services, Using databases and SQL.
Application:

- Music composition and movie development

Video Link:

1. http://do1.drchuck.com/pythonlearn/EN_us/pythonlearn.pdf
2. https://www.datacamp.com/community/tutorials/reading-and-editing-pdfs-and-word-documents-from-python

Practical Experiments:

- Programs related to Basic concepts of Python like Operators, Control flow and Iterations.
- Programs related to Functions, Strings, Files, Lists and Multi-Dimension Lists
- Installation and use of special Modules like pip, Wiki etc.
- Implementation of Python Program with a Database.

Course outcomes:

CO1	Understand Python syntax and semantics and be fluent in the use of Python flow control and functions.
CO 2	Demonstrate proficiency in handling Strings and File Systems.
CO 3	Implement Python Programs using core data structures like Lists, Dictionaries and use Regular Expressions.
CO 4	Interpret the concepts of Object-Oriented Programming as used in Python.
CO 5	Implement exemplary applications related to Network Programming, Web Services and Databases in Python.

Text/Reference Books:	
1.	Charles R. Severance, "Python for Everybody: Exploring Data Using Python 3", 1st Edition, CreateSpace Independent Publishing Platform, 2016. (http://do1.drchuck. com/pythonlearn/EN_us/pythonlearn.pdf)
2.	Allen B. Downey, "Think Python: How to Think Like a Computer Scientist", 2ndEdition, (http://greenteapress.com/thinkpython2/thinkpython2.pdf)
3.	Charles Dierbach, "Introduction to Computer Science Using Python", 1st Edition, Wiley India Pvt Ltd. ISBN-13: 978-8126556014

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3		2							
CO 2	2	2	3		2							
CO3	3	2	3		2							
CO 4	2	1	3		2							
CO 5	2	1	3		2							

High-3, Medium-2, Low-1

Course Title	Optimization Methods	Semester	III
Course Code	MVJ20CD35	CIE	50
Total No. of Contact Hours	40	SEE	50
No. of Contact Hours/week	4 (L: T : P :: 4:0:0)	Total	100
Credits	3	Exam. Duration	3 Hours

Course objective is to:

- Provide introduction to linear programming techniques .
- Provide theoretical foundation and the fundamental algorithms for linear \& nonlinear optimization.
- Provide introduction to multi-channel queuing models.

Module-1

L1,L2,L3
12

Module-1	L1,L2,L3	12 Hours

Linear Programming-Graphical Solution- The Simplex algorithm, Artificial Variable Technique -Duality-Dual Simplex - Variants of the Simplex Method Transportation Model Initial Basic Feasible Solution methods Test for optimality-Variants of the Transportation
problem
Application:
logistic regression.
Video Link:
https://www.youtube.com/watch?v=4Xokcy8jeoI

Module-2	L1,L2,L3	12 Hours

Assignment Model- Hungarian algorithm Variants of the Assignment problem, Travelling Salesman Problem Integer Linear Programming- Gomary's cutting plane method Branch and Bound method

Application:
Numerical solution of linear systems.
Video Link:
https://www.youtube.com/watch?v=Q2dewZweAtU

Module-3	L1,L2,L3	12 Hours	

Sequencing Problem - N jobs through 2 machines, N Jobs through 3 machines, N jobs through m machines Scheduling - Critical path Method, Project Evaluation and Review Techniques

Application:
Stochastic gradient descent.
Video Link:
https://www.youtube.com/watch?v=x6f5JOPhci0

Module-4	L1,L2,L3	12 Hours

Introduction to constrained nonlinear optimization theory, Inventory control Purchase and production model with and without shortage, price break.

Application:
constrained nonlinear optimization
Video Link:
https://www.youtube.com/watch?v=TudQZtgpoHk

Module-5	L1,L2,L3	12 Hours

Queuing Model- Single channel model, Multichannel model.
Application:
Quadratic programs
Video Link:
https://www.youtube.com/watch?v=csG_qfOTvxw

Course outcomes:

CO1	Apply linear programming techniques to optimize problems arising in communication engineering
CO2	Solve the assignment problem through Hungarian algorithm
CO3	Determine the optimum values of integer programming problems using Gomary's cutting plane method
CO4	Write well documented and structured optimization algorithm
CO5	Solve the single and multi-channel queuing models.

Reference Books:

1.	Sharma J.K.: "Operations Research Theory and applications", Macmillan India Ltd., V Edition, 2015.
2.	Hamdy A. Taha: Operations Research - An Introduction", Prentice Hall of India Pvt Ltd., EIGHT Edition, 2014.
3.	Chandrasekara Rao, K. Shanti Lata Misra "Operation Research", Alpha science international Ltd-2015.
4.	Kanti Swarup, P.K.Gupta and Man Mohan "Operations Research", Sultan Chand,2014

CO-PO Mapping															
CO / P	PO 1	PO	PO 1												
O	1	2	3	4	5	6	7	8	9	0	1	2			
CO 1	3	3	2	2	0	0	0	0	0	0	0	1			
CO 2	3	3	2	2	0	0	0	0	0	0	0	1			
CO 3	3	3	3	2	0	0	0	0	0	0	0	1			
CO 4	3	3	2	2	0	0	0	0	0	0	0	1			
CO 5	3	3	3	2	0	0	0	0	0	0	0	1			

High-3, Medium-2, Low-1

Course Title	Professional Ethics in Computing	Semester	III
Course Code	MVJ20CD36	CIE	50
Total No. of Contact Hours	40	SEE	50
No. of Contact Hours/week	$4(\mathrm{~L}: \mathrm{T}: \mathrm{P}:: 4: 0: 0)$	Total	100
Credits	3	Exam. Duration	3 Hours

Course objective is to:

- To inculcate the sense of social responsibility.
- To develop a firm ethical base
- To make the students realize the significance of ethics in professional environment.

Module-1
L1,L2,L3

Profession ---- Definition
Three types of ethics.
Engineering ethics
Rights and responsibilities of an engineer

Application:
Engineering ethics
Video Link:
https://lib.pstcc.edu/csplagiarism

Module-2	L1,L2,L3	12 Hours
Evolution of engineering ethics Code of ethics Kohlberg"s theory Gilligan"s theory Application: Business ethics, Outline of ethics Video Link: https://www.youtube.com/watch?v=jj1CsGgDgGM		

Video Link:

https://nptel.ac.in/courses/110/105/110105097/

Course outcomes:	
CO1	Ethical, social and environmental awareness.
CO2	Awareness on Engineer's rights and responsibilities
CO3	Act in morally desirable ways, towards moral commitment and responsible conduct
CO4	Integrating academic learning with experimental learning in a profession
CO5	Apply ethics in professional environment.

Reference Books:

1. \quad Ethics in engineering: Mike W.Martin Roland, Mac Grow Hill.Schinzinger

2.	Engineerinethics---- M.Govindarajan, S.Natarajan\&V.S.Senthil Kumar. Eastern economy Edn.PHI
3.	Engineering ethics-- Harris pitch and Rabbins, cengage.
4.	Caroline whit back---Ethics in engineering practice and research---- Cambridge.
5.	E-learning resources: http://nptel.ac.in/courses.php http://jntuk-coeerd.in/

CO-PO Mapping																	
CO / P	PO 1	PO	PO 1														
O	1	2	3	4	5	6	7	8	9	0	1	2					
CO 1	3	3	2	2	0	0	0	0	0	0	0						
CO 2	3	3	2	2	0	0	0	0	0	0	0						
CO 3	3	3	3	2	0	0	0	0	0	0	0						
CO 4	3	3	2	2	0	0	0	0	0	0	0						
CO 5	3	3	3	2	0	0	0	0	0	0	0						

High-3, Medium-2, Low-1

Course Title	Data Structure Lab	Semester	III
Course Code	MVJ20CDL37	CIE	50
Total No. of Contact Hours	30	SEE	50
No. of Contact Hours/week	3 (L:T : P :: 0:1:2)	Total	100
Credits	2	Exam. Duration	3 Hours

Course objective is to:

- Implement linear and non-linear data structures
- Understand the different operations of search trees
- Implement graph traversal algorithms
- Get familiarized to sorting and searching techniques

Sl No	Experiment Name	RBT Level	Hours
1	Implementation of searching algorithms a) Linear Search b) Binary Search	L 3	4
2	Implementation of sorting algorithms a) Insertion sort b) Selection sort c) Quick sort d) Merge sort	L 3	4
3	a) Array implementation of List ADT b) Linked list implementation of List ADT	$\mathrm{L3}$	4
4	a) Array implementation of Stack ADT b) Linked list implementation of Stack ADT	L	
5	a) Array implementation of queue ADT b) Linked list implementation of queue ADT	4	
6	Program to create a Binary Search Tree and to traverse the tree.	L 3	4
7	Program to compute the shortest path from a single source	L 3	4
8	Program to construct a graph and perform graph traversal (BFS, DFS)	L 3	4
9	Program to construct a minimum spanning tree using: a) Prims Algorithm b) Kruskal's Algorithm	L 3	4

10	Development of a Mini project/Present a case Study	L 3
4		
Course outcomes:		
CO1	Compute the time and space complexity of searching and sorting algorithms with asymptotic notations.	
CO2	Implement all the operations of linear data structures to store and retrieve the given data.	
CO3	Apply Algorithm for solving problems like sorting, searching, insertion and deletion of data	
CO4	Create a hierarchical data structure to represent the given data using tree data structure.	
CO5	Design graph algorithms to compute the shortest path of the given graph and to identify the Minimum spanning tree.	

CO-PO Mapping												
CO/P	PO	PO1	PO1	PO1								
\bigcirc	1	2	3	4	5	6	7	8	9	0	1	2
CO1	3	3	3	2	3	0	0	0	0	2	0	0
CO 2	3	3	3	2	3	0	0	0	0	2	0	0
CO 3	3	3	2	2	3	0	0	0	0	2	0	0
CO 4	3	3	2	2	3	0	0	0	0	2	0	0
CO5	3	3	3	2	3	0	0	0	0	2	0	0

High-3, Medium-2, Low-1

Course Title	Python Programming Lab	Semester	III
Course Code	MVJ20CDL38	CIE	50
Total No. of Contact Hours	30	SEE	50
No. of Contact Hours/week	3 (L:T : P :: 0:1:2)	Total	100
Credits	2	Exam. Duration	3 Hours

Course objective is to:

- Gain knowledge in writing python programs to do a variety of programming tasks and develop various applications.

Sl No	Experiment Name	RBT Level	Hours
1	Python Program to Reverse a linked list	L3	3
2	Python Program for Find largest prime factor of a number	L3	3
3	Python Program for Efficient program to print all prime factors of a given number	L3	3
4	Python Program for Product of unique prime factors of a number	L3	3
5	Python Program for Find sum of odd factors of a number	L3	3
6	Python Program for Coin Change	L3	3
7	Python Program for Tower of Hanoi	L3	4
8	Python Program to Check if binary representation is palindrome	L3	4
9	Python Program for Basic Euclidean algorithms	L3	3
10	Python Program for Maximum height when coins are arranged in a triangle	L3	4
Course outcomes:			
CO1	Write, Test and Debug Python Programs		
CO 2	Implement Conditionals and Loops for Python Programs		
CO 3	Use functions and represent Compound data		
CO 4	Read and write data from \& to files in Python		

CO5
 Develop Applications using Python

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	0	0	0	0	0	0	0	0
CO 2	3	3	2	2	0	0	0	0	0	0	0	0
CO3	3	3	3	2	0	0	0	0	0	0	0	0
CO4	3	3	2	2	0	0	0	0	0	0	0	0
CO5	3	3	3	2	0	0	0	0	0	0	0	0

High-3, Medium-2, Low-1

Course Title	CONSTITUTION OF INDIA, PROFESSIONAL ETHICS AND CYBER LAW	Semester	III
Course Code	MVJ20CPH39	CIE	50
Total No. of Contact Hours	15	SEE	50
No. of Contact Hours/Week	$1(\mathrm{~L}: \mathrm{T}: \mathrm{P}:: 1: 0: 0)$	Total	100
Credits	01	Exam. Duration	2 hrs

Course objective is to:
To know the fundamental political codes, structure, procedures, powers, and duties of Indian constitution, Indian government institutions, fundamental rights, directive principles and the duties of the citizens.
To provide overall legal literacy to the young technograts to manage complex societal issues in the present scenario.
To understand engineering ethics \& their responsibilities, identify their individual roles and ethical responsibilities towards society.

Module-1

RBT Level	03
L1,L2,L3	Hours

Introduction to Indian Constitution

The Necessity of the Constitution, The Societies before and after the Constitution adoption. Introduction to the Indian Constitution, The Making of the Constitution, The role of the Constituent Assembly - Preamble and Salient features of the Constitution of India. Fundamental Rights and its Restriction and Limitations in different Complex Situations. Directive Principles of State Policy (DPSP) and its present relevance in our society with examples. Fundamental Duties and its Scope and Significance in Nation Building.

Module - II	RBT Level L1,L2,L3	03 Hours

Union Executive and State Executive

Parliamentary System, Federal System, Centre-State Relations. Union Executive President, Prime Minister, Union Cabinet, Parliament - LS and RS, Parliamentary Committees, Important Parliamentary Terminologies. Supreme Court of India, Judicial Reviews and Judicial Activism. State Executives - Governor, Chief Minister, State Cabinet, State Legislature, High Court and Subordinate Courts, Special Provisions (Article 370, 371, 371J) for some States.
Module - III

RBT Level
03
L1,L2,L3 Hours

Elections, Amendments and Emergency Provisions
Elections, Electoral Process, and Election Commission of India, Election Laws.

Amendments - Methods in Constitutional Amendments (How and Why) and Important Constitutional Amendments. Amendments - 7,9,10,12,42,44,61,73,74,75,86, and 91,94,95,100,101,118 and some important Case Studies. Recent Amendments with explanation. Important Judgements with Explanation and its impact on society (from the list of Supreme Court Judgements).
Emergency Provisions, types of Emergencies and it's consequences.
Constitutional Special Provisions:
Special Constitutional Provisions for SC \& ST, OBC, Special Provision for Women, Children \& Backward Classes.

Module - IV	RBT Level L1,L2,L3	03 Hours
Professional / Engineering Ethics		
Scope \& Aims of Engineering \& Professional Ethics - Business Ethics, Corporate Ethics,		
Personal Ethics. Engineering and Professionalism, Positive and Negative Faces of		
Engineering Ethics, Code of Ethics as defined in the website of Institution of Engineers		
(India) : Profession, Professionalism, Professional Responsibility. Clash of Ethics, Conflicts		
of Interest. Responsibilities in Engineering - Responsibilities in Engineering and		
Engineering Standards, the impediments to Responsibility.Trust and Reliability in		
Engineering, IPRs (Intellectual Property Rights), Risks, Safety and liability in Engineering.		

Module - V	RBT Level	03
L1,L2,L3	Hours	

Internet Laws, Cyber Crimes and Cyber Laws:

Internet and Need for Cyber Laws, Modes of Regulation of Internet, Types of cyber terror capability, Net neutrality, Types of Cyber Crimes, India and cyber law, Cyber Crimes and the information Technology Act 2000, Internet Censorship, Cybercrimes and enforcement agencies.

Course Outcomes: On completion of this course, students will be able to
CO1 Have constitutional knowledge and legal literacy
CO2 Understand Engineering and Professional ethics and responsibilities of Engineers.
CO3 Understand the cyber-crimes and cyber laws for cyber safety measure.

Text Books:

1. Constitution of India and Professional Ethics, T.S. Anupama, Sunstar Publisher

Reference Books:

Durga Das Basu (DD Basu): "Introduction to the Constitution on India", (Students

1. Edition.)

Prentice -Hall EEE, 19th/20th Edn., (Latest Edition) or 2008.

2.	Shubham Singles, Charles E. Haries, and Et al : "Constitution of India and Professional Ethics" by Cengage Learning India Private Limited, Latest Edition - 2018.
3	M.Govindarajan, S.Natarajan, V.S.Senthilkumar, "Engineering Ethics", Prentice - Hall of India Pvt. Ltd. New Delhi, 2004.
4.	M.V.Pylee, "An Introduction to Constitution of India", Vikas Publishing, 2002.
5.	Latest Publications of NHRC - Indian Institute of Human Rights, New Delhi.

CIE Assessment:

CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation. Generally, there will be: Three Internal Assessment (IA) tests during the semester (40 marks each), the final IA marks to be awarded will be the average of three tests
Assignment (10 marks)

SEE Assessment:

Question paper for the SEE consists one part. It is compulsory and consists of objective type 1 mark each for total of 50 marks covering the whole syllabus.
Ten questions must be set from each unit. The duration of examination is 3 hours.

CO-PO Mapping												
CO/P	PO	PO1	PO1	PO1								
\bigcirc	1	2	3	4	5	6	7	8	9	0	1	2
CO1	2	2	1	1	1	2	2	1	1	1	1	2
CO 2	1	2	2	1	1	2	1	1	1	1	1	2
CO3	2	1	2	1	1	1	1	1	1	1	1	2
CO 4	2	2	1	1	1	1	1	1	1	1	1	2
CO5	2	2	1	1	1	2	1	1	1	1	1	2

High-3, Medium-2, Low-1

Course Title	UNIVERSAL HUMAN VALUES I	Semester	III
Course Code	MVJ20UHV310	CIE	50
Total No. of Contact Hours	15	SEE	50
No. of Contact Hours/week	1 (L:T:P:1:0:0)	Total	100
Credits	1	Exam. Duration	3 Hrs.

Course objective is to: This course will enable the students to
Perceive the need for developing a holistic perspective of life
Sensitise the scope of life - individual, family (inter-personal relationship), society and nature/existence, Strengthening self-reflection
Develop more confidence and commitment to understand, learn and act accordingly.

Module-1 \quad L1,L2 3 Hrs

Welcome and Introductions: Getting to know each other (Self-exploration)
Aspirations and Concerns: Individual academic, career, Expectations of family, peers, society, nation, Fixing one's goals (Basic human aspirations Need for a holistic perspective Role of UHV)
Self-Management: Self-confidence, peer pressure, time management, anger, stress, Personality development, self-improvement (Harmony in the human Being)
Health: Health issues, healthy diet, healthy lifestyle, Hostel life (Harmony of the Self and Body Mental and physical health)
Relationships: Home sickness, gratitude, towards parents, teachers and, others Ragging and interaction, Competition and cooperation, Peer pressure (Harmony in relationship Feelings of trust, respect, gratitude, glory, love)
Society: Participation in society (Harmony in the society)
Natural Environment: Participation in nature (Harmony in nature/existence)

Video link:

https://youtube.com/playlist?list=PLYwzG2fd7hzc4HerTNkc3pS_IvcCfKznV https://youtube.com/playlist?list=PLYwzG2fd7hzcZz1DkrAegkKF4TseekPFv Presentation: https://fdp-si.aicte-india.org/AicteSipUHV_download.php
Module-2 \quad L1,L2 3 Hrs

Introduction to Value Education: Right Understanding, Relationship and Physical Facility (Holistic Development and the Role of Education), Self-exploration as the Process for Value Education, Happiness and Prosperity - Current Scenario.
Video link:
https://www.youtube.com/watch?v=85XCw8SU084
https://www.youtube.com/watch?v=E1STJoXCXUU\&list=PLWDeKF97v9SP_Kt6jqzA3p Z3yA7g_OAQz
https://www.youtube.com/channel/UCQxWr5QB_eZUnwxSwxXEkQw

Module-3

L1,L2 3 Hrs
Introduction to Harmony in the Human Being: Understanding Human being as the Coexistence of the Self and the Body, The Body as an Instrument of the Self, Harmony of the Self with the Body.

Video link:
https://www.youtube.com/watch?v=GpuZo495F24
https://www.youtube.com/channel/UCQxWr5QB_eZUnwxSwxXEkQw Module-4

L1,L2 3 Hrs
Introduction to Harmony in the Family and Society: Harmony in the Family - the Basic Unit of Human Interaction, Other Feelings, Justice in Human-to-Human Relationship, Understanding Harmony in the Society.
Video link:
https://www.youtube.com/watch?v=F2KVW4WNnS8
https://www.youtube.com/channel/UCQxWr5QB_eZUnwxSwxXEkQw
Module-5
L1,L2 3 Hrs
Introduction to Implications of the Holistic Understanding: Natural Acceptance of Human Values, Basis for Humanistic Education, Humanistic Constitution and Universal Human Order, Holistic Technologies, Production Systems and Management Models-Typical Case Studies.
Video link:
https://www.youtube.com/watch?v=BikdYub6RY0
https://www.youtube.com/channel/UCQxWr5QB_eZUnwxSwxXEkQw
Course outcomes: On completion of the course, students would be able to

CO1	Develop a holistic perspective about life
CO 2	Explore his/her role (value) in all aspects of living - as an individual, as a member of

CO3 Become more responsible in life, and in handling problems with sustainable solutions
CO4 Have better critical ability
CO5 Become sensitive to their commitment

Scheme of Evaluation

Details		Marks
Assessment by Faculty mentor (Class Room Evaluation)	CIE(50)	10
Self-Assessment + Assessment by peers		20
Activities / Experimentations related to courses/Assignment		10
Mini Projects / Case Studies		10

Semester End Examination	SEE (50)	50
Total	100	

Text Books:

1.	AICTE SIP UHV-I Teaching Material, https://fdp-si.aicte india.org/ AicteSipUHV _download.php
2.	A Foundation Course in Human Values and Professional Ethics, R R Gaur, R Asthana, G P Bagaria, 2nd Revised Edition, Excel Books, New Delhi, 2019. ISBN 978-93-87034- $47-1$
3.	Teachers' Manual for A Foundation Course in Human Values and Professional Ethics, R R Gaur, R Asthana, G P Bagaria, 2nd Revised Edition, Excel Books, New Delhi, 2019. ISBN 978-93-87034-53-2

Reference Books:

1.	Human Values and Professional Ethics by R R Gaur, R Sangal, G P Bagaria, Excel Books, New Delhi, 2010
2.	Jeevan Vidya: Ek Parichaya, A Nagaraj, Jeevan Vidya Prakashan, Amarkantak, 1999.
3.	Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004.
4.	The Story of Stuff (Book).
5.	The Story of My Experiments with Truth - by Mohandas Karamchand Gandhi

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1		1				2	2	3	2	1	2	1
CO2		1				2	2	3	2	1	2	1
CO3		1				2	2	3	2	1	2	1
CO4		1				2	2	3	2	1	2	1
CO5		1				2	2	3	2	1	2	1

High-3, Medium-2, Low-1

Course Title	Additional Mathematics-I (Common to all branches)	Semester	III
Course Code	MVJ20MDSDIP301	CIE	50
Total No. of Contact Hours	40	SEE	50
No. of Contact Hours/week	4	Total	100
Credits	-	Exam. Duration	3hrs

Course objective is to:
This course viz., aims to prepare the students:
To familiarize the important and basic concepts of Differential calculus and Differential Equation, ordinary/partial differential equations and Vector calculus and analyse the engineering problems.

Module-1
L1,L2 $\quad 8 \mathrm{Hrs}$.
Differential calculus: Recapitulations of successive differentiations -nth derivative -Leibnitz theorem and Problems, Mean value theorem -Rolle's theorem, Lagrange's Mean value theorem, Cauchy's theorem and Taylor's theorem for function of one variables.
Video Link:
https://users.math.msu.edu/users/gnagy/teaching/ode.pdf

| Module-4 | L1,L2,L3 | $8 \mathrm{Hrs}$. |
| :--- | :--- | :--- | :--- |
| Probability:
 Introduction-Conditional Probability, Multiplication theorem ,Independent events , Baye's
 theorem and Problems.
 Video Link:
 https://www.khanacademy.org/math/statistics-probability/probability-library
 https://nptel.ac.in/courses/111/105/111105041/
 Module-5
 Differential equation: Homogenous differential equation, Linear differential equation,
 Bernoulli's differential equation and Exact differential equation.
 Video Link:
 https://www.mathsisfun.com/calculus/differential-equations.html | | |

Course outcomes:

CO1
Apply the knowledge of Differential calculus in the modeling of various physical and engineering phenomena
Apply the concept of change of order of integration and variables to evaluate multiple integrals and their usage in computing the area and volumes.

CO3 Study on Vector calculus to understand the various solution to Application to Engineering problems.
CO4 Understand the basic Concepts of Probability
CO5 Solve first order linear differential equation analytically using standard methods.

Text Books:	
1.	B.S. Grewal, "Higher Engineering Mathematics" Khanna Publishers, 43rd Edition, 2013.
2.	Ramana B. V., "Higher Engineering Mathematics", Tata Mc Graw-Hill, 2006.

Reference Books:

1. Erwin Kreyszig, "Advanced Engineering Mathematics", Wiley-India publishers, 10th edition,2014.
2. $\begin{aligned} & \text { G. B. Gururajachar: Calculus and Linear Algebra, Academic Excellent Series Publication, } \\ & 2018-19\end{aligned}$

CIE Assessment:

CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation. Generally, there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of three tests Quizzes/mini tests (10 marks)
Assignments (10 marks)

SEE Assessment:

Question paper for the SEE consists two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.
Part B also covers the entire syllabus consisting of five questions having choices and may contain sub-divisions, each carrying 16 marks. Students have to answer five full questions.
One question must be set from each unit. The duration of examination is 3 hours.

CO-PO Mapping												
CO/P	PO	PO1	PO1	PO1								
\bigcirc	1	2	3	4	5	6	7	8	9	0	1	2
CO1	3	3	0	3	0	0	0	0	0	0	1	1
CO 2	2	3	0	3	0	0	0	0	0	0	1	1
CO 3	2	2	0	2	0	0	0	0	0	0	1	0
CO4	3	2	0	3	0	0	0	0	0	0	0	1
CO5	3	3	0	2	0	0	0	0	0	0	0	0

High-3, Medium-2, Low-1

S No	Course		Course Title	Teaching Department	Teaching hours/week			Examination				-	
					矴		Ξ 0 0 0						
	Type	Code			L	T					P		
1	BSC	MVJ20MIS41/CD41		Numerical Methods, Operations Research \& Statistics	Mathematics	2	2	0	3	50	50	100	3
2	PCC	MVJ20CD42	Design \& Analysis of Algorithm	DS Dept	3	2	0	3	50	50	100	4	
3	PCC	MVJ20CD43	Advanced Java \& J2EE	DS Dept	3	1	0	3	50	50	100	3	
4	PCC	MVJ20CD44	Data Mining \& Data Warehouse	DS Dept	4	0	0	3	50	50	100	3	
5	PCC	MVJ20CD45	Information Retrieval \& Visualization	DS Dept	4	0	0	3	50	50	100	3	
6	PCC	MVJ20CD46	Virtual Reality	DS Dept	4	0	0	3	50	50	100	3	
7	PCC	MVJ20ISL47/CDL47	Design \& Analysis of Algorithm Lab	DS Dept	0	1	2	3	50	50	100	2	
8	PCC	MVJ20CDL48	Advanced Java Programming Lab	DS Dept	0	1	2	3	50	50	100	2	
9	HSMC	MVJ20KAN49	Kannada	Humanities	1	0	0	3	50	50	100	1	
		MVJ20CPH49	CPH					3	50	50			
10	NCMC	MVJ20MATDIP41	Additional Mathematics-2	Mathematics				3	50	50	100	-	
11	NCMC	AICTE Activity for 80-90 hours (20 points)		-	-	-	-	-	-	-	-	-	
Total				21	7	4	30	500	500	1000	24		

[^0]MVJ20MXXDIP401- Mandatory non-credit course, NCMC: Non-credit mandatory course

Course Title	Numerical Methods, Statistics	Semester	IV
Course Code	MVJ20MCD41	CIE	50
Total No. of Contact Hours	40	SEE	50
No. of Contact Hours/week	$4(\mathrm{~L}:$ T $: \mathrm{P}:: 2: 2: 0)$	Total	100
Credits	3	Exam. Duration	3 Hours

Course objective is to:

The purpose of this course is to make students well conversant with numerical methods to solve ordinary differential equations, sampling theory and Operational research emerging in science and engineering.

Module-1	L1,L2, L3	12 Hours

Numerical Methods-1

Numerical solution of Ordinary Differential Equations of first order and first degree: Modified Euler's method, Taylor's series method, Runge-Kutta method of fourth order, Predictor and Corrector method: Milne's Method and Adams-Bashforth Method.

Application: Solving Ordinary Differential Equations.
Video Links:

1. http://nptel.ac.in/courses.php?disciplineID=111
2. http://www.class-central.com/subject/math(MOOCs)
3. http://academicearth.org/

Module-2
L1,L2, L3
Numerical Methods-2:
Numerical solution of Ordinary Differential Equations of second order: Runge-Kutta method of fourth order, Predictor and Corrector method: Milne's Method and Adams Bashforth Method.

Calculus of Variations: Variation of function and Functional, variational problems. Euler's equation, Geodesics.

Application: Hanging chain problem.

Video Links:

1. http://nptel.ac.in/courses.php?disciplineID=111
2. http://www.class-central.com/subject/math(MOOCs)
3. http://academicearth.org/

Module-3	L1,L2, L3	12 Hours

Operations Research-1

Introduction to Linear Programming Problem (LPP): Prototype example, Assumptions of LPP, Formulation of LPP and Graphical method various examples. The simplex method, Big M method, Two phase method and dual simplex method.

Application: Graphical solution procedure.

Video Links:

1. http://nptel.ac.in/courses.php?disciplineID=111
2. http://www.class-central.com/subject/math(MOOCs)
3. http://academicearth.org/

Module-4	L1,L2, L3

Operations Research-2

The transportation problem: Initial Basic Feasible Solution (IBFS) by North West Corner Rule method, Matrix Minima Method, Vogel's Approximation Method.
Game Theory: The formulation of two persons, zero sum games; saddle point, maxmin and minmax principle, Solving simple games- a prototype example, Games with mixed strategies.

Application: Transportation problem.
Video Links:

1. http://nptel.ac.in/courses.php?disciplineID=111
2. http://www.class-central.com/subject/math(MOOCs)
3. http://academicearth.org/

Module-5

Statistical Methods

Correlation and Regression: Correlation, Regression coefficients, line of regression problems.

Curve fitting: Fitting of the curves of the form $y=a x+b, y=a x^{2}+b x+c, y=a e^{b x}$ by the method of least squares.

Application: Finding the best fit between two variables.
Video Links:

1. http://nptel.ac.in/courses.php?disciplineID=111
2. http://www.class-central.com/subject/math(MOOCs)
3. http://academicearth.org/

Course outcomes:

CO1	Solve first and second order ordinary differential equation arising in flow problems using single step numerical methods.
CO2	Determine the extremals of functional and solve the simple problems of the Calculus of variations.
CO3	Solve the mathematical formulation of linear programming problem.
CO4	Solve the applications of transport problems and theory of games.
CO5	Fit a suitable curve by the method of least squares and determine the lines of regression for a set of statistical data.

Reference Books:

4.

B.S. Grewal, "Higher Engineering Mathematics" Khanna Publishers, 43rd Edition, 2013.
5.
S. D. Sharma, "Operations Research", Kedar Nath and Ram Nath Publishers, Seventh Revised Edition 2014.
6. Erwin Kreyszig, "Advanced Engineering Mathematics", Wiley-India publishers, 10th edition, 2014.
7. Ramana B. V., "Higher Engineering Mathematics", Tata Mc Graw-Hill, 2006.
8. Bali N. P. \& Manish Goyal, "A text book of Engineering Mathematics", Laxmi Publications, $8^{\text {th }}$ Edition
9. Erwin Kreyszig, "Advanced Engineering Mathematics", Wiley-India publishers, 10th edition, 2014.

CO-PO Mapping																
CO / P	PO 1	PO 1	PO 1													
O	1	2	3	4	5	6	7	8	9	0	1	2				
CO 1	3	3	0	3	0	0	0	0	0	0	0	1				
CO 2	3	2	0	3	0	0	0	0	0	0	0	0				
CO 3	3	3	0	2	0	0	0	0	0	0	0	0				
CO 4	2	3	0	3	0	0	0	0	0	0	0	1				
CO 5	3	3	0	3	0	0	0	0	0	0	0	1				

High-3, Medium-2, Low-1

Course Title	Design \& Analysis of Algorithm	Semester	IV
Course Code	MVJ20CD42	CIE	50
Total No. of Contact Hours	40	SEE	50
No. of Contact Hours/week	4 (L:T:P::3:2:0)	Total	100
Credits	4	Exam. Duration	3 Hours

Course objective is to:

- Explain various computational problem-solving techniques.
- Apply appropriate method to solve a given problem.
- Describe various methods of algorithm analysis

> | Module-1 | L1,L2, L3 | 12 Hours |
| :--- | :--- | :--- |

Introduction to Algorithms: The role of algorithms in computing, Growth of functions, Asymptotic notations, Designing and Analysing algorithms-an Introduction using insertion sort. Review on the Math needed for algorithm design and analysis.

Laboratory Sessions/ Experimental learning:

- Implement insertion sort and test its efficiency.

Applications: Develop a realistic model for the input to the program. Analyse the unknown quantities, assuming the modelled input. Calculate the total running time by multiplying the time by the frequency for each operation, then adding all the products.

Video link / Additional online information :
https://www.tutorialspoint.com/data_structures_algorithms/asymptotic_analysis htm

Module-2 \quad L1,L2, L3 $\quad 12$ Hours
Divide and Conquer: Solving recurrences - The Substitution method, Recurrence Tree method and Master's method, Multiplying large integers, Binary Search, Sorting [Merge Sort and Quick Sort], Selection in linear time [Expected and Worstcase], Strassen's algorithm for Matrix Multiplication, The maximum sub-array problem.

Laboratory Sessions/ Experimental learning:

- Implement maximum sub array algorithm and test their correctness and efficiency

Applications: Closest Pair of Points, Strassen's Multiplication, Karatsuba Algorithm, Cooley-Tukey Algorithm

Video link / Additional online information :
https://www.tutorialspoint.com/design_and_analysis_of_algorithms/design_and _analysis_of_algorithms_
divide_conquer_htm

Module-3

L1,L2, L3 12 Hours
Greedy Algorithms: Characteristics of Greedy algorithms, The problem of making change, Greedy algorithms for Scheduling, Minimum Spanning Trees - Kruskal's Algorithm and Prim's Algorithm, Greedy Algorithms for finding the shortest paths in a Graph, The Knapsack problem Amortized Analysis: The accounting method, The potential method.

Laboratory Sessions/ Experimental learning:

- Implement Knapsack Algorithm using Greedy method.

Applications: Dijkstra's Algorithm, Google Map
Video link / Additional online information :
https://www.tutorialspoint.com/design_and_analysis_of_algorithms/design_and _analysis_of_algorithms_
greedy_method_htm
Module-4
L1,L2, L3
12 Hours
Dynamic Programming: Calculating the binomial co-efficient, the problem of making change, The Knapsack problem, Chained matrix multiplication, Finding the shortest paths in a Graph, Reformulating Dynamic programming algorithms using recursion and memory functions.

Laboratory Sessions/ Experimental learning:

- Implement single source shortest path algorithm.

Applications: Logistic/Transportation Problems
Video link / Additional online information :
https://www.tutorialspoint.com/design_and_analysis_of_algorithms/design_and _analysis_of_algorithms_
dynamic_programming_htm

Module-5	L1,L2, L3	12 Hours
Backtracking: N-Queen's Problem -Graph colouring.		
Branch and Bound: Assignment Problem - Traveling Salesman Problem.		
Computability classes - P, NP, NP-complete and NP-hard.		
Laboratory Sessions/ Experimental learning:		
\quad • Implement graph colouring Problem		
Applications: Electrical Engineering, Robotics, Artificial Intelligence, Materials		
Engineering, Solving Puzzles		
Video link / Additional online information:		
https://www.tutorialspoint.com/design_and_analysis_of_algorithms/design_and		
_analysis_of_algorithms_		
p_np_class_htm		

Course outcomes:	
CO1	Analyze the correctness of algorithms using induction and loop invariants.
CO2	Construct algorithms using design paradigms like divide and conquer, greedy and dynamic programming for a given problem.
CO 3	Analyze how the performance of an algorithm is affected based on the choice of data structures the algorithm uses.
$\mathrm{CO4}$	Construct graph-based algorithms to solve engineering problems.
$\mathrm{CO5}$	Outline P and NP problems with the help of backtracking and branch and bound techniques

Reference Books:

1.	Introduction to the Design and Analysis of Algorithms, Anany Levitin:, 2rd Edition, 2009.Pearson.
2.	Computer Algorithms/C++, Ellis Horowitz, Satraj Sahni and Rajasekaran, 2nd Edition, 2014, Universities Press
3.	Charles E. Leiserson, Thomas H. Cormen, Ronald L. Rivest, Clifford Stein - Introduction to Algorithms, Third edition, PHI, 2010.

CO-PO Mapping																
CO / P	PO 1	PO 1	PO 1													
O	1	2	3	4	5	6	7	8	9	0	1	2				
CO 1	3	3	3	2	3	0	0	0	0	2	0	0				
CO 2	3	3	3	2	3	0	0	0	0	2	0	0				
CO 3	3	3	2	2	3	0	0	0	0	2	0	0				
CO 4	3	3	2	2	3	0	0	0	0	2	0	0				
CO 5	3	3	3	2	3	0	0	0	0	2	0	0				

High-3, Medium-2, Low-1

Course Title	Advanced JAVA \& J2EE	Semester	IV
Course Code	MVJ20CD43	CIE	50
Total No. of Contact Hours	40	SEE	50
No. of Contact Hours/week	$4(\mathrm{~L}: \mathrm{T}: \mathrm{P}:: 3: 1: 0)$	Total	100
Credits	3	Exam. Duration	3 Hours

Course objective is to: : This course will enable students to

- Construct client-server applications using Java socket API
- Identify the need for advanced Java concepts like Enumerations and Collections
- Make use of JDBC to access database through Java Programs
- Adapt servlets to build server side programs
- Demonstrate the use of JavaBeans to develop component-based Java software

Module-1	L1,L2,L3	12 Hours

Syllabus Content:
Enumerations, Autoboxing and Annotations(metadata): Enumerations, Enumeration fundamentals, the values() and valueOf() Methods, java enumerations are class types, enumerations Inherits Enum, example, type wrappers, Autoboxing, Autoboxing and Methods, Autoboxing/Unboxing occurs in Expressions, Autoboxing/Unboxing, Boolean and character values, Autoboxing/Unboxing helps prevent errors, A word of Warning. Annotations, Annotation basics, specifying retention policy, Obtaining Annotations at run time by use of reflection, Annotated element Interface, Using Default values, Marker Annotations, Single Member annotations, Built-In annotations

Application:

- choices on a menu, rounding modes, command line flags, etc.
- Autoboxing $\&$ Auto unboxing:
- Annotations

Video Link: https://www.youtube.com/watch?v=vJ-Zn4fo0MQ\&t=608s

Module-2	L1,L2,L3	12 Hours

Syllabus Content:
The collections and Framework: Collections Overview, Recent Changes to Collections, The Collection Interfaces, The Collection Classes, Accessing a collection Via an Iterator, Storing User Defined Classes in Collections, The Random Access Interface, Working With

Maps, Comparators, The Collection Algorithms, Why Generic Collections, The legacy Classes and Interfaces,
Parting Thoughts on Collections.
Application: Writing an application
Video Link: https://www.youtube.com/watch?v=Ma7u6KEKzPE

Module-3	L1,L2,L3	12 Hours

Syllabus Content:

String Handling :The String Constructors, String Length, Special String Operations, String Literals, String Concatenation, String Concatenation with Other Data Types, String Conversion and to String() Character Extraction, char At(), getChars(), getBytes() toCharArray(), String Comparison, equals() and equalsIgnoreCase(), regionMatches() startsWith() and endsWith(), equals() Versus == , compareTo() Searching Strings, Modifying a String, substring(), concat(), replace(), trim(), Data Conversion Using valueOf(), Changing the Case of Characters Within a String, Additional String Methods, StringBuffer , StringBuffer Constructors, length() and capacity(), ensureCapacity(), setLength(), charAt() and setCharAt(), getChars(),append(), insert(), reverse(), delete() and deleteCharAt(), replace(), substring(), Additional StringBuffer Methods, StringBuilder

Application: Datatype
Video Link: https://www.youtube.com/watch?v=N63JCXwdd14

Module-4	L1,L2,L3	12 Hours

Syllabus Content:

Background; The Life Cycle of a Servlet; Using Tomcat for Servlet Development; A simple Servlet; The Servlet API; The Javax.servlet Package; Reading Servlet Parameter; The Javax.servlet.http package; Handling HTTP Requests and Responses; Using Cookies; Session Tracking. Java Server Pages (JSP): JSP, JSP Tags, Tomcat, Request String, User Sessions, Cookies, Session Objects

Application: java-based web application.
Video Link: https://www.youtube.com/watch?v=ewiOaDitBBw

Module-5	L1,L2,L3	12 Hours

Syllabus Content:
JDBC Overview - JDBC implementation - Connection class - Statements - Catching Database Results, handling database Queries. Networking- Inet Address class - URL classTCP sockets - UDP sockets, Java Beans -RMI.

Application: Connecting, storing, retrieving data between program and any database.

Video Link: https://www.youtube.com/watch?v=Cq4lwVE2Fzk

Practical Experiments:

1. Program to demonstrate working of Inet Address class and the methods of the InetAddress class for Java Networking
2. Program to demonstrate how to apply event handling mechanism to JCheckBox Swing Components :
3. Program to demonstrate JDBC
4. Program to demonstrate RMI
5. Program to demonstrate SERVLETS
6. Program to demonstrate JSP

Program to demonstrate JAVA BEANS

Course outcomes:

CO1	Interpret the need for advanced Java concepts like enumerations and collections in developing modular and efficient programs
CO 2	Build client-server applications and TCP/IP socket programs
CO 3	Illustrate database access and details for managing information using the JDBC API
CO 4	Describe how servlets fit into Java-based web application architecture
CO 5	Develop reusable software components using Java Beans

Text/Reference Books:

1.	Herbert Schildt: JAVA the Complete Reference, 7th/9th Edition, Tata McGraw Hil 2007.
2.	Jim Keogh: J2EE-TheCompleteReference, McGraw Hill, 2007.
3.	Stephanie Bodoff et al: The J2EE Tutorial, 2nd Edition, Pearson Education,2004.
4.	Uttam K Roy, Advanced JAVA programming, Oxford University press, 2015.
5.	Herbert Schildt: JAVA the Complete Reference, 7th/9th Edition, Tata McGraw Hill, 2007.

CO-PO Mapping												
CO/P	PO	PO1	PO1	PO1								
\bigcirc	1	2	3	4	5	6	7	8	9	0	1	2
CO1			3	2	2	2		2				1
CO 2		3	3	2	2	2		2				2
CO3		3	3	2	2	2		2				3
CO 4		3	3	2	2	2		2				2
CO5		3	3	2	2	2		2				3

High-3, Medium-2, Low-1

Course Title	Data Mining \& Data Warehouse	Semester	IV
Course Code	MVJ20CD44	CIE	50
Total No. of Contact Hours	40	SEE	50
No. of Contact Hours/week	$4(\mathrm{~L}: \mathrm{T}: \mathrm{P}:: 4: 0: 0)$	Total	100
Credits	3	Exam. Duration	3 Hours

Course objective is to:

- Gather and analyze large sets of data to gain useful business understanding
- Understand the data mining functionalities, technologies and steps in preprocessing the data
- Learn data mining algorithms, methods and tools

> Module-1

L1,L2,L3
Raw data to valuable information-Lifecycle of Data - What is data warehousing - The building Blocks: Defining Features - Data warehouses and data marts - Overview of the components - Metadata in the data warehouse - Basic elements of data warehousing Principles of dimensional modelling: Star schema, Snowflake schema and Galaxy schema.

Application:

Identify the potential risk of default and manage and control collections
Performance analysis of each product, service, interchange, and exchange rates
Store and analyze information about faculty and students
Maintain student portals to facilitate student activities
Video Link:
https://www.youtube.com/watch?v=8lHpioyvSng

Module-2	L1,L2,L3	12 Hours

Introduction to Data Mining Systems, Knowledge Discovery Process -Data Objects and attribute types, Statistical description of data, Data Preprocessing- Data Cleaning, Data Integration and Transformation, Data Reduction.

Application:
Financial Analysis
Telecommunication Industry.
Intrusion Detection
Retail Industry
Higher Education
Video Link:
https://www.youtube.com/watch?v=QRZIYzxEFDg

Module-3	L1,L2,L3	12 Hours

Market Basket Analysis, Frequent Item sets, Closed Itemsets, Association Rules, Frequent Itemset Mining Methods- Apriori algorithm, Generating Association rules from Frequent Itemsets, A Pattern- Growth Approach for mining frequent Itemsets, Mining Frequent Itemsets using the Vertical Data Format.

Application:
Market Basket Analysis
Medical Diagnosis:
Census Data
Protein Sequence

Video Link:
https://www.youtube.com/watch?v=RiFrbyiYpRs

Module-4	L1,L2,L3	12 Hours

Classification and Prediction ,Basic Concepts, Decision Tree Induction, Bayesian Classification ,Rule Based Classification, Classification by Back propagation, Support Vector Machines, Lazy learners.

Application:
Sentiment Analysis
Email Spam Classification
Document Classification
Image Classification

Video Link:
https://www.youtube.com/watch?v=gkagE_fE2sk

Module-5	L1,L2,L3	12 Hours

Types of Data in Cluster Analysis , Data similarity and dissimilarity measures ,A Categorization of Major Clustering Methods -Partitioning Methods-K-means, K-medoids, Hierarchical Methods-Agglomerative vs Divisive, Distance measures, BIRCH, Clustering High-Dimensional Data- Outlier Analysis and Detection.

Application:
Clustering analysis
In the field of biology, it can be used to derive plant and animal taxonomies.

Identification of areas of similar land use in an earth observation database.
Video Link:
https://www.youtube.com/watch?v=2QTeuO0C-fY

Experimental Part:

1. Apriori Algorithm for market Basket Analysis
2. Bayesian Classification
3. Decision Tree Induction Algorithm
4. Frequent Pattern-Growth Algorithm

Course outcomes:

CO1	Design data warehouse by applying principles of dimensional modelling and ETL concepts
CO2	Analyze various data pre-processing techniques for efficient data mining.
CO3	Apply association rule mining for finding hidden and interesting patterns in data.
CO4	Apply statistical procedure, machine learning and neural network based classification algorithms for data prediction
CO5	Apply clustering algorithms for the application and generalizations for real time problems

Text/Reference Books:

. Jiawei Han, Micheline Kamber and Jian Pei, Data Mining Concepts and

1. Techniques, Third Edition, Elsevier, 2012.
2. Paulraj Ponniah, Data Warehousing Fundamentals: A Comprehensive Guide for IT Professionals, Wiley, 2010
3. Alex Berson, Stephen J Smith, Data warehousing, Data mining, and OLAP, Tata McGraw Hill edition, 2007
4. Pang-Ning Tan, Michael Steinbach and Vipin Kumar,Introduction to Data Mining, Pearson Education, 2007
5.

G. K. Gupta ,Introduction to Data Mining with Case Studies, Easter Economy Edition, Prentice Hall of India, 2006

CO-PO Mapping												
CO/P	PO	PO1	PO1	PO1								
\bigcirc	1	2	3	4	5	6	7	8	9	0	1	2
CO1	3	3	3	3	3		2					
CO2	3	3	3	3	3		2					
CO3	3	3	3	3	3	3						3
CO4	3	3	3	3	3	3		3				3
CO5	3	3	3	3	3	3						3

High-3, Medium-2, Low-1

Course Title	 Visualization	Semester	IV
Course Code	MVJ20CD45	CIE	50
Total No. of Contact Hours	40	SEE	50
No. of Contact Hours/week	$4(\mathrm{~L}: \mathrm{T}: \mathrm{P}:: 4: 0: 0)$	Total	100
Credits	3	Exam. Duration	3 Hours

Course objective is to:

- Learn classical techniques of Information Retrieval and Evaluation
- Learn how to query and process
- Get an idea about how the different IR algorithms works.
- Understand Web Crawler and its functions.
- Realize the applications of Information Retrieval

Module-1

L1,L2 8 Hours
Basic Concepts - Retrial Process - Modelling - Classic Retrieval - Set Theoretic, Algebraic and Probabilistic Models.

Retrieval Techniques: Structured Retrieval Models - Retrieval Evaluation - Word Sense Disambiguation.

Application:
Using retrieval Techniques for searching information.
Video Link:
https://www.youtube.com/playlist?list=PLMyP8LIIL3ht_WV4EXjN-uD3EPEK3hIyu

Module-2	L2,L3	12 Hours
Languages - Key Word-based Querying - Pattern Matching - Structural Queries - Query Operations - User Relevance Feedback - Local and Global Analysis. Document Pre-Processing - Clustering - Text Compression - Indexing and Searching - Inverted Files - Boolean Queries - Sequential Searching - Pattern Matching. Application: Analyzing query and document formatting for searching. Video Link: https://www.youtube.com/playlist?list=PLMyP8LIIL3ht_WV4EXjN-uD3EPEK3hIyu		

Module-3

L2,L3
8 Hours
Overview of Retrieval Models -Boolean Retrieval - The Vector Space Model - Probabilistic Models - Information Retrieval as Classification - BM25 Ranking Algorithm - Complex Queries and Combining Evidence - Web Search - Machine Learning and Information Retrieval.

Application: Select and ranks relevant documents
Video Link: https://www.slideshare.net/mounialalmas/introduction-to-information-retrieval-models

Module-4

L2,L3
8 Hours
Deciding what to search - Crawling the Web - Directory Crawling - Document Feeds conversion problem - Storing the Documents - Detecting Duplicates - Remove noise.

Application:
Develop application data
Video Link:
https://www.youtube.com/playlist?list=PLMyP8LIIL3ht_WV4EXjN-uD3EPEK3hIyu
Module-5 \quad L2,L3 8 Hours

Searching the Web - Challenges - Characterizing the Web - Search Engines - Browsing - Meta-searchers - Online IR systems - Online Public Access Catalogs.

Digital Libraries: Introduction - Architectural Issues - Document Models Representations and Access - Prototypes and Standards.

Case Study: Google, Yahoo and Bing Search engines
Application:
Interpret overall working of a search engine.
Video Link:
https://www.youtube.com/playlist?list=PLMyP8LIIL3ht_WV4EXjN-uD3EPEK3hIyu

Practical Experiments/ Case Study:

- Experiments related to Ontology and Semantic Web
- Experiments related to Semantic Web Services
- Cast Study: Google Page Ranking Algorithm

Course outcomes:

CO1 \quad Rank the document using classical ranking methods
CO2 Querying documents by delivering keywords
CO3 Implement ranking algorithms for rank the documents
CO4 Know how the crawler works
CO5 Know how the web search, online IR systems and search engines works

Text/Reference Books:

1. Ricardo Baeza-Yate, Berthieri Ribeiro-Neto, Modern Information Retrieval, Pearson
2.

W.Bruce Croft, Donald Metzler and Trevor Strohman, Search Engines Information Retrieval in Practice, Pearson Education, 2015
3. Heuristics, $2^{\text {nd }}$ Edition, Springer
G.G. Chowdhury, Introduction to Modern Information Retrieval, Second Edition,
4. Neal-Schuman Publishers, 2010.

CO-PO Mapping												
CO / P	PO 1	PO	PO 1									
O	1	2	3	4	5	6	7	8	9	0	1	2
CO 1	3											
CO 2	3									2		
CO 3	3	3								2		
CO 4	3	3								2		2
CO 5	3	3								2		2

High-3, Medium-2, Low-1

Course Title	Virtual Reality	Semester	IV
Course Code	MVJ20CD46	CIE	50
Total No. of Contact Hours	40	SEE	50
No. of Contact Hours/week	$4(\mathrm{~L}: \mathrm{T}: \mathrm{P}:: 4: 0: 0)$	Total	100
Credits	3	Exam. Duration	3 Hours

Course objective is to:

- Explain this technology, underlying principles, its potential and limits
- Knowledge about devices involved
- Learn about the criteria for defining useful applications.
- Illustrate process of creating virtual environments
- Applications of Virtual Reality

Module-1
L1,L2,L3
Introduction: The three I's of virtual reality, commercial VR technology and the five classic components of a VR system. Input Devices: (Trackers, Navigation, and Gesture Interfaces): Three dimensional position trackers, navigation and manipulation, interfaces and gesture interfaces.

Application: Students can understand the basics of Virtual Reality.
Video Link: https://nptel.ac.in/courses/106/106/106106138/

Module-2	L1,L2,L3	12 Hours

Output Devices: Graphics displays, sound displays \& haptic feedback.
Application: Students can get knowledge about the hardware involved in virtual reality.
Video Link: https://www.youtube.com/watch?v=Z1jQ62VDVSo

Module-3	L1,L2,L3	12 Hours

Modeling: Geometric modelling, kinematics modeling, physical modeling, behaviour modeling, model management

Application: Students will get the knowledge about various modeling techniques. Video Link: https://www.youtube.com/watch?v=dF4QEfj61XQ

Module-4	L1,L2,L3	12 Hours

Human Factors: Methodology and terminology, user performance studies, VR health and safety issues.

Application: Students will learn impact of virtual reality of real life.
Video Link: https://www.youtube.com/watch?v=8DvwtzdNK5U
Module-5
L1,L2, L3
12 Hours

Medical applications, military applications, robotics applications
Application: Students can get the knowledge about the applications of virtual reality. Video Link: https://www.youtube.com/watch?v=fJES5HYMOg0

Practical Experiments/Research paper Study:

- Mobile Augmented Reality Based Experiments
- Simulating Educational Physical Experiments in Augmented
- Web based Virtual Reality

Course outcomes:

CO1	Illustrate technology, underlying principles
CO2	Explain process of creating virtual environments
CO3	Explain its potential and limits and to learn about the criteria for defining useful applications.
CO4	Simulate physical experiments
CO5	Explain future research scope of virtual reality

Text/Reference Books:

1.

Virtual Reality Technology, Second Edition, Gregory C. Burdea \& Philippe Coiffet,

1. John Wiley \& Sons

CO-PO Mapping												
CO/PO	PO1	PO 2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	2	2						1	2	2
CO2	2	2	2	1						1		
CO 3	2	1	1	1		1	1	1	1			1
CO 4	3	2	1	1		1	1	1	1			2
CO5	1	1	1	2						1	1	

High-3, Medium-2, Low-1

Course Title	Design \& Analysis of Algorithm Lab	Semester	IV
Course Code	MVJ20CDL47	CIE	50
Total No. of Contact Hours	30	SEE	50
No. of Contact Hours/week	$3(\mathrm{~L}: \mathrm{T}: \mathrm{P}:: 0: 1: 2)$	Total	100
Credits	2	Exam. Duration	3 Hours

Course objective is to:

- Understanding the basic algorithm techniques
- Solve different algorithmic technique problems
- Synthesize the efficiency of the algorithms in common engineering design situation

Sl No	Experiment Name	RBT Level	Hours
1	Implementation of Binary Search Trees	L 3	4
2	Implementation of merge and quick sort algorithms and test their correctness and efficiency	L 3	4
3	Implementation of Floyd-Warshall Algorithm and test their efficiency	L 3	4
4	Implementation of 0/1 Knapsack problem using (a) Dynamic Programming method (b)Greedy method.	L 3	4
5	(a) Implementation of all-Pairs Shortest Paths problem (b) Implementation of Travelling Sales Person problem	$\mathrm{L3}$	4
6	Implementation and analysis of running time of eight- queen problem	$\mathrm{L3}$	4
7	Implementation of insertion and topological sorting and test their efficiency.	$\mathrm{L3}$	4
8	Program to find a subset of a given set S = \{Sl, S2,......,Sn\} of n positive integers	L 3	4
9	Program to find all Hamiltonian Cycles in a connected undirected Graph	L 3	4
10	Mini Project /Case Presentation	L 3	4

Course outcomes:

CO1
 Analyze the complexities of various problems

CO 2	Apply different algorithmic design paradigms and methods of analysis
CO 3	Analyzing the different complexity for different algorithmic techniques
CO 4	Implement various algorithms in a high-level language
CO 5	Compare the performance of different algorithms for same problem

CO-PO Mapping															
CO / P	PO 1	PO 1	PO 1												
O	1	2	3	4	5	6	7	8	9	0	1	2			
CO 1	3	3	3	2	3	0	0	0	0	2	0	0			
CO 2	3	3	3	2	3	0	0	0	0	2	0	0			
CO 3	3	3	2	2	3	0	0	0	0	2	0	0			
CO 4	3	3	2	2	3	0	0	0	0	2	0	0			
CO 5	3	3	3	2	3	0	0	0	0	2	0	0			

High-3, Medium-2, Low-1

Course Title	Advanced Java Programming Lab	Semester	IV
Course Code	MVJ20CDL48	CIE	50
Total No. of Contact Hours	30	SEE	50
No. of Contact Hours/week	$3(\mathrm{~L}: \mathrm{T}: \mathrm{P}:: 0: 1: 2)$	Total	100
Credits	2	Exam. Duration	3 Hours

Course objective is to:

Develop error-free, well-documented Java programs.

Sl No	Experiment Name	RBT Level	Hours
1	WAP on Network Programming i.e. Client-Server Programming.	L 3	4
2	WAP on Multithreading using runnable interface.	L 3	4
3	WAP to Create a New Data Source for Ms. Access	L 3	4
4	WAP to show connectivity with database using JDBC/ODBC driver.	L 3	4
5	WAP to get Information about database using Database Meta Data	$\mathrm{L3}$	4
6	WAP to get Information about particular table using Result Set Meta Data	L 3	4
7	WAP to implement the concept of swings.	L 3	4
8	WAP to develop an RMI application.	L 3	4
9	WAP in Servlets to get and display value from an HTML page.	4	
10	WAP in JSP to get and display value from an HTML page.	L 3	4

Course outcomes:

CO1	Develop Java network programs.
CO2	Develop search engine, and web framework programs
CO3	Learn how to write advanced-level Object-Oriented programs using Java.
CO4	Develop appropriate data model and database scheme
CO5	Test and Validate Programs

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	0	0	0	0	0	0	0	0	0	0	0
CO2	3	2	1	0	0	0	0	0	0	0	0	0
CO 3	0	0	2	3	0	0	0	0	0	0	0	0
CO4	0	0	2	3	0	0	0	0	0	0	0	0
CO5	0	0	3	0	0	0	0	0	0	0	0	0

\High-3, Medium-2, Low-1

Course Title	Balike Kannada	Semester	IV
Course Code	MVJ20BKAN49	CIE	50
Total No. of Contact Hours	15	SEE	50
No. of Contact Hours/week	1 (L:T : P : $1: 0: 0)$	Total	100
Credits	1	Exam. Duration	3 Hrs

Course objective :This course will enable students to understand Kannada and communicate in Kannada language

Vyavharika Kannada -Parichaya (Introduction to Vyavharika kannada)
Kannada Aksharamaale haagu uchcharane(Kannada Alphabets and Pronounciation.
Sambhashanegaagi Kannada Padagalu (Kannada Vocubulary for Communication).
Kannada Grammer in Conversations(Sambhasaneyalli Kannada Vyakarana)
Activities in Kannada

CHAPTER-1

Vyavharika Kannada -Parichaya (Introduction to Vyavharika kannada)

CHAPTER-2

Kannada Aksharamaale haagu uchcharane(Kannada Alphabets and Pronounciation

CHAPTER-3

Sambhashanegaagi Kannada Padagalu (Kannada Vocubulary for Communication).

CHAPTER-4

Kannada Grammer in Conversations(Sambhasaneyalli Kannada Vyakarana)

CHAPTER-5

Activities in Kannada
cheme of Evaluation:

Details		Marks
Average of three Internal Assessment (IA) Tests of 30 Marks each i.e.		30
Σ (Marks Obtained in each test) / 3	CIE(50)	
ASSIGNMENT		20
Semester End Examination	SEE (50)	50
Total		100

	SAMSKRUTHIKA KANNADA		
Course Title		Semester	IV
Course Code	MVJ20SKAN49	CIE	50
Total No. of Contact Hours	15	SEE	50
No. of Contact Hours/week	1 (L: T: P :: 1:0:0)	Total	100
Credits	1	Exam. Duration	3Hrs

Course objective :This course will enable students to understand Kannada and communicate in Kannada language
Samskruthika Kannada -Parichaya (Introduction to Adalitha kannada)
Kannada Kavyagala parichaya (Kannada D Ra Bendre, Siddalingaiha)
Adalithdalli Kannada Padagalu (Kannada Kagunitha Balake, Patra Lekhana, Prabhandha)
Kannada Computer Gnyana (Kannada Shabdha Sangraha, Computer Paribashika padagalu)
Activities in Kannada.

అధ్యాయు -1
అధ్యాయ -2
అధ్యాయు -3
అధ్యాయు -4
రెల్ర Ш్యెబळలర.
అధ్యాయ -5
ఆశ్ర్ర வंత్రగైు.
అధ్యాయ -6
అధ్యాయు -7

అధ్యారు -8		
అధ్యారు -9		
అధ్యారు -10		
Scheme of Evaluation:		
Details		Marks
Average of three Internal Assessment (IA) Tests of 30 Marks each i.e Σ (Marks Obtained in each test) / 3		30
ASSIGNMENT		20
Semester End Examination	SEE (50)	50
Total		100

	Additional Mathematics-II (Common to all branches)	Semester	
Course Title	MVJ20MDSDIP401	CIE	50
Total No. of Contact Hours	40	SEE	50
No. of Contact Hours/week	4	Total	100
Credits	-	Exam. Duration	3 Hours

Course objective is to: This course viz., aims to prepare the students:
To familiarize the important and basic concepts of Differential calculus and Differential
Equation, ordinary/partial differential equations and Vector calculus and analysethe engineeringproblems.

Module-1	$\mathrm{L} 1, \mathrm{~L} 2$	8 Hrs.
Linear Algebra:		
Introduction,Rank of a matrix-echelon form. Solution of system of linear equations		
- consistency. Gauss-elimination method and problems. Eigen values and Eigen		
vectors of square matrix and Problems.		
Video Link:		
https://www.math.ust.hk/~machas/matrix-algebra-for-		
engineers.pdfhttps://nptel.ac.in/content/storage2/courses/122104018/node18.html		

Module-2	L1,L2	8 Hrs.

Differential calculus:

Tangent and normal, sub tangent and subnormal both Cartesian and polar forms. Increasing and decreasing functions, Maxima and Minima for a function of one variable. Point of inflections and Problems
Beta and Gamma functions:
Beta functions, Properties of Beta function and Gamma function ,Relation Between beta and Gamma function-simple problems.
Video Link:
https://www.youtube.com/watch?v=6RwOoPN2zqE
https://www.youtube.com/watch?v=s6F5yjY6jWk\&list=PLMLsjhQWWIUqBoTCQDtYlloI-o-9hxp11
http://tutorial.math.lamar.edu/Classes/DE/IntroPDE.aspx

Partial differential equation: Formation of PDE's by elimination of arbitrary constants and functions.
Solution of non-homogeneous PDE by direct integration. Homogeneous PDEs involving derivative with respect to one independent variable only.
Video Link:
http://tutorial.math.lamar.edu/Classes/DE/IntroPDE.aspx
https://www.studyyaar.com/index.php/module-video/watch/233-cauchys-legendres-de-a-method-
of-variation-of-parameters
Course outcomes:

CO1	Apply the knowledge of Matrices to solve the system of linear equations and to understand the concepts of Eigen value and Eigen vectors for engineering problems.
CO2	Demonstrate various physical models, find Maxima and Minima for a function of one variable., Point of inflections and Problems Understand Beta and Gamma function
CO3	Understand the 3-Dimentional geometry basic, Equation of line in space- different forms, Angle between two line and studying the shortest distance .
CO4	Concepts OF Probability related to engineering applications.
CO5	Construct a variety of partial differential equations and solution by exact methods.

Text Books:

1	B.S. Grewal, "Higher Engineering Mathematics" Khanna Publishers, 43 Edition, 2013.
2	Ramana B. V., "Higher Engineering Mathematics", Tata Mc Graw-Hill, 2006.

Reference Books:

1
Erwin Kreyszig, "Advanced Engineering Mathematics", Wiley-India publishers, 10thedition,2014.

2 G. B. Gururajachar: Calculus and Linear Algebra, Academic Excellent Series Publication, 2018-19

CIE Assessment:

CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation. Generally, there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of three tests

- Quizzes/mini tests (10 marks)
- Assignments (10 marks)

SEE Assessment:

iii. Question paper for the SEE consists two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.
iv. Part B also covers the entire syllabus consisting of five questions having choices and may contain sub-divisions, each carrying 16 marks. Students have to answer five full questions.
v. One question must be set from each unit. The duration of examination is 3 hours.

CO-PO Mapping												
CO/PO	PO1	PO 2	PO 3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO11	PO12
CO1	3	3	0	2	0	0	0	0	0	0	1	1
CO 2	3	3	0	2	0	0	0	0	0	0	1	1
CO 3	3	3	0	3	0	0	0	0	0	0	0	1
CO4	2	2	0	3	0	0	0	0	0	0	1	1
CO5	2	2	0	2	0	0	0	0	0	0	0	1

High-3, Medium-2, Low-1

[^0]: Note: BSC: Basic Science, PCC: Professional Core Course, HSMC: Humanity and Social Science

