		Semester:	VII					
		INTERNET OF THING						
		(Theory and Pr	actice)					
Cour	se Code:	MVJ21CS71	CIE Marks:50+50					
Cred	its:	4	SEE Marks: 50 +50					
Hou	rs:		SEE Duration: 03+03 Hours					
Cour	se (Theory) Learning Ol	bjectives: The student	s will be able to					
1	Learn the basic issues	s, policy and challenge	s in the Internet.					
2	Get an idea of some of	Get an idea of some of the application areas where Internet of Things can be applied.						
3	Understand the cloud	Understand the cloud and internet environment.						
4	Understand the vario	Understand the various modes of communications with Internet.						
Cour	se (Practice) Learning C	bjectives: The studen	ts will be able to					
1	Understand the conc	Understand the concepts of Internet of Things.						
2	Analyse basic protocols in wireless sensor network.							
3	Design IoT application	Design IoT applications in different domain and be able to analyze their performance						
4	Implement basic IoT	applications on embed	lded platform.					

UNIT-I	
Prerequisites : Basic Knowledge about C or C++	Hrs 8
Introduction to IoT: Definition – Foundations – Challenges and Issues -	
Identification - Security. Components in internet of things: Control Units – Sensors	
– Communication modules – Power Sources – Communication Technologies – RFID	
– Bluetooth – Zigbee – Wifi – Rflinks – Mobile Internet – Wired Communication-IoT	
Platform Overview-Raspberry pi-Arduino boards.*	
Applications: Sensors in IoT.	
Video link / Additional online information (related to module if any):	
 http://www.theinternetofthings.eu/what-is-the-internet-of-things. 	
<u>https://www.engineersgarage.com/article_page/sensors-different-types-</u>	
of-sensors/	
 https://www.educba.com/applications-of-sensors/ 	
* Programming Assignments are Mandatory.	
UNIT-II	
IoT Protocols: Protocol Standardization for IoT-M2M and WSN Protocols-SCADA	Hrs 8
and RFID Protocols-Issues with IoT Standardization-Protocols-IEEE 802.15.4-	
BACNet Protocol-Zigbee Architecture - Network layer – APS Layer – Security.*	
Applications:	

IoT Protocol Applications

Video link / Additional online information (related to module if any):

- <u>https://inductiveautomation.com/resources/article/what-is-scada</u>
- https://iotbytes.wordpress.com/application-protocols-for-iot/
- https://data-flair.training/blogs/iot-protocols/
- https://www.avsystem.com/blog/iot-protocols-and-standards/

* Programming Assignments are Mandatory.

UNIT-III

UNIT-III	
Resource Management in the Internet of Things: Clustering - Software Agents -	Hrs 8
Data Synchronization - Clustering Principles in an Internet of Things Architecture -	
The Role of Context - Design Guidelines -Software Agents for Object - Data	
Synchronization- Types of Network Architectures - Fundamental Concepts of Agility	
and Autonomy-Enabling Autonomy and Agility by the Internet of Things - The	
Evolution from the RFID-based EPC Network to an Agent based Internet of Things-	
Agents for the Behaviour of Objects.*	
Applications: RFID Applications	
Video link / Additional online information (related to module if any):	
RFID Applications:	
https://www.digiteum.com/rfid-technology-internet-of-things	
https://www.uio.no/studier/emner/matnat/ifi/INF5910CPS/h10/undervis	
ningsmateriale/RFID-IoT.pdf	
* Programming Assignments are Mandatory.	
UNIT-IV	1
Case Study and IoT Application Development: IoT applications in home-	Hrs 8
infrastructures security-Industries- IoT electronic equipment's. Use of Big Data and	
Visualization in IoT Industry 4.0 concepts - Sensors and sensor Node –Interfacing	
using Raspberry Pi/Arduino- Web Enabled Constrained Devices.	
	1

Laboratory Sessions/ Experimental learning: Interfacing using Raspberry Pi/Arduino

Applications: Elements in group

Video link / Additional online information (related to module if any):

- https://www.simform.com/home-automation-using-internet-of-things/
- https://iot5.net/iot-applications/smart-home-iot-applications/
- https://maker.pro/raspberry-pi/tutorial/how-to-connect-and-interface-

raspberry-pi-with-arduino#

 https://create.arduino.cc/projecthub/ruchir1674/how-to-interfacearduino-with-raspberrypi-504b06

* Programming Assignments are Mandatory.

UNIT-V

Web of Things:Web of Things versus Internet of Things-ArchitectureHrs 8Standardization for WoT-Platform Middleware for WoT- WoT Portals and BusinessIntelligence-Cloud of Things: Grid/SOA and Cloud Computing-Cloud Standards –Cloud of Things Architecture-Open Source e-Health sensor platform.Video link / Additional online information (related to module if any):

- https://www.water-io.com/iot-vs-wot
- https://www.talend.com/resources/iot-cloud-architecture/

* Programming Assignments are Mandatory.

	LABORATORY EXPERIMENTS	
SL No	Experiment	Hrs
1	Familiarization with Arduino/Raspberry Pi and perform necessary software installation.	3
2	To interface LED/Buzzer with Arduino/Raspberry Pi and write a program to turn ON LED for 1 sec after every 2 seconds.	3
3	To interface motor using relay with Arduino/Raspberry Pi and write a program to turn ON motor when push button is pressed.	3
4	To interface OLED with Arduino/Raspberry Pi and write a program to print temperature and humidity readings on it.	3
5	To interface Bluetooth with Arduino/Raspberry Pi and write a program to send sensor data to smartphone using Bluetooth.	3
6	To interface Push button/Digital sensor (IR/LDR) with Arduino / Raspberry Pi and write a program to turn ON LED when push button is pressed or at sensor detection.	3
7	To interface DHT11 sensor with Arduino/Raspberry Pi and write a program to print temperature and humidity readings.	3
8	Write a program on Arduino/Raspberry Pi to publish temperature data to MQTT broker.	3
9	To interface Bluetooth with Arduino/Raspberry Pi and write a program to turn LED ON/OFF when '1'/'0' is received from smartphone using Bluetooth.	3

Course (Theory) Outcomes: After completing the course, the students will be able toCO1Identify the components of IoT.

CO2	Analyze various protocols of IoT.
COS	Design portable IoT using appropriate boards
CO4	Develop schemes for the applications of IOT in real time scenarios.
COS	Design business Intelligence and Information Security for WoT
Cou	rse (Practice) Outcomes: After completing the course, the students will be able to
CO1	To understand how sensors and embedded systems work
CO2	Design and implement an accessory with BLE connectivity using standard mobile application development tools
coa	To understand how to communicate with other mobile devices using various communication platforms such as Bluetooth and Wi-Fi.
CO4	Develop and demonstrate applications e.g. smartphone-based, sensor station
COS	To understand how to program on embedded and mobile platforms.
Text	Books
1	Honbo Zhou, "The Internet of Things in the Cloud: A Middleware Perspective" -CRC Press-2012.
2	Dieter Uckelmann, Mark Harrison, "Architecting the Internet of Things", Springer2011.
Refe	erence Books:
1	Arshdeep Bahga, Vijay Madisetti, "Internet of Things (A Hands-On-Approach)", VPT, 2014.
2	Olivier Hersent, David Boswarthick, Omar Elloumi, "The Internet of Things – Key applications and Protocols", Wiley, 2012.
3	Luigi Atzori, Antonio Lera, Giacomo Morabito, "The Internet of Things: A Survey", Journal on Networks, Elsevier Publications, October, 2010.

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks

out of 100 and report CIE for 50 marks.

Laboratory- 50 Marks

The laboratory session is held every week as per the timetable and the performance of the student is evaluated in every session. The average of the marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are awarded 10 marks. Total marks for the laboratory is 50.

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three subdivisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

					CO-P	O/PSO	Марр	ing (Th	eory)					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	РО	PSO	PSO2
0,10	101										1	12	1	
CO1	3	3	1	-	-	-	-	-	-	-	-	3	1	-
CO2	3	3	1	-	-	-	-	-	-	-	-	3	2	-
CO3	3	3	1	2	-	-	-	-	-	1	-	3	2	3
CO4	3	3	3	3	-	-	-	2	2	2	-	3	1	3
CO5	3	3	3	3	-	-	2	2	3	2	-	3	2	2

					CO-P	O/PSO	Mappi	ng (Pra	ctice)					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	РО	PSO	PSO2
CO/FO	FUI										1	12	1	
CO1	2	1	1	-	-	-	-	-	-	2	-	1	2	-
CO2	2	1	1	-	-	-	-	-	-	2	-	1	1	3
CO3	2	1	1	-	-	-	-	-	-	2	-	1	2	3
CO4	2	1	1	-	-	-	-	-	-	2	-	1	1	3
CO5	2	1	1	-	-	-	-	-	-	2	-	1	2	2

	Semester: VII					
	ARTIFICIAL INTE	LLIGENCE				
	(Theory)					
Cοι	Irse Code: MVJ21CS721	CIE Marks:100				
Cre	dits: L:T:P:S: 3:0:0:0	SEE Marks: 100				
Но	urs: 40L	SEE Duration: 3 Hrs				
Cοι	urse Learning Objectives: The students	s will be able to				
1	Describe the basic principles, technic	ques, and applications of Artificial Intelligence				
2	Analyze and explain different AI learning methods					
3	Compare and contrast different AI techniques available.					

UNIT-I	
INTRODUCTION: What Is AI? The Foundations of Artificial Intelligence, The	8Hrs
History of Artificial Intelligence, The State of the Art.	
Intelligent Agents: Agents and Environments, Good Behavior: The Concept of	
Rationality ,The Nature of Environments, The Structure of Agents.Knowledge	
Representation Issues, Using Predicate Logic, Representing knowledge using	
Rules.	
Video Links	
 <u>https://www.youtube.com/watch?v=3MW3ICnkQ9k</u> 	
UNIT-II	
PROLOG- The natural Language of Artificial Intelligence: Introduction,	8Hrs
Converting English to Prolog Facts and Rules, Goals, Prolog Terminology,	
Variables, Control Structures, Arithmetic operators, Matching in Prolog,	
Backtracking, Cuts, Recursion, Lists, Dynamic databases, Input/Output and	
Streams	
Using Predicate Logic: Representing simple facts in logic, representing	
instance and ISA relationships, Computable Functions and Predicates,	
Resolution, NaturalDeduction.	
Video Links:	
https://www.youtube.com/watch?v=pzUBrJLIESU	
UNIT-III	
Heuristic search techniques: Generate and test, Hill Climbing, Best First	8Hrs
Search, Problem Reduction, Constraint Satisfaction, Means-ends Analysis.	
Weak Slot- and- Filler Structures: Semantic Nets , Frames.	
Strong slot-and Filler Structures- Conceptual Dependency, Scripts.	
Video Links:	
https://www.youtube.com/watch?v=ieZr_TpRwnQ	
UNIT-IV	

Game Playing : Overview, Minimax Search Procedure, Adding alpha beta cut	8Hrs
off, Additional Refinements, Iterative Deepening, References on Specific	
games.	
Learning: What is learning?, Forms of learning, Rote learning, learning by	
taking advice, Learning in problem solving, Induction leaning, Explanation	
based learning, Discovery, A Video Links:	
https://www.youtube.com/watch?v=_i-lZcbWkpsnalogy, Formal learning Theory,	
Neural Network Learning.	
UNIT-V	
UNIT-V Natural Language Processing: Syntactic Processing, Semantic Analysis,	8Hrs
	8Hrs
Natural Language Processing: Syntactic Processing, Semantic Analysis,	8Hrs
Natural Language Processing: Syntactic Processing, Semantic Analysis, Discourse and Pragmatic processing, Statistical Natural language processing and Spell checking.	8Hrs
Natural Language Processing: Syntactic Processing, Semantic Analysis, Discourseand Pragmatic processing, Statistical Natural language processing	8Hrs
Natural Language Processing: Syntactic Processing, Semantic Analysis, Discourse and Pragmatic processing, Statistical Natural language processing and Spell checking.	8Hrs
 Natural Language Processing: Syntactic Processing, Semantic Analysis, Discourse and Pragmatic processing, Statistical Natural language processing and Spell checking. Genetic Algorithms: A peek into the biological world, Genetic 	8Hrs

Course (Dutcomes: After completing the course, the students will be able to
CO1	Identify AI based problems and understand Intelligent agents
CO2	Apply predicate logic and heuristic techniques to solve AI problems.
CO3	Understand the different representation of knowledge.
CO4	Understand the concepts of learning and Natural Language Processing.
CO5	Understand Genetic Algorithms and solve AI problems using PROLOG.

Ref	erence Books
1.	Artificial Intelligence: A Modern Approach, Stuart Rusell, Peter Norving, Pearson
	Education 2nd Edition
2.	E. Rich , K. Knight & S. B. Nair - Artificial Intelligence, 3/e, McGraw Hill.

3.	Dan W. Patterson, Introduction to Artificial Intelligence and Expert Systems – Prentice
	Hal of India.
4.	G. Luger, "Artificial Intelligence: Structures and Strategies for complex problem
	Solving", Fourth Edition, Pearson Education, 2002.

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question mayhave a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	1	2	-	-	-	-	-	-	-	2
CO2	3	3	2	3	1	-	-	-	-	-	-	2
CO3	3	3	2	3	1	-	-	-	-	-	-	2

CO4	3	3	2	3	2	-	-	-	-	-	-	2
CO5	3	3	2	3	2	-	-	-	-	-	-	2

High-3, Medium-2, Low-1

Semester: VII								
	GREEN COMPUTING							
Cou	rse Code:	MVJ21CS722	CIE Marks:50					
Cred	lits:	3	SEE Marks: 50					
Hours:			SEE Duration: 3 Hrs					
Cou	rse Learning Objectives:	The students will be a	ble to					
1	Acquire knowledge to a on the environment.	adopt green computing	practices to minimize negative impacts					
2	Skill in energy saving p	ractices in their use of	hardware.					
3	0,	•	per waste and carbon footprint by user nt disposal requirements					

 UNIT-I

 FUNDAMENTALS: Green IT Fundamentals: Business, IT, and the Environment –
 Hrs 8

 Green computing: carbon foot print, scoop on power – Green IT Strategies:

Drivers, Dimensions, and Goals – Environmentally Responsible Business: Policies,	
Practices, and Metrics.	
Real Time Applications: how they keep data safe while in transit	
Video link / Additional online information:	
https://nptel.ac.in/courses/106/104/106104182/	
https://www.youtube.com/watch?v=350Rb2sOc3U	
UNIT-II	
GREEN ASSETS AND MODELING :Green Assets: Buildings, Data Centers,	Hrs 8
Networks, and Devices – Green Business Process Management: Modeling,	
Optimization, and Collaboration – Green Enterprise Architecture –	
Environmental Intelligence – Green Supply Chains – Green Information Systems:	
Design and Development Models.	
Real Time Applications: climate-smart agriculture, land restoration,	
groundwater management, ecosystem-based adaptation	
Video link / Additional online information:	
 https://nptel.ac.in/courses/110/107/110107128/ 	
• <u>https://nptel.ac.in/courses/110/107/110107093/</u>	
UNIT-III	
GRID FRAMEWORK : Virtualizing of IT systems – Role of electric utilities,	Hrs 8
Telecommuting, teleconferencing and teleporting – Materials recycling – Best	
ways for Green PC – Green Data center – Green Grid framework.	
Real Time Applications: ChessBrain	
Video link / Additional online information:	
 <u>https://nptel.ac.in/noc/courses/noc18/SEM2/noc18-ee42/</u> 	
https://onlinecourses.nptel.ac.in/noc19_ee64/preview_	
UNIT-IV	
GREEN COMPLIANCE : Socio-cultural aspects of Green IT – Green Enterprise	Hrs 8
Transformation Roadmap – Green Compliance: Protocols, Standards, and Audits	
- Emergent Carbon Issues: Technologies and Future.	
Real Time Applications: Addressing Inconsistent Date Formats, Reducing False	
Positives in PEP Screening, Integrating Screening with Credit Card Approval	
Positives in PEP Screening, Integrating Screening with Credit Card Approval Processes.	

CAS	E STUDIES : The Environmentally Responsible Business Strategies (ERBS)	Hrs 8
– Ca	se Study Scenarios for Trial Runs – Case Studies Applying Green IT	
Stra	tegies and Applications to a Home, Hospital, Packaging Industry and	
	com Sector.	
	Time Applications: The energy consumption in Torrent systems with	
	cious content, The use of thin client instead of desktop PC	
	o link / Additional online information:	
viue	https://nptel.ac.in/courses/106/105/106105195/	
•		
•	https://nptel.ac.in/courses/106/104/106104182/	
Cou	rse Outcomes: After completing the course, the students will be able to	
CO1	Acquire knowledge to adopt green computing practices to minimize	negative
	impacts on the environment.	
CO2	57 51	
COS	Evaluate technology tools that can reduce paper waste and carbon footpr stakeholders.	int by the
CO4	Understand the ways to minimize equipment disposal requirements.	
COS	Carry out multiple real time case studies.	
Text	Books	
1	Bhuvan Unhelkar, "Green IT Strategies and Applications-Using Enviro	onmental
	Intelligence", CRC Press, June 2011	
2	Woody Leonhard, Katherrine Murray, "Green Home computing for dummies	", August
	2009.	

Ref	erence Books							
1	Bhuvan Unhelkar, Green IT Strategies and Applications-Using Environmental							
1	Intelligence, CRC Press, June 2014.							
2	Woody Leonhard, Katherine Murray, Green Home computing for dummies, August							
Z	2012.							
2	Alin Gales, Michael Schaefer, Mike Ebbers, "Green Data Center: steps for the Journey",							
3	Shoff/IBM rebook, 2011.							
4	Carl speshocky, "Empowering Green Initiatives with IT", John Wiley & Sons, 2010.							
-	Wu Chun Feng (editor), "Green computing: Large Scale energy efficiency", CRC Press,							
5	2012.							

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO/PSO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	РО	PSO	PSO2
CO/FO	FOI										1	12	1	
CO1	3	-	-	-	1	-	-	-	-	-	-	2	1	-
CO2	3	3	3	-	-	-	-	-	1	-	1	2	2	-
CO3	2	2	2	1	3	-	-	-	-	-	1	3	2	3
CO4	3	2	3	-	-	-	-	-	-	2	3	2	2	-
CO5	3	2	3	-	-	-	-	-	-	2	3	2	1	2

		Semest	er: VII				
		ETHICAL H	IACKING				
Cours	rse Code: MVJ21CS723 CIE Marks:50						
Credi	ts:	is: 3 SEE Marks: 50					
Hours	s:			S	EE Duration	: 3 Hrs	
Cours	se Learning Objectives: T	he students will be	able to				
1	Understand numerou	s methods of real-v	world inform	nation in	telligence		
2	Learn about vulnerab	ility scanners					
3	Understand techniques used to sniff traffic across a network						
4	Familiarize with the n	nethodologies that	can be used	d to hack	into a targe	t.	
5	Appreciate the wide v	ariety of attacks th	at can be pe	erformed	against a w	ireless netv	vork
	·	UNI	T-I				
INTR	ODUCTION TO HACKING	G: Terminologies,	Categories	of Pene	tration Tes	t, Writing	
Repo	Reports, Structure of a Penetration Testing Report, Vulnerability Assessment Summary, Risk s 8						
Asses	sment, Methodology,	Linux Basics: File	Structure,	Cron J	ob, Users,	Common	
Appli	cations , BackTrack, Servi	ces.					

Applications: Network packet analysis, Password guessing and cracking

Video link / Additional online information (related to module if any):

- <u>https://www.tutorialspoint.com/ethical_hacking/ethical_hacking_process.htm</u>
- https://www.tutorialspoint.com/ethical_hacking/ethical_hacking_hacker_types
 .htm

UNIT-II

INFORMATION GATHERING, TARGETENUMERATION AND PORT SCANNING TECHNIQUES Active, Passive and Sources of information gathering, Copying Websites Locally, NeoTrace, Cheops-ng, Intercepting a Response, WhatWeb, Netcraft, Basic Parameters, Xcode Exploit Scanner, Interacting with DNS Servers, Fierce, Zone Transfer with Host Command and Automation, DNS Cache Snooping- Attack Scenario, Automating Attacks, SNMP - Problem, Sniffing Passwords, Solar Winds Toolset, sweep, Brute Force and Dictionary- Tools , Attack, Enumeration, Intelligence Gathering Using Shodan, Target enumeration and Port Scanning Techniques.

Applications: Session hijacking, Session spoofing

Video link / Additional online information (related to module if any):

•https://www.tutorialspoint.com/ethical_hacking/ethical_hacking_enumeration.htm

•https://www.tutorialspoint.com/ethical_hacking/ethical_hacking_sniffing.htm

UNIT-III

VULNERABILITY ASSESSMENT & NETWORKSNIFFING : Introduction to Vulnerability Assessment - Pros and Cons, NMap, Updation of database, Testing SCADA Environments with Nmap, Nessus, Sniffing: Types, Hubs versus Switches, Modes, MITM Attacks, ARP Protocol Basics- working, Attacks, DoS Attacks, Dsniff tool, Using ARP Spoof to Perform MITM Attacks, Sniffing the Traffic with Dsniff, Sniffing Pictures with Drifnet, Urlsnarf and Webspy, Sniffing with Wireshark, Ettercap- ARP Poisoning, Hijacking Session with MITM Attack, ARP Poisoning with Cain and Abel, Sniffing Session Cookies with Wireshark, Hijacking the Session, SSL Strip: Stripping HTTPS Traffic, Requirements, Automating Man in the Middle Attacks, DNS Spoofing, DHCP Spoofing

Applications: Network traffic sniffing, Denial of Service attacks

Video link / Additional online information (related to module if any):

•https://www.tutorialspoint.com/ethical_hacking/ethical_hacking_sniffing.htm

•https://www.tutorialspoint.com/ethical_hacking/ethical_hacking_tcp_ip_hijacking.htm

UNIT-IV

Understanding Network Protocols: Attacking Network Remote Services, Common Target
Protocols, tools for cracking network remote services, Attacking SMTP, Attacking SQL
Servers, Client Side Exploitation Methods: E-Mails Leading to Malicious Attachments &
Malicious Links, Compromising Client Side Update, Malware Loaded on USB Sticks
Post exploitation: Acquiring Situation Awareness, Privilege Escalation, Maintaining Access,
Data Mining, Identifying and Exploiting Further Targets, Windows Exploit Development
Basics.Hr
s 8

Applications: Exploiting buffer overflow vulnerabilities

Video link / Additional online information (related to module if any):

- <u>https://www.tutorialspoint.com/ethical_hacking/ethical_hacking_sql_injection.</u>
 <u>htm</u>
- <u>https://www.tutorialspoint.com/ethical_hacking/ethical_hacking_exploitation.</u>
 <u>htm</u>

UNIT-V

WIRELESS & WEB-HACKING

Wireless Hacking : Requirements , Aircracking , Hidden SSIDs , Monitor Mode , MonitoringHr
s 8Tool- Beacon Frames on Wireshark , Airodump-ng , Wireless Adapter in Monitor Mode ,
Determining the Target , Cracking a WPA/WPA2 Wireless Network Using Aircrack-ng ,
Capturing Packets and Four-Way Handshake.Hr
s 8

Web Hacking : Attacking the Authentication , Brute Force and Dictionary Attacks , Types of Authentication , Crawling Restricted Links , Testing for the Vulnerability , Authentication Bypass with Insecure Cookie Handling , SQL injection, XSS – DOM based, BeEF, CSRF, Bypassing CSRF and BeEF with XSS, Vulnerability in FCKeditor, efront.

Applications: Cross Site Scripting, Firewall

Video link / Additional online information (related to module if any):

- https://www.tutorialspoint.com/ethical hacking/ethical hacking ddos attacks
 .htm
- <u>https://www.tutorialspoint.com/ethical_hacking/ethical_hacking_wireless.htm</u>

Course	Course Outcomes: After completing the course, the students will be able to							
CO1	Understand the core concepts related to malware, hardware and software vulnerabilities and their causes							
CO2	Understand ethics behind hacking and vulnerability disclosure							
CO3	Appreciate the Cyber Laws and impact of hacking Exploit the vulnerabilities related to computer system and networks using state of the art tools and technologies							
CO4	Learn & understand different network protocols and attack strategies							

CO5	Understanding the usefulness of wireless & web hacking
-----	--

Tex	t Books
	Rafay Baloch ,-Ethical Hacking and Penetration Testing Guide , CRC Press, 2015.
2	Patrick Engebretson, – The Basics of Hacking and Penetration Testing : Ethical Hacking and
2	Penetration Testing Made Easy , Syngress Media, Second Revised Edition, 2013.

Refere	ence Books:
1	Michael T. Simpson, Kent Backman, James E. Corley, –Hands On Ethical Hacking

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					C	CO-PO/	PSO M	apping						
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	РО	PSO	PSO2
CO/FO	FUI										1	12	1	
CO1	3	3	1	-	-	-	-	1	-	-	-	3	2	-
CO2	3	3	1	-	-	-	-	2	-	1	-	3	2	-
CO3	3	3	1	2	-	-	-	-	-	1	-	3	-	2
CO4	3	3	3	3	-	3	2	2	2	2	-	3	2	-
CO5	3	3	3	3	-	3	2	2	3	2	-	3	2	-

	Semester: VII								
		CYBER SECUR	ТҮ						
Cou	rse Code:	MVJ21CS724	CIE Marks:50						
Crec	lits:	3	SEE Marks: 50						
Hou	rs:		SEE Duration: 3 Hrs						
Cou	rse Learning Objectives:	The students will be a	ble to						
1	Understand Ethical Hacking.								
2	Understand Preventing, monitoring, and responding to data breaches and cyber- attacks.								
3	Learn the key components of cyber security network architecture.								
4	Analyse cyber security	architecture principles							

UNIT-I	
A web security forensic lesson, web languages, introduction to different web attacks,	Hrs 8
overview of n-tier web applications; Web servers: Apache, IIS, database servers,	
introduction and overview of cybercrime, nature and scope of cybercrime, types of	
cybercrime: social engineering, categories of cybercrime, property cybercrime.	
Video link / Additional online information (related to module if any):	
 https://nptel.ac.in/courses/106/106/106106129/ 	
UNIT-II	
Public key cryptography, RSA, online shopping, payment gateways, unauthorized	Hrs 8
access to computers, computer intrusions, white collar crimes, viruses and malicious	
code, internet hacking and cracking, virus attacks, pornography, software piracy,	
intellectual property, mail bombs, exploitation, stalking and obscenity in internet,	
digital laws and legislation, law enforcement roles and responses.	
Video link / Additional online information (related to module if any):	
 https://www.youtube.com/watch?v=6qdmriq2tWA 	
UNIT-III	
Web hacking basics HTTP and HTTPS URL, web under the cover overview of java	Hrs 8
security reading the HTML source, applet security, servlets security, symmetric and	
asymmetric encryptions, network security basics, firewalls and IDS. Investigation:	
Introduction to cybercrime investigation, investigation tools, e-discovery, digital	

evidence collection, evidence preservation, e-mail investigation, e-mail tracking, IP	
tracking, e-mail recovery, hands on case studies; Encryption and Decryption	l
methods, search and seizure of computers, recovering deleted evidences, password	
cracking	
Video link / Additional online information (related to module if any):	1
 https://nptel.ac.in/courses/106/105/106105217/ 	1
UNIT-IV	
Digital certificates, hashing, message digest, and digital signatures; Digital forensics:	Hrs 8
Introduction to digital forensics, forensic software and hardware, analysis and	1
advanced tools, forensic technology and practices, forensic ballistics and	1
photography, face, iris and fingerprint recognition, audio video analysis, windows	1
system forensics, Linux system forensics, network forensics.	1
Video link / Additional online information (related to module if any):	1
 https://www.digimat.in/nptel/courses/video/106106178/L05.html 	1
UNIT-V	
Basics, secure JDBC, securing large applications, cyber graffiti; Laws and acts: Laws	Hrs 8
and ethics, digital evidence controls, evidence handling procedures, basics of Indian	1
Evidence Act IPC and CrPC, electronic communication privacy act, legal policies.	l
Video link / Additional online information (related to module if any):	l
 https://www.youtube.com/watch?v=F7mH5vz1qEl 	1

Course	Course Outcomes: After completing the course, the students will be able to						
CO1	Analyse and resolve security issues in networks and computer systems to secure						
COI	an IT infrastructure.						
CO2	Design, develop, test and evaluate secure software.						
CO3	Develop policies and procedures to manage enterprise security risks.						
	Evaluate and communicate the human role in security systems with an emphasis						
CO4	on ethics, social engineering vulnerabilities and training.						
	Assess cyber-security risk management policies in order to adequately protect an						
CO5	, , , , , , , , , , , , , , , , , , , ,						
	organization						

Tex	t Books						
1	Mc Clure, Stuart, Saumil Shah, Shreeraj Shah, –Web Hacking: Attacks and Defense , AddisonWesley Professional, Illustrated Edition, 2003.						
-	AddisonWesley Professional, Illustrated Edition, 2003.						
n	Garms, Jess, Daniel Somerfield,Professional Java Security , WroxPress, Illustrated						
Z	² Edition, 2001.						

Refere	nce Books:
1	Nelson Phillips, EnfingerSteuart, -Computer Forensics and Investigations , Cengage
T	Learning, New Delhi,2009.
2	Kevin Mandia, Chris Prosise, Matt Pepe, –Incident Response and Computer Forensics
Z	–, Tata McGraw Hill,2009
3	Robert M Slade, –Software Forensics , Tata McGraw Hill, New Delhi, 1st Edition,2005.

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					C	CO-PO/	PSO M	apping						
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	РО	PSO	PSO2
0/10	PUI										1	12	1	
CO1	3	3	1	-	-	-	-	1	-	-	-	3	2	-
CO2	3	3	1	-	-	-	-	2	-	1	-	3	2	-
CO3	3	3	1	2	-	-	-	-	-	1	-	3	-	2
CO4	3	3	3	3	-	3	2	2	2	2	-	3	2	-
CO5	3	3	3	3	-	3	2	2	3	2	-	3	2	-

Semester: VII
DIGITAL IMAGE PROCESING

Cou	rse Code:	MVJ21CS725	CIE Marks:50
Credits:		3	SEE Marks: 50
Hou	rs:		SEE Duration: 3 Hrs
Cou	rse Learning Objectives:	The students will be able to	
1	Focuses on developme visible world around us		es to analyze and interpret the
2		damental concepts related raction, pattern analysis visual	to multi-dimensional signal geometric modeling, stochastic
3		ns ranging from Biometrics, Me visual content, to surveillance, a	0

UNIT-I	
DIGITAL IMAGE FORMATION AND LOW-LEVEL PROCESSING	Hrs 8
Overview and State-of-the-art, Fundamentals of Image Formation, Transformation:	
Orthogonal, Euclidean, Affine, Projective, etc; Fourier Transform, Convolution and	
Filtering, Image Enhancement, Restoration, Histogram Processing	
Video link / Additional online information:	
 <u>https://www.youtube.com/watch?v=CVV0TvNK6pk</u> 	
UNIT-II	
DEPTH ESTIMATION AND MULTI-CAMERA VIEWS	Hrs 8
Perspective, Binocular Stereopsis: Camera and Epipolar Geometry; Homography,	
Rectification, DLT, RANSAC, 3-D reconstruction framework; Auto-calibration.	
Video link / Additional online information:	
 <u>http://www.cse.iitm.ac.in/~vplab/computer_vision.html</u> 	
UNIT-III	
FEATURE EXTRACTION	Hrs 8
Edges - Canny, LOG, DOG; Line detectors (Hough Transform), Corners - Harris and	
Hessian Affine, Orientation Histogram, SIFT, SURF, HOG, GLOH, Scale-Space Analysis-	
Image Pyramids and Gaussian derivative filters, Gabor Filters and DWT.	
Video link / Additional online information:	
 <u>https://nptel.ac.in/courses/106/106/106106046/</u> 	
UNIT-IV	
IMAGE SEGMENTATION	Hrs 8
Region Growing, Edge Based approaches to segmentation, Graph-Cut, Mean-Shift,	
MRFs, Texture Segmentation; Object detection.	

Video link / Additional online information:	
 https://nptel.ac.in/courses/117/105/117105079/ 	
UNIT-V	
PATTERN ANALYSIS	Hrs 8
Clustering: K-Means, K-Medoids, Mixture of Gaussians, Classification: Discriminant	
Function, Supervised, Un-supervised, Semi-supervised; Classifiers: Bayes, KNN, ANN	
models; Dimensionality Reduction: PCA, LDA, ICA; Non-parametric methods.	
Video link / Additional online information:	
 https://www.youtube.com/watch?v=mfePdDh9t6Q 	

Course	Course Outcomes: After completing the course, the students will be able to						
CO1	Understand the concepts of Digital Image Processing.						
CO2	Analyse Homography and stereopsis.						
CO3	Analyse Edges and Hough Transforms.						
CO4	Demonstrate the ideas of image Segmentation.						
CO5	Implement the concepts of Pattern Analysis.						

Tex	ext Books								
1	Richard Szeliski, Computer Vision: Algorithms and Applications, Springer-Verlag London Limited 2011.								
2	Computer Vision: A Modern Approach, D. A. Forsyth, J. Ponce, Pearson Education, 2003.								

Refere	Reference Books:						
1	Richard Hartley and Andrew Zisserman, Multiple View Geometry in Computer Vision,						
T	Second Edition, Cambridge University Press, March 2004.						
2	K. Fukunaga; Introduction to Statistical Pattern Recognition, Second Edition, Academic						
2	Press, Morgan Kaufmann, 1990.						
3	R.C. Gonzalez and R.E. Woods, Digital Image Processing, Addison- Wesley, 1992.						

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO/PSO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	РО	РО	PSO	PSO2
0	FUI										11	12	1	
CO1	2	1	1	-	1	1	2	-	-	-	-	-	2	-
CO2	3	3	3	3	2	-	-	-	-	-	-	-	3	2
CO3	1	-	-	1	1	-	2	3	3	3	3	-	3	2
CO4	3	3	2	2	2	-	-	-	-	-	-	3	-	1
CO5	3	3	3	3	3	2	-	-	3	3	3	3	-	2

	Semester: VII								
	GAME DESIGN & DEVELOPMENT								
	(Theory)								
Cou	ourse Code: MVJ21CS731 CIE Marks:50								
Cred	Credits: 3 SEE Marks: 50								
Hou	Hours: SEE Duration: 3 Hrs								
Cou	rse Learning Objectives:	The students will be ab	le to						
1	Understand the concepts of Game design and development.								
2	Learn the processes, mechanics and issues in Game Design.								

3	Be exposed to the Core architectures of Game Programming.
	Know about Game programming platforms, frame works and engines. Learn to develop
4	games

UNIT-I						
3D GRAPHICS FOR GAME PROGRAMMING						
3D Transformations, Quaternions, 3D Modeling and Rendering, Ray Tracing,	Hrs 8					
Shader Models, Lighting, Color, Texturing, Camera and Projections, Culling and						
Clipping, Character Animation, Physics-based Simulation, Scene Graphs.						
UNIT-II						
GAME ENGINE DESIGN						
Game engine architecture, Engine support systems, Resources and File systems,	Hrs 8					
Game loop and real-time simulation, Human Interface devices, Collision and rigid						
body dynamics, Game profiling.						
UNIT-III						
GAME PROGRAMMING						
Application layer, Game logic, Game views, managing memory, controlling the	Hrs 8					
main loop, loading and caching game data, User Interface management, Game						
event management						
UNIT-IV						
GAMING PLATFORMS AND FRAMEWORKS						
2D and 3D Game development using Flash, DirectX, Java, Python, Game engines	Hrs 8					
- Unity. DX Studio.						
UNIT-V						
GAME DEVELOPMENT						
Developing 2D and 3D interactive games using DirectX or Python – Isometric and	Hrs 8					
Tile Based Games, Puzzle games, Single Player games, Multi-Player games.						

Course	Course Outcomes: After completing the course, the students will be able to						
CO1	Discuss the concepts of Game design and development.						
CO2	Design the processes, and use mechanics for game development.						
CO3	Explain the Core architectures of Game Programming.						
CO4	Use Game programming platforms, frame works and engines.						
CO5	Create interactive Games						

Тех	Text/ Reference Books							
1	Mike Mc Shaffrfy and David Graham, "Game Coding Complete", Fourth Edition, Cengage							
	Learning, PTR, 2012.							
2	Jason Gregory, "Game Engine Architecture", CRC Press / A K Peters, 2009.							

- **3** David H. Eberly, "3D Game Engine Design, Second Edition: A Practical Approach to Real-Time Computer Graphics" 2 nd Editions, Morgan Kaufmann, 2006.
- **4** Ernest Adams and Andrew Rollings, "Fundamentals of Game Design", 2 nd Edition Prentice Hall / New Riders, 2009.

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO/PSO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	-	-	-	-	-	-	-	-	-	-	-
CO2	3	3	3	-	-	-	-	-	-	-	-	-	2	2
CO3	3	3	3	-	-	-	-	-	-	-	-	-	1	3
CO4	3	3	3	-	-	-	-	-	-	-	-	-	1	2
CO5	2	2	2	-	-	-	-	-	-	-	-	-	2	-

	Semester: VII									
	CLOUD COMPUTING									
	(Theory)									
Cou	irse Code:	MVJ21CS732	CIE Marks:50							
Cre	dits:	3	SEE Marks: 50							
Ηοι	urs:		SEE Duration: 3 Hrs							
Cou	Irse Learning Objectiv	ves: The students will be ab	le to							
1	Understand the fundamental ideas behind Cloud Computing, the evolution of the paradigm, its applicability; benefits, as well as current and future challenges;									
2	2 Introduce the basic ideas and principles in data center design; cloud management techniques and cloud software deployment considerations;									

3	Discuss the different CPU, memory and I/O virtualization techniques that serve in
	offering software, computation and storage services on the cloud; Software Defined
	Networks (SDN) and Software Defined Storage (SDS);
	Introduce cloud storage technologies and relevant distributed file systems, NoSQL
4	databases and object storage;
	Discuss the variety of programming models and develop working experience in several
5	of them.

UNIT-I

Introduction to Cloud Computing: Cloud Computing in a Nutshell, Roots of CloudHrs 8Computing, Layers and Types of Clouds, Desired Features of a Cloud, CloudInfrastructure Management, Infrastructure as a Service Providers, Platform as aService Providers, Challenges and Risks, Broad Approaches to Migrating into theCloud, The Seven-Step Model of Migration into a Cloud. Introduction to big dataanalytics, using MapReduce/Hadoop for analyzing unstructured data, Hadoopecosystem of tools.

Applications:

Microsoft Azure, Amazon Web Services

Video link / Additional online information :

1. https://www.youtube.com/watch?v=PW-V-72MJNY

UNIT-II

'Integration as a Service' Paradigm for the Cloud Era: An Introduction, The OnsetHrs 8of Knowledge Era, The Evolution of SaaS , The Challenges of SaaS Paradigm,
Approaching the SaaS Integration Enigma, New Integration Scenarios, The
Integration Methodologies, SaaS Integration Products and Platforms , SaaS
Integration Services, Businesses-to-Business Integration (B2Bi) Services, A
Framework of Sensor- Cloud Integration, SaaS Integration Appliances, Issues for
Enterprise Applications on the Cloud, Transition Challenges, Enterprise Cloud
Technology and Market Evolution, Business Drivers Toward a Marketplace for
Enterprise Cloud Computing, The Cloud Supply Chain
Laboratory Sessions/ Experimental learning:
1. Installation and Configuration of Hadoop.Hrs 8Applications: PAAS (Facebook, Google App Engine)Video link / Additional online information:Hrs 8

1. https://www.youtube.com/watch?v=ifZh5SJAujA		
UNIT-III	Hrs 8	
Virtual Machines Provisioning and Migration Services: Introduction and		
Inspiration- Background and Related Work-Virtual Machines Provisioning and		
Manageability- Virtual Machine Migration Services- VM Provisioning and		
Migration in Action–Provisioning in the Cloud Context- The Anatomy of Cloud		
Infrastructures-Distributed Management of Virtual Infrastructures - Scheduling		
Techniques for Advance Reservation of Capacity- Capacity Management to meet		
SLA Commitments- RVWS Design and Cluster as a Service: The Logical Design		
Laboratory Sessions/ Experimental learning:		
Implementation of Para-Virtualization using VM Ware's Workstation/ Oracle's		
Virtual Box and Guest O.S		
Applications:		
Hardware Virtualization, Operating system Virtualization, Server Virtualization,		
Storage Virtualization		
Video link / Additional online information :		
 https://www.youtube.com/watch?v=7m3f-P-WWbg 		
UNIT-IV		
Platform and Software as a Service: Technologies and Tools for Cloud Computing-	Hrs 8	
Aneka Cloud Platform- Aneka Resource Provisioning Service- Hybrid Cloud		
Implementation - CometCloud Architecture- Autonomic Behavior of CometCloud-		
Overview of CometCloud-based Applications- Implementation and Evaluation-		
Workflow Management Systems and Clouds- Architecture of Workflow		
Management Systems - Utilizing Clouds for Workflow Execution- Case Study:		
Evolutionary Multi objective Optimizations- Visionary thoughts for Practitioners		
Laboratory Sessions/ Experimental learning:		
Create an application (Ex: Word Count) using Hadoop Map/Reduce.		
Applications: Schedule book		
Video link / Additional online information :		
 https://www.youtube.com/watch?v=3KJjKY8k9Lk 		
UNIT-V	L	
MapReduce Programming Model and Implementations: MapReduce	Hrs 8	
Programming Model- Major MapReduce Implementations for the Cloud- The Basic		
Principles of Cloud Computing-A Model for Federated Cloud Computing-		

Traditional Approaches to SLO Management- Types of SLA- Life Cycle of SLA- SLAManagement in Cloud- Automated Policy-based Management- The Current Stateof Data Security in the Cloud-Data Privacy and Security Issues-Producer_ConsumerRelationship-Cloud Service Life CycleLaboratory Sessions/ Experimental learning:Create your resume in a neat format using google and zoho cloud Programs onPaaSApplications: Network Storage, Google Apps and Microsoft office onlineVideo link / Additional online information :1. https://www.youtube.com/watch?v=uj2Sb7b_Do0

Course	Course Outcomes: After completing the course, the students will be able to						
CO1	Recall the recent history of cloud computing, illustrating its motivation and evolution.						
CO2	List some of the enabling technologies in cloud computing and discuss their significance						
CO3	Articulate the economic benefits as well as issues/risks of the cloud paradigm for businesses as well as cloud providers						
CO4	Define SLAs and SLOs and illustrate their importance in Cloud Computing.						
CO5	List some of the common cloud providers and their associated cloud stacks and recall popular cloud use case scenarios.						

Tex	Text Books						
1	Cloud Computing, Principles and Paradigms, Rajkumar Buyya, James Broberg,						
	Wiley Publication						
2	Dan C Marinescu: Cloud Computing Theory and Practice. Elsevier(MK) 2013.						

Reference Books:							
1.	1. Barrie Sosinsky, "Cloud Computing Bible", John Wiley & Sons, 2010.						
2	Tim Mather, Subra Kumaraswamy, and Shahed Latif, "Cloud Security and Privacy: An						
Enterprise Perspective on Risks and Compliance", O'Reilly, 2009.							

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may

be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO/PSO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	РО	PSO	PSO2
00/10	101										1	12	1	
CO1	2	1	1	-	1	1	2	-	-	-	-	-	1	-
CO2	3	3	3	3	2	-	-	-	-	-	-	-	-	-
CO3	1	-	-	1	1	-	2	3	3	3	3	-	2	-
CO4	3	3	2	2	2	-	-	-	-	-	-	3	-	-
CO5	3	3	3	3	3	2	-	-	3	3	3	3	2	1

High-3, Medium-2, Low-1

	Semester: VII						
	BLOCKCHAIN TECHNOLOGY						
	(Theory)						
Cour	rse Code:	MVJ21CS733	CIE Marks:50				
Cred	lits:	3	SEE Marks: 50				
Hou	rs:		SEE Duration: 3 Hrs				
Cour	rse Learning Objectives:	The students will be ab	ole to				
1	Familiarise the functional/operational aspects of cryptocurrency ecosystem.						
2	Understand emerging abstract models for Blockchain Technology.						
	Understand how blockchain systems (mainly Bitcoin and Ethereum) work and how to						
3	3 securely interact with them.						
	Identify major research challenges and technical gaps existing between theory and						
4	practice in cryptocurrency domain.						
5	Design, build, and deploy smart contracts and distributed applications.						

UNIT-I

Basics: Distributed Database, Two General Problem, Byzantine General problem and	Hrs 8
Fault Tolerance, Hadoop Distributed File System, Distributed Hash Table, ASIC	
resistance, Turing Complete. Cryptography: Hash function, Digital Signature - ECDSA,	
Memory Hard Algorithm, Zero Knowledge Proof.	
Applications: Telecommunications, finance, universities	
Video link / Additional online information (related to module if any):	
 <u>https://coincentral.com/byzantine-generals-problem/</u> 	
2. https://www.tutorialspoint.com/distributed_dbms/distributed_dbms_database	
<u>s.htm</u>	
UNIT-II	
Blockchain: Introduction, Advantage over conventional distributed database,	Hrs 8
Blockchain Network, Mining Mechanism, Distributed Consensus, Merkle Patricia	
Tree, Gas Limit, Transactions and Fee, Anonymity, Reward, Chain Policy, Life of	
Blockchain application, Soft & Hard Fork, Private and Public blockchain.	
Applications: Government, healthcare	
Video link / Additional online information (related to module if any):	
2. https://blockonomi.com/merkle-tree/	
UNIT-III	
Distributed Consensus: Nakamoto consensus, Proof of Work, Proof of Stake, Proof	Hrs 8
of Burn, Difficulty Level, Sybil Attack, Energy utilization and alternate.	
Applications: Decentralized Applications, Encrypted messaging applications	
Video link / Additional online information (related to module if any):	
 https://blockonomi.com/nakamoto-consensus/ 	
 <u>https://cointelegraph.com/explained/proof-of-work-explained</u> 	
UNIT-IV	
Cryptocurrency: History, Distributed Ledger, Bitcoin protocols - Mining strategy and	Hrs 8
rewards, Ethereum - Construction, DAO, Smart Contract, GHOST, Vulnerability,	
Attacks, Sidechain, Namecoin.	
Applications: Peer - to - peer payment application.	
Video link / Additional online information (related to module if any):	
 <u>https://blockgeeks.com/guides/smart-contracts/</u> 	
UNIT-V	

Cryptocurrency Regulation: Stakeholders, Roots of Bit coin, Legal Aspects-Crypto	Hrs 8
currency Exchange, Black Market and Global Economy. Applications: Internet of	l
Things, Medical Record Management System, Domain Name Service and future of	1
Blockchain.	1
Video link / Additional online information (related to module if any):	1

- https://www.water-io.com/iot-vs-wot
- 2. https://www.talend.com/resources/iot-cloud-architecture/

Course	Course Outcomes: After completing the course, the students will be able to						
CO1	Basic Cryptographic primitives used in Blockchain – Secure, Collison-resistant hash						
	functions, digital signature, public key cryptosystems, zero-knowledge proof systems.						
CO2	Policies and applications of Blockchain in Distributed databases.						
CO3	Explain the Nakamoto consensus, List and describe differences between proof-of-work						
COS	and proof-of-stake consensus.						
CO4	Design, build, and deploy smart contracts and distributed applications.						
CO5	Cryptocurrency governance, regulations and applications.						

Textbooks

1	Arvind Narayanan, Joseph Bonneau, Edward Felten, Andrew Miller and Steven
	Goldfeder, Bitcoin and Cryptocurrency Technologies: A Comprehensive Introduction,
	Princeton University Press (July 19, 2016).
2	Antonopoulos, Mastering Bitcoin: Unlocking Digital Cryptocurrencies.

Refere	ence Books:							
1.	Satoshi Nakamoto, Bitcoin: A Peer-to-Peer Electronic Cash System.							
2. DR. Gavin Wood, "ETHEREUM: A Secure Decentralized Transaction Ledger,"Yellow paper.2014.								
3	Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli, A survey of attacks on Ethereum smart contracts							

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO/PSO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	РО	PSO	PSO2
CO/FO	FUI										1	12	1	
CO1	3	3	1	-	-	-	-	-	-	-	-	3	1	-
CO2	3	3	1	-	-	-	-	-	-	-	-	3	1	-
CO3	3	3	1	2	-	-	-	-	-	1	-	3	2	-
CO4	3	3	3	3	-	-	-	2	2	2	-	3	2	3
CO5	3	3	3	3	-	-	2	2	3	2	-	3	1	-

Semester: VII									
		BIG DATA ANALYTICS							
Cou	rse Code:	MVJ21CS734	CIE Marks:50						
Cred	lits:	3	SEE Marks: 50						
Hou	rs:		SEE Duration: 3 Hrs						
Cou	rse Learning Objectives:	The students will be able to							
1	The scope and essentiality of Big Data and Business Analytics.								
2	The technologies used to store, manage, and analyze big data in a Hadoop ecosystem.								
3	The techniques and principles in big data analytics with scalability and streaming capability.								
4	The hypothesis on the problems.	e optimized business decisions	in solving complex real-world						

UNIT-I										
INTRODUCTION TO BIG DATA: Characteristics of Data, Evolution of Big	Hrs 8									
Data, Definition of Big Data, Challenges with Big Data, Traditional Business										
Intelligence (BI) versus Big Data. Big data analytics: Classification of Analytics,										

Importance and challenges facing big data, Terminologies Used in Big Data	
Environments, The Big Data Technology Landscape.	
Video link : https://www.digimat.in/nptel/courses/video/106104189/L01.html	
UNIT-II	
INTRODUCTION TO HADOOP: Introducing Hadoop,RDBMS versus	Hrs 8
Hadoop, Distributed Computing Challenges, History and overview of Hadoop, Use	
Case of Hadoop, Hadoop Distributors, Processing Data with Hadoop, Interacting with	
Hadoop Ecosystem	
Videolink: https://www.digimat.in/nptel/courses/video/106104189/L04.html	
UNIT-III	
THE HADOOP DISTRIBUTED FILESYSTEM: Hadoop Distributed File	Hrs 8
System(HDFS): The Design of HDFS, HDFS Concepts, Basic Filesystem Operations,	
Hadoop Filesystems. The Java Interface- Reading Data from a Hadoop URL, Reading	
Data Using the Filesystem API, Writing Data. Data Flow- Anatomy of a File Read,	
Anatomy of a File Write, Limitations.	
• Video link : https://www.digimat.in/nptel/courses/video/106104189/L04.html	
UNIT-IV	
UNDERSTANDING MAP REDUCE FUNDAMENTALS: Map Reduce Framework:	Hrs 8
Exploring the features of Map Reduce, Working of Map Reduce, Exploring Map and	
Reduce Functions, Techniques to optimize Map Reduce jobs, Uses of Map Reduce.	
Controlling MapReduce Execution with InputFormat, Reading Data with custom	
RecordReader,-Reader, Writer, Combiner, Partitioners, Map Reduce	
Phases, Developing simple MapReduce Application.	
Videolink: https://www.digimat.in/nptel/courses/video/106104189/L06.html	
UNIT-V	
INTRODUCTION TO PIG : Introducing Pig: Pig architecture, Benefits, Installing Pig,	Hrs 8
introduction to Fig. Introducing Fig. Fig architecture, benefits, instailing Fig.	
Properties of Pig, Running Pig, Getting started with Pig Latin, Working with operators	

Course	Course Outcomes: After completing the course, the students will be able to							
CO1	Explain the evolution of big data with its characteristics and challenges with traditional							
01	business intelligence.							
CO2	Explain the big data technologies used to process and querying the bigdata in Hadoop,							
	MapReduce and Pig.							
602	Make use of appropriate components for processing, scheduling and knowledge							
CO3	extraction from large volumes in distributed Hadoop Ecosystem							

CO4	Develop a Map Reduce application for optimizing the jobs.
CO5	Develop applications for handling huge volume of data using Pig Latin

Tex	t Books
1	Seema Acharya, Subhashini Chellappan,-BigData and Analytics, Wiley Publications, 2nd
L T	Edition, 2014 DT Editorial Services,—BigData, Dream Tech Press,2nd Edition,2015.
2	Tom White,—Hadoop:The Definitive Guide,O'Reilly,3 rd Edition,2012.
3	Big Data Black Book, dream tech publications , 1st Edition, 2017.

Refer	ence Books:
1	Michael Minelli, Michele Chambers, Ambiga Dhiraj, —Big Data, Big Analytics: Emerging Business Intelligence and Analytic Trends for Today's Business, Wiley CIO Series, 1stEdition, 2013.
2	Rajiv Sabherwal, Irma Becerra- Fernandez, —Business Intelligence —Practice, Technologies and Management, John Wiley, 1st Edition,2011
3	Arvind Sathi, —Big Data Analytics: Disruptive Technologies for Changing the Game, IBM Corporation, 1st Edition, 2012.

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO/PSO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1 1	PO 12	PSO 1	PSO2

CO1	2	2		-	-	-	-	-	-	-	-	-	2	-
CO2	2	2		-	-	-	-	-	-	-	-	-	2	2
CO3	2	3	2	2	-	-	-	-	-	-	-	-	1	3
CO4	1	2	3	-	-	-	-	-	-	-	-	-	1	2
CO5	1	2	2	2	-	-	-	-	-	-	-	-	2	-

	Semester:	VII						
	AGILE TECHNO	LOGIES						
	(Theory)							
Cou	rse Code: MVJ21CS735	CIE Marks:100						
Cre	dits: L:T:P:S: 3:0:0:0	SEE Marks: 100						
Ηοι	ırs: 40L	SEE Duration: 3 Hrs						
Cou	rse Learning Objectives: The students will b	e able to						
1	Discuss the essence of agile development n	nethods.						
2	Carry out all stages of an agile software working	process in a team, to produce						
2	software.							
3	Provide practical knowledge of how to man	age a project using Scrum framework.						
4	Use test driven development to ensure soft	ware quality.						
5	Should be able to demonstrate a more a agile	dvanced capability to apply lean and						
	development techniques to solve complex p	problems.						

UNIT-I	
Fundamentals of Agile: The Genesis of Agile, Introduction and background, Agile Manifesto and Principles, Overview of Scrum, Extreme Programming, Feature Driven development, Lean Software Development, Agile project management, Design and development practices in Agile projects, Test Driven Development, Continuous Integration, Refactoring, Pair Programming, Simple Design, User Stories, Agile Testing, Agile Tools	8Hrs
UNIT-II	
Agile Scrum Framework: Introduction to Scrum, Project phases, Agile Estimation, Planning game, Product backlog, Sprint backlog, Iteration planning, User story definition, Characteristics and content of user stories, Acceptance tests and Verifying stories, Project velocity, Burn down chart, Sprint planning and retrospective, Daily scrum, Scrum roles – Product Owner, Scrum Master,	8 Hrs

Scrum		
Team, So	crum case study, Tools for Agile project management	
	UNIT-III	
Develop accepta Explorat	esting: The Agile lifecycle and its impact on testing, Test-Driven oment (TDD), xUnit framework and tools for TDD, Testing user stories - nce tests and scenarios, Planning and managing testing cycle, corytesting, Risk based testing, Regression tests, Test Automation, o support	8Hrs
the Agile	e tester	
	UNIT-IV	
design	oftware Design and Development: Agile design practices, Role of Principles including Single Responsibility Principle, Open Closed	8Hrs
Dependo Refactor	e, Liskov Substitution Principle, Interface Segregation Principles, ency Inversion Principle in Agile Design, Need and significance of ring, Refactoring ues, Continuous Integration, Automated build tools, Version control.	
Dependo Refactor	ency Inversion Principle in Agile Design, Need and significance of ring, Refactoring	
Depende Refactor Techniqu Industry an	ency Inversion Principle in Agile Design, Need and significance of ring, Refactoring ues, Continuous Integration, Automated build tools, Version control. UNIT-V y Trends: Market scenario and adoption of Agile, Agile ALM, Roles in oject, Agile applicability, Agile in Distributed teams, Business	8Hrs
Depende Refactor Techniqu Industry an Agile pr benefits	ency Inversion Principle in Agile Design, Need and significance of ring, Refactoring ues, Continuous Integration, Automated build tools, Version control. UNIT-V y Trends: Market scenario and adoption of Agile, Agile ALM, Roles in oject, Agile applicability, Agile in Distributed teams, Business , ges in Agile, Risks and Mitigation, Agile projects on Cloud,	8Hrs
Depende Refactor Techniqu Industry an Agile pr benefits Challeng Balancir	ency Inversion Principle in Agile Design, Need and significance of ring, Refactoring ues, Continuous Integration, Automated build tools, Version control. UNIT-V y Trends: Market scenario and adoption of Agile, Agile ALM, Roles in oject, Agile applicability, Agile in Distributed teams, Business , ges in Agile, Risks and Mitigation, Agile projects on Cloud,	8Hrs
Depende Refactor Techniqu Industry an Agile pr benefits Challeng Balancin Agility w	ency Inversion Principle in Agile Design, Need and significance of ring, Refactoring ues, Continuous Integration, Automated build tools, Version control. UNIT-V y Trends: Market scenario and adoption of Agile, Agile ALM, Roles in oject, Agile applicability, Agile in Distributed teams, Business , ges in Agile, Risks and Mitigation, Agile projects on Cloud,	8Hrs
Depende Refactor Techniqu Industry an Agile pr benefits Challeng Balancin Agility w	ency Inversion Principle in Agile Design, Need and significance of ring, Refactoring ues, Continuous Integration, Automated build tools, Version control. UNIT-V y Trends: Market scenario and adoption of Agile, Agile ALM, Roles in oject, Agile applicability, Agile in Distributed teams, Business i, ges in Agile, Risks and Mitigation, Agile projects on Cloud, ng with Discipline, Agile rapid development technologies.	

Drive development with unit tests using Test Driven Development

CO3

CO4	Deploy automated build tools, version control and continuous integration
CO5	Apply design principles and refactoring to achieve Agility.

Ref	erence Books
1.	Ken Schawber, Mike Beedle," Agile Software Development with Scrum", Pearson Education.
2.	Lisa Crispin, Janet Gregory, "Agile Testing: A Practical Guide for Testers and Agile Teams", Addison Wesley.
3.	Robert C. Martin, "Agile Software Development, Principles, Patterns and Practices", Prentice Hall
4.	Robert Spalding: "Storage Networks the Complete Reference", Tata McGraw-Hill, 2011.

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question mayhave a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomylevel.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	-	-	-	-	-	-	-	-	3
CO2	3	2	1	-	-	-	-	-	-	-	-	3
CO3	3	2	`1	-	-	-	-	-	-	-	-	3
CO4	3	2	1	-	-	-	-	-	-	-	-	3
CO5	3	2	1	-	-	-	-	-	-	-	-	3

Semester: VII									
	INTRODUCTION TO DATA SCIENCE								
Course Code:	MVJ21CS741	CIE Marks:50							
Credits:	3	SEE Marks: 50							

Hou	rs:	SEE Duration: 3 Hrs								
Cou	rse Learning Objectives:	The students will be able to								
	To provide strong foundation for data science and application area related to									
1	information technology and understand the underlying core concepts and emerging									
	technologies in data science.									

UNIT-I	
Introduction: Big Data and Data Science hype and getting past the hype Datacation.	Hrs 8
Current landscape of perspectives. Skill sets needed.Statistical	
Inference.Populations and samples. Statistical modeling, probability distributions,	
Introduction to R programming.	
Video-Links	
https://www.youtube.com/watch?v=KMj49syT8JM&list=PLyqSpQzTE6M-	
sBjDcT21Gpnj8grR2fDgc	
UNIT-II	
Exploratory Data Analysis and the Data Science Process. Basic tools (plots, graphs	Hrs 8
and summary statistics) of EDA. Philosophy of EDA. The Data Science Process. Case	
Study: Real Direct (online real estate) Three Basic Machine Learning Algorithms.	
Linear Regression, k-Nearest Neighbors (k-NN), k-means	
Video Links: https://nptel.ac.in/courses/106/101/106101163/	
UNIT-III	
Feature Generation and Feature Selection (Extracting Meaning From Data).	Hrs 8
Motivating application: user (customer) retention. Feature Generation	
(brainstorming, role of domain expertise, and place for imagination). Feature	
Selection algorithms. Filters; Wrappers; Decision Trees; Random Forests.	
Video Links: https://nptel.ac.in/courses/106/101/106101163/	
UNIT-IV	
Recommendation Systems: Building a User-Facing Data Product. Algorithmic	Hrs 8
ingredients of a Recommendation Engine. Dimensionality Reduction. Singular Value	
Decomposition Principal Component Analysis.	
Decomposition Principal Component Analysis. Video Links: https://nptel.ac.in/courses/106/101/106101163/	
Video Links: https://nptel.ac.in/courses/106/101/106101163/	Hrs 8

Video Links: https://nptel.ac.in/courses/106/101/106101163/

Course	Course Outcomes: After completing the course, the students will be able to							
CO1	Understand the statistical foundations of data science							
CO2	Learn techniques to pre-process raw data so as to enable further analysis.							
CO3	Conduct exploratory data analysis and create insightful visualizations to identify patterns							
CO4	Introduce machine learning algorithms for prediction/classification and to derive insights.							
CO5	Analyze the degree of certainty of predictions using statistical test and models.							

Тех	Text Books						
4	Cathy O'Neil and Rachel Schutt. Doing Data Science, Straight Talk From The Frontline.						
T	O'Reilly. 2014.						
2	Foster Provost and Tom Fawcett. Data Science for Business: What You Need to Know						
2	Foster Provost and Tom Fawcett. Data Science for Business: What You Need to Know about Data Mining and Data-analytic Thinking. ISBN 1449361323. 2013.						
3	Avrim Blum, John Hopcroft and Ravindran Kannan. Foundations of Data Science.						

Reference Books:								
1	Data Science from Scratch: First Principles with Python, Joel Grus, O'Reilly, 1st edition,							
1	2015							

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20

marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO/PSO Mapping													
CO/PO	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	3	1	2	-	-	-	-	-	-	-	2	1	-
CO2	3	3	2	3	1	-	-	-	-	-	-	2	2	2
CO3	3	3	2	3	1	-	-	-	-	-	-	2	3	-
CO4	3	3	2	3	2	-	-	-	-	-	-	2	3	-
CO5	3	3	2	3	2	-	-	-	-	-	-	2	3	1

	Semester: VII									
	INTERNET OF THINGS									
Cou	rse Code:	MVJ21CS742	CIE Marks:50							
Cred	lits:	3	SEE Marks: 50							
Hours:			SEE Duration: 3 Hrs							
Cou	rse Learning Objectives:	The students will be	able to							
1	Learn the basic issues, policy and challenges in the Internet.									
2	2 Get an idea of some of the application areas where Internet of Things can be applied									
3	Understand the cloud	and internet environm	ent.							

4

Understand the various modes of communications with Internet.

UNIT-I	
Prerequisites : Basic Knowledge about C or C++	Hrs 8
Introduction to IoT: Definition – Foundations – Challenges and Issues -	
Identification - Security. Components in internet of things: Control Units – Sensors	
– Communication modules –Power Sources – Communication Technologies –	
RFID – Bluetooth – Zigbee – Wifi – Rflinks –Mobile Internet – Wired	
Communication-IoT Platform Overview-Raspberry pi-Arduino boards.*	
Applications: Sensors in IoT.	
Video link / Additional online information (related to module if any):	
 http://www.theinternetofthings.eu/what-is-the-internet-of-things. 	
 <u>https://www.engineersgarage.com/article_page/sensors-different-</u> 	
types-of-sensors/	
 https://www.educba.com/applications-of-sensors/ 	
* Programming Assignments are Mandatory.	
UNIT-II	
IoT Protocols: Protocol Standardization for IoT-M2M and WSN Protocols-SCADA	Hrs 8
and RFID Protocols-Issues with IoT Standardization-Protocols-IEEE 802.15.4-	
BACNet Protocol-Zigbee Architecture - Network layer – APS Layer – Security.*	
Applications:	
IoT Protocol Applications	
Video link / Additional online information (related to module if any):	
 <u>https://inductiveautomation.com/resources/article/what-is-scada</u> 	
 https://iotbytes.wordpress.com/application-protocols-for-iot/ 	
 https://data-flair.training/blogs/iot-protocols/ 	
 https://www.avsystem.com/blog/iot-protocols-and-standards/ 	
* Programming Assignments are Mandatory.	
UNIT-III	
Resource Management in the Internet of Things: Clustering - Software Agents -	Hrs 8
Data Synchronization - Clustering Principles in an Internet of Things Architecture	
- The Role of Context - Design Guidelines -Software Agents for Object – Data	

C O C C C C C C C C C C	
* Programming Assignments are Mandatory.	
arduino-with-raspberrypi-504b06	
 raspberry-pi-with-arduino# https://create.arduino.cc/projecthub/ruchir1674/how-to-interface- 	
 https://maker.pro/raspberry-pi/tutorial/how-to-connect-and-interface- raspberry pi with arduine# 	
 https://iot5.net/iot-applications/smart-home-iot-applications/ https://makes.prg/resphere/ini/tutorial/how to connect and interface 	
 https://www.simform.com/home-automation-using-internet-of-things/ https://ietE_net/iet_applications/cmart home_iet_applications/ 	
Video link / Additional online information (related to module if any):	
Applications: Elements in group	
Pi/Arduino	
Laboratory Sessions/ Experimental learning:Interfacing using Raspberry	
Interfacing using Raspberry Pi/Arduino- Web Enabled Constrained Devices.*	
and Visualization in IoT Industry 4.0 concepts - Sensors and sensor Node –	
infrastructures security-Industries- IoT electronic equipment's. Use of Big Data	
Case Study and IoT Application Development: IoT applications in home-	Hrs 8
UNIT-IV	
* Programming Assignments are Mandatory.	
sningsmateriale/RFID-IoT.pdf	
 https://www.uio.no/studier/emner/matnat/ifi/INF5910CPS/h10/undervi 	
 <u>https://www.digiteum.com/rfid-technology-internet-of-things</u> 	
RFID Applications:	
Video link / Additional online information (related to module if any):	
Applications: RFID Applications	
Things- Agents for the Behaviour of Objects.*	
The Evolution from the RFID-based EPC Network to an Agent based Internet of	
Agility and Autonomy-Enabling Autonomy and Agility by the Internet of Things -	
Synchronization- Types of Network Architectures - Fundamental Concepts of	

Web of Things:Web of Things versus Internet of Things-Architecture				
Standardization for WoT-Platform Middleware for WoT- WoT Portals and				
Business Intelligence-Cloud of Things: Grid/SOA and Cloud Computing-Cloud				
Standards –Cloud of Things Architecture-Open Source e-Health sensor platform.				
Video link / Additional online information (related to module if any):				
 https://www.water-io.com/iot-vs-wot 				
 https://www.talend.com/resources/iot-cloud-architecture/ 				
* Programming Assignments are Mandatory.				

Course	Course Outcomes: After completing the course, the students will be able to					
CO1	Identify the components of IoT.					
CO2	Analyze various protocols of IoT.					
CO3	Design portable IoT using appropriate boards					
CO4	Develop schemes for the applications of IOT in real time scenarios.					
CO5	Design business Intelligence and Information Security for WoT					

Тех	t Books:
1	Honbo Zhou, "The Internet of Things in the Cloud: A Middleware Perspective" -CRC Press-2012.
2	Dieter Uckelmann, Mark Harrison, "Architecting the Internet of Things", Springer2011.

Ref	erence Books:
1	Arshdeep Bahga, Vijay Madisetti, "Internet of Things (A Hands-On-Approach)", VPT,
1	2014.
2	Olivier Hersent, David Boswarthick, Omar Elloumi, "The Internet of Things – Key applications and Protocols", Wiley, 2012.
2	applications and Protocols", Wiley, 2012.
2	Luigi Atzori, Antonio Lera, Giacomo Morabito, "The Internet of Things: A Survey",
5	Journal on Networks, Elsevier Publications, October, 2010.

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					(CO-PO/	PSO M	apping						
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	РО	PSO	PSO2
CO/FO	FUI										1	12	1	
CO1	3	3	1	-	-	-	-	-	-	-	-	3	1	-
CO2	3	3	1	-	-	-	-	-	-	-	-	3	2	-
CO3	3	3	1	2	-	-	-	-	-	1	-	3	2	3
CO4	3	3	3	3	-	-	-	2	2	2	-	3	1	3
CO5	3	3	3	3	-	-	2	2	3	2	-	3	2	2

	Semester: VII						
	VISUALIZATION TECHNIQUES						
Cou	Course Code: MVJ21CS743 CIE Marks:50						
Crec	Credits: 3 SEE Marks: 50						
Hours: SEE Duration: 3			SEE Duration: 3 Hrs				
Cou	Course Learning Objectives: The students will be able to						
learn the value of visualization, specific techniques in information visualization and scientific visualization, and how understand how to best leverage visualization methods							

UNIT-I	
Introduction – Visualization Stages – Computational Support – Issues – Different Type	s Hrs 8
of Tasks –Data representation –Limitation: Display Space, Rendering Time	,

Navigation Link.	
UNIT-II	
Human Factors – Foundation for a Science of Data Visualization – Environment-Optics	Hrs 8
– Optimal Display – Overview about Lightness, Brightness, Contrast, Constancy, Color	
-Visual Attention that Pops Out -Types of Data -Data Complexity -The Encoding of	
Values – Encoding of Relation –Relation and Connection –Alternative Canvass.	
UNIT-III	
Human Vision –Space Limitation –Time Limitations –Design –Exploration of	Hrs 8
Complex Information Space – Figure Caption in Visual Interface – Visual Objects and	
Data Objects – Space Perception and Data in Space –Images, Narrative and	
Gestures for Explanation	
UNIT-IV	
Norman's Action Cycle –Interacting with Visualization –Interaction for Information	Hrs 8
Visualization –Interaction for Navigation –Interaction with Models –Interacting with	
Visualization –Interactive 3D Illustrations with Images and Text –Personal View –	
Attitude – user perspective – Convergence – Sketching – Evaluation.	
UNIT-V	
Design –Virtual Reality: Interactive Medical Application –Tactile Maps for visually	Hrs 8
challenged People – Animation Design for Simulation – Integrating Spatial and	
Nonspatial Data –Innovating the Interaction –Small Interactive Calendars –	
Selecting One from Many– Web Browsing Through a Key Hole –Communication	
Analysis –Archival Galaxies	

Cours	Course Outcomes: After completing the course, the students will be able to						
CO1	Understand the fundamentals of data visualization						
CO2	Acquire knowledge about the issues in data representation						
CO3	Visualize the complex engineering design.						
CO4	Design real time interactive information visualization system						
CO5	Apply the visualization techniques in practical applications						

Tex	t/Reference Books:
1	Robert Spence, "Information Visualization: An Introduction", Third Edition, Pearson
T	Education, 2014.
2	Colin Ware, "Information Visualization Perception for Design", ThirdEdition, Morgan
Z	Kaufmann, 2012.

3	Robert Spence, "Information Visualization Design for Interaction", Second Edition,
5	Pearson Education, 2006
4	Benjamin B. Bederson, Ben shneiderman, "The Craft of Information Visualization",
4	Morgan Kaufmann, 2003.
5	Thomas Strothotte, "Computational Visualization: Graphics, Abstraction and
5	Interactivity", Springer, 1998.
	Matthew O.Ward, George Grinstein, Daniel Keim, "Interactive Data Visualization:
6	Foundation, Techniques and Applications", Second Edition, A.K.Peters/CRC
	Press,2015.
7	JoergOsarek, "Virtual Reality Analytics", Gordon "s Arcade, 2016.

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					C	CO-PO/	PSO M	apping						
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	РО	PSO	PSO2
00/10	101										1	12	1	
CO1	3	-	-	-	1	-	-	-	-	-	-	2	2	-
CO2	3	3	3	2	-	-	-	-	1	-	1	2	2	2
CO3	2	2	2	1	3	-	-	-	-	-	1	3	2	2
CO4	3	2	3	2	1	-	-	-	-	2	3	2	2	3

CO5	З	2	3	1	-	-	-	-	-	2	3	2	2	_

High-3, Medium-2, Low-1

		Semester: \	/11
		ETHICAL HAC	(ING
Cou	rse Code:	MVJ21CS744	CIE Marks:50
Crea	lits:	3	SEE Marks: 50
Hou	rs:		SEE Duration: 3 Hrs
Cou	rse Learning Objectives:	The students will be	able to
1	Understand numerous	methods of real-worl	d information intelligence
2	Learn about vulnerabil	ity scanners	
3	Understand technique	s used to sniff traffic a	cross a network
4	Familiarize with the me	ethodologies that can	be used to hack into a target.
	Appreciate the wide v	variety of attacks that	t can be performed against a wireless
5	network		

UNIT-I

INTRODUCTION TO HACKING : Terminologies, Categories of Penetration Test,	Hrs 8
Writing Reports, Structure of a Penetration Testing Report, Vulnerability	
Assessment Summary, Risk Assessment, Methodology, Linux Basics: File	
Structure, Cron Job, Users, Common Applications, BackTrack, Services.	
Applications: Network packet analysis, Password guessing and cracking	
Video link / Additional online information (related to module if any):	
 <u>https://www.tutorialspoint.com/ethical_hacking/ethical_hacking_p</u> 	
<u>rocess.htm</u>	
 https://www.tutorialspoint.com/ethical_hacking/ethical_hacking_h 	
acker_types.htm	
UNIT-II	 I
INFORMATION GATHERING, TARGETENUMERATION AND PORT SCANNING	Hrs 8
TECHNIQUES	
Active, Passive and Sources of information gathering, Copying Websites Locally,	
NeoTrace, Cheops-ng, Intercepting a Response, WhatWeb, Netcraft, Basic	
Parameters, Xcode Exploit Scanner, Interacting with DNS Servers, Fierce, Zone	
Transfer with Host Command and Automation, DNS Cache Snooping- Attack	
Scenario, Automating Attacks, SNMP - Problem, Sniffing Passwords, Solar Winds	
Toolset, sweep, Brute Force and Dictionary- Tools , Attack, Enumeration,	
Intelligence Gathering Using Shodan, Target enumeration and Port Scanning	
Techniques.	
Applications: Session hijacking, Session spoofing	
Video link / Additional online information (related to module if any):	
 https://www.tutorialspoint.com/ethical_hacking/ethical_hacking_enumerati 	
on.htm	
 https://www.tutorialspoint.com/ethical_hacking/ethical_hacking_sniffing.ht 	
m	
UNIT-III	
VULNERABILITY ASSESSMENT & NETWORKSNIFFING : Introduction to	Hrs 8
Vulnerability Assessment - Pros and Cons, NMap, Updation of database, Testing	
SCADA Environments with Nmap, Nessus, Sniffing: Types, Hubs versus Switches,	
Modes, MITM Attacks, ARP Protocol Basics- working, Attacks, DoS Attacks,	

Dsniff tool, Using ARP Spoof to Perform MITM Attacks, Sniffing the Traffic with Dsniff, Sniffing Pictures with Drifnet, Urlsnarf and Webspy, Sniffing with Wireshark, Ettercap- ARP Poisoning, Hijacking Session with MITM Attack, ARP Poisoning with Cain and Abel, Sniffing Session Cookies with Wireshark, Hijacking the Session, SSL Strip: Stripping HTTPS Traffic, Requirements, Automating Man in the Middle Attacks, DNS Spoofing, DHCP Spoofing

Applications: Network traffic sniffing, Denial of Service attacks

Video link / Additional online information (related to module if any):

•https://www.tutorialspoint.com/ethical_hacking/ethical_hacking_sniffing.ht m

•https://www.tutorialspoint.com/ethical_hacking/ethical_hacking_tcp_ip_hija cking.htm

UNIT-IV

Understanding Network Protocols: Attacking Network Remote Services,Hrs 8Common Target Protocols, tools for cracking network remote services,Attacking SMTP, Attacking SQL Servers, Client-Side Exploitation Methods: E-Mails Leading to Malicious Attachments & Malicious Links, Compromising ClientSide Update, Malware Loaded on USB Sticks

Post exploitation: Acquiring Situation Awareness, Privilege Escalation, Maintaining Access, Data Mining, Identifying and Exploiting Further Targets, Windows Exploit Development Basics.

Applications: Exploiting buffer overflow vulnerabilities

Video link / Additional online information (related to module if any):

- <u>https://www.tutorialspoint.com/ethical_hacking/ethical_hacking_s</u>
 <u>ql_injection.htm</u>
- <u>https://www.tutorialspoint.com/ethical_hacking/ethical_hacking_e</u>
 <u>xploitation.htm</u>

UNIT-V

WIRELESS & WEB-HACKING	Hrs 8
Wireless Hacking : Requirements , Aircracking , Hidden SSIDs , Monitor Mode ,	
Monitoring Tool- Beacon Frames on Wireshark ,Airodump-ng , Wireless Adapter	
in Monitor Mode , Determining the Target , Cracking a WPA/WPA2 Wireless	
Network Using Aircrack-ng , Capturing Packets and Four-Way Handshake.	
Web Hacking : Attacking the Authentication , Brute Force and Dictionary Attacks	
, Types of Authentication , Crawling Restricted Links , Testing for the	
Vulnerability, Authentication Bypass with Insecure Cookie Handling, SQL	
injection, XSS – DOM based,BeEF,CSRF, Bypassing CSRF and BeEF with XSS,	
Vulnerability in FCKeditor, efront.	
Applications: Cross Site Scripting, Firewall	
Video link / Additional online information (related to module if any):	
<u>https://www.tutorialspoint.com/ethical_hacking/ethical_hacking_d</u>	
dos attacks.htm	
 <u>https://www.tutorialspoint.com/ethical_hacking/ethical_hacking_</u> 	
<u>wireless.htm</u>	

Course	e Outcomes: After completing the course, the students will be able to							
CO1	Understand the core concepts related to malware, hardware and software							
	vulnerabilities and their causes							
CO2	Understand ethics behind hacking and vulnerability disclosure							
CO3	Appreciate the Cyber Laws and impact of hacking Exploit the vulnerabilities related							
COS	to computer system and networks using state of the art tools and technologies							
CO4	Learn & understand different network protocols and attack strategies							
CO5	Understanding the usefulness of wireless & web hacking							

Тех	t Books
1	Rafay Baloch ,-Ethical Hacking and Penetration Testing Guide , CRC Press, 2015.
2	Patrick Engebretson, – The Basics of Hacking and Penetration Testing : Ethical Hacking
	and Penetration Testing Made Easy , Syngress Media, Second Revised Edition, 2013.

I	Refere	ence Books:
	1	Michael T. Simpson, Kent Backman, James E. Corley, –Hands On Ethical Hacking

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					C	CO-PO/	PSO M	apping						
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	РО	PSO	PSO2
0,10	101										1	12	1	
CO1	3	3	1	-	-	-	-	1	-	-	-	3	2	-
CO2	3	3	1	-	-	-	-	2	-	1	-	3	2	-
CO3	3	3	1	2	-	-	-	-	-	1	-	3	-	2
CO4	3	3	3	3	-	3	2	2	2	2	-	3	2	-
CO5	3	3	3	3	-	3	2	2	3	2	-	3	2	-

		Semester: VII	
		BLOCKCHAIN TECHNO	DLOGY
Cou	rse Code:	MVJ21CS745	CIE Marks:50
Cred	lits:	3	SEE Marks: 50
Hou	rs:		SEE Duration: 3 Hrs
Cou	rse Learning Objectives:	The students will be ab	le to
1	Familiarize the function	nal/operational aspects of	of cryptocurrency ecosystem.
2	Understand emerging	abstract models for Bloc	kchain Technology.
3	Understand how block securely interact with t		tcoin and Ethereum) work and how to
4	Identify major researc practice in cryptocurre	-	cal gaps existing between theory and
5	Design, build, and depl	oy smart contracts and o	listributed applications.

UNIT-I	
Basics: Distributed Database, Two General Problem, Byzantine General problem	Hrs 8
and Fault Tolerance, Hadoop Distributed File System, Distributed Hash Table,	

ASIC resistance, Turing Complete. Cryptography: Hash function, Digital Signature	
- ECDSA, Memory Hard Algorithm, Zero Knowledge Proof.	
Applications: Telecommunications, finance, universities	
Video link / Additional online information (related to module if any):	
 <u>https://coincentral.com/byzantine-generals-problem/</u> 	
• <u>https://www.tutorialspoint.com/distributed_dbms/distributed_dbms_d</u>	
atabases.htm	
UNIT-II	
Blockchain: Introduction, Advantage over conventional distributed database,	Hrs 8
Blockchain Network, Mining Mechanism, Distributed Consensus, Merkle Patricia	
Tree, Gas Limit, Transactions and Fee, Anonymity, Reward, Chain Policy, Life of	
Blockchain application, Soft & Hard Fork, Private and Public blockchain.	
Applications: Government, healthcare	
Video link / Additional online information (related to module if any):	
3. https://blockonomi.com/merkle-tree/	
UNIT-III	
Distributed Consensus: Nakamoto consensus, Proof of Work, Proof of Stake,	Hrs 8
Proof of Burn, Difficulty Level, Sybil Attack, Energy utilization and alternate.	
Applications: Decentralized Applications, Encrypted messaging applications	
Video link / Additional online information (related to module if any):	
 https://blockonomi.com/nakamoto-consensus/ 	
 https://cointelegraph.com/explained/proof-of-work-explained 	
UNIT-IV	
Cryptocurrency: History, Distributed Ledger, Bitcoin protocols - Mining strategy	Hrs 8
and rewards, Ethereum - Construction, DAO, Smart Contract, GHOST,	
Vulnerability, Attacks, Sidechain, Namecoin.	
Applications: Peer - to - peer payment application.	
Video link / Additional online information (related to module if any):	
4. <u>https://blockgeeks.com/guides/smart-contracts/</u>	
UNIT-V	

Cryptocurrency Regulation: Stakeholders, Roots of Bit coin, Legal Aspects-Crypto	Hrs 8
currency Exchange, Black Market and Global Economy. Applications: Internet of	
Things, Medical Record Management System, Domain Name Service and future	
of Blockchain.	
Video link / Additional online information (related to module if any):	
 https://www.water-io.com/iot-vs-wot 	
 https://www.talend.com/resources/iot-cloud-architecture/ 	

Course	Course Outcomes: After completing the course, the students will be able to								
	Basic Cryptographic primitives used in Blockchain – Secure, Collison-resistant hash								
CO1	functions, digital signature, public key cryptosystems, zero-knowledge proof								
	systems.								
CO2	Policies and applications of Blockchain in Distributed databases.								
CO3	Explain the Nakamoto consensus, List and describe differences between proof-of-								
COS	work and proof-of-stake consensus.								
CO4	Design, build, and deploy smart contracts and distributed applications.								
	Countequirrency governance, regulations and applications								
CO5	Cryptocurrency governance, regulations and applications.								

Тех	Text Books										
	Arvind Narayanan, Joseph Bonneau, Edward Felten, Andrew Miller and Steven										
1	Goldfeder, Bitcoin and Cryptocurrency Technologies: A Comprehensive Introduction,										
	Princeton University Press (July 19, 2016).										
2	Antonopoulos, Mastering Bitcoin: Unlocking Digital Cryptocurrencies.										

Refere	Reference Books:										
1	Satoshi Nakamoto, Bitcoin: A Peer-to-Peer Electronic Cash System.										
2	DR. Gavin Wood, "ETHEREUM: A Secure Decentralized Transaction Ledger,"Yellow paper.2014.										
3	Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli, A survey of attacks on Ethereum smart contracts										

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three).

	CO-PO/PSO Mapping													
CO/P O	PO1	РО 2	PO 3	РО 4	PO 5	PO6	PO 7	PO 8	PO9	PO1 0	PO 11	PO 12	PS O1	PSO 2
CO1	3	3	1	-	-	-	-	-	-	-	-	3	1	-
CO2	3	3	1	-	-	-	-	-	-	-	-	3	1	-
CO3	3	3	1	2	-	-	-	-	-	1	-	3	2	-
CO4	3	3	3	3	-	_	-	2	2	2	-	3	2	3
CO5	3	3	3	3	-	-	2	2	3	2	-	3	1	-

The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	Sen	nester: VII									
	PROJE	CT PHASE – 1									
	(*	Theory)									
Cou	Course Code: MVJ21CSPR75 CIE Marks:100										
Crea	Credits: L:T:P:S: 3:0:0:0 SEE Marks: 100										
Hou	Hours: 40L SEE Duration: 3 Hrs										
Cou	rse Learning Objectives: The studer	ts will be able to									
1	To support independent learning.										
2	To develop interactive, communication, organization, time management, and presentation skills.										
3	To impart flexibility and adaptabilit	У									
4	4 To expand intellectual capacity, credibility, judgment, intuition.										
5	To train students to present the topic of project work in a seminar without any fear, face audience confidently, enhance communication skill, involve in group discussion to present and exchange ideas										

Project Work Phase - I

Each student of the project batch shall involve in carrying out the project work jointly in constant consultation with internal guide, co-guide, and external guide and prepare the project report as per the norms avoiding plagiarism.

Course	e Outcomes: After completing the course, the students will be able to
CO1	Describe the project and be able to defend it.
CO2	Learn to use modern tools and techniques
CO3	Develop skills to work in a team to achieve common goal. Develop skills of project management and finance.
CO4	Develop skills of self-learning, evaluate their learning and take appropriate actions toimprove it.
CO5	Prepare them for life-long learning to face the challenges and support the technological changes to meet the societal needs.

Scheme of Evaluation

Internal Marks: The Internal marks (50 marks) evaluation shall be based on Phase wise

completion of the project work, Project report, Presentation and Demonstration of theactual/model/prototype of the project.

CIE Marks Breakup for Major Project during VII Semester:

Relevance of the Topic	10 Marks
Report	20 Marks
Evaluation by Guide	25 Marks
Presentation	30 Marks
Viva- Voce	15 Marks
Total	100 Marks

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	3	3	2	1	1	2	1	1	2
CO2	2	2	2	3	3	2	1	1	2	1	2	2
CO3	2	2	2	3	3	2	1	1	2	1	2	2
CO4	2	2	2	3	3	2	1	1	2	1	2	2
CO5	2	2	2	3	3	2	1	1	2	1	2	2