

MVJCE CURRICULUM

FOR

COMPUTER SCIENCE & ENGINEERING (Scheme 2019)

IV SEMESTER

Total No. of Contact Hours40SEE50No. of Contact Hours/week3 (L : T : P :: 3 : 0 : 0)Total100	Course Title	OPERATIONSRESEARCH,NUMERICAL ANDSTATISTICALMETHODS	Semester	04				
No. of Contact Hours 1 50 No. of Contact Hours/week 3 (L : T : P :: 3 : 0 : 0) Total 100 Credits 3 Exam. Duration 3 Hours Course objective is to: The purpose of this course is to make students well conversant with numerical methods to solv ordinary differential equations, complex analysis, sampling theory Operational research emerging i science and engineering. Module-1 L1,L2, L3 Hours 8 Numerical solution of Ordinary Differential Equations of first order and first degree: Picard's method. Torrector are Corrector method: Milne's Method. Module-2 L1,L2, L3 Hours 8 NUMERICAL METHODS-2: Numerical solution of Ordinary Differential Equations of second order : Picard's method, Runge–Kutta method of fourth order, Predictor and Corrector method: Milne's Method. Calculus of Variations: Variation of function and Functional, variational problems. Euler's equation Geodesics, hanging chain, problems. L1,L2, L3 Hours 8 Module-3 L1,L2, L3 Hours 8 OPERATIONS RESEARCH-1 Introduction to Linear Programming Problem (LPP): Prototype example, Assumptions of LPI	Course Code	MVJ19MCS41	CIE 50					
Image: Construct From Syncol 1 100 Credits 3 Exam. Duration 3 Hours Course objective is to: 3 100 3 Hours The purpose of this course is to make students well conversant with numerical methods to solv ordinary differential equations, complex analysis, sampling theory Operational research emerging i science and engineering. 11,L2, L3 Hours 8 Module-1 L1,L2, L3 Hours 8 Numerical solution of Ordinary Differential Equations of first order and first degree: Picard's method Taylor's series method, Modified Euler's method, Runge–Kutta method of fourth order, Predictor ar Corrector method: Milne's Method. Module-2 L1,L2, L3 Hours 8 NUMERICAL METHODS-2: Numerical solution of Ordinary Differential Equations of second order : Picard's method, Runge–Kutta method of fourth order, Predictor and Corrector method: Milne's Method. Calculus of Variations: Variation of function and Functional, variational problems. Euler's equation Geodesics, hanging chain, problems. L1,L2, L3 Hours 8 Module-3 L1,L2, L3 Hours 8 OPERATIONS RESEARCH-1 Introduction to Linear Programming Problem (LPP): Prototype example, Assumptions of LPI	Total No. of Contact Hours	40	SEE 50					
Credits 3 3 3 3 3 3 1 3 1 3 1 1 3 1 1 3 1 1 3 1 </td <td>No. of Contact Hours/week</td> <td>3 (L : T : P :: 3 : 0 : 0)</td> <td>Total</td> <td>100</td>	No. of Contact Hours/week	3 (L : T : P :: 3 : 0 : 0)	Total	100				
The purpose of this course is to make students well conversant with numerical methods to solv ordinary differential equations, complex analysis, sampling theory Operational research emerging i science and engineering.Module-1L1,L2, L3Hours 8Numerical solution of Ordinary Differential Equations of first order and first degree: Picard's method Taylor's series method, Modified Euler's method, Runge–Kutta method of fourth order, Predictor ar Corrector method: Milne's Method.L1,L2, L3Hours 8Module-2L1,L2, L3Hours 8NUMERICAL METHODS-2: Numerical solution of Ordinary Differential Equations of second order : Picard's method, Runge–Kutta method of fourth order, Predictor and Corrector method: Milne's Method.Calculus of Variations: Variation of function and Functional, variational problems. Euler's equation Geodesics, hanging chain, problems.L1,L2, L3Hours 8Module-3L1,L2, L3Hours 8OPERATIONS RESEARCH-1 Introduction to Linear Programming Problem (LPP): Prototype example, Assumptions of LPIPrototype example, Assumptions of LPI	Credits	3	Exam. Duration	3 Hours				
ordinary differential equations, complex analysis, sampling theory Operational research emerging is science and engineering. Module-1 L1,L2, L3 Hours 8 Numerical solution of Ordinary Differential Equations of first order and first degree: Picard's method Taylor's series method, Modified Euler's method, Runge–Kutta method of fourth order, Predictor ar Corrector method: Milne's Method. L1,L2, L3 Hours 8 Module-2 L1,L2, L3 Hours 8 NUMERICAL METHODS-2: Numerical solution of Ordinary Differential Equations of second order : Picard's method, Runge–Kutta method of fourth order, Predictor and Corrector method: Milne's Method. Calculus of Variations: Variation of function and Functional, variational problems. Euler's equation Geodesics, hanging chain, problems. Module-3 L1,L2, L3 Hours 8 OPERATIONS RESEARCH-1 Introduction to Linear Programming Problem (LPP): Prototype example, Assumptions of LPI Prototype example, Assumptions of LPI	Course objective is to:	•						
science and engineering. Module-1 L1,L2, L3 Hours 8 Numerical solution of Ordinary Differential Equations of first order and first degree: Picard's method Taylor's series method, Modified Euler's method, Runge–Kutta method of fourth order, Predictor and Corrector method: Milne's Method. Module-2 L1,L2, L3 Hours 8 NUMERICAL METHODS-2: Numerical solution of Ordinary Differential Equations of second order : Picard's method, Runge–Kutta method of fourth order, Predictor and Corrector method: Milne's Method. Calculus of Variations: Variation of function and Functional, variational problems. Euler's equation Geodesics, hanging chain, problems. Module-3 L1,L2, L3 Hours 8 OPERATIONS RESEARCH-1 Introduction to Linear Programming Problem (LPP): Prototype example, Assumptions of LPI	The purpose of this course is t	o make students well conversant w	ith numerical met	hods to solve				
Module-1L1,L2, L3Hours 8Numerical solution of Ordinary Differential Equations of first order and first degree: Picard's methoTaylor's series method, Modified Euler's method, Runge–Kutta method of fourth order, Predictor arCorrector method: Milne's Method.Module-2L1,L2, L3Hours 8NUMERICAL METHODS-2:Numerical solution of Ordinary Differential Equations of second order : Picard's method, Runge–Kuttamethod of fourth order, Predictor and Corrector method: Milne's Method.Calculus of Variations: Variation of function and Functional, variational problems. Euler's equationGeodesics, hanging chain, problems.Module-3L1,L2, L3Hours 8OPERATIONS RESEARCH-1Introduction to Linear Programming Problem (LPP): Prototype example, Assumptions of LPI	ordinary differential equations,	complex analysis, sampling theory O	perational researc	h emerging in				
Module-1 Numerical solution of Ordinary Differential Equations of first order and first degree: Picard's method Taylor's series method, Modified Euler's method, Runge–Kutta method of fourth order, Predictor ar Corrector method: Milne's Method. Module-2 L1,L2, L3 Hours 8 NUMERICAL METHODS-2: Numerical solution of Ordinary Differential Equations of second order : Picard's method, Runge–Kutta method of fourth order, Predictor and Corrector method: Milne's Method. Calculus of Variations: Variation of function and Functional, variational problems. Euler's equation Geodesics, hanging chain, problems. Module-3 L1,L2, L3 Hours 8 OPERATIONS RESEARCH-1 Introduction to Linear Programming Problem (LPP): Prototype example, Assumptions of LPI	science and engineering.							
Taylor's series method, Modified Euler's method, Runge–Kutta method of fourth order, Predictor ar Corrector method: Milne's Method. Module-2 L1,L2, L3 Hours 8 NUMERICAL METHODS-2: Numerical solution of Ordinary Differential Equations of second order : Picard's method, Runge–Kutta method of fourth order, Predictor and Corrector method: Milne's Method. Calculus of Variations: Variation of function and Functional, variational problems. Euler's equation Geodesics, hanging chain, problems. Module-3 L1,L2, L3 Hours 8 OPERATIONS RESEARCH-1 Introduction to Linear Programming Problem (LPP): Prototype example, Assumptions of LPI	Module-1		L1,L2, L3	Hours 8				
Corrector method: Milne's Method. Module-2 L1,L2, L3 Hours 8 NUMERICAL METHODS-2: Numerical solution of Ordinary Differential Equations of second order : Picard's method, Runge-Kutta method of fourth order, Predictor and Corrector method: Milne's Method. Calculus of Variations: Variation of function and Functional, variational problems. Euler's equation Geodesics, hanging chain, problems. Module-3 L1,L2, L3 Hours 8 OPERATIONS RESEARCH-1 Introduction to Linear Programming Problem (LPP): Prototype example, Assumptions of LPI	Numerical solution of Ordinary	Differential Equations of first order a	nd first degree: Pio	card's method,				
Module-2L1,L2, L3Hours 8NUMERICAL METHODS-2:Numerical solution of Ordinary Differential Equations of second order : Picard's method, Runge-Kutta method of fourth order, Predictor and Corrector method: Milne's Method.Calculus of Variations: Variation of function and Functional, variational problems. Euler's equation Geodesics, hanging chain, problems.Module-3L1,L2, L3OPERATIONS RESEARCH-1 Introduction to Linear Programming Problem (LPP): Prototype example, Assumptions of LPI	Taylor's series method, Modified	d Euler's method, Runge–Kutta meth	od of fourth order,	Predictor and				
NUMERICAL METHODS-2: Numerical solution of Ordinary Differential Equations of second order : Picard's method, Runge-Kutta method of fourth order, Predictor and Corrector method: Milne's Method. Calculus of Variations: Variation of function and Functional, variational problems. Euler's equation Geodesics, hanging chain, problems. Module-3 L1,L2, L3 OPERATIONS RESEARCH-1 Introduction to Linear Programming Problem (LPP): Prototype example, Assumptions of LPI	Corrector method: Milne's Meth	od.						
Numerical solution of Ordinary Differential Equations of second order : Picard's method, Runge–Kutta method of fourth order, Predictor and Corrector method: Milne's Method. Calculus of Variations: Variation of function and Functional, variational problems. Euler's equation Geodesics, hanging chain, problems. Module–3 L1,L2, L3 Hours 8 OPERATIONS RESEARCH–1 Introduction to Linear Programming Problem (LPP): Prototype example, Assumptions of LPI	Module-2		L1,L2, L3	Hours 8				
method of fourth order, Predictor and Corrector method: Milne's Method. Calculus of Variations: Variation of function and Functional, variational problems. Euler's equation Geodesics, hanging chain, problems. Module–3 L1,L2, L3 Hours 8 OPERATIONS RESEARCH–1 Introduction to Linear Programming Problem (LPP): Prototype example, Assumptions of LPI	NUMERICAL METHODS-2:		·					
Calculus of Variations: Variation of function and Functional, variational problems. Euler's equation Geodesics, hanging chain, problems.Module-3L1,L2, L3Hours 8OPERATIONS RESEARCH-1Introduction to Linear Programming Problem (LPP): Prototype example, Assumptions of LPI	Numerical solution of Ordinary Di	ifferential Equations of second order :	Picard's method, Ru	inge-Kutta				
Geodesics, hanging chain, problems. Module-3 L1,L2, L3 OPERATIONS RESEARCH-1 Introduction to Linear Programming Problem (LPP): Prototype example, Assumptions of LPI	method of fourth order, Predicto	or and Corrector method: Milne's Met	hod.					
Module-3 L1,L2, L3 Hours 8 OPERATIONS RESEARCH-1 Introduction to Linear Programming Problem (LPP): Prototype example, Assumptions of LPI	Calculus of Variations: Variation	on of function and Functional, variati	onal problems. Eul	ler's equation,				
OPERATIONS RESEARCH-1 Introduction to Linear Programming Problem (LPP): Prototype example, Assumptions of LPI	Geodesics, hanging chain, problem	ns.						
Introduction to Linear Programming Problem (LPP): Prototype example, Assumptions of LPI	Module-3		L1,L2, L3	Hours 8				
	OPERATIONS RESEARCH-1							
Formulation of LPP and Graphical method various examples. the simplex method, Big M method, Tw	Introduction to Linear Program	mming Problem (LPP): Prototype	example, Assump	tions of LPP,				
	Formulation of LPP and Graphic	al method various examples. the sim	plex method, Big M	method, Two				

phase	method and dual simplex method								
Modu	le-4	L1,L2 L3	Hours 8						
OPER	ATIONS RESEARCH-2								
The tr	ansportation problem: Initial Basic Feasible Solution (IBFS) by Nort	h West Corner	Rule method,						
Matrix	x Minima Method, Vogel's Approximation Method.								
Game	Theory: The formulation of two persons, zero sum games; saddle	point, maximi	n and minimax						
princi	ole, Solving simple games– a prototype example; Games with mixed	strategies; Gra	phical solution						
proce	dure								
Modu	le-5	L1,L2,L3	Hours 8						
STA	TISTICAL METHODS								
Fitting	g of the curves of by the method of least square, Correlation and Reg	ression , Regre	ssion						
coeffic	cients, line of regression problems.								
Curve	fitting by the method of least squares, Fitting of the curves of	the form = +	, = 2 + +,						
= .									
Cours	e Outcomes:								
	Solve first and second order ordinary differential equation ari	sing in flow p	roblems using						
CO1	single step and multistep numerical methods.								
	Determine the extremals of functionals and solve the simple	problems of t	he calculus of						
CO2	variations.								
CO3	Solve the mathematical formulation of linear programming proble	m.							
CO4	Solve the applications of transport problems and theory of games.								
Fit a suitable curve by the method of least squares and determine the lines of regression for a									
CO5	Fit a suitable curve by the method of least squares and determine the lines of regression for a set of statistical data.								

Text E	Text Books:											
1	B.S. Grewal, "Higher Engineering Mathematics" Khanna Publishers, 43rd Edition, 2013.											
2	–India publishers, 10th Erwin Kreyszig, "Advanced Engineering Mathematics", Wiley edition,2014.											

Refere	Reference Books:							
1	Graw-Hill, 2006.							
	Bamana B. V. "Higher Engineering Mathematics", Tata Mc. Ball N. P. & Manish Goyal, "A text book of Engineering Mathematics", Laxmi Publications, 8th							
2	Edition							
3	Jain R. K. & Iyengar S.R.K., Advanced Engineering Mathematics, Narosa Publishing House, 2002.							
	S. D. Sharma, "Operations Research", Kedar Nath and Ram Nath Publishers,							
4	Seventh Revised Edition 2014.							

CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation. Generally, there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of three tests

- Quizzes/mini tests (4 marks)
- Mini Project / Case Studies (8 Marks)
- Activities/Experimentations related to courses (8 Marks)

SEE Assessment:

Question paper for the SEE consists two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.

Part B also covers the entire syllabus consisting of five questions having choices and may

contain sub-divisions, each carrying 16 marks. Students have to answer five full questions.

One question must be set from each unit. The duration of examination is 3 hours.

	CO-PO/PSO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	-	3	-	-	-	-	-	-	-	1	1	-
CO2	3	2	-	3	-	-	-	-	-	-	-	-	-	1
CO3	3	3	-	2	-	-	-	-	-	-	-	-	2	-
CO4	2	3	-	3	-	-	-	-	-	-	-	1	-	-
CO5	3	3	-	3	-	-	-	-	-	-	-	1	2	-

Course Title	ANALYSIS AND DESIGN OF ALGORITHMS	Semester	04
Course Code	MVJ19CS42	CIE	50
Total No. of Contact Hours	50	SEE	50
No. of Contact Hours/week	4 (L : T : P :: 3 : 2: 0)	Total	100
Credits	4	Exam. Duration	3 Hours

Course objective is to: Identify the importance of different asymptotic notation. Determine the complexity of recursive and non-recursive algorithms. Compare the efficiency of various design techniques like greedy method, backtracking etc. Apply appropriate method to solve a given problem. • L1.L2 Hours 8 Module-1 Basic Concept of Algorithms: Introduction–What is an Algorithm, Algorithm Specification, Analysis **F**ramework, Performance Analysis: Space complexity, Time complexity. Asymptotic Notations: Big-Oh notation (0), Omega notation (), Theta notation (), and Little-oh notation (o), Mathematical analysis of Non-Recursive and recursive Algorithms with Examples . Important Problem Types. Fundamental Data Structures. Applications: developing commutational tools and pioinformatics software, Mathematics. Video link / Additional online information (related to module if any): http://www.nptelvideos.com/video.php?id=1442 https://nptel.ac.in/courses/106105085/ Module-2 L2. L4 Hours 8 Simple Design Techniques Brute force : Selection sort, Bubble sort, Sequential Search and Brute-Force String Matching , Exhaustive search Traveling Salesman problem, Knapsack problem , Assignment Problem. Divide and Conquer: General method, Binary search, Recurrence equation for divide and conquer, Finding the maximum and minimum, Merge sort, Quick sort, Strassen's matrix multiplication, Advantages and Disadvantages of divide and conquer.

Applic	ations: power distribution (electrical field), Online shopping and del	livory (roal tir	v 0)
	link / Additional online information (related to module if any):	livery (rear thi	
	s://nptel.ac.in/courses/106102064/		
	s://www.youtube.com/watch?v=MFfD57DTDQY		
Module		L3	Hours 8
	se and Conquer approach: Topological Sort, Decrease-by-a-C	-	
	us Problem.		ingoritimis.
	y Method : General method, Coin Change Problem, Knapsack Pr	oblem, Job se	equencing with
-	nes. Minimum cost spanning trees: Prim's Algorithm, Kruskal's Algo	-	
	Dijkstra's Algorithm. Huffman Trees and Codes.	0	
-	tory Sessions/ Experimental learning: Solving real time problems	s using Greedy	Technique.
	ations: Optimization Problems.	0	x
	ink :https://nptel.ac.in/courses/106/106/106106131/		
Module		L2	Hours 8
	ic Programming: General method with Examples, Multistage Gra		
			e diosure.
Warsha	all's Algorithm, All Pairs Shortest Paths: Floyd's Algorithm, Optima	-	
		al Binary Sear	ch Trees,
Knapsa	all's Algorithm, All Pairs Shortest Paths: Floyd's Algorithm, Optima	al Binary Sear em , Reliability	ch Trees, y design.
Knapsa Labora	all's Algorithm, All Pairs Shortest Paths: Floyd's Algorithm, Optima ck problem, Bellman–Ford Algorithm , Travelling Sales Person probl	al Binary Sear em , Reliability	ch Trees, y design.
Knapsa Labor a Progra	all's Algorithm, All Pairs Shortest Paths: Floyd's Algorithm, Optima ck problem, Bellman–Ford Algorithm , Travelling Sales Person probl atory Sessions/ Experimental learning: Solving real time	al Binary Sear em , Reliability	ch Trees, y design.
Knapsa Labor a Progra Applica	all's Algorithm, All Pairs Shortest Paths: Floyd's Algorithm, Optima ck problem, Bellman–Ford Algorithm , Travelling Sales Person probl atory Sessions/ Experimental learning: Solving real time mming.	al Binary Sear em , Reliability	ch Trees, y design.
Knapsa Labora Progra Applica	all's Algorithm, All Pairs Shortest Paths: Floyd's Algorithm, Optima ck problem, Bellman–Ford Algorithm , Travelling Sales Person probl atory Sessions/ Experimental learning: Solving real time mming. ations: Computer Networks. link: <u>https://nptel.ac.in/courses/106/106/106106131/</u>	al Binary Sear em , Reliability	ch Trees, y design.
Knapsa Labora Progra Applica Video I Module	all's Algorithm, All Pairs Shortest Paths: Floyd's Algorithm, Optima ck problem, Bellman–Ford Algorithm , Travelling Sales Person probl atory Sessions/ Experimental learning: Solving real time mming. ations: Computer Networks. link: <u>https://nptel.ac.in/courses/106/106/106106131/</u>	al Binary Sear em , Reliability problems us L1, L3	ch Trees, y design. sing Dynamic Hours 8
Knapsa Labora Progra Applica Video I Modula Backtra	all's Algorithm, All Pairs Shortest Paths: Floyd's Algorithm, Optima ck problem, Bellman–Ford Algorithm , Travelling Sales Person probl atory Sessions/ Experimental learning: Solving real time mming. ations: Computer Networks. link: <u>https://nptel.ac.in/courses/106/106/106106131/</u> e–5	al Binary Sear em , Reliability problems us L1, L3 problem, Gr	ch Trees, y design. sing Dynamic Hours 8 raph coloring,
Knapsa Labora Progra Applica Video I Module Backtra Hamilto	all's Algorithm, All Pairs Shortest Paths: Floyd's Algorithm, Optima ck problem, Bellman–Ford Algorithm , Travelling Sales Person probl atory Sessions/ Experimental learning: Solving real time .mming. ations: Computer Networks. link: <u>https://nptel.ac.in/courses/106/106/106106131/</u> e–5 acking: General method, N–Queens problem, Sum of subsets	al Binary Sear em , Reliability problems us L1, L3 problem, Gr	ch Trees, y design. sing Dynamic Hours 8 raph coloring,
Knapsa Labora Progra Applica Video I Module Backtra Hamilto 0/1 Kna	all's Algorithm, All Pairs Shortest Paths: Floyd's Algorithm, Optima ck problem, Bellman–Ford Algorithm , Travelling Sales Person probl atory Sessions/ Experimental learning: Solving real time mming. ations: Computer Networks. link: <u>https://nptel.ac.in/courses/106/106/106106131/</u> e–5 acking: General method, N–Queens problem, Sum of subsets onian cycles Programme and Bound: Assignment Problem, Trave	al Binary Sear em , Reliability problems us L1, L3 problem, Ga elling Sales Pe	ch Trees, y design. sing Dynamic Hours 8 raph coloring, erson problem,
Knapsa Labora Progra Applica Video I Module Backtra Hamilte 0/1 Kna LC Pro	all's Algorithm, All Pairs Shortest Paths: Floyd's Algorithm, Optima ck problem, Bellman–Ford Algorithm , Travelling Sales Person probl atory Sessions/ Experimental learning: Solving real time mming. ations: Computer Networks. link: <u>https://nptel.ac.in/courses/106/106/106106131/</u> e-5 acking: General method, N–Queens problem, Sum of subsets onian cycles Programme and Bound: Assignment Problem, Trave apsack problem.	al Binary Sear em , Reliability problems us L1, L3 problem, Ga elling Sales Pe	ch Trees, y design. sing Dynamic Hours 8 raph coloring, erson problem, plete and NP–
Knapsa Labora Progra Applica Video I Modula Backtra Hamilta 0/1 Kna LC Pro Hard pr	all's Algorithm, All Pairs Shortest Paths: Floyd's Algorithm, Optima ck problem, Bellman–Ford Algorithm , Travelling Sales Person probl atory Sessions/ Experimental learning: Solving real time mming. ations: Computer Networks. link: <u>https://nptel.ac.in/courses/106/106/106106131/</u> e-5 acking: General method, N–Queens problem, Sum of subsets onian cycles Programme and Bound: Assignment Problem, Trave apsack problem. gramme and Bound solution : FIFO Programme and Bound solu	al Binary Sear em , Reliability problems us <u>L1, L3</u> problem, Ga elling Sales Pe tion. NP–Comp omplete, and N	ch Trees, y design. sing Dynamic Hours 8 raph coloring, erson problem, plete and NP– P–Hard classes.
Knapsa Labora Progra Applica Video I Modula Backtra Hamilta 0/1 Kna LC Pro	all's Algorithm, All Pairs Shortest Paths: Floyd's Algorithm, Optima ck problem, Bellman–Ford Algorithm , Travelling Sales Person probl atory Sessions/ Experimental learning: Solving real time mming. ations: Computer Networks. link: <u>https://nptel.ac.in/courses/106/106/106106131/</u> e-5 acking: General method, N–Queens problem, Sum of subsets onian cycles Programme and Bound: Assignment Problem, Trave apsack problem. gramme and Bound solution : FIFO Programme and Bound solu roblems: Basic concepts, non–deterministic algorithms, P, NP, NP–Co atory Sessions/ Experimental learning: Solving real time p	al Binary Sear em , Reliability problems us <u>L1, L3</u> problem, Ga elling Sales Pe tion. NP–Comp omplete, and N	ch Trees, y design. sing Dynamic Hours 8 raph coloring, erson problem, plete and NP– P–Hard classes.
Knapsa Labora Progra Applica Video I Module Backtra Hamilte 0/1 Kna LC Pro Hard pri Labora Techni	all's Algorithm, All Pairs Shortest Paths: Floyd's Algorithm, Optima ck problem, Bellman–Ford Algorithm , Travelling Sales Person probl atory Sessions/ Experimental learning: Solving real time mming. ations: Computer Networks. link: <u>https://nptel.ac.in/courses/106/106/106106131/</u> e-5 acking: General method, N–Queens problem, Sum of subsets onian cycles Programme and Bound: Assignment Problem, Trave apsack problem. gramme and Bound solution : FIFO Programme and Bound solu roblems: Basic concepts, non–deterministic algorithms, P, NP, NP–Co atory Sessions/ Experimental learning: Solving real time p	al Binary Sear em , Reliability problems us <u>L1, L3</u> problem, Ga elling Sales Pe tion. NP–Comp omplete, and N	ch Trees, y design. sing Dynamic Hours 8 raph coloring, erson problem, plete and NP– P–Hard classes.
Knapsa Labora Progra Applica Video I Module Backtra Hamilte 0/1 Kna LC Pro Hard pr Labora Techni Applica	all's Algorithm, All Pairs Shortest Paths: Floyd's Algorithm, Optima ck problem, Bellman–Ford Algorithm , Travelling Sales Person probl atory Sessions/ Experimental learning: Solving real time mming. ations: Computer Networks. link: <u>https://nptel.ac.in/courses/106/106/106106131/</u> e-5 acking: General method, N–Queens problem, Sum of subsets onian cycles Programme and Bound: Assignment Problem, Trave apsack problem. gramme and Bound solution : FIFO Programme and Bound solur roblems: Basic concepts, non–deterministic algorithms, P, NP, NP–Co tory Sessions/ Experimental learning: Solving real time p ique.	al Binary Sear em , Reliability problems us <u>L1, L3</u> problem, Ga elling Sales Pe tion. NP–Comp omplete, and N	ch Trees, y design. sing Dynamic Hours 8 raph coloring, erson problem, plete and NP– P–Hard classes.
Knapsa Labora Progra Applica Video I Module Backtra Hamilta 0/1 Kna LC Pro Hard pri Labora Techni Applica Video I	all's Algorithm, All Pairs Shortest Paths: Floyd's Algorithm, Optima ck problem, Bellman–Ford Algorithm , Travelling Sales Person probl atory Sessions/ Experimental learning: Solving real time mming. ations: Computer Networks. link:https://nptel.ac.in/courses/106/106/106106131/ e-5 acking: General method, N–Queens problem, Sum of subsets onian cycles Programme and Bound: Assignment Problem, Trave apsack problem. gramme and Bound solution : FIFO Programme and Bound solu roblems: Basic concepts, non–deterministic algorithms, P, NP, NP–Co ntory Sessions/ Experimental learning: Solving real time p ique. ations: To solve puzzles such as crosswords, Sudoku etc.	al Binary Sear em , Reliability problems us <u>L1, L3</u> problem, Ga elling Sales Pe tion. NP–Comp omplete, and N	ch Trees, y design. sing Dynamic Hours 8 raph coloring, erson problem, plete and NP– P–Hard classes.
Knapsa Labora Progra Applica Video 1 Module Backtra Hamilta 0/1 Kna LC Pro Hard pri Labora Techni Applica Video 1	all's Algorithm, All Pairs Shortest Paths: Floyd's Algorithm, Optima ck problem, Bellman–Ford Algorithm , Travelling Sales Person probl atory Sessions/ Experimental learning: Solving real time mming. ations: Computer Networks. link:https://nptel.ac.in/courses/106/106/106106131/ e-5 acking: General method, N–Queens problem, Sum of subsets onian cycles Programme and Bound: Assignment Problem, Trave apsack problem. gramme and Bound solution : FIFO Programme and Bound solur roblems: Basic concepts, non–deterministic algorithms, P, NP, NP–Co tory Sessions/ Experimental learning: Solving real time p ique. ations: To solve puzzles such as crosswords, Sudoku etc. link:https://nptel.ac.in/courses/106/106/106106131/	al Binary Sear em , Reliability problems us <u>L1, L3</u> problem, Gr elling Sales Pe tion. NP–Comp omplete, and N roblems using	ch Trees, y design. sing Dynamic Hours 8 raph coloring, erson problem, plete and NP– P–Hard classes.
Knapsa Labora Progra Applica Video I Module Backtra Hamilta 0/1 Kna LC Pro Hard pri Labora Techni Applica Video I Course	all's Algorithm, All Pairs Shortest Paths: Floyd's Algorithm, Optima ck problem, Bellman–Ford Algorithm , Travelling Sales Person probl atory Sessions/ Experimental learning: Solving real time mming. ations: Computer Networks. link: <u>https://nptel.ac.in/courses/106/106/106106131/</u> e-5 acking: General method, N–Queens problem, Sum of subsets onian cycles Programme and Bound: Assignment Problem, Trave apsack problem. gramme and Bound solution : FIFO Programme and Bound solu roblems: Basic concepts, non–deterministic algorithms, P, NP, NP–Co tory Sessions/ Experimental learning: Solving real time p ique. ations: To solve puzzles such as crosswords, Sudoku etc. link: <u>https://nptel.ac.in/courses/106/106/106106131/</u> COutcomes:	al Binary Sear em , Reliability problems us L1, L3 problem, Ga elling Sales Pe tion. NP–Comp omplete, and N roblems using	ch Trees, y design. sing Dynamic Hours 8 raph coloring, erson problem, plete and NP– P–Hard classes. g Backtracking

CO4	Ability to design efficient algorithms using various design techniques.
CO5	Ability to apply the knowledge of complexity classes P, NP, and NP Complete and prove certain problems are NP-Complete.

Text B	Text Books:								
	Introduction to the Design and Analysis of Algorithms, Anany Levitin:, 2rd Edition, 2009.								
1	Pearson.								
	Introduction to Algorithms, Thomas H. Cormen, Charles E. Leiserson, Ronal L. Rivest, Clifford								
2	Stein, 3rd Edition, PHI.								

Refere	Reference Books:							
1	Design and Analysis of Algorithms, S. Sridhar, Oxford (Higher Education).							
2	http://jeffe.cs.illinois.edu/teaching/algorithms/							
3	Computer Algorithms/C++, Ellis Horowitz, Satraj Sahni and Rajasekaran, 2nd Edition, 2014, Universities Press.							

CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation. Generally, there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of three tests

- Quizzes/mini tests (4 marks)
- Mini Project / Case Studies (8 Marks)
- Activities/Experimentations related to courses (8 Marks)

SEE Assessment:

Question paper for the SEE consists two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.

Part B also covers the entire syllabus consisting of five questions having choices and may

contain sub-divisions, each carrying 16 marks. Students have to answer five full questions.

One question must be set from each unit. The duration of examination is 3 hours.

	CO-PO/PSO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3				1							2	2	-
CO2	2	3			2								2	-
CO3	3	3	2	2								2	2	2
CO4	3	3	3						1			2	3	2
CO5	2	2	2	1	3							3	3	3

Course Title	SOFTWARE ENGINEERING	Semester	04
Course Code	MVJ19CS43	CIE	50
Total No. of Contact Hours	40	SEE	50
No. of Contact Hours/week	3 (L : T : P :: 3 : 0 : 0)	Total	100
Credits	3	Exam. Duration	3 Hours

Course objective is to: The students will be able to

- Understand principles, concepts, methods, and techniques of the software engineering approach to producing quality software (particularly for large, complex systems).
- Impart skills in the design and implementation of efficient software systems across disciplines.
- Familiarize engineering practices and standards used in developing software products and components.
- Gather knowledge on various software testing, maintenance methods.

Module-1	L1,L2, L3	Hours 8
FUNDAMENTALS OF SOFTWARE ENGINEERING AND REQUIREMENT	FS ENGINEERI	NG: Software

Engineering Fundamentals; Software processes: Software life-cycle models; Software requirements and specifications: Requirements elicitation; Requirements analysis modeling techniques; Functional and non-functional requirements; User requirements, System requirements, requirement validation and software requirement specification document. Prototyping – Basic concepts of formal specification techniques.

Laboratory Sessions/ Experimental learning:

To write the SRS for the given real time application using report writing tools.

Applications: In Software development process.

Video link / Additional online information: https://nptel.ac.in/courses/106105182/

Module-2	L1,L2, L3	Hours 8						
SOFTWARE DESIGN: Fundamental design concepts and principles; Design characteristics; System								
Models – Context, Behavioral, Data and, Object models, Architectural	design- System	m structuring,						
Control models; Structured design; Object-oriented analysis and design; U	Jser interface	design; Design						
for reuse; Design patterns;								
Laboratory Cossions / Europin antal lograting								

Laboratory Sessions/ Experimental learning:

Draw a class diagram, object diagram, Use case diagram, Sequence diagram and activity diagram for the given real time application using rational rose tool.

Applications: In Software development process. Video link / Additional online information: https://www.coursera.org/lecture/client-needs-and-software-reguirements/3-2-4-use-cases-bZNCr L1,L2, L3 Hours 8 Module-3 **SOFTWARE VALIDATION AND MAINTENANCE :** Software validation: Validation planning; Testing fundamentals, including test plan creation and test case generation; Black-box and white-box testing techniques; Unit, integration, validation, and system testing; Object-oriented testing; Inspections. **Software evolution:** Software maintenance; Characteristics of maintainable software; Reengineering; Legacy systems; Software reuse. Laboratory Sessions/ Experimental learning: Using Selenium IDE write a test suite containing minimum 4 test cases. Applications: In Software development process. Video link / Additional online information: <u>https://www.youtube.com/watch?v=T3q6QcCQZQq</u> Module-4 L1,L2, L3 **Hours 8 COMPONENT BASED SOFTWARE ENGINEERING :** Engineering of Component-Based Systems; The CBSE Process; Domain Engineering; Component–Based Development; Classifying and Retrieving **Components; Economics of CBSE** Laboratory Sessions/ Experimental learning: Create a project using MS projects for any real time scenario. Applications: In Software development process. Video link / Additional online information: https://youtu.be/tlZ1dq4pxCE Module-5 L1.L2.L3 **Hours 8** SOFTWARE QUALITY PROCESS IMPROVEMENT : Overview of Quality management and Process Improvement; Overview of SEI – CMM, ISO 9000, CMMI, PCMM, TQM and Six Sigma; overview of CASE tools. Software tools and environments: Programming environments; Project management tools; Requirements analysis and design modelling tools; testing tools; Configuration management tools; Laboratory Sessions/ Experimental learning: Estimation of test coverage metrics using manual test metrics. Applications: In Software development process. Video link / Additional online information: https://nptel.ac.in/courses/110105039/ **Course Outcomes:** Comprehend software development life cycle and Prepare SRS document for a project CO1 Apply software design and development techniques CO2 Identify verification and validation methods in a software engineering project CO3

CO4	Apply on Component based software development process.
CO5	Involve in continuous learning to solve issues of process and software product using the advanced CASE tools and techniques.

Text B	ext Books:								
1	Ian Sommerville, "Software Engineering", 9th Edition, Addison- Wesley, 2011								
2	R. S. Pressman, Software Engineering, a practitioner's approach, McGraw Hill,7th Edition, 2010								
Refere	nce Books:								
1	Rajib Mall, "Fundamentals of Software Engineering", PHI Publication, 3rd edition, 2009								
2	Pankaj Jalote: An Integrated Approach to Software Engineering, Wiley India.								

CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation. Generally, there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of three tests

- Quizzes/mini tests (4 marks)
- Mini Project / Case Studies (8 Marks)
- Activities/Experimentations related to courses (8 Marks)

SEE Assessment:

- Question paper for the SEE consists two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.
- ii. Part B also covers the entire syllabus consisting of five questions having choices and may contain sub-divisions, each carrying 16 marks. Students have to answer five full questions.
- iii. One question must be set from each unit. The duration of examination is 3 hours.

	CO-PO/PSO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	2	2	2	-	-	1	2	2	2	-	2	-
CO2	2	2	2	2	2	1	-	1	2	2	2	1	2	2
CO3	2	2	2	2	2	1	-	1	2	2	2	_	3	-

CO4	1	2	2	2	2	1	-	1	2	2	2	1	2	2
CO5	1	2	2	1	2	1	2	1	2	2	2	2	1	-

Course Title	OPERATING SYSTEMS	Semester	04
Course Code	MVJ19CS44	CIE	50
Total No. of Contact Hours	40	SEE	50
No. of Contact Hours/week	3 (L : T : P :: 3 : 0 : 0)	Total	100

Credits	3	Exam. Duration	3 Hours
Course objective is to: The stud	ents will be able to		
• Introduce concepts and term	iinology used in OS.		
• Explain threading and multit	hreaded systems.		
Illustrate process synchroniz	ation and concept of Deadlock.		
Introduce Memory and Virtua	al memory management, File system a	and storage techniq	ues.
Module-1		L2	Hours 8
Introduction: What operating	g systems do; Computer System o	organization; Comp	outer System
architecture; Operating System of	operations; Distributed system; Spec	ial–purpose systen	ns; Computing
environments. Operating System	n Services; User – Operating System	interface; System of	calls; Types of
system calls; System programs;	; Operating system design and imp	lementation; Oper	ating System
structure; Virtual machines; Syste	em boot.		
Process Management: Process	concept; Process scheduling; Operat	tions on processes;	Inter process
communication.			
Module-2		L2	Hours 8
Multi-threaded Programming:	Overview; Multithreading models; Th	read Libraries; Thre	eading issues.
Process Scheduling: Basic conce scheduling; Thread scheduling.	pts; Scheduling Criteria; Scheduling	Algorithms; Multip	ole-processor
Process Synchronization: Syn	chronization: The critical section	problem; Peterso	n's solution;
Synchronization hardware; Semaj	phores; Classical problems of synchro	nization; Monitors.	
Module-3		L3	Hours 8
Deadlocks : Deadlocks; System	model; Deadlock characterization; M	Methods for handlin	ng deadlocks;
D II I			
Deadlock prevention; Deadlock a	voidance; Deadlock detection and red	covery from deadlo	ck.
-	voidance; Deadlock detection and rea management strategies: Background	-	
-	management strategies: Background	-	
Memory Management: Memory	management strategies: Background	-	
Memory Management: Memory allocation; Paging; Structure of pa Module-4	management strategies: Background	l; Swapping; Contig	uous memory Hours 8
Memory Management: Memory allocation; Paging; Structure of pa Module-4	management strategies: Background	l; Swapping; Contig	uous memory Hours 8
Memory Management: Memory allocation; Paging; Structure of pa Module-4 Virtual Memory Management: Allocation of frames; Thrashing.	management strategies: Background	l; Swapping; Contig L3 y–on–write; Page	uous memory Hours 8 replacement;
Memory Management: Memory allocation; Paging; Structure of pa Module-4 Virtual Memory Management: Allocation of frames; Thrashing.	management strategies: Background age table; Segmentation Background; Demand paging; Copy f File System : File system: File conce	l; Swapping; Contig L3 y–on–write; Page	uous memory Hours 8 replacement;
Memory Management: Memory allocation; Paging; Structure of pa Module–4 Virtual Memory Management: Allocation of frames; Thrashing. File System, Implementation of structure; File system mounting;	management strategies: Background age table; Segmentation Background; Demand paging; Copy f File System : File system: File conce	l; Swapping; Contig L3 y–on–write; Page ept; Access methods	uous memory Hours 8 replacement; s; Directory
Memory Management: Memory allocation; Paging; Structure of pa Module–4 Virtual Memory Management: Allocation of frames; Thrashing. File System, Implementation of structure; File system mounting;	management strategies: Background age table; Segmentation Background; Demand paging; Copy f File System : File system: File conce File sharing; File system structure; File syste	l; Swapping; Contig L3 y–on–write; Page ept; Access methods	uous memory Hours 8 replacement; s; Directory

Mass Storage Structure-Disk Structure - Disk Attachment-Disk Scheduling-Disk Management- Swap-Space Management.

Protection: Domain of protection, Access matrix, Implementation of access matrix, Access control,

Revocation of access rights, Capability– Based systems.

Case Studies: Windows, Unix, Linux, Android.

List of Practical Experiments/Hands-on :

Hours 10

L2

Creating processes in Unix with commands like Fork and Exec; Pipes and process communication; Performance study of various CPU scheduling algorithms; Performance study of various Disk scheduling algorithms. Analysis various memory management techniques and page replacement policies.

Course	Course Outcomes:								
CO1	Illustrate the fundamental concepts of operating systems								
CO2	Compare and illustrate various process scheduling algorithms.								
CO3	Ability to recognize and resolve Deadlock problems ,Memory Management techniques.								
CO4	Apply appropriate memory and file management schemes.								
	Appreciate the need of access control and protection in Operating System and illustrate various								
CO5	disk scheduling algorithms.								

Text Books: 1 Abraham Silberschatz, Peter Baer Galvin, Greg Gagne, Operating System Concepts 7th edition,Wiley–India, 2006 2 D.M Dhamdhere, Operating Systems: A Concept Based Approach 3rd Ed, McGraw– Hill, 2013.

Reference Books:									
1	Tanenbaum, A., "Modern Operating Systems", Prentice – Hall of India. 2004								
2	P.C.P. Bhatt, An Introduction to Operating Systems: Concepts and Practice 4th Edition,								

CIE Assessment:

CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation. Generally, there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of three tests

- Quizzes/mini tests (4 marks)
- Mini Project / Case Studies (8 Marks)
- Activities/Experimentations related to courses (8 Marks)

SEE Assessment:

i. Question paper for the SEE consists two parts i.e. Part A and Part B. Part A is

compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.

- Part B also covers the entire syllabus consisting of five questions having choices and may contain sub-divisions, each carrying 16 marks. Students have to answer five full questions.
- iii. One question must be set from each unit. The duration of examination is 3 hours.

	CO-PO/PSO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C01	2	2	2	-	-	-	-	-	-	-	-	-	2	-
CO2	2	2	3	-	-	-	-	-	-	-	-	-	2	-
CO3	3	2	3	-	-	-	-	-	-	-	-	-	3	-
CO4	3	2	3	-	-	-	-	-	-	-	-	-	2	2
CO5	3	2	3	-	-	-	-	-	-	-	-	-	2	-

High-3, Medium-2, Low-1

Course Title	MICRO CONTROLLER AND EMBEDDED SYSTEMS	Semester	04
Course Code	MVJ19CS45	CIE	50
Total No. of Contact Hours	40	SEE	50
No. of Contact Hours/week	3(L : T : P :: 3 : 0 : 0)	Total	100
Credits	3	Exam. Duration	3 Hours

Course objective is to: The students will be able to

• Explain the fundamentals of ARM based system, basic hardware components, selection methods and attributes of an ARM Controller.

• Due many ADM controller with a serie of instance in the		
 Program ARM controller using the various instructions. 	Nr.	
• Explain the fundamentals of Exception, Interrupt Handling and M	emory Manage	nent Unit of
ARM Controller.		
 Identify the Embedded System Design applications. 		
• Explain the real time operating system for the embedded system de	-	
Module-1	L1,L2, L3	Hours 8
Arm Embedded Systems		
Prerequisites: ARM DESIGN PHILOSOPHY, ARM DATAFLOW MODEL		
Microprocessors versus Microcontrollers, ARM Embedded Systems:	The RISC desig	n philosophy
The ARM Design Philosophy, Embedded System Hardware, Embedded Sys	stem Software	
ARM Processor Fundamentals: Registers, Current Program Status Re	egister, Pipelin	e, Exceptions
Interrupts, and the Vector Table , Core Extensions		
Activity:1.Comparision of Microprocessor and Microcontroller hardware M	Iodel	
2.Comparing the Microprocessor and Microcontroller Software Mc	del	
Module-2	L1,L2, L3	Hours 8
ARM Instruction Set and Programming		
Prerequisites: ARM INSTRUCTION SET, ARM ASSEMBLY PROGRAMMIN	G	
Introduction to the ARM Instruction Set : Data Processing Instructio	ns, Programm	e Instruction
Software Interrupt Instructions, Program Status Register Instruction	s, Coprocesso	Instruction
Loading Constants		
ARM programming using Assembly language: Writing Assembly code, H	Profiling and cy	cle
counting, instruction scheduling		
Activity: 1.Writing ARM Assembly program for Embedded System Applica	tions	
Module-3	L1,L2, L3	Hours 8
Interrupt and Memory Management Unit:		
Prerequisites :Interrupt, Exception, Memory Management unit		
Exception, Interrupt Handling : Exception handling, Interrupts, Interrup	t handling Schei	nes
Memory Management Unit : The Memory Hierarchy and Cache Memor	y, Cache Archit	ecture, Cach
	of ARM MMU	
Policy, Moving from MPU to an MMU, How Virtual Memory Works, Details		
Policy, Moving from MPU to an MMU, How Virtual Memory Works, Details Activity:		
	f ARM Processo	r.
Activity:	f ARM Processo	r.
Activity: 1) Use of External interrupt0 to turn ON/OFF led connected to Pin P1.25 o	f ARM Processo	r.
Activity: 1) Use of External interrupt0 to turn ON/OFF led connected to Pin P1.25 o 2) Use of Software Interrupt SWI instruction in programming.	f ARM Processo L1,L2, L3	r. Hours 8
 Activity: 1) Use of External interrupt0 to turn ON/OFF led connected to Pin P1.25 o 2) Use of Software Interrupt SWI instruction in programming. 3) Calculating physical memory address from logical address. 		

systems, Classification of Embedded systems, Major applications areas of embedded systems, purpose of embedded systems

Core of an Embedded System including all types of processor/controller, Memory, Sensors, Actuators, LED, 7 segment LED display, stepper motor, Keyboard, Push button switch, Communication Interface (on board and external types), Embedded firmware, Other system components.

Activity:Case Study – Digital Clock, Battery operated Smartcard Reader

Module-5	L1,L2, L3	Hours 8
Prerequisites: Real time operating system		

Real Time Operating System (RTOS) based Embedded System Design:

Operating System basics, Types of operating systems, Task, process and threads (Only POSIX Threads with an example program), Thread pre–emption, Multiprocessing and Multitasking, Task Communication (without any program), Task synchronization issues Racing and Deadlock, Concept of Binary and counting semaphores (Mutex example without any program), How to choose an RTOS

Activity:

Case Study: Automated Meter Reading System (AMR) and Digital Camera, Real time concepts

Course	Course outcomes:				
CO1	Describe the architectural features and instructions of ARM microcontroller				
CO2	Develop Assembly Programs in ARM for Embedded applications.				
CO3	Describe the fundamentals of Exception, Interrupt Handling and Memory Management Unit of ARM Controller				
CO4	Interface external devices and I/O with ARM microcontroller.				
CO5	Demonstrate the need of real time operating system for embedded system applications				

Text B	ooks:
1	Andrew N Sloss, Dominic Symes and Chris Wright, ARM system developer's guide, Elsevier, Morgan Kaufman publishers, 2008.
2	Shibu K V, "Introduction to Embedded Systems", Tata McGraw Hill Education, Private Limited, 2nd Edition.

Refere	Reference Books:				
	Raghunandan.G.H, Microcontroller (ARM) and Embedded System, Cengage learning				
1	Publication, 2019				
2	The Insider's Guide to the ARM7 Based Microcontrollers, Hitex Ltd., 1st edition, 2005.				

3

Raj Kamal, Embedded System, Tata McGraw-Hill Publishers, 2nd Edition, 2008.

CIE Assessment:

CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation. Generally, there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of three tests

- Quizzes/mini tests (4 marks)
- Mini Project / Case Studies (8 Marks)
- Activities/Experimentations related to courses (8 Marks)

SEE Assessment:

- Question paper for the SEE consists two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.
- ii. Part B also covers the entire syllabus consisting of five questions having choices and may contain sub-divisions, each carrying 16 marks. Students have to answer five full questions.
- iii. One question must be set from each unit. The duration of examination is 3 hours.

-															
							CO-P	0/PS0	Марріі	ng					
	CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
	CO1	3	1	2	1	-	-	-	-	-	-	-	-	2	-
	CO2	3	2	1	3	3	2	-	-	2	-	1	-	1	1
	CO3	3	2	1	3	-	2	-	-	2	-	-	-	2	-
	CO4	3	3	2	3	3	2	-	-	2	2	2	-	1	2
	CO5	3	2	3	3	3	2	-	-	2	2	2	2	1	1

Course Title	DATA COMMUNICATION	Semester	04
Course Code	MVJ19CS46	CIE	50
Total No. of Contact Hours	40	SEE	50
No. of Contact Hours/week	3 (L : T : P :: 3 : 0 : 0)	Total	100
Credits	3	Exam. Duration	3 Hours

Course objective is to:

- Define the protocol layering and physical level communication.
- To demonstrate the performance of a network.
- To be familiar the various components required to build different networks.
- To learn the functions of transport layer protocols to provide reliable communication.
- To familiarize the protocols of the Application layer.

Module-1	L1,L2, L3	Hours 8
INTRODUCTION AND PHYSICAL LAYER: Introduction: Networks Net	twork Types	Protocols and
Standards TCP/IP Protocol suite OSI Model, Data Encoding: Line Enco	oding–Types of	Line Coding-
Analog-to-Digital Conversion- Pulse code modulation (PCM)-Delta mo	dulation (DM)	-Transmission

Modes.
Laboratory Sessions/ Experimental learning: Design the simulation system for performing analog to
digital conversion.
Applications: Mobile Phone, Laptop and all electronic devices
Video link / Additional online information (related to module if
any): <u>https://www.digimat.in/nptel/courses/video/106105183/L01.html</u>
Module-2 L1,L2 Hours 8 DATA-LINK LAYER : Introduction Link-Layer Addressing DLC Services Error Detection and
Correction: Introduction, Block coding, Cyclic codes, Checksum. Error Correction and Detection
Protocols: Protocols for Noiseless Channels- Simplest protocol, Stop-and-wait protocol; Protocols for
Noisy Channels- Stop-and -wait automatic repeat request, Go back N automatic repeat request,
Selective repeat automatic repeat request.
Laboratory Sessions/ Experimental learning: Develop the system for error correction code (like
CRC) and verify the reliability of data at both sides.
Applications: Telecommunication
Video link / Additional online information (related to module if any):
https://www.youtube.com/watch?v=pVI1L1jrbFE
Module-3 L1,L2, L3 Hours 8
MEDIA ACCESS CONTROL: Media Access control: Random Access, Controlled Access and
Channelization, Wired LANs Ethernet: Ethernet Protocol, Standard Ethernet, Fast Ethernet, Gigabit
Ethernet and 10 Gigabit Ethernet, Wireless LANs: Introduction, IEEE 802.11 Project and Bluetooth.
Laboratory Sessions/ Experimental learning: Create the virtual environment for WLAN and make
the data communication between stations.
Applications: Making communication between devices
Video link / Additional online information (related to module if any):
https://www.youtube.com/watch?v=5u52wbqBgEY_
Module-4 L1,L2, L3 Hours 8
NETWORK LAYER: Network Layer Services Packet switching Performance IPV4 Addresses –
Forwarding of IP Packets, IP Addressing Scheme- Subnet Addressing-Subnet Masks-IPV4 Addressing-
IPV6 Addressing- Address Resolution Protocol (ARP)-Reverse Address Resolution Protocol (RARP)
Laboratory Sessions/ Experimental learning: Write a code finding the physical address and logical
address of the system using ARP /RARP protocols.
Applications: Resolve addressing problem in systems
Video link / Additional online information (related to module if any):
https://www.youtube.com/watch?v=rW1jPlYgp_0

Modul	Module-5 L1,L2, L3 Hours 8						
TRANS	TRANSPORT LAYER : Introduction Services of Transport Layer, Connection Establishment,						
	Connection Release, Transport Layer Protocols– TCP protocol, UDP protocol; Congestion: TCP Congestion control Congestion avoidance (DEC bit, RED)						
-	atory Sessions/ Experimental learning: Create the system for	avoiding cong	estion in				
		avoluing cong					
unrelia	ble communication.						
Applic	ations: Reliable communication among devices in network like LAN	,WAN etc.					
Video	link / Additional online information (related	to module	e if any):				
<u>https:</u> /	//www.youtube.com/watch?v=z_ICsUGwr3U						
Course	outcomes:						
CO1	Identify the components required to build different types of netwo	orks.					
CO2	Choose the required functionality at each layer for given application	on					
CO3	Identify solutions for each functionality at each layer						
CO4	Trace the flow of information from one node to another node in th	e network.					
CO5	Analyse the working of various application layer protocols						

Text B	ooks:
1	Behrouz A. Forouzan, Data Communications and Networking 5E, 5th Edition, Tata McGraw– Hill, 2013.
2	Larry L. Peterson and Bruce S. Davie: Computer Networks A Systems Approach, 5th Edition, Morgan Kaufmann Publishers Inc, 2012.

Refere	nce Books:
	William Stallings, Data and computer communication Networks, Second edition, Pearson
1	education, 2013.
2	Ying-Dar Lin, Ren-Hung Hwang, Fred Baker, "Computer Networks: An Open Source Approach", Mc Graw Hill Publisher, 2011.

CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation. Generally, there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of three tests

- Quizzes/mini tests (4 marks)
- Mini Project / Case Studies (8 Marks)
- Activities/Experimentations related to courses (8 Marks)

SEE Assessment:

- Question paper for the SEE consists two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.
- Part B also covers the entire syllabus consisting of five questions having choices and may contain sub-divisions, each carrying 16 marks. Students have to answer five full questions.
- iii. One question must be set from each unit. The duration of examination is 3 hours.

	CO-PO/PSO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	2	1	-	-	-	-	-	-	2	-	-	-
CO2	2	2	2	1	-	-	-	-	-	-	2	1	2	-
CO3	2	2	2	1	-	-	-	-	-	-	2	-	-	-
CO4	1	2	2	1	-	-	-	-	-	-	2	1	2	-
CO5	1	2	2	1	-	-	-	-	-	-	2	2	3	-

Cours	e Title	ANALYSIS AND DESIGN OF ALGORITHMS LAB	Semeste	r ()4	
Cours	se Code	MVJ19CSL47	CIE	1	50	
Total	No. of Contact Hours	30	SEE 50			
No. of	Contact Hours/week	3(L : T : P :: 0 : 2 : 2)	Total	1	00	
Credi	ts	2	Exam. Dı	iration 3	Hours	
Cours	e objective is to:	•				
•	Employ various design	strategies for problem solving.				
Provide exposure to measure and compare the performance of difference						
•	Provide design and imp	olement various Concepts in JAVA.				
S No	Experiment Name	Experiment Name				
1	Write a recursive progr	am to				
	a. Solve Towers-of-Har	oi problem b.GCD		L3	3	
2	Write a Java program	to implement the Stack using arr	ays. Write			
	Push(), Pop(), and Disp	lay() methods to demonstrate its v	vorking.	L3	3	
3	Implement Recursive	Binary search and Linear se	earch and			
	determine the time r	equired to search an element. I	Repeat the			
	experiment for differe	of the time	L3	3		
	taken versus N.					
4	Given a set of N inte	ger elements which is to be so	rted using			
	Selection Sort techniq	ue. Write the program using C la	nguage as	L3	3	
	well as in Java for diffe	erent values of N and observe the	total time			
	1			1	-	

	taken to sort the elements in both the languages.		
5	 Write program to do the following: a. Print all the nodes reachable from a given starting node in a digraph using BFS method. b. Check whether a given graph is connected or not using DFS method. 	L3	3
6	The Merge sort is one of the most common algorithms used to sort arrays. The class Merge sort implements this algorithm. However, there is a bug in the implementation of the method sort. Debug the previous implementation using the debugging options of your favourite IDE (e.g. eclipse), in order to find the error.	L3	3
7	Sort a given set of N integer elements using Quick Sort technique and Run the program for different values of N and record the time taken to sort.	L3	3
8	We are given a set of items, each with a weight and a value and we need to determine the number of each items to include in a collection so that the total weight is less than or equal to the given limit and the total value is as large as possible. Write a Java program by applying any reuse sub problem technique to find the solution.	L3	3
9	Suppose you're trying to find the shortest path from your house to various locations like Movie theatre, Gas Station, Grocery Store and Petrol pump. If we let various locations be vertices and the routes between them are edges, we can create a weighted graph representing the situation. Write a Java program to find the shortest path from your house (source) to the remaining locations.	L3	3
10	 Write a Java program for the following Scenario, You have a business with several offices and you want to lease phone lines to connect them up with each other; and the phone company charges different amounts of money to connect different pairs of cities. You want a set of lines that connects all your offices with a minimum total cost and it should be a spanning tree. 	L3	3
11	Develop a program in Java with a given set of vertices V in a weighted graph where each edge w (u,v) can be negative, find the	L3	3

	shortest path weights d(s,v) from every source s to all vertices in the		
	graph. If the graph contains negative cycle, report it.		
12	Given a set of cities and distance between every pair of cities, the		
	problem is to find the shortest possible route that visits every city	1.2	2
	exactly once and returns to the starting point. Write a program to	L3	3
	find the solution using dynamic programming method.		
13	Given a set of positive integers and an integer 's' write a program in		
	Java to determine whether there is any non-empty subset whose	L3	3
	sum is 's'.		
14	Write a Java program to find a path that traverses all the vertices of		
	the given graph G exactly once and then ends at the starting vertex	L3	
	in a connected undirected Graph G of <i>n</i> vertices using backtracking		3
	principle.		
	·		
Cours	e Outcomes:		
CO1	Design algorithms using appropriate design techniques (brute-f	orce, greedy, d	lynamic
C01	programming, etc.)		
	Implement a variety of algorithms such as sorting, graph related, c	ombinatorial, e	etc., in a
CO2	high level language.		
CO3	Analyze and compare the performance of algorithms using language	e features.	
	Apply and implement learned algorithm design techniques and da	ata structures	to solve
CO4	real-world problems.		
	Employ various design strategies for problem solving and impleme	ent various alg	orithms
CO5	in JAVA .	-	
L			

Refere	Reference Books:					
1	Design and Analysis of Algorithms, S. Sridhar, Oxford (Higher Education).					
2	http://jeffe.cs.illinois.edu/teaching/algorithms/					

Regular Lab work :20

Record writing :5

Lab Tests(Minimum 2 tests shall be conducted for 15 marks and average of two will be taken) Viva 10 marks

SEE Assessment:

Examinations will be conducted for 100 marks and scaled-down to 50. The weightage shall

be,

- i. Writeup : 20 marks
- ii. Conduction : 40 marks
- iii. Analysis of results : 20 marks
- iv. Viva:20

						CO-P	O/PSO	Mappi	ing					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	-	-	-	-	-	3	-	2	2	2	-
CO2	3	3	2	-	-	-	-	-	3	-	2	2	1	2
CO3	3	3	2	-	-	-	-	-	3	-	2	2	3	-
CO4	3	3	2	-	-	-	-	-	3	-	2	2	2	3
CO5	3	3	2	-	-	-	-	-	3	-	2	2	2	3

Course Title	MICRO CONTROLLER AND EMBEDDED SYSTEMS LAB	Semester	04
Course Code	MVJ19CSL48	CIE	50
Total No. of Contact Hours	30	SEE	50
No. of Contact Hours/week	3(L : T : P :: 0 : 2 : 2)	Total	100
Credits	2	Exam. Duration	3 Hours

Course objective is to: The students will be able to

- Demonstrate various real time application using ARM Microcontroller hardware
- Develop programming languages for any real time scenario using Arm Microcontroller

S No	Experiment Name	RBT Level	Hours
1	Write a program to find the sum of first 10 integer numbers.	L3	3
2	Write a program to find factorial of a number.	L3	3
3	Write a program to add an array of 16 bit numbers and store the 32bit result in internal RAM	L3	3
4	Write a program to find the square of a number (1 to 10) using look– up table.	L3	3
5	Write a program to find the largest/smallest number in an array of 32 numbers.	L3	3
6	Write a program to arrange a series of 32 bit numbers in ascending/descending order	L3	3
7	Write a program to count the number of ones and zeros in two consecutive memory locations	L3	3
8	 Write an ARM assembly program that checks if a 32-bit number is a palindrome. Assume that the input is available in r 3. The program should set r 4 to 1 if it is a palindrome, otherwise r 4 should have 0. A palindrome is a number which is the same when read from both sides. For example, 1001 is a 4 bit palindrome. 	L3	3
9	Display "Hello World" message using Internal UART	L3	3
10	Interface and Control a DC Motor	L3	3
11	Interface a Stepper motor and rotate it in clockwise and anti- clockwise direction	L3	3
12	Interface a DAC and generate Triangular and Square waveforms.	L3	3
13	Display the Hex digits 0 to F on a 7-segment LED interface, with an	L3	3

	annonziata dalay in Datugan					
	appropriate delay in Between					
	STUDY EXPERIMENT					
	Interface a 4x4 keyboard and display the key code on an LCD	L3	3			
Course	Outcomes:					
CO1	Develop and test Program using ARM7TDMI/LPC2148 for Real time Scenario's.					
	Conduct the experiments on an ARM7TDMI/LPC2148 evaluation be	oard using eva	luation			
CO2	version of Embedded 'C' & Keil Uvision-4 tool/compiler and design	Real time Em	bedded			
	Applications.					
Refere	nce Books:					
	Raghunandan.G.H, Microcontroller (ARM) and Embedded System	m, Cengage	learning			
1	Publication, 2019					
2	The Insider's Guide to the ARM7 Based Microcontrollers, Hitex Ltd., 1st e	dition, 2005.				

Regular Lab work :20

Record writing :5

Lab Tests(Minimum 2 tests shall be conducted for 15 marks and average of two will be taken) Viva 10 marks

SEE Assessment:

Examinations will be conducted for 100 marks and scaled-down to 50. The weightage shall be,

- i. Writeup : 20 marks
- ii. Conduction : 40 marks
- iii. Analysis of results : 20 marks
- iv. Viva:20

	CO-PO/PSO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	-	3	3	-	-	3	-	3	2	1	-
CO2	3	3	2	-	3	3	-	-	3	-	3	2	2	2

Course Title	BALIKE KANNADA	Semester	IV
Course Code	MVJ19BK39	CIE	50
Total No. of Contact Hours	20	SEE	50
No. of Contact Hours/week	1 (L: T: P 1:0:0)	Total	100
Credits	1	Exam. Duration	3 Hrs

Course objective :This course will enable students to understand Kannada and communicate in Kannada

language

- Vyavharika Kannada Parichaya (Introduction to Vyavharika kannada)
- Kannada Aksharamaale haagu uchcharane(Kannada Alphabets and Pronounciation.
- Sambhashanegaagi Kannada Padagalu (Kannada Vocubulary for Communication).
- Kannada Grammer in Conversations(Sambhasaneyalli Kannada Vyakarana)
- Activities in Kannada

CHAPTER-1

Vyavharika Kannada Parichaya (Introduction to Vyavharika kannada)

CHAPTER-2

Kannada Aksharamaale haagu uchcharane(Kannada Alphabets and Pronounciation

CHAPTER-3

Sambhashanegaagi Kannada Padagalu (Kannada Vocubulary for Communication)

CHAPTER-4

Kannada Grammer in Conversations(Sambhasaneyalli Kannada Vyakarana)

CHAPTER-5

Activities in Kannada

CIE Assessment:

CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation. Generally, there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of three tests

- Quizzes/mini tests (4 marks)
- Mini Project / Case Studies (8 Marks)
- Activities/Experimentations related to courses (8 Marks)

SEE Assessment:

i. Question paper for the SEE consists two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.

- ii. Part B also covers the entire syllabus consisting of five questions having choices and may contain sub-divisions, each carrying 16 marks. Students have to answer five full questions.
- iii. One question must be set from each unit. The duration of examination is 3 hours.

Course Title	SAMSKRUTHIKA KANNADA	Semester	IV
Course Code	MVJ19SK39	CIE	50
Total No. of Contact Hours	20	SEE	50
No. of Contact Hours/week	1 (L: T: P 1:0:0)	Total	100
Credits	1	Exam. Duration	3Hrs

Course Objective :This course will enable students to understand Kannada and communicate in Kannada language

- Samskruthika Kannada Parichaya (Introduction to Adalitha kannada)
- Kannada Kavyagala parichaya (Kannada D Ra Bendre, Siddalingaiha)
- Adalithdalli Kannada Padagalu (Kannada Kagunitha Balake, Patra Lekhana, Prabhandha)
- Kannada Computer Gnyana (Kannada Shabdha Sangraha, Computer Paribashika padagalu)
- Activities in Kannada.

CzsÁåAiÀÄ -1

Pˣ˧qÀ ¨sÁµÉ-,ÀAQë¥ÀÛ «ªÀgÀuÉ.

CzsÁåAiÀÄ -2

"sÁµÁ ¥ÀæAiÉÆÃUÀ⁻ ÁèUÀĪÀ ⁻ ÉÆÃ¥ÀzÉÆÃµÀUÀ¼ÀÄ ªÀÄvÀÄÛ CªÀÅUÀ¼À ¤ªÁgÀuÉ.

CzsÁåAiÀÄ -3

ÉÃR£À aºÉßUÀ¼ÀÄ ªÀÄvÀÄÛ CªÀÅUÀ¼À G¥ÀAiÉÆÃU.À

CzsÁåAiÀÄ -4

¥ÀvÀæ ªÀåªÀºÁgÀ.

CzsÁåAiÀÄ -5

DqÀ½vÀ ¥ÀvÀæUÀ¼ÀÄ.

CzsÁåAiÀÄ -6

,ÀPÁðgÀzÀ DzÉñÀ ¥ÀvÀæUÀ¼ÀÄ

CzsÁåAiÀÄ -7

,ÀAQÃ¥ÀÛ ¥Àæ§AzsÀ gÀZÀ£É, ¥Àæ§AzsÀ ªÀÄvÀÄÛ ¨sÁµÁAvÀgÀ

CzsÁåAiÀÄ -8

Pˣ˧qÀ ±À§Ý,ÀAUÀæºÀ

CzsÁåAiÀÄ -9

PÀA¥ÀÆålgï ºÁUÀÆ ªÀiÁ»w vÀAvÀæeÁÕ£À

CzsÁåAiÀÄ -10

¥Áj¨sÁ¶PÀ DqÀ½vÀ PÀ£ÀßqÀ ¥ÀzÀUÀ¼ÀÄ ªÀÄvÀÄÛ vÁAwæPÀ/PÀA¥ÀÆålgï ¥Áj¨sÁ¶PÀ

¥ÀzÀUÀ¼ÀÄ.

CIE Assessment:

CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation. Generally, there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of three tests

- Quizzes/mini tests (4 marks)
- Mini Project / Case Studies (8 Marks)
- Activities/Experimentations related to courses (8 Marks)

SEE Assessment:

- i. Question paper for the SEE consists two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.
- Part B also covers the entire syllabus consisting of five questions having choices and may contain sub-divisions, each carrying 16 marks. Students have to answer five full questions.
- iii. One question must be set from each unit. The duration of examination is 3 hours.

Course Title	ADDITIONAL MATHEMATICS-	Semester	IV	
Course Code	MVJ19MDSDIP41	CIE	50	
Total No. of Contact Hours	40	SEE	50	
No. of Contact Hours/week	4	Total	100	
Credits	-	Exam. Duration	3 HOURS	

Course objective is to: This course viz., aims to prepare the students:

To familiarize the important tools Linear Algebra, differential Calculus, Beta and Gamma functions, 3– Dimentional Geometry and probability for analysing the engineering problems.

Linear Algebra:

Introduction, Rank of a matrix-echelon form. Solution of system of linear equations consistency. Gausselimination method and problems. Eigen values and Eigen vectors of square matrix of order two and Problems

Video Link:

- https://www.math.ust.hk/~machas/matrix-algebra-for-engineers.pdf
- https://nptel.ac.in/content/storage2/courses/122104018/node18.html

Module-2	L1,L2	8 Hrs.
Differential calculus:		

Tangent and normal, both Cartesian and polar forms. Increasing and decreasing functions, Maxima and Minima for a function of one variable. Point of inflections and Problems.

Beta and Gamma functions:

Beta and Gamma functions, Relation between Beta and Gamma function-simple problems.

Video Link

- https://www.youtube.com/watch?v=6RwOoPN2zqE
- https://www.youtube.com/watch?v=s6F5yjY6jWk&list=PLMLsjhQWWlUqBoTCQDtYllol -o-9hxp11
- <u>http://tutorial.math.lamar.edu/Classes/DE/IntroPDE.aspx</u>

Analytical solid geometry :

Introduction Directional cosine and Directional ratio of a line, Equation of line in space– different forms, Angle between two line, shortest distance between two line, plane and equation of plane in different forms and problems. Video Links:

• https://www.toppr.com/guides/maths/three-dimensional-geometry/

• <u>https://www.toppr.com/guides/maths/three-dimensional-geometry/distance-between-skew-lines/</u>

Module–4	111213	8 Hrs.
	L1,L2,L3	

Probability:

Random variable, Discrete probability distribution, Mean and variance of Random Variable, Theoretical distribution– Binomial distribution, Mean and variance Binomial distribution –Problems. Poisson distribution as a limiting case of Binomial distribution, Mean and variance of Poisson distribution.

Normal Distribution-Basic properties of Normal distribution standard form of normal distribution and Problems

Video Links:

- <u>https://nptel.ac.in/courses/111/105/111105041/</u>
- <u>https://www.mathsisfun.com/data/probability.html</u>

Module-5	L1,L2	8 Hrs.
Put I D'66 11 I Convertion of DDE's by alimination of arhitra	www.aawatawta.aw	d fun ationa

Partial Differential equation: Formation of PDE's by elimination of arbitrary constants and functions. Solution of non-homogeneous PDE by direct integration. Homogeneous PDEs involving derivative with respect to one independent variable only.

Video Link:

Courses Outcourses

- <u>http://tutorial.math.lamar.edu/Classes/DE/IntroPDE.aspx</u>
- <u>https://www.studyyaar.com/index.php/module-video/watch/233-cauchys-legendres-de-a-method-</u> <u>of- variation-of-parameters</u>

Course	Outcomes:
C01	Apply the knowledge of Matrices to solve the system of linear equations and to
	understand the concepts of Eigen value and Eigen vectors for engineering problems.
CO2	Demonstrate various physical models ,find Maxima and Minima for a function of one variable., Point
	of inflections and Problems .Understand Beta and Gamma function
CO3	Understand the 3-Dimensional geometry basic, Equation of line in space- different forms,
205	Angle between two line and studying the shortest distance.
CO4	Concepts of Probability related to engineering applications.
CO5	Construct a variety of partial differential equations and solution by exact methods.

Referen	nce Books:
1.	B.S. Grewal, "Higher Engineering Mathematics" Khanna Publishers, 43 rd Edition, 2013.

2.	Erwin Kreyszig, "Advanced Engineering Mathematics", Wiley –India publishers, 10thedition,2014.
3	Ramana B. V., "Higher Engineering Mathematics", Tata Mc Graw –Hill, 2006.
4	G. B. Gururajachar: Calculus and Linear Algebra, Academic Excellent Series Publication, 2018–19

	CO-PO/PSO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C01	3	3	-	3	-	-	-	-	-	-	-	1	2	-
CO2	3	2	-	3	-	-	-	-	-	-	-	-	2	-
CO3	3	3	-	2	-	-	-	-	-	-	-	-	2	2
CO4	2	3	-	3	-	-	-	-	-	-	-	1	3	2
CO5	3	3	-	3	-	-	-	-	-	-	-	1	3	3