Course Title	Additional Mathematics-I (Common to all branches)	Semester	I	
Course Code	MVJ19MATDIP31	CIE	50	
Total No. of Contact Hours	40	SEE	50	
No. of Contact Hours/week	4	Total	100	
Credits	-	Exam. Duration	3hrs	

Course objective is to: This course viz., aims to prepare the students:

To familiarize the important and basic concepts of Differential calculus and Differential Equation, ordinary/partial differential equations and Vector calculus and analyse the engineering problems.

Module-1 L1,L2 8Hrs.

Differential calculus: Recapitulations of successive differentiations -nth derivative -Leibnitz theorem and Problems, Mean value theorem -Rolle's theorem, Lagrange's Mean value theorem, Cauchy's theorem and Taylor's theorem for function of one variables.

Video Link:

https://users.math.msu.edu/users/gnagy/teaching/ode.pdf

Module-2	L1,L2	8 Hrs.	

Integral Calculus:

Review of elementary Integral calculus, Reduction formula

$$\int_0^{\frac{\pi}{2}} \sin^m x \, dx \qquad \int_0^{\frac{\pi}{2}} \cos^m x \, dx \qquad \int_0^{\frac{\pi}{2}} \sin^m \cos^n x \, dx$$

and problems.

Evaluation of double and triple integrals and Simples Problems.

Video Link:

https://www.youtube.com/watch?v=rCWOdfQ3cwQ

https://nptel.ac.in/courses/111/105/111105122/

Module-3 L1,L2 8Hrs.

Vector Calculus: Derivative of vector valued functions, Velocity, Acceleration and related problems, Scalar and Vector point functions, Gradient, Divergence, Curl, Solenoidal and Irrotational vector fields. Vector identities - div (φ A), curl (φ A), curl (grad φ), div (curl A).

Video Link:

https://www.whitman.edu/mathematics/calculus_online/chapter16.html

https://www.math.ust.hk/~machas/vector-calculus-for-engineers.pdf

Module-4 L1,L2,L3 8 Hrs.

Probability:

Introduction-Conditional Probability, Multiplication theorem ,Independent events ,Baye's theorem and Problems.

Video Link:

https://www.khanacademy.org/math/statistics-probability/probability-library

https://nptel.ac.in/courses/111/105/111105041/

Module-5 L1,L2,L3 8 Hrs

Differential equation: Homogenous differential equation, Linear differential equation, Bernoulli's differential equation and Exact differential equation.

Video Link:

https://www.mathsisfun.com/calculus/differential-equations.html

Cour	se outcomes:						
CO1	Apply the knowledge of Differential calculus in the modeling of various physical and engineering phenomena						
CO2	Apply the concept of change of order of integration and variables to evaluate multiple integrals and their usage in computing the area and volumes.						
CO3	Study on Vector calculus to understand the various solution to Application to Engineering problems.						
CO4	Understand the basic Concepts of Probability						
CO5	Solve first order linear differential equation analytically using standard methods.						

	Text Books:								
	1.	B.S. Grewal, "Higher Engineering Mathematics" Khanna Publishers, 43 rd Edition, 2013.							
-	2.	Ramana B. V., "Higher Engineering Mathematics", Tata Mc Graw-Hill, 2006.							

Refer	Reference Books:										
1.	Erwin edition,		"Advanced	Engineering	Mathematics",	Wiley-India	publishers,	10th			
2.	G. B. G 19	Sururajachar	: Calculus and	l Linear Algebi	ra, Academic Exc	cellent Series P	ublication, 20	018-			

CIE Assessment:

CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation. Generally, there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of three tests

- Quizzes/mini tests (10 marks)
- Assignments (10 marks)

SEE Assessment:

- i. Question paper for the SEE consists two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.
- ii. Part B also covers the entire syllabus consisting of five questions having choices and may contain subdivisions, each carrying 16 marks. Students have to answer five full questions.
- iii. One question must be set from each unit. The duration of examination is 3 hours.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	0	3	0	0	0	0	0	0	1	1
CO2	2	3	0	3	0	0	0	0	0	0	1	1
CO3	2	2	0	2	0	0	0	0	0	0	1	0
CO4	3	2	0	3	0	0	0	0	0	0	0	1
CO5	3	3	0	2	0	0	0	0	0	0	0	0

High-3, Medium-2, Low-1