		Semester: III								
		Additional Mathema	tics-I							
		(Common to all bran	ches)							
Course Code: MVJ21MATDIP1 CIE Marks:50										
Cre	dits:	L:T:P:S: 4:0:0:0	SEE Marks: 50							
Hou	irs:	40L	SEE Duration: 3 Hrs							
Cou	rse Learning Objective	s: The students will be able t	0							
1	To familiarize the important and introductory concepts of Differential calculus									
2	Aims to provide essential concepts integral calculus									
3	To gain knowledge of vector differentiation									
4	To learn basic study of probability									
5	Ordinary differential equations of first order and analyze the engineering problems.									

UNIT-I					
Differential calculus: Recapitulation of successive differentiation -nth derivative -	8 Hrs				
Leibnitz theorem (without proof) and Problems, Polar curves - angle between the radius					
vector and tangent, angle between two curves, pedal equation, Taylor's and Maclaurin's					
series expansions- Illustrative examples.					
Video Link:					
1. <u>http://nptel.ac.in/courses.php?disciplineID=111</u>					
UNIT-II					
Integral Calculus: Statement of reduction formulae for the integrals of $\sin^n(x)$, $\cos^n(x)$, $\sin^n(x)\cos^n(n)$ and evaluation of these integrals with standard limits-problems. Double and triple integrals-Simple examples.	8 Hrs				
Video Link:					
1. <u>http://nptel.ac.in/courses.php?disciplineID=111</u>					
UNIT-III					
Vector Differentiation: Scalar and Vector point functions, Gradient, Divergence, Curl, Solenoidal and Irrotational vector fields.	8Hrs				
Vector identities - $div(\phi \vec{A})$, $curl(\phi \vec{A})$, $curl(grad(\phi))$, $div(curl \vec{A})$.					
Video Link:					
1. <u>http://nptel.ac.in/courses.php?disciplineID=111</u>					
UNIT-IV					
Probability: Basic terminology, Sample space and events. Axioms of probability. Conditional probability – illustrative examples. Bayes theorem-examples. Video Link: 1. <u>http://nptel.ac.in/courses.php?disciplineID=111</u>	8Hrs				
UNIT-V					
Ordinary Differential Equations of First Order: Introduction – Formation of differential equation, solutions of first order and first degree differential equations: variable separable form, homogeneous, exact, linear differential equations. Video Link:	8Hrs				
1. http://nptel.ac.in/courses.php?disciplineID=111					

Cours	Course Outcomes: After completing the course, the students will be able to								
CO1	Apply the knowledge of calculus to solve problems related to polar curves and its applications								
CO2	Apply the concept of integration and variables to evaluate multiple integrals and their usage in computing the area and volumes.								
CO3	Illustrate the applications of multivariate calculus to understand the solenoidal and irrotational vectors and also exhibit the inter dependence of line, surface and volume integrals.								
CO4	Understand the basic Concepts of Probability								
CO5	Recognize and solve first-order ordinary differential equations occurring in different branches of engineering.								

Reference Books								
1.	B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 43 rd Edition, 2013, .							
2.	G. B. Gururajachar, Calculus and Linear Algebra, Academic Excellent Series Publication, 2018-19							
3.	Chandrashekar K. S, Engineering Mathematics-I, Sudha Publications, 2010.							

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the entire syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	CO/PO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12											
CO1	3	3	0	2	0	0	0	0	0	0	1	1
CO2	3	3	0	2	0	0	0	0	0	0	1	1

CO3	3	3	0	3	0	0	0	0	0	0	1	1
CO4	2	2	0	3	0	0	0	0	0	0	1	1
CO5	2	2	0	2	0	0	0	0	0	0	0	1