Engineering A Better Tomorrow
An Autonomous Institute

MVJCE CURRICULUM

FOR
COMPUTER SCIENCE \& ENGINEERING (Scheme 2019)

IV SEMESTER

Course Title	OPERATIONS \quad RESEARCH, NUMERICAL AND STATISTICAL METHODS	Semester	04
Course Code	MVJ19MCS41	CIE	50
Total No. of Contact Hours	40	SEE	50
No. of Contact Hours/week	3 (L:T : P : $3: 0: 0)$	Total	100
Credits	3	Exam. Duration	3 Hours
Course objective is to: The purpose of this course is to make students well conversant with numerical methods to solve ordinary differential equations, complex analysis, sampling theory Operational research emerging in science and engineering.			
Module-1		L1,L2, L3	Hours 8
Numerical solution of Ordinary Differential Equations of first order and first degree: Picard's method, Taylor's series method, Modified Euler's method, Runge-Kutta method of fourth order, Predictor and Corrector method: Milne's Method.			
Module-2		L1,L2, L3	Hours 8
NUMERICAL METHODS-2: Numerical solution of Ordinary Differential Equations of second order : Picard's method, Runge-Kutta method of fourth order, Predictor and Corrector method: Milne's Method. Calculus of Variations: Variation of function and Functional, variational problems. Euler's equation, Geodesics, hanging chain, problems.			
Module-3		L1,L2, L3	Hours 8
OPERATIONS RESEARCH-1 Introduction to Linear Programming Problem (LPP): Prototype example, Assumptions of LPP, Formulation of LPP and Graphical method various examples. the simplex method, Big M method, Two			

phase meth			
Module-4		L1,L2 L3	Hours 8
OPERATIONS RESEARCH-2 The transportation problem: Initial Basic Feasible Solution (IBFS) by North West Corner Rule method, Matrix Minima Method, Vogel's Approximation Method. Game Theory: The formulation of two persons, zero sum games; saddle point, maximin and minimax principle, Solving simple games- a prototype example; Games with mixed strategies; Graphical solution procedure			
Module-5 L1,L2,L3 Hours			
STATISTICAL METHODS Fitting of the curves of by the method of least square, Correlation and Regression, Regression coefficients, line of regression problems. Curve fitting by the method of least squares, Fitting of the curves of the form $=+,=2++$, $=$.			
Course Outcomes:			
CO1	Solve first and second order ordinary differential equation arising in flow problems using single step and multistep numerical methods.		
CO2	Determine the extremals of functionals and solve the simple problems of the calculus of variations.		
CO3	Solve the mathematical formulation of linear programming problem.		
CO4	Solve the applications of transport problems and theory of games.		
CO5	Fit a suitable curve by the method of least squares and determine the lines of regression for a set of statistical data.		

Reference Books:	
1	Graw-Hill, 2006.
2	Balin. p. \& Manish Goya, A text book of Engineerng Mathematics", Laxmi Publications, 8th Edition
3	Jain R. K. \& Iyengar S.R.K., Advanced Engineering Mathematics, Narosa Publishing House, 2002.
4	S. D. Sharma, "Operations Research", Kedar Nath and Ram Nath Publishers, Seventh Revised Edition 2014.

CIE Assessment:

CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation. Generally, there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of three tests

- Quizzes/mini tests (4 marks)
- Mini Project / Case Studies (8 Marks)
- Activities/Experimentations related to courses (8 Marks)

SEE Assessment:

Question paper for the SEE consists two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.
Part B also covers the entire syllabus consisting of five questions having choices and may contain sub-divisions, each carrying 16 marks. Students have to answer five full questions.

One question must be set from each unit. The duration of examination is 3 hours.

CO-P0/PSO Mapping														
$\mathrm{CO} / \mathrm{PO}$	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1 1	PO12	PSO1	PSO2
CO1	3	3	-	3	-	-	-	-	-	-	-	1	1	-
CO 2	3	2	-	3	-	-	-	-	-	-	-	-	-	1
CO3	3	3	-	2	-	-	-	-	-	-	-	-	2	-
CO4	2	3	-	3	-	-	-	-	-	-	-	1	-	-
CO5	3	3	-	3	-	-	-	-	-	-	-	1	2	-

High-3, Medium-2, Low- 1

Course Title	ANALYSIS AND DESIGN OF ALGORITHMS	Semester	04
Course Code	MVJ1 9CS42	CIE	50
Total No. of Contact Hours	50	SEE	50
No. of Contact Hours/week	$4(\mathrm{~L}: \mathrm{T}: \mathrm{P}:: 3: 2: 0)$	Total	100
Credits	4	Exam. Duration	3 Hours

Course objective is to:

Identify the importance of different asymptotic notation.
Determine the complexity of recursive and non-recursive algorithms.
Compare the efficiency of various design techniques like greedy method, backtracking etc.

- Apply appropriate method to solve a given problem.

Module-1

L1,L2 \quad Hours 8

Basic Concept of Algorithms: Introduction-What is an Algorithm, Algorithm Specification, Analysis Framework, Performance Analysis: Space complexity, Time complexity. Asymptotic Notations: Big-Oh notation (O), Omega notation (), Theta notation (), and Little-oh notation (o), Mathematical analysis of Non-Recursive and recursive Algorithms with Examples. Important Problem Types. Fundamental Data Structures.

Applications: developing comøgtational tools and छjoinformatics software, Mathematics.
Video link / Additional online information (related to module if any):
http://www.nptelvideos.com/video.php?id=1442
https://nptel.ac.in/courses/106105085/

Module-2	L2, L4	Hours 8

Simple Design Techniques Brute force : Selection sort, Bubble sort, Sequential Search and BruteForce String Matching , Exhaustive search Traveling Salesman problem, Knapsack problem , Assignment Problem.

Divide and Conquer: General method, Binary search, Recurrence equation for divide and conquer, Finding the maximum and minimum , Merge sort, Quick sort, Strassen's matrix multiplication, Advantages and Disadvantages of divide and conquer.

Applications: power distribution (electrical field), Online shopping and delivery (real time)
Video link / Additional online information (related to module if any):

1. https://nptel.ac.in/courses/106102064/
2. https://www.youtube.com/watch?v=MFfD57DTDQY

Module-3	L3	Hours 8
Decrease and Conquer approach: Topological Sort Decrease-by-a-Constant-Factor Al		

Greedy Method: General method, Coin Change Problem, Knapsack Problem, Job sequencing with deadlines. Minimum cost spanning trees: Prim's Algorithm, Kruskal's Algorithm. Single source shortest paths: Dijkstra's Algorithm. Huffman Trees and Codes.

Laboratory Sessions/ Experimental learning: Solving real time problems using Greedy Technique. Applications: Optimization Problems.

Video link :https://nptel.ac.in/courses/106/106/106106131/

Module-4	L2	Hours 8

Dynamic Programming: General method with Examples, Multistage Graphs. Transitive Closure:
Warshall's Algorithm, All Pairs Shortest Paths: Floyd's Algorithm, Optimal Binary Search Trees,
Knapsack problem, Bellman-Ford Algorithm , Travelling Sales Person problem, Reliability design.
Laboratory Sessions/ Experimental learning: Solving real time problems using Dynamic Programming.

Applications: Computer Networks.
Video link:https://nptel.ac.in/courses/106/106/106106131/

Module-5	L1, L3	Hours 8

Backtracking: General method, N-Queens problem, Sum of subsets problem, Graph coloring, Hamiltonian cycles Programme and Bound: Assignment Problem, Travelling Sales Person problem, 0/1 Knapsack problem.

LC Programme and Bound solution : FIFO Programme and Bound solution. NP-Complete and NPHard problems: Basic concepts, non-deterministic algorithms, P, NP, NP-Complete, and NP-Hard classes. Laboratory Sessions/ Experimental learning: Solving real time problems using Backtracking Technique.

Applications: To solve puzzles such as crosswords, Sudoku etc.
Video link:https://nptel.ac.in/courses/106/106/106106131/

Course Outcomes:

CO1	Describe the need of algorithm and the notations used in design analysis.
CO2	Compare the efficiency of brute force, divide and conquer techniques for problem solving.
CO3	Ability to apply greedy algorithms, hashing and string matching algorithms.

CO4	Ability to design efficient algorithms using various design techniques.
CO5	Ability to apply the knowledge of complexity classes P, NP, and NP Complete and prove certain problems are NP-Complete.

Text Books:	
1	Introduction to the Design and Analysis of Algorithms, Anany Levitin:, 2rd Edition, 2009. Pearson.
2	Introduction to Algorithms, Thomas H. Cormen, Charles E. Leiserson, Ronal L. Rivest, Clifford Stein, 3rd Edition, PHI.

Reference Books:

1	Design and Analysis of Algorithms, S. Sridhar, Oxford (Higher Education).
2	http://jeffe.cs.illinois.edu/teaching/algorithms/
3	Computer Algorithms/C++, Ellis Horowitz, Satraj Sahni and Rajasekaran, 2nd Edition, 2014, Universities Press.

CIE Assessment:

CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation. Generally, there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of three tests

- Quizzes/mini tests (4 marks)
- Mini Project / Case Studies (8 Marks)
- Activities/Experimentations related to courses (8 Marks)

SEE Assessment:

Question paper for the SEE consists two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.

Part B also covers the entire syllabus consisting of five questions having choices and may contain sub-divisions, each carrying 16 marks. Students have to answer five full questions. One question must be set from each unit. The duration of examination is 3 hours.

CO-PO/PSO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	--	--	--	1	--	--	--	--	--	--	2	2	-
CO2	2	3	--	--	2	--	--	--	--	--	--	--	2	-
CO3	3	3	2	2	--	--	--	--	--	--	--	2	2	2
CO4	3	3	3	--	--	--	--	--	1	--	--	2	3	2
CO5	2	2	2	1	3	--	--	--	--	--	--	3	3	3

High-3, Medium-2, Low- 1

Course Title	SOFTWARE ENGINEERING	Semester	04
Course Code	MVJ 1 9CS43	CIE	50
Total No. of Contact Hours	40	SEE	50
No. of Contact Hours/week	$3(\mathrm{~L}: \mathrm{T}: \mathrm{P}:: 3: 0: 0)$	Total	100
Credits	3	Exam. Duration	3 Hours

Course objective is to: The students will be able to

- Understand principles, concepts, methods, and techniques of the software engineering approach to producing quality software (particularly for large, complex systems).
- Impart skills in the design and implementation of efficient software systems across disciplines.
- Familiarize engineering practices and standards used in developing software products and components.
- Gather knowledge on various software testing, maintenance methods.

Module-1
FUNDAMENTALS OF SOFTWARE ENGINEERING AND REQUIREMENTS ENGINEERING: Software Engineering Fundamentals; Software processes: Software life-cycle models; Software requirements and specifications: Requirements elicitation; Requirements analysis modeling techniques; Functional and non-functional requirements; User requirements, System requirements, requirement validation and software requirement specification document. Prototyping - Basic concepts of formal specification techniques. Laboratory Sessions/ Experimental learning: To write the SRS for the given real time application using report writing tools. Applications: In Software development process. Video link / Additional online information: https://nptel.ac.in/courses/1061051 82/ Module-2 SOFTWARE DESIGN: Fundamental design concepts and principles; Design characteristics; System Models - Context, Behavioral, Data and, Object models, Architectural design- System structuring, Control models; Structured design; Object-oriented analysis and design; User interface design; Design for reuse; Design patterns; Laboratory Sessions/ Experimental learning: Draw a class diagram, object diagram, Use case diagram, Sequence diagram and activity diagram for the given real time application using rational rose tool.

```
Applications: In Software development process.
Video link / Additional online information:
https://www.coursera.org/lecture/client-needs-and-software-requirements/3-2-4-use-cases-bZNCr
\begin{tabular}{|l|l|l|}
\hline Module-3 & L1,L2, L3 & Hours 8 \\
\hline
\end{tabular}
SOFTWARE VALIDATION AND MAINTENANCE :
Software validation: Validation planning; Testing fundamentals, including test plan creation and test case generation; Black-box and white-box testing techniques; Unit, integration, validation, and system testing; Object-oriented testing; Inspections.
Software evolution: Software maintenance; Characteristics of maintainable software; Reengineering; Legacy systems; Software reuse.
Laboratory Sessions/ Experimental learning:
Using Selenium IDE write a test suite containing minimum 4 test cases.
Applications: In Software development process.
Video link / Additional online information: https://www.youtube.com/watch?v=T3q6QcCQZQg
\begin{tabular}{|l|c|c|}
\hline Module-4 & L1,L2, L3 & Hours 8 \\
\hline
\end{tabular}
```

COMPONENT BASED SOFTWARE ENGINEERING : Engineering of Component-Based Systems; The CBSE Process; Domain Engineering; Component-Based Development; Classifying and Retrieving Components; Economics of CBSE
Laboratory Sessions/ Experimental learning: Create a project using MS projects for any real time scenario.
Applications: In Software development process.
Video link / Additional online information: https://youtu.be/tIZIdg4pxCE

Module-5	L1,L2, L3	Hours 8

SOFTWARE QUALITY PROCESS IMPROVEMENT : Overview of Quality management and Process Improvement; Overview of SEI -CMM, ISO 9000, CMMI, PCMM, TQM and Six Sigma; overview of CASE tools. Software tools and environments: Programming environments; Project management tools; Requirements analysis and design modelling tools; testing tools; Configuration management tools;

Laboratory Sessions/ Experimental learning: Estimation of test coverage metrics using manual test metrics.

Applications: In Software development process.
Video link / Additional online information: https://nptel.ac.in/courses/110105039/

Course Outcomes:

CO1	Comprehend software development life cycle and Prepare SRS document for a project
CO2	Apply software design and development techniques
CO3	Identify verification and validation methods in a software engineering project

CO4	Apply on Component based software development process.
CO5	Involve in continuous learning to solve issues of process and software product using the advanced CASE tools and techniques.

Text Books:

1	Ian Sommerville, "Software Engineering", 9th Edition, Addison- Wesley, 2011
2	R. S. Pressman, Software Engineering, a practitioner's approach, McGraw Hill,7th Edition, 2010
Reference Books:	
1	Rajib Mall, "Fundamentals of Software Engineering", PHI Publication, 3rd edition, 2009
2	Pankaj Jalote: An Integrated Approach to Software Engineering, Wiley India.

CIE Assessment:

CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation. Generally, there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of three tests

- Quizzes/mini tests (4 marks)
- Mini Project / Case Studies (8 Marks)
- Activities/Experimentations related to courses (8 Marks)

SEE Assessment:

i. Question paper for the SEE consists two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.
ii. Part B also covers the entire syllabus consisting of five questions having choices and may contain sub-divisions, each carrying 16 marks. Students have to answer five full questions.
iii. One question must be set from each unit. The duration of examination is 3 hours.

CO-PO/PSO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
COI	2	2	2	2	2	-	-	1	2	2	2	-	2	-
CO2	2	2	2	2	2	1	-	1	2	2	2	1	2	2
CO3	2	2	2	2	2	1	-	1	2	2	2	-	3	-

$\operatorname{CO} 4$	1	2	2	2	2	1	-	1	2	2	2	1	2	2
$\operatorname{CO} 5$	1	2	2	1	2	1	2	1	2	2	2	2	1	-

High-3, Medium- 2 , Low- 1

Course Title	OPERATING SYSTEMS	Semester	04
Course Code	MVJ1 9CS44	CIE	50
Total No. of Contact Hours	40	SEE	50
No. of Contact Hours/week	3 (L: T: P :: 3:0:0)	Total	100

Credits	3	Exam. Duration	3 Hours

Course objective is to: The students will be able to

- Introduce concepts and terminology used in OS.
- Explain threading and multithreaded systems.
- Illustrate process synchronization and concept of Deadlock.
- Introduce Memory and Virtual memory management, File system and storage techniques.

Module-1	L2	Hours 8

Introduction: What operating systems do; Computer System organization; Computer System architecture; Operating System operations; Distributed system; Special-purpose systems; Computing environments. Operating System Services; User - Operating System interface; System calls; Types of system calls; System programs; Operating system design and implementation; Operating System structure; Virtual machines; System boot.

Process Management: Process concept; Process scheduling; Operations on processes;Inter process communication.

Module-2	L2	Hours 8

Multi-threaded Programming: Overview; Multithreading models; Thread Libraries; Threading issues. Process Scheduling: Basic concepts; Scheduling Criteria; Scheduling Algorithms; Multiple-processor scheduling; Thread scheduling.

Process Synchronization: Synchronization: The critical section problem; Peterson's solution; Synchronization hardware; Semaphores; Classical problems of synchronization; Monitors.

Module-3	L3	Hours 8

Deadlocks : Deadlocks; System model; Deadlock characterization; Methods for handling deadlocks; Deadlock prevention; Deadlock avoidance; Deadlock detection and recovery from deadlock.

Memory Management: Memory management strategies: Background; Swapping; Contiguous memory allocation; Paging; Structure of page table; Segmentation

Module-4	L3	Hours 8
Virtual Memory Management: Background; Demand paging; Copy-on-write; Page replacement; Allocation of frames; Thrashing. File System, Implementation of File System: File system: File concept; Access methods; Directory structure; File system mounting; File sharing; Implementing File system: File system structure; File system implementation; Directory implementation; Allocation methods; Free space management.		
Module-5	L3	Hours 8

Mass Storage Structure-Disk Structure - Disk Attachment-Disk Scheduling-Disk Management- Swap- Space Management. Protection: Domain of protection, Access matrix, Implementation of access matrix, Access control, Revocation of access rights, Capability- Based systems. Case Studies: Windows, Unix, Linux, Android.		
List of Practical Experiments/Hands-on :	L2	Hours 10
Creating processes in Unix with commands like Fork and Exec; Pipes and process communication; Performance study of various CPU scheduling algorithms; Performance study of various Disk scheduling algorithms. Analysis various memory management techniques and page replacement policies.		
Course Outcomes:		
CO1	Illustrate the fundamental concepts of operating systems	
CO2	Compare and illustrate various process scheduling algorithms.	
CO3	Ability to recognize and resolve Deadlock problems,Memory Management techniques.	
CO4	Apply appropriate memory and file management schemes.	
CO5	Appreciate the need of access control and protection in Operating System and illustrate various disk scheduling algorithms.	

Text Books:	
1	Abraham Silberschatz, Peter Baer Galvin, Greg Gagne, Operating System Concepts 7th edition,Wiley-India, 2006
2	D.M Dhamdhere, Operating Systems: A Concept Based Approach 3rd Ed, McGraw- Hill, 2013.

Reference Books:

1	Tanenbaum, A., "Modern Operating Systems", Prentice - Hall of India. 2004
2	P.C.P. Bhatt, An Introduction to Operating Systems: Concepts and Practice 4th Edition,

CIE Assessment:

CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation.
Generally, there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of three tests

- Quizzes/mini tests (4 marks)
- Mini Project / Case Studies (8 Marks)
- Activities/Experimentations related to courses (8 Marks)

SEE Assessment:

i. Question paper for the SEE consists two parts i.e. Part A and Part B. Part A is

$$
\begin{array}{ll}
\text { compulsory and consists of objective type or short answer type questions of } 1 \text { or } 2 \\
\text { marks each for total of } 20 \text { marks covering the whole syllabus. } \\
\text { iii. Part B also covers the entire syllabus consisting of five questions having choices and } \\
\text { may contain sub-divisions, each carrying } 16 \text { marks. Students have to answer five full } \\
\text { questions. } \\
\text { iii. } & \text { One question must be set from each unit. The duration of examination is } 3 \text { hours. }
\end{array}
$$

CO-PO/PSO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	2	-	-	-	-	-	-	-	-	-	2	-
CO2	2	2	3	-	-	-	-	-	-	-	-	-	2	-
CO3	3	2	3	-	-	-	-	-	-	-	-	-	3	-
CO4	3	2	3	-	-	-	-	-	-	-	-	-	2	2
CO5	3	2	3	-	-	-	-	-	-	-	-	-	2	-

High-3, Medium-2, Low- 1

Course Title	MICRO CONTROLLER AND EMBEDDED SYSTEMS	Semester	04
Course Code	MVJI 9CS45	CIE	50
Total No. of Contact Hours	40	SEE	50
No. of Contact Hours/week	$3(\mathrm{~L}: \mathrm{T}: \mathrm{P}:: 3: 0: 0)$	Total	100
Credits	3	Exam. Duration	3 Hours

Course objective is to: The students will be able to

- Explain the fundamentals of ARM based system, basic hardware components, selection methods and attributes of an ARM Controller.
- Program ARM controller using the various instructions.
- Explain the fundamentals of Exception, Interrupt Handling and Memory Management Unit of ARM Controller.
- Identify the Embedded System Design applications.
- Explain the real time operating system for the embedded system design.

Module-1	L1,L2, L3	Hours 8

Arm Embedded Systems
Prerequisites: ARM DESIGN PHILOSOPHY,ARM DATAFLOW MODEL
Microprocessors versus Microcontrollers, ARM Embedded Systems: The RISC design philosophy, The ARM Design Philosophy, Embedded System Hardware, Embedded System Software.
ARM Processor Fundamentals: Registers, Current Program Status Register, Pipeline, Exceptions, Interrupts, and the Vector Table, Core Extensions

Activity:1.Comparision of Microprocessor and Microcontroller hardware Model
2.Comparing the Microprocessor and Microcontroller Software Model

Module-2	L1,L2, L3	Hours 8

ARM Instruction Set and Programming

Prerequisites: ARM INSTRUCTION SET,ARM ASSEMBLY PROGRAMMING

Introduction to the ARM Instruction Set: Data Processing Instructions, Programme Instructions, Software Interrupt Instructions, Program Status Register Instructions, Coprocessor Instructions, Loading Constants

ARM programming using Assembly language: Writing Assembly code, Profiling and cycle counting, instruction scheduling

Activity: 1.Writing ARM Assembly program for Embedded System Applications

Module-3	L1,L2, L3	Hours 8

Interrupt and Memory Management Unit:

Prerequisites :Interrupt, Exception, Memory Management unit

Exception, Interrupt Handling : Exception handling, Interrupts, Interrupt handling Schemes
Memory Management Unit : The Memory Hierarchy and Cache Memory, Cache Architecture, Cache Policy, Moving from MPU to an MMU, How Virtual Memory Works, Details of ARM MMU Activity:

1) Use of External interrupt0 to turn ON/OFF led connected to Pin P1.25 of ARM Processor.
2) Use of Software Interrupt SWI instruction in programming.
3) Calculating physical memory address from logical address.

Module-4	L1,L2, L3	Hours 8
Prerequisites: Embedded systems,Embedded Applications		
Embedded System Components: Embedded Vs General computing system, History of embedded		

systems, Classification of Embedded systems, Major applications areas of embedded systems, purpose of embedded systems

Core of an Embedded System including all types of processor/controller, Memory, Sensors, Actuators, LED, 7 segment LED display, stepper motor, Keyboard, Push button switch, Communication Interface (on board and external types), Embedded firmware, Other system components.

Activity:Case Study - Digital Clock, Battery operated Smartcard Reader

Module-5	L1,L2, L3	Hours 8
Prerequisites: Real time operating system		
Real Time Operating System (RTOS) based Embedded System Design:		
Operating System basics, Types of operating systems, Task, process and threads (Only POSIX Threads		
with an example program), Thread pre-emption, Multiprocessing and Multitasking, Task		
Communication (without any program), Task synchronization issues Racing and Deadlock, Concept of		
Binary and counting semaphores (Mutex example without any program), How to choose an RTOS		
Activity:		

Case Study: Automated Meter Reading System (AMR) and Digital Camera, Real time concepts

Course outcomes:	
CO1	Describe the architectural features and instructions of ARM microcontroller
CO2	Develop Assembly Programs in ARM for Embedded applications.
CO3	Describe the fundamentals of Exception, Interrupt Handling and Memory Management Unit of ARM Controller
CO4	Interface external devices and I/O with ARM microcontroller.
CO5	Demonstrate the need of real time operating system for embedded system applications

Text Books:	
1	Andrew N Sloss, Dominic Symes and Chris Wright, ARM system developer's guide, Elsevier, Morgan Kaufman publishers, 2008.
2	Shibu K V, "Introduction to Embedded Systems", Tata McGraw Hill Education, Private Limited, 2nd Edition.

Reference Books:

1	Raghunandan.G.H, Microcontroller (ARM) and Embedded System, Cengage learning Publication, 2019
2	The Insider's Guide to the ARM7 Based Microcontrollers, Hitex Ltd., 1st edition, 2005.

3 Raj Kamal, Embedded System, Tata McGraw-Hill Publishers, 2nd Edition, 2008.

CIE Assessment:

CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation.
Generally, there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of three tests

- Quizzes/mini tests (4 marks)
- Mini Project / Case Studies (8 Marks)
- Activities/Experimentations related to courses (8 Marks)

SEE Assessment:

i. Question paper for the SEE consists two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.
ii. Part B also covers the entire syllabus consisting of five questions having choices and may contain sub-divisions, each carrying 16 marks. Students have to answer five full questions.
iii. One question must be set from each unit. The duration of examination is 3 hours.

CO-PO/PSO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1 1	PO12	PSO1	PSO2
CO1	3	1	2	1	-	-	-	-	-	-	-	-	2	-
CO2	3	2	1	3	3	2	-	-	2	-	1	-	1	1
CO3	3	2	1	3	-	2	-	-	2	-	-	-	2	-
CO4	3	3	2	3	3	2	-	-	2	2	2	-	1	2
CO5	3	2	3	3	3	2	-	-	2	2	2	2	1	1

High-3, Medium-2, Low-1

Course Title	DATA COMMUNICATION	Semester	04
Course Code	MVJ1 9CS46	CIE	50
Total No. of Contact Hours	40	SEE	50
No. of Contact Hours/week	$3(\mathrm{~L}:$ T $: \mathrm{P}:: 3: 0: 0)$	Total	100
Credits	3	Exam. Duration	3 Hours

Course objective is to:

- Define the protocol layering and physical level communication.
- To demonstrate the performance of a network.
- To be familiar the various components required to build different networks.
- To learn the functions of transport layer protocols to provide reliable communication.
- To familiarize the protocols of the Application layer.

Module-1	L1,L2, L3	Hours 8
INTRODUCTION AND PHYSICAL LAYER: Introduction: Networks	Network Types	Protocols and
Standards TCP/IP Protocol suite	OSI Model, Data Encoding: Line Encoding-Types of Line Coding-	
Analog-to-Digital Conversion- Pulse code modulation (PCM)-Delta modulation (DM)-Transmission		

Modes.
Laboratory Sessions/ Experimental learning: Design the simulation system for performing analog to digital conversion.

Applications: Mobile Phone, Laptop and all electronic devices
Video link / Additional online information (related to module if any):https://www.digimat.in/nptel/courses/video/106105183/L01.html

Module-2	L1,L2	Hours 8

DATA-LINK LAYER : Introduction Link-Layer Addressing DLC Services Error Detection and Correction: Introduction, Block coding, Cyclic codes, Checksum. Error Correction and Detection Protocols: Protocols for Noiseless Channels- Simplest protocol, Stop-and-wait protocol; Protocols for Noisy Channels- Stop-and-wait automatic repeat request, Go back N automatic repeat request, Selective repeat automatic repeat request.
Laboratory Sessions/ Experimental learning: Develop the system for error correction code (like CRC) and verify the reliability of data at both sides.
Applications: Telecommunication
Video link / Additional online information (related to module if any):
https://www.youtube.com/watch?v=pVIIL1jrbFE

Module-3	L1,L2, L3	Hours 8
MEDIA ACCESS CONTROL: Media Access control: Random Access, Controlled Access and		

Laboratory Sessions/ Experimental learning: Create the virtual environment for WLAN and make the data communication between stations.

Applications: Making communication between devices
Video link / Additional online information (related to module if any):
https://www.youtube.com/watch?v=5u52wbqBgEY

| Module-4 | L1,L2, L3 | Hours 8 |
| :--- | :--- | :--- | :--- |
| NETWORK LAYER: Network Layer Services \quad Packet switching | Performance \quad IPV4 Addresses - | |
| Forwarding of IP Packets, IP Addressing Scheme- Subnet Addressing-Subnet Masks-IPV4 Addressing- | | |
| IPV6 Addressing- Address Resolution Protocol (ARP)-Reverse Address Resolution Protocol (RARP) | | |
| Laboratory Sessions/ Experimental learning: Write a code finding the physical address and logical | | |
| address of the system using ARP /RARP protocols. | | |

Applications: Resolve addressing problem in systems
Video link / Additional online information (related to module if any):
https://www.youtube.com/watch?v=rW1jPIYgp_0

| Module-5 | L1,L2, L3 | Hours 8 |
| :--- | :--- | :--- | :--- |
| TRANSPORT LAYER : Introduction Services of Transport Layer, Connection Establishment, | | |
| Connection Release, Transport Layer Protocols- TCP protocol, UDP protocol; Congestion: TCP | | |
| Congestion control Congestion avoidance (DEC bit, RED) | | |
| Laboratory Sessions/ Experimental learning: Create the system for avoiding congestion in | | |
| unreliable communication. | | |
| Applications: Reliable communication among devices in network like LAN,WAN etc.
 Video link / Additional online information (related to module if any):
 https://www.youtube.com/watch?v=z_ICsUGwr3U | | |
| Course outcomes: | | |
| CO1 | Identify the components required to build different types of networks. | |
| CO2 | Choose the required functionality at each layer for given application | |
| CO3 | Identify solutions for each functionality at each layer | |
| CO4 | Trace the flow of information from one node to another node in the network. | |
| CO5 | Analyse the working of various application layer protocols | |

Text Books:	
1	Behrouz A. Forouzan, Data Communications and Networking 5E, 5th Edition, Tata McGraw- Hill, 2013.
2	Larry L. Peterson and Bruce S. Davie: Computer Networks A Systems Approach, 5th Edition, Morgan Kaufmann Publishers Inc, 2012.

Reference Books:	
1	William Stallings, Data and computer communication Networks, Second edition, Pearson education, 2013.
2	Ying-Dar Lin, Ren-Hung Hwang, Fred Baker, "Computer Networks: An Open Source Approach",Mc Graw Hill Publisher, 2011.

CIE Assessment:

CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation. Generally, there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of three tests

- Quizzes/mini tests (4 marks)
- Mini Project / Case Studies (8 Marks)
- Activities/Experimentations related to courses (8 Marks)

SEE Assessment:

i. Question paper for the SEE consists two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.
ii. Part B also covers the entire syllabus consisting of five questions having choices and may contain sub-divisions, each carrying 16 marks. Students have to answer five full questions.
iii. One question must be set from each unit. The duration of examination is 3 hours.

CO-PO/PSO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	2	1	-	-	-	-	-	-	2	-	-	-
CO2	2	2	2	1	-	-	-	-	-	-	2	1	2	-
CO3	2	2	2	1	-	-	-	-	-	-	2	-	-	-
CO4	1	2	2	1	-	-	-	-	-	-	2	1	2	-
CO5	1	2	2	1	-	-	-	-	-	-	2	2	3	-

High-3, Medium-2, Low-1

Course Title		ANALYSI ALGORIT	Semester		04	
Course Code		MVJ 19 CS	CIE		50	
Total No. of Contact Hours		30	SEE		50	
No. of Contact Hours/week		3(L : T : P	Total		100	
Credits		2	Exam. Duration		3 Hours	
Course objective is to: - Employ various design strategies for problem solving. - Provide exposure to measure and compare the performance of different algorithms. - Provide design and implement various Concepts in JAVA.						
S No	Experiment Name			RBT Level		Hours
1	Write a recursive program to a. Solve Towers-of-Hanoi problem b.GCD			L3		3
2	Write a Java program to implement the Stack using arrays. Write Push(), Pop(), and Display() methods to demonstrate its working.			L3		3
3	Implement Recursive Binary search and Linear search and determine the time required to search an element. Repeat the experiment for different values of N and plot a graph of the time taken versus N .			L3		3
4	Given a set of N integer elements which is to be sorted using Selection Sort technique. Write the program using C language as well as in Java for different values of N and observe the total time			L3		3

	taken to sort the elements in both the languages.		
5	Write program to do the following: a. Print all the nodes reachable from a given starting node in a digraph using BFS method. b. Check whether a given graph is connected or not using DFS method.	L3	L

	shortest path weights d(s,v) from every source s to all vertices in the graph. If the graph contains negative cycle, report it.		
12	Given a set of cities and distance between every pair of cities, the problem is to find the shortest possible route that visits every city exactly once and returns to the starting point. Write a program to find the solution using dynamic programming method.	L3	3
13	Given a set of positive integers and an integer 's' write a program in Java to determine whether there is any non-empty subset whose sum is 's'.	L3	3
14	Write a Java program to find a path that traverses all the vertices of the given graph G exactly once and then ends at the starting vertex in a connected undirected Graph G of n vertices using backtracking principle.	L3	3
Course Outcomes:	Design algorithms using appropriate design techniques (brute-force, greedy, dynamic programming, etc.)		
CO1	Implement a variety of algorithms such as sorting, graph related, combinatorial, etc., in a high level language.		
CO2	Analyze and compare the performance of algorithms using language features. CO3	Apply and implement learned algorithm design techniques and data structures to solve real-world problems.	
CO5	Employ various design strategies for problem solving and implement various algorithms in JAVA.		

Reference Books:

1	Design and Analysis of Algorithms, S. Sridhar, Oxford (Higher Education).
2	http://jeffe.cs.illinois.edu/teaching/algorithms/

CIE Assessment:

Regular Lab work :20
Record writing :5
Lab Tests(Minimum 2 tests shall be conducted for 15 marks and average of two will be taken) Viva 10 marks

SEE Assessment:
Examinations will be conducted for 100 marks and scaled-down to 50 . The weightage shall be,
i. Writeup : 20 marks
ii. Conduction : 40 marks
iii. Analysis of results : 20 marks
iv. Viva: 20

CO-PO/PSO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	-	-	-	-	-	3	-	2	2	2	-
CO2	3	3	2	-	-	-	-	-	3	-	2	2	1	2
CO3	3	3	2	-	-	-	-	-	3	-	2	2	3	-
CO4	3	3	2	-	-	-	-	-	3	-	2	2	2	3
CO5	3	3	2	-	-	-	-	-	3	-	2	2	2	3

High-3, Medium-2, Low- 1

Course Title	MICRO CONTROLLER AND EMBEDDED SYSTEMS LAB	Semester	04
Course Code	MVJ 19 CSL 48	CIE	50
Total No. of Contact Hours	30	SEE	50
No. of Contact Hours/week	3(L : T : P : $0: 2: 2)$	Total	100
Credits	2	Exam. Duration	3 Hours

Course objective is to: The students will be able to

- Demonstrate various real time application using ARM Microcontroller hardware
- Develop programming languages for any real time scenario using Arm Microcontroller

S No	Experiment Name	RBT Level	Hours
1	Write a program to find the sum of first 10 integer numbers.	L3	3
2	Write a program to find factorial of a number.	L3	3
3	Write a program to add an array of 16 bit numbers and store the 32 bit result in internal RAM	L3	3
4	Write a program to find the square of a number (1 to 10) using lookup table.	L3	3
5	Write a program to find the largest/smallest number in an array of 32 numbers.	L3	3
6	Write a program to arrange a series of 32 bit numbers in ascending/descending order	L3	3
7	Write a program to count the number of ones and zeros in two consecutive memory locations	L3	3
8	Write an ARM assembly program that checks if a 32-bit number is a palindrome. Assume that the input is available in r 3. The program should set r 4 to 1 if it is a palindrome, otherwise r 4 should have 0. A palindrome is a number which is the same when read from both sides. For example, 1001 is a 4 bit palindrome.	L3	3
9	Display "Hello World" message using Internal UART	L3	3
10	Interface and Control a DC Motor	L3	3
11	Interface a Stepper motor and rotate it in clockwise and anticlockwise direction	L3	3
12	Interface a DAC and generate Triangular and Square waveforms.	L3	3
13	Display the Hex digits 0 to F on a 7-segment LED interface, with an	L3	3

	appropriate delay in Between		
	STUDY EXPERIMENT Interface a 4x4 keyboard and display the key code on an LCD	L3	3
Course Outcomes:			
CO1	Develop and test Program using ARM7TDMI/LPC2148 for Real time Scenario's.		
CO2	Conduct the experiments on an ARM7TDMI/LPC2148 evaluation board using evaluation version of Embedded 'C' \& Keil Uvision-4 tool/compiler and design Real time Embedded Applications.		
Reference Books:	Raghunandan.G.H, Microcontroller (ARM) and Embedded System, Cengage Publication, 2019 learning		
1	The Insider's Guide to the ARM7 Based Microcontrollers, Hitex Ltd., 1st edition, 2005.		

CIE Assessment:

Regular Lab work:20

Record writing :5

Lab Tests(Minimum 2 tests shall be conducted for 15 marks and average of two will be taken) Viva 10 marks

SEE Assessment:

Examinations will be conducted for 100 marks and scaled-down to 50 . The weightage shall be,
i. Writeup : 20 marks
ii. Conduction: 40 marks
iii. Analysis of results : 20 marks
iv. Viva: 20

CO-PO/PSO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
COI	3	3	2	-	3	3	-	-	3	-	3	2	1	-
CO2	3	3	2	-	3	3	-	-	3	-	3	2	2	2

High-3, Medium-2, Low- 1

Course Title	BALIKE KANNADA	Semester	IV
Course Code	MVJ19BK39	CIE	50
Total No. of Contact Hours	20	SEE	50
No. of Contact Hours/week	1 (L: T: P 1:0:0)	Total	100
Credits	1	Exam. Duration	3 Hrs

Course objective :This course will enable students to understand Kannada and communicate in Kannada language

- Vyavharika Kannada Parichaya (Introduction to Vyavharika kannada)
- Kannada Aksharamaale haagu uchcharane(Kannada Alphabets and Pronounciation.
- Sambhashanegaagi Kannada Padagalu (Kannada Vocubulary for Communication).
- Kannada Grammer in Conversations(Sambhasaneyalli Kannada Vyakarana)
- Activities in Kannada

CHAPTER-1

Vyavharika Kannada Parichaya (Introduction to Vyavharika kannada)
CHAPTER-2
Kannada Aksharamaale haagu uchcharane(Kannada Alphabets and Pronounciation
CHAPTER-3
Sambhashanegaagi Kannada Padagalu (Kannada Vocubulary for Communication)
CHAPTER-4
Kannada Grammer in Conversations(Sambhasaneyalli Kannada Vyakarana)
CHAPTER-5
Activities in Kannada

CIE Assessment:

CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation. Generally, there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of three tests

- Quizzes/mini tests (4 marks)
- Mini Project / Case Studies (8 Marks)
- Activities/Experimentations related to courses (8 Marks)

SEE Assessment:

i. Question paper for the SEE consists two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for
total of 20 marks covering the whole syllabus.
ii. Part B also covers the entire syllabus consisting of five questions having choices and may contain sub-divisions, each carrying 16 marks. Students have to answer five full questions.
iii. One question must be set from each unit. The duration of examination is 3 hours.

Course Title	SAMSKRUTHIKA KANNADA	Semester	IV
Course Code MVJ1 9SK39 CIE 50 Total No. of Contact Hours 20 SEE 50 No. of Contact Hours/week 1 (L: T: P 1:0:0) Total 100 Credits 1 Exam. Duration 3 Hrs			

Course Objective :This course will enable students to understand Kannada and communicate in Kannada language

- Samskruthika Kannada Parichaya (Introduction to Adalitha kannada)
- Kannada Kavyagala parichaya (Kannada D Ra Bendre, Siddalingaiha)
- Adalithdalli Kannada Padagalu (Kannada Kagunitha Balake, Patra Lekhana, Prabhandha)
- Kannada Computer Gnyana (Kannada Shabdha Sangraha, Computer Paribashika padagalu)
- Activities in Kannada.

CzsÁåAiÀÄ -1
PÀ£ÀßqÀ "sÁ $\mu E ́-$-ÀAQë¥ÀÛ «à̀̀gÀuÉ.
CzsÁåAiÀÄ -2

CzsÁåAiÀÄ -3

CzsÁåAiÀÄ -4

CzsÁåAiÀÄ -5
DqÅ½vA ¥ÀvÀæUÅ1/4ĂA.
CzsÁåAiÀÄ -6
, ÀPÁðgÀzÀ DzÉÃ \pm À ¥ÀvÀæUÀ $1 / 4$ ÀÄ
CzsÁåAiÀÄ -7
„ÀAQÃ¥ÀÛ ¥Àæ§AzsÀ gÀZÀ£É, ¥Àæ§AzsÀ ${ }^{\text {à ÀÄvÀÄÛ " } s A ́ \mu A ́ A v A ̀ g A ̀ ~}$
CzsÁåAiÀÄ -8

CzsÁåAiÀÄ -9
PÀA¥ÀÆålgï ${ }^{\text {OÁUÀÆ }{ }^{\text {áÀiÁ }} » W \text { vÀAvÀæeÁÕ£À }}$
CzsÁåAiÀÄ -10
 $¥ A ̀ z A ̀ \cup A ̀ 1 / 4 A ̀ A ̈$.

CIE Assessment:

CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation. Generally, there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of three tests

- Quizzes/mini tests (4 marks)
- Mini Project / Case Studies (8 Marks)
- Activities/Experimentations related to courses (8 Marks)

SEE Assessment:

i. Question paper for the SEE consists two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.
ii. Part B also covers the entire syllabus consisting of five questions having choices and may contain sub-divisions, each carrying 16 marks. Students have to answer five full questions.
iii. One question must be set from each unit. The duration of examination is 3 hours.

Course Title	ADDITIONAL MATHEMATICS- II	Semester	IV
Course Code	MVJ1 9MDSDIP41	CIE	50
Total No. of Contact Hours	40	SEE	50
No. of Contact Hours/week	4	Total	100
Credits	-	Exam. Duration	3 HOURS

Course objective is to: This course viz., aims to prepare the students:

To familiarize the important tools Linear Algebra, differential Calculus, Beta and Gamma functions, 3Dimentional Geometry and probability for analysing the engineering problems.

Module-1	$\mathrm{L} 1, \mathrm{~L} 2$	8 Hrs.

Linear Algebra:

Introduction, Rank of a matrix-echelon form. Solution of system of linear equations consistency. Gausselimination method and problems. Eigen values and Eigen vectors of square matrix of order two and Problems

Video Link:

- https://www.math.ust.hk/~machas/matrix-algebra-for-engineers.pdf
- https://nptel.ac.in/content/storage2/courses/122104018/node18.html

Module-2	$\mathrm{L} 1, \mathrm{~L} 2$	8 Hrs.

Differential calculus:

Tangent and normal, both Cartesian and polar forms. Increasing and decreasing functions, Maxima and Minima for a function of one variable. Point of inflections and Problems.

Beta and Gamma functions:

Beta and Gamma functions, Relation between Beta and Gamma function-simple problems.

Video Link

- https://www.youtube.com/watch?v=6RwOoPN2zqE
- https://www.youtube.com/watch?v=s6F5yjY6jWk\&list=PLMLsjhQWWIUqBoTCQDtYIlol -o-9hxpll
- http://tutorial.math.lamar.edu/Classes/DE/IntroPDE.aspx

Module-3
L1, L2
8 Hrs.

Analytical solid geometry :

Introduction Directional cosine and Directional ratio of a line, Equation of line in space- different forms, Angle between two line, shortest distance between two line, plane and equation of plane in different forms and problems.

Video Links:

- https://www.toppr.com/guides/maths/three-dimensional-geometry/
- https://www.toppr.com/quides/maths/three-dimensional-geometry/distance-between-skew-lines/

Module-4	$\mathrm{LI}, \mathrm{L} 2, \mathrm{~L} 3$	8 Hrs.

Probability:

Random variable, Discrete probability distribution, Mean and variance of Random Variable, Theoretical distribution- Binomial distribution, Mean and variance Binomial distribution -Problems. Poisson distribution as a limiting case of Binomial distribution, Mean and variance of Poisson distribution.

Normal Distribution-Basic properties of Normal distribution standard form of normal distribution and Problems

Video Links:

- https://nptel.ac.in/courses/111/105/111105041/
- https://www.mathsisfun.com/data/probability.html

Module-5	$\mathrm{L1}, \mathrm{~L} 2$	8 Hrs.

Partial Differential equation: Formation of PDE's by elimination of arbitrary constants and functions. Solution of non-homogeneous PDE by direct integration. Homogeneous PDEs involving derivative with respect to one independent variable only.
Video Link:

- http://tutorial.math.lamar.edu/Classes/DE/IntroPDE.aspx
- https://www.studyyaar.com/index.php/module-video/watch/233-cauchys-legendres-de-a-method-of- variation-of-parameters

Course Outcomes:

CO1	Apply the knowledge of Matrices to solve the system of linear equations and to understand the concepts of Eigen value and Eigen vectors for engineering problems.
CO2	Demonstrate various physical models, find Maxima and Minima for a function of one variable., Point of inflections and Problems .Understand Beta and Gamma function
CO3	Understand the 3-Dimensional geometry basic, Equation of line in space- different forms, Angle between two line and studying the shortest distance.
CO4	Concepts of Probability related to engineering applications.
CO5	Construct a variety of partial differential equations and solution by exact methods.

Reference Books:

1.

B.S. Grewal, "Higher Engineering Mathematics" Khanna Publishers, 43rd Edition, 2013.

2.	Erwin Kreyszig, "Advanced Engineering Mathematics", Wiley -India publishers, 10thedition,2014.													
3	Ramana B. V., "Higher Engineering Mathematics", Tata Mc Graw -Hill, 2006.													
4	G. B. Gururajachar: Calculus and Linear Algebra, Academic Excellent Series Publication, 2018-19													
CO-PO/PSO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	-	3	-	-	-	-	-	-	-	1	2	-
CO2	3	2	-	3	-	-	-	-	-	-	-	-	2	-
CO3	3	3	-	2	-	-	-	-	-	-	-	-	2	2
CO4	2	3	-	3	-	-	-	-	-	-	-	1	3	2
CO5	3	3	-	3	-	-	-	-	-	-	-	1	3	3

High-3, Medium-2, Low-1

