Semester: III										
Transforms and Statistical Methods										
		(Theory)								
Cou	irse Code	MVJ21MA31A	CIE Marks: 50							
Cree	dits	L:T:P:: 3:2:0	SEE Marks: 50							
Hou	ırs	30L+20T	SEE Duration: 3 Hrs.							
Cou	irse Learning Objectives: The stude	ents will be able to								
1	Comprehend and use of analytical and numerical methods in different engineering fields.									
2	Apprehend and apply Fourier Se	ries.								
3	Realize and use of Fourier transfo	orms.								
4	Realize and use of Z-Transforms.									
5	Use of statistical methods in curv	ve fitting applications	5.							
		UNIT-I								
Lap	lace Transform: Definition and Lap	lace transforms of el	ementary functions.							
Lap	lace transforms of Periodic functio	ns and unit-step fun	ction and problems.							

Inverse Laplace Transform: Definition and problems, Convolution theorem to

find the inverse Laplace transforms and problems.

Applications: Solution of linear differential equations using Laplace transforms. **10 Hrs**

Self study topic: Derivations of Laplace transforms of elementary functions, Unit

impulse function-problems.

Web Link and Video Lectures:

https://nptel.ac.in/courses/111106139

UNIT-II

 Fourier series: Recapitulation of Series, Continuous and Discontinuous functions, Periodic functions, Dirichlet's condition, Fourier series of periodic functions of period 2π and arbitrary period 2l, Half-range Fourier sine and cosine series, Practical Harmonic Analysis and Problems.
 10 Hrs

 Web Link and Video Lectures:
 10 Hrs

 https://nptel.ac.in/courses/111106111/
 10 Hrs

 Fourier transforms: Infinite Fourier transform, Infinite Fourier sine and cosine transforms, Inverse Fourier transforms, Inverse Fourier sine and cosine transforms, Convolution theorem.
 10 Hrs

 Web Link and Video Lectures:
 10 Hrs

 Image: transforms infinite Fourier transform, Infinite Fourier sine and cosine transforms, Inverse Fourier transforms, Inverse Fourier sine and cosine transforms, Convolution theorem.
 10 Hrs

 Web Link and Video Lectures:
 10 Hrs

 https://nptel.ac.in/courses/11105123
 10 Hrs

 Z-Transforms: Difference equations, basic definition, Z-transform -definition, Properties of Z-transforms, Standard Z-transforms, damping rule, Shifting rule, Initial value and final value theorems - problems, Inverse Z-transform. Applications: Application of Z- transforms to solve difference equations. Self study topic: Proof of Initial value and final value theorems. Web Link and Video Lectures: https://nptel.ac.in/courses/108104100 						
UNIT-V						
Curve Fitting: Curve fitting by the method of least squares. Fitting of the curves of the form $y = ax + b$, $y = ax^2 + bx + c$, $y = ae^{bx}$. Statistical Methods: Introduction, Correlation and coefficient of correlation, Regression, lines of regression and problems. Self study topic: Fitting of the curves of the form $y = ax^b$. Web Link and Video Lectures: <u>https://nptel.ac.in/courses/111105042</u>	10 Hrs					

Cours	Course Outcomes: After completing the course, the students will be able to							
CO1	Use Laplace transform and inverse transforms techniques in solving differential							
	equations.							
<u> </u>	Communications, Know the use of periodic signals and Fourier series to analyze							
02	circuits and system.							
CO3	Demonstrate Fourier Transform as a tool for solving Integral equations.							
	Apply Z Transform to solve Difference Equation.Use Method of Least Square for							
CO4	appropriate Curves.							
CO5	Fit a suitable curve by the method of least squares and determine the lines of							
	regression for a set of statistical data.							

Refe	erence Books
1.	B.S. Grewal, "Higher Engineering Mathematics" Khanna Publishers, 43 rd Edition, 2013.
n	Erwin Kreyszig, "Advanced Engineering Mathematics", Wiley-India publishers, 10th
Ζ.	edition,2014.
3.	Ramana B. V., "Higher Engineering Mathematics", Tata Mc Graw-Hill, 2006.
4.	Bali N. P. & Manish Goyal, "A text book of Engineering Mathematics", Laxmi Publications, 8 th Edition.

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	0	3	0	0	0	0	0	0	1	0
CO2	3	3	0	3	0	0	0	0	0	0	0	1
CO3	2	3	0	3	0	0	0	0	0	0	1	0
CO4	3	3	0	3	0	0	0	0	0	0	0	0
CO5	3	3	0	2	0	0	0	0	0	0	0	1

Semester: III								
OBJECT ORIENTED PROGRAMMING								
(Theory)								
Course Code: MVJ21CS/CG/AI32	CIE Marks:100							
Credits: L:T:P:S: 3:0:0:0	SEE Marks: 100							
Hours: 40L SEE Duration: 3 Hrs								
Course Learning Objectives: The students will be able to								

1	Identify the need for Java - an object-oriented language. Set up Java JDK environment
	to create, debug and run simple Java programs.
	Illustrate the use of classes and distinguish the usage of different types of Inheritance
2	and constructors in real world.
3	Demonstrate the use of exceptions and to create multi-threaded programs.
4	Illustrate the use of Collections with elements in Java program.
5	Develop Java Application using JDBC connectivity.

Г

UNIT-I						
Prerequisites: Basic Knowledge about C or C++						
Introduction to Object Oriented Concepts and Java: Java's Magic: the Byte						
code; Java Development Kit (JDK); The Java Buzz words, Object Oriented						
Programming - Two Paradigms, Abstraction, The Three OOP Principles and its						
advantages, Simple Java programs. Data types, variables and arrays, Operators,						
Control Statements.						
Video link / Additional online information (related to module if any):						
• Differences between JVM vs JRE vs JDK in Java:						
https://www.youtube.com/watch?v=5Bp6GLU6HKE						
UNIT-II						
Classes, Inheritance, Packages and Interfaces: Classes fundamentals; Declaring	8 Hrs					
objects; Assigning object reference variables; Introducing Methods,						
Constructors, this keyword, Finalize Method. Inheritance: Inheritance basics,						
using super, creating multi-level hierarchy ,when constructors are called,						
method overriding, using abstract classes. Packages, Access Protection,						
Importing Packages, Interfaces.						
Video link / Additional online information (related to module if any):						
Types of Inheritance: <u>https://www.youtube.com/watch?v=ZP27c7i5zpg</u>						
UNIT-III						
Exception Handling and Multi-Threaded Programming : Exception Handling						
fundamentals, Exception Types, Uncaught Exceptions, Using try catch, Multiple						
catch clauses, Nested try statements, throw, throws, finally, Java's built-in						
exceptions, Programming Examples.						

Multi-Threaded Programming: The java thread model, Main thread, Creating Thread, Creating multiple threads, Using isAlive() and join(),Thread priorities, Synchronization; InterThread Communication - Bounded buffer problem.

Video link / Additional online information (related to module if any):

Multithreading: <u>https://www.youtube.com/watch?v=O_Ojfq-OIpM</u>

UNIT-IV

••••••						
The collections and Framework: Collections Overview, Recent Changes to	8 Hrs					
Collections, The Collection Interfaces, The Collection Classes, Accessing a						
collection Via an Iterator, Storing User Defined Classes in Collections.						
Java Lambda expressions: Java Lambda expressions, Using Java Lambda						
expressions, Lambda expression vs method in java, Lambda expression in the						
array list.						
Video link / Additional online information (related to module if any):						
https://www.youtube.com/watch?v=Q_9vV3H-dt4						
UNIT-V						
JDBC: The Concept of JDBC; JDBC Driver Types; JDBC Packages; A Brief Overview	8 Hrs					

Video link / Additional online information (related to module if any):							
Metadata, Data types; Exceptions.							
with the Database; Statement Objects; ResultSet; Transaction Processing;							
of the JDBC process; Database Connection; Associating the JDBC/ODBC Bridge							
JDBC. The concept of JDBC, JDBC Driver Types, JDBC Packages, A Brief Overview							

Java JDBC :<u>https://www.youtube.com/watch?v=hEWBIJxrLBQ</u>

Cours	Course Outcomes: After completing the course, the students will be able to									
CO1	Illustrate the Object Oriented Programming concepts and basic characteristics of									
	Java.									
CO2	Demonstrate the principles of classes, inheritance, packages and interfaces.									
CO3	Experiment with exception handling Mechanisms and Create multi-threaded									
	programs.									
CO4	Interpret the need for advanced Java concepts like collections in developing									
	modular and efficient programs.									
CO5	Develop an application with Database using JDBC connectivity.									

Reference Books

3. Mahesh Bhave and Sunil Patekar, "Programming with Java", First Edition, Pearson

Education,2008, ISBN:9788131720806

- 4. Herbert Schildt, Java The Complete Reference, 7 /9th Edition, Tata McGraw Hill, 2007.
- **3.** Jim Keogh: J2EE-The Complete Reference, McGraw Hill, 2007.
- 4. Effective Java, Third Edition, Joshua Bloch, Addison-Wesley Professional,2017

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE): Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO1	3	3	1	-	-	-	-	-	-		-	3
CO2	3	3	1	-	-	-	-	-	-		-	3
CO3	3	3	1	2	-	-	-	-	-	1	-	3
CO4	3	3	3	3	-	-	-	2	2	2	-	3
C05	3	3	3	3	-	-	2	2	3	2	-	3

	Semester: III				
	OPE	RATING SYSTEMS			
		(Theory)			
Cou	rse Code: MVJ21CS/CG/AI33	CIE	Marks:100		
Cred	Credits: L:T:P:S: 3:0:0:0 SEE Marks: 100				
Hou	Hours: 40L SEE Duration: 3 Hrs				
Cou	rse Learning Objectives: The stude	nts will be able to			
1	Introduce concepts and terminol	ogy used in OS.			
2	2 Explain threading and multithreaded systems.				
3	3 Illustrate process synchronization and concept of Deadlock.				

Introduce Memory and Virtual memory management, File system and storage 4 techniques.

UNIT-I	
Introduction: What operating systems do; Computer System organization;	8 Hrs
Computer System architecture; Operating System operations; Distributed	
system; Special-purpose systems; Computing environments. Operating System	
Services; User - Operating System interface; System calls; Types of system calls;	
System programs; Operating system design and implementation; Operating	
System structure; Virtual machines; System boot.	
Process Management : Process concept; Process scheduling; Operations on processes;Inter process communication.	
UNIT-II	
Multi-threaded Programming: Overview; Multithreading models; Thread	8 Hrs
Libraries; Threading issues. Process Scheduling: Basic concepts; Scheduling	
Criteria; Scheduling Algorithms; Multiple-processor scheduling; Thread	
scheduling.	
Process Synchronization : Synchronization: The critical section problem; Peterson's solution; Synchronization hardware; Semaphores; Classical problems of synchronization; Monitors.	
UNIT-III	
Deadlocks : Deadlocks; System model; Deadlock characterization; Methods for	8 Hrs
handling deadlocks; Deadlock prevention; Deadlock avoidance; Deadlock	
detection and recovery from deadlock.	
Memory Management : Memory management strategies: Background; Swapping; Contiguous memory allocation; Paging; Structure of page table; Segmentation	
UNIT-IV	
Virtual Memory Management: Background; Demand paging; Copy-on-write;	8 Hrs
Page replacement; Allocation of frames; Thrashing.	
File System, Implementation of File System: File system: File concept; Access	
methods; Directory structure; File system mounting; File sharing;	
Implementing File system: File system structure; File system implementation;	
Directory implementation; Allocation methods; Free space management.	
UNIT-V	

Mass Storage Structure-Disk Structure - Disk Attachment-Disk Scheduling-Disk8 HrsManagement- Swap-Space Management.

Protection: Domain of protection, Access matrix, Implementation of access

matrix, Access control, Revocation of access rights, Capability- Based systems.

Case Studies: Windows, Unix, Linux, Android.

Cours	Course Outcomes: After completing the course, the students will be able to				
CO1	Illustrate the fundamental concepts of operating systems.				
CO2	Compare and illustrate various process scheduling algorithms.				
CO3	Ability to recognize and resolve Deadlock problems, Memory Management				
	techniques.				
CO4	Apply appropriate memory and file management schemes.				
CO5	Appreciate the need of access control and protection in Operating System and				
	illustrate various disk scheduling algorithms.				

Refe	erence Books
1.	Abraham Silberschatz, Peter Baer Galvin, Greg Gagne, Operating System Concepts 7th
	edition,Wiley-India, 2006
2.	D.M Dhamdhere, Operating Systems: A Concept Based Approach 3rd Ed, McGraw-Hill,
	2013.
3.	Tanenbaum, A., "Modern Operating Systems", Prentice-Hall of India. 2004
4.	P.C.P. Bhatt, An Introduction to Operating Systems: Concepts and Practice 4th
	Edition,2013

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	P07	P08	PO9	PO10	PO11	PO12
CO1	2	2	2	-	-	-	-	-	-	-	-	-
CO2	2	2	3	-	-	-	-	-	-	-	-	-
CO3	3	2	3	-	-	-	-	-	-	-	-	-
CO4	3	2	3	-	-	-	-	-	-	-	-	-
CO5	3	2	3	-	-	-	-	-	-	-	-	-

	Semester: III					
	DATA STRUCTUR (Theor	ES & APPLICATIONS & LAB ry and Practice)				
Cou	Course Code: MVJ21CS/CG/AI34 CIE Marks:50+50					
Cred	Credits: L:T:P: 3:0:1 SEE Marks: 50 +50					
Hou	Hours:40 L+ 26 P SEE Duration: 03+03 Hours					
Cou	rse Learning Objectives: The studen	ts will be able to				
1	Identify the importance of data stru	uctures & memory allocation.				
2	2 Perform operations on stacks and queues and its applications					
3	Apply the operations of linked list,	Trees & Graphs in various applications				
4	Apply searching and sorting operat	ions in real time applications.				

UNIT-I	0
introduction: Data structures, classifications (primitive & Non Primitive), Data	o Hrs
structure Operations, Review of Arrays, Structures, Self-Referential Structures.	
Pointers and Dynamic Memory Allocation Functions. Representation of Linear	
Arrays in Memory, Dynamically allocated arrays.	
Abstract Data Type, Array Operations: Traversing, inserting, deleting, searching,	
and sorting,	
Array ADT : Multidimensional Arrays, Polynomials and Sparse Matrices.	
Strings: Basic Terminology, Storing, Operations and Pattern Matching algorithms. Programming Examples.	
UNIT-II	
Stacks: Definition, Stack Operations, Stack ADT, Array Representation of Stacks,	8 Цто
Stacks using Dynamic Arrays, Stack Applications: Polish notation, Infix to postfix	
conversion, evaluation of postfix expression.	
Recursion - GCD, Tower of Hanoi.	
Queues: Definition, Array Representation, Queue Operations, Queue ADT, Circular	
Queues, Circular queues using Dynamic arrays, Dequeues, Priority Queues.	
Programming Examples.	
UNIT-III	
Linked Lists: Definition, Representation of linked lists in Memory, Memory	8
allocation; Garbage Collection. Linked list operations: Traversing, Searching,	Hrs
Insertion, and Deletion. Doubly Linked lists, Circular linked lists, and header linked	
lists. Linked Stacks and Queues. Applications of Linked lists – Polynomials.	
Programming Examples	
UNIT-IV	
Trees: Terminology, Binary Trees, Properties of Binary trees, Array and linked	8
Representation of Binary Trees, Binary Tree Traversals - Inorder, postorder,	Hrs
preorder; Additional Binary tree operations. Threaded binary trees, Binary Search	
Trees – Definition, Insertion, Deletion, Traversal, Searching, Application of Trees-	
Evaluation of Expression, AVL Trees, Splay Trees, B-Tree, Programming Examples	

Graphs: Definitions, Terminologies, Matrix and Adjacency List Representation of
Graphs, Elementary Graph operations, Traversal methods: Breadth First Search and
Depth First Search, Topological Sort.8
Hrs

Sorting and Searching: Quick sort, Insertion Sort, Radix sort, Merge Sort, Address Calculation Sort.

LABORATORY EXPERIMENTS

1.A courier company has number of items to be delivered to its intended customers through its salesman.

The salesman visits the following cities to deliver the respective items. Write a C program,

S.No	Cities	Number of items
1	Agra	25
2	Chennai	50
3	Kolkata	59
4	Mumbai	72
5	Delhi	12

*To display name of cities where salesman has delivered maximum and minimum number

of items

*To search the number of items to be delivered of a user supplied city.

2. Implement Knuth-Morris- Pratt pattern matching algorithm using C program.

3. Design, Develop and Implement a menu driven Program in C with the listed operations

for the data structure which follows Last In First Out (LIFO) order. (Use Array

Implementation of specified DS with maximum size MAX).

a. Push an Element

b. Pop an Element

c. Demonstrate how it can be used to check Palindrome

d. Demonstrate Overflow and Underflow situations

e. Display the status

f. Exit

Support the program with appropriate functions for each of the above operations

4.Design, Develop and Implement a Program in C for converting an Infix Expression to Postfix Expression. Program should support for both parenthesized and free parenthesized expressions with the operators: +, -, *, /, % (Remainder), ^ (Power) and alphanumeric operands.

5. Design, Develop and Implement a menu driven Program in C for the following operations on Ring Buffer of Integers (Use Array Implementation)

a. Insert an Element on to Ring Buffer

b. Delete an Element from Ring Buffer

c. Demonstrate Overflow and Underflow situations on Ring Buffer

d. Display the status of Ring Buffer

e. Exit

Support the program with appropriate functions for each of the above operations

6. Design, Develop and Implement a menu driven Program in C for the following operations on Singly Linked List (SLL) of Student Data with the fields: USN, Name, Programme, Sem, PhNo

a. Create a SLL of N Students Data by using front insertion

b. Display the status of SLL and count the number of nodes in it

c. Perform Insertion / Deletion at End of SLL

d. Perform Insertion / Deletion at Front of SLL

e. Exit

7. Design, Develop and Implement a menu driven Program in C for the following operations on Doubly Linked List (DLL) of Employee Data with the fields: SSN, Name, Dept, Designation, Sal, PhNo.

a. Create a DLL of N Employees Data by using end insertion.

b. Display the status of DLL and count the number of nodes in it.

c. Perform Insertion and Deletion at End of DLL .

d. Perform Insertion and Deletion at Front of DLL .

e. Demonstrate how this DLL can be used as Double Ended Queue.

f. Exit

8. Design, Develop and Implement a menu driven C Program for the following operations on Binary Search Tree (BST) of Integers.

- a) Create a BST of N Integers: 6, 9, 5, 2, 8, 15, 24, 14, 7, 8, 5, 2.
- b) Traverse the BST recursively in inorder, preorder & postorder

Search the BST for a given element (KEY) and report the appropriate message

9. Design, Develop and Implement a Program in C for the following operations on Graph(G) of Cities Create Graph of Ν cities using Adjacency Matrix. a. а b. Print all the nodes reachable from a given starting node in a digraph using DFS/BFS method

10. Develop a C program to sort a given set of n integer elements using Quick Sort method. Run the program for varied values of n and show the results of each iteration.

11. Given a File of N employee records with a set K of Keys(4-digit) which uniquely determine the records in file F. Assume that file F is maintained in memory by a Hash Table(HT) of m memory locations with L as the set of memory addresses (2- digit) of locations in HT. Let the keys in K and addresses in L are Integers. Design and develop a Program in C that uses Hash function H: $K \rightarrow L$ as $H(K)=K \mod m$ (remainder method), and implement hashing technique to map a given key K to the address space L. Resolve the collision (if any) using linear probing.

Any 10 experiments to be conducted

Course Outcomes: After completing the course, the students will be able to				
are various linear data structures.	CO1			
demonstrate the working nature of different types of data	CO2			
ir applications				
e and evaluate the searching and sorting algorithms.	CO3			
priate data structure for solving real world problems.	CO4			
demonstrate the working nature of different types of d ir applications e and evaluate the searching and sorting algorithms. priate data structure for solving real world problems.	CO2 CO3 CO4			

Refe	Reference Books		
1.	A M Tenenbaum, Data Structures using C, PHI, 1989		
2.	Robert Kruse, Data Structures and Program Design in C, 2nd Ed, PHI, 1996.		
3.	Choose the appropriate data structure for solving real world problems.		

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks

obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Laboratory- 50 Marks

The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are awarded 10 marks. Total marks for the laboratory is 50.

Semester End Examination (SEE): Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level

	S	emester: III				
	ANALOG AND DIGITAL ELECTRONICS & LAB					
	(Theo	ry and Practice)				
Cou	rse Code: MVJ21CS/CG/AI35		CIE Marks:50+50			
Cred	lits: L:T:P: 3:0:1	9	SEE Marks: 50 +50			
Hou	Hours:40 L+ 26 P SEE Duration: 03+03 Hours					
Cou	rse Learning Objectives: The studen	ts will be able to				
1	Analyze the working of oscillators and use of regulators.					
2	Make use of simplifying techniques in the design of combinational circuits.					
3	Illustrate combinational and seque	ntial digital circuits.				
4	Demonstrate the use of flipflops a	nd design registers an	nd counters.			
5	Design and test Analog-to-Digital and Digital-to-Analog conversion techniques.					

UNIT-I			
Prerequisites : Basic analog Circuits	8 Hrs		
Metal Oxide Semiconductor Field Effect transistor(MOSFET): Structure and I-V			
characteristics, MOSFET as a switch, MOSFET as an amplifier, CMOS and its			
applications.			
Oscillators: Basic working and applications of RC Phase shift oscillator, Wien			
Bridge oscillator, LC oscillator, Colpitt oscillator, Crystal Oscillator.			
Linear Power Supplies: Constituents of a Linear Power Supply, Designing Mains Transformer, Linear IC voltage regulators, Regulated Power Supply Parameters.			
Prereguisites: Digital Electronic Fundamentals	8 Hrs		
Karnaugh mans: Minimum forms of switching functions, two and three variable			
Karnaugh maps four variable karnaugh mans Ouine-McClusky Method			
determination of prime implicants. The prime implicant chart, petricks method			
simplification of incompletely specified functions, simplification using man-			
antorod variables			
Combinational Circuits: Multiplexer. Decoders. Adders. Subtractors. BCD	8 Hrs		
arithmetic, carry look ahead adder, serial adder, ALU-Design and popular MSI			
chips, digital comparator, parity checker/generator, code converters, priority			
encoders, decoders/drivers for display devices.			
Flip-Flops and Registers:	8 Hrs		
Flip Flops: S-R,J-K,D and T flip flops,Edge-triggered JK FLIP-FLOPs			
Registers: Types of Registers, Serial In - Serial Out, Serial In - Parallel out, Parallel			
In - Serial Out, Parallel In - Parallel Out, Universal Shift Register, Applications of			
Shift Registers.			
Counters: Asynchronous Counters, Decoding Gates, Synchronous Counters,			
Changing the Counter Modulus, Decade Counters, Applications of Counters.			
UNIT-V			
D/A Conversion and A/D Conversion:	8 Hrs		

Digital to analog converters: weighted resistor/converter, R-2R Ladder D/A converter, specifications for D/A converters, examples of D/A converter ICs, sample and hold circuit.

Analog to digital converters: quantization and encoding, parallel comparator A/D converter, successive approximation A/D converter, counting A/D converter, dual slope A/D converter, A/D converter using voltage to frequency and voltage to time conversion, specifications of A/D converters, example of A/D

Converter ICs

LABORATORY EXPERIMENTS

1. Study of transistor phase shift oscillator and observe the effect of variation in R & C on oscillator frequency and compare with theoretical value.

2. Design and test IC 723 voltage regulator

3. Given a 4-variable logic expression, simplify it using Entered Variable Map and realize the simplified logic expression using 8:1 multiplexer IC.

4. Design and implement a faster way3 to add binary numbers using carry look ahead adders.

5. a) Realization and implementation of 2-bit comparator using logic gates.

b) Implementation of 4-bit magnitude comparator using IC 7485.

6. To design and construct basic flip-flops R-S ,J-K,J-K Master slave flip-flops using gates and verify their truth table

7. Implementation of SISO, SIPO, PISO and PIPO shift registers using Flip- flops

8. Design and implementation of 3-bit synchronous up/down counter

9. Design and implement a ring counter and Johnson counter using 4-bit shift register and demonstrate its working.

10. Design and implement a mod-n (n<8) synchronous up counter using J-K Flip-Flop ICs and demonstrate its working.

11. Design and implement an asynchronous counter using decade counter IC to count up from 0 to n (n<=9) and demonstrate on 7-segment display (using IC-7447).

12. Design 4 bit r-2r ladder DAC using opamp.

Any 12 experiments to be conducted

Cours	se Outcomes: After completing the course, the students will be able to
CO1	Design and analyze analog circuits using transistors, power supply, MOSFETS,
	regulator IC and opamp
CO2	Simplify digital circuits using Karnaugh Map , POS and Quine-McClusky Methods
CO3	Explain construction and working of data processing circuits
CO4	Understanding the various types of latches and flip flops and building the registers
	and counters using flip flops.

CO5 Explain the basic principles of A/D and D/A conversion circuits and develop the same.

Refe	erence Books
1.	Anil K Maini, Varsha Agarwal, Electronic Devices and Circuits, Wiley, 2012.
2.	Charles H Roth and Larry L Kinney, Fundamentals of Logic design, Cengage
	Learning,2019.
3.	Donald P Leach, Albert Paul Malvino & Goutam Saha, Digital Principles and
	Applications, 8th Edition, Tata McGraw Hill, 2015.
4.	M. Morris Mani, Digital Design, 4th Edition, Pearson Prentice Hall, 2008.

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the self -study are 20 (2 presentations are be held for 10 marks each). The marks obtained in test, quiz and self -studies are added to get marks out of 100 and report CIE for 50 marks.

Laboratory- 50 Marks

The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are awarded 10 marks. Total marks for the laboratory is 50.

Semester End Examination (SEE): Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

					CO-I	PO Map	oping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	P07	P08	PO9	PO10	PO11	PO12
CO1	3	3	2	2	-	-	-	-	-	-	-	1
CO2	3	3	2	2	-	-	-	-	-	-	-	1
CO3	3	3	3	2	-	-	-	-	-	-	-	1
CO4	3	3	2	2	-	-	-	-	-	-	-	1
CO5	3	3	3	2	-	-	-	-	-	-	-	1

	Semester	: 111				
	UNIX SHELL PROG	RAMMING				
	(Theory)				
Cours	se Code: MVJ21AEC37	CIE Marks:100				
Credits: L:T:P:S:2:0:0:0		SEE Marks: 100				
Hour	s: 40L	SEE Duration: 3 Hrs				
Cours	se Learning Objectives: The students will be	able to				
1	To help the students to understand effec and terminology	tive use of Unix concepts, commands				
2	Identify, access, and evaluate UNIX file system.					
3	3 Understand UNIX command syntax and semantics.					
4	4 Ability to read and understand specifications, scripts and programs.					

UNIT-I	
Introduction of UNIX - Introduction, History, Architecture, Experience the Unixenvironment, Basic commands Is, cat, cal, date, calendar, who, printf, tty, sty, uname, passwd, echo, tput, and bc.	6 Hrs
UNIT-II	I
UNIX File System - The file, what's in a filename? The parent-child relationship, pwd, the Home directory, absolute pathnames, using absolute pathnames for acommand, cd, mkdir, rmdir, Relative pathnames, The UNIX file system.	6 Hrs
UNIT-III	I
Basic File Attributes - Is – I, the –d option, File Permissions, chmod, Security and File Permission, users and groups, security level, changing permission, user masks, changing ownership and group, File Attributes, More file attributes: hard link, symbolic link, umask, find.	6 Hrs
UNIT-IV	
Introduction to the Shell Scripting - Introduction to Shell Scripting, Shell Scripts, read, Command Line Arguments, Exit Status of a Command, The Logical Operators && and , exit, if, and case conditions, expr, sleep and wait, while, until, for, \$, @, redirection. The here document, set, trap, Sample Validation and Data Entry Scripts.	6 Hrs
UNIT-V	
Introduction to UNIX System process: Mechanism of process creation. Parentand child process. The ps command with its options. Executing a command at a specified point of time: at command. Executing a command periodically: cron command and the crontab file. Signals	6 Hrs

Cour	se Outcomes: After completing the course, the students will be able to
CO1	Know the basics of Unix concepts and commands.
CO2	Evaluate the UNIX file system.
CO3	Apply Changes in file system.
CO4	Understand scripts and programs.
CO5	Analyze Facility with UNIX system process

Refe	rence Books
1.	Unix Concepts & Applications 4rth Edition, Sumitabha Das, Tata McGraw Hill
2.	Unix Shell Programming, Yashwant Kanetkar
3.	Introduction to UNIX by M G Venkatesh Murthy

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question mayhave a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	РО	РО
										0	11	12
CO1	2	2	2	-	-	-	-	-	-	-	-	-
CO2	2	2	3	-	-	-	-	-	-	-	-	-
CO3	3	2	3	-	-	-	-	-	-	-	-	-

CO4	3	2	3	-	-	-	-	-	-	-	-	-
CO5	3	2	3	-	-	-	-	-	-	-	-	-

High-3, Medium-2, Low-1

	Semester: III							
	Additional Mathematics-I							
	(Common to all branches)							
Course Code:		MVJ21MATDIP1		CIE Marks:50				
Credits:		L:T:P:S: 4:0:0:0		SEE Marks: 50				
Hours:		40L		SEE Duration: 3 Hrs				
Cou	rse Learning Objectiv	es: The students will be a	ble to					
1	To familiarize the im	portant and introductory	concepts o	of Differential calculus				
2	Aims to provide essential concepts integral calculus							
3	3 To gain knowledge of vector differentiation							
4	1 To learn basic study of probability							
5	Ordinary differential equations of first order and analyze the engineering problems.							

UNIT-IDifferential calculus: Recapitulation of successive differentiation -nth derivative8 Hrs-Leibnitz theorem (without proof) and Problems, Polar curves - angle between
the radius vector and tangent, angle between two curves, pedal equation,
Taylor's and Maclaurin's series expansions- Illustrative examples.
Video Link:8 Hrs

1. <u>http://nptel.ac.in/courses.php?disciplineID=111</u>

UNIT-II		
Integral Calculus: Statement of reduction formulae for the integrals of $\sin^n(x)$, $\cos^n(x)$, $\sin^n(x)\cos^n(n)$ and evaluation of these integrals with standard limits-problems. Double and triple integrals-Simple examples.		
Video Link:		
1. http://nptel.ac.in/courses.php?disciplineID=111		
UNIT-III		
Vector Differentiation: Scalar and Vector point functions, Gradient,	8Hrs	
Divergence, Curl, Solenoidal and Irrotational vector fields.		
Vector identities - $div(\phi \vec{A})$, $curl(\phi \vec{A})$, $curl(grad(\phi))$, $div(curl \vec{A})$.		
Video Link:		
1. <u>http://nptel.ac.in/courses.php?disciplineID=111</u>		
UNIT-IV		
Probability: Basic terminology, Sample space and events. Axioms of	8Hrs	
probability. Conditional probability – illustrative examples. Bayes theorem-		
examples.		
Video Link:		
1. <u>http://nptel.ac.in/courses.php?disciplineID=111</u>		
UNIT-V	-	
Ordinary Differential Equations of First Order: Introduction – Formation of	8Hrs	
differential equation, solutions of first order and first degree differential		
equations: variable separable form, homogeneous, exact, linear differential		
equations.		
Video Link:		
1. http://nptel.ac.in/courses.php?disciplineID=111		

Cours	e Outcomes: After completing the course, the students will be able to
CO1	Apply the knowledge of calculus to solve problems related to polar curves and its applications
CO2	Apply the concept of integration and variables to evaluate multiple integrals and their usage in computing the area and volumes.
CO3	Illustrate the applications of multivariate calculus to understand the solenoidal and irrotational vectors and also exhibit the inter dependence of line, surface and volume integrals.
CO4	Understand the basic Concepts of Probability
CO5	Recognize and solve first-order ordinary differential equations occurring in different branches of engineering.

Reference Books

1. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 43rd Edition, 2013, .

- G. B. Gururajachar, Calculus and Linear Algebra, Academic Excellent Series Publicatior 2018-19
- 3. Chandrashekar K. S, Engineering Mathematics-I, Sudha Publications, 2010.

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	P01	PO2	PO3	PO4	PO5	PO6	P07	P08	PO9	PO10	PO11	PO12
CO1	3	3	0	2	0	0	0	0	0	0	1	1
CO2	3	3	0	2	0	0	0	0	0	0	1	1
CO3	3	3	0	3	0	0	0	0	0	0	1	1
CO4	2	2	0	3	0	0	0	0	0	0	1	1
CO5	2	2	0	2	0	0	0	0	0	0	0	1