Numerical Methods Operations Research \& Statistics		
(Theory)		

UNIT-I	
Numerical Methods-1 Numerical solution of Ordinary Differential Equations of first order and first degree: Modified Euler's method, Taylor's series method, Runge-Kutta method of fourth order, Predictor and Corrector method: Milne's Method and Adams-Bashforth Method. Application: Solving Ordinary Differential Equations. Video Links: 1. http://nptel.ac.in/courses.php?disciplineID=111 2. http://www.class-central.com/subject/math(MOOCs) 3. http://academicearth.org/	8 Hrs
UNIT-II	
Numerical Methods-2: Numerical solution of Ordinary Differential Equations of second order: Runge-Kutta method of fourth order, Predictor and Corrector method: Milne's Method and Adams Bashforth Method. Calculus of Variations: Variation of function and Functional, variational problems. Euler's equation, Geodesics. Application: Hanging chain problem. Video Links: 1. http://nptel.ac.in/courses.php?disciplineID=111 2. http://www.class-central.com/subject/math(MOOCs) 3. http://academicearth.org/	8 Hrs
UNIT-III	
Operations Research-1	8 Hrs

Introduction to Linear Programming Problem (LPP): Prototype example, Assumptions of LPP, Formulation of LPP and Graphical method various examples. The simplex method, Big M method, Two phase method and dual simplex method.

Application: Graphical solution procedure.

Video Links:

1. http://nptel.ac.in/courses.php?disciplineID=111
2. http://www.class-central.com/subject/math(MOOCs)
3. http://academicearth.org/

UNIT-IV
Operations Research-2
8 Hrs
The transportation problem: Initial Basic Feasible Solution (IBFS) by North West Corner Rule method, Matrix Minima Method, Vogel's Approximation Method.

Game Theory: The formulation of two persons, zero sum games; saddle point, maxmin and minmax principle, Solving simple games- a prototype example, Games with mixed strategies.

Application: Transportation problem.

Video Links:

1. http://nptel.ac.in/courses.php?disciplineID=111
2. http://www.class-central.com/subject/math(MOOCs)
3. http://academicearth.org/

Course Outcomes: After completing the course, the students will be able to	
CO1	Solve first and second order ordinary differential equation arising in flow problems using single step numerical methods.
CO2	Determine the extremals of functional and solve the simple problems of the Calculus of variations.
CO3	Solve the mathematical formulation of linear programming problem.
CO4	Solve the applications of transport problems and theory of games.
CO5	Fit a suitable curve by the method of least squares and determine the lines of regression for a set of statistical data.

Reference Books	
1.	B.S. Grewal, "Higher Engineering Mathematics" Khanna Publishers, 43 ${ }^{\text {rd }}$ Edition, 2013.
2.	S. D. Sharma, "Operations Research", Kedar Nath and Ram NathPublishers, Seventh Revised Edition 2014.
3.	Erwin Kreyszig, "Advanced Engineering Mathematics", Wiley-India publishers, 10thedition, 2014.

4. Ramana B. V., "Higher Engineering Mathematics", Tata Mc Graw-Hill, 2006.

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marksis executed by means of an examination. The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the entire syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	0	3	0	0	0	0	0	0	0	1
CO2	3	2	0	3	0	0	0	0	0	0	0	0
CO3	3	3	0	2	0	0	0	0	0	0	0	0
CO4	2	3	0	3	0	0	0	0	0	0	0	1
CO5	3	3	0	3	0	0	0	0	0	0	0	1

Semester: IV Information Retrieval (Theory) Course Code:MVJ21CD42 Credits: L:T:P:S:3:1:0:0 Hours: 40L+26T Course Learning Objectives: The students will be able to 1 Learn classical techniques of Information Retrieval and Evaluation		
2	Learn how to query and process	
3	Set an idea about how the different IR algorithms works.	
4	Understand Web Crawler and its functions.	
5	Realize the applications of Information Retrieval.	

UNIT-I		
Basic Concepts - Retrial Process - Modelling - Classic Retrieval - Set Theoretic, Algebraic and	$\mathbf{8 H r s}$	
Probabilistic Models.		
Retrieval Techniques: Structured Retrieval Models - Retrieval Evaluation - Word Sense		
Disambiguation.		
Application:		
Using retrieval Techniques for searching information.		
Video Link:	UNIT-II	
https://www.youtube.com/playlist?list=PLMyP8LIIL3ht WV4EXjN-uD3EPEK3hlyu		
ILanguages - Key Word-based Querying - Pattern Matching - Structural Queries - Query	$\mathbf{8 H r s}$	
Operations - User Relevance Feedback - Local and Global Analysis.		
Document Pre-Processing - Clustering - Text Compression - Indexing and Searching -		
Inverted Files - Boolean Queries - Sequential Searching - Pattern Matching.		
Application:		
Analyzing query and document formatting for searching.		

Video Link: https://www.youtube.com/playlist?list=PLMyP8LIIL3ht WV4EXjN-uD3EPEK3hlyu	
UNIT-III	
Overview of Retrieval Models -Boolean Retrieval - The Vector Space Model - Probabilistic Models - Information Retrieval as Classification - BM25 Ranking Algorithm - Complex Queries and Combining Evidence - Web Search - Machine Learning and Information Retrieval. Application: Select and ranks relevant documents Video Link: https://www.slideshare.net/mounialalmas/introduction-to-information-retrievalmodels	8 Hrs
UNIT-IV	
Deciding what to search - Crawling the Web - Directory Crawling - Document Feeds conversion problem - Storing the Documents - Detecting Duplicates - Remove noise. Application: Develop application data Video Link: https://www.youtube.com/playlist?list=PLMyP8LIIL3ht WV4EXjN-uD3EPEK3hlyu	8 Hrs
UNIT-V	
Searching the Web - Challenges - Characterizing the Web - Search Engines - Browsing - Meta-searchers - Online IR systems - Online Public Access Catalogs. Digital Libraries: Introduction - Architectural Issues - Document Models - Representations and Access - Prototypes and Standards. Case Study: Google, Yahoo and Bing Search engines Application: Interpret overall working of a search engine. Video Link: https://www.youtube.com/playlist?list=PLMyP8LIIL3ht WV4EXjN-uD3EPEK3hlyu	8 Hrs

Course Outcomes: After completing the course, the students will be able to

CO1	Rank the document using classical ranking methods
CO2	Querying documents by delivering keywords
CO3	Implement ranking algorithms for rank the documents
CO4	Know how the crawler works

Reference Books

1. Ricardo Baeza-Yate, Berthieri Ribeiro-Neto, Modern Information Retrieval, Pearson Education Asia, 2012.
2. W.Bruce Croft, Donald Metzler and Trevor Strohman, Search Engines - Information Retrieval in Practice, Pearson Education, 2015
3. Grossman, David A. Frieder, Ophir, Information Retrieval Algorithms and Heuristics, $2^{\text {nd }}$ Edition, Springer
4. G.G. Chowdhury, Introduction to Modern Information Retrieval, Second Edition, Neal-Schuman Publishers, 2010.

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marksis executed by means of an examination. The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the entire syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping																
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12				
CO1	3															

$\operatorname{CO2}$	3									2		
$\operatorname{CO3}$	3	3								2		
$\operatorname{CO4}$	3	3								2		2
$\operatorname{co5}$	3	3								2		2

Semester: IV		
Computer Organization \& Architecture (Theory)		
Course Code:MVJ21CD43		CIE Marks:50
Credits: L:T:P:S:3:1:0:0		SEE Marks: 50
Hours: 40L+26T		SEE Duration: 3
Course Learning Objectives: The students will be able to		
1	distinguish between the various ISA style	
2	trace the execution sequence of an instruction through the processor	
3	compare different approaches used for implementing a functional unit	
4	understand the fundamentals of memory and I/O systems and their interaction with the processor	

UNIT-I	
Functional unit, Basic operational concepts, Bus structures, Software, Performance, Data Representation. Fixed Point Representation. Floating - Point Representation. Instruction codes. Computer Registers Computer instructions- Instruction cycle. Memory - Reference Instructions. Input - Output and Interrupt. STACK organization. Instruction formats. Addressing modes. Laboratory Sessions/ Experimental learning: Familiarization with assembly language programming Applications: Computer system. Video link / Additional online information : https://nptel.ac.in/courses/106/106/106106166/	8 Hrs
UNIT-II	
Peripheral Devices, Input-Output Interface, Asynchronous data transfer Modes of Transfer, Priority Interrupt Direct memory Access, Input -Output Processor (IOP) Serial communication; Introduction to peripheral component, Interconnect (PCI) bus.	8 Hrs

Introduction to standard serial communication protocols like RS232, USB, IEEE1394

Laboratory Sessions/ Experimental learning:
Interfacing - DAC, ADC, keyboard-display modules

Applications: Monitors, keyboards.
Video link / Additional online information:
https://drive.google.com/file/d/OB-ITW-kTxwdfSVExbzZIMUFFVFU/view
UNIT-III
Cache Coherence, Shared Memory Multiprocessors. Control memory, Address sequencing, micro program example, design of control unit Hard wired control. Micro programmed control, Virtual Memory.

Laboratory Sessions/ Experimental learning:Processor design
Applications: High end workstations.
Video link / Additional online information:
https://drive.google.com/file/d/OB-ITW-kTxwdfcV9ma2JxbUcORUk/view

UNIT-IV

Addition and subtraction, multiplication Algorithms, Division Algorithms, Floating - point
Arithmetic operations. Decimal Arithmetic unit Decimal Arithmetic operations.
Laboratory Sessions/ Experimental learning:
Implementation of booth algorithm
Applications: Radar,Sonar

Video link / Additional online information:
https://nptel.ac.in/courses/106/106/106106166/
UNIT-V
Parallel Processing, Pipelining, Arithmetic Pipeline, Instruction Pipeline, RISC Pipeline, Data hazards - Instruction hazards, Vector Processing, Array Processors. Cache coherence and MESI protocol - Clusters - Non-Uniform Memory Access - Vector Computation

Laboratory Sessions/ Experimental learning:
Introduction to embedded system.

Applications: DSP,Microprocessor

Video link / Additional online information:
https://drive.google.com/file/d/OB-ITW-kTxwdfNGIMQINSSVIQeEE/view

Course Outcomes: After completing the course, the students will be able to	
CO1	Demonstrate the fundamental organization of a computer system
CO2	Analyse various issues related to memory hierarchy.
CO3	Examine various, inter connection structures of multi processors.
CO4	Formulate and solve problems related to computer arithmetic, performance of systems
CO5	Demonstrate parallel computing and concepts of pipeline

Reference Books

3. M. Morris Mano, Computer System Architecture, 3rd edition, Prentice- Hall of IndiaPvt. Ltd., 1999.
4. CarlHamacher : "Computer Organization", Fifth Edition, Mc Graw Hill
5. William Stallings: "Computer Organisation and Architecture", Pearson Education

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marksis executed by means of an examination. The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the entire syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping																	
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12					
CO1	0	0	3	2	0	0	0	2	0	0	0	1					
CO2	0	3	3	2	0	0	0	2	0	0	0	2					
CO3	0	3	3	2	0	0	0	2	0	0	0	3					
CO4	0	3	3	2	0	0	0	2	0	0	0	2					

CO5	0	3	3	2	0	0	0	2	0	0	0	3

Semester: IV		
Python Programming and Lab (Theory and Practice)		
Course Code: MVJ21CD44		CIE M
Credits: L:T:P: 3:0:1		SEE M
Hours:40 L+26P		SEE D
Course Learning Objectives: The students will be able to		
1	Learn fundamental features of object-oriented language	
2	Design, write, debug, run Python Programs	
3	Develop console -based applications using Python	
4	Develop console \& windows applications using Python.	
5	Introduce event driven Graphical User Interface (GUI) programming using Python built in functions	

UNIT-I	
Syllabus Content: Why should you learn to write programs, Introduction to Python, Variables, expressions and statements, Conditional execution, Functions. Application: - In learning and implementing small project process Video Link: 1. https://www.py4e.com/ http://greenteapress.com/wp/think-python/	8 Hrs
UNIT-II	
Syllabus Content:Iteration, Strings, Files. Application: - Pattern recognition and Reading resultant column in supervised learning data set Video Link: 1. https://www.codecademy.com/learn/learn-python http://www.tutorialspoint.com/python/	8 Hrs
UNIT-III	
Syllabus Content:	8 Hrs

Lists, Dictionaries, Tuples, Regular Expressions.
Application:

- Handling query languages and Managing Large set of data with respect to database

Video Link:

1. https://www.programiz.com/python-programming/class
https://www.udemy.com/course/web-scraping-with-python-beautifulsoup/ UNIT-IV

Syllabus Content:
8 Hrs
Classes and objects, Classes and functions, Classes and methods.
Application:

- Designing games and puzzles

Video Link:

1. https://datatofish.com/json-string-to-csv-python/ https://automatetheboringstuff.com/

UNIT-V

Syllabus Content:
Networked programs, Using Web Services, Using databases and SQL.
Application:

- Music composition and movie development

Video Link:

1. http://do1.drchuck.com/pythonlearn/EN us/pythonlearn.pdf
2. https://www.datacamp.com/community/tutorials/reading-and-editing-pdfs-and-word-documents-from-python

LABORATORY EXPERIMENTS(10 Hours)

1.Python Program to Reverse a linked list
2. Python Program for Find largest prime factor of a number
3.Python Program for Efficient program to print all prime factors of a given number
4.Python Program for Product of unique prime factors of a number
5.Python Program for Find sum of odd factors of a number

6 Python Program for Coin Change

7 Python Program for Tower of Hanoi

8 Python Program to Check if binary representation is palindrome
9 Python Program for Basic Euclidean algorithms
10 Python Program for Maximum height when coins are arranged in a triangle

Course Outcomes: After completing the course, the students will be able to	
CO1	Understand Python syntax and semantics and be fluent in the use of Python flow control and functions.
CO2	Demonstrate proficiency in handling Strings and File Systems.
CO3	Implement Python Programs using core data structures like Lists, Dictionaries and useRegular Expressions.
CO4	Interpret the concepts of Object-Oriented Programming as used in Python.
CO5	Implement exemplary applications related to Network Programming, Web Servicesand Databases in Python.

Reference Books

5. Charles R. Severance, "Python for Everybody: Exploring Data Using Python 3", 1st

Edition, CreateSpace Independent Publishing Platform, 2016. (http://do1.drchuck.
com/pythonlearn/EN_us/pythonlearn.pdf)
6. Allen B. Downey, "Think Python: How to Think Like a Computer Scientist", 2ndEdition, Green Tea Press, 2015. (http://greenteapress.com/thinkpython2/thinkpython2.pdf)
3. Charles Dierbach, "Introduction to Computer Science Using Python", 1st Edition, Wiley India Pvt Ltd. ISBN-13: 978-8126556014

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50 . The marks for the assignments are 20 (2 assignments for 10 marks each).The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Laboratory- 50 Marks

The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement
additional innovative experiments in the lab and are awarded 10 marks. Total marks for the laboratory is 50.

Semester End Examination (SEE):

Total marks: 50+50=100
SEE for 50 marksare executed by means of an examination.
The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the entire syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	0	0	0	0	0	0	0	0
CO2	3	3	2	2	0	0	0	0	0	0	0	0
CO3	3	3	3	2	0	0	0	0	0	0	0	0
CO4	3	3	2	2	0	0	0	0	0	0	0	0
CO5	3	3	3	2	0	0	0	0	0	0	0	0

UNIT-I

Introduction to Algorithms: The role of algorithms in computing, Growth of functions, Asymptotic

8 Math needed for algorithm design and analysis.

Laboratory Sessions/ Experimental learning:
Implement insertion sort and test its efficiency

Applications: Develop a realistic model for the input to the program. Analyse the unknown quantities, assuming the modelled input. Calculate the total running time by multiplying the time by the frequency for each operation, then adding all the products.

Video link / Additional online information :
https://www.tutorialspoint.com/data structures algorithms/asymptotic analysis.htm

UNIT-II

Divide and Conquer: Solving recurrences - The Substitution method, Recurrence Tree method and

Master's method, Multiplying large integers, Binary Search, Sorting [Merge Sort and Quick Sort], Selection in linear time [Expected and Worst-case], Strassen's algorithm for Matrix Multiplication, The maximum sub-array problem.

Laboratory Sessions/ Experimental learning:
Implement maximum sub array algorithm and test their correctness and efficiency
Applications: Closest Pair of Points, Strassen's Multiplication, Karatsuba Algorithm, Cooley-Tukey Algorithm

Video link / Additional online information :
https://www.tutorialspoint.com/design and analysis_of algorithms/design and analysis_of algorit hms
divide_conquer_htm

UNIT-III

Greedy Algorithms: Characteristics of Greedy algorithms, The problem of making change, Greedy algorithms for Scheduling, Minimum Spanning Trees - Kruskal's Algorithm and Prim's Algorithm, Greedy Algorithms for finding the shortest paths in a Graph, The Knapsack problem Amortized Analysis:

The accounting method, The potential method.
Laboratory Sessions/ Experimental learning:
Implement Knapsack Algorithm using Greedy method.
Applications: Dijkstra's Algorithm, Google Map

Video link / Additional online information :
https://www.tutorialspoint.com/design and analysis of algorithms/design and analysis of algorit hms
greedy_method_htm

UNIT-IV	
Dynamic Programming: Calculating the binomial co-efficient, the problem of making change, The Knapsack problem, Chained matrix multiplication, Finding the shortest paths in a Graph, Reformulating Dynamic programming algorithms using recursion and memory functions. Laboratory Sessions/ Experimental learning: Implement single source shortest path algorithm. Applications: Logistic/Transportation Problems Video link / Additional online information : https://www.tutorialspoint.com/design and analysis of algorithms/design and analysis of algorit hms dynamic_programming_htm	8 Hr s
UNIT-V	
Backtracking: N -Queen's Problem -Graph colouring. Branch and Bound: Assignment Problem - Traveling Salesman Problem. Computability classes - P, NP, NP-complete and NP-hard. Laboratory Sessions/ Experimental learning: Implement graph colouring Problem Applications: Electrical Engineering, Robotics, Artificial Intelligence, Materials Engineering, Solving Puzzles Video link / Additional online information : https://www.tutorialspoint.com/design_and_analysis of algorithms/design_and_analysis of algorit hms p_np_class_htm	8 Hr s
LABORATORY EXPERIMENTS(10 Hrs)	
1. Implementation of Binary Search Trees 2. Implementation of merge and quick sort algorithms and test their correctness and efficiency 3. Implementation of Floyd-Warshall Algorithm and test their efficiency 4. Implementation of $0 / 1$ Knapsack problem using (a) Dynamic Programming method	

(b)Greedy method.
5. (a) Implementation of all-Pairs Shortest Paths problem
(b) Implementation of Travelling Sales Person problem

6 Implementation and analysis of running time of eight-queen problem
7 Implementation of insertion and topological sorting and test their efficiency.
8 Program to find a subset of a given set $S=\{S 1, S 2, \ldots \ldots, S n\}$ of n positive integers
9 Program to find all Hamiltonian Cycles in a connected undirected Graph
10 Mini Project /Case Presentation

Course Outcomes: After completing the course, the students will be able to	
CO1	Analyze the correctness of algorithms using induction and loop invariants.
CO2	Construct algorithms using design paradigms like divide and conquer, greedy and dynamic programming for a given problem.
CO3	Analyze how the performance of an algorithm is affected based on the choice of data structures the algorithm uses.
CO4	Construct graph-based algorithms to solve engineering problems.
CO5	Outline P and NP problems with the help of backtracking and branch and bound techniques

Reference Books:	
1.	Introduction to the Design and Analysis of Algorithms, Anany Levitin:, 2rd Edition, 2009.Pearson.
2.	Computer Algorithms/C++, Ellis Horowitz, Satraj Sahni and Rajasekaran, 2nd Edition, 2014, Universities Press
3.	Charles E. Leiserson, Thomas H. Cormen, Ronald L. Rivest, Clifford Stein - Introduction to Algorithms, Third edition, PHI, 2010.

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each).The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Laboratory- 50 Marks

The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for10 marks. The students are encouraged to implement additional innovative experiments in the lab and are awarded 10 marks. Total marks for the laboratory is 50.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marksare executed by means of an examination.
The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the entire syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	0	0	0	0	0	0	0	0
CO2	3	3	2	2	0	0	0	0	0	0	0	0
CO3	3	3	3	2	0	0	0	0	0	0	0	0
CO4	3	3	2	2	0	0	0	0	0	0	0	0
CO5	3	3	3	2	0	0	0	0	0	0	0	0

Semester: IV			
BALIKE KANNADA (Theory)			
Course Code:MVJ21IS46	CIE Marks:50		
Credits: L:T:P:S:1:0:0:0		SEE Marks: 50	
Hours: 40L+26T		SEE Duration: $\mathbf{3}$ Hrs	
Course Learning Objectives: The students will be able to			
This course will enable students to understand Kannada and communicate in Kannada language			
Vyavharika Kannada -Parichaya (Introduction to Vyavharika kannada)			
Kannada Aksharamaale haagu uchcharane(Kannada Alphabets and Pronounciation.			
Sambhashanegaagi Kannada Padagalu (Kannada Vocubulary for Communication).			

Kannada Grammer in Conversations(Sambhasaneyalli Kannada Vyakarana) Activities in Kannada

UNIT-I	
Vyavharika Kannada -Parichaya (Introduction to Vyavharika kannada)	12 Hrs
UNIT-II	
Kannada Aksharamaale haagu uchcharane(Kannada Alphabets and Pronounciation	12 Hrs
UNIT-III	
Sambhashanegaagi Kannada Padagalu (Kannada Vocubulary for Communication).	12 Hrs
UNIT-IV	
Kannada Grammer in Conversations(Sambhasaneyalli Kannada Vyakarana)	12 Hrs
UNIT-V	
Activities in Kannada	12 Hrs

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: $\mathbf{5 0 + 5 0 = 1 0 0}$

SEE for 50 marksis executed by means of an examination. The Question paper consists of objective type questions for 50 marks covering the entire syllabus. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping															
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	3	3	0	3	0	0	0	0	0	0	0	1			
CO2	3	2	0	3	0	0	0	0	0	0	0	0			
CO3	3	3	0	2	0	0	0	0	0	0	0	0			
CO4	2	3	0	3	0	0	0	0	0	0	0	1			
CO5	3	3	0	3	0	0	0	0	0	0	0	1			

	SAMSKRUTHIKA KANNADA		
Course Title		Semester	IV
Course Code	MVJ21IS46	CIE	50
Total No．of Contact Hours	$\mathbf{1 5}$	SEE	50
No．of Contact Hours／week	1 （L：T：P：：1：0：0）	Total	100
Credits	1	Exam．Duration	3Hrs

Course objective ：This course will enable students to understand Kannada and communicate in Kannada language

Samskruthika Kannada－Parichaya（Introduction to Adalitha kannada ）
Kannada Kavyagala parichaya（Kannada D Ra Bendre，Siddalingaiha）
Adalithdalli Kannada Padagalu（Kannada Kagunitha Balake，Patra Lekhana，Prabhandha）
Kannada Computer Gnyana（Kannada Shabdha Sangraha，Computer Paribashika padagalu）
Activities in Kannada．

CzsÁåAiÀÄ－1

PÀ£ÀßqÀ＂sÁ $\mu E ́-$, ÀAQë¥à̂̂ «ミÀgÀuÉ．

CzsÁåAiÀÄ－3

CzsÁåAiÀÄ－4

CzsÁåAiÀÄ－5

CzsÁåAiÀÄ－6

À̀PÁđgÀzÀ DzÉÃ $\pm A ̀ ~ ¥ A ̀ v A ̀ ̀ æ U \grave{1} 1 / 4 A ̀ A ̈ ~$

CzsÁåAiÀÄ－7

，ÀAQÃ¥À̂̂ ¥Àæ§AzsÀ gÀZÀfÉ，¥Àæ§AzsÀ ミÀÄvÀÄÂ＂sÁpÁAvÀgÀ
CzsÁåAiÀÄ－8
PÀ£ÀßqÀ $\pm A ̀ ふ Y ́, A ̀ A U A ̀ æ O A ̀ ~$
CzsÁåAiÀÄ－9

CzsÁåAiÀÄ－10

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50 . The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marksis executed by means of an examination. The Question paper consists of objective type questions for 50 marks covering the entire syllabus. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping															
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	3	3	0	3	0	0	0	0	0	0	0	1			
CO2	3	2	0	3	0	0	0	0	0	0	0	0			
CO3	3	3	0	2	0	0	0	0	0	0	0	0			
CO4	2	3	0	3	0	0	0	0	0	0	0	1			
CO5	3	3	0	3	0	0	0	0	0	0	0	1			

UNIT-I	
Linear Algebra: Introduction, Rank of a matrix-echelon form. Solution of system of linear equations - consistency. Gauss-elimination method and problems. Eigen values and Eigen vectors of square matrix and Problems.	$\mathbf{8 ~ H r s}$

Video Link: https://www.math.ust.hk/~machas/matrix-algebra-for-engineers.pdf https://nptel.ac.in/content/storage2/courses/122104018/node18.html	
UNIT-II	
Differential calculus: Tangent and normal, sub tangent and subnormal both Cartesian and polar forms. Increasing and decreasing functions, Maxima and Minima for a function of one variable. Point of inflections and Problems Beta and Gamma functions: Beta functions, Properties of Beta function and Gamma function, Relation Between beta and Gamma function-simple problems. Video Link: https://www.youtube.com/watch?v=6RwOoPN2zqE https://www.youtube.com/watch?v=s6F5yjY6jWk\&list=PLMLsjhQWWIUqBoTCQDtYIlol- o-9hxp11 http://tutorial.math.lamar.edu/Classes/DE/IntroPDE.aspx	8 Hrs
UNIT-III	
Analytical solid geometry : Introduction -Directional cosine and Directional ratio of a line, Equation of line in space- different forms, Angle between two line, shortest distance between two line, plane and equation of plane in different forms and problems. Video Link: https://www.toppr.com/guides/maths/three-dimensional-geometry/ https://www.toppr.com/guides/maths/three-dimensional-geometry/distance-between-skew-lines/	8 Hrs
UNIT-IV	
Probability: Random variable, Discrete probability distribution, Mean and variance of Random Variable, Theoretical distribution-Binomial distribution, Mean and variance Binomial distribution -Problems. Poisson distribution as a limiting case of Binomial distribution, Mean and variance of Poisson distribution. Normal Distribution-Basic properties of Normal distribution -standard form of normal distribution and Problems. Video Link: https://nptel.ac.in/courses/111/105/111105041/ https://www.mathsisfun.com/data/probability.html	8 Hrs
UNIT-V	
Partial differential equation: Formation of PDE's by elimination of arbitrary constants and functions. Solution of non-homogeneous PDE by direct integration. Homogeneous PDEs involving derivative with respect to one independent variable only. Video Link: http://tutorial.math.lamar.edu/Classes/DE/IntroPDE.aspx https://www.studyyaar.com/index.php/module-video/watch/233-cauchys-legendres-de-a-method- of- variation-of-parameters	8 Hrs

Course Outcomes: After completing the course, the students will be able to	
CO1	Apply the knowledge of Matrices to solve the system of linear equations and to understand the concepts of Eigen value and Eigen vectors for engineering problems.
CO2	Demonstrate various physical models, find Maxima and Minima for a function of one variable., Point of inflections and Problems .Understand Beta and Gamma function
CO3	Understand the 3-Dimentional geometry basic, Equation of line in space- different forms, Angle between two line and studying the shortest distance .
CO4	Concepts OF Probability related to engineering applications.
CO5	Construct a variety of partial differential equations and solution by exact methods.

Reference Books

1. \quad B.S. Grewal, "Higher Engineering Mathematics" Khanna Publishers, $43^{\text {rd }}$ Edition, 2013.
2. Ramana B. V., "Higher Engineering Mathematics", Tata Mc Graw-Hill, 2006.
3. Erwin Kreyszig, "Advanced Engineering Mathematics", Wiley-India publishers, 10thedition,2014.
4. G. B. Gururajachar: Calculus and Linear Algebra, Academic Excellent Series Publication, 2018-19

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: $\mathbf{5 0 + 5 0 = 1 0 0}$

SEE for 50 marksis executed by means of an examination. The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the entire syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	0	2	0	0	0	0	0	0	1	1
CO2	3	3	0	2	0	0	0	0	0	0	1	1
CO3	3	3	0	3	0	0	0	0	0	0	0	1

CO4	2	2	0	3	0	0	0	0	0	0	1	1
$\operatorname{CO5}$	2	2	0	2	0	0	0	0	0	0	0	1

