Course Title	Additional Mathematics-II (Common to all branches)	Semester	II
Course Code	MVJ20MATDIP41	CIE	50
Total No. of Contact Hours	40	SEE	50
No. of Contact Hours/week	4	Total	100
Credits	-	Exam. Duration	3 hrs

Course objective is to: This course viz., aims to prepare the students:
To familiarize the important tools Linear Algebra, differential Calculus, Beta and Gamma functions, 3-Dimentional Geometry and probability for analysing the engineering problems.

Module-1

L1,L2
8 Hours

Linear Algebra:

Introduction, Rank of a matrix-echelon form. Solution of system of linear equations - consistency. Gauss-elimination method and problems. Eigen values and Eigen vectors of square matrix of order two and Problems.
Video Link
https://www.math.ust.hk/~machas/matrix-algebra-for-engineers.pdf
https://nptel.ac.in/content/storage2/courses/122104018/node18.html

Module-2	L1,L2	$\mathbf{8}$ Hours

Differential calculus:

Tangent and normal, both Cartesian and polar forms. Increasing and decreasing functions, Maxima and Minima for a function of one variable. Point of inflections and Problems

Beta and Gamma functions:

Beta and Gamma functions, Relation between Beta and Gamma function-simple problems.
Video Link
https://www.youtube.com/watch?v=6RwOoPN2zqE
https://www.youtube.com/watch?v=s6F5yjY6jWk\&list=PLMLsihQWWlUqBoTCQDtYlloI-o9hxp11
http://tutorial.math.lamar.edu/Classes/DE/IntroPDE. aspx

Module-3	L1,L2	8 Hours
Analytical solid geometry :		
Introduction -Directional cosine and Directional ratio of a line, Equation of line in space- different		
forms, Angle between two line, shortest distance between two line, plane and equation of plane in		
different forms and problems.		
Video Link		
https://www.toppr.com/guides/maths/three-dimensional-geometry/		
https://www.toppr.com/guides/maths/three-dimensional-geometry/distance-between-skew-lines/		
Module-4	L1,L2 \&	$\mathbf{8}$ Hours

	L3	
Probability: Random variable, Discrete probability distribution, Mean and variance of Random Variable, Theoretical distribution- Binomial distribution, Mean and variance Binomial distribution -Problems. Poisson distribution as a limiting case of Binomial distribution, Mean and variance of Poisson distribution. Normal Distribution-Basic properties of Normal distribution -standard form of normal distribution and Problems. Video Link https://nptel.ac.in/courses/111/105/111105041/ https://www.mathsisfun.com/data/probability.html		
Module-5	L1,L2	8 Hours
Partial differential equation: Formation of PDE's by elimination of arbitrary constants and functions. Solution of non-homogeneous PDE by direct integration. Homogeneous PDEs involving derivative with respect to one independent variable only. Video Link http://tutorial.math.lamar.edu/Classes/DE/IntroPDE.aspx		
https://www.studyyaar.com/index.php/module-video/watch/233-cauchys-legendres-de-a-method-of- variation-of-parameters		
Course outcomes:		
CO1	Apply the knowledge of Matrices to solve the system of linear equations and to understand the concepts of Eigen value and Eigen vectors for engineering problems.	
CO2	Demonstrate various physical models ,find Maxima and Minima for a function of one variable., Point of inflections and Problems .Understand Beta and Gamma function	
CO3	Understand the 3-Dimensional geometry basic, Equation of line in space- different forms, Angle between two line and studying the shortest distance .	
CO4	Concepts of Probability related to engineering applications.	
CO5	Construct a variety of partial differential equations and solution by exact methods.	

Text Books:

1.	B.S. Grewal, "Higher Engineering Mathematics" Khanna Publishers, 43 ${ }^{\text {rd }}$ Edition, 2013.
2.	Ramana B. V., "Higher Engineering Mathematics", Tata Mc Graw-Hill, 2006.
Reference Books:	
1	Erwin Kreyszig, "Advanced Engineering Mathematics", Wiley-India publishers, 10th edition,2014.
2	G. B. Gururajachar: Calculus and Linear Algebra, Academic Excellent Series Publication, 2018-19

CIE Assessment:

CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation. Generally, there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of three tests

- Quizzes/mini tests (10 marks)
- Assignment (10 marks)

SEE Assessment:

i. Question paper for the SEE consists two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.
ii. Part B also covers the entire syllabus consisting of five questions having choices and may contain sub-divisions, each carrying 16 marks. Students have to answer five full questions.
iii. One question must be set from each unit. The duration of examination is 3 hours.

CO-PO Mapping																		
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12						
CO1	3	3	0	2	0	0	0	0	0	0	1	1						
CO2	3	3	0	2	0	0	0	0	0	0	1	1						
CO3	3	3	0	3	0	0	0	0	0	0	0	1						
CO4	2	2	0	3	0	0	0	0	0	0	1	1						
CO5	2	2	0	2	0	0	0	0	0	0	0	1						

High-3, Medium-2, Low-1

