VII SEMESTER

	Semester: VII					
		VLSI SYSTEM DESIGN				
		(Theory and Practice)				
Cou	rse Code:	MVJ21EC71	CIE Marks:50+50			
Cree	dits:	L:T:P: 3:0:2	SEE Marks: 50 +50			
Ηοι	ırs:	40 L+ 26 P	SEE Duration: 03+03			
			Hours			
Cou	rse Learning	Objectives: The students will be ab	le to			
1	Understand	the characteristics of CMOS circuit	construction.			
	Introduce the concepts and techniques of modern integrated circuit design					
2	and testing (CMOS VLSI).					
	Design CMOS combinational and sequential logic at the transistor level,					
3	³ with mask layout.					
4	Describe the general steps required for processing of CMOS integrated					
	circuits.					
5	Study functional units including adders, multipliers, ROMs, SRAMs.					

UNIT 1 **Prerequisites:** Basics of transistor Introduction to MOS Technology : Semiconductor materials, enhancement mode MOS transistor, depletion mode MOS transistor, NMOS fabrication, CMOS fabrication, comparison of NMOS, CMOS, BICMOS, GaAs technologies. Introduction to ASICs : Field Programmable gate array, Full custom, Semicustom, ASIC Design flow. Laboratory Sessions/ Experimental learning: 8Hrs. 1. Design and demonstrate the MOS transistor connected as a diode using any CAD tool. Applications: Design of Diode Video link / Additional online information : 1. https://www.youtube.com/watch?v=faiEVOOCe-s&t=2519s 2. https://www.youtube.com/watch?v=FRihw0Gpi0Y 3. <u>https://www.youtube.com/watch?v=oSrUsM0hoPs</u>

UNIT 2			
Basic Electrical Properties of MOS Circuits : Drain-to-Source current vs. voltage			
relationships, aspects of MOS transistor threshold voltage, MOS transistor			
transconductance and output conductance, the pass transistor, the NMOS			
inverter, determination of pull up to pull down ratio of NMOS transistor driven by			
another NMOS transistor, alternate forms of pull up, the CMOS inverter, MOS			
transistor circuit model, latch up in CMOS circuits.			
Laboratory Sessions / Experimental learning:	10Hrs.		
1. Simulation of CMOS Inverter characteristics with different values of			
Inverter Ratio (Kr) using LTspice / pspice software.			
Applications: Design of nMOS and CMOS inverter circuit.			
Video link / Additional online information:			
1. <u>https://www.youtube.com/watch?v=eqnMAaYU4OY</u>			
2. https://www.youtube.com/watch?v=zNqmohJHDwc			
UNIT 3	I		
MOS Circuit Design Process : MOS layers, stick diagrams, design rules and layout,			
2ìm, 1.2ìm CMOS rules. Layout diagrams, symbolic diagrams. Basic circuit			
concepts: Sheet resistance, area capacitance of layers, delay model, wiring			
capacitances, choice of layers. Scaling of MOS circuits: Scaling models, scaling			
function for device parameters and limitation of scaling.			
Laboratory Sessions/ Experimental learning:			
1. Draw layout of inverter using Cadence Tool	10년rc		
Applications: Design of CMOS inverter circuit with different scaling functions.	101113.		
Video link / Additional online information:			
1. <u>https://nptel.ac.in/courses/117106093/</u>			
2. https://nptel.ac.in/courses/117106092/			
3. https://nptel.ac.in/courses/117101058/			
UNIT 4			
Sub System Design and Layout : Architectural issues, switch logic, gate logic,	10Hrs		
examples of structural design (Combinational logic) and some clocked sequential	101113.		

circuits. Memory register and aspects of system timing, Some commonly used storage/memory elements, Subsystem design process, General arrangement of 4-bit arithmetic processor, regularity, Design of an ALU subsystem.

Laboratory Sessions/ Experimental learning:

2. Design Manchester Carry-chain using CMOS transistors using any CAD tool

Applications: Designing of PLA and PLD

Video link / Additional online information :

- 2. https://nptel.ac.in/courses/117106093/
- 3. https://nptel.ac.in/courses/117106092/

https://nptel.ac.in/courses/117101058/

UNIT 5

Test and Testability : System partitioning, layout and testability, reset/			
initialization, design for testability, testing combinational logic, testing sequential			
logic, practical design for test (DFT) guidelines, scan design techniques, built-in-			
self-test (BIST). CMOS design projects: Incrementer/ Decrementer, comparator			
for two n-bit numbers.			
Laboratory Sessions/ Experimental learning:			
1. Perform a survey on Prime Time CAD tool from any open source software			
for timing Analysis.	10Hrs.		
Applications: Testing of Imperfections in chip fabrication.			
Video link / Additional online information:			
1. <u>https://youtu.be/V-GL-oQSa14</u> (Fault design & Testability)			
2. <u>https://youtu.be/P7AQJn7K8Os</u> (Combinational Circuit Test Pattern			
Generation-ATPG)			
https://youtu.be/NGoRLtDkPwU (Sequential Circuit Testing and Scan Chains			
&BIST)			
Laboratory Sessions			
Sl No Experiment Name			
ASIC Digital Design			

	Write Verilog Code for inverter and Test Bench for verification, observe the						
1	waveform and synthesize the code with technological library with given						
	constraints. Do the initial timing verification with gate level simulation.						
	Write Verilog Code for buffer and Test Bench for verification, observe the						
2	waveform and synthesize the code with technological library with given						
	constraints. Do the initial timing verification with gate level simulation.						
	Write Verilog Code for Transmission Gate and Test Bench for verification, observe						
3	the waveform and synthesize the code with technological library with given						
	constraints. Do the initial timing verification with gate level simulation.						
	Write Verilog Code for Basic/universal gates and Test Bench for verification,						
4	observe the waveform and synthesize the code with technological library with						
	given constraints. Do the initial timing verification with gate level simulation.						
	Write Verilog Code for Flip flops -RS, D, JK, MS, T and Test Bench for verification,						
5	observe the waveform and synthesize the code with technological library with						
	given constraints. Do the initial timing verification with gate level simulation.						
	Write Verilog Code for Serial & Parallel adder and Test Bench for verification,						
6	observe the waveform and synthesize the code with technological library with						
	given constraints. Do the initial timing verification with gate level simulation.						
	Write Verilog Code for 4-bit counter [Synchronous and Asynchronous counter]						
7	and Test Bench for verification, observe the waveform and synthesize the code						
/	with technological library with given constraints. Do the initial timing verification						
	with gate level simulation.						
Analog	g Design						
	Design an Inverter with given specifications, completing the design flow						
	mentioned below:						
	• Draw the schematic and verify the following i) DC Analysis ii) Transient						
8	Analysis						
	Draw the Layout and verify the DRC, ERC						
	Check for LVS						
	Verify & Optimize for Time, Power and Area to the given constraint						
	Design the Common source amplifier with given specifications, completing the						
9	design now mentioned below.						
	• Draw the schematic and verify the following i) Transient Analysis ii) DC						
	Analysis iii) AC Analysis						
	Draw the Layout and verify the DRC, ERC						
	Check for LVS						
	PC ovtraction						

	Design the Common Drain amplifier with given specifications, completing the
	design flow mentioned below:
10	 Draw the schematic and verify the following i) Transient Analysis ii) DC Analysis iii) AC Analysis Draw the Layout and verify the DRC, ERC Check for LVS
	PC outraction
	RC extraction
	Design a single stage differential amplifier, with given specifications, completing
	the design flow mentioned below:
11	 Draw the schematic and verify the following i) Transient Analysis ii) DC Analysis iii) AC Analysis Draw the Layout and verify the DRC, ERC Check for LVS
	RC extraction
	Design an Operational-amp with given specification using given differential
	amplifier Common source and Common Drain amplifier in library and completing
	the design flow mentioned below:
12	 Draw the schematic and verify the following i) Transient Analysis ii) DC Analysis iii). AC Analysis Draw the Layout and verify the DRC, ERC Check for LVS
	RC extraction

Course	e outcomes:
CO1	Demonstrate understanding of MOS transistor theory, CMOS fabrication flow and
	technology scaling.

coz	Utilize the knowledge of physical design aspects to draw the basic gates using					
02	stick and layout diagrams.					
CO_{3}	Demonstrate ability to design Combinational, sequential and dynamic logic					
	circuits as per the requirements.					
CO4	Interpret Memory elements along with timing considerations.					
CO5	Summarize testing and testability issues in VLSI Design.					
Refere	nce Books:					
1	Sung Mo Kang & Yosuf Leblebici, "CMOS Digital Integrated Circuits: Analysis and					
<u></u> .	Design" - Third Edition, Tata McGraw-Hill.					
2	Neil H. E. Weste, and David Money Harris, "CMOS VLSI Design- A Circuits and					
Δ.	Systems Perspective" - 4th Edition, Pearson Education.					
z	Adel Sedra and K. C. Smith, "Microelectronics Circuits Theory and Applications",					
J.	6th or 7th Edition, Oxford University Press, International Version, 2009.					
4	Douglas A Pucknell & Kamran Eshragian, "Basic VLSI Design", PHI 3rd Edition,					
	(original Edition – 1994).					

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the self - study are 20 (2 presentations are be held for 10 marks out of 100 and report CIE for 50 marks.

Laboratory- 50 Marks

The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are awarded 10 marks. Total marks for the laboratory is 50.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	2	1	-	-	-	-	-	1
CO2	3	3	3	2	2	1	-	-	-	-	-	1
CO3	3	3	3	2	2	1	-	-	-	-	-	1
CO4	3	3	3	2	2	1	-	-	-	-	-	1
CO5	3	3	3	2	2	1	-	-	-	-	-	1

Professional Elective II

	Semester: VII						
MEDICAL ELECTRONICS (Theory)							
Course	e Code:	MVJ21EC721	CIE Marks:100				
Credits	6:	L:T:P: 3:0:0	SEE Marks: 100				
Hours:		40L	SEE Duration: 3 Hrs				
Course	e Learning Obj	ectives: The students will be able to					
	Explain phys	iological parameters such as elec	trical, non-electrical and the				
1	recording methods.						
2	Learn the methods used for recording and measuring the biological signals.						
3	Illustrate the various Medical Imaging devices used in the hospitals.						
	Explain the telemetry systems and know the safety aspects required in medical						
4	equipment.						
5	Understand the various Therapeutic Devices and know about recent trends in						
	medical syste	em.					

UNIT 1			
Prerequisites: Basics of Transducer			
Fundamentals of Physiology and Transducer:			
Types of Bioelectric Potentials: Introduction to different types of bioelectric			
potentials, Action and resting potentials, Propagation of action potentials.			
Biological Systems: Nervous system and its fundamentals, Basic components of			
a biomedical system, Cardiovascular systems, Respiratory systems			
Electrodes and Transducers in Medical systems: Different type of electrodes,			
sensors used in biomedicine. Physiological signals and transducers, Piezoelectric			
Transducers, ultrasonic transducers, Temperature measurement, Fibre optic			
temperature sensors. Selection criteria for transducer and electrodes.			
Laboratory Sessions/ Experimental learning:			
1. Practical applications of electrodes in medical field.			
Applications: Ultrasonic scanning devices, Measures skin and body temperature,			
Measures Respiratory rateVideo link / Additional online information :			
1. <u>https://nptel.ac.in/courses/102/104/102104043/</u>			
2. <u>https://www.youtube.com/watch?v=QiwxdcckPGc</u>			

3. <u>https://www.youtube.com/watch?v=LOjK2wB_qcg&feature=youtu.be</u>	
4. <u>https://youtu.be/7TabKYSbdH4</u>	
UNIT 2	
Electrical and Non-Electrical Parameter Measurement:	
Electro Physiological Measurement: Biological amplifiers, ECG,EEG, EMG, PCG,	
typical waveforms and signal characteristics	
Non Electrical Parameter Measurement: Measurement of blood pressure, Ultra	
sound blood flow meter, Blood flow cardiac output, Heart rate, heart sound,	
measurement of gas volume, flow rate of CO2 and O2 in exhaust air, pH of blood	
Laboratory Sessions/ Experimental learning:	8Hrs.
1. Measure the "PQRST ECG" signal in both normal and abnormal conditions.	
Applications: Psychology and Neuroscience, Brain Computer Interfaces (BCI)	
Video link / Additional online information:	
1. <u>https://nptel.ac.in/courses/108/108/108108167/</u>	
2. <u>https://www.youtube.com/watch?v=7cvgDIdtw8M</u>	
3. <u>https://www.youtube.com/watch?v=mK6sPBbChqc</u>	
UNIT 3	
Amplifiers used in Medical Electronics: Amplifiers, preamplifiers, differential	
amplifiers, chopper amplifiers, Isolation amplifier	
Medical Imaging: X-ray machine, Computer tomography, Magnetic resonance	
imaging system, Positron emission tomography and endoscopy.	
Laboratory Sessions/ Experimental learning:	
1. Graphical results of all Medical Images.	01 (
Applications: Diagnose disease, blood clots, tumours, bone fractures	orrs.
,inflammation or infection in an organ ,degenerative diseases ,strokes	
Video link / Additional online information:	
1. <u>https://www.youtube.com/watch?v=N0Dwh3avx9A</u>	
2. <u>https://www.youtube.com/watch?v=5_k6GVMwQ8</u> w	
3. <u>https://www.youtube.com/watch?v=1ftsuzhJ-vk</u>	
UNIT 4	
Telemetry: Introduction to telemetry systems, Different types of biotelemetry	
systems, Retinal Imaging, Imaging application in Biometric systems.	8Hrs.

Safety in Medical Environment: Electrical safety in medical environment, shockhazards, leakage current, Instruments for checking safety parameters ofbiomedical equipmentLaboratory Sessions/ Experimental learning:Practical applications of telemetry in medical systems.Applications: In the branch of Ophthalmology

Video link / Additional online information :

- 1. <u>https://www.youtube.com/watch?v=0UPoSdBFD48</u>
 - 2. https://www.youtube.com/watch?v=8SPHA_1tTw4

UNIT 5

Assisting and Therapeutic Devices: Cardiac pacemakers, Defibrillators,			
Ventilators, Surgical diathermy, Heart lung machine, Laser in surgery and			
medicine.			
Recent Trends in medical System: Insulin Pumps, Radio pill, Endo microscopy,			
Brain machine interface, Lab on a chip, ICCU patient monitoring system,			
Wearable Antennas.			
Robotic Devices: Nano Robots, Robotic surgery, Orthopedic prostheses fixation.			
Laboratory Sessions/ Experimental learning:			
1. Functions of ICCU patient Monitoring Systems.	8Hrs.		
Applications: Diagnosis of the gastrointestinal tract. Applications of BCI are			
neuroergonomics, medical, smart environment, education and self-regulation,			
games and entertainment, neuro marketing and advertisement			
Video link / Additional online information:			
1. <u>https://www.youtube.com/watch?v=SMXBR_YFocs</u>			
2. https://www.youtube.com/watch?v=qUD865w2Drw			
3 https://www.voutube.com/watch?v=KAvQsRl_ieo			

Course	e outcomes:
CO1	Analyse the operation and characteristics of Electronic devices and use of them in
	applications.

CO2	Evaluate the performance of electronic circuits.
CO3	Demonstrate the electronic systems and analyse their applicability
CO4	Analyse requirement of electronic devices and systems.
CO5	Design a simple prototype for a certain application.

Refere	ence Books:
1.	R.S. Khandpur, "Hand book of Bio Medical Instrumentation" (2nd edition)- ISBN-13: 9789339205430.
2.	Mandeep Singh, "Introduction to Biomedical Instrumentation", ISBN-13: 9788120350236
3.	S.K. Guha, "Principles of Medical Electronics and biomedical Instrumentation" - ISBN-13: 978-8173712579.
4.	J.G.Webster (Wiley India), "Medical instrumentation Application and Design", ISBN-13: 978-0471676003.

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO M	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	2	1	-	-	1	-	-	1
CO2	3	3	2	2	2	1	-	-	1	-	-	1
CO3	3	3	2	2	3	1	-	-	1	-	-	1
CO4	3	3	2	2	3	1	-	-	1	-	-	2
CO5	3	3	2	2	2	1	-	-	1	-	-	3

Semester: VII										
SATELLITE & RADAR COMMUNICATION (Theory)										
Course	e Code:	MVJ21EC722	CIE Marks:100							
Credits	6:	L:T:P: 3:0:0	SEE Marks: 100							
Hours:		40L	SEE Duration: 3 Hrs							
Course	e Learning Objectives	: The students will be able to								
1	Provide a conceptual knowledge of communication through satellites.									
2	Study the concept of navigation - both inertial and by navigation satellites.									
3	Understand typical challenges of satellite-based systems.									
4	Learn the basic principle of radar equation.									
5	Motivate to learn m	odern radar and navigational te	echniques.							

UNIT 1	
Prereguisites' Digital Communication Systems	
Introduction to Satellite Communication. Orbital concete of Satellite	
introduction to satellite Communication: Orbital aspects of satellite	
Communication: Introduction to geo-synchronous and geo-stationary satellites,	
Kepler's laws, Locating the satellite with respect to the earth, Sub-satellite point,	
Look angles, Mechanics of launching a synchronous satellite.	
Laboratory Sessions/ Experimental learning:	
1. To study the details regarding satellite communication toolbox in Matlab.	8Hrs.
Applications: DTH, or satellite television, services (such as the DirecTV and DISH	
Network services	
Video link / Additional online information:	
1. <u>https://nptel.ac.in/courses/117/105/117105131/#</u>	
2. <u>https://youtu.be/n70zjMvm8L0</u>	
3. <u>https://youtu.be/oYRMYSIVj1o</u>	
UNIT 2	
Satellite sub-systems: Attitude and Orbit control systems, Telemetry, Tracking	
and command control system, Power supply system, Space craft antennas,	
Multiple access techniques, comparison of FDMA, TDMA, and CDMA. Earth station	
equipment, tracking systems.	8Hrs.
Satellite Link Design : Basic transmission theory, System noise temperature and	
G/T Ratio, Noise figure and noise temperature, Calculation of system noise	
temperature, G/T ratio for earth stations, Link budgets - Uplink and downlink	

budget calculations, Error control for digital satellite links, Prediction of rain	
attenuation and propagation impairment counter measures.	1
Laboratory Sessions/ Experimental learning:	1
1. Study and analyze the parameters of RF-link satellite simulation using	1
Matlab	1
Applications: Mobile Communication, Error detection and correction	1
Video link / Additional online information:	1
1. https://nptel.ac.in/courses/117/105/117105131/#	1
https://www.youtube.com/watch?v=FTHt-c8hWKw	1
UNIT 3	
Communication Satellites: Introduction, C band and Ku band Home satellite TV,	
Digital DBS TV, DBS TV System Design, Installation of DBS TV Antenna, Satellite	1
Radio Broadcasting.	1
Navigation Satellite s: Introduction, Radio and Satellite Navigation, GPS Position	1
Location Principle, Satellite Signal Acquisition, GOS Navigation Message, GPS	1
Signal Levels, GOS Receiver Operation.	1
VSAT Systems: Introduction, Overview, Network Architectures.	1
Laboratory Sessions/ Experimental learning:	8Hrs.
1. A Case Study of Using Remote Sensing Data and GIS for Land	1
Management	1
Applications: Communication, Weather forecasting, Remote sensing, Navigation	1
Video link / Additional online information:	1
1. https://nptel.ac.in/courses/117/105/117105131/#	1
2. https://nptel.ac.in/courses/121/107/121107009/	1
https://onlinecourses.nptel.ac.in/noc19_ce45/preview	I
UNIT 4	
Introduction to Radar: Radar block diagram and operation, Radar frequencies,	
Applications of radar, Prediction of range performance, Minimum detectable	1
signal, Receiver noise, Probability density function, SNR, Integration of radar	8Hrs.
pulses, Radar cross-section of targets, PRF and range ambiguities, Transmitter	
power, System losses.	

Electronically steered Phased Array Antenna in Radar: Phase shifters, Frequency scan arrays, Array elements, Feeds for arrays, Computer Control of Phased-Array Radar.

Laboratory Sessions/ Experimental learning:

1. Implement the radar range equations for remote sensing.

Applications: Ground surveillance, missile control, fire control, air traffic control (ATC), moving target indication (MTI).

Video link / Additional online information:

1. <u>https://onlinecourses.nptel.ac.in/noc19_ee58/preview</u>

https://nptel.ac.in/courses/108/105/108105154/

UNIT 5

Radar Technology and Applications: Doppler Effect, CW radar, FM CW radar, Multiple frequency CW radar, MTI radar, Delay line canceller, Range gated MTI radar, Blind speeds, Staggered PRF, Limitations to the performance of MTI radar, Non-coherent MTI radar. Tracking radar: sequential lobing, conical scan, Monopulse: amplitude comparison and phase comparison methods, Radar antennas. Radar displays.

Laboratory Sessions/ Experimental learning:

1. Study the implementation and importance of MTI radar with Power amplifier.

Applications: Ground surveillance, weapons location, and vehicle search

Video link / Additional online information:

- 1. <u>https://nptel.ac.in/courses/108/105/108105154/</u>
- 2. <u>https://youtu.be/XFapyIIzX_8</u>

https://freevideolectures.com/course/5299/introduction-radar-systems/42

Course	e outcomes:
CO1	Apply the basics of digital transmission related to satellite communication
CO2	Comprehend the design of satellite subsystems
CO3	Evaluate spacecraft subsystem performance and trades

CO4	Model the characteristics of radar echoes from different types oftargets and clutter.
CO5	Calculate and simulate receiver noise and losses.

Refere	ence Books:
1.	T. Pratt, C.W. Boastian and Jeremy Allnutt, "Satellite Communication", 2013, 2nd edition, John Wiley and Sons, Bangalore, India.
2.	Merril. I. Skolnik, "Introduction to Radar Systems", 2/e, MGH, 1981.
3.	Dennis Roddy, Satellite Communications, 4th Edition, McGraw- Hill International edition, 2006
4.	Timothy Pratt, Charles Bostian, Jeremy Allnutt, Satellite Communications, 2nd Edition, Wiley India Pvt. Ltd , 2017, ISBN: 978-81-265-0833-4

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO M	lappir	ıg											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	

CO1	3	-	-	-	2	-	-	-	-	-	-	-
CO2	3	3	2	-	2	-	-	-	-	-	-	-
CO3	3	3	3	2	-	-	-	-	-	-	-	-
CO4	3	3	3	2	1	-	-	-	-	-	-	-
CO5	3	3	3	-	2	-	-	-	-	-	-	-

Semester: VII						
REAL TIME OPERATING SYSTEMS (Theory)						
Course	Code:	MVJ21EC723	CIE Marks:100			
Credits:		L:T:P: 3:0:0	SEE Marks: 100			
Hours:		40L	SEE Duration: 3 Hrs			
Course	Learning C	Objectives: The students will be able to				
1	Acquire knowledge about concepts related to OS for Embedded Systems.					
	Gain knowledge about different types of scheduling algorithms suitable for					
2	embedded real time systems.					
	Introduce the principles of Inter process communication and multitasking					
3	applications.					
4	Explain the architecture of Linux Kernel and RTOS applications to Linux.					
5	Discuss Real-Time Programming in Linux and μC Linux.					

UNIT 1				
Prerequisites: Basic Concepts of Operating systems and basics of task				
management and task scheduling.				
Real Time Systems: Introduction, issues in real time computing, Structure of a				
real time system, task classes, performance measures for real time systems, task				
assignment and scheduling algorithms, mode changes, Fault tolerant scheduling,				
Real Time Models.				
Laboratory Sessions/ Experimental learning:				
1. Create an application that creates two tasks that wait on a timer whilst	01110.			
the main task loops.				
2. Create an application that creates tasks and scheduling tasks.				
Applications: Kiel RTOS for ARM (Keil RTX - ARM)				
Video link / Additional online information:				
1. <u>https://nptel.ac.in/courses/106/105/106105036/</u>				
https://nptel.ac.in/courses/106/105/106105172/				
UNIT 2				

µC/OS- II RTOS Concepts: Foreground/Background process, Resources, Tasks,				
Multitasking, Priorities, Schedulers, Kernel, Exclusion, Inter task communication,				
Interrupts, Clock ticks, μ C/OS- II Kernel structure , μ C/OS- II Initialisation, Starting				
μC/OS- II.				
Laboratory Sessions/ Experimental learning:				
1. Write an Keil RTOS code that demonstrates the multitasking priority.				
2. Write an Keil RTOS code that assigns priority and sets the time slice	QЦrc			
period to illustrate time slicing.	0115.			
Applications:				
1. Email Spam and Malware Filtering				
2. File Managers and Resource management systems				
Video link / Additional online information:				
1. <u>https://nptel.ac.in/courses/106/106/106106198/</u>				
http://www.nptelvideos.in/2012/11/real-time-systems.html				
UNIT 3				
μ C/OS- II RTOS Functions: Task Management, Time management, Semaphore				
management, Mutual exclusion semaphore, Event Management, Message				
management, Memory management, porting μ C/OS- II – comparison and study				
of various RTOS like QNX, VX Works, Psos.				
Laboratory Sessions/ Experimental learning:				
1. Write a Keil RTOS code to manage tasks to handle semaphore to overcome				
mutual exclusion.				
2. Demonstrate Porting of μ C/OS- II in Embedded processor.				
Applications: Traffic light controller system				
Video link / Additional online information:				
1. <u>https://nptel.ac.in/courses/106/105/106105215/</u>				
https://nptel.ac.in/courses/106/105/106105172/				
UNIT 4				
Embedded Linux: Embedded Linux, Features, Embedded Linux Distributions,				
Architecture of Embedded Linux, Linux Kernel Architecture, User Space, Root File				
System, Linux Start, Up Sequence, GNU Cross Platform Tool chain, Porting				
Traditional RTOS Applications to Linux.				

Labora	tory Sessions/ Experimental learning:				
1. Write an application that display two different messages in LCD display in					
	two lines.				
Applica	ations: Smart Mobile Phone operating system development process				
demon	istration.				
Video l	ink / Additional online information:				
1.	http://1.https//nptel.ac.in/courses/11706087/				
https://	'nptel.ac.in/courses/106/106/106106198/				
	UNIT 5				
Real ti	me Linux: Linux and Real-Time, Real-Time Programming in Linux, Hard				
Real-Ti	me Linux, Building and Debugging, Building the Kernel, Integrated				
Develo	pment Environment, Kernel Debuggers, Embedded Drivers, Board support				
packages, Introduction to µC Linux.					
Laboratory Sessions/ Experimental learning:					
1.	1.Creating and UART driver for USB bus.8Hrs.				
Applications: Demonstration of ABS system in automobiles					
Video link / Additional online information:					
1.	https://nptel.ac.in/courses/117102059/				
2.	http://www.nptelvideos.in/2012/11/real-time-systems.html				
<u>https://</u>	www.youtube.com/watch?v=HlU5cYqGLZE				
Course outcomes:					
Summarize fundamental principles for programming of real time systems with					
	time and resource limitations.				
CO2	Develop RTOS based embedded real time applications.				
CO3	Analyze the functions of real time operating systems.				
CO4	Utilize RTOS software tool chain for Embedded Applications.				
CO5	3 Develop real time kernels and Embedded Drivers.				

Refere	nce Books:
1	Krishna C.M., Kang G. Shin, "Real Time Systems", Tata McGraw-Hill international
Τ.	Edition, 2010.

2.	Philip A.Laplante, "Real Time Systems Design and Analysis-An Engineers
	Handbook", II Edition-IEEE Press, IEEE Computer Society Press, 2001.
3	Jean J Labrosse, "MicroC/OS-II The Real Time Kernel" II Edition, CMP Books, 2002.
4.	P.Raghavan, Amol Lad, Sriram Neelakandan, "Embedded Linux System Design and
	Development", Auerbach Publications, Taylor& Francis Group, 2006.

Continuous Internal Evaluation (CIE): Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO N	A appir	ng										
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	1	1	-	-	1	-	2	1
CO2	3	3	3	2	1	1	-	-	1	-	2	1
CO3	3	3	3	2	1	1	-	-	1	-	2	1
CO4	3	3	3	2	1	1	-	-	1	-	2	1
CO5	3	3	3	2	1	1	-	-	1	-	2	1

	Semester: VII					
CRYPTOGRAPHY & CYBER SECURITY (Theory)						
Cou	irse Code:	MVJ21EC724	CIE Marks:100			
Cred	dits:	L:T:P: 3:0:0	SEE Marks: 100			
Ηου	urs:	40L	SEE Duration: 3 Hrs			
Cou	irse Learning C	Objectives: The students will be ab	le to			
1	Outline the basic principles of Cyber security and its applications					
2	Familiarize with Cryptography and very essential algorithms					
	Use the theorems needed for cryptographic operations and compare 8					
3	³ contrast different types of cryptography					
4	State the concepts & uses of Digital signature and web security					
5	Demonstrate the need and summarize the concept of Secure Electronic Transactions & Intrusion detection system.					

UNIT 1		
Introduction: Services, Mechanisms, Mechanism Attacks, The OSI Security		
Architecture, A Model for Network Security, Cyber Attacks, Defence Strategies and		
Techniques, Guiding Principles		
Mathematical Background of Cryptography: Integer Arithmetic, Modular		
Arithmetic, Matrices, The Greatest Comma Divisor, Useful Algebraic Structures,		
Chinese Remainder Theorem		
Applications: Time Stamping, Electronic Money, Secure Network		
Communication		
Laboratory Sessions/ Experimental learning:		
1. <u>Breaking the Shift Cipher</u>		
Video link / Additional online information :		
1. <u>https://nptel.ac.in/courses/117103063/</u>		
2. <u>https://nptel.ac.in/courses/117107095/</u>		
3. <u>http://nptelvideos.com/video.php?id=2441</u>		
http://www.nptelvideos.com/video.php?id=429		
UNIT 2		
Basics of Cryptography: Preliminaries, Elementary Substitution Ciphers,		
Elementary Transport Ciphers, Other Cipher Properties.	8Hrs.	

Symmetric Ciphers: Symmetric Ciphers model, Substitution Techniques, Transposition Techniques, Simplified DES, Data encryption Standard (DES), The strength of DES, Differential and Linear Cryptanalysis, Block Cipher Design Principles and modes of operation, Evaluation Criteria for Advanced Encryption standard, The AES Cipher.

Laboratory Sessions/ Experimental learning:

1. Breaking the Mono-alphabetic Substitution Cipher

Applications: wireless security, processor security, file encryption.

Video link / Additional online information:

- 1. https://nptel.ac.in/courses/117106087/
- 2. <u>https://www.youtube.com/watch?v=ANHTfY9feZg</u>

https://nptel.ac.in/courses/108102095/

UNIT 3

Public Key Cryptography: Principles of public key Cryptosystem, The RSA		
algorithms, Key management, Diffie – Hellman key exchange, PRNG.		
Key Management and Distribution: Symmetric key distribution using symmetric		
encryption, Symmetric key distribution using asymmetric encryption, Distribution		
of Public keys, X.509 Certificates, Public key infrastructure.		
Laboratory Sessions/ Experimental learning:		
1. Diffie-Hellman Key Establishment	8Hrs.	
Applications: Random number generator, permutation generator		
Video link / Additional online information:		
1. <u>https://www.youtube.com/watch?v=m4sjTt7rhow</u>		
2. <u>https://nptel.ac.in/courses/117101106/</u>		
3. <u>https://nptel.ac.in/courses/108108114/</u>		
UNIT 4		
Intruders, Intrusion Detection, Password Management, Malicious software		
programs – Viruses and related Threats, Virus Countermeasures		
Firewall: Need of firewalls, Firewall Characteristics, Types of Firewalls, Design		
Principles, Trusted Systems		

Laboratory Sessions/ Experimental learning:			
1. Digital Signatures Scheme			
2. Cryptographic Hash Functions and Applications (HMAC)			
Applications: Cyber-attacks, Cybercrime, Cyber security.			
Video link / Additional online information :			
1. <u>https://nptel.ac.in/courses/108105113/</u>			
https://nptel.ac.in/courses/117106086/			
UNIT 5			
Transport Level Security: Web Security Considerations, Secure Sockets Layer,			
Transport Layer Security, HTTPS, Secure Shell (SSH)			
IP Security: IP Security Overview, IP Security Policy, ESP, Combining Security			
Associations.			
Laboratory Sessions/ Experimental learning:			
1. Program for SSL operation.	8Hrs.		
Applications: Encryption , message authentication and integrity, and replay			
attack protection			
Video link / Additional online information:			
https://nptel.ac.in/courses/117102052/			

Course	e outcomes:
CO1	Analyse the importance of security attacks, service mechanism, basic network
	security model and its applications.
<u> </u>	Design and develop simple cryptography algorithms and Explain basic structure of
	DES and AES
CO3	Apply the concepts of Primes, Testing, Factorization, Chinese remainder theorem
	and RSA Cryptosystem.
CO1	Illustrate the concept public key cryptography & apply digital signatures in email.
	Processing and Explain usages of email-security, IP security and web security.
CO5	Describe different techniques used in key exchange protocols.
Text B	ooks:

1.	Cryptc Mukhc	ograph opadhy	y an vay,Mc	d Ne -Graw	etwork Hill, 31	Sect rd Edit	urity- ion, 20	Behr)15	ouz	A For	ouzan,	Debdeep
2.	Cryptography and Network Security- William Stallings, Pearson Education, 7th Edition.											
Referer	nce Bo	oks:										
1.	Cryptography, Network Security and Cyber Laws – Bernard Menezes, Cengage Learning, 2010 edition.											
CO-PO	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	1	1	-	-	1	-	-	1
CO2	3	3	3	2	1	1	-	-	1	-	-	1
CO3	3	3	3	2	1	1	-	-	1	-	-	1
CO4	3	3	3	2	1	1	-	-	1	-	-	1
CO5	3	3	3	2	1	1	-	-	1	-	-	1

	Semester: III						
	ROBOTICS & AUTOMATION (Theory)						
Course	Code:	MVJ21EC725	CIE Marks:100				
Credits:		L:T:P: 3:0:0	SEE Marks: 100				
Hours:		40L	SEE Duration: 3 Hrs				
Course	Course Learning Objectives: The students will be able to						
1	Understand basic concepts of RPA						
2	Describe RPA, where it can be applied and how it implemented						
3	Describe the different types of variables and data manipulation techniques						
4	Understand Image, Text and Data Tables Automation						
5	Describe various types of Exceptions and strategies to handle						

UNIT 1

RPA Foundations - What is RPA – Flavors of RPA- History of RPA- The Benefits of RPA- The downsides of RPA- RPA Compared to BPO, BPM and BPA – Consumer Willingness for Automation- The Workforce of the Future- RPA Skills-On-Premise Vs. the Cloud- Web Technology- Programming Languages and Low Code- OCR-APIs- AI-Cognitive Automation-Agile, Scrum, Kanban and Waterfall- Flowcharts.

Laboratory Sessions/ Experimental learning:

1. Interface various sensors with Microcontroller.

Applications: Machine Tending,Picking, Packing and Palletizing, painting, all Industrial applications

Video link / Additional online information:

- 1. https://nptel.ac.in/courses/112/105/112105249/
- 2. <u>https://nptel.ac.in/courses/112/101/112101098/</u>
- 3. <u>https://nptel.ac.in/courses/112/101/112101098/</u>

UNIT 2

RPA Platforms - Components of RPA - RPA Platforms - About Ui Path - About UiPath			
- The future of automation - Record and Play - Downloading and installing UiPath			
Studio -Learning Ui Path Studio Task recorder - Step-by step examples using			
the recorder.			
Laboratory Sessions/ Experimental learning:			
1. Interface motors using various Motor drivers.	8Hrs.		
Applications: Industrial application, agriculture robots, surgical robots			
Video link / Additional online information:			
1. <u>https://nptel.ac.in/courses/112/105/112105249/</u>			
2. https://nptel.ac.in/courses/112/101/112101098/			
UNIT 3			
 Sequence, Flowchart, and Control Flow -Sequencing the workflow Activities- Control flow, various types of loops, and decision making Step-by-step example using Sequence and Flowchart-Step-by-step example using Sequence and Control flow-Data Manipulation-Variables and Scope Collections-Arguments – Purpose and use-Data table usage with examples Clipboard management-File operation with step-by-step example-CSV/Excel to data table and vice versa Laboratory Sessions/ Experimental learning: Interface servo motors to form gripper. Applications: Pick and Place, Excavators, Robotic ARM. Video link / Additional online information: https://nptel.ac.in/courses/112/105/112105249/ 	8Hrs.		
UNIT 4			
Taking Control of the Controls- Finding and attaching windows- Finding the control- Techniques for waiting for a control- Act on controls – mouse and keyboard activities- Working with UiExplorer- Handling events- Revisit recorder-Screen Scraping- When to use OCR- Types of OCR available- How to use OCR-Avoiding typical failure points.	8Hrs.		

Laboratory Sessions/ Experimental learning:

1. Design algorithm for Maze solving robot.

Applications: Defence, Surveillance, Autonomous Vehicle.

Video link / Additional online information:

- 1. <u>https://nptel.ac.in/courses/112/105/112105249/</u>
- 2. https://nptel.ac.in/courses/112/101/112101098/

UNIT 5

Exception Handling- Exception Handling, Debugging, and Logging- Exception handling- Common exceptions and ways to handle them- Logging and taking screenshots Debugging techniques- Collecting crash dumps- Error reporting-Future of RPA

Laboratory Sessions/ Experimental learning:

1. Case Study on Robots in material handling and assembly. Human RobotInteraction8Hrs.

Applications: Humanoid, Robotic Arms.

Video link / Additional online information:

- 1. <u>https://nptel.ac.in/courses/112/105/112105249/</u>
- 2. https://nptel.ac.in/courses/112/101/112101098/

Cours	se outcomes:
CO1	Understand the basic concepts of RPA
CO2	Describe various components and platforms of RPA
CO3	Describe the different types of variables, control flow and data manipulation techniques
CO4	Understand various control techniques and OCR in RPA
CO5	Describe various types and strategies to handle exceptions.

ide to							
5							
"Alok Mani Tripathi, Learning Robotic Process Automation, Publishing Release							
n to							
mation.							
Software							

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO	Mappi	ng										
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	1	1	-	-	1	-	-	1
CO2	3	3	3	2	1	1	-	-	1	-	-	1
CO3	3	3	3	2	1	1	-	-	1	-	-	1
CO4	3	3	3	2	1	1	-	-	1	-	-	1
CO5	3	3	3	2	1	1	-	-	1	-	-	1

Professional Elective-III

			Semester: `	√II				
	DIGITAL IMAGE PROCESSING (Theory)							
Cου	irse Code:	MVJ21EC7	31	CIE	CIE Marks:100			
Cree	dits:	L: T:P: 3:0:	0	SEE	SEE Marks: 100			
Ηοι	irs:	40L		SEE	SEE Duration: 3 Hrs			
Cου	irse Learning Obje	ctives: The	students v	vill be a	able to)		
1	Learn the fundan	nentals of di	gital image	e proce	essing			
2	Understand the techniques used	image tr in digital im	ansforms age proces	and ssing.	other	image	enhanc	ement
3	Study the image processing.	restoration	techniques	s and r	nethoo	ds used i	in digital	image
4	Understand reg morphological w	gion-based atersheds.	segment	ation	and	segme	ntation	using
5	Know the color fi techniques.	undamental	s and varic	ous mo	prpholc	ogical im	lage proc	cessing

UNIT 1

Prerequisites: Discrete Fourier Transform, MATLAB Basics

Introduction to Digital Image Processing: What is Digital Image Processing? Origin of Digital Image Processing, Fundamental Steps in Digital Image Processing, Components of an Image Processing System, Elements of Visual Perception, Image Sensing and Acquisition, Image Sampling and Quantization, Some Basic Relationships Between Pixels, Linear and Nonlinear Operations.

8Hrs.

Applications of Image Processing: Medical imaging, Robot vision, Character recognition, Remote Sensing.

Laboratory Sessions/ Experimental learning:

1. Implementation and analysis of image sampling methods including uniform, grid, jittered and best candidate algorithms using MATLAB

Applications: Medical imaging, Robot vision, Character recognition, Remote			
Sensing.			
Video link / Additional online information :			
1. <u>https://nptel.ac.in/courses/117/105/117105079/</u>			
2. https://www.tutorialspoint.com/dip/index.htm			
UNIT 2			
Spatial Domain : Some Basic Intensity Transformation Functions, Histogram Processing, Fundamentals of Spatial Filtering, Smoothing Spatial Filters, Sharpening Spatial Filters			
Frequency Domain : Preliminary Concepts, The Discrete Fourier Transform (DFT) of Two Variables, Properties of the 2-D DFT, Filtering in the Frequency Domain, Image, Smoothing and Image Sharpening Using Frequency Domain Filters, Selective Filtering.			
Laboratory Sessions/ Experimental learning:			
1. Implementation and analysis of image smoothing and sharpening algorithms using MATLAB.	01110.		
Applications: Image Enhancement, Image Analysis			
Video link / Additional online information:			
1. <u>https://nptel.ac.in/courses/117/105/117105079/</u>			
2. https://www.tutorialspoint.com/dip/index.htm			
UNIT 3			
Restoration: Noise models Restoration in the Presence of Noise Only using			
Spatial Filtering and Frequency Domain Filtering Linear Position-Invariant			
Degradations Estimating the Degradation Function Inverse Filtering Minimum			
Mean Square Error (Wiener) Filtering, Constrained Least Squares Filtering			
Laboratory Sessions/ Experimental learning:			

 Test the restoration with the Inverse Filter for deblurring and denoising. Identify the problem with the Inverse Filter and discuss the solution for the same.

Applications: Image Enhancement, Image Analysis, Error detection and correction

Video link / Additional online information:

- 1. https://nptel.ac.in/courses/117/105/117105079/
- 2. <u>https://www.tutorialspoint.com/dip/index.htm</u>

UNIT 4

Segmentation: Point, Line, and Edge Detection, Thresholding, Region-Based				
Segmentation, Segmentation Using Morphological Watersheds.				
Representation and Description: Representation, Boundary descriptors.				
Laboratory Sessions/ Experimental learning:				
 Develop and implement a matlab code for Image segmentation using thresholding technique. 	8Hrs.			
Applications: Object tracking, Pattern recognition				
Video link / Additional online information :				
1. <u>https://nptel.ac.in/courses/117/105/117105079/</u>				
2 . <u>https://www.tutorialspoint.com/dip/index.htm</u>				
UNIT 5	<u> </u>			
Color Image Processing: Color Fundamentals, Color Models, Pseudo color Image				
Processing.	8Hrs.			

Morphological Image Processing: Preliminaries, Erosion and Dilation, Opening and Closing, The Hit-or-Miss Transforms, Some Basic Morphological Algorithms. Four morphological principles, Skeletons and object marking.

Laboratory Sessions/ Experimental learning:

1. Implementation and analysis of multimodal image fusion using MATLAB.

Applications: Color conversion, Object marking

Video link / Additional online information:

- 1. https://nptel.ac.in/courses/117/105/117105079/
- 2. https://www.tutorialspoint.com/dip/index.htm

Cours	se outcomes:
CO1	Analyze image processing algorithms used for sampling and quantization.
CO2	Apply and analyze image processing techniques in both the spatial and frequency (Fourier) domains.
CO3	Implement and analyse various image restoration algorithms
CO4	Design image analysis techniques for image segmentation and evaluate the methodologies for segmentation.
CO5	Conduct independent study and analyze various Morphological Image Processing techniques.

Refer	ence Books:
1	Rafel C Gonzalez and Richard E. Woods, "Digital Image Processing"-, PHI 3rd Edition,
1.	2010.

	Milan Sonka, Vaclav Hlavac, Roger Boyle, –"Image Processing, Analysis, and
2.	Machine Vision ", Cengage Learning, Fourth Edition, 2013, ISBN: 978-81-315-1883-
	0
7	S.Jayaraman, S.Esakkirajan, T.Veerakumar, "Digital Image Processing"- Tata
3	McGraw Hill 2014.
4	A. K. Jain, "Fundamentals of Digital Image Processing" - Pearson 2004.

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO M	lapping	g										
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	2	1	-	-	1	-	-	1
CO2	3	3	3	2	2	1	-	-	1	-	-	1
CO3	3	3	3	2	2	1	-	-	1	-	-	1
CO4	3	3	3	2	2	1	-	-	1	-	-	1
CO5	3	3	3	2	2	1	-	-	1	-	-	1

	Semester: VII						
	IOT	& WIRELESS SENSOR NETWORK	(Theory)				
Course	Code:	MVJ21EC732	CIE Marks:100				
Credits:		L:T:P: 3:0:0	SEE Marks: 100				
Hours:		40L	SEE Duration: 3 Hrs				
Course	Learning Object	tives: The students will be able to					
1	Provide knowledge about IoT and M2M architecture.						
2	Understand various layers of IoT and their functionality.						
3	Describe Cloud computing and design principles of IoT						
4	Understand the architecture and design principles of WSNs.						
5	Provide knowledge about MAC and routing protocols in WSN						

UNIT 1	
Prerequisites: Knowledge on Computer Networks	
Introduction to IoT: Genesis, Digitization, Impact- Connected Roadways,	
Buildings, IoT Challenges, Network Architecture and Design, Drivers Behind New	
Network Architectures, Security, Constrained Devices and Networks Comparing	
IoT Architectures, M2M architecture, IoT world forum standard, IoT Reference	
Model, Simplified IoT Architecture.	
Laboratory Sessions/ Experimental learning:	8Hrs.
1. Comparative study of Oracle, IBM and Cisco Architectures of IoT	
Applications: Smart Cities, Home Automation System	
Video link / Additional online information:	
1. <u>https://nptel.ac.in/courses/106/105/106105166/</u>	
https://www.analyticsvidhya.com/blog/2016/08/10-youtube-videos-explaining-	
the-real-world-applications-of-internet-of-things-iot/	
UNIT 2	
IoT Layers and functionality: IoT Network Architecture and Design Core IoT	
Functional Stack, Layer1(Sensors and Actuators), Layer 2(Communications	оЦre
Sublayer), Access network sublayer, Gateways and backhaul sublayer, Network	
transport sublayer, IoT Network management. Layer 3(Applications and	

Analytics), Analytics vs Control, Data vs Network Analytics IoT Data Management		
and Compute Stack.		
Laboratory Sessions/ Experimental learning:		
1. Implement an IoT architecture to design an application of your own.		
Video link / Additional online information:		
2. https://nptel.ac.in/courses/108/108/108108147/		
https://onlinecourses.nptel.ac.in/noc20_cs69/unit?unit=17&lesson=18		
UNIT 3		
Data Collection, Storage and Computing using a Cloud Platform : Introduction,		
Cloud computing paradigm for data collection, storage and computing, Cloud		
service models, IoT Cloud - based data collection, storage and computing		
services using Nimbits, The Hierarchy of Edge, Fog, and Cloud.		
Prototyping and Designing Software for IoT Applications: Introduction,		
Prototyping Embedded device software, Programming Embedded Device,		
Arduino Platform using IDE, Reading data from sensors and devices, Devices,		
Gateways, Internet and Web/Cloud services software development.		
Laboratory Sessions/ Experimental learning:	8Hrs.	
1. Weather monitoring using Blynk/ThingSpeak through cloud		
2. Design a people counter using Node MCU		
3. Christmas light show with Arduino		
Applications: Google Cloud, SAAS, PAAS, Sensor applications		
Video link / Additional online information:		
1. https://nptel.ac.in/courses/106/105/106105167/		
https://onlinecourses.swayam2.ac.in/aic20_sp04/preview		
UNIT 4		
Overview of Wireless Sensor Networks: Challenges for Wireless Sensor		
Networks, Enabling Technologies for Wireless Sensor Networks.		
Architectures: Single-Node Architecture, Hardware Components, Energy	8Hrs.	
Consumption of Sensor Nodes, Operating Systems and Execution Environments,		

of Mer	it, Design principles for WSNs, Service interfaces of WSNs Gateway	
Concep	ots.	
Laborat	tory Sessions/ Experimental learning:	
1. T	Do a case study on total energy conservation opportunities in Solar Power	
Applica	itions: Health care monitoring, Area monitoring, Industrial monitoring,	
Threat	detection.	
Video li	ink / Additional online information :	
1. <u>https:</u>	//nptel.ac.in/courses/106/105/106105166/	
2. <u>https:</u>	//nptel.ac.in/courses/106/105/106105160/	
	UNIT 5	
Comm	unication Protocols: Physical Layer and Transceiver Design	
Conside	erations, MAC Protocols for Wireless Sensor Networks, Low Duty Cycle	
Protoco	ols and Wakeup Concepts - S-MAC , The Mediation Device Protocol,	
Wakeup	p Radio Concepts, Contention based protocols(CSMA,PAMAS), Schedule	
based protocols (LEACH) Address and Name Management in WSNs, Assignment		
of MAC Addresses, Routing Protocols- Energy-Efficient Routing, Geographic		
Routing, Hierarchical networks by clustering.		
Laboratory Sessions/ Experimental learning:		
1. De	esign an energy efficient system for a WSN using the routing protocols	
us	sing NetSim or NS2.	
Applica	itions: Environmental/Earth sensing, Air pollution monitoring, Forest fire	
detectio	on, Landslide detection, Water quality monitoring	
Video li	ink / Additional online information:	
1. <u>}</u>	nttps://nptel.ac.in/courses/106/105/106105160/	
2. <u>}</u>	https://nptel.ac.in/courses/106/105/106105195/	
Course	outcomes: After studying this course, students will be able to:	
CO1 A	Analyze different IOT Architecture and select them for a particular application	ion.
CO2 E	Evaluate the sensor data generated and map it to IOT protocol stack.	
CO3 I	mplement and execute programs using development tools.	
CO4 [Develop an energy efficient system for WSN.	

CO5	Create a real-life application involving Wireless Sensor Networks using IoT
Textb	ooks:
	Cisco, IOT Fundamentals – Networking Technologies, Protocols, Use Cases for IOT,
1.	Pearson Education; First edition (16 August 2017). ISBN-10: 9386873745, ISBN-13:
	978-9386873743
0	Raj Kamal, "Internet of Things-Architecture and design principles", McGraw Hill
۷.	Education.
7	Holger Karl & Andreas Willig, "Protocols and Architectures for Wireless Sensor
Э.	Networks", John Wiley, 2005.
Refer	ence Books:
1	Kazem Sohraby, Daniel Minoli, & Taieb Znati, "Wireless Sensor
1.	NetworksTechnology, Protocols, And Applications", John Wiley, 2007.
2.	Anna Hac, "Wireless Sensor Network Designs", John Wiley, 2003.
	Arshdeep Bahga and Vijay Madisetti, 'Internet of Things – A Hands on Approach',
3.	Orient Blackswan Private Limited - New Delhi; First edition (2015), ISBN-10:
	8173719543, ISBN-13: 978-8173719547

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to

answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

СО-РО М	lapping	ſ										
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	2	2	-	-	2	-	-	1
CO2	3	3	3	2	2	2	-	-	2	-	-	1
CO3	3	3	3	3	2	2	-	-	2	-	-	1
CO4	3	3	3	3	2	2	-	-	2	-	-	1
CO5	3	3	3	3	2	2	-	-	2	-	-	1

		Semester: VII				
	OPTICAL COMMUNICATION (Theory)					
Cou	rse Code:	MVJ21EC733	CIE Marks:100			
Crea	dits:	L:T:P: 3:0:0	SEE Marks: 100			
Ηου	ırs:	40L	SEE Duration: 3 Hrs			
Cou	rse Learning Obje	ctives: The students will be al	ole to			
	Learn the basic	principles of optical fiber co	mmunication with different			
1	1 modes of light propagation					
2	2 Study of optical sources, detectors, and receivers					
Understand the transmission characteristics and losses in optical fiber			d losses in optical fiber and			
3	³ study optical components.					
4	Know the concept of WDM and system design.					
5 Learn the network standards in optical fiber and understand the network architectures along with its functionalities.						

UNIT 1	
Optical fiber Communications: Historical development, General system,	
Advantages of optical fiber communication, Optical fiber wave guides: Ray theory	1
transmission, Modes in planar guide, Phase and group velocity, cylindrical fiber:	1
Modes, Step index fibers, Graded index fibers, Single mode fibers, Cutoff	1
wavelength, Mode field diameter, effective refractive index, Fiber Materials,	1
Photonic crystal fibers.	
Laboratory Sessions/ Experimental learning:	8Hrs.
1. Measurement of numerical aperture of an optical fiber.	
Applications: Networking, Telecommunication	1
Video link / Additional online information:	
1. https://youtu.be/9seDKvbaoHU	1
2. https://youtu.be/BGUhTDWkwx8	1
	1
UNIT 2	
Pre-requisite: Knowledge of Semiconductor Devices	
Optical sources: Light Emitting diodes: LED Structures, Light Source Materials,	8Hrs.
Quantum Efficiency and LED Power, Modulation, Laser Diodes: Modes and	I

Threshold conditions, Rate equation, External Quantum Efficiency, Resonant Frequencies. Photo detectors: Physical principles of Photodiodes, Photo detector noise, Detector response time. Optical Receiver: Optical Receiver Operation: Error sources, Front End Amplifiers, Receiver sensitivity, Quantum Limit. Applications: Optical memories, OMEMS, Basic Principle Holography, Principle Of Hologram Recording Laboratory Sessions/ Experimental learning: 1. To Investigate the Transmission (Intermodal dispersion) Characteristics of Multi-mode Optical Fiber. Applications: Networking, Telecommunication, Military and Space Applications Video link / Additional online information : https://youtu.be/15WulWvjWEq UNIT 3 Transmission characteristics of optical fiber: Attenuation, Material absorption losses, Linear scattering losses, Nonlinear scattering losses, Fiber bend loss, Dispersion, Chromatic dispersion, Intermodal dispersion: Multimode step index fiber. Optical Fiber Connectors: Fiber Splicing, Splicing Techniques, Splicing Single-Mode Fibers, Optical Fiber Connectors, Connector Types, Single-Mode Fiber Connectors, and Connector Return Loss. Optical amplifiers: Basic application and Types, Semiconductor optical 8Hrs. amplifiers, Erbium Doped Fiber Amplifiers, Raman Amplifiers, Wideband Optical Amplifiers. Laboratory Sessions/ Experimental learning: 1. Measurement of propagation loss, bending loss of an optical fiber. Applications: Networking, Telecommunication, Automotive Industry Video link / Additional online information: https://youtu.be/BGUhTDWkwx8 UNIT 4

WDM Concepts and Components: Overview of WDM: Operational Principles of	
WDM, WDM standards, Passive Optical couplers, Mach-Zehnder Interferometer	
Multiplexers, Isolators and Circulators, Fiber grating filters, Dielectric Thin-Film	
Filters, Diffraction Gratings.	
Optical System Design : Point-to- Point Links, System Considerations, Link Power	
Budget Rise Time Budget, Short-Wavelength Band, Attenuation-Limited	
Distances for Single-Mode Links.	
Laboratory Sessions/ Experimental learning:	8Hrs.
1. Determine the wavelength of light from a monochromatic source using	
Interferometer and calculate the refractive index of a thin film.	
Applications: Networking, Telecommunication	
Video link / Additional online information:	
1. https://youtu.be/t8a25L58-m8	
https://vlab.amrita.edu/index.php?sub=1&brch=189	
l INIT S	·
Optical Networks: Optical network evolution and concepts: Optical networking	
terminology, Optical network node and switching elements, Wavelength division	
multiplexed networks, public telecommunication network overview. Optical	
network transmission modes, layers, and protocols: Synchronous networks,	
Asynchronous transfer mode, OSI reference model, Optical transport network,	
Internet protocol, Wavelength routing networks: Routing and wavelength	
assignment, Optical switching networks: Optical circuit switched networks,	
packet switched networks, Multiprotocol Label Switching, Optical burst switching	0] [#0
networks.	ohrs.
Laboratory Sessions/ Experimental learning:	
1. Analog and Digital (with TDM) communication link using optical fiber.	
Applications: Networking, Telecommunication	
Video link / Additional online information:	
1. http://ofcvlab.vesit.ves.ac.in/page2/honeycomb.html	
https://www.voutube.com/embed/f5FmFoXIYvQ	

Course	e outcomes:						
CO1	Classify and working of optical fiber with different modes of signal propagation.						
CO2	Analyze the characteristics of optical sources and detectors.						
007	Describe the transmission characteristics and losses in optical fiber						
005	communication and identify various amplifiers						
	communication and identify various amplifiers.						
CO4	Understand the concept of WDM and analyze the various aspects of system						
	design.						
005	Illustrate the networking aspects of optical fiber and describe various standards						
CO5							
	associated with it.						

Refere	nce Books:								
1.	Gerd Keiser, Optical Fiber Communication, 5th Edition, McGraw Hill								
	Education(India) Private Limited, 2015. ISBN:1-25-900687-5.								
2.	John M Senior, Optical Fiber Communications, Principles and Practice, 3rd Edition,								
	Pearson Education, 2010, ISBN:978-81-317-3266-3								
7	Joseph C Palais, Fiber Optic Communication, Pearson Education, 2005,								
5	ISBN:0130085103								
4	Ramaswami, Sivarajan and Sasaki "Optical Networks", Morgan Kaufmann, 2009.								

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Ma	apping	ſ										
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	1	-	1	-	-	-	_	-	1
CO2	3	3	3	1	-	1	-	-	-	-	-	1
CO3	3	3	3	1	-	1	-	-	-	-	-	1
CO4	3	3	3	1	-	1	-	-	-	-	-	1
CO5	3	3	3	1	-	1	-	-	-	-	-	1

	Se	mester:VII					
	ARTIFICIAL INTELLIGENCE & DATA SCIENCE (Theory)						
Cοι	Irse Code: MVJ21EC734	CIE Marks:100					
Cre	dits: L:T:P: 3:0:0	SEE Marks: 100					
Ηοι	urs: 40L	SEE Duration: 3 Hrs					
Cοι	arse Learning Objectives: The stu	udents will be able to					
1	Identify the problems where available.	AI is required and the different methods					
2	Compare and contrast different	t AI techniques available.					
3	Understand and explain learnin	g algorithms.					
4	Obtain a Comprehensive know Data transformation and visual	vledge of various tools and techniques for ization.					
5	Learn the probability and proba	abilistic models of data science					

UNIT 1

Prerequisites: Machine Learning Artificial Intelligence: What is Artificial Intelligence? AI Technique, Level of the Model, Problem Spaces, and Search: Defining the Problem as a State Space Search, Production Systems, Problem Characteristics, Production System Characteristics, and issues in the Design of Search Programs. Heuristic Search Techniques: Generate-and Test, Hill Climbing, Best-first Search, Problem Reduction, Constraint Satisfaction, Means-ends. 8Hrs. Laboratory Sessions/ Experimental learning: 1. Write a program to solve 8 gueens problem using PROLOG Applications: Astronomy, Health care, Finance, Gaming, Data security Video link / Additional online information: 1. https://nptel.ac.in/courses/106/102/106102220/ 2. https://www.simplilearn.com/artificial-intelligence-introduction-forbeginners-training-course UNIT2

Analysis, Knowledge Representation:Representations and Mappings,8Hrs.Approaches to Knowledge Representation, Using Predicate Logic:Representing

Simple Facts in Logic, Representing Instance and ISA Relationships, Computable							
Functions and Predicates, Resolution, Natural Deduction. Using Rules:							
Procedural Versus Declarative Knowledge, Logic Programming, Forward Versus							
Backward Reasoning.							
Laboratory Sessions/ Experimental learning:							
1 . Program to replace an integer from the list using PROLOG							
Applications: Computer database							
Video link / Additional online information:							
1. <u>https://nptel.ac.in/courses/106/105/106105077/</u>							
2. <u>https://www.youtube.com/watch?v=xUIqkAmfi8A</u>							
UNIT 3							
Reasoning: Symbolic Reasoning Under Uncertainty, Statistical Reasoning, Weak							
Slot and Filler, Structure, Semantic nets, Frames, Strong Slot and Filler Structure,							
Conceptual Dependency, Scripts, CYC.							
Natural Language Processing: Natural Language Processing Syntactic							
processing semantic analysis Parallel and Distributed AI Psychological							
modelling- parallelism and distributed in reasoning systems learning							
Connectionist Models Honfield networks neural networks Expert Systems							
Laboratory Socional Experimental learning:							
Laboratory Sessions/ Experimental learning.	8Hrs.						
PROLOG							
Applications: Search Autocorrect and Autocomplete, Language Translator,							
Social Media Monitoring.							
Video link / Additional online information:							
1. <u>https://nptel.ac.in/courses/106/101/106101007/</u>							
2.https://www.youtube.com/watch?v=WHCo4m2VOws&vl=en							
3.https://www.youtube.com/watch?v=dw6kp0jfi5w							
UNIT 4							
Prerequisites: Mathematical and Statistical concepts. Programming skills like C							
or C++	8Hrs.						

Data Visualization: Introduction, Causality and Experiments - Data Preprocessing: Knowing data, Data cleaning, Data reduction, Data transformation, Data discretization -Visualization and Graphing: Visualizing Categorical Distributions, Visualizing Numerical Distributions, Overlaid Graphs, plots, and summary statistics of Exploratory Data Analysis (EDA). Exploring Univariate Data - Histograms -Stem-and Leaf Quantile Based Plots - Continuous Distributions -Quantile Plots- QQ Plot- Box Plots

Laboratory Sessions/ Experimental learning: R as CALCULATOR APPLICATION

- 1. Using with and without R objects on console
- 2. Using mathematical functions on console
- **3.** Write an R script, to create R objects for calculator application and save in a specified location in disk.

Applications: Fraud and Risk Detection, Website Recommendations, Advanced Image Recognition, Airline Route Planning

Video link / Additional online information:

- 1. <u>https://nptel.ac.in/courses/106/106/106106179/</u>
- 2.<u>https://nptel.ac.in/courses/106/107/106107220/</u>

UNIT 5

Prerequisites: Probability theory

Big Data Analytics: Hadoop Distributed File System Basics, Running Example Programs and Benchmarks, Hadoop Map Reduce Framework, Map Reduce Programming

Applications:Customer Relationship management, Health care, Education,Retail, Banking, Financial services, Insurance, Manufacturing, Telecom, PublicSector

Laboratory Sessions/ Experimental learning:

1. Word Count Map Reduce program to understand Map Reduce Paradigm Installing and configuring Hadoop

Applications: Communication, Healthcare

Video link / Additional online information:

	1. https://nptel.ac.in/courses/106/104/106104189/	
2. <u>http</u>	os://www.digimat.in/nptel/courses/video/106104189/L06.html	
Cours	se outcomes:	
CO1	Identify the AI based problems	
CO2	Apply techniques to solve the AI problems.	
CO3	Demonstrate learning and various learning techniques	
CO4	Apply pre-processing techniques to convert raw data so as to enable analysis	further
CO5	Analyze the probability density function of transformations of random v and use these techniques to generate data from various distributions	ariables

Refere	ence Books
1.	E. Rich , K. Knight & S. B. Nair - Artificial Intelligence, 3/e, McGraw Hill.
2.	"Artificial Intelligence: A Modern Approach", Stuart Rusell, Peter Norving, Pearson
	Education 2nd Edition.
	Jiawei Han, Micheline Kamber, Jian Pei, "Data Mining Concepts and Techniques",
3.	Third
	edition, Elsevier Publisher, 2006
4	Dan W. Patterson, "Introduction to Artificial Intelligence and Expert Systems" –
	Prentice Hal of India
	Douglas Eadline,"Hadoop 2 Quick-Start Guide: Learn the Essentials of Big Data
4.	Computing in the Apache Hadoop 2 Ecosystem", 1stEdition, Pearson Education,
	2016. ISBN-13: 978-9332570351
5	Anil Maheshwari, "Data Analytics", 1st Edition, McGraw Hill Education, 2017. ISBN-
J.	13: 978-9352604180

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the

assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO	Mapping	J										
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	2	1	-	-	1	-	-	1
CO2	3	3	3	2	2	1	-	-	1	-	-	1
CO3	3	3	3	2	2	1	-	-	1	-	-	1
CO4	3	3	3	2	2	1	-	-	1	-	-	1
CO5	3	3	3	2	2	1	-	-	1	-	-	1

	Semester:VII						
	SYSTEM ON CHIP ARCHITECTURE (Theory)						
Cou	rse Code:	MVJ21EC735	CIE Marks:100				
Credits:		L:T:P: 3:1:0	SEE Marks: 100				
Ηου	irs:	40L	SEE Duration: 3 Hrs				
Cou	rse Learning Ob	ojectives: The students will be ab	ole to				
1	Understand the needs of SoC architecture & design.						
2	Analyze various elements in SoC design.						
3	Study the overview of SoC memory system.						
4	Outline the reconfiguration mechanism of SoC.						
5	Learn the algorithms used in SoC system design						

UNIT 1

Prerequisites: Moore's law, Basics of embedded system and embedded C programming, Motivation for SoC.

Introduction to the System Approach: Need for SoC, System Architecture, and Components of the system, Hardware & Software, Processor Architectures, Memory and Addressing, System level interconnection, an approach for SoC Design, System Architecture and Complexity.

Laboratory Sessions/Experimental learning:

1. Case study on Comparison on System-on-Board, System-on-Chip and System-in-Package.

Applications : Embedded System, mobile device.

Video link / Additional online information:

- 1. http://www.nptelvideos.com/lecture.php?id=7838
- 2. <u>https://www.youtube.com/watch?v=PRQXzjTrCJY</u>

UNIT 2

Processors: Introduction, Processor Selection for SoC, Basic concepts in Processor Architecture, Basic concepts in Processor Micro Architecture, Basic elements in Instruction handling. Buffers: Minimizing Pipeline Delays, Branches, More Robust Processors, Vector Processors and Vector Instructions extensions, VLIW Processors, Superscalar Processors. Laboratory Sessions/Experimental learning: 1. Design a model to generate a square wave using suitable programming 8Hrs. language with appropriate delay. 2. Design a model for generating a Interrupt using different addressing modes by selecting suitable programming language. **Applications** : Supercomputers Video link / Additional online information: 1. https://youtu.be/4VRtujwa_b8 2. https://nptel.ac.in/courses/124107010/ UNIT 3 Memory Design for SoC: Overview of SoC external memory, Internal Memory, Size, Scratchpads and Cache memory, Cache Organization, Cache data, Write Policies, Strategies for line replacement at miss time, Types of Cache, Split - I, and D - Caches, Multilevel Caches, Virtual to real translation, SoC Memory System, Models of Simple Processor, memory interaction. Laboratory Sessions/Experimental learning: 8Hrs. 1. Case study on on-chip peripherals of MSP430 Applications: Cloud, Datacentres. Video link / Additional online information: 1. https://youtu.be/cjNORC_00_A

2. <u>https://www.youtube.com/watch?v=A_bWZLIs0Tw</u>

UNIT 4			
Interconnect: Interconnect Architectures, Bus: Basic Architectures, SoC Standard			
Buses, Analytic Bus Models, Using the Bus model, Effects of Bus transactions and			
contention time. SoC Customization: An overview, Customizing Instruction			
Processor, Reconfiguration Technologies, Mapping design onto Reconfigurable			
devices, Instance Specific design, Customizable Soft Processor.			
Laboratory Sessions/Experimental learning:	8Hrs.		
1 Design a model to save and store data in SD card with MSP430 microcontroller.			
Applications : Data-Centre interconnects, PC peripherals			
Video link / Additional online information:			
https://youtu.be/PvZ5GXR9Ri8			
UNIT 5			
Application Studies / Case Studies: SoC Design approach, AES algorithms, Design			
and evaluation, Image compression – JPEG compression.			
Laboratory Sessions/Experimental learning:			
1. Implement an algorithm for JPEG compression using MATLAB.	8Hrs.		
Applications: Wireless security, processor security, encryption			
Video link / Additional online information:			
https://nptel.ac.in/courses/105104183/			

Course outcomes:

CO1 Interpret the need of SoC system design.

CO2	Outline the SoC Architecture design and basic concepts of processor.
CO3	Design memory organization in SoC system.
CO4	Utilize the reconfiguration mechanism of SoC in reconfigurable devices.
CO5	Apply various algorithm for SoC system design.
Refer	ence Books:
1.	Michael J. Flynn and Wayne Luk, "Computer System Design System-on-Chip", Wiley India Pvt.Ltd.
2.	Ricardo Reis, "Design of System on a Chip: Devices and Components", 1st Edition, 2004, Springer
3	Prakash Rashinkar, Peter Paterson and Leena Singh L, "System on Chip Verification n – Methodologies and Techniques", 2001, Kluwer Academic Publishers
4	Web Source: What is a System on Chip (SoC)? - AnySilicon

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have

internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1 2
CO1	3	3	3	2	-	1	-	-	-	-	-	1
CO2	3	3	3	2	1	1	-	-	-	-	-	1
CO3	3	3	3	2	1	1	-	-	-	-	-	1
CO4	3	3	3	2	1	1	-	-	-	-	-	1
CO5	3	3	3	2	1	1	-	-	-	-	-	1

		PROJECT PHASE – I					
Cou	rse Code:	MVJ21ECPR76	CIE Marks:100				
Crea	dits:	L:T:P: 0:0:4	SEE Marks: 100				
Ηου	irs:	-	SEE Duration: 3 Hrs				
Cou	rse Learning Ob	pjectives: The students will be a	ole to				
1	To support ind	lependent learning.					
	To develop in	teractive, communication, organ	nization, time management,				
2	and presentation skills.						
3	To impart flexibility and adaptability.						
	To train studer	nts to present the topic of projec	ct work in a seminar without				
4	any fear, face audience confidently, enhance communication skill, involve in group discussion to present and exchange ideas.						

Project Work Phase - I: Each student of the project batch shall involve in carrying out the project work jointly in constant consultation with internal guide, co-guide, and external guide and prepare the project report as per the norms avoiding plagiarism.

Course outcomes: At the end of the course the student will be able to:

CO1	Describe the project and be able to defend it.
CO2	Learn to use modern tools and techniques.
CO3	Develop skills to work in a team to achieve common goal. Develop skills of project management and finance.
CO4	Develop skills of self-learning, evaluate their learning and take appropriate actions to improve it.
CO5	Prepare them for life-long learning to face the challenges and support the technological changes to meet the societal needs.

Scheme of Evaluation:

Internal Marks: The Internal marks (50 marks) evaluation shall be based on Phase wise completion of the project work, Project report, Presentation and Demonstration of the actual/model/prototype of the project.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	3	3	2	1	1	2	1	1	2
CO2	2	2	2	3	3	2	1	1	2	1	2	2
CO3	2	2	2	3	3	2	1	1	2	1	2	2
CO4	2	2	2	3	3	2	1	1	2	1	2	2
CO5	2	2	2	3	3	2	1	1	2	1	2	2