IV SEMESTER

	Semester: IV					
	Probability Theory, Complex variables and Optimization					
Ου	irse Code:	MVJ21MA41D	CIE Marks: 50			
Cree	dits:	L: T:P:S: 2:2:0:0	SEE Marks: 50			
Ηοι	urs:	20L+20T	SEE Duration: 3 Hrs.			
C ου	irse Learning Ol	ojectives: The students will be ab	le to			
	Apply discrete	Apply discrete and continuous probability distributions in analyzing the				
1	probability models arising in engineering field.					
2	Learn the mathematical formulation of linear programming problem					
3	Learn the mathematical formulation of transportation problem.					
	Understand th	ne concepts of Complex variab	les and transformation for			
4	solving Engineering Problems.					
5	Learn the solutions of partial differential equations numerically					

UNIT-I		
Probability Theory: Random variables (discrete and continuous),	8 Hrs	
probability density function, cumulative density function.		
Probability Distributions: Binomial distribution, Poisson distribution.		
Normal distribution, Exponential distribution.		
Joint probability distributions.		
Self-study: Discrete and continuous probability problems		
Applications: Discrete and continuous probability distributions help in		
analysing the probability models arising in engineering field.		
Video Link:		
1. <u>http://nptel.ac.in/courses.php?disciplineID=111</u>		
UNIT-II		
Optimization: Linear Programming, mathematical formulation of linear	8 Hrs	
programming problem (LPP), Types of solutions, Graphical Method,		
simplex method, big-M method, Dual – simplex method.		
Self-study: Two phase simplex method		
Applications: Applications of transportation Problems		
Video Link:		
1. http://nptel.ac.in/courses.php?disciplineID=111		
UNIT-III		
The transportation problem: Initial Basic Feasible Solution (IBFS) by Least Cost Method, North West Corner Rule method, Vogel's Approximation Method, MODI method (Optimal Solution), Salesman problem, Assignment problem.	8 Hrs	
Self-Study Topic : Matrix Minima Method		

Video Link:	
1. <u>http://nptel.ac.in/courses.php?disciplineID=111</u>	
UNIT-IV	
Complex Variables: Functions of complex variables, Analytic function,	8 Hrs
Cauchy-Riemann equations in Cartesian and polar coordinates,	
Construction of analytic function (Using Milne-Thomson method)	
Consequences of Cauchy-Riemann equations. Properties of analytic	
functions.	
Application to flow problems- complex potential, velocity potential,	
equipotential lines, stream functions, stream lines.	
Self-study: Unique Expression Method	
Applications: Application to flow problems	
Video Link :	
1. <u>http://nptel.ac.in/courses.php?disciplineID=111</u>	
UNIT-V	
Numerical solutions of PDE – Classification of second order	8 Hrs
equations, finite difference approximation to derivatives, solution of	
heat equations, solution of wave equations and solution of Laplace	
equation.	
Self-study: Crank Nicolson method – problems.	
Applications: To solve boundary value problems	
Video Link:	
1. <u>http://nptel.ac.in/courses.php?disciplineID=111</u>	

Cours	se Outcomes: After completing the course, the students will be able to		
CO1	Apply discrete and continuous probability distributions in analysing the		
	probability models arising in engineering field.		
CO2	Learn the mathematical formulation of linear programming problem		
CO3	Solve the applications of transport problems		
CO4	Use the concepts of analytic function and complex potentials to solve		
	the problems arising in electromagnetic field theory		
CO5	Learn the numerical solutions of partial differential equations		

Reference Books

1.	B.S. Grewal, "Higher Engineering Mathematics" Khanna Publishers, 44 th Edition, 2013.
2.	Erwin Kreyszig, "Advanced Engineering Mathematics", Wiley-India publishers, 10 th edition, 2014.
3.	Prof G.B.Gururajachar "Engineering Mathematics-III , Academic Excellent series Publications, 2016-17

4. Bali N. P. & Manish Goyal, "A text book of Engineering Mathematics", Laxmi Publications, 8th Edition

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-F	PO Maj	oping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	0	3	0	0	0	0	0	0	1	1
CO2	3	3	0	3	0	0	0	0	0	0	1	0
CO3	3	2	0	2	0	0	0	0	0	0	0	0
CO4	3	3	0	3	0	0	0	0	0	0	0	1
CO5	3	3	0	3	0	0	0	0	0	0	1	0

	Semester: IV							
	Basic Signal Processing (Theory)							
Cours	se Code:	MVJ21EC42	CIE Marks: 50					
Credi	ts:	L:T:P: 3:0:0	SEE Marks: 50					
Hours	S:	40L	SEE Duration: 3 Hrs.					
Cours	se Learning C	Objectives: The students will be able to						
	Analyse the	Analyse the mathematical description of continuous and discrete time signals and						
1	systems.							
2	Analyse the signals in time domain using convolution sum and Integral.							
3	Determine the response of the LTI system to any input signal.							
4	Analyse Linear Time Invariant (LTI) systems in time and transform domains							
5	Apply the knowledge of frequency-domain representation and analysis concepts using							
5	Fourier anal	Fourier analysis tools and Z-transform.						

UNIT I		
Prerequisites: Probability		
Random Variables: Random Variables, Several Random Variables, Statistical Averages		
(Mean, Moment, Central Moment, Mean Square Value, Characteristic Function, Joint		
Moments).		
Random Processes: Random Processes, Stationary, Mean, Correlation, Covariance		
functions, Autocorrelation and its properties, Cross correlation and its properties,		
Ergodicity, Power Spectral Density and its properties.	8Hrs.	
Laboratory Sessions/ Experimental learning: To find the basis and properties of		
statistical averages and correlation.		
Applications:		
Video link / Additional online information :		
1. <u>https://nptel.ac.in/courses/108/104/108104100/</u>		
https://www.youtube.com/watch?v=ZK3O402wf1c&list=PL49CF3715CB9EF31D&index=1		
UNIT 2		
Introduction and Classification of signals: Definition of signal and systems with		
examples, Elementary signals/Functions: Exponential, sinusoidal, step, impulse and ramp		
functions Basic Operations on signals: Amplitude scaling, addition, multiplication, time		

scaling, time shift and time reversal. Expression of triangular, rectangular and other	
waveforms in terms of elementary signals System Classification and properties: Linear-	
nonlinear, Time variant -invariant, causal-noncausal, static-dynamic, stable-unstable,	
invertible.	
Laboratory Sessions/ Experimental learning: To define eigen values and eigen vectors	
using MATLAB	
Applications: Communication systems, car stereo systems	
Video link / Additional online information :	
1. https://nptel.ac.in/courses/117105134/	
http://www.digimat.in/nptel/courses/video/108108109/L63.html	
UNIT 3	
Time domain representation of LTI System: Impulse response, convolution sum.	
Computation of convolution sum using graphical method for unit step and unit step,	
unit step and exponential, exponential and exponential, unit step and rectangular, and	
rectangular and rectangular. LTI system Properties in terms of impulse response: System	
interconnection, Memory less, Causal, Stable, Invertible and Deconvolution and step	
response	
Laboratory Sessions/ Experimental learning:	
1. Exploring concepts with MATLAB- Generation of both continuous time and	
discrete time signals of various kinds.	01 [ro
a) Plot $y(x) = x^2 \cos(x)$, $g(x) = x \cos(x)$, $f(x) = 2^x \sin(x)$, $0 \le x \le 2\pi$ in the same	onis.
figure.	
Applications : Signal Processing, Control Theory, Communications Systems, Image and	
Video Processing, Biomedical Engineering (ECG, MRI), Oil extraction (Seismology), Music	
Industry (Audio) and Power Quality Analysis.	
Video link / Additional online information :	
1. https://nptel.ac.in/courses/111106046/	
https://nptel.ac.in/courses/111106111/	
UNIT 4	
Fourier Representation of aperiodic Signals: Introduction to Fourier Transform & DTFT,	റ്റവം
Definition and basic problems. Properties of Fourier Transform: Linearity, Time shift,	01115.

Frequency shift, scaling, Differentiation and Integration, Convolution and Modulation, Parseval's theorem and problems on properties of Fourier Transform. Laboratory Sessions/ Experimental learning: 1. To analyze the spectrum of the signal with Fourier transform using MATLAB. Applications: Image analysis, image filtering, image reconstruction and image compression. Video link / Additional online information: https://nptel.ac.in/courses/117104074 UNIT 5 Prerequisites: Basics of Z-transform concepts The Z-Transforms: Z transform, properties of the region of convergence, properties of the Z-transform, Inverse Z-transform by partial fraction, Causality and stability, Transform analysis of LTI systems. Laboratory Sessions/ Experimental learning: 1. To compute Z-transform of finite duration sequence using MATLAB. a) Compute the z-transform of the sequence $f_x(n)$ -[-3,5,6,7,8], -2< n < 2. b) Compute the z-transform of the discrete-time signal $x(n) = n^2 u(n)$. 8Hrs. c) Compute the convolution between the signals $X_1(z) = z/z - 0.9$ and $X_2(z) = z$ /z+6 Applications: To analysis of digital filters, Used to simulate the continuous systems, Analyse the linear discrete system, Used to finding frequency response, Analysis of discrete signal, Helps in system design and analysis and also checks the systems stability, For automatic controls in telecommunication. Video link / Additional online information: https://nptel.ac.in/courses/108104100/

- ·				
Course Outcomes: After completing the course, the students will be able to				
CO1	Understand the basics of Linear Algebra			
001				
	Develop input output relationship for linear time invariant system and			
CO2	bevelop input output relationship for intear time invariant system and			
COL	understand the convolution operator for continuous and discrete time system			
	understand the convolution operator for continuous and discrete time system.			
$C \cap Z$	Analyse the properties of discrete time signals & systems			
005	Analyse the properties of discrete time signals o systems.			

CO1	Determine the spectral characteristics of continuous and discrete time signal
04	using Fourier transform.
COF	Compute Z-transforms, inverse Z- transforms and transfer functions of complex
005	LTI systems

Refere	ence Books:
1.	Simon Haykins and Barry Van Veen, "Signals and Systems", 2nd Edition, 2008, Wiley India. ISBN 9971-51-239-4.
2.	Ganesh Rao and SatishTunga, "Signals and Systems", Pearson/Sanguine,I Edition,2017.
3	Gilbert Strang, "Linear Algebra and its Applications", Cengage Learning, 4th Edit 2006, ISBN 97809802327
4.	Alan V Oppenheim, Alan S, Willsky and A Hamid Nawab,"Signals and Systems" Pearson Education Asia / PHI, 2 nd edition, 1997. Indian Reprint 2002.

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	2	-	-	-	-	-	1	1
CO2	3	3	2	3	3	-	-	-	-	-	3	2
CO3	3	3	2	3	3	-	-	-	-	-	3	1
CO4	3	3	2	2	3	-	-	-	-	-	3	1
CO5	3	2	2	3	2	-	I	-	I	-	3	2

Semester: IV								
	CONTROL SYSTEM							
		(Theory)						
Course	e Code:	MVJ21EC43	CIE Marks: 50					
Credit	S:	L:T:P: 3:0:0	SEE Marks: 50					
Hours:		40L	SEE Duration: 3 Hrs.					
Course	e Learning Objec	tives: The students will be able to						
1	Formulate the mathematical modelling of systems and understand the concepts of transfer function							
2	Obtain transfer function using block diagram reduction and signal flow graph techniques.							
3	Analyse the response of first and second order systems using standard test signals and analyse steady state error.							
4	Analyse stability polar plot.	of systems using RH criteria, Roc	ot Locus, Nyquist, Bode plot and					
5	Obtain state var	iable model for electrical systems						

UNIT 1				
Introduction to Control Systems : open loop and closed loop systems, Types of				
feedback, Differential equation of Physical Systems – Mechanical Systems,				
Electrical Systems, Analogous Systems.				
Block diagrams and signal flow graphs: Transfer functions, Block diagram				
algebra and Signal Flow graphs.				
Laboratory Sessions/ Experimental learning:				
1. Determine and plot poles and zeros from the transfer function using				
MATLAB.	8Hrs.			
Applications: Electric Hand Drier, Automatic Washing Machine, DC				
motor,Automatic Electric Iron, Voltage Stabilizer				
Video link / Additional online information :				
1. <u>https://youtu.be/R0E3uKSKdME</u>				
2. <u>https://youtu.be/zXMklO-jxIo</u>				
3. <u>https://youtu.be/tDXgiStzbcY</u>				
UNIT 2				

Time Response of feedback control systems: Standard test signals, Unit step						
response of First and Second order Systems. Time response specifications, Time						
response specifications of second order systems for underdamped system,						
steady state errors and error constants.						
Introduction to Controllers: P, PI, PD and PID Controllers.						
Laboratory Sessions/ Experimental learning:						
1. Obtain step and impulse response of a unity feedback first order system	0Uro					
for a given forward path transfer function using MATLAB.	опіз.					
2. Obtain step and impulse response of a unity feedback second order system						
for a given forward path transfer function using MATLAB.						
Applications: Industrial Control systems						
Video link / Additional online information :						
1. <u>https://youtu.be/ziu10TwUrbw</u>						
2. <u>https://youtu.be/YuZ3iwA-47I</u>						
UNIT 3						
Stability analysis using RH Criteria and root locus: Concepts of stability,						
Necessary conditions for stability, Routh Hurwitz stability criterion, Relative						
stability analysis, Introduction to Root-Locus Techniques, the root locus						
concepts, Construction of root loci.						
Laboratory Sessions/ Experimental learning:						
1. Obtain Root Locus Plot of the system for a given forward path transfer						
function using MATLAB.	01/ro					
Applications: Used to determine the dynamic response of a s system	опіз.					
Video link / Additional online information:						
1. <u>https://youtu.be/cez4InLZ7Pw</u>						
2. <u>https://youtu.be/sUDoTw_LIbk</u>						
3. <u>https://youtu.be/Irxppc_LCUk</u>						
UNIT 4						
Stability analysis using Nyquist criteria and Bode plots: Polar plot, Nyquist	<u>д</u> Цго					
Stability criterion, Nyquist plots, Bode plots, Gain and phase margin.	01113.					

Laboratory Sessions/ Experimental learning:	
1. Obtain Bode Plot of the system for a given forward path transfer function	
using MATLAB.	
2. Obtain Nyquist Plot of the system for a given forward path transfer function	
using MATLAB.	
Applications: To determine a stability of a system	
Video link / Additional online information:	
1. <u>https://youtu.be/QzTCRk4nkDg</u>	
2. https://youtu.be/Wi6xt7IyjA0	
UNIT 5	
Introduction to State variable analysis: Concepts of state, state variable and	
state models for electrical systems, Solution of state equations, State transition	
matrix and its properties.	
Laboratory Sessions/ Experimental learning:	
1. Determining the solution of state equations using MATLAB.	8Hrs.
Applications: State variables are used to describe the future response of a	
dynamic response	
Video link / Additional online information:	
https://voutu.be/xaigSUci9zs	

Course	e outcomes:
CO1	Write the mathematical model for electrical systems and find the transfer function
	using block diagram reduction technique and signal flow graph.
CO2	Analyze transient and steady state response of second order systems using
	standard test signals and analyze steady state error.
CO3	Analyze the stability of the systems by applying RH criteria and root locus
	techniques.
CO1	Analyze the stability of the system using frequency domain techniques such as
04	Nyquist and Bode plots.
CO5	Write state space equations and solutions of a given electrical system.

Refere	ence Books:
1	Modern Control Engineering, K.Ogata, Pearson Education Asia/PHI, 4 th Edition,
1. 	2002. ISBN 978-81-203-4010-7.
2	Nagarath and M.Gopal, – Control Systems Engineering , New Age International (P)
۷.	Limited, Publishers, Fifth edition-2005, ISBN: 81-224-2008-
7	Automatic Control Systems , Benjamin C. Kuo, John Wiley India Pvt. Ltd., 8 th
J.	Edition, 2008.

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE): Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	1	-	-	-	-	-	-	-	-
CO2	3	2	2	1	-	-	-	-	-	-	-	-
CO3	3	2	2	2	-	-	-	-	-	-	-	-
CO4	3	2	2	2	-	-	-	-	-	-	-	-
CO5	3	2	2	1	-	-	-	-	-	-	-	-

Semester: IV								
	DATA STRUCTURES AND ALGORITHMS USING PYTHON							
		(Theory and Prac	ctical)					
Course Co	ode:	MVJ21EC44	0	CIE Marks:50+50				
Credits:		L:T:P: 3:0:2		SEE Marks: 50 +50				
Hours:		40 L+ 26 P		SEE Duration: 03+03 Hours				
Course L	earning	g Objectives: The students w	ill be able	eto				
1	Unde	rstand the fundamentals of da	ata structu	ures and their applications				
	in logic building and project assessment.							
2	Understand the concept of linked lists and sorting techniques.							
3	3 Acquire the knowledge of algorithms of queues and stacks.							
4	Analyze the concepts of Binary trees.							
5	To Ur	nderstand Graphs and its algo	rithms.					

UNIT 1					
Python Primer: Python Overview, Objects in Python, Expressions, Operators,					
Control Flow, Functions, Simple i/p and o/p, Modules.					
Basic Concepts of Data Structures and Algorithms: Introduction- Variables,					
Datatypes, Data Structures, ADT, what is an algorithm, How to compare					
algorithms, Rate growth, Types of analysis, Asymptotic Notation, Performance					
Analysis: Space complexity, Time complexity, Guidelines for asymptotic analysis.					
Searching Techniques: Linear Search and Binary Search					
Applications: developing computational tools and bioinformatics software,					
Mathematics.					
Video link / Additional online information (related to module if any):					
1. <u>http://www.nptelvideos.com/video.php?id=1442 2</u>					
2. https://nptel.ac.in/courses/106105085/					
Laboratory Sessions/ Experimental learning:					
1. Develop a mini project to demonstrate the concept Binary Search.					
Applications:					
1. Conversion from one form of expression to another					
2. Mathematical calculation for expression evaluation.					
UNIT 2					
Prerequisites: Programming using the concept of Arrays and pointers	8Hrs.				

Linked Lists: Definition, Linked list operations: Traversing, Searching, Insertion,	
and Deletion. Doubly Linked lists and its operations, Circular linked lists and its	
operations.	
Sorting Techniques: Bubble Sort, Insertion Sort, Selection Sort, Quick Sort and	
Merge Sort.	
Laboratory Sessions/ Experimental learning:	
1. Develop an algorithm to demonstrate the concept of Linked lists.	
Applications:	
1. Programs for Departmental store bills	
2. Programs for Railway booking	
Video link / Additional online information:	
1. <u>https://nptel.ac.in/courses/106/102/106102064/</u>	
2. https://drive.google.com/file/d/0BzTQ7doC5eGSQTBicHo1UDgtOVU/view	
UNIT 3	
Stacks: Definition, Stack Implementation using arrays/lists and linked lists, Stack	
ADT, Stack Operations (Insertion and Deletion), Array Representation of Stacks,	
Stack Applications: Infix to postfix conversion, Tower of Hanoi.	
Queues: Definition, Array Representation, Queue Implementation using	
arrays/lists and linked lists, Queue ADT, Operations on queues (Insertion and	
Deletion), Circular Queues and its operations, Priority Queues and its operations.	
Laboratory Sessions/ Experimental learning:	있니rs
1. Implementation of Towers of Hanoi using Stacks.	01113.
Applications:	
2. Towers of Hanoi.	
3. Parenthesis matching in an expression	
Video link / Additional online information:	
1. <u>https://nptel.ac.in/courses/106/106/106106127/</u>	
2. https://www.youtube.com/playlist?list=PL0gIV7t6l2iIsR55zsSgeiOw9Bd_IUTbY	
UNIT 4	
Trees: Terminology, Binary Trees, Types of Binary trees, Properties of Binary	
trees, Array Representation of Binary Trees, Binary Tree Traversals – Inorder,	8Hrs.
Postorder, Preorder.	

Binary Search Trees – Definition, Insertion, Deletion, Searching, Implementation					
of Binary tree, Heaps and Heap Sort, Construction of Expression Trees, AVL Trees.					
Laboratory Sessions/ Experimental learning:					
1. Solve Parenthesis Matching problem using binary search trees.					
Applications:					
1. Can be used for Memory Management.					
2. In solving backtracking problems.					
Video link / Additional online information:					
1. <u>https://nptel.ac.in/courses/106/106/106106127/</u>					
2. <u>https://nptel.ac.in/courses/106/105/106105225/</u>					
UNIT 5					
Graphs: Definitions, Terminologies, Matrix and Adjacency List Representation of					
Graphs, Elementary Graph operations, Traversal methods: Breadth First Search					
and Depth First Search, DAG, Minimum Spanning Trees: Prim – Kruskal algorithm,					
Single Source Shortest Path: Weighted graphs, Dijkstra algorithm.					
Laboratory Sessions/ Experimental learning:					
1. Print all the nodes of graph using DFS and BFS.	8Hrs.				
2. Apply various algorithms on a graph and analyse it.					
Video link / Additional online information:					
1. https://nptel.ac.in/courses/106/106/106106133/					
2. <u>https://nptel.ac.in/courses/106/105/106105225/</u>					
3. https://nptel.ac.in/courses/106/102/106102064/					

Laboratory Sessions								
Sl No	Experiment Name							
	Write a Python program for implementing the following searching techniques.							
1	i. Linear Search							
	ii. Binary Search							
	Write a Python program for implementing the following sorting techniques.							
2	i. Bubble Sort							
	ii. Selection Sort							
	iii. Insertion Sort							
3	Write a Python program for implementing the following sorting techniques.							
	i. Quick Sort							

	ii. Merge Sort					
1	Write a Python program to design and implement Linked List and its					
4	operations.					
5	Write a Python program to design and implement Circular Linked List and its					
5	operations.					
	Write a Python program to					
6	i. Design and implement Stack and its operations using List.					
	ii. Design and implement Queue and its operations using List.					
	Write a Python program for the following stack applications:					
7	i. Infix to postfix conversion					
	ii. Tower of Hanoi					
	Write a Python program to implement the following:					
	i. Create a Binary Search Tree					
8	ii. Tree Traversals: Inorder, Preorder, Postorder.					
	iii. Determine the height of the tree.					
	iv. Count the number of elements of tree.					
	Write a Python program to implement the following graph traversal algorithms:					
9	i. BFS					
	ii. DFS					

Course	e outcomes:
CO1	Acquire knowledge of Python fundamentals and data structures.
CO2	Analyse and design of algorithms for Linked lists and sorting techniques.
CO3	Apply the concepts of Stacks and queues.
CO4	Utilize the operations of search trees and their applications.
CO5	Understand the concepts of Graphical algorithms.
Refere	nce Books:
1.	Rance D Necaise "Data Structures and Algorithms using Python", Wiley, John Wiley Sons.
2.	Michael T. Goodrich, R. Tamassia and Michael H Goldwasser "Data structures Algorithms
	in pyrion, whey student edition, sonn whey and sons.
3	Narasimha Karumanchi "Data Structures and Algorithmic Thinking with Python",
	CareerMonk Publications.

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks out of 100 and report CIE for 50 marks.

Laboratory- 50 Marks

The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are awarded 10 marks. Total marks for the laboratory is 50.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO N	lappin	g										
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	-	-	-	-	-	-	-	-
CO2	3	3	2	1	-	-	-	-	-	-	-	_
CO3	3	3	2	1	_	-	-	-	-	-	-	-
CO4	3	3	2	1	-	-	-	-	-	-	-	-
CO5	3	3	1	1	-	-	-	_	_	-	-	-

	Semester: IV							
	COMMUNICATION SYSTEMS (Theory and Practice)							
Course	e Code:	MVJ21EC45	CIE Marks:50+50					
Credits	S:	L:T:P: 3:0:2	SEE Marks: 50 +50					
Hours:		40 L+ 26 P	SEE Duration: 03+03 Hours					
Course	e Learning	g Objectives: The students will be able to						
1	Understand the concepts of Analog Modulation schemes viz; AM, FM.							
2	Interpret the different types of noise in communication system.							
	Learn the concepts of digitization of signals viz; sampling, quantizing and							
3	encoding.							
4	Analyze the Base Band data transmission system.							
5	Realize the basic concepts of coherent and Non-coherent digital modulation techniques and understand the basics of spread spectrum modulation.							

UNIT 1

Prerequisites: Modulation, Need for Modulation, and types of Modulation.				
Amplitude Modulation: Introduction to AM, Time-Domain description,				
Frequency-Domain description, Generation of AM wave: Square Law Modulator,				
Switching modulator, Detection of AM waves: Envelop detector.				
Double side band suppressed carrier modulation (DSBSC): Time-Domain				
description, Frequency-Domain representation, Generation of DSBSC waves:				
Ring modulator. Coherent detection of DSBSC modulated waves. Costas loop.				
Single Side-Band Modulation (SSB): Single side-band modulation, Time-Domain				
description, Frequency-Domain description of SSB wave, Phase discrimination	8Hrs.			
method for generating an SSB modulated wave.				
Laboratory Sessions/ Experimental learning:				
1. Generation of AM signal using MATLAB				
2. Generation of DSBSC signal using transistor				
Applications: Broadcast transmissions, Air band radio, Quadrature amplitude				
modulation				
Video link / Additional online information :				
1. https://nptel.ac.in/courses/117/105/117105143/				

- 2. <u>https://youtu.be/00ZbuhPruJw</u>
- 3. <u>https://youtu.be/rt08yTGv_z4</u>
- 4. https://youtu.be/S8Jod9AtpN4
- 5. https://youtu.be/SxSPdjwXDQk

UNIT 2

Frequency Modulation: Basic definitions, FM, narrow band FM, wide band FM, transmission bandwidth of FM waves, and generation of FM waves: indirect FM and direct FM.

Demodulation of FM waves: Phase-locked loop, Nonlinear model of the phase – locked loop, Linear model of the phase – locked loop, Nonlinear effects in FM systems.

Noise: Introduction, Types of noise, Noise Figure, Equivalent noise temperature, Noise in AM receivers, Noise in FM receivers, Pre-emphasis and De-emphasis in FM.

Laboratory Sessions/ Experimental learning:

- 1. Generation of FM signal using MATLAB
- 2. Design of mixer

Applications: FM radio broadcasting, telemetry, radar, seismic prospecting, and monitoring new-borns for seizures via EEG, two-way radio systems, sound synthesis, magnetic tape-recording systems and some video-transmission systems.

8Hrs.

Video link / Additional online information :

- 1. <u>https://nptel.ac.in/courses/117/105/117105143/</u>
- 2. <u>https://youtu.be/gsUaHawPy-w</u>
- 3. <u>https://youtu.be/jqJpbPseX2c</u>
- 4. https://youtu.be/PmuZnJfheK4
- 5. <u>https://youtu.be/QEubAxBfqKU</u>

UNIT 3

NOISE: Shot Noise, Thermal noise, White Noise, Noise Equivalent Bandwidth.	
NOISE IN ANALOG MODULATION: Introduction, Receiver Model, Noise in DSB-	8Hrs.
SC receivers. Noise in AM receivers, Threshold effect, Noise in FM receivers,	

Capture effect, FM threshold effect, FM threshold reduction, Preemphasis and De-							
emphasis in FM							
Laboratory Sessions/ Experimental learning: ASK modulation and							
demodulation							
Applications: Biomedical engineering, communication system							
Video link / Additional online information:							
1. <u>https://nptel.ac.in/courses/117/105/117105077/</u>							
2. <u>https://nptel.ac.in/courses/117/101/117101051/</u>							
3. <u>https://youtu.be/s6vlXP3mYXk</u>							
https://youtu.be/HlGJ6xxbz8s							
UNIT 4							
Intersymbol Interference & Signal Space representation: Base band							
transmission: Discrete PAM Signals, Power spectra of Discrete PAM Signals, Inter							
Symbol Interference, Nyquist criterion for Distortion less Base band Binary							
Transmission, Eye diagram, Geometric representation of signals, Gram-Schmidt							
Orthogonalization procedure, Optimum receivers for coherent detection:							
Correlation Receivers and Matched Filter receiver.							
Laboratory Sessions/ Experimental learning:							
1. Eye diagram using Matlab							
Applications: Ethernet, RFID marker localization signals, Radar Systems							
Video link / Additional online information:							
1. <u>https://nptel.ac.in/courses/117/105/117105077/</u>							
2. <u>https://nptel.ac.in/courses/117/101/117101051/</u>							
UNIT 5							
Prerequisites: Probability & Random Process							
Pass band transmission: Digital modulation techniques: Phase shift Keying							
techniques using Coherent detection: Generation, Detection and Error 8Hrs							
probabilities of BPSK and QPSK, QAM, Frequency shift keying techniques using							
Coherent detection: BFSK generation, detection and error probability.							

Non-coherent orthogonal modulation techniques: BFSK, DPSK Symbol representation, Block diagrams of Transmitter and Receiver, Probability of error (without derivation of probability of error equation)

Principles of Spread Spectrum Communication Systems: Model of a Spread Spectrum Digital Communication System, Direct Sequence Spread Spectrum Systems (DSSS), Some applications of DS Spread Spectrum Signals, Generation of PN Sequences, Frequency Hopped Spread Spectrum (FHSS).

Laboratory Sessions/ Experimental learning:

1. Analyse constellation of 16-QAM Using MATLAB

Applications: CDMA, WiMAX (16d, 16e), telemetry, caller ID, garage door openers, wireless communication, mobile communication and Satellite Communication, LANs, Bluetooth, RFID, GPS, Wi-Fi, etc.,

Video link / Additional online information :

- 1. https://nptel.ac.in/courses/117/105/117105077/
- 2. https://nptel.ac.in/courses/117/101/117101051/
- 3. https://nptel.ac.in/courses/117/105/117105136/
- 4. https://youtu.be/Ojmv3I4kDn4

Laboratory Sessions						
Sl No	Experiment Name					
Hardwar	Hardware Experiments					
1	Amplitude Modulation and Demodulation using transistor.					
2	DSB SC Modulation.					
3	Frequency modulation and FSK using IC 8038/2206,.					
4	Pre-emphasis & de-emphasis					
5	Demonstrate sampling and reconstruction					
6	Pulse Amplitude Modulation and Detection.					
7	Generation of PWM/PPM signal					
8	Generation and detection of ASK Waveform.					
9	FSK Generation and detection.					
10	TDM of two band limited signals.					
Simulation Experiments using SCILAB/MATLAB/Simulink/LabVIEW						

- 11 Amplitude Modulation using Pspice
- 12 Simulate NRZ, RZ for polar signaling.
- 13 Simulate NRZ, RZ for bipolar signaling.
- 14 Generation of eye diagram.

OPEN ENDED PROJECT:

- 1. Design and make a simple FM Radio.
- 2. Design simple circuit for Mobile phone jammer.

Course outcomes:CO1Examine the concepts of analog modulation techniques such as amplitude,
modulations and its variations like DSB-SC and SSB-SC.CO2Analyze frequency modulation and compute performance of different types of
noise.

007	Apply the concepts of noise in analog modulation and analysis of preemphasis							
005	and deemphasis circuit.							
004								
CO4	Analyze the signal space representation of digital signals.							

COS	Evaluate	the	performance	of	а	baseband	and	pass	band	digital
COS	communi	cation	system and sp	oread	spe	ectrum techr	iques.			

Refere	ence Books:
1.	Simon Haykins& Moher, Communication Systems, 5th Edition, John Wiley, India Pvt 1 td 2010 ISBN 978 $-$ 81 $-$ 265 $-$ 2151 $-$ 7
2	Simon Haykins, "An Introduction to Analog and Digital Communication", John
۷.	Wiley, 2003.
-	John G Proakis and MasoudSalehi, "Fundamentals of Communication Systems",
5.	2014 Edition, Pearson Education, ISBN 978-8-131-70573-5.
	B P Lathi and Zhi Ding, Modern Digital and Analog Communication Systems,
4	Oxford University Press., 4th edition, 2010, ISBN: 97801980738002.

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct

additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Laboratory- 50 Marks

The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are awarded 10 marks. Total marks for the laboratory is 50.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	1	1	-	-	-	-	-	1
CO2	3	3	3	2	1	1	-	-	-	-	-	1
CO3	3	3	3	2	1	1	-	-	-	-	-	1
CO4	3	3	3	2	1	1	-	-	-	-	-	1
CO5	3	3	3	2	1	1	-	-	-	-	-	1

	Semester: III/IV							
	SAMSKRUTHIKA KANNADA							
		(Theory)						
Cou	irse Code:	MVJ21EC46	CIE Marks: 50					
Cree	dits:	L:T:P: 1:0:0	SEE Marks: 50					
Ηοι	ırs:	15L	SEE Duration: 3 Hrs.					
Cou	irse Learning	Objectives: The students will be	e able to					
1	Samskruthik	ka Kannada –Parichaya (Introduk	tion to Adalithakannada)					
2	Kannada Ka	vyagalaparichaya (Kannada D Ra	a Bendre, Siddalingaiha)					
	Adalithdalli Kannada Padagalu (Kannada KagunithaBalake, Patra Lekhana,							
3	Prabhandha)							
	Kannada Computer Gnyana (Kannada ShabdhaSangraha, Computer							
4 Paribashikapadagalu)								
5	Activities in	Kannada.						

	UNIT 1					
1.	ಕನ್ನಡ ಭಾಷೆ-ಸಂಕ್ಷಿಪ್ತ ವಿವರಣೆ.	3 Hrs				
2.	ಭಾಷಾ ಪ್ರಯೋಗಲ್ಲಾಗುವ ಲೋಪದೋಷಗಳು ಮತ್ತು ಅವುಗಳ ನಿವಾರಣೆ					
	UNIT 2					
1.	- ೇಖನ ಚಿಹ್ನೆಗಳು ಮತ್ತು ಅವುಗಳ ಉಪಯೋಗ	3 Hrs				
2.	ಪತ್ರ ವ್ಯವಹಾರ.					
	UNIT 3					
1.	ಆಡಳಿತ ಪತ್ರಗಳು.	3 Hrs				
2.	ಸರ್ಕಾರದಆದೇಶ ಪತ್ರಗಳು					
	UNIT 4					
1.	ೆಂಕೀಪ್ತ ಪ್ರಬಂಧರಚನೆ, ಪ್ರಬಂಧ ಮತ್ತು ಭಾಷಾಂತರ	3 Hrs				
2.	ಕನ್ನಡ ಶಬ್ದಸಂಗ್ರಹ					
	UNIT 5					
1.	ಕಂಪ್ಯೂಟರ್ ಹಾಗೂ ಮಾಹಿತಿತಂತ್ರಜ್ಞಾನ	3 Hrs				
2.	ಪಾರಿಭಾಷಿಕ ಆಡಳಿತ ಕನ್ನಡ ಪದಗಳು ಮತ್ತುತಾಂತ್ರಿಕ/ಕಂಪ್ಯೂಟರ್ ಪಾರಿಭಾಷಿಕ ಪದಗಳು.					

Scheme of Evaluation:		
Details	Marks	
Average of three Internal Assessment (IA) Tests of 30 Marks each i.e.	CIE(50)	30
Σ (Marks Obtained in each test) / 3		
Assignment / Case Studies / Quiz		20
Semester End Examination	SEE (50)	50
Total		100

Textboo	oks:
1.	Adalitha Kannada – Dr. L Thimmesh, Prof. V Keshav Murthy

	Semester: III/IV								
			BALAK	E KANNADA					
Cou	irse Code:	MVJ21E	C46		CIE Mar	ks: 50			
Cree	dits:	L:T:P: 1:	0:0		SEE Mar	⁻ ks: 50			
Ηοι	urs:	15Լ			SEE Dui	ration: 3 Hrs.			
Cou	Irse Learning	Objective	es: The stud	dents will be	able to				
1	Vyavharika	Kannada	-Parichaya	(Introductio	n to Vyavha	rikakannada)			
	Kannada Ak	sharamaa	alehaaguuc	hcharane(Ka	Innada Alpha	abets and			
2	Pronounciation								
	Sambhashai	negaagi	Kannada	Padagalu	(Kannada	Vocubulary	for		
3	Communication).								
4	Kannada Grammer in Conversations (Sambhasaneyalli Kannada Vyakarana)								
5	Activities in	Kannada							

Course Title	BALAKE KANNADA	Semester	III/IV				
			·				
Module - 1							
Vyavharika Kannada –Parichaya (Introduction to Vyavharikakannada)							
Module - 2							

Kannada Aksharamaalehaaquuchcharane(Kannada Alphabets and Pronounciatic	on
5	

Module - 3

Sambhashanegaagi Kannada Padagalu (Kannada Vocubulary for Communication).

Module - 4

Kannada Grammar in Conversations (Sambhasaneyalli Kannada Vyakarana)

Module - 5

Activities in Kannada

Scheme of Evaluation:

Details		Marks
Average of three Internal Assessment (IA) Tests of 30 Marks each	CIE(50)	30
i.e.		
Σ (Marks Obtained in each test) / 3		
Assignment / Case Studies / Quiz		20
Semester End Examination	SEE (50)	50
Total		100

Semester: III/IV									
	SUMMER INTERNSHIP-I								
Cou	irse Code:	MVJ21INT48	CIE Marks: 50						
Credits:		2	SEE Marks: 50						
Ηου	ırs:	Industrial Oriented	SEE Duration: 3 Hrs.						
Cou	irse Learning	Objectives: The students will be at	ole to						
1	To get the field exposure and experience.								
2	To apply the theoretical concept in field application								
3	To prepare the comparison statement of difference activities								

Internship: This shall be carried out by students in industry set-up related to the construction/ materials testing laboratories/research organizations/project management consulting firms/QS and QA organizations/ planning and design offices/Professional organizations and other avenues related to the Electronics and Communication engineering domain in consultation and approval of internship guide/HOD /internship committees of the institutions.

Course outcomes: At the end of the course the student will be able to:

- CO1 Develop skills to work in a team to achieve common goal. Develop skills of project management and finance.
- CO2 Develop skills of self-learning, evaluate their learning and take appropriate actions to improve it.
- CO3 Prepare them for life-long learning to face the challenges and support the technological changes to meet the societal needs.

Scheme of Evaluation:

Internal Marks: The Internal marks (50 marks) evaluation shall be based on midterm and final presentation of the activities undertaken during the internship, to a panel comprising internship guide, a senior faculty from the department and head of the department. Each student should submit the internship report at the end of semester with internship certificate.

Semester End Examination: Viva-Voce examination shall be conducted by a panel of examiners consisting of internship supervisor, a senior faculty from the department.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	3	3	2	1	1	2	1	1	2
CO2	2	2	2	3	3	2	1	1	2	1	2	2
CO3	2	2	2	3	3	2	1	1	2	1	2	2

Semester: IV								
	Additional Mathematics-II							
		(Common to all branches)					
Cοι	irse Code:	MVJ21MATDIP2	CIE Marks:50					
Cre	dits:	L:T:P:S: 4:0:0:0	SEE Marks: 50					
Ηοι	urs:	40L	SEE Duration: 3 Hrs					
Cοι	ırse Learnin	g Objectives: The students will be al	ole to					
1	To familiar	ize the important concepts of linear	algebra.					
2	Aims to pi	rovide essential concepts differential	calculus, beta and gamma					
2	functions.							
z	Introducto	ry concepts of three-dimensional ge	ometry along with methods					
5	to solve them.							
4	Linear differential equations							
5	Formation of partial differential equations.							

UNIT-I						
Linear Algebra: Introduction - Rank of matrix by elementary row operations - Echelon form. Consistency of system of linear equations -						
Gauss elimination method. Eigen values and eigen vectors of a square matrix. Diagonalization of a square matrix of order two.						
Self study : Application of Cayley-Hamilton theorem (without proof) to compute the inverse of a matrix-Examples.						
Video Link:						
1. <u>http://nptel.ac.in/courses.php?disciplineID=111</u>						
UNIT-II						
Differential calculus: Indeterminate forms: L-Hospital rule (without proof), Total derivatives, and Composite functions. Maxima and minima for a function of two variables. Beta and Gamma functions: Beta and Gamma functions. Relation	8Hrs					
between Pete and Commo function simple problems						
between beta and Gamma function-simple problems.						
Self study: Curve tracing.						
Video Link:						
1. <u>http://nptel.ac.in/courses.php?disciplineID=111</u>						
UNIT-III						
Analytical solid geometry : Introduction –Directional cosine and	8Hrs					
Directional ratio of a line, Equation of line in space- differentforms,						
Angle between two line, shortest distance between two line, plane and						
equation of plane in different forms and problems.						
Self study Volume						
tetrahedron						
Video Link						
1 http://nptel.ac.in/courses.php?disciplineID=111						
UNII-IV						

Differential Equations of higher order: Linear differential equations of second and higher order equations with constant coefficients.	8 Hrs					
Inverse Differential operator, Operators methods for finding particular integrals, and Fuler – Cauchy equation						
Self study: Method of variation of parameters						
Video Link:						
1. http://nptel.ac.in/courses.php?disciplineID=111						
UNIT-V						
Partial differential equation: Introduction- Classification of partial	8 Hrs					
differential equations, formation of partial differential equations.	l					
Method of elimination of arbitrary constants and functions. Solutions of	1					
non-homogeneous partial differential equations by direct integration.						
Solution of Lagrange's linear PDE.	l					
Self study: One dimensional heat and wave equations and solutions by	l					
the method of separable of variable	l					
	1					
Video Link:	l					
1. http://nptel.ac.in/courses.php?disciplineID=111	1					

Course Outcomes: After completing the course, the students will be able to				
CO1	Make use of matrix theory for solving system of linear equations and compute eigenvalues and eigen vectors required for matrix diagonalization process.			
CO2	Learn the notion of partial differentiation to calculate rates of change of multivariate functions and solve problems related to composite functions and Jacobians.			
CO3	Understand the Three-Dimensional geometry basic, Equation of line in space- different forms, Angle between two line and studying the shortest distance .			
CO4	Demonstrate various physical models through higher order differential equations and solve such linear ordinary differential equations.			
CO5	Construct a variety of partial differential equations and solution by exact methods.			

Ref	erence Books
1.	B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 43rd
	Edition, 2013, .
2.	G. B. Gururajachar, Calculus and Linear Algebra, Academic Excellent Serie
	Publication, 2018-19
3.	Chandrashekar K. S, Engineering Mathematics-I, Sudha Publications, 2010.

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	0	2	0	0	0	0	0	0	1	1
CO2	3	3	0	2	0	0	0	0	0	0	1	1
CO3	3	3	0	3	0	0	0	0	0	0	0	1
CO4	2	2	0	3	0	0	0	0	0	0	1	1
CO5	2	2	0	2	0	0	0	0	0	0	0	1