

MVJCE CURRICULUM

FOR

COMPUTER SCIENCE & ENGINEERING (Scheme 2019)

V SEMESTER

Course Title	TECHNICAL MANAGEMENT & ENTREPRENEURSHIP	Semester	05
Course Code	MVJ19TIM51	CIE	50

Total No. of Contact Hours	40	SEE	50
No. of Contact Hours/week	3 (L : T : P :: 3 : 0 : 0)	Total	100
Credits	3	Exam. Duration	3 Hours

Course objective is to:				
Describe the importance of management and functions of a manage	r.			
Explain the process of planning and organizing.				
Explain the requirements of direction, supervision and the method	ls of establishir	ng control.		
Identify the role of entrepreneurs in the economic development of	the nation and	recognize the		
• barriers of entrepreneurship.				
• Explain the importance of Intellectual property protection.				
Module-1	L1,L2, L3	Hours 8		
Management: importance of management, definition, management functio	ns, roles of a m	anager, levels		
of management, managerial skills, management and administration, management	anagement a s	cience or art,		
management a profession, professional management v/s family ma	nagement. De	velopment of		
management thought; Early classical approaches, Neo classical approaches	s, modern appro	oaches.		
Application: Enterprises				
Video Link: <u>https://www.youtube.com/watch?v=mub7Z8FI3ZU</u>				
Mođule-2	L1,L2, L3	Hours 8		
Planning: Nature, Importance of planning, forms, types of plans, steps	s in planning, l	limitations of		
planning, making planning effective, planning skills, strategic planning in In	dian industry.			
Organizing: Organization Meaning, process of organizing, span of management principles of				
organizing, Departmentation, organization structure, committees, teams.				
Application: Industry				
Video Link: <u>https://www.youtube.com/watch?v=pCUs3UKwYpc</u>				
Module-3	L1,L2, L3	Hours 8		
Direction and supervision: Requirements of effective direction, giving o	rders, motivati	on, job		
satisfaction, morale , organizational commitment, first level supervision or	front line supe	rvision.		
Controlling: Meaning and steps in controlling, Essential of a sound of	control system	, Methods of		
establishing control				
Application: Industry				
Video Link: <u>https://www.youtube.com/watch?v=MufenDkIR8E</u>				
Module-4	L1,L2, L3	Hours 8		
Entrepreneurship: Meaning of Entrepreneur; Evolution of the Concept, F	unctions of an I	Entrepreneur,		
Types of Entrepreneur, Entrepreneur an emerging Class. Concept of Ent	repreneurship	Evolution of		

Entrepreneurship, Development of Entrepreneurship, Stages in entrepreneurial process; Role of entrepreneurs in Economic Development; Entrepreneurship in India; Entrepreneurship its Barriers. Application: Industry

Video Link: https://www.youtube.com/watch?v=aozlwC3XwfY

Module-5L1,L2, L3Hours 8Introduction to IPR, origin and concepts of IPR, Concept of property, Forms of IP protection:Patents, copyrights, trademarks, designs, Trade secrets, Traditional knowledge, Geographicalindications. Basic concepts and historical background of patent system and law-National andinternational scenario (American & European Patent Regimes).Hours 8

Internat ional Treaties/Conventions on IPR: Paris Convention, Berne convention, Madrid agreement, Rome convention, World Intellectual Property Organization (WIPO), World Trade Organization, TRIPS

Agreement, Patent Co-operation Treaty

Application: Industry

Video Link: https://www.youtube.com/watch?v=hHQWCFE0J84

Practical Experiments:

Case study on Enterprises:

- Case study(Microsoft),
- Case study (Captain G R Gopinath),
- Case study(NR Narayana Murthy& Infosys)

Practical Sessions:

- Idea Generation and Opportunity Recognition
- Strategy and Business Model Analysis
- Formulation of Project

Course	Outcomes:
CO1	Describe the importance of management and functions of a manager.
CO2	Explain the process of planning and principles of organizing
CO3	Identify the role of entrepreneurs in the economic development of the nation.
CO4	Compare the different leadership styles.
CO5	Apply the ethical principles related to the intellectual property protection

Text B	ooks:
1	Management and Entrepreneurship , N V R Naidu ,T Krishna Rao 4th reprint.
	Law relating to Intellectual Property rights , B. L. Wadhera, 5th edition, Universal Law
2	Publishing, 2011
Refere	nce Books:
1	Principles of Management, P C Tripathi, P N Reddy, 5th edition, TataMcGraw Hill, 2012

Dynamics of Entrepreneurial Development & Management, Vasant Desai, Himalaya publishing house, 2009

CIE Assessment:

CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation. Generally, there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of three tests

- Quizzes/mini tests (4 marks)
- Mini Project / Case Studies (8 Marks)
- Activities/Experimentations related to courses (8 Marks)

SEE Assessment:

- i. Question paper for the SEE consists two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.
- Part B also covers the entire syllabus consisting of five questions having choices and may contain sub-divisions, each carrying 16 marks. Students have to answer five full questions.
- iii. One question must be set from each unit. The duration of examination is 3 hours.

						CO-I	PO/PSC) Mapp	ing					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C01	2	-	-	-	-	2	2	-	-	-	2	-	-	-
CO2	2	-	-	-	-	2	2	-	-	-	2	-	-	-
CO3	2	-	-	-	-	2	2	-	-	-	2	-	-	2
CO4	2	-	-	-	-	2	-	-	2	-	2	-	-	-
CO5	2	-	-	-	-	2	-	2	-	-	2	-	1	-

High-3, Medium-2, Low-1

Course Title	DATABASE MANAGEMENT SYSTEM	Semester	05
Course Code	MVJ19CS52	CIE	50
Total No. of Contact Hours	50	SEE	50
No. of Contact Hours/week	4 (L : T : P :: 3 : 2 : 0)	Total	100
Credits	4	Exam. Duration	3 Hours

2

Course objective is to: This course will enable students to

- Provide a strong foundation in database concepts, technology, and practice.
- Practice SQL programming through a variety of database problems.
- Demonstrate the use of concurrency and transactions in database.
- Design and build database applications for real world problems.

Module-1	L1,L2, L3	Hours 10

Introduction to Databases: Introduction; An example; characteristics of the database approach; actors on the scene; workers behind the scene; advantages of using the DBMS approach; A brief history of database Applications; when Not to use a DBMS.

Overview of Database Languages and Architectures: Data Models, Schemas, and Instances. Three schema architecture and data independence, database languages, and interfaces, The Database System environment.

Modelling using Entities and Relationships: Entity types, Entity sets, attributes, roles, and structural constraints, Weak entity types, ER diagrams, examples.

Laboratory Sessions/ Experimental learning: Draw ER diagram for database applications (logical database design).

Applications: Library Management system, Banking, Universities and colleges, credit card transactions, social media sites, Telecommunications, Finance, Military, online shopping, Human Resource Management, Manufacturing, Airline Reservation systems.

Video link / Additional online information (related to module if any):

- https://nptel.ac.in/courses/106106093/
- https://nptel.ac.in/courses/106105175/
- https://www.youtube.com/watch?v=WSNqcYqByFk

Module-2	L1,L2, L3	Hours 10
Relational Model: Relational Model Concepts, Relational Model Constra	ints and relation	onal database

schemas, Update operations, dealing with constraint violations.

Relational Algebra: Unary and Binary relational operations, additional relational operations (aggregate, grouping, etc.) Examples of Queries in relational algebra.

Mapping Conceptual Design into a Logical Design: Relational Database Design using ER-to-Relational mapping.

SQL: SQL data definition and data types, specifying constraints in SQL, retrieval queries in SQL, INSERT, DELETE, and UPDATE statements in SQL.

Laboratory Sessions/ Experimental learning: programs to perform set operations, arithmetic operations, joins, selection, projection, create tables for real world db applications and insert values to it.

 <u>https://nptel.ac.in/courses/106106093/</u> <u>https://nptel.ac.in/courses/106105175/</u> <u>Module-3</u> L1,L2, L3 <u>Hours 10</u> SQL: Advances Queries: More complex SQL retrieval queries, Specifying constraints as assertions and action triggers, Views in SQL, Schema change statements in SQL. Database Application Development: Accessing databases from applications, An introduction to JDBC, JDBC classes and interfaces, SQLJ, Stored procedures, Embedded SQL. Laboratory Sessions/ Experimental learning: Mini-projects to develop connections between front end and backend(database) using JDBC. Write SQL queries for the given schema. Applications: Java Programming, In Server to reduce network traffic and to provide security(Stored procedure) Video link / Additional online information (related to module if any): <u>https://www.youtube.com/watch?v=64szTfLNu30</u> <u>https://www.digimat.in/nptel/courses/video/106105175/L11.html</u> Motule-4 L1,L2,L3 Hours 10 Normalization: Database Design Theory Introduction to Normalization using Functional and Multivalued Dependencies: Informal design guidellnes for relation schema, Functional Dependencies, Normal Forms based on Primary Keys, Second and Third Normal Forms, Boyce-Codd Normal Form, Multivalued Dependencies: Informal dependencies, Armstrong's axioms for FD's, closure of a set of FD's, minimal covers. Laboratory Sessions/ Experimental learning: Draw schema diagram which satisfy all forms of normalization for all db real world application <u>https://inptel.ac.in/courses/106106093/</u> <u>https://inptel.ac.in/courses/106106093/</u> <u>https://inptel.ac.in/courses/106106093/</u> <u>https://www.youtube.com/watch?v=YD8dhOmuVnY</u> <u>Module-5</u> L1,L2,L3	Video link / Additional online information (related to module if any):	ine web apprica	
 https://nptel.ac.in/courses/106105175/ Module-3 L1,L2, L3 Hours 10 SQL: Advances Queries: More complex SQL retrieval queries, Specifying constraints as assertions and action triggers, Views in SQL, Schema change statements in SQL. Database Application Development: Accessing databases from applications, An introduction to JDBC, JDBC classes and interfaces, SQLJ, Stored procedures, Embedded SQL. Laboratory Sessions/ Experimental learning: Mini-projects to develop connections between front end and backend(database) using JDBC. Write SQL queries for the given schema. Applications: Java Programming, In Server to reduce network traffic and to provide security(Stored procedure) Video link / Additional online information (related to module if any): https://www.youtube.com/watch?v=64szTfLNu30 https://www.digimat.in/nptel/courses/video/106105175/L11.html Module-4 L1,L2, L3 Hours 10 Normalization: Database Design Theory Introduction to Normalization using Functional and Multivalued Dependencies: Informal design guidelines for relation schema, Functional Dependencies, Normal Forms based on Primary Keys, Second and Third Normal Forms, Boyce-Codd Normal Form, Multivalued Dependency and Fourth Normal Form, Join Dependencies and Fifth Normal Form, Multivalued Dependency and Fourth Normal Form, Join Dependencies and Fifth Normal Form. Laboratory Sessions/ Experimental learning: Draw schema diagram which satisfy all forms of normalization for all db real world application Applications: to optimize database design Video link / Additional online information (related to module if any): https://nptel.ac.in/courses/106105093/. https://nptel.ac.in/courses/106106093/. https://	• https://nptel.ac.in/courses/106106093/		
Module-3 L1,L2,L3 Hours 10 SQL: Advances Queries: More complex SQL retrieval queries, Specifying constraints as assertions and action triggers, Views in SQL, Schema change statements in SQL. Database Application Development: Accessing databases from applications, An introduction to JDBC, JDBC classes and interfaces, SQLJ, Stored procedures, Embedded SQL. Laboratory Sessions/ Experimental learning: Mini-projects to develop connections between front end and backend(database) using JDBC. Write SQL queries for the given schema. Applications: Java Programming, In Server to reduce network traffic and to provide security(Stored procedure) Video link / Additional online information (related to module if any): • https://www.digimat.in/nptel/courses/video/106105175/L11.html Module-4 L1,L2, L3 Hours 10 Normalization: Database Design Theory Introduction to Normalization using Functional and Multivalued Dependencies: Informal design guidelines for relation schema, Functional Dependencies, Normal Forms based on Primary Keys, Second and Third Normal Forms, Boyce-Codd Normal Form, Multivalued Dependency and Fourth Normal Form, Join Dependencies and Fifth Normal Form. Dependency theory - functional dependencies, Armstrong's axioms for FD's, closure of a set of FD's, minimal covers. Laboratory Sessions/ Experimental learning: Draw schema diagram which satisfy all forms of normalization for all db real world application Applications: to optimize database design Video link / Additional online information (related to module if any):	https://nptel.ac.in/courses/106105175/		
SQL: Advances Queries: More complex SQL retrieval queries, Specifying constraints as assertions and action triggers, Views in SQL, Schema change statements in SQL. Database Application Development: Accessing databases from applications, An introduction to JDBC, JDBC classes and interfaces, SQLJ, Stored procedures, Embedded SQL. Laboratory Sessions/ Experimental learning: Mini–projects to develop connections between front end and backend(database) using JDBC. Write SQL queries for the given schema. Applications: Java Programming, In Server to reduce network traffic and to provide security(Stored procedure) Video link / Additional online information (related to module if any): • https://www.voutube.com/watch?v=64szTfLNu30 • https://www.digimat.in/nptel/courses/video/106105175/L11.html Module=4 L1,L2,L3 Hours 10 Normalization: Database Design Theory Introduction to Normalization using Functional and Multivalued Dependencies: Informal design guidelines for relation schema, Functional Dependencies, Normal Forms based on Primary Keys, Second and Third Normal Forms, Boyce-Codd Normal Form, Dupendency functional dependencies, Armstrong's axioms for FD's, closure of a set of FD's, minimal covers. Laboratory Sessions/ Experimental learning: Draw schema diagram which satisfy all forms of normalization for all db real world application Applications: to optimize database design Video link / Additional online information (related to module if any): • https://nptel.ac.in/courses/106106093/ • https:/	Module-3	L1,L2, L3	Hours 10
action triggers, Views in SQL, Schema change statements in SQL. Database Application Development: Accessing databases from applications, An introduction to JDBC, JDBC classes and interfaces, SQLJ, Stored procedures, Embedded SQL. Laboratory Sessions/ Experimental learning: Mini–projects to develop connections between front end and backend(database) using JDBC. Write SQL queries for the given schema. Applications: Java Programming, In Server to reduce network traffic and to provide security(Stored procedure) Video link / Additional online information (related to module if any): • https://www.digimat.in/nptel/courses/video/106105175/L11.html Module-4 Normalization: Database Design Theory Introduction to Normalization using Functional and Multivalued Dependencies: Informal design guidelines for relation schema, Functional Dependencies, Normal Forms based on Primary Keys, Second and Third Normal Forms, Boyce-Codd Normal Form, Multivalued Dependency and Fourth Normal Form, Join Dependencies and Fifth Normal Form. Dependency theory – functional dependencies, Armstrong's axioms for FD's, closure of a set of FD's, minimal covers. Laboratory Sessions/ Experimental learning: Draw schema diagram which satisfy all forms of normalization is to optimize database design Video link / Additional online information (related to module if any): • https://nptel.ac.in/courses/106106093/ • https://nptel.ac.in/courses/106105175/ • https	SQL: Advances Queries: More complex SQL retrieval queries, Specifying co	onstraints as a	ssertions and
statements in SQL. Database Application Development: Accessing databases from applications, An introduction to JDBC, JDBC classes and interfaces, SQLJ, Stored procedures, Embedded SQL. Laboratory Sessions/ Experimental learning: Mini–projects to develop connections between front end and backend(database) using JDBC. Write SQL queries for the given schema. Applications: Java Programming, In Server to reduce network traffic and to provide security(Stored procedure) Video link / Additional online information (related to module if any): https://www.youtube.com/watch?v=64szTfLNu30 https://www.youtube.com/watch?v=64szTfLNu30 https://www.digimat.in/nptel/courses/video/106105175/L11.html Module-4 L1,L2,L3 Hours 10 Normalization: Database Design Theory Introduction to Normalization using Functional and Multivalued Dependencies: Informal design guidelines for relation schema, Functional Dependencies, Normal Forms based on Primary Keys, Second and Third Normal Forms, Boyce-Codd Normal Form, Multivalued Dependency and Fourth Normal Form, Join Dependencies and Fifth Normal Form, Multivalued Dependency and Fourth Normal Form, Join Dependencies and Fifth Normal Form, Dependency theory – functional dependencies, Armstrong's axioms for FD's, closure of a set of FD's, minimal covers. Laboratory Sessions/ Experimental learning: Draw schema diagram which satisfy all forms of normalization for all db real world application Applications: to optimize database design Video link / Additional online information (related to module if any): https://nptel.ac.in/courses/106106093/ https://nptel.ac.in/courses/106105175/_ https://nptel.ac.in/courses/106105175/_ https://nptel.ac.in/courses/106105175/_ https://nptel.ac.in/courses/106105175/_ https://nptel.ac.in/courses/106105175/_ https://nptel.ac.in/courses/106105175/_ https://nptel.ac.in/courses/106105175/_ https:/	action triggers, Views in SQL, Schema change		
Database Application Development: Accessing databases from applications, An introduction to JDBC, JDBC classes and interfaces, SQLJ, Stored procedures, Embedded SQL. Laboratory Sessions/ Experimental learning: Mini-projects to develop connections between front end and backend(database) using JDBC. Write SQL queries for the given schema. Applications: Java Programming, In Server to reduce network traffic and to provide security(Stored procedure) Video link / Additional online information (related to module if any): https://www.voutube.com/watch?v=64szTfLNu30 https://www.digimat.in/nptel/courses/video/106105175/L11.html Module-4 L1,L2,L3 Hours 10 Normalization: Database Design Theory Introduction to Normalization using Functional and Multivalued Dependencies: Informal design guidelines for relation schema, Functional Dependencies, Normal Forms based on Primary Keys, Second and Third Normal Forms, Boyce-Codd Normal Form, Multivalued Dependency and Fourth Normal Form, Join Dependencies and Fifth Normal Form. Dependency theory – functional dependencies, Armstrong's axioms for FD's, closure of a set of FD's, minimal covers. Laboratory Sessions/ Experimental learning: Draw schema diagram which satisfy all forms of normalization for all db real world application Applications: to optimize database design Video link / Additional online information (related to module if any): https://nptel.ac.in/courses/106105175/ https://nptel.ac.in/courses/106105175/ https://nptel.ac.in/courses/106105175/ <t< td=""><td>statements in SQL.</td><td></td><td></td></t<>	statements in SQL.		
JDBC classes and interfaces, SQLJ, Stored procedures, Embedded SQL. Laboratory Sessions/ Experimental learning: Mini-projects to develop connections between front end and backend(database) using JDBC. Write SQL queries for the given schema. Applications: Java Programming, In Server to reduce network traffic and to provide security(Stored procedure) Video link / Additional online information (related to module if any): https://www.youtube.com/watch?v=64szTfLNu30 https://www.digimat.in/nptel/courses/video/106105175/L11.html Module-4 L1,L2,L3 Hours 10 Normalization: Database Design Theory Introduction to Normalization using Functional and Multivalued Dependencies: Informal design guidelines for relation schema, Functional Dependencies, Normal Forms based on Primary Keys, Second and Third Normal Forms, Boyce-Codd Normal Form, Multivalued Dependency and Fourth Normal Form, Join Dependencies and Fifth Normal Form, Multivalued Dependency and Fourth Normal Form, Join Dependencies and Fifth Normal Forms, Isoparatory Sessions/ Experimental learning: Draw schema diagram which satisfy all forms of normalization for all db real world application Applications: to optimize database design Video link / Additional online information (related to module if any): https://nptel.ac.in/courses/106105175/ https://nptel.ac.in/courses/106105175/ https://nptel.ac.in/courses/106105175/ https://nptel.ac.in/courses/106105175/ https://nptel.ac.in/courses/106105175/ https://nptel.ac.in/courses/106105175/ https://nptel.ac.in/cou	Database Application Development: Accessing databases from application	s, An introducti	on to JDBC,
Laboratory Sessions/ Experimental learning: Mini-projects to develop connections between front end and backend(database) using JDBC. Write SQL queries for the given schema. Applications: Java Programming, In Server to reduce network traffic and to provide security(Stored procedure) Video link / Additional online information (related to module if any): https://www.youtube.com/watch?v=64szTfLNu30 https://www.digimat.in/nptel/courses/video/106105175/L11.html Module-4 L1,L2,L3 Hours 10 Normalization: Database Design Theory Introduction to Normalization using Functional and Multivalued Dependencies: Informal design guidelines for relation schema, Functional Dependencies, Normal Forms based on Primary Keys, Second and Third Normal Forms, Boyce-Codd Normal Form, Multivalued Dependency and Fourth Normal Form, Join Dependencies and Fifth Normal Form. Dependency theory – functional dependencies, Armstrong's axioms for FD's, closure of a set of FD's, minimal covers. Laboratory Sessions/ Experimental learning: Draw schema diagram which satisfy all forms of normalization for all db real world application Applications: to optimize database design Video link / Additional online information (related to module if any): https://nptel.ac.in/courses/106105175/ https://nptel.ac.in/courses/106105175/ https://nptel.ac.in/courses/106105175/ https://metel.ac.in/courses/106105175/ https://metel.ac.in/courses/106105175/ https://metel.ac.in/course	JDBC classes and interfaces, SQLJ, Stored procedures, Embedded SQL.		
end and backend(database) using JDBC. Write SQL queries for the given schema. Applications: Java Programming, In Server to reduce network traffic and to provide security(Stored procedure) Video link / Additional online information (related to module if any): https://www.youtube.com/watch?v=64szTfLNu30 https://www.digimat.in/nptel/courses/video/106105175/L11.html Module-4 L1,L2, L3 Hours 10 Normalization: Database Design Theory Introduction to Normalization using Functional and Multivalued Dependencies: Informal design guidelines for relation schema, Functional Dependencies, Normal Forms based on Primary Keys, Second and Third Normal Forms, Boyce-Codd Normal Form, Multivalued Dependency and Fourth Normal Form, Join Dependencies and Fifth Normal Form. Dependency theory – functional dependencies, Armstrong's axioms for FD's, closure of a set of FD's, minimal covers. Laboratory Sessions/ Experimental learning: Draw schema diagram which satisfy all forms of normalization for all db real world application Applications: to optimize database design Video link / Additional online information (related to module if any): https://nptel.ac.in/courses/106105175/ https://nptel.ac.in/courses/1	Laboratory Sessions/ Experimental learning: Mini-projects to develop	p connections	between front
Applications: Java Programming, In Server to reduce network traffic and to provide security(Stored procedure) Video link / Additional online information (related to module if any): https://www.youtube.com/watch?v=64szTfLNu30 https://www.digimat.in/nptel/courses/video/106105175/L11.html Module-4 L1,L2,L3 Hours 10 Normalization: Database Design Theory Introduction to Normalization using Functional and Multivalued Dependencies: Informal design guidelines for relation schema, Functional Dependencies, Normal Forms based on Primary Keys, Second and Third Normal Forms, Boyce-Codd Normal Form, Multivalued Dependency and Fourth Normal Form, Join Dependencies and Fifth Normal Form. Dependency theory – functional dependencies, Armstrong's axioms for FD's, closure of a set of FD's, minimal covers. Laboratory Sessions/ Experimental learning: Draw schema diagram which satisfy all forms of normalization for all db real world application Applications: to optimize database design Video link / Additional online information (related to module if any): https://nptel.ac.in/courses/106106093/ https://mptel.ac.in/courses/106105175/ https://www.youtube.com/watch?v=YD8dhOmuVnY Module-5 L1,L2,L3 Hours 10 Transaction Processing: Introduction to Transaction Processing, Transaction and System concepts, Desirable properties of Transactions, Characterizing schedules based on recoverability, Characterizing schedules based on Serializability, Transaction support in SQL	end and backend(database) using JDBC. Write SQL queries for the given sch	iema.	
procedure) Video link / Additional online information (related to module if any): https://www.youtube.com/watch?v=64szTfLNu30 https://www.digimat.in/nptel/courses/video/106105175/L11.html Module-4 L1,L2,L3 Hours 10 Normalization: Database Design Theory Introduction to Normalization using Functional and Multivalued Dependencies: Informal design guidelines for relation schema, Functional Dependencies, Normal Forms based on Primary Keys, Second and Third Normal Forms, Boyce-Codd Normal Form, Multivalued Dependency and Fourth Normal Form, Join Dependencies and Fifth Normal Form. Dependency theory – functional dependencies, Armstrong's axioms for FD's, closure of a set of FD's, minimal covers. Laboratory Sessions/ Experimental learning: Draw schema diagram which satisfy all forms of normalization for all db real world application Applications: to optimize database design Video link / Additional online information (related to module if any): https://nptel.ac.in/courses/106106093/ https://nptel.ac.in/courses/106105175/ https://nptel.ac.in/courses/106105175/ https://nptel.ac.in/courses/106105175/ https://nptel.ac.in/courses/106105175/ https://nptel.ac.in/courses/106105175/ https://nptel.ac.in/courses/106105175/ https://nptel.ac.in/courses/106105175/ https://nptel.ac.in/courses/106105175/ htttps://nptel.ac.in/courses/106105175/	Applications: Java Programming, In Server to reduce network traffic an	d to provide se	ecurity(Stored
Video link / Additional online information (related to module if any): • https://www.digimat.in/nptel/courses/video/106105175/L11.html Module-4 L1,L2, L3 Hours 10 Normalization: Database Design Theory Introduction to Normalization using Functional and Multivalued Dependencies: Informal design guidelines for relation schema, Functional Dependencies, Normal Forms based on Primary Keys, Second and Third Normal Forms, Boyce-Codd Normal Form, Multivalued Dependency and Fourth Normal Form, Join Dependencies and Fifth Normal Form. Dependency theory - functional dependencies, Armstrong's axioms for FD's, closure of a set of FD's, minimal covers. Laboratory Sessions/ Experimental learning: Draw schema diagram which satisfy all forms of normalization for all db real world application Applications: to optimize database design Video link / Additional online information (related to module if any): • https://nptel.ac.in/courses/106106093/ • https://www.youtube.com/watch?v=YD8dhOmuVny Module-5 L1,L2,L3 Hours 10 Transaction Processing: Introduction to Transaction Processing, Transaction and System concepts, Desirable properties of Transactions, Characterizing schedules based on recoverability, Characterizing schedules based on serializability, Transaction support in SQL.	procedure)		
 https://www.youtube.com/watch?v=64szTfLNu30 https://www.digimat.in/nptel/courses/video/106105175/L11.html Module-4 L1,L2, L3 Hours 10 Normalization: Database Design Theory Introduction to Normalization using Functional and Multivalued Dependencies: Informal design guidelines for relation schema, Functional Dependencies, Normal Forms based on Primary Keys, Second and Third Normal Forms, Boyce–Codd Normal Form, Multivalued Dependency and Fourth Normal Form, Join Dependencies and Fifth Normal Form. Dependency theory – functional dependencies, Armstrong's axioms for FD's, closure of a set of FD's, minimal covers. Laboratory Sessions/ Experimental learning: Draw schema diagram which satisfy all forms of normalization for all db real world application Applications: to optimize database design Video link / Additional online information (related to module if any): https://nptel.ac.in/courses/106105175/ https://ourses/106105175/ https://ntel.ac.in/courses/106105175/ https://ntel.ac.in/courses/106105175/ https://ntel.ac.in/courses/information processing, Transaction and System concepts, Desirable properties of Transactions, Characterizing schedules based on recoverability, Characterizing schedu	Video link / Additional online information (related to module if any):		
https://www.digimat.in/nptel/courses/video/106105175/L11.html Module-4 L1,L2,L3 Hours 10 Normalization: Database Design Theory Introduction to Normalization using Functional and Multivalued Dependencies: Informal design guidelines for relation schema, Functional Dependencies, Normal Forms based on Primary Keys, Second and Third Normal Forms, Boyce-Codd Normal Form, Multivalued Dependency and Fourth Normal Form, Join Dependencies and Fifth Normal Form. Dependency theory – functional dependencies, Armstrong's axioms for FD's, closure of a set of FD's, minimal covers. Laboratory Sessions/ Experimental learning: Draw schema diagram which satisfy all forms of normalization for all db real world application Applications: to optimize database design Video link / Additional online information (related to module if any):	https://www.youtube.com/watch?v=64szTfLNu3o		
Module-4 L1,L2, L3 Hours 10 Normalization: Database Design Theory Introduction to Normalization using Functional and Multivalued Dependencies: Informal design guidelines for relation schema, Functional Dependencies, Normal Forms based on Primary Keys, Second and Third Normal Forms, Boyce-Codd Normal Form, Multivalued Dependency and Fourth Normal Form, Join Dependencies and Fifth Normal Form. Dependency theory - functional dependencies, Armstrong's axioms for FD's, closure of a set of FD's, minimal covers. Laboratory Sessions/ Experimental learning: Draw schema diagram which satisfy all forms of normalization for all db real world application Applications: to optimize database design Video link / Additional online information (related to module if any): https://nptel.ac.in/courses/106106093/ https://mptel.ac.in/courses/106105175/ https://www.youtube.com/watch?v=YD8dhOmuVnY Module-5 L1,L2, L3 Hours 10 Transaction Processing: Introduction to Transaction Processing, Transaction and System concepts, Desirable properties of Transactions, Characterizing schedules based on recoverability, Characterizing schedules based on Serializability, Transaction support in SQL.	 <u>https://www.digimat.in/nptel/courses/video/106105175/L11.html</u> 	-	
Normalization: Database Design Theory Introduction to Normalization using Functional and Multivalued Dependencies: Informal design guidelines for relation schema, Functional Dependencies, Normal Forms based on Primary Keys, Second and Third Normal Forms, Boyce–Codd Normal Form, Multivalued Dependency and Fourth Normal Form, Join Dependencies and Fifth Normal Form. Dependency theory – functional dependencies, Armstrong's axioms for FD's, closure of a set of FD's, minimal covers. Laboratory Sessions/ Experimental learning: Draw schema diagram which satisfy all forms of normalization for all db real world application Applications: to optimize database design Video link / Additional online information (related to module if any): • https://nptel.ac.in/courses/106105175/ • https://mesing: Introduction to Transaction Processing: Transaction and System concepts, Desirable properties of Transactions, Characterizing schedules based on recoverability, Characterizing schedules based on Serializability, Transaction support in SQL.	Module-4	L1,L2, L3	Hours 10
Multivalued Dependencies: Informal design guidelines for relation schema, Functional Dependencies, Normal Forms based on Primary Keys, Second and Third Normal Forms, Boyce–Codd Normal Form, Multivalued Dependency and Fourth Normal Form, Join Dependencies and Fifth Normal Form. Dependency theory – functional dependencies, Armstrong's axioms for FD's, closure of a set of FD's, minimal covers. Laboratory Sessions/ Experimental learning: Draw schema diagram which satisfy all forms of normalization for all db real world application Applications: to optimize database design Video link / Additional online information (related to module if any): <u>https://nptel.ac.in/courses/106106093/</u> <u>https://nptel.ac.in/courses/106105175/</u> <u>https://www.youtube.com/watch?v=YD8dhOmuVnY</u> Module-5 L1,L2,L3 Hours 10 Transaction Processing: Introduction to Transaction Processing, Transaction and System concepts, Desirable properties of Transactions, Characterizing schedules based on recoverability, Characterizing schedules based on Serializability, Transaction support in SQL.	Normalization: Database Design Theory Introduction to Normaliz	ation using F	unctional and
Normal Forms based on Primary Keys, Second and Third Normal Forms, Boyce-Codd Normal Form, Multivalued Dependency and Fourth Normal Form, Join Dependencies and Fifth Normal Form. Dependency theory – functional dependencies, Armstrong's axioms for FD's, closure of a set of FD's, minimal covers. Laboratory Sessions/ Experimental learning: Draw schema diagram which satisfy all forms of normalization for all db real world application Applications: to optimize database design Video link / Additional online information (related to module if any): • https://nptel.ac.in/courses/106106093/ • https://nptel.ac.in/courses/106105175/ • https://module-5 Transaction Processing: Introduction to Transaction Processing, Transaction and System concepts, Desirable properties of Transactions, Characterizing schedules based on recoverability, Characterizing schedules based on Serializability, Transaction support in SQL.	Multivalued Dependencies: Informal design guidelines for relation schem	a, Functional I	Dependencies,
Multivalued Dependency and Fourth Normal Form, Join Dependencies and Fifth Normal Form. Dependency theory – functional dependencies, Armstrong's axioms for FD's, closure of a set of FD's, minimal covers. Laboratory Sessions/ Experimental learning: Draw schema diagram which satisfy all forms of normalization for all db real world application Applications: to optimize database design Video link / Additional online information (related to module if any): <u>https://nptel.ac.in/courses/106106093/</u> <u>https://nptel.ac.in/courses/106105175/</u> <u>https://www.youtube.com/watch?v=YD8dhOmuVnY</u> Module-5 L1,L2, L3 Hours 10 Transaction Processing: Introduction to Transaction Processing, Transaction and System concepts, Desirable properties of Transactions, Characterizing schedules based on recoverability, Characterizing schedules based on Serializability, Transaction support in SQL.	Normal Forms based on Primary Keys, Second and Third Normal Forms	s, Boyce–Codd	Normal Form,
Dependency theory – functional dependencies, Armstrong's axioms for FD's, closure of a set of FD's, minimal covers. Laboratory Sessions/ Experimental learning: Draw schema diagram which satisfy all forms of normalization for all db real world application Applications: to optimize database design Video link / Additional online information (related to module if any): • https://nptel.ac.in/courses/106106093/ • https://nptel.ac.in/courses/106105175/ • https://www.youtube.com/watch?v=YD8dhOmuVnY Module-5 Transaction Processing: Introduction to Transaction Processing, Transaction and System concepts, Desirable properties of Transactions, Characterizing schedules based on recoverability, Characterizing schedules based on Serializability, Transaction support in SQL.	Multivalued Dependency and Fourth Normal Form, Join Dependencie	es and Fifth	Normal Form.
minimal covers. Laboratory Sessions/ Experimental learning: Draw schema diagram which satisfy all forms of normalization for all db real world application Applications: to optimize database design Video link / Additional online information (related to module if any): <u>https://nptel.ac.in/courses/106106093/</u> <u>https://nptel.ac.in/courses/106105175/</u> <u>https://www.youtube.com/watch?v=YD8dhOmuVnY</u> Module-5 L1,L2,L3 Hours 10 Transaction Processing: Introduction to Transaction Processing, Transaction and System concepts, Desirable properties of Transactions, Characterizing schedules based on recoverability, Characterizing schedules based on Serializability, Transaction support in SQL.	Dependency theory – functional dependencies, Armstrong's axioms for l	FD's, closure o	f a set of FD's,
Laboratory Sessions/ Experimental learning: Draw schema diagram which satisfy all forms of normalization for all db real world application Applications: to optimize database design Video link / Additional online information (related to module if any): • https://nptel.ac.in/courses/106106093/ • https://nptel.ac.in/courses/106105175/ • https://www.youtube.com/watch?v=YD8dhOmuVnY Module-5 L1,L2, L3 Hours 10 Transaction Processing: Introduction to Transaction Processing, Transaction and System concepts, Desirable properties of Transactions, Characterizing schedules based on recoverability, Characterizing schedules based on Serializability, Transaction support in SQL.	minimal covers.		
normalization for all db real world application Applications: to optimize database design Video link / Additional online information (related to module if any): <u>https://nptel.ac.in/courses/106106093/</u> <u>https://nptel.ac.in/courses/106105175/</u> <u>https://www.youtube.com/watch?v=YD8dhOmuVnY</u> Module-5 L1,L2, L3 Hours 10 Transaction Processing: Introduction to Transaction Processing, Transaction and System concepts, Desirable properties of Transactions, Characterizing schedules based on recoverability, Characterizing schedules based on Serializability, Transaction support in SQL.	Laboratory Sessions/ Experimental learning: Draw schema diagram	n which satisf	y all forms of
Applications: to optimize database design Video link / Additional online information (related to module if any): • https://nptel.ac.in/courses/106106093/ • https://nptel.ac.in/courses/106105175/ • https://www.youtube.com/watch?v=YD8dhOmuVnY Module=5 L1,L2,L3 Hours 10 Transaction Processing: Introduction to Transaction Processing, Transaction and System concepts, Desirable properties of Transactions, Characterizing schedules based on recoverability, Characterizing schedules based on Serializability, Transaction support in SQL.	normalization for all db real world application		
Video link / Additional online information (related to module if any): • https://nptel.ac.in/courses/106106093/ • https://nptel.ac.in/courses/106105175/ • https://nptel.ac.in/courses/106105175/ • https://www.youtube.com/watch?v=YD8dhOmuVnY Module-5 L1,L2,L3 Transaction Processing: Introduction to Transaction Processing, Transaction and System concepts, Desirable properties of Transactions, Characterizing schedules based on recoverability, Characterizing schedules based on Serializability, Transaction support in SQL.	Applications: to optimize database design		
 <u>https://nptel.ac.in/courses/106106093/</u> <u>https://nptel.ac.in/courses/106105175/</u> <u>https://www.youtube.com/watch?v=YD8dhOmuVnY</u> <u>Module-5</u> <u>L1,L2, L3</u> <u>Hours 10</u> <u>Transaction Processing:</u> Introduction to Transaction Processing, Transaction and System concepts, Desirable properties of Transactions, Characterizing schedules based on recoverability, Characterizing schedules based on Serializability, Transaction support in SQL. 	Video link / Additional online information (related to module if any):		
 <u>https://nptel.ac.in/courses/106105175/</u> <u>https://www.youtube.com/watch?v=YD8dhOmuVnY</u> <u>Module-5</u> <u>L1,L2,L3</u> <u>Hours 10</u> <u>Transaction Processing:</u> Introduction to Transaction Processing, Transaction and System concepts, Desirable properties of Transactions, Characterizing schedules based on recoverability, Characterizing schedules based on Serializability, Transaction support in SQL. 	 <u>https://nptel.ac.in/courses/106106093/</u> 		
https://www.youtube.com/watch?v=YD8dhOmuVnY Module-5 L1,L2, L3 Hours 10 Transaction Processing: Introduction to Transaction Processing, Transaction and System concepts, Desirable properties of Transactions, Characterizing schedules based on recoverability, Characterizing schedules based on Serializability, Transaction support in SQL.	https://nptel.ac.in/courses/106105175/		
Module-5L1,L2, L3Hours 10Transaction Processing: Introduction to Transaction Processing, Transaction and System concepts, Desirable properties of Transactions, Characterizing schedules based on recoverability, Characterizing schedules based on Serializability, Transaction support in SQL.Hours 10	https://www.youtube.com/watch?v=YD8dhOmuVnY		
Transaction Processing: Introduction to Transaction Processing, Transaction and System concepts, Desirable properties of Transactions, Characterizing schedules based on recoverability, Characterizing schedules based on Serializability, Transaction support in SQL.	Module-5	L1,L2, L3	Hours 10
Desirable properties of Transactions, Characterizing schedules based on recoverability, Characterizing schedules based on Serializability, Transaction support in SQL.	Transaction Processing: Introduction to Transaction Processing, Trans	action and Sys	stem concepts,
schedules based on Serializability, Transaction support in SQL.	Desirable properties of Transactions, Characterizing schedules based on r	ecoverability,	Characterizing
	schedules based on Serializability, Transaction support in SQL.		

Concurrency control based on Timestamp ordering.

File Organizations and Indexes: Introduction, Hashing techniques, Indexing, Structures for Files.

Laboratory Sessions/ Experimental learning: Develop banking and other financial applications.

Applications: systems that manage sales order entry, airline reservations, payroll, employee records,

manufacturing, and shipping. Operating system(deadlock)

Video link / Additional online information (related to module if any):

- https://nptel.ac.in/courses/106106093/
- https://nptel.ac.in/courses/106105175/
- https://www.youtube.com/watch?v=5ammL5KU4mo

Course	Outcomes:
	Identify, analyse and define database objects, enforce integrity constraints on a database using
C01	RDBMS.
CO2	Use Structured Query Language (SQL) for database manipulation.
CO3	Design and build simple database systems.
CO4	Apply the concepts of Normalization and design database which possess no anomalies.
CO5	Develop application to interact with databases.

Text B	Text Books:			
	Fundamentals of Database Systems, Ramez Elmasri and Shamkant B. Navathe, 7th Edition,			
1	2017, Pearson			
2	Database management systems, Ramakrishnan, and Gehrke, 3rd Edition, 2014, McGraw Hill			

Refere	Reference Books:						
	Silberschatz Korth and Sudharshan, Database System Concepts, 6th Edition, McGrawHill,						
1	2013.						
	Database Principles Fundamentals of Design, Implementation and Management,						
2	Cengage Learning 2012.						

CIE Assessment:

CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation. Generally, there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of three tests

- Quizzes/mini tests (4 marks)
- Mini Project / Case Studies (8 Marks)
- Activities/Experimentations related to courses (8 Marks)

SEE Assessment:

- i. Question paper for the SEE consists two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.
- Part B also covers the entire syllabus consisting of five questions having choices and may contain sub-divisions, each carrying 16 marks. Students have to answer five full questions.
- iii. One question must be set from each unit. The duration of examination is 3 hours.

						CO-F	PO/PSC) Mapp	ing					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	3	3	2	3	-	-	-	1	-	-	2	2	-
CO2	3	3	3	2	2	-	-	-	1	-	-	2	1	-
CO3	3	3	3	2	2	-	-	-	1	-	-	2	2	2
CO4	2	3	3	2	2	-	-	-	1	-	-	2	2	3
CO5	2	3	3	3	3	-	-	-	2	-	-	2	_	1

High-3, Medium-2, Low-1

Course Title	COMPUTER NETWORKS	Semester	05
Course Code	MVJ19CS53	CIE	50
Total No. of Contact Hours	50	SEE	50
No. of Contact Hours/week	4 (L : T : P :: 3 : 2 : 0)	Total	100
Credits	4	Exam. Duration	3 Hours

Course objective is to: *This course will enable students*

- Understand the protocol layering and physical level communication.
- Analyze the performance of a network.
- Understand the various components required to build different networks.
- Learn the functions of network layer and the various routing protocols.

Familiarize the functions and protocols of the Transport layer. L1,L2, L3 Hours 10 Module-1 **INTRODUCTION AND PHYSICAL LAYER** : Networks Network Types Protocol Layering TCP/IP Protocol suite OSI Model Physical Layer: Performance Transmission media Switching Circuitswitched Networks Packet Switching. Video link / Additional online information (related to module if any): ٠ http://www.nptelvideos.in/2012/11/computer-networks.html Module-2 L1,L2, L3 Hours 10 DATA-LINK LAYER & MEDIA ACCESS: Introduction Link-Layer Addressing DLC Services Data-Link Layer Protocols HDLC PPP – Media Access Control – Wired LANs: Ethernet – Wireless LANs Introduction IEEE 802.11, Bluetooth Connecting Devices. Video link / Additional online information (related to module if any): http://www.nptelvideos.in/2012/11/computer-networks.html L1.L2.L3 Hours 10 Module-3 NETWORK LAYER : Network Layer Services Packet switching Performance IPV4 Addresses Forwarding of IP Packets - Network Layer Protocols: IP, ICMP v4 Unicast Routing Algorithms Protocols Multicasting Basics IPV6 Addressing IPV6 Protocol. Video link / Additional online information (related to module if any): ٠ http://www.nptelvideos.in/2012/11/computer-networks.html Module-4 L1,L2, L3 Hours 10 **TRANSPORT LAYER** : Introduction Transport Layer Protocols Services Port Numbers User Datagram Protocol Transmission Control Protocol SCTP. Video link: <u>http://www.nptelvideos.in/2012/11/computer-networks.html</u> L1,L2, L3 Hours 10 Module-5 **APPLICATION LAYER**: WWW and HTTP FTP Email Telnet SSH DNS SNMP. ٠ link:http://www.nptelvideos.in/2012/11/computer-networks.html Video **Course Outcomes:** Understand the basic layers and its functions in computer networks. C01 Evaluate the performance of a network. CO2 Understand the basics of how data flows from one node to another. CO3 Analyze and design routing algorithms. CO4

	Design protocols for various functions in the network and Understand the working of various
COS	application layer protocols.

Text B	ooks:
1	Behrouz A. Forouzan, Data Communications and Networking, Fifth Edition TMH, 2013.
2	Larry L. Peterson, Bruce S. Davie, Computer Networks: A Systems Approach, Fifth Edition,
	Morgan Kaufmann Publishers Inc., 2012.
2	William Stallings, Data and Computer Communications, Tenth Edition, Pearson Education,
3	2013.

Refere	Reference Books:					
1	Nader F. Mir, Computer and Communication Networks, Second Edition, Prentice Hall, 2014.					
2	Ying–Dar Lin, Ren–Hung Hwang and Fred Baker, Computer Networks: An Open Source Approach, McGraw Hill Publisher, 2011.					
3	James F. Kurose, Keith W. Ross, Computer Networking, A Top–Down Approach Featuring the Internet, Sixth Edition, Pearson Education, 2013.					

CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation. Generally, there

will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of three tests

- Quizzes/mini tests (4 marks)
- Mini Project / Case Studies (8 Marks)
- Activities/Experimentations related to courses (8 Marks)

SEE Assessment:

Question paper for the SEE consists two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.

Part B also covers the entire syllabus consisting of five questions having choices and may contain subdivisions, each carrying 16 marks. Students have to answer five full questions.

One question must be set from each unit. The duration of examination is 3 hours.

CO-PO/PSO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	-	-	-	1	-	-	-	-	-	-	2	-	-

CO2	3	3	3	-	-	-	-	-	1	-	1	2	1	-
CO3	2	2	2	1	3	-	-	-	-	-	1	3	-	1
CO4	3	2	3	-	-	-	-	-	-	2	3	2	-	-
CO5	3	2	3	-	-	-	-	-	-	2	3	2	2	-

Course Title	WEB PROGRAMMING	Semester	05
Course Code	MVJ19CS54	CIE	50
Total No. of Contact Hours	40	SEE	50
No. of Contact Hours/week	3 (L : T : P :: 3 : 0 : 0)	Total	100
Credits	3	Exam. Duration	3 Hours

Course objective is to: This course will enable students to							
• Understand different kind of Internet Technologies.							
• Learn java–specific web services architecture							
• understand the SQL and JDBC							
• Learn the AJAX and JSON.							
Module-1	L1,L2, L3	Hours 8					

Website Basics, HTML5, CSS 3, Web 2.0:Web Essentials: Clients, Servers and Communication, The Internet, Basic Internet protocols, World wide web, HTTP Request Message, HTTP Response Message, Web Clients, Web Servers, HTML5 : Tables, Lists, Image, HTML5 control elements, Semantic elements, Drag and Drop, Audio, Video controls, CSS3: Inline, embedded and external style sheets, Rule cascading, Inheritance, Backgrounds, Border Images, Colours, Shadows, Text, Transformations. Laboratory Sessions/ Experimental learning: Create a simple website with following effects on Text and images 1. Add Background image/s 2. Colors effect. 3. Shadows and transformation. Real Time Applications: Animation website Video link / Additional online information (related to module if any): • https://youtu.be/FPtLsZ62pdA . https://nptel.ac.in/courses/106/106/106106222/ https://youtu.be/vCo6p7zrbt4 https://nptel.ac.in/courses/106/106/106106223 Module-2 L1,L2, L3 Hours 8 Client side Programming: An Introduction to java Script, JavaScript DOM Model, Date and Object, Regular Expression, Exception Handling, Validation, Built-in Objects, Event Handling, DHTML with JavaScript, JSON introduction, Syntax, Function Files, Http Request, SQL. Laboratory Sessions/ Experimental learning: • SQL and DOM model creation in website as created in module 1. Real Time Applications: Students results / Application form in online Video link / Additional online information (related to module if any): • https://nptel.ac.in/courses/106/105/106105084/ https://youtu.be/uUhOEj4z8Fo (NPTEL) https://youtu.be/3uxp7mqUlfk (NPTEL) ۰ https://youtu.be/tfPfwDrfSP8 (NPTEL) Module-3 L1,L2, L3 Hours 8 Server Side Programming: Java Servlet Architecture, Servlet Life Cycle, Form GET and POST actions, Session handling, Installing and Configuring Apache Tomcat Web Server, Database Connectivity: JDBC perspectives, JDBC Program Example, JSP: Understanding Java server page, JSP Standard Tag Library (JSTL), Creating HTML form using JSP Code. Laboratory Sessions/ Experimental learning: Write a servlet program to display a message "Welcome to Java World" and deploy the process using GET and POST actions.

Real Time Applications:	Online ordering using any E–Commerce site.		
Video link / Additional o	online information (related to module if any):		
• https://nptel.ac.in/co	ourses/106/105/106105224/		
• https://youtu.be/Je	5qfWtQ54Ig		
• https://nptel.ac.in/co	ourses/106/105/106105084/		
Module-4		L1,L2, L3	Hours 8
PHP and XML: Introduct	ion to PHP, PHP using PHP, Variables, Program	n Control, Built	–in Functions,
Form Validation, Basic co	mmand with PHP examples, Connection to serve	r, creating Data	base, Selecting
Database, Listing Databas	e, listing table names Creating a table, Inserting	data, deleting d	lata and tables,
altering tables. XML: Doci	ument type definition, XML Schema DOM and pre	esenting XML, X	ML Parser and
Validations, XSL and XSL	Γ Transformation.		
Laboratory Sessions/ Ex	perimental learning:		
Design, Develop and Impl	ement a student/Employee table and perform t	he following op	erations using
PHP.			
1. Insert a row			
2. Delete a row			
3. Alter the table.			
Video link:			
https://youtu.be/X	IryaovT_3k		
http://www.digimat.i	n/nptel/courses/video/106106127/L49.html		
http://www.nptelvid	eos.in/2012/11/internet-technologies.html		
Module-5		L1,L2, L3	Hours 8
AJAX and Web Services	: AJAX: Ajax client server architecture, Xml HT	TP request ob	ject, Call back
methods. Advanced Javas	Script and jQuery, JavaScript Pseudo–Classes, j(Query Foundat	ions, Web
Services: Introduction, Ja	wa web services Basics, Creating, Publishing, T	esting and Des	cribing a web
services, Database driven	web service from an application, SOAP.		
Laboratory Sessions/ Ex	perimental learning:		
 jQuery process an 	d AJAX services.		
Video link/Lecturer/Tu	torials:		
• https://www.w3scho	ools.com/xml/ajax_intro.asp (Practical examples))	
• https://youtu.be/jl	MdHE4qInU4		
• https://youtu.be/F	BDHe5T7qul		
Course Outcomes:			
CO1 Learn web essen	tials, HTML5 and CSS3.		
CO2 Understand abou	t Client side programming, DHTML and JSON		
I			

CO3	Comprehend server side programming and JSP.
CO4	Learn PHP, functions, and XML.
CO5	Analyse the concepts of AJAX and web servies.

Text Books:

	Jean-Paul Tremblay & Paul G. Sor Deitel and Deitel and Nieto,Internet and World Wide								
1	Web, How to Program, Prentice Hall, 5th Edition, 2011.								
	Randy Connolly, Ricardo Hoar, "Fundamentals of Web Development",1stEditi	on,							
2	Pearson Education India. (ISBN:978–9332575271)								
	Robert W. Sebesta, Programming the World W	ïde							
3	Web, 8thEdition, University of Colorado, Colorado Springs. ©2015 Pearson								

Refere	nce Books:
1	Stephen Wynkoop and John Burke Running a Perfect Website , QUE, 2nd Edition, 1999.
	Chris Bates, Web Programming Building Intranet Applications, 3rd Edition, Wiley
2	publications, 2009.
	Jeffrey C and Jackson, Web Technologies A Computer Science Perspective , Pearson
3	Education, 2011.
4	UttamK.Roy, Web Technologiesl, Oxford University Press, 2011
5	Gopalan N.P. and Akilandeswari J., Web Technology, Prentice Hall of India, 2011.

CIE Assessment:

CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation. Generally, there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of three tests

- Quizzes/mini tests (4 marks)
- Mini Project / Case Studies (8 Marks)
- Activities/Experimentations related to courses (8 Marks)

SEE Assessment:

- Question paper for the SEE consists two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.
- Part B also covers the entire syllabus consisting of five questions having choices and may contain sub-divisions, each carrying 16 marks. Students have to answer five full questions.
- iii. One question must be set from each unit. The duration of examination is 3 hours.

	CO-PO/PSO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	-	1	-	-	-	-	-	-	2	1	-
CO2	3	3	3	-	1	-	-	-	1	-	1	2	3	-
CO3	2	2	2	1	3	-	-	-	-	-	1	3	-	-
CO4	3	2	3	-	2	-	-	-	-	2	3	2	1	-
CO5	3	2	3	-	3	-	-	-	-	2	3	2	3	2

High-3, Medium-2, Low-1

Course Title	THEORY OF COMPUTATION	Semester	05
Course Code	MVJ19CS551	CIE	50
Total No. of Contact Hours	40	SEE	50
No. of Contact Hours/week	3 (L : T : P :: 3 : 0 : 0)	Total	100
Credits	3	Exam. Duration	3 Hours

Course objective is: This course will enable students

- To have a knowledge of regular languages and context free languages. •
- To have an understanding of finite state and pushdown automata. ۰
- To make a study of the programming capabilities of Turing machines. •

Module-1	L1,L2, L3	Hours 8				
Finite Automata: Mathematical preliminaries and notations -Central concepts of automata theory -Finite						
automata –Deterministic Finite Automata – Nondeterministic Finite Automata –Equivalence of DFA and NFA						
Finite Automata with Epsilon transitions – Application of FA						
Video link / Additional online information (related to module if any	y):					
 https://nptel.ac.in/courses/106/105/106105196/ 						
Module-2	L2 ,L3	Hours 8				
Regular Expressions: Regular languages: Regular Expressions – Finite Automata and Regular Expressions –						

Applications of Regular Expressions – Regular Grammars.

2

Video link / Additional online information (related to module if any):

۰. ۱. ۱. s://www.voutube.com/watch?v=048FY3HK7

• h [·]	ttps://www.youtube.com/watch?v=OA8EY3HKZoc		
Module-	3	L1,L2, L3	Hours 8
Regular	Languages: Properties of regular languages: Pumping lemm	ma for regular langu	ages Closure
propertie	es of regular languages Equivalence and Minimization of Finite	e Automata. C	
Video lin	k / Additional online information (related to module if any	/) :	
• h	ttps://www.youtube.com/watch?v=ganHwe4DU7A		
Module-	4	L1,L2, L3	Hours 8
Context	Free Grammar: Context Free languages: Context Free Gram	mars Parse Trees	– Ambiguity in
Grammaı	rs and languages Applications of Context Free Grammar	rs Pushdown auto	omata (PDA)
Language	es of a PDA Equivalence of PDA's and CFG's		
Video lin	k / Additional online information (related to module if any	/) :	
• ht	ttps://www.youtube.com/watch?v=FjGrU7vczyg		
• h [.]	ttps://www.youtube.com/watch?v=b3OPI5wS4AQ		
Module-	5	L1,L2, L3	Hours 8
Context l	Free Languages: Properties of Context Free Languages: Norma	l Forms (CNF, GNF) f	or Context Free
Grammar	_s – Pumping lemma for CFL's – Closure properties of CFL		
Turing M	lachines: Turing Machines – Simple examples.		
Video lin	k / Additional online information (related to module if any	/):	
• h [.]	ttps://www.youtube.com/watch?v=IhyEGNn-7Uo		
Course O	utcomes:		
CO1	Design Finite automata for different Problems		
CO2	Understand about Regular Expressions		
CO3	Apply pumping lemma to Regular languages and Context Free	alanguages	
CO4	Design Push down automata and write CFG for different prob	lems	
CO5	Analyze the properties of Context free languages and Turing	Machine	
L]
Text Boo	ks:		
	J.E.Hopcroft, R.Motwani and J.D Ullman," Introduction	to Automata Theo	ory, Languages
1	Computations", 3rd Edition, Pearson Education, 2011		

Referenc	e Books:									
1	H.R.Lewis and C	C.H.Papadimitriou,	"Elements	of the	theory	of	Computation",	2nd	Edition,	Pear

J.Martin, "Introduction to Languages and the Theory of Computation", 3rd Edition, TMH, 2007.

	Education/PHI, 2003
2	Micheal Sipser, —Theory and Computatio, 7th Edition, Thomson Course Technology, 2008
3	http://nptel.iitm.ac.in

CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation. Generally, there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of three tests

- Quizzes/mini tests (4 marks)
- Mini Project / Case Studies (8 Marks)
- Activities/Experimentations related to courses (8 Marks)

SEE Assessment:

- i. Question paper for the SEE consists two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.
- ii. Part B also covers the entire syllabus consisting of five questions having choices and may contain
 - sub-divisions, each carrying 16 marks. Students have to answer five full questions.
- iii. One question must be set from each unit. The duration of examination is 3 hours.

	CO-PO/PSO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	1	-	-	1	-	-	-	-	-	-	1	2
CO2	3	3	1	-	-	1	-	-	-	-	-	-	2	-
CO3	3	3	1	-	-	1	-	-	-	-	-	-	2	-
CO4	3	3	1	-	-	1	-	-	-	-	-	-	-	-
CO5	3	3	1	-	-	1	-	-	-	-	-	-	2	-

Course Title	SOFTWARE TESTING	Semester	05
Course Code	MVJ19CS552	CIE	50
Total No. of Contact Hours	40	SEE	50
No. of Contact Hours/week	3 (L : T : P :: 3 : 0 : 0)	Total	100
Credits	3	Exam. Duration	3 Hours

Course objective is to: This course will enable students to

- Introduce Testing Concepts and Evolution.
- Explain Testing Strategies and their usage.
- Discuss the levels of testing.
- Introduce Organizational features and Policies of Testing.
- Discuss the Quality related issue.

Module-1	L1,L2, L3	Hours 8
_		

Introduction: Basic definitions-software testing principles- Role of tester- testing as a process-Overview of Testing maturity model- Defects -Hypothesis and tests.

Laboratory Sessions/ Experimental learning: Study Experiment for automated Testing Tool-Selenium

Applications: ATM, Banking Applications

Video link / Additional online information :

What is Software Testing & Why Testing is important?				
 https://www.youtube.com/watch?v=Y7Wg4508tHo 				
Roles and Responsibilities of a Software Tester.				
 https://www.youtube.com/watch?v=t5jJ4bNJ4kw 				
Module-2	L1,L2, L3	Hours 8		

Strategies and Methods for Test Case Design I: Introduction to Testing Design Strategies– The Smart Tester– Test Case Design Strategies– Using the Black Box Approach to Test Case Design – Random Testing– Equivalence Class Partitioning– Boundary Value Analysis (BVA) – An Example of the Application of Equivalence Class Partitioning and Boundary Value Analysis– Other Black Box Test Design Approaches: Cause–and–Effect Graphing– State Transition Testing – Error Guessing– Black Box Testing and Commercial Off–the–Shelf Components (COTS)– Black Box Methods and TMM Level 2 Maturity Goals

Laboratory Sessions/ Experimental learning:

- Design and develop a program in a language of your choice to solve the triangle problem defined as follows: Accept three integers which are supposed to be the three sides of triangle and determine if the three values represent an equilateral triangle, isosceles triangle, scalene triangle, or they do not form a triangle at all. Derive test cases for your program based on boundary value analysis, execute the test cases and discuss the results.
- Generate test cases using Black box testing technique to Calculate Standard Deduction on Taxable Income. The standard deduction is higher for tax payers who are 65 or older or blind. Use the method given below to calculate tax.
- The first factor that determines the standard deduction is the filing status. The basic standard deduction for the various filing status are: Single \$4,750 Married, filing a joint return \$9,500 Married, filing a separate return \$7,000
- If a married couple is filing separate returns and one spouse is not taking standard Deduction, the other spouse also is not eligible for standard deduction.
- An additional \$1,000 is allowed as standard deduction, if either the filer is 65 yrs or the spouse is 65 yrs or older (the latter case applicable when the filing status is "Married" and filing "joint").
- An additional \$1,000 is allowed as standard deduction, if either the filer is blind or the spouse is blind (the latter case applicable when the filing status is "married" and filing "joint").

Applications: Mobile Applications , Health Care devices such as Glucose meter

Video link / Additional online information :

Black Box Testing Techniques

- https://www.youtube.com/watch?v=7T4DGEXht40
- https://www.softwaretestinghelp.com/black-box-testing/

Equivalence Partitioning with real time example

 https://www.youtube.com/watch?v=A9oBq8ZYv9A 	
Boundary Value Analysis with real time example	
 https://www.youtube.com/watch?v=21wOCNHsSU4 	
State Transition Testing	
 https://www.youtube.com/watch?v=4ie2C12LBXg 	
Error Guessing	
 <u>https://www.javatpoint.com/error-guessing-technique-in-black-box-testing</u> 	
Module-3 L1,L2, L3 Hours	8
Strategies and Methods for Test Case Design II: Using the White Box Approach to Test Design-T	est
Adequacy Criteria - Coverage and Control Flow Graphs - Covering Code Logic - Paths: Their Role	e in
White Box Based Test Design - Additional White Box Test Design Approaches : Data Flow and W	hite
Box Test Design –Loop Testing – Mutation Testing – Evaluating Test Adequacy Criteria – White Testing Methods and the TMM	Box
Laboratory Sessions/ Experimental learning:	
Study Experiment for White Box Testing Tools	
Applications: Automobile Industry, Air Craft Manufacturing	
Video link / Additional online information :	
White Box testing	
 https://www.youtube.com/watch?v=3bJcvBLJViQ&feature=emb_logo 	
 https://www.geeksforgeeks.org/software-engineering-white-box-testing/ 	
Control Flow Testing	
https://www.youtube.com/watch?v=1ukIXIRovX4	
Basis Path Testing NPTEL Video	
 https://www.voutube.com/watch?v=TAFhCV721tY 	
Data Flow and Mutation Testing:	
 https://www.youtube.com/watch?v=RR_nEUtwbBA 	
Module–4 L1,L2, L3 Hours	8
Levels of testing- Phase-I: The Need for Levels of Testing: Levels of Testing and Software Developme	ent
Paradigms - Unit Test: Functions, Procedures, Classes, and Methods as Units - Unit Test: The Need	for
Preparation – Unit Test Planning – Designing the Unit Tests – The Class as a Testable Unit: Spe	cial
Considerations - The Test Harness - Running the Unit Tests and Recording Results- Integration T	est:
Goals - Integration Strategies for Procedures and Functions - Integration Strategies for Classe	s –
Designing Integration Tests – Integration Test Planning	
Laboratory Sessions/ Experimental learning:	
• Take any System(e.g ATM System) and study its system specifications and report the varie	ous
bugs.	

Study of automated tools used in Unit Testing					
Applications: Lap Top Manufacturing, Washing Machine					
Video link / Additional online information :					
Unit Testing					
 https://www.guru99.com/unit-testing-guide.html 					
 https://www.youtube.com/watch?time_continue=7&v=lj5nnGa_Dlw&feature=emb_logo 					
Integration Testing					
 https://www.guru99.com/integration-testing.html 					
Module-5 L1,L2, L3 Hours 8					
Levels of testing- Phase-II: System Test: The Different Types : Functional Testing - Performance					
Testing - Stress Testing - Configuration Testing - Security Testing - Recovery Testing - Regression					
Testing – Alpha, Beta, and Acceptance Tests – Summary Statement on Testing Levels – The Special Ro					
of Use Cases –Levels of Testing and the TMM					
Laboratory Sessions/ Experimental learning:					
Perform the steps involved in Acceptance Testing					
Applications: TV Manufacturing, Microwave Oven Manufacturing					
Video link / Additional online information :					
Functional Testing					
 https://www.guru99.com/functional-testing.html 					
 https://www.youtube.com/watch?v=Ue1xPKnZY 					
Regression Testing					
https://www.youtube.com/watch?v=4MtsWBxCPHw					
Course Outcomes:					
CO1 Recall the role of tester and their functionalities.					
CO2 Apply mathematical logic for testing					
Communicate effectively with developers and other stakeholders					
CO4 Choose appropriate testing strategies to perform unit and integration test					
Choose appropriate testing strategies to perform System test					
Text Books					
Ilene Burnstein Practical Software Testing Springer Verlag International Edition					

Refere	nce Books:
1	NareshChauhan, Software Testing Principles and Practices,Oxford University Press, 2013.

1

Springer (India) Pvt Ltd, 2012

Edward Kit Software Testing in the Real World – Improving the Process, Pearson Education, 1995

CIE Assessment:

CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation. Generally, there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of three tests

- Quizzes/mini tests (4 marks)
- Mini Project / Case Studies (8 Marks)
- Activities/Experimentations related to courses (8 Marks)

SEE Assessment:

- i. Question paper for the SEE consists two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.
- Part B also covers the entire syllabus consisting of five questions having choices and may contain sub-divisions, each carrying 16 marks. Students have to answer five full questions.
- iii. One question must be set from each unit. The duration of examination is 3 hours.

	CO-PO/PSO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	1	1	-	1	1	2	-	- 1	-	-	-	-	-
CO2	3	3	3	3	2	-	-	-	-	-	-	-	3	2
CO3	1	-	-	1	1	-	2	3	3	3	3	-	-	-
CO4	3	3	2	2	2	-	-	-	-	-	-	3	1	-
CO5	3	3	3	3	3	2	-	-	3	3	3	3	1	-

Course Title	LAW FOR ENGINEERS	Semester	05
Course Code	MVJ19CS553	CIE	50
Total No. of Contact Hours	40	SEE	50
No. of Contact Hours/week	3 (L : T : P :: 3 : 0 : 0)	Total	100
Credits	3	Exam. Duration	3 Hours

Course objective is to: This course will enable students to

- Outline the commercial context for engineering processes and business models that are socially responsible and environmentally sustainable.
- Channelize thinking towards basic understanding of the legal concepts and its implications for engineers.
- Acquaint with latest intellectual property rights and innovation environment with related regulatory framework.

Module-1	L1,L2, L3	Hours 8				
Origin of Environmental Law, Concept of Pollution Sources of Pollution, Types of Pollution, a						
Effects of pollution. Nature and Scope of Environmental Law Importance. Case Study.						
Application: Environmental Law:						
Video Link:https://www.digimat.in/nptel/courses/video/110106	5081/L01.html					
Module-2	L1,L2, L3	Hours 8				
Provisions of various labor laws – workmen's compensation Act	1923; Disablement	, Total Permanent				
disablement, Temporary disablement, Formula for compensation	ation; Minimum v	vages act, 1948;				
Payment of bonus act, 1965; Weekly holidays Act, 1942; Paym	ent of wages Act,	1936; employees				
Insurance Act, 1948.						
Application: Labour Law						
Video Link:https://www.digimat.in/nptel/courses/video/110106	5081/L01.html					

Modul	e-3	L1,L2, L3	Hours 8			
A b	rief introduction to criminal liability of Engineers as per the Inc	lian Penal Code.				
Ар	plication: Indian Penal Code					
Vid	eo Link:https://www.digimat.in/nptel/courses/video/11010	6081/L01.html				
Modul	e-4	L1,L2, L3	Hours 8			
IPF	and Law of Torts: Definition, categories of torts, Breach	of Duty and Dam	ages. Concept of			
Pro	operty, Types of Property; Introduction to IPR; Types of IPI	R: Copyrights, Pate	ents, Trademarks,			
De	signs, Trade Secrets, Plant Varieties and Geographical Ind	ications; Infringen	nent of IPRs and			
Rei	nedies available under the Indian Law.					
Ар	plication: IPR					
Vid	eo Link:https://www.digimat.in/nptel/courses/video/110106	5081/L01.html				
Modul	e-5	L1,L2, L3	Hours 8			
Bus	siness Organizations and E– Governance: Sole Traders, Partne	erships: Companies	s: The Company's			
Act	: Introduction, Formation of a Company, Memorandum of A	Association, Article	es of Association,			
Pro	spectus, Shares, Directors, General Meetings and Proceedings,	Auditor, Winding	up. E–Governance			
and	l role of engineers in E–Governance, Need for reformed engine	eering serving at th	e Union and State			
lev	el, Role of I.T. professionals in Judiciary, Problem of Alienat	ion and Secession	ism in few states			
cre	ating hurdles in Industrial development.					
Applic	ations: G2C, G2B,G2G					
Video	link / Additional online information (related to module if a	ny):				
• ht	tps://www.digimat.in/nptel/courses/video/110105083/	L01.html				
Course	e Outcomes:					
CO1	Enumerate the principles of sustainable development.					
CO2	Discuss the significance of various legislations pertaining to engineers					
CO3	Understand legal systems relevant for engineering:					
CO4	Understand codes of conduct, conflicts of interest and other ethical dilemmas					
CO5	Correlate role of engineers with different organizations and governance models					
	1					
Text B	ooks:					
-	B.S. Patil, Legal Aspects of Building and Engineering Contract	S				

1	B.S. Patil, Legal Aspects of Building and Engineering Contracts
2	Ratanlal and Dhirajlal&: The Law of Torts.

Re	ference Books:
1	S. Shantha Kumar– Introduction to Environmental Law.
2	Cornish W. R. (2008), Intellectual Property Rights, Patents, Trademarks, Copyrights & Allied Rights, Sweet & Maxwell
3	Madhavan Pillai – Labour and Industrial Laws.
4	Handbook on e-Governance Project Lifecycle, Department of Electronics & Information Technology, Government of India, <u>https://www.meity.gov.in/writereaddata/files/eGovernance_Project_Lifecycle_Participant_Handbook-5Day_CourseV1_20412.pdf</u>

CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation. Generally, there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of three tests

- Quizzes/mini tests (4 marks)
- Mini Project / Case Studies (8 Marks)
- Activities/Experimentations related to courses (8 Marks)

SEE Assessment:

- i. Question paper for the SEE consists two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.
- Part B also covers the entire syllabus consisting of five questions having choices and may contain sub-divisions, each carrying 16 marks. Students have to answer five full questions.
- iii. One question must be set from each unit. The duration of examination is 3 hours.

	CO-PO/PSO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	2	3	3	2	-	-	-	-	3	-	-
CO2	3	2	2	2	3	3	2	-	-	-	-	3	1	-
CO3	3	2	2	1	3	3	2	-	-	-	-	3	1	-
CO4	3	2	2	2	3	3	2	-	-	-	-	3	2	3
CO5	3	2	2	1	3	3	2	-	-	-	-	3	1	-

High-3, Medium-2, Low-1

Course Title	PARALLEL AND DISTRIBUTED SYSTEMS	Semester	05
Course Code	MVJ19CS554	CIE	50
Total No. of Contact Hours	40	SEE	50
No. of Contact Hours/week	5 (L : T : P :: 3 : 0 : 0)	Total	100
Credits	3	Exam. Duration	3 Hours

Course objective is to: This course will enable students to

• Understand the architecture of parallel systems and identify the scope for parallelism in **present** day's processors.

Prerequisites: Basics of Computer Organisation

Module-1	L1,L2, L3	Hours 8						
Introduction to Parallel Computing: Motivating Parallelism, Scope of Parallel Computing. Parallel								
Programming Platforms: Trends in microprocessor architectures - li	mitations of m	emory system						
performance parallel computing platforms communication costs in par	allel machines	routing						
mechanisms for interconnection networks.								
Video link / Additional online information (related to module if any):								
• https://nptel.ac.in/courses/106/102/106102114/								
Module-2	L1,L2, L3	Hours 8						
Principles of Parallel Algorithm Design: Preliminaries decomposition	n techniques o	haracteristics						
of tasks and interactions mapping techniques for load balancing metho	ds for containi	ng interaction						
overheads parallel algorithm models.								
Basic Communication Operations: One-to-all broadcast and all-to-one r	eduction all-t	o-all broadcast						
reduction all -reduce and prefix-sum operations scatter and gather all-to -all personalized communication circular shift improving the speed of some communication operation								
Video link / Additional online information (related to module if any):								
• https://nptel.ac.in/courses/106/102/106102114/								
Module-3	L1,L2 ,L3	Hours 8						
Examples of Distributed Systems Trends in Distributed Systems F	ocus on resour	ce sharing						

Challenges. Case study: World Wide Web.

Video link / Additional online information (related to module if any):

• https://nptel.ac.in/courses/106/102/106102114/

Module-4L1,L2,L3Hours 8System ModelInter process Communicationthe API for internet protocolsExternal datarepresentation and Multicast communication. Network virtualization:Overlay networks. Case study:MPI Remote Method Invocation And Objects:Remote InvocationIntroductionProtocolsRemote procedure callRemote method invocation. Case study:Java RMI.

Video link / Additional online information (related to module if any):

• https://nptel.ac.in/courses/106/106/106106168/

Module-5				L1	L2 ,L3,	Н	ours 8
Peer-to-peer Systems	Introduction	Napster and its legacy	Peer-to-	-peer	Middlew	are	Routing

overlays. Overlay case studies: Pastry, Tapestry.

Distributed File Systems Introduction File service architecture Andrew File system.

Video link / Additional online information (related to module if any):

• https://nptel.ac.in/courses/106/106/106106168/

Course	Course Outcomes:					
C01	Acquire the skills to implement software effectively and efficiently on parallel hardware platforms					
CO2	Discuss trends in Distributed Systems.					
CO3	Apply network virtualization.					
CO4	Apply remote method invocation and objects.					
CO5	Differentiate the file systems.					

Text B	ooks:
	Ananth Grama, Anshul gupta, George Karypis and Vipin Kumar, "Introduction to Parallel
1	Computing", Pearson Education, Second edition, 2004
	Pradeep K Sinha, "Distributed Operating Systems: Concepts and Design", Prentice Hall of India,
2	2007.

Reference Books:						
1	M.J. Quinn, "Parallel Computing – Theory and Practice", McGraw–Hill, 1994.					
2	Tanenbaum A.S., Van Steen M., "Distributed Systems: Principles and Paradigms", Pearson Education, 2007.					

CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation. Generally, there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of three tests

- Quizzes/mini tests (4 marks)
- Mini Project / Case Studies (8 Marks)
- Activities/Experimentations related to courses (8 Marks)

SEE Assessment:

- i. Question paper for the SEE consists two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.
- ii. Part B also covers the entire syllabus consisting of five questions having choices and may contain sub-divisions, each carrying 16 marks. Students have to answer five full questions.
- iii. One question must be set from each unit. The duration of examination is 3 hours.

						CO-F	PO/PSC) Марр	ing					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	3	2	1	-	-	-	2	2	-	-	-
CO2	3	3	3	3	2	1	-	-	-	2	2	-	-	-
CO3	3	3	3	3	2	1	-	-	-	2	2	-	2	1
CO4	3	3	3	3	2	1	-	-	-	2	2	-	2	1
CO5	3	3	3	3	2	1	-	-	-	2	2	-	1	-

Course	e Title	DATABASE MANAGEMENT SYSTEM LABORATORY	Semeste	r	05				
Course	e Code	MVJ19SCSL56	CIE	50					
Total I	No. of Contact Hours	30	SEE	50					
No. of	Contact Hours/week	3(L : T : P :: 0 : 2 : 2)	Total	100					
Credit	s	2	Exam. Du	uration	3 Hours				
Course	e objective is to: <i>The stud</i>	lents will be able to							
•	Foundation knowledge in	database concepts, technology and	practice to g	groom stude	nts into				
	well- informed database	application developers.							
٠	Strong practice in SQL pro	ogramming through a variety of da	abase probl	ems.					
٠	Develop database applicat	ions using front-end tools and back	k−end DBMS.						
S No	Experiment Name			RBT Leve	l Hours				
1	The following relation	is keep track of airline flight info	ormation:						
	FLIGHTS (no: integer,	from: string, to: string, distance: i	nteger,						
	Departs: time, arrives: t	ime, price: real)							
	AIRCRAFT (aid: integer	, aname: string, cruisingrange: inte	ger)						
	CERTIFIED (eid: intege	r, aid: integer)							
	EMPLOYEES (eid: intege	er, ename: string, salary: integer)							
	Note that the Employee	es relation describes pilots and ot	ner kinds of						
	employees as well; eve	ry pilot is certified for some aircra	ft, and only						
	pilots are certified to fly	. Write each of the following queri	es in SQL.						
	i. Find the names of a them have salaries mo	ircraft such that all pilots certified re than Rs.80. 000.	to operate						
	ii. For each pilot who	is certified for more than three ai	rcrafts, find						
	the eid and the maxim	um cruising range of the aircraft fo	r which she						
	or he is certified.			L3	3				
	iii. Find the names of cheapest route from B	pilots whose salary is less than the engaluru to Frankfurt.	price of the						
	iv. For all aircraft with cruising range over 1000 Kms, find the name of the aircraft and the average salary of all pilots certified for this								
	aircraft.								
	v. Find the names of pi	lots certified for some Boeing aircr	aft.						
	vi. Find the aids of all aircraft that can be used on routes from								
	Bengaluru to New Dell	ıi.							
2	Consider the Schema f	or a banking enterprise:							
				L3	3				

	BRANCH(branch-name:string, branch-city:string, assets:real)		
	ACCOUNT(accno:int, branch-name:string, balance:real)		
	DEPOSITOR(customer-name:string, accno:int)		
	CUSTOMER(customer-name:string, customer-Street:string, customer-		
	city:string)		
	LOAN(loan-number:int, branch-name:string, amount:real)		
	BORROWER(customer-name:string, loan-number:int)		
	i. Create the above tables by properly specifying the primary keys and the foreign keys		
	ii. Enter at least five tuples for each relation		
	iii. Find all the customers who have at least two accounts at the Main branch.		
	iv. Find all the customers who have an account at all the branches located in a specific city.		
	Demonstrate how you delete all account tuples at every branch		
	located in a specific city.		
3	Consider the schema for College Database:		
	STUDENT(USN, SName, Address, Phone, Gender)		
	SEMSEC(SSID, Sem, Sec) CLASS(USN, SSID)		
	SUBJECT(Subcode, Title, Sem, Credits)		
	IAMARKS(USN, Subcode, SSID, Test1, Test2, Test3, FinalIA)		
	Vrite SQL queries to		
	1. List all the student details studying in fourth semester 'C' section.		
	2. Compute the total number of male and female students in each		
	semester and in each section.		
	3. Create a view of Test1 marks of student USN '1MJ15CS101' in all		
	subjects.		
	4. Calculate the FinalIA (average of best two test marks) and update	L3	3
	the corresponding table for all students.		
	5. Categorize students based on the following criterion:		
	If FinalIA = 17 to 20 then CAT = 'Outstanding'		
	If FinalIA = 12 to 16 then CAT = 'Average'		
	If FinalIA< 12 then CAT = 'Weak' Give these details only for 8th		
	semester A, B, and C section students.		
4	Consider the schema for Company Database:		

DEPARTMENT(DN b, DName, MgrSSN, MgrStartDate) L3 DEDACATION(DNO, DLoc) PROJECT(PNo, PName, PLocation, DNo) L3 WORKS_ON(SSN, PNo, Hours) Write SQL queries to 1. Make a list of all project numbers for projects that involve an employee whose last name is "Sott", either as a worker or as a manager of the department that controls the project. 2. Show the resulting salaries if every employee working on the 'IoT' project is given a 10 percent raise. 3. Find the sum of the salaries of all employees of the 'Accounts' department, as well as the maximum salary, the minimum salary, and the average salary in this department 4. Retrieve the name of each employee works on all the projects controlled by department number 5 (use NOT EXISTS operator). 5. For each department that has more than five employees who are making more than Rs. 6,00,000. STUDY EXPERIMENT For any problem selected, write the ER Diagram, apply ER-mapping rules, normalize the relations, and follow the application development process. • • Make sure that the application should have five or more tables, at least one trigger and one stored procedure, using suitable front end tool. 1. Indicative areas include; health care, education, industry, transport, supply chain etc. 2 CO1 Demonstrate the creation of relational tables using DDL/DML CO2 Design and demonstrate the execution of simple queries retrieve information CO3 Demonstrate the afront end using modern tools Course Utomes CO4 Design and implement a front end using mod		EMDLOVEE(SSN Name Address Sov Salary SuperSSN DNo)		
DEFAULTIONO, DNAIDE, NgTSAN, NgTSLATDATE) L3 DLOCATION(DNO,DLoc) PROJECT(PNO, PName, PLocation, DNO) L3 WORKS_ON(SSN, PNO, Hours) Write SQL queries to 1. 1. Make a list of all project numbers for projects that involve an employee whose last name is 'Scott', either as a worker or as a manager of the department that controls the project. 2. 2. Show the resulting salaries if every employee working on the 'loT' project is given a 10 percent raise. 3. 3. Find the sum of the salaries of all employees of the 'Accounts' department, as well as the maximum salary, the minimum salary, and the average salary in this department 4. 4. Retrieve the name of each employee whow works on all the projects controlled by department number 5 (use NOT EXISTS operator). 5. For each department that has more than five employees, retrieve the department number and the number of its employees who are making more than Rs. 6,00,000. L2 2 2 2 atable front end tool. Indicative areas include; health care, education, industry, transport, supply chain etc. 2 C01 Demonstrate the creation of relational tables using DDL/DML C02 Design and demonstrate the execution of simple queries retrieve information C03 Demonstrate the aftent afront end using modern tools Design and implement a front end using modern tools		DEDARTMENT(DNa, DNama, Marchant Data)		
DidCATION(DNQ,DLde) L3 3 WORKS_ON(SSN, PNo, Hours) Write SQL queries to 1 1. Make a list of all project numbers for projects that involve an employee whose last name is 'Scott', either as a worker or as a manager of the department that controls the project. 2. Show the resulting salaries if every employee working on the 'IoT' project is given a 10 percent raise. 3. Find the sum of the salaries of all employees of the 'Accounts' department, as well as the maximum salary, the minimum salary, and the average salary in this department 4. Retrieve the name of each employee who works on all the projects controlled by department that has more than five employees, retrieve the department number 5 (use NOT EXISTS operator). 5. For each department number 5 (use NOT EXISTS operator). 5. For each department number 5 (use NOT EXISTS operator). 5. For each department number of its employees who are making more than Rs. 6,00,000. L2 2 STUDY EXPERIMENT For any problem selected, write the ER Diagram, apply ER-mapping rules, normalize the relations, and follow the application development process. L2 2 • Make sure that the application should have five or more tables, at least one trigger and one stored procedure, using suitable front end tool. L3 2 Indicative areas include; health care, education, industry, transport, supply chain etc. Course 2 2 C01 Demonstrate the creation of relational tables using DDL/DML. C02 Design and de		DEPARTMENT (DNO, DNAME, Mgr35N, Mgr3tartDate)		
PROJECT (PNO, PNAME, PLOCATION, DNO) L WORKS_ON(SSN, PNO, Hours) Write SQL queries to 1. Make a list of all project numbers for projects that involve an employee whose last name is 'Scott', either as a worker or as a manager of the department that controls the project. 2. Show the resulting salaries if every employee working on the 'IoT' project is given a 10 percent raise. 3. Find the sum of the salaries of all employees of the 'Accounts' department, as well as the maximum salary, the minimum salary, and the average salary in this department 4. Retrieve the name of each employee who works on all the projects controlled by department number 5 (use NOT EXISTS operator). 5. For each department that has more than five employees, retrieve the department number and the number of its employees who are making more than Rs. 6,00,000. Image: Study Experiment For any problem selected, write the ER Diagram, apply ER-mapping rules, normalize the relations, and follow the application development process. L2 • Make sure that the application should have five or more tables, at least one trigger and one stored procedure, using suitable front end tool. L2 Indicative areas include; health care, education, industry, transport, supply chain etc. Demonstrate the creation of relational tables using DDL/DML C02 Design and demonstrate the execution of simple queries retrieve information C03 Q04 Design and implement a front end using modern tools Euleries		DLUCATION (DNO, DLOC)	13	3
WORKS_DN(SN, PNO, HOURS) Write SQL queries to 1. Make a list of all project numbers for projects that involve an employee whose last name is 'Scott', either as a worker or as a manager of the department that controls the project. 2. Show the resulting salaries if every employee working on the 'IoT' project is given a 10 percent raise. 3. Find the sum of the salaries of all employees of the 'Accounts' department, as well as the maximum salary, the minimum salary, and the average salary in this department 4. Retrieve the name of each employee who works on all the projects controlled by department number 5 (use NOT EXISTS Operator). 5. For each department that has more than five employees, retrieve the department number and the number of its employees who are making more than Rs. 6,00,000. STUDY EXPERIMENT For any problem selected, write the ER Diagram, apply ER-mapping rules, normalize the relations, and follow the application development process. • Make sure that the application should have five or more tables, at least one trigger and one stored procedure, using suitable front end tool. Indicative areas include; health care, education, industry, transport, supply chain etc. COI Demonstrate the creation of relational tables using DDL/DML. C02 Design and demonstrate the execution of simple queries retrieve information C03 Demonstrate the arout of complex queries C04 Design and implement a front end using modern tools <td></td> <td>PROJECT (PNO, PName, PLocation, DNO)</td> <td>20</td> <td>5</td>		PROJECT (PNO, PName, PLocation, DNO)	20	5
Write SQL queries to 1. Make a list of all project numbers for projects that involve an employee whose last name is 'Scott', either as a worker or as a manager of the department that controls the project. 2. Show the resulting salaries if every employee working on the 'loT' project is given a 10 percent raise. 3. Find the sum of the salaries of all employees of the 'Accounts' department, as well as the maximum salary, the minimum salary, and the average salary in this department 4. Retrieve the name of each employee who works on all the projects controlled by department number 5 (use NOT EXISTS operator). 5. For each department that has more than five employees, retrieve the department number and the number of its employees who are making more than Rs. 6,00,000. STUDY EXPERIMENT For any problem selected, write the ER Diagram, apply ER-mapping rules, normalize the relations, and follow the application development process. • Make sure that the application should have five or more tables, at least one trigger and one stored procedure, using suitable front end tool. Indicative areas include; health care, education, industry, transport, supply chain etc. Course: C01 Demonstrate the creation of relational tables using DDL/DML. C02 Design and demonstrate the execution of simple queries retrieve information C03 Demonstrate the at front end using modern tools		WORKS_ON(SSN, PNo, Hours)		
1. Make a list of all project numbers for projects that involve an employee whose last name is 'Scott', either as a worker or as a manager of the department that controls the project. 2. Show the resulting salaries if every employee working on the 'loT' project is given a 10 percent raise. 3. Find the sum of the salaries of all employees of the 'Accounts' department, as well as the maximum salary, the minimum salary, and the average salary in this department 4. Retrieve the name of each employee who works on all the projects controlled by department number 5 (use NOT EXISTS operator). 5. For each department that has more than five employees, retrieve the department number and the number of its employees who are making more than Rs. 6,00,000. STUDY EXPERIMENT For any problem selected, write the ER Diagram, apply ER-mapping rules, normalize the relations, and follow the application development process. • Make sure that the application should have five or more tables, at least one trigger and one stored procedure, using suitable front end tool. Indicative areas include; health care, education, industry, transport, supply chain etc. CO1 Demonstrate the creation of relational tables using DDL/DML. C02 Design and demonstrate the execution of simple queries retrieve information C03 Demonstrate the after of complex queries		Write SQL queries to		
employee whose last name is 'Scott', either as a worker or as a manager of the department that controls the project. 2. 2. Show the resulting salaries if every employee working on the 'IoT' project is given a 10 percent raise. 3. 3. Find the sum of the salaries of all employees of the 'Accounts' department, as well as the maximum salary, the minimum salary, and the average salary in this department 4. 4. Retrieve the name of each employee who works on all the projects controlled by department number 5 (use NOT EXISTS operator). 5. For each department that has more than five employees, retrieve the department number and the number of its employees who are making more than Rs. 6,00,000. STUDY EXPERIMENT For any problem selected, write the ER Diagram, apply ER-mapping rules, normalize the relations, and follow the application development process. 1.2 • Make sure that the application should have five or more tables, at least one trigger and one stored procedure, using suitable front end tool. 1.1 Indicative areas include; health care, education, industry, transport, supply chain etc. Course Outcomes: CO1 Demonstrate the creation of relational tables using DDL/DML CO2 Design and demonstrate the execution of simple queries retrieve information CO3 Demonstrate the afront end using modern tools		1. Make a list of all project numbers for projects that involve an		
manager of the department that controls the project. 2. Show the resulting salaries if every employee working on the 'IoT' project is given a 10 percent raise. 3. Find the sum of the salaries of all employees of the 'Accounts' department, as well as the maximum salary, the minimum salary, and the average salary in this department 4. Retrieve the name of each employee who works on all the projects controlled by department number 5 (use NOT EXISTS operator). 5. For each department that has more than five employees, retrieve the department number and the number of its employees who are making more than Rs. 6,00,000. STUDY EXPERIMENT For any problem selected, write the ER Diagram, apply ER-mapping rules, normalize the relations, and follow the application development process. • Make sure that the application should have five or more tables, at least one trigger and one stored procedure, using suitable front end tool. Indicative areas include; health care, education, industry, transport, supply chain etc. Col Demonstrate the creation of relational tables using DDL/DML C02 Design and demonstrate the execution of simple queries retrieve information C03 Demonstrate the execution of complex qu		employee whose last name is 'Scott', either as a worker or as a		
2. Show the resulting salaries if every employee working on the 'loT' project is given a 10 percent raise. 3. Find the sum of the salaries of all employees of the 'Accounts' department, as well as the maximum salary, the minimum salary, and the average salary in this department 4. Retrieve the name of each employee who works on all the projects controlled by department number 5 (use NOT EXISTS operator). 5. For each department that has more than five employees, retrieve the department number and the number of its employees who are making more than Rs. 6,00,000. STUDY EXPERIMENT For any problem selected, write the ER Diagram, apply ER-mapping rules, normalize the relations, and follow the application development process. • Make sure that the application should have five or more tables, at least one trigger and one stored procedure, using suitable front end tool. Indicative areas include; health care, education, industry, transport, supply chain etc. Course Utcomes: CO1 Demonstrate the creation of relational tables using DDL/DML CO2 Design and demonstrate the execution of simple queries retrieve information CO3 Demonstrate the execution of complex queries CO4 <		manager of the department that controls the project.		
project is given a 10 percent raise. 3. Find the sum of the salaries of all employees of the 'Accounts' department, as well as the maximum salary, the minimum salary, and the average salary in this department 4. Retrieve the name of each employee who works on all the projects controlled by department number 5 (use NOT EXISTS operator). 5. For each department that has more than five employees, retrieve the department number and the number of its employees who are making more than Rs. 6,00,000. STUDY EXPERIMENT For any problem selected, write the ER Diagram, apply ER-mapping rules, normalize the relations, and follow the application development process. • Make sure that the application should have five or more tables, at least one trigger and one stored procedure, using suitable front end tool. Indicative areas include; health care, education, industry, transport, supply chain etc. Course Uucomes: C01 Demonstrate the creation of relational tables using DDL/DML C02 Design and demonstrate the execution of simple queries retrieve information C03 Demonstrate the execution of complex queries C04 Design and implement a front end using modern tools		2. Show the resulting salaries if every employee working on the 'loT'		
3. Find the sum of the salaries of all employees of the 'Accounts' department, as well as the maximum salary, the minimum salary, and the average salary in this department 4. Retrieve the name of each employee who works on all the projects controlled by department number 5 (use NOT EXISTS operator). 5. For each department that has more than five employees, retrieve the department number and the number of its employees, retrieve the department number and the number of its employees who are making more than Rs. 6,00,000. STUDY EXPERIMENT For any problem selected, write the ER Diagram, apply ER-mapping rules, normalize the relations, and follow the application development process. • Make sure that the application should have five or more tables, at least one trigger and one stored procedure, using suitable front end tool. Indicative areas include; health care, education, industry, transport, supply chain etc. Course Outcomes: C01 Demonstrate the creation of relational tables using DDL/DML C02 Design and demonstrate the execution of simple queries retrieve information C03 Demonstrate the execution of complex queries C04 Design and implement a front end using modern tools		project is given a 10 percent raise.		
department, as well as the maximum salary, the minimum salary, and the average salary in this department 4. Retrieve the name of each employee who works on all the projects controlled by department number 5 (use NOT EXISTS operator). 5. For each department that has more than five employees, retrieve the department number and the number of its employees who are making more than Rs. 6,00,000. 5. For each department that has more than five employees who are making more than Rs. 6,00,000. 2. STUDY EXPERIMENT For any problem selected, write the ER Diagram, apply ER-mapping rules, normalize the relations, and follow the application development process. 4. • Make sure that the application should have five or more tables, at least one trigger and one stored procedure, using suitable front end tool. L2 2 Course Outcomes: 20 Demonstrate the creation of relational tables using DDL/DML 2 CO2 Design and demonstrate the execution of simple queries retrieve information 2 CO3 Demonstrate the execution of complex queries 2 CO4 Design and implement a front end using modern tools 3		3. Find the sum of the salaries of all employees of the 'Accounts'		
the average salary in this department 4. Retrieve the name of each employee who works on all the projects controlled by department number 5 (use NOT EXISTS operator). 5. For each department that has more than five employees, retrieve the department number and the number of its employees who are making more than Rs. 6,00,000. STUDY EXPERIMENT For any problem selected, write the ER Diagram, apply ER-mapping rules, normalize the relations, and follow the application development process. L2 2 • Make sure that the application should have five or more tables, at least one trigger and one stored procedure, using suitable front end tool. L2 2 Indicative areas include; health care, education, industry, transport, supply chain etc. Demonstrate the creation of relational tables using DDL/DML C02 Design and demonstrate the execution of simple queries retrieve information C03 Demonstrate the execution of complex queries C04 Design and implement a front end using modern tools Design and implement a front end using modern tools		department, as well as the maximum salary, the minimum salary, and		
4. Retrieve the name of each employee who works on all the projects controlled by department number 5 (use NOT EXISTS operator). 5. For each department that has more than five employees, retrieve the department number and the number of its employees who are making more than Rs. 6,00,000. STUDY EXPERIMENT For any problem selected, write the ER Diagram, apply ER-mapping rules, normalize the relations, and follow the application development process. • Make sure that the application should have five or more tables, at least one trigger and one stored procedure, using suitable front end tool. L2 2 Indicative areas include; health care, education, industry, transport, supply chain etc. Toemonstrate the creation of relational tables using DDL/DML C01 Demonstrate the creation of complex queries C03 Demonstrate the execution of complex queries C04 Design and implement a front end using modern tools Complex curve areas C01 Design and implement a front end using modern tools C01 Design and implement a front end using modern tools C01 Demonstrate the execution of complex queries C04 Design and implement a front end using modern tools		the average salary in this department		
controlled by department number 5 (use NOT EXISTS operator).5. For each department that has more than five employees, retrieve the department number and the number of its employees who are making more than Rs. 6,00,000.STUDY EXPERIMENT For any problem selected, write the ER Diagram, apply ER-mapping rules, normalize the relations, and follow the application development process.• Make sure that the application should have five or more tables, at least one trigger and one stored procedure, using suitable front end tool.Indicative areas include; health care, education, industry, transport, supply chain etc.Course Uutcomes: CO1C01Demonstrate the creation of relational tables using DDL/DMLC02Design and demonstrate the execution of simple queries retrieve informationC03Demonstrate the aprox of complex queriesC04Design and implement a front end using modern tools		4. Retrieve the name of each employee who works on all the projects		
5. For each department that has more than five employees, retrieve the department number and the number of its employees who are making more than Rs. 6,00,000. STUDY EXPERIMENT For any problem selected, write the ER Diagram, apply ER-mapping rules, normalize the relations, and follow the application development process. L2 2 • Make sure that the application should have five or more tables, at least one trigger and one stored procedure, using suitable front end tool. L2 2 Indicative areas include; health care, education, industry, transport, supply chain etc. Course Uncomes: Course Uncomes: C01 Demonstrate the creation of relational tables using DDL/DML Design and demonstrate the execution of simple queries retrieve information C03 Demonstrate the execution of complex queries C04 Design and implement a front end using modern tools		controlled by department number 5 (use NOT EXISTS operator).		
the department number and the number of its employees who are making more than Rs. 6,00,000. Image: Constraint of the constraint		5. For each department that has more than five employees, retrieve		
making more than Rs. 6,00,000. Image: Comparison of the complex specific term of term of the complex specific term of te		the department number and the number of its employees who are		
STUDY EXPERIMENT For any problem selected, write the ER Diagram, apply ER-mapping rules, normalize the relations, and follow the application development process. • Make sure that the application should have five or more tables, at least one trigger and one stored procedure, using suitable front end tool. Indicative areas include; health care, education, industry, transport, supply chain etc. C01 Demonstrate the creation of relational tables using DDL/DML C02 Design and demonstrate the execution of simple queries retrieve information C03 Demonstrate the execution of complex queries C04 Design and implement a front end using modern tools		making more than Rs. 6,00,000.		
For any problem selected, write the ER Diagram, apply ER-mapping rules, normalize the relations, and follow the application development process. • Make sure that the application should have five or more tables, at least one trigger and one stored procedure, using suitable front end tool.L22Indicative areas include; health care, education, industry, transport, supply chain etc.L22Course Outcomes:		STUDY EXPERIMENT		
rules, normalize the relations, and follow the application development process. • Make sure that the application should have five or more tables, at least one trigger and one stored procedure, using suitable front end tool.L22Indicative areas include; health care, education, industry, transport, supply chain etc.L22Course		For any problem selected, write the ER Diagram, apply ER–mapping		
process. • Make sure that the application should have five or more tables, at least one trigger and one stored procedure, using suitable front end tool.L22Indicative areas include; health care, education, industry, transport, supply chain etc.L22Course Outcomes:C01Demonstrate the creation of relational tables using DDL/DML1C02Design and demonstrate the execution of simple queries retrieve information1C03Demonstrate the execution of complex queries1C04Design and implement a front end using modern tools1		rules, normalize the relations, and follow the application development		
• Make sure that the application should have five or more tables, at least one trigger and one stored procedure, using suitable front end tool.L22Indicative areas include; health care, education, industry, transport, supply chain etc.Image: Course of the creation of relational tables using DDL/DMLImage: Course of the creation of relational tables using DDL/DMLImage: Course of the creation of complex queries retrieve informationImage: Course of the creation of complex queriesImage: Course of the creation of the crea		process.		
tables, at least one trigger and one stored procedure, using suitable front end tool. Indicative areas include; health care, education, industry, transport, supply chain etc. Image: Course outcomes: CO1 Demonstrate the creation of relational tables using DDL/DML Image: Course outcomes: CO2 Design and demonstrate the execution of simple queries retrieve information CO3 Demonstrate the execution of complex queries CO4 Design and implement a front end using modern tools		• Make sure that the application should have five or more	12	2
suitable front end tool. Indicative areas include; health care, education, industry, transport, supply chain etc. Course Outcomes: C01 Demonstrate the creation of relational tables using DDL/DML C02 Design and demonstrate the execution of simple queries retrieve information C03 Demonstrate the execution of complex queries C04 Design and implement a front end using modern tools		tables, at least one trigger and one stored procedure, using	LZ	2
Indicative areas include; health care, education, industry, transport, supply chain etc.Course Outcomes:CO1Demonstrate the creation of relational tables using DDL/DMLCO2Design and demonstrate the execution of simple queries retrieve informationCO3Demonstrate the execution of complex queriesCO4Design and implement a front end using modern tools		suitable front end tool.		
transport, supply chain etc. Course Outcomes: CO1 Demonstrate the creation of relational tables using DDL/DML CO2 Design and demonstrate the execution of simple queries retrieve information CO3 Demonstrate the execution of complex queries CO4 Design and implement a front end using modern tools		Indicative areas include; health care, education, industry,		
Course Outcomes: CO1 Demonstrate the creation of relational tables using DDL/DML CO2 Design and demonstrate the execution of simple queries retrieve information CO3 Demonstrate the execution of complex queries CO4 Design and implement a front end using modern tools		transport, supply chain etc.		
Course Outcomes:CO1Demonstrate the creation of relational tables using DDL/DMLCO2Design and demonstrate the execution of simple queries retrieve informationCO3Demonstrate the execution of complex queriesCO4Design and implement a front end using modern tools				
CO1Demonstrate the creation of relational tables using DDL/DMLCO2Design and demonstrate the execution of simple queries retrieve informationCO3Demonstrate the execution of complex queriesCO4Design and implement a front end using modern tools	Course	Outcomes:		
CO2Design and demonstrate the execution of simple queries retrieve informationCO3Demonstrate the execution of complex queriesCO4Design and implement a front end using modern tools	CO1	Demonstrate the creation of relational tables using DDL/DML		
CO3Demonstrate the execution of complex queriesCO4Design and implement a front end using modern tools	CO2	Design and demonstrate the execution of simple queries retrieve inform	ation	
CO4 Design and implement a front end using modern tools	CO3	Demonstrate the execution of complex queries		
	CO4	Design and implement a front end using modern tools		

CO5	Implement, analyze and evaluate the project developed for an application.
Refere	nce Books:
	Silberschatz Korth and Sudharshan, Database System Concepts, 6th Edition, McGraw Hill,
1	2013.
	Database Principles Fundamentals of Design, Implementation and Management,
2	Cengage Learning 2012.

Regular Lab work :20

Record writing :5

Lab Tests(Minimum 2 tests shall be conducted for 15 marks and average of two will be taken)

Viva 10 marks

SEE Assessment:

Examinations will be conducted for 100 marks and scaled-down to 50. The weightage shall be,

- i. Writeup : 20 marks
- ii. Conduction : 40 marks
- iii. Analysis of results : 20 marks
- iv. Viva:20

	CO-PO/PSO Mapping															
CC)/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO	1	3	3	1	3	1	2	1	-	1	-	-	2	2	-	
CO	2	3	3	2	3	2	2	-	-	1	-	-	2	2	1	
со	3	3	3	2	3	2	1	-	-	1	-	-	2	1	-	
со	4	3	3	2	2	2	1	-	-	-	-	-	2	1	3	
со	5	3	3	2	2	1	1	1	-	-	-	-	2	1	3	
	Cou	rse Tit	le			CO LA	COMMUNICATION NETWORK					Semester			05	
	Cou	rse Co	de			Mν	MVJ19CSL57				CIE	CIE			50	
Total No. of Contact Hours			30	30					SEE			50				
No. of Contact Hours/week			3(L	3(L : T : P :: 0 : 2 : 2)				Tot	Total			100				
Credits				2	2				Exa	Exam. Duration			3 Hours			
	Course objective is to: This course will enable students to															

- Learn and use network commands.
- Learn socket programming.
- Implement and analyze various network protocols.
- Learn and use simulation tools.
- Use simulation tools to analyze the performance of various network protocols.

S No	Experiment Name	RBT Level	Hours
1	Learn to use commands like tcpdump, netstat, ifconfig, nslookup and		
	traceroute. Capture ping and traceroute PDUs using a network	L3	3
	protocol analyzer and examine.		
2	Write a program for error detecting code using CRC-CCITT (16- bits).	L3	3
3	Write a program to find the shortest path between vertices using		
	bellman-ford algorithm.	L3	3
4	Applications using TCP sockets like:		
	a) Echo client and echo server		
	b) Chat	L3	3
	c) File Transfer		
5	Simulation of DNS using UDP sockets.	L3	3
6	Write a code for simulating ARP /RARP protocols.	L3	3
7	Implementation of Stop and Wait Protocol and Sliding Window		
	Protocol.	L3	3
8	Write a program for congestion control using leaky bucket algorithm.	L3	3
9	Simulate the transmission of ping messages/trace route over a		
	network topology consisting of 6 nodes and find the number of	L3	3
	packets dropped due to congestion.		
10	Simulate an Ethernet LAN using n nodes and set multiple traffic nodes		
	and plot congestion window for different source / destination.	L3	3
11	Simulate simple ESS and with transmitting nodes in wireless LAN by		
	simulation and determine the performance with respect to	L3	3
	transmission of packets.		
12	Simulate and study the performance of GSM on NS2/NS3 (Using MAC		
	layer) or equivalent environment.	L3	3
13	Simulate and study the performance of CDMA on NS2/NS3 (Using		
	stack called Call net) or equivalent environment	L3	3
14	Simulate and study the performance of LTE on NS2/NS3	L3	3
		1	1
Web I	ink and Video Lectures: (Self Learning)		

- https://www.youtube.com/watch?v=rurs7cdT5cc
- https://www.youtube.com/watch?v=jQerVWxOGMc
- https://www.youtube.com/watch?v=X-wAtdGS5No
- https://www.youtube.com/watch?v=Db-tV8JJ3ZQ
- https://www.youtube.com/watch?v=Yb7vcX0inbM

Course Outcomes:

C01	Implement various protocols using TCP and UDP.
CO2	Compare the performance of different transport layer protocols.
CO3	Use simulation tools to analyze the performance of various network protocols.
CO4	Analyze various routing algorithms
C05	Implement error correction codes.

Refere	Reference Books:										
	Larry L. Peterson, Bruce S. Davie, Computer Networks: A Systems Approach, Fifth Edition,										
1	Morgan Kaufmann Publishers Inc., 2012.										
	William Stallings, Data and Computer Communications, Tenth Edition, Pearson Education,										
2	2013.										

CIE Assessment:

Regular Lab work :20

Record writing :5

Lab Tests(Minimum 2 tests shall be conducted for 15 marks and average of two will be taken) Viva 10 marks

SEE Assessment:

Examinations will be conducted for 100 marks and scaled-down to 50. The weightage shall

be,

- i. Writeup : 20 marks
- ii. Conduction : 40 marks
- iii. Analysis of results : 20 marks
- iv. Viva:20

	CO-PO/PSO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	2	1	-	-	_	-	-	-	-	1	3
CO2	3	3	2	2	1	-	-	-	-	-	1	-	-	-
CO3	3	3	2	2	1	-	-	-	-	-	1	-	3	-
CO4	3	3	2	2	1	-	-	-	-	-	1	-	3	-
CO5	3	2	2	2	1	-	-	-	-	-	-	-	1	3

Course	Title	WEBPROGRAMMINGLABORATORY	Semester	05
Course	Code	MVJ19CSL58	CIE	50
Total N	o. of Contact Hours	30	SEE	50
No. of C	ontact Hours/week	3(L : T : P :: 0 : 2 : 2)	Total	100
Credits		2	Exam. Duration	3 Hours
Course	objective is to:			
This cou	urse will enable students to	get practical experience in design,	develop, implement, a	analyze and
evaluati	on of			
•	Web pages and Style sheet	creation.		
•	Client side programming a	nd Java script		
•]	PHP and Database creation	1.		
S No	Experiment Name		RBT Leve	el Hours
			·	

		L3	3
9	Creating simple application to access data base using JDBC Format		
8	Write a PHP program to display a digital clock which displays the cur	L3	3
7	Validate the form using PHP regular expression. PHP stores a form dat to database	L3	3
6	Write a JSP which insert the details of the 3 or 4 users who register the web site by using registration form. Authenticate the user whe submits the login form using the user name and password from database.	L3	3
5	 Assume four users user1, user2, user3 and user4 having the passw pwd1, pwd2, pwd3 and pwd4 respectively. Write a servlet for doing following. 1. Create a Cookie and add these four user id's and passwords to Cookie. 2. Read the user id and passwords entered in the Login form authenticate with the values available in the cookies. 	L3	3
4	Write a JavaScript code that displays text "TEXT-GROWING" increasing font size in the interval of 100ms in RED COLOR, when the size reaches 50pt it displays "TEXT_SHRINKING" in BLUE color. Then font size decreases to 5pt.	L3	3
3	Write an HTML program to design an entry form of student details send it to store at database server like SQL, Oracle or MS Access.	L3	3
2	Design HTML form for keeping student record and validate it using script.	L3	3
	 a. Cascading style sheets. b. Embedded style sheets. c. Inline style sheets. 	L3	3
1	Create a web page with the following.		

C02	Build dynamic web pages with validation using Java Script objects and by applying different
C03	Develop dynamic web pages using server side scripting.
CO4	Use PHP programming to develop web applications
C05	Use JDBC and SQL to develop web applications

Refere	nce Books:
	Jeffrey C and Jackson, —Web Technologies A Computer Science Perspective J Pearson
1	Education, 2011.
2	UttamK.Roy, —Web Technologies Oxford University Press, 2011

Regular Lab work :20

Record writing :5

Lab Tests(Minimum 2 tests shall be conducted for 15 marks and average of two will be taken)

Viva 10 marks

SEE Assessment:

Examinations will be conducted for 100 marks and scaled–down to 50. The weightage shall be.

- i. Writeup : 20 marks
- ii. Conduction : 40 marks
- iii. Analysis of results : 20 marks
- iv. Viva:20

CO-PO/PSO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	-	3	3	-	-	3	-	3	2	1	-
CO2	3	3	2	-	3	3	-	-	3	-	3	2	1	2
CO3	3	3	2	-	3	3	-	-	3	-	3	2	1	2
CO4	3	3	2	-	3	3	-	-	3	-	3	2	1	3
CO5	3	3	2	-	3	3	-	-	3	-	3	2	2	3

Course Title	ENVIRONMENTAL	Semester	V
	STUDIES		
Course Code	MVJ19ENV59	CIE	50
Total No. of Contact Hours	20	SEE	50
No. of Contact Hours/week	1 (L: T: P 1 : 0 :0)	Total	100
Credits	1	Exam. Duration	3 Hrs.

Course objective is to: This course will enable the students to

- Relate to interdisciplinary approach to complex environmental problems using basic tools of the natura and social sciences including geo-systems, biology, chemistry, economics, political science and international processes; Study drinking water quality standards and to illustrate qualitative analysis of water.
- Critically evaluate the science and policy ramifications of diverse energy portfolios on air and water quality, climate, weapons proliferation and societal stability.

Prerequisites: *Basic Science*

Module-1	L1,	L 2	4 Hrs
Introduction to environmental studies, Multidisciplinary nature of en	vironmental studi	es; Sco	pe and
importance; Concept of sustainability and sustainable development.			
Ecosystems (Structure and Function): Forest, Desert, Rivers, Ocean			
Biodiversity: Types, Hot spots; Threats and Conservation of biodiversit	y, Deforestation.		
Video link:			
• https://nptel.ac.in/courses/127/106/127106004/			
Module-2	L1,	_2	4 Hrs.
Advances in Energy Systems (Merits, Demerits, Global Status and	Applications): Hy	drogen	, Solar, OTEC,
Tidal and Wind			
Natural Resource Management (Concept and case-study): Disaster	Management, Sust	ainable	Mining,
Natural Resource Management (Concept and case–study): Disaster Cloud Seeding, and Carbon Trading.	Management, Sust	ainable	Mining,
Natural Resource Management (Concept and case-study): Disaster Cloud Seeding, and Carbon Trading. Video link:	Management, Sust	ainable	Mining,
 Natural Resource Management (Concept and case-study): Disaster Cloud Seeding, and Carbon Trading. Video link: https://nptel.ac.in/courses/121/106/121106014/ 	Management, Sust	ainable	Mining,
Natural Resource Management (Concept and case-study): Disaster Cloud Seeding, and Carbon Trading. Video link: • https://nptel.ac.in/courses/121/106/121106014/ Module-3	Management, Sust	ainable I	Mining, 4 Hrs.
Natural Resource Management (Concept and case-study): Disaster Cloud Seeding, and Carbon Trading. Video link: • https://nptel.ac.in/courses/121/106/121106014/ Module-3 Environmental Pollution (Sources, Impacts, Corrective	Management, Sust	ainable I e mea	Mining, 4 Hrs. Isures, Releva
 Natural Resource Management (Concept and case-study): Disaster Cloud Seeding, and Carbon Trading. Video link: https://nptel.ac.in/courses/121/106/121106014/ Module-3 Environmental Pollution (Sources, Impacts, Corrective Environmental Acts, Case-studies):Surface and Ground Water Pollu 	Management, Sust	ainable I e mea	Mining, 4 Hrs. Isures, Releva
Natural Resource Management (Concept and case-study): Disaster Cloud Seeding, and Carbon Trading. Video link: • https://nptel.ac.in/courses/121/106/121106014/ Module-3 Environmental Pollution (Sources, Impacts, Corrective Environmental Acts, Case-studies):Surface and Ground Water Pollu Pollution.	Management, Sust	ainable I e mea ion; So	Mining, 4 Hrs. Isures, Releva il Pollution and .
 Natural Resource Management (Concept and case-study): Disaster Cloud Seeding, and Carbon Trading. Video link: https://nptel.ac.in/courses/121/106/121106014/ Module-3 Environmental Pollution (Sources, Impacts, Corrective Environmental Acts, Case-studies):Surface and Ground Water Pollu Pollution. Waste Management & Public Health Aspects: Bio-medical Waste; Sources (Sources) 	Management, Sust	ainable I e mea ion; So bus was	Mining, 4 Hrs. Isures, Releva il Pollution and a ste; E–waste.
Natural Resource Management (Concept and case-study): Disaster Cloud Seeding, and Carbon Trading. Video link: • https://nptel.ac.in/courses/121/106/121106014/ Module-3 Environmental Pollution (Sources, Impacts, Corrective Environmental Acts, Case-studies):Surface and Ground Water Pollu Pollution. Waste Management & Public Health Aspects: Bio-medical Waste; So Video link:	Management, Sust	ainable I ion; So pus was	Mining, 4 Hrs. Isures, Releva il Pollution and a ste; E–waste.
Natural Resource Management (Concept and case-study): Disaster Cloud Seeding, and Carbon Trading. Video link: • https://nptel.ac.in/courses/121/106/121106014/ Module-3 Environmental Pollution (Sources, Impacts, Corrective Environmental Acts, Case-studies):Surface and Ground Water Pollu Pollution. Waste Management & Public Health Aspects: Bio-medical Waste; Sc Video link: • https://nptel.ac.in/courses/122/106/122106030/	Management, Sust	ainable I ion; So bus was	Mining, 4 Hrs. Isures, Releva il Pollution and a ste; E–waste.
 Natural Resource Management (Concept and case-study): Disaster Cloud Seeding, and Carbon Trading. Video link: https://nptel.ac.in/courses/121/106/121106014/ Module-3 Environmental Pollution (Sources, Impacts, Corrective Environmental Acts, Case-studies):Surface and Ground Water Pollu Pollution. Waste Management & Public Health Aspects: Bio-medical Waste; So Video link: https://nptel.ac.in/courses/122/106/122106030/ https://nptel.ac.in/courses/105/103/105103205/ 	Management, Sust	ainable I ion; So bus was	Mining, 4 Hrs. Isures, Releva il Pollution and . ste; E–waste.
Natural Resource Management (Concept and case–study): Disaster Cloud Seeding, and Carbon Trading. Video link: • https://nptel.ac.in/courses/121/106/121106014/ Module–3 Environmental Pollution (Sources, Impacts, Corrective Environmental Acts, Case–studies):Surface and Ground Water Pollu Pollution. Waste Management & Public Health Aspects: Bio–medical Waste; So Video link: • https://nptel.ac.in/courses/122/106/122106030/ • https://nptel.ac.in/courses/105/103/105103205/ • https://nptel.ac.in/courses/120/108/120108005/	Management, Sust	ainable I ion; So bus was	Mining, 4 Hrs. Isures, Releva il Pollution and a ste; E–waste.
Natural Resource Management (Concept and case-study): Disaster Cloud Seeding, and Carbon Trading. Video link: https://nptel.ac.in/courses/121/106/121106014/ Module-3 Environmental Pollution (Sources, Impacts, Corrective Environmental Acts, Case-studies):Surface and Ground Water Pollu Pollution. Waste Management & Public Health Aspects: Bio-medical Waste; So Video link: https://nptel.ac.in/courses/122/106/122106030/ https://nptel.ac.in/courses/105/103/105103205/ https://nptel.ac.in/courses/120/108/120108005/ https://nptel.ac.in/courses/105/105/105105160/ 	Management, Sust	ainable I ion; So bus was	Mining, 4 Hrs. Isures, Releva il Pollution and a ste; E–waste.
Natural Resource Management (Concept and case-study): Disaster Cloud Seeding, and Carbon Trading. Video link: • https://nptel.ac.in/courses/121/106/121106014/ Module-3 Environmental Pollution (Sources, Impacts, Corrective Environmental Acts, Case-studies):Surface and Ground Water Pollu Pollution. Waste Management & Public Health Aspects: Bio-medical Waste; So Video link: • https://nptel.ac.in/courses/122/106/122106030/ • https://nptel.ac.in/courses/105/103/105103205/ • https://nptel.ac.in/courses/120/108/120108005/ • https://nptel.ac.in/courses/105/105/105105160/	Management, Sust	ainable l ion; So bus was	Mining, 4 Hrs. Isures, Releva il Pollution and d ste; E–waste. 4 Hrs.

Global	Envir	onmental Concerns (Concept, policies, and case-studies): Globa	l Warming Clim	ate Change; Acid
Rain; C Video)zone l link:	Depletion; Fluoride problem in drinking water.		
٠	https	://nptel.ac.in/courses/122/106/122106030/		
٠	https	://nptel.ac.in/courses/120108004/		
•	https:	//onlinecourses.nptel.ac.in/noc19_ge23/preview		
Мос	dule-5		L1,L2	4 Hrs.
Latest	Devel	opments in Environmental Pollution Mitigation Tools (Concep	t and Applicati	ons): G.I.S. &
Remot	e Sens	ing, Environment Impact Assessment, Environmental Managemen	t Systems, ISO 2	14001.
Video	link:			
•	http	s://nptel.ac.in/courses/105/102/105102015/		
•	http	s://nptel.ac.in/courses/120/108/120108004/		
Course	e Outc	omes: On completion of the course, students would be able to		
CO1	De	scribe the principles of ecology and environmental issues that ap	oply to air, land	, and water issues
	on	a global scale.		
CO2	De	velop critical thinking and/or observation skills, and apply them	n to the analysi	s of a problem or
	qu	estion related to the environment.		
CO3	De	monstrate ecology knowledge of a complex relationship between b	oiotic and Abiot	ic
	со	mponents.		
CO4	Ap	ply their ecological knowledge to illustrate and graph a probler	n and describe	the realities that
	ma	anagers face when dealing with complex issues.		
Re	ferenc	e Books:]
	1	Principals of Environmental Science and Engineering, Raman Siva k	umar.	
		Cengage learning Singapur 2 nd Edition 2005	,	
				(0.1
	2.	Environmental Science working with the Earth G.Tyler Miller Jr.	i nomson Brool	ks / Cole,
		11 th Edition, 2006		
	3.	Textbook of Environmental and Ecology, Pratiba Singh, Anoop Sing	gh & Piyush Ma	laviya ,
		ACME Learning Pvt. Ltd. New Delhi, 1st Edition.		

CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation. Generally, there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of three tests

- Quizzes/mini tests (4 marks)
- Mini Project / Case Studies (8 Marks)
- Activities/Experimentations related to courses (8 Marks)

SEE Assessment:

- i. Question paper for the SEE consists two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.
- ii. Part B also covers the entire syllabus consisting of five questions having choices and may contain sub-divisions, each carrying 16 marks. Students have to answer five full questions.
- iii. One question must be set from each unit. The duration of examination is 3 hours.

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
C01	3	3	3	1	-	2	2	1	1	-	2	1	
CO2	3	3	2	1	-	1	2	-	1	1	2	1	
CO3	3	3	2	1	-	2	2	-	1	1	2	1	
CO4	3	3	2	2	-	2	2	-	1	1	2	1	