Course Title	Additional Mathematics-I (Common to all branches)	Semester	Ι
Course Code	MVJ20MATDIP31	CIE	50
Total No. of Contact Hours	40	SEE	50
No. of Contact Hours/week	4	Total	100
Credits	-	Exam. Duration	3hrs

Course objective is to: This course viz., aims to prepare the students:

To familiarize the important and basic concepts of Differential calculus and Differential Equation, ordinary/partial differential equations and Vector calculus and analyse the engineering problems.

engineering problems.		
Module-1	L1,L2	8 Hours
Differential calculus: Recapitulations of successive differentiations	-n th derivat	tive -Leibnitz
theorem and Problems, Mean value theorem -Rolle's theorem, Lagran	nge's Mean va	lue theorem,
Cauchy's theorem and Taylor's theorem for function of one variables.		
Video Link:		
https://usars.math.msu.adu/usars/gnagy/taashing/ada.ndf		

https://users.math.msu.edu/users/gnagy/teaching/ode.pdf

Module-2	L1,L2	8 Hours
Integral Calculus:		

Review of elementary Integral calculus, Reduction formula

 $\int_0^{\frac{\pi}{2}} \sin^m x \, dx \quad , \int_0^{\frac{\pi}{2}} \cos^m x \, dx, \quad \int_0^{\frac{\pi}{2}} \sin^m \cos^n x \, dx \quad \text{ and problems.}$

Evaluation of double and triple integrals and Simples Problems.

Video Link:

https://www.youtube.com/watch?v=rCWOdfQ3cwQ

https://nptel.ac.in/courses/111/105/111105122/

Module-3	L1,L2	8 Hours			
Vector Calculus: Derivative of vector valued functions, Velocity, Acceleration and related					
problems, Scalar and Vector point functions, Gradient, Divergence, Curl, Solenoidal and Irrotational					
vector fields. Vector identities - div (ϕA), curl (ϕA), curl (grad ϕ), div (ϕA)	curl A).				

Video Link:

https://www.whitman.edu/mathematics/calculus_online/chapter16.html

https://www.math.ust.hk/~machas/vector-calculus-for-engineers.pdf

Modulo 4	L1,L2 &	8 Hours	
Module-4	L3		

Probability:

Introduction-Conditional Probability, Multiplication theorem ,Independent events ,Baye's theorem and Problems.

Video Link:

https://www.khanacademy.org/math/statistics-probability/probability-library

https://nptel.ac.in/courses/111/105/111105041/

Module-5 L1,L2 L3

Differential equation: Homogenous differential equation, Linear differential equation, Bernoulli's

differential equation and Exact differential equation.

Video Link:

https://www.mathsisfun.com/calculus/differential-equations.html

Course outcomes:

Course of	
CO1	Apply the knowledge of Differential calculus in the modeling of various
	physical and engineering phenomena
CO^{2}	Apply the concept of change of order of integration and variables to evaluate multiple
002	integrals and their usage in computing the area and volumes.
CO^{2}	Study on Vector calculus to understand the various solution to Application to
COS	Engineering problems.
CO4	Understand the basic Concepts of Probability
CO5	Solve first order linear differential equation analytically using standard methods.

Text Books:							
1.	B.S. Grewal, "Higher Engineering Mathematics" Khanna Publishers, 43 rd Edition, 2013.						
2.	Ramana B. V., "Higher Engineering Mathematics", Tata Mc Graw-Hill, 2006.						
Reference Books:							
1	Erwin Kreyszig, "Advanced Engineering Mathematics", Wiley-India publishers, 10th						
1	edition,2014.						
2	G. B. Gururajachar: Calculus and Linear Algebra, Academic Excellent Series						
	Publication, 2018-19						

CIE Assessment:

CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation. Generally, there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of three tests

- Quizzes/mini tests (10 marks)
- Assignment (10 marks)

SEE Assessment:

- i. Question paper for the SEE consists two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.
- ii. Part B also covers the entire syllabus consisting of five questions having choices and may contain sub-divisions, each carrying 16 marks. Students have to answer five full questions.
- iii. One question must be set from each unit. The duration of examination is 3 hours.

-												
CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	0	3	0	0	0	0	0	0	1	1
CO2	2	3	0	3	0	0	0	0	0	0	1	1
CO3	2	2	0	2	0	0	0	0	0	0	1	0
CO4	3	2	0	3	0	0	0	0	0	0	0	1
CO5	3	3	0	2	0	0	0	0	0	0	0	0

High-3, Medium-2, Low-1