	Semester: IV					
Numerical Metho	ods Operations Research & Statistics					
	(Theory)					
Course Code:MVJ21MCS41/MVJ21CD41	CIE Marks:50					
Credits: L:T:P:S:3:1:0:0 SEE Marks: 50						
Hours: 40L+26T	SEE Duration: 3 Hrs					
	nts well conversant with numerical methods to so	•				
differential equations, sampling theory and	Operational research emerging in science and eng	gineering.				
	UNIT-I					
Numerical Methods-1		8 Hrs				
Numerical solution of Ordinary Different	tial Equations of first order and first degree:					
Modified Euler's method, Taylor's series	method, Runge-Kutta method of fourth order,					
Predictor and Corrector method: Milne's M	ethod and Adams-Bashforth Method.					
Application: Solving Ordinary Differential Ed	quations.					
Video Links:						
1. http://nptel.ac.in/courses.php?discipline	ID=111					
2. http://www.class-central.com/subject/m	nath(MOOCs)					
3. http://academicearth.org/						
	UNIT-II					
Numerical Methods-2:		8 Hrs				
Numerical solution of Ordinary Differential	Equations of second order: Runge-Kutta method					
of fourth order, Predictor and Corrector	method: Milne's Method and Adams Bashforth					
Method.						
Calculus of Variations: Variation of function	and Functional, variational problems.					
Euler's equation, Geodesics.						
Application: Hanging chain problem.						
Video Links:						
1. http://nptel.ac.in/courses.php?discipline	ID=111					
2. http://www.class-central.com/subject/m	nath(MOOCs)					
3. http://academicearth.org/						
	UNIT-III					
Operations Research-1		8 Hrs				

Introduction to Linear Programming Problem (LPP): Prototype example, Assumptions of							
LPP, Formulation of LPP and Graphical method various examples. The simplex method, Big							
M method, Two phase method and dual simplex method.							
Application: Graphical solution procedure.							
Video Links:							
1. http://nptel.ac.in/courses.php?disciplineID=111							
2. http://www.class-central.com/subject/math(MOOCs)							
3. http://academicearth.org/							
UNIT-IV							
Operations Research-2	8 Hrs						
The transportation problem: Initial Basic Feasible Solution (IBFS) by North West Corner Rule							
method, Matrix Minima Method, Vogel's Approximation Method.							
Game Theory: The formulation of two persons, zero sum games; saddle point, maxmin and							
minmax principle, Solving simple games- a prototype example, Games with mixed							
strategies.							
Application: Transportation problem.							
Video Links:							
1. http://nptel.ac.in/courses.php?disciplineID=111							
2. http://www.class-central.com/subject/math(MOOCs)							
3. http://academicearth.org/							
UNIT-V							
Statistical Methods	8 Hrs						
Correlation and Regression: Correlation, Regression coefficients, line of							
regressionproblems.							
Curve fitting: Fitting of the curves of the form $y = ax + b$, $y = ax^2 + bx + c$, $y = ae^{bx}$ by the							
method of least squares.							
Application: Finding the best fit between two variables.							
Video Links:							
1. http://nptel.ac.in/courses.php?disciplineID=111							
2. http://www.class-central.com/subject/math(MOOCs)							
3. http://academicearth.org/							

Cours	Course Outcomes: After completing the course, the students will be able to									
CO1	Solve first and second order ordinary differential equation arising in flow problems using									
	single step numerical methods.									
CO2	Determine the extremals of functional and solve the simple problems of the									
	Calculus of variations.									
CO3	Solve the mathematical formulation of linear programming problem.									
CO4	Solve the applications of transport problems and theory of games.									
CO5	Fit a suitable curve by the method of least squares and determine the lines of regression for									
	a set of statistical data.									

Refe	erence Books
1.	B.S. Grewal, "Higher Engineering Mathematics" Khanna Publishers, 43 rd Edition, 2013.
2.	S. D. Sharma, "Operations Research", Kedar Nath and Ram NathPublishers, Seventh Revised Edition 2014.
3.	Erwin Kreyszig, "Advanced Engineering Mathematics", Wiley-India publishers, 10thedition, 2014.
4.	Ramana B. V., "Higher Engineering Mathematics", Tata Mc Graw-Hill, 2006.

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	P07	P08	PO9	PO10	PO11	PO12
CO1	3	3	0	3	0	0	0	0	0	0	0	1
CO2	3	2	0	3	0	0	0	0	0	0	0	0
CO3	3	3	0	2	0	0	0	0	0	0	0	0
CO4	2	3	0	3	0	0	0	0	0	0	0	1
CO5	3	3	0	3	0	0	0	0	0	0	0	1

	S	emester: IV							
	Information Retrieval								
		(Theory)							
Cou	Course Code:MVJ21CD42 CIE Marks:50								
Crec	lits: L:T:P:S:3:1:0:0	SEE Marks: 50							
Hou	rs: 40L+26T	SEE Duration: 3 Hrs							
Cou	rse Learning Objectives: The students will	be able to							
1	Learn classical techniques of Information	Retrieval and Evaluation							
2	Learn how to query and process								
3	3 Get an idea about how the different IR algorithms works.								
4	Understand Web Crawler and its functions.								
5	Realize the applications of Information R	etrieval.							

UNIT-I					
Basic Concepts – Retrial Process – Modelling – Classic Retrieval – Set Theoretic, Algebraic and	8 Hrs				
Probabilistic Models.					
Retrieval Techniques: Structured Retrieval Models – Retrieval Evaluation – Word Sense					
Disambiguation.					
Application:					
Using retrieval Techniques for searching information.					
Video Link:					
https://www.youtube.com/playlist?list=PLMyP8LIIL3ht_WV4EXjN-uD3EPEK3hlyu					
UNIT-II					
ILanguages – Key Word-based Querying – Pattern Matching – Structural Queries – Query	8 Hrs				
Operations – User Relevance Feedback – Local and Global Analysis.					
Document Pre-Processing – Clustering – Text Compression – Indexing and Searching –					
Inverted Files – Boolean Queries – Sequential Searching – Pattern Matching.					
Application:					
Analyzing query and document formatting for searching.					

Video	Link:

https://www.youtube.com/playlist?list=PLMyP8LIIL3ht_WV4EXjN-uD3EPEK3hlyu

UNIT-III						
Overview of Retrieval Models – Boolean Retrieval – The Vector Space Model – Probabilistic	8 Hrs					
Models – Information Retrieval as Classification – BM25 Ranking Algorithm – Complex						
Queries and Combining Evidence – Web Search – Machine Learning and Information						
Retrieval.						
Application: Select and ranks relevant documents						
Video Link: https://www.slideshare.net/mounialalmas/introduction-to-information-retrieval-						
models						
UNIT-IV						
Deciding what to search – Crawling the Web – Directory Crawling – Document Feeds –	8 Hrs					
	01115					
conversion problem – Storing the Documents – Detecting Duplicates – Remove noise.						
Application:						
Develop application data						
Video Link:						
https://www.youtube.com/playlist?list=PLMyP8LIIL3ht_WV4EXjN-uD3EPEK3hIyu						
UNIT-V						
Searching the Web – Challenges – Characterizing the Web – Search Engines – Browsing –	8 Hrs					
Meta-searchers – Online IR systems – Online Public Access Catalogs.						
Digital Libraries: Introduction – Architectural Issues – Document Models – Representations						
and Access – Prototypes and Standards.						
Case Study: Google, Yahoo and Bing Search engines						
Application:						
Interpret overall working of a search engine.						
Video Link:						
https://www.youtube.com/playlist?list=PLMyP8LIIL3ht_WV4EXjN-uD3EPEK3hlyu						

Cours	Course Outcomes: After completing the course, the students will be able to							
CO1	Rank the document using classical ranking methods							
CO2	Querying documents by delivering keywords							
CO3	Implement ranking algorithms for rank the documents							
CO4	Know how the crawler works							

CO5 Know how the web search, online IR systems and search engines works

Refe	erence Books
1.	Ricardo Baeza-Yate, Berthieri Ribeiro-Neto, Modern Information Retrieval, Pearson Education
	Asia, 2012.
2.	W.Bruce Croft, Donald Metzler and Trevor Strohman, Search Engines – Information Retrieval in
	Practice, Pearson Education, 2015
3.	Grossman, David A. Frieder, Ophir, Information Retrieval Algorithms and Heuristics, 2 nd Edition,
	Springer
4.	G.G. Chowdhury, Introduction to Modern Information Retrieval, Second Edition, Neal-Schuman
	Publishers, 2010.

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

CO-PO Mapping												
CO/PO	CO/PO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12											
CO1	3											

CO2	3					2	
CO3	3	3				2	
CO4	3	3				2	2
CO5	3	3				2	2

	Se	mester: IV				
	Computer Orga	nization & Architecture				
		(Theory)				
Cou	Course Code:MVJ21CD43 CIE Marks:50					
Cre	redits: L:T:P:S:3:1:0:0 SEE Marks: 50					
Ηοι	Hours: 40L+26T SEE Duration: 3 Hrs					
Cou	rse Learning Objectives: The students will	be able to				
1	distinguish between the various ISA style					
2	trace the execution sequence of an instruction through the processor					
3	compare different approaches used for implementing a functional unit					
4	understand the fundamentals of memory and I/O systems and their interaction with the processor					

0000	
Functional unit, Basic operational concepts, Bus structures, Software, Performance, Data	8 Hrs
Representation. Fixed Point Representation. Floating – Point Representation. Instruction	
codes. Computer Registers Computer instructions- Instruction cycle. Memory - Reference	
Instructions. Input – Output and Interrupt. STACK organization. Instruction formats.	
Addressing modes.	
Laboratory Sessions/ Experimental learning:	
Familiarization with assembly language programming	
Applications: Computer system.	
Video link / Additional online information :	
https://nptel.ac.in/courses/106/106/106106166/	
UNIT-II	
Peripheral Devices, Input-Output Interface, Asynchronous data transfer Modes of Transfer,	8 Hrs
Priority Interrupt Direct memory Access, Input –Output Processor (IOP) Serial	
communication; Introduction to peripheral component, Interconnect (PCI) bus.	

Introduction to standard serial communication protocols like RS232, USB, IEEE1394	
Laboratory Sessions/ Experimental learning:	
Interfacing - DAC, ADC, keyboard-display modules	
Applications: Monitors, keyboards.	
Video link / Additional online information:	
https://drive.google.com/file/d/0B-ITW-kTxwdfSVExbzZIMUFFVFU/view	
UNIT-III	8 Hrs
Cache Coherence, Shared Memory Multiprocessors. Control memory, Address sequencing,	опіз
micro program example, design of control unit Hard wired control. Micro programmed	
control, Virtual Memory.	
Laboratory Sessions/ Experimental learning:Processor design	
Applications: High end workstations.	
Video link / Additional online information:	
https://drive.google.com/file/d/OB-ITW-kTxwdfcV9ma2JxbUcORUk/view UNIT-IV	
Addition and subtraction, multiplication Algorithms, Division Algorithms, Floating – point	8 Hrs
Arithmetic operations. Decimal Arithmetic unit Decimal Arithmetic operations.	
Laboratory Sessions/ Experimental learning:	
Implementation of booth algorithm	
Applications: Radar, Sonar	
Video link / Additional online information:	
https://nptel.ac.in/courses/106/106/106166/	
UNIT-V	
Parallel Processing, Pipelining, Arithmetic Pipeline, Instruction Pipeline, RISC Pipeline, Data	8 Hrs
hazards – Instruction hazards, Vector Processing, Array Processors. Cache coherence and	
MESI protocol – Clusters – Non-Uniform Memory Access – Vector Computation	
Laboratory Sessions/ Experimental learning:	
Introduction to embedded system.	
Applications: DSP, Microprocessor	
Video link / Additional online information:	
https://drive.google.com/file/d/0B-ITW-kTxwdfNGIMQINSSVIQeEE/view	

Cours	Course Outcomes: After completing the course, the students will be able to						
CO1	Demonstrate the fundamental organization of a computer system						
CO2	Analyse various issues related to memory hierarchy.						
CO3	Examine various, inter connection structures of multi processors.						
CO4	Formulate and solve problems related to computer arithmetic, performance of systems						
CO5	Demonstrate parallel computing and concepts of pipeline						

Ref	erence Books
3.	M. Morris Mano, Computer System Architecture, 3rd edition, Prentice- Hall of IndiaPvt. Ltd.,
	1999.
4.	CarlHamacher : "Computer Organization ", Fifth Edition, Mc Graw Hill
3.	William Stallings: "Computer Organisation and Architecture", Pearson Education

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

					CO-I	PO Ma	oping					
CO/PO	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO1	0	0	3	2	0	0	0	2	0	0	0	1
CO2	0	3	3	2	0	0	0	2	0	0	0	2
CO3	0	3	3	2	0	0	0	2	0	0	0	3
CO4	0	3	3	2	0	0	0	2	0	0	0	2

CO5	0	3	3	2	0	0	0	2	0	0	0	3

	Semester:	IV					
	Python Programmi	ng and Lab					
	(Theory and Pr	actice)					
Cοι	urse Code: MVJ21CD44	CIE Marks:50+50					
Credits: L:T:P: 3:0:1 SEE Marks: 50 +50							
Hours:40 L+26P SEE Duration: 03+03 Hours							
C οι	urse Learning Objectives: The students will be able t)					
1	Learn fundamental features of object-oriented lan	guage					
2	Design, write, debug, run Python Programs						
3	Develop console -based applications using Python						
4	Develop console & windows applications using Pyt	hon.					
5	Introduce event driven Graphical User Interfac functions	Introduce event driven Graphical User Interface (GUI) programming using Python built in functions					

UNIT-I	
Syllabus Content:	8 Hrs
Why should you learn to write programs, Introduction to Python, Variables, expressions	
and statements, Conditional execution, Functions.	
Application:	
 In learning and implementing small project process 	
Video Link:	
1. <u>https://www.py4e.com/</u>	
http://greenteapress.com/wp/think-python/	
UNIT-II	
Syllabus Content:Iteration, Strings, Files.	8 Hrs
Application:	
Pattern recognition and Reading resultant column in supervised learning data set	
Video Link:	
 <u>https://www.codecademy.com/learn/learn-python</u> 	
http://www.tutorialspoint.com/python/	
UNIT-III	
Syllabus Content:	8 Hrs
·	

Lists, Dictionaries, Tuples, Regular Expressions.	
Application:	
 Handling query languages and Managing Large set of data with respect to database 	
Video Link:	
1. <u>https://www.programiz.com/python-programming/class</u> <u>https://www.udemy.com/course/web-scraping-with-python-beautifulsoup/</u> UNIT-IV	
Syllabus Content:	8 Hrs
Classes and objects, Classes and functions, Classes and methods.	
Application:	
Designing games and puzzles	
Video Link:	
1. <u>https://datatofish.com/json-string-to-csv-python/</u> https://automatetheboringstuff.com/	
UNIT-V	
Syllabus Content:	8 Hrs
Networked programs, Using Web Services, Using databases and SQL.	
Application:	
Music composition and movie development	
Video Link:	
1. <u>http://do1.drchuck.com/pythonlearn/EN_us/pythonlearn.pdf</u>	
 <u>https://www.datacamp.com/community/tutorials/reading-and-editing-pdfs-and-word-documents-from-python</u> 	
word-documents-from-python	
word-documents-from-python LABORATORY EXPERIMENTS(10 Hours)	
word-documents-from-python LABORATORY EXPERIMENTS(10 Hours) 1.Python Program to Reverse a linked list	
word-documents-from-python LABORATORY EXPERIMENTS(10 Hours) 1.Python Program to Reverse a linked list 2. Python Program for Find largest prime factor of a number	

- 6 Python Program for Coin Change
- 7 Python Program for Tower of Hanoi
- 8 Python Program to Check if binary representation is palindrome
- 9 Python Program for Basic Euclidean algorithms
- 10 Python Program for Maximum height when coins are arranged in a triangle

Cours	Course Outcomes: After completing the course, the students will be able to									
CO1	Understand Python syntax and semantics and be fluent in the use of Python flow									
	control and functions.									
CO2	Demonstrate proficiency in handling Strings and File Systems.									
CO3	Implement Python Programs using core data structures like Lists, Dictionaries and useRegular									
	Expressions.									
CO4	Interpret the concepts of Object-Oriented Programming as used in Python.									
CO5	Implement exemplary applications related to Network Programming, Web Servicesand									
	Databases in Python.									

Refe	erence Books
5.	Charles R. Severance, "Python for Everybody: Exploring Data Using Python 3", 1st
	Edition, CreateSpace Independent Publishing Platform, 2016. (http://do1.drchuck.
	com/pythonlearn/EN_us/pythonlearn.pdf)
6.	Allen B. Downey, "Think Python: How to Think Like a Computer Scientist", 2ndEdition, Green Tea
	Press, 2015. (http://greenteapress.com/thinkpython2/thinkpython2.pdf)
3.	Charles Dierbach, "Introduction to Computer Science Using Python", 1st Edition,
	Wiley India Pvt Ltd. ISBN-13: 978-8126556014

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Laboratory- 50 Marks

The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for10 marks. The students are encouraged to implement

additional innovative experiments in the lab and are awarded 10 marks. Total marks for the laboratory is 50.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marksare executed by means of an examination.

The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	0	0	0	0	0	0	0	0
CO2	3	3	2	2	0	0	0	0	0	0	0	0
CO3	3	3	3	2	0	0	0	0	0	0	0	0
CO4	3	3	2	2	0	0	0	0	0	0	0	0
CO5	3	3	3	2	0	0	0	0	0	0	0	0

		Semester: IV					
	Design Analy	rsis of Algorithms and Lab					
	(The	ory and Practice)					
Cou	Course Code: MVJ21IS45 CIE Marks:50+50						
Cre	dits: L:T:P: 3:0:1	SEE Marks: 50 +50					
Ηοι	urs:40 L+26P	SEE Duration: 03+03 Hours					
Cou	urse Learning Objectives: The students wil	l be able to					
1	Explain various computational problem-	solving techniques.					
2	Apply appropriate method to solve a given problem.						
3	Describe various methods of algorithm a	analysis					

UNIT-I

Introduction to Algorithms: The role of algorithms in computing, Growth of functions, Asymptotic
notations, Designing and Analysing algorithms-an Introduction using insertion sort. Review on the
Math needed for algorithm design and analysis.
Laboratory Sessions/ Experimental learning:
Implement insertion sort and test its efficiency8
Hr
s

Applications: Develop a realistic model for the input to the program. Analyse the unknown quantities, assuming the modelled input. Calculate the total running time by multiplying the time by the	
frequency for each operation, then adding all the products.	
Video link / Additional online information :	
https://www.tutorialspoint.com/data structures algorithms/asymptotic analysis.htm	
UNIT-II Divide and Conquer: Solving recurrences – The Substitution method, Recurrence Tree method and	8
Master's method, Multiplying large integers, Binary Search, Sorting [Merge Sort and Quick Sort],	Hr
Selection in linear time [Expected and Worst-case], Strassen's algorithm for Matrix Multiplication, The	S
maximum sub-array problem.	
Laboratory Sessions/ Experimental learning:	
Implement maximum sub array algorithm and test their correctness and efficiency	
Applications: Closest Pair of Points, Strassen's Multiplication, Karatsuba Algorithm, Cooley-Tukey	
Algorithm	
Video link / Additional online information :	
https://www.tutorialspoint.com/design and analysis of algorithms/design and analysis of algorit	
<u>hms</u>	
divide_conquer_htm	
UNIT-III	
Greedy Algorithms: Characteristics of Greedy algorithms, The problem of making change, Greedy	8
algorithms for Scheduling, Minimum Spanning Trees – Kruskal's Algorithm and Prim's Algorithm,	Hr s
Greedy Algorithms for finding the shortest paths in a Graph, The Knapsack problem Amortized	3
Analysis:	
The accounting method, The potential method.	
Laboratory Sessions/ Experimental learning:	
Implement Knapsack Algorithm using Greedy method.	
Applications: Dijkstra's Algorithm, Google Map	
Video link / Additional online information :	
https://www.tutorialspoint.com/design and analysis of algorithms/design and analysis of algorit	
hms	
greedy_method_htm	

UNIT-IV Dynamic Programming: Calculating the binomial co-efficient, the problem of making change,	8
The Knapsack problem, Chained matrix multiplication, Finding the shortest paths in a Graph,	Hr
Reformulating Dynamic programming algorithms using recursion and memory functions.	S
Laboratory Sessions/ Experimental learning:	
Implement single source shortest path algorithm.	
Applications: Logistic/Transportation Problems	
Video link / Additional online information :	
https://www.tutorialspoint.com/design and analysis of algorithms/design and analysis of algorit	
<u>hms</u>	
dynamic_programming_htm	
UNIT-V	
Backtracking: N-Queen's Problem -Graph colouring.	8 Hr
Branch and Bound: Assignment Problem - Traveling Salesman Problem. Computability classes – P, NP,	пі S
NP-complete and NP-hard.	
Laboratory Sessions/ Experimental learning:	
Implement graph colouring Problem	
Applications: Electrical Engineering, Robotics, Artificial Intelligence, Materials Engineering, Solving	
Puzzles	
Video link / Additional online information :	
https://www.tutorialspoint.com/design and analysis of algorithms/design and analysis of algorit	
hms_	
p np class htm	
LABORATORY EXPERIMENTS(10 Hrs) 1. Implementation of Binary Search Trees	
2. Implementation of merge and quick sort algorithms and test their correctness and efficiency	
3. Implementation of Floyd-Warshall Algorithm and test their efficiency	
4. Implementation of 0/1 Knapsack problem using	
(a) Dynamic Programming method	

(b)Greedy method.

5. (a) Implementation of all-Pairs Shortest Paths problem

(b) Implementation of Travelling Sales Person problem

- 6 Implementation and analysis of running time of eight-queen problem
- 7 Implementation of insertion and topological sorting and test their efficiency.
- 8 Program to find a subset of a given set S = {SI, S2,.....,Sn} of *n* positive integers
- 9 Program to find all Hamiltonian Cycles in a connected undirected Graph

10 Mini Project /Case Presentation

Cours	Course Outcomes: After completing the course, the students will be able to								
CO1	Analyze the correctness of algorithms using induction and loop invariants.								
CO2	Construct algorithms using design paradigms like divide and conquer, greedy and dynamic programming for a given problem.								
CO3	Analyze how the performance of an algorithm is affected based on the choice of data structures the algorithm uses.								
CO4	Construct graph-based algorithms to solve engineering problems.								
CO5	Outline P and NP problems with the help of backtracking and branch and bound techniques								

Refere	ence Books:
	Introduction to the Design and Analysis of Algorithms, Anany Levitin:, 2rd Edition,
1.	2009.Pearson.
	Computer Algorithms/C++, Ellis Horowitz, Satraj Sahni and Rajasekaran, 2nd Edition,
2.	2014,
	Universities Press
3.	Charles E. Leiserson, Thomas H. Cormen, Ronald L. Rivest, Clifford Stein – Introduction
э.	to Algorithms, Third edition, PHI, 2010.

Continuous Internal Evaluation (CIE): Theory for 50 Marks CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Laboratory- 50 Marks

The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for10 marks. The students are encouraged to implement additional innovative experiments in the lab and are awarded 10 marks. Total marks for the laboratory is 50.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marksare executed by means of an examination.

	CO-PO Mapping											
CO/PO	P01	PO2	PO3	PO4	PO5	PO6	P07	P08	PO9	PO10	PO11	PO12
CO1	3	3	2	2	0	0	0	0	0	0	0	0
CO2	3	3	2	2	0	0	0	0	0	0	0	0
CO3	3	3	3	2	0	0	0	0	0	0	0	0
CO4	3	3	2	2	0	0	0	0	0	0	0	0
CO5	3	3	3	2	0	0	0	0	0	0	0	0

Semester: IV										
BALIKE KANNADA (Theory)										
Course Code:MVJ21IS46 CIE Marks:50										
Credits: L:T:P:S:1:0:0:0 SEE Marks: 50										
Hours: 40L+26T SEE Duration: 3 Hrs										
Course Learning Objectives: The students	s will be able to									
This course will enable students to unders	stand Kannada and communicate in Kannada language									
Vyavharika Kannada –Parichaya (Introduc	ction to Vyavharika kannada)									
Kannada Aksharamaale haagu uchcharane(Kannada Alphabets and Pronounciation.										
Sambhashanegaagi Kannada Padagalu (Ka	annada Vocubulary for Communication).									

Kannada Grammer in Conversations(Sambhasaneyalli Kannada Vyakarana) Activities in Kannada

UNIT-I	
Vyavharika Kannada –Parichaya (Introduction to Vyavharika kannada)	12 Hrs
UNIT-II	
Kannada Aksharamaale haagu uchcharane(Kannada Alphabets and Pronounciation	12 Hrs
UNIT-III	
Sambhashanegaagi Kannada Padagalu (Kannada Vocubulary for Communication).	12 Hrs
UNIT-IV	
Kannada Grammer in Conversations(Sambhasaneyalli Kannada Vyakarana)	12 Hrs
UNIT-V	
Activities in Kannada	12 Hrs

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marksis executed by means of an examination. The Question paper consists of objective type questions for 50 marks covering the entire syllabus. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	O/PO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12											
CO1	3	3	0	3	0	0	0	0	0	0	0	1
CO2	3	2	0	3	0	0	0	0	0	0	0	0
CO3	3	3	0	2	0	0	0	0	0	0	0	0
CO4	2	3	0	3	0	0	0	0	0	0	0	1
CO5	3	3	0	3	0	0	0	0	0	0	0	1

	SAMSKRUTHIKA KANNADA		
Course Title		Semester	IV
Course Code	MVJ21IS46	CIE	50
Total No. of Contact Hours	15	SEE	50
No. of Contact Hours/week	1 (L: T: P :: 1 : 0 : 0)	Total	100
Credits	1	Exam. Duration	3Hrs

Course objective :This course will enable students to understand Kannada and communicate in Kannada language

Samskruthika Kannada – Parichaya (Introduction to Adalitha kannada)

Kannada Kavyagala parichaya (Kannada D Ra Bendre, Siddalingaiha)

Adalithdalli Kannada Padagalu (Kannada Kagunitha Balake, Patra Lekhana, Prabhandha)

Kannada Computer Gnyana (Kannada Shabdha Sangraha, Computer Paribashika padagalu)

Activities in Kannada.

CzsÁåAiÀÄ -1

Pˣ˧qÀ ¨sÁµÉ-,ÀAQë¥ÀÛ «ªÀgÀuÉ.

CzsÁåAiÀÄ -2

¨sÁµÁ ¥ÀæAiÉÆÃUÀ¯ÁèUÀĪÀ ¯ÉÆÃ¥ÀzÉÆÃµÀUÀ¼ÀÄ ªÀÄvÀÄÛ CªÀÅUÀ¼À ¤ªÁgÀuÉ.

CzsÁåAiÀÄ -3

ÉÃR£À aºÉßUÀ¼ÀÄ ªÀÄvÀÄÛ CªÀÅUÀ¼À G¥ÀAiÉÆÃU.À

CzsÁåAiÀÄ -4

¥ÀvÀæ ªÀåªÀºÁgÀ.

CzsÁåAiÀÄ -5

DqÀ½vÀ ¥ÀvÀæUÀ¼ÀÄ.

CzsÁåAiÀÄ -6

ÀPÁðgÀzÀ DzÉñÀ ¥ÀvÀæUÀ¼ÀÄ

CzsÁåAiÀÄ -7

,ÀAQÃ¥ÀÛ ¥Àæ§AzsÀ gÀZÀ£É, ¥Àæ§AzsÀ ªÀÄvÀÄÛ ^{..}sÁµÁAvÀgÀ

CzsÁåAiÀÄ -8

Pˣ˧qÀ ±À§Ý,ÀAUÀæºÀ

CzsÁåAiÀÄ -9

PÀA¥ÀÆålgï ºÁUÀÆ ªÀiÁ»w vÀAvÀæeÁÕ£À

CzsÁåAiÀÄ -10

¥Áj¨sÁ¶PÀ DqÀ½vÀ PÀ£ÀßqÀ ¥ÀzÀUÀ¼ÀÄ ªÀÄvÀÄÛ vÁAwæPÀ/PÀA¥ÀÆålgï ¥Áj¨sÁ¶PÀ ¥ÀzÀUÀ¼ÀÄ.

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marksis executed by means of an examination. The Question paper consists of objective type questions for 50 marks covering the entire syllabus. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	P01	PO2	PO3	PO4	PO5	PO6	P07	P08	PO9	PO10	PO11	PO12
CO1	3	3	0	3	0	0	0	0	0	0	0	1
CO2	3	2	0	3	0	0	0	0	0	0	0	0
CO3	3	3	0	2	0	0	0	0	0	0	0	0
CO4	2	3	0	3	0	0	0	0	0	0	0	1
CO5	3	3	0	3	0	0	0	0	0	0	0	1

lathematics-1	
eory)	
CIE Marks:50	
SEE Marks: 50	
SEE Duration: 3 Hrs	
e to	
	cory) CIE Marks:50 SEE Marks: 50 SEE Duration: 3 Hrs

familiarize the important and Differential calculus and Differential То basic concepts of ordinary/partial differential analysethe Equation, equations and Vector calculus and engineeringproblems.

UNIT-I	
Linear Algebra:	8 Hrs
Introduction, Rank of a matrix-echelon form. Solution of system of linear equations –	
consistency. Gauss-elimination method and problems. Eigen values and Eigen vectors	
of square matrix and Problems.	

Video Link:	1
https://www.math.ust.hk/~machas/matrix-algebra-for-engineers.pdf	
https://nptel.ac.in/content/storage2/courses/122104018/node18.html	
UNIT-II	
Differential calculus:	8 Hrs
Tangent and normal, sub tangent and subnormal both Cartesian and polar forms.	
Increasing and decreasing functions, Maxima and Minima for a function of one variable.	
Point of inflections and Problems	
Beta and Gamma functions:	
Beta functions, Properties of Beta function and Gamma function, Relation Between	
beta and Gamma function-simple problems.	
Video Link:	
https://www.youtube.com/watch?v=6RwOoPN2zqE	
https://www.youtube.com/watch?v=s6F5yjY6jWk&list=PLMLsjhQWWlUqBoTCQDtYllol-	
<u>o-9hxp11</u>	
http://tutorial.math.lamar.edu/Classes/DE/IntroPDE.aspx	
UNIT-III	
Analytical solid geometry :	8 Hrs
Introduction –Directional cosine and Directional ratio of a line, Equation of line in	
space- different forms, Angle between two line, shortest distance between two line,	
plane and equation of plane in different forms and problems.	
Video Link:	
https://www.toppr.com/guides/maths/three-dimensional-geometry/	
https://www.toppr.com/guides/maths/three-dimensional-geometry/distance-between-	
skew-lines/	
UNIT-IV	
Probability:	8 Hrs
Random variable, Discrete probability distribution, Mean and variance of Random	
Variable, Theoretical distribution-Binomial distribution, Mean and variance Binomial	
distribution -Problems. Poisson distribution as a limiting case of Binomial distribution, Mean and variance of Poisson distribution. Normal Distribution-Basic properties of	
Normal distribution –standard form of normal distribution and Problems.	
Video Link:	
https://nptel.ac.in/courses/111/105/111105041/	
https://www.mathsisfun.com/data/probability.html	
UNIT-V	
Partial differential equation: Formation of PDE's by elimination of arbitrary constants	8 Hrs
and functions.	
Solution of non-homogeneous PDE by direct integration. Homogeneous PDEs involving	
derivative with respect to one independent variable only. Video Link:	
http://tutorial.math.lamar.edu/Classes/DE/IntroPDE.aspx	
https://www.studyyaar.com/index.php/module-video/watch/233-cauchys-legendres-	
de-a-method-	
<u>of-variation-of-parameters</u>	

Cours	se Outcomes: After completing the course, the students will be able to
CO1	Apply the knowledge of Matrices to solve the system of linear equations and to
	understand the concepts of Eigen value and Eigen vectors for engineering problems.
CO2	Demonstrate various physical models, find Maxima and Minima for a function of one
	variable., Point of inflections and Problems .Understand Beta and Gamma function
CO3	Understand the 3-Dimentional geometry basic, Equation of line in space- different
	forms, Angle between two line and studying the shortest distance .
CO4	Concepts OF Probability related to engineering applications.
CO5	Construct a variety of partial differential equations and solution by exact methods.

Refe	erence Books
1.	B.S. Grewal, "Higher Engineering Mathematics" Khanna Publishers, 43 rd Edition, 2013.
2.	Ramana B. V., "Higher Engineering Mathematics", Tata Mc Graw-Hill, 2006.
3.	Erwin Kreyszig, "Advanced Engineering Mathematics", Wiley-India publishers,
	10thedition,2014.
4.	G. B. Gururajachar: Calculus and Linear Algebra, Academic Excellent Series Publication,
	2018-19

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO1	3	3	0	2	0	0	0	0	0	0	1	1
CO2	3	3	0	2	0	0	0	0	0	0	1	1
CO3	3	3	0	3	0	0	0	0	0	0	0	1

CO4	2	2	0	3	0	0	0	0	0	0	1	1
CO5	2	2	0	2	0	0	0	0	0	0	0	1