Course Title	Probability Theory, Complex variables and Optimization	Semester	IV
Course Code	MVJ19MEC41/MEE41	CIE	50
Total No. of Contact Hours	60 L : T : P :: 40 : 0 : 20	SEE	50
No. of Contact Hours/week	4	Total	100
Credits	3	Exam. Duration	3hrs

- Apply discrete and continuous probability distributions in analysing the probability models arising in engineering field.
- Learn the mathematical formulation of linear programming problem
- Understand the concepts of Complex variables and transformation for solving Engineering Problems.
- Understand the concepts of complex integration, Poles and Residuals in the stability analysis of engineering problems.
- Learn the solutions of partial differential equations numerically.

Probability Theory: Random variables (discrete and continuous), probab cumulative density function.Probability Distributions: Binomial distribution, Poisson distribution.		unction,
Probability Distributions: Binomial distribution, Poisson distribution.		
	Normal dis	tribution,
Exponential distribution.		
Joint probability distributions.		
Applications: Discrete and continuous probability distributions help in an	alyzing the pr	obbility
models arising in engineering field.		
Video Link: https://youtu.be/cp7_ZF2kNi4		
Module-2	L1, L2	10Hrs.
Optimization: Linear Programming, mathematical formulation of linear	programming	problem
(LPP), Types of solutions, Graphical Method, simplex method, big-M me	ethod, Dual -	simplex
method.		
Applications of transport Problems		
Applications: Applications of transport Problems		
Video Link: https://youtu.be/WZIyL6pcItY		
Module-3	L1, L2, L3	10Hrs.
Complex Variables: Functions of complex variables, Analytic functi	on, Cauchy-I	Riemann
equations in Cartesian and polar coordinates, Consequences of Cauchy	y-Riemann ec	uations,
Properties of analytic functions.		
Application to flow problems- complex potential, velocity potential, equi	ipotential line	s, stream
functions, stream lines.		
Applications: Application to flow problems		
Video Link: https://youtu.be/b5VUnapu-qs		
Module-4	L1, L2, L3	10Hrs.

Complex line integrals- Cauchy's theorem and Cauchy's integral formula, Singularities, Types of Singularities, Poles, Residues-definitions, Cauchy residue theorem – Problems.

Conformal transformation, Bilinear transformation and discussion of $w = z^2$, $w = e^z$ and a^2

$$w = z + \frac{a^2}{z} (z \neq 0).$$

Applications: To evaluate line integral of analytic function over closed curve **Video Link:**<u>https://youtu.be/qTDDFMAt7j4</u>

Module-5

L1, L2, L3 10Hrs.

Numerical solutions of PDE – Classification of second order equations, finite difference approximation to derivatives, solution of heat equations, solution of wave equations and solution of Laplace equation.

Applications: To solve boundary value problems

Video Link:<u>https://youtu.be/nNnnBMF03ll</u>

Course Outcomes:

CO1	Apply discrete and continuous probability distributions in analyzing the probability models arising in engineering field.
CO2	Learn the mathematical formulation of linear programming problem
CO3	Use the concepts of analytic function and complex potentials to solve the problems arising in electromagnetic field theory
CO4	Utilize conformal transformation and complex integral arising in aerofoil theory, fluid flow visualization and image processing
CO5	Learn the numerical solutions of partial differential equations

Reference Books:

1101010	
1	B.S. Grewal, "Higher Engineering Mathematics" Khanna Publishers, 43 rd Edition, 2013.
2	Erwin Kreyszig, "Advanced Engineering Mathematics", Wiley-India publishers, 10th
2	edition, 2014.
3	Ramana B. V., "Higher Engineering Mathematics", Tata Mc Graw-Hill, 2006.
4	Bali N. P. & Manish Goyal, "A text book of Engineering Mathematics", Laxmi
4	Publications, 8 th Edition
5	C. Ray Wylie and Louis C Barret: "Advanced Engineering". Mathematics Tata
5	McGraw Hill Publishing Co. Ltd. 6th edition.
6	H K Dass: "Advanced Engineering Mathematics"- S Chand & Company Ltd. 12 th edition.
7	D. S. Hira and P. K. Gupta - "Operations Research"- S Chand & Company Ltd. 6 th edition

					CO-PO) Map	ping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	0	3	0	0	0	0	0	0	1	1
CO2	3	3	0	3	0	0	0	0	0	0	1	0
CO3	3	2	0	2	0	0	0	0	0	0	0	0
CO4	3	3	0	3	0	0	0	0	0	0	0	1
CO5	3	3	0	3	0	0	0	0	0	0	1	0

Course Title	Electrical Machines -1	Semester	3
Course Code	MVJ19EE42	CIE	50
Total No. of Contact Hours	60 L: T : P :: 40 : 0 : 20	SEE	50
No. of Contact Hours/week	4	Total	100
Credits	4	Exam. Duration	3Hrs

- Understand the constructional details, working principle and applications of DC Machines and to predetermine the efficiency of DC motor from test data
- Study the constructional details and working principle of single/ three phase transformers and to pre-determine the efficiency and regulation of single phase transformer from test data

Module-1	L1,L2,L3	10 Hrs.			
DC Generators: Principle of operation – Action of commutator – construction	nal features –	armature			
windings - critical field resistance and critical speed - causes for failure to self-excite and remedial					
measures. Load characteristics of shunt, series and compound generators -	Applications	- lap and			
wave windings.					

Laboratory Sessions/ Experimental learning: Study of Internal and External characteristics of self-excited, cumulative compound DC generator.

Applications: Battery charging

Video link / Additional online information:

https://nptel.ac.in/courses/108/105/108105017/

			Modul	e-2				L1,L	2,L3	10Hrs.
DO MA	D · · 1	C	. •	т	N 1	T	. •	1		

DC Motors: Principle of operation – Back E.M.F.- Torque equation –characteristics and applications of shunt, series and compound motors – Armature reaction and commutation. Speed control of D.C. Motors - Armature voltage and field flux control methods. Motor starters (3 point and 4 point starters) Testing of D.C. machines - Losses – Constant & Variable losses – calculation of efficiency – condition for maximum efficiency.

Laboratory Sessions/ Experimental learning: Speed control of DC motor by armature/field rheostat vs Speed control by a thyristor based device

Applications: Determining more economical way of speed control

Video link / Additional online information:

https://nptel.ac.in/courses/108/105/108105017/

Module-3	L1,L2,L3	10 Hrs.
----------	----------	---------

Testing of Machines: Methods of Testing - direct, indirect, and regenerative testing - Brake test -

Swinburne's test-Retardation test.

Laboratory Sessions/ Experimental learning: Computer simulation of plotting efficiency curve of DC machine for motor and generator operations at various fractions of load using Swinburne's test data.

Applications: Countercheck for manufacturers' load test data

Video link / Additional online information:

https://nptel.ac.in/courses/108105017/

Module-4 L1,L2,L3 10	10 Hrs.
----------------------	---------

Single Phase Transformers: Types - constructional details-minimization of hysteresis and eddy current losses- EMF equation - operation on no load and on load - phasor diagrams, Equivalent circuit - losses and efficiency - regulation

Laboratory Sessions/ Experimental learning: Plotting B-H curve/hysteresis loop of different core material specimen for comparative study.

Applications: R&D in transformer core manufacture

Video link / Additional online information:

~ / /110100150/ 1C/DDT- /MTC

https://nptel.ac.in/content/storage2/courses/112108150/pdf/PPTs/MTS_16_m.pdf						
	Module-5	L1,L2,L3	10 Hrs.			
Testing	Testing Of Transformers And Poly-Phase Transformers: OC and SC tests - Sumpner's test -					
predete	predetermination of efficiency and regulation-separation of iron losses test-parallel operation with					
equal v	oltage ratios - auto transformers.					
Labora	Laboratory Sessions/ Experimental learning: Computer simulation of plotting efficiency and					
regulat	ion curves of a single phase transformer using OC and SC test data.					
Applic	Applications: Countercheck for manufacturer's load test data					
Video	Video link / Additional online information:					
https://	/nptel.ac.in/courses/108/105/108105017/					
Course	Course outcomes: At the end of the course, the student will be able to					
CO1	Describe the constructional details and operating principle of DC gene	rators.				
CO2	Select the most suitable DC motor for a particular application.					
CO3	Determine/predetermine the efficiency of a DC machine by conducting	g necessary te	sts.			
CO4	Explain the constructional details and operating principle of a transform	ner.				
COF	Analyse the characteristics of a transformer using test data and demons	strate poly ph	ase			
CO5	operation of transformers.					

Reference Books:				
1.	I. J. Nagrath , D. P. Kothari, "Electric Machines", McGraw Hill Education, 2010.			
2.	P. S. Bimbhra, "Electrical Machinery", Khanna Publishers, 2011.			
3.	M. G. Say, "Performance and design of AC machines", CBS Publishers, 2002.			
4.	A. E. Clayton and N. N. Hancock, "Performance and design of DC machines", CBS			
4.	Publishers, 2004			

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	1	2							1
CO2	3	3	2	1	2							1
CO3	3	3	2	1	2							1
CO4	3	3	2	1	2							1
CO5	3	3	2	1	2							1

Course Title	Control Systems	Semester	3
Course Code	MVJ19EE43	CIE	50
Total No. of Contact Hours	60 L: T : P :: 40 : 0 : 20	SEE	50
No. of Contact Hours/week	3	Total	100
Credits	3	Exam. Duration	3Hrs

- Demonstrate mathematical modelling of control systems.
- Obtain transfer function and state space model of systems using various techniques.
- Discuss transient and steady state time response of a simple control system
- Determine the stability of LTI systems.
- Conduct control system analysis in the frequency domain.

Module-1	L1,L2,L3	08Hrs.

Introduction: Open loop and closed loop systems – Examples, Control system components. Transfer function of physical systems: Mechanical systems - Translational and Rotational systems, Electrical network, Transfer function of DC servomotor, AC servomotor,

Block diagram - Reduction techniques. Signal flow graphs - Mason's gain formula.

Laboratory Sessions/ Experimental learning: Experiment to obtain the Characteristics of DC/AC servo motor and compare the performance.

Applications: Modeling of Physical systems helps in Mathematical analysis.

Video link: https://nptel.ac.in/courses/108101037/

https://nptel.ac.in/courses/108/106/108106098/

				Module-2	L1,L2,L3	08Hrs.
-			•			

Time domain Analysis:

Standard Test signals –Time response of first and second order system, Type of systems. Steady state error constants – position, velocity and acceleration error constants, Effect of PI, PD and PID controllers on the time response of the system.

Laboratory Sessions/ Experimental learning: Experiment to obtain the time response of RLC

circuit and Determine the time domain specification.

Applications: Performance analysis of second order system in time domain.

Video link: https://nptel.ac.in/courses/108/106/108106098/

Module-3	L1,L2,L3	08Hrs.
Stability Analysis:		·

Characteristic equation – Location of roots of characteristic equation.

Concept of stability, R H criterion, applications of RH criterion with limitations.

Root locus technique:

Introduction to root locus concepts, Construction rules, Analysis of stability by root locus plot.

Laboratory Sessions/ Experimental learning: Obtain the root locus for the given open loop

transfer function and analyze the stability using MATLAB software.

Applications: Stability Analysis of a given system

Video link: https://nptel.ac.in/courses/108102044/

Module-4	L1,L2,L3	08Hrs.					
Frequency Domain Analysis:		<u> </u>					
Frequency domain specification, Bode plots, GM and PM, Relative stability.							
Introduction to compensators:							
Introduction to Compensators, Effect of Lag, Lead and Lag-Lead Compensators	tors, Transfer	function					
and Characteristics							
Laboratory Sessions/ Experimental learning: 1. To to plot the frequency res	Laboratory Sessions/ Experimental learning: 1. To to plot the frequency response of a system,						
using Lab VIEW and the Lab VIEW Control Design and Simulation Module.	using Lab VIEW and the Lab VIEW Control Design and Simulation Module.						
2. Write a MATLAB program to obtain the Bode plot and analyze the stability	2. Write a MATLAB program to obtain the Bode plot and analyze the stability of the system in						
frequency domain.							
Applications: Performance analysis of second order system in frequency dom	nain						
Video link: http://www.ni.com/tutorial/6450/en/							
Module-5	L1,L2,L3	08Hrs.					
State variable Analysis:							
State space representation using physical, phase and canonical variables	– Controllabi	lity and					
Observability – Obtaining transfer function from state model.							
Laboratory Sessions/ Experimental learning:	Laboratory Sessions/ Experimental learning:						
Simulation of state space analysis.							
Applications: Analysis of nonlinear systems.							
Video link: https://www.digimat.in/nptel/courses/video/108107115/L01.html							

Course outcomes: At the end of the course, the student will be able to					
CO1	Obtain the mathematical model of physical systems.				
CO2	Evaluate the transfer function of a linear time invariant system.				
CO3	Analyse the performance of the system in time domain and frequency domain.				

CO4	Analyse the stability of LTI systems in time/frequency domain using different techniques.
CO5	Obtain state models by different techniques and assess controllability and observability.

Refere	Reference Books:					
1.	Gopal M, "Control Systems- Principles and Design" Tata McGraw-Hill, New Delhi, 2013.					
2.	Norman S Nise, "Control System Engineering", John Wiley & Sons, New Delhi, 2013.					
3.	Ogata K, "Modern Control Engineering", Prentice Hall of India, New Delhi, 2013					
4.	B.C Kuo "Automatic Control Systems", John Wiley and Sons					
5.	A. Anand Kumar "Control systems" PHI, 2nd edition. 2018.					

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	1	-	1	-	-	-	-	-	-	1
CO2	3	3	1	-	2	-	-	-	-	-	-	1
CO3	3	3	1	2	3	-	-	-	1	-	-	1
CO4	3	3	2	2	3	-	-	-	1	-	-	1
CO5	3	3	2	3	3	-	-	-	2	-	-	2

Course Title	Microprocessors and Microcontrollers	Semester	IV
Course Code	MVJ19EE44	CIE	50
Total No. of Contact Hours	40	SEE	50
No. of Contact Hours/week	3	Total	100
Credits	3	Exam. Duration	3Hrs

- Explain the working of different microcontrollers and internal organization of 8051.
- Understand the various instructions to write assembly language program for different applications.
- Understand C data types to develop 8051 timer, counter and serial port programs.
- Explain the various interrupts and interfacing of parallel peripheral devices to 8051.
- Understand the basics of ARM Embedded systems.

Module-1	L1, L2	8Hrs.

8051 Microcontroller Basics: Review of numbering systems, Architecture and pin configuration of 8051, PSW and Flag Bits, 8051 Register Banks, Stack, Stack pointer, Program counter, Data pointer, Internal Memory Organization of 8051, Special Function Registers, Addressing Modes

1. Laboratory Sessions/ Experimental learning: Conduct a review on different types of microcontrollers available in market.

Applications: Selection of different microcontrollers for various applications/projects.

Video link:

https://youtube.videoken.com/embed/SUusup7FfJo

https://youtube.videoken.com/embed/AdMxMBH393Q

https://youtube.videoken.com/embed/-YYpIdk4_W8

https://youtube.videoken.com/embed/3hltHQXAQm8

Module-2	L1, L2, L3	8Hrs.
		-

Assembly programming and instructions of 8051: Introduction to 8051 assembly programming, Assembling and running an 8051 program, Data types and Assembler directives, Arithmetic, logic instructions and programs, and program control instruction.

Laboratory Sessions/ Experimental learning:

- 1. Simulate a program using Keil to find number of zeroes and ones in a given number.
- 2. Simulate a program to find whether a number is odd or even using Keil.

Applications: Generating assembly language algorithms for various applications Video link : https://voutube.videoken.com/embed/oRPluYsxF28 Module-3 L1. L2. L3 8Hrs. 8051 programming in C: Data types and time delay, I/O programming, Logic operations, TMOD and TCON, Timer Programming in mode 1 and 2, Counter programming, SCON and SBUF, Serial port programming. Laboratory Sessions/ Experimental learning: 3. Generate a Program for reading and manipulating port data. Applications: Generating baud rates and time delays for various embedded applications. Video link : https://youtube.videoken.com/embed/2AVOxLPKjeA https://youtube.videoken.com/embed/NhurgshD0HA Module-4 L1, L2, L3, L4 8Hrs. 8051 Interrupts: 8051 interrupts, Interrupt priority, Interrupt enable register. Interfacing: Stepper motor interfacing, DC motor interfacing, ADC 0808 interfacing to 8051, DAC interfacing, LCD and keyboard interfacing. Laboratory Sessions/ Experimental learning: Simulate a program using Keil to generate a square wave of frequency 100KHz on pin P2.3. Use timer 1 in mode 1. Take crystal frequency of 22MHz. Applications: Interfacing of external devices to microcontrollers. Video link: https://youtube.videoken.com/embed/DpMxQzHhyyc https://youtube.videoken.com/embed/MqhxeOi8R1Q Module-5 L1, L2, L3 8Hrs. ARM Embedded Systems: Microprocessors versus Microcontrollers, The RISC design philosophy, The ARM Design Philosophy, Embedded System Hardware, Embedded System Software, operating

system.

ARM Processor Fundamentals: Registers, Current Program Status Register, Pipeline.

Laboratory Sessions/ Experimental learning:

1. Simulate a program using keil to toggle Led's connected to Port 1 continuously with some

delay.

- 2. Develop any simple project using Microcontroller.
- 3. Virtual lab experiment: Interface DAC and LCD to 8051

Video link: ARM controllers for embedded applications.

https://nptel.ac.in/courses/106105193/

https://nptel.ac.in/courses/117106111/

Course	e outcomes: At the end of the course, the student will be able to
CO1	Select microcontrollers for different applications and explain the functional units of 8051.
CO2	Develop algorithm and formulate assembly language program for a given task.
CO3	Develop program for timers and serial port using C.
CO4	Design interfacing circuitry to interface various peripheral devices to microcontroller.
CO5	Explain the basics of ARM Embedded systems.
Refere	nce Books:
1.	8051 Microcontroller and Embedded Systems- using assembly and C by Muhammad Ali
1.	Mazidi, Janice Gillespie Mazidi, Rollin D. McKinlay, Pearson Education, 2nd Edition.
2.	ARM Systems Developers Guide by Andrew.N. Sloss, Elsevier Publications, 2008.
3.	Embedded Systems: Architecture, Programming and Design by Rajkamal, Tata McGraw-
5.	Hill, 7th Edition, 2006.
4.	The 8051 Microcontroller Architecture Programming & Applications by Kenneth J. Ayala,
	Penram International, 1996.

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	2	2	1				3			3	
CO2	3	3	3	3	3							3	
CO3	3	3	3	3	3							3	
CO4	3	3	3	3	3							3	
CO5	3	3	2	3	3				3			3	

Course Title	Electromagnetic Field Theory	Semester	IV
Course Code	MVJ19EE45	CIE	50
Total No. of Contact Hours	40	SEE	50
No. of Contact Hours/week	3	Total	100
Credits	3	Exam. Duration	3Hrs

- Apply vector calculus to static electric-magnetic fields to solve different engineering problems.
- Understand the concepts of electrostatics and magneto statics and determine field, potential and potential gradient for various charge distributions.
- Understand boundary conditions and solve boundary value problems using Poisson's and Laplace equations.
- Apply Maxwell's equations for time varying fields.
- Explain the phenomena of wave propagation in different media.

Module-1	L1, L2, L3	8Hrs.
		<u>1</u>

Vector Analysis: Scalars and Vectors, Analysis of 3 co-ordinate systems-RCS, SCS, CCS. Relation between different coordinate systems. Gradient, Divergence and Curl.

Electrostatics: Coulomb's law, Electric field intensity, and its evaluation for point charge, line charge, surface charge, volume charge, sheet of charge

Laboratory Sessions/ Experimental learning:

Create an electromagnet and experiment with the ways to change their strength.

Applications: Analysis of electromagnetic fields, gravitational fields and fluid flow using vector calculus and modern life (xerox machines, laser printers) applications of coulombs law.

Video link:

https://youtube.videoken.com/embed/pGdr9WLto4A

https://youtube.videoken.com/embed/EiX3R6IkDDU

https://nptel.ac.in/courses/108106073/

https://nptel.ac.in/courses/108/104/108104087/

|--|

Electric flux density, Gauss's law: Electric flux density, Gauss law and its applications (line, sheet and spherical), Maxwell's first equation (Electrostatics). Divergence theorem.

Energy and Potential: Work done in an electric field, Definition of potential difference and potential. The potential field of a point charge and of a system of charges. Potential gradient.

Laboratory Sessions/ Experimental learning: Simulation of magnetic circuit using FEMM software.

Applications: Application of Gauss's law for solving complex electrostatic problems involving unique symmetries like cylindrical, spherical or planar symmetry and involving tough integration.

Video link :

https://nptel.ac.in/courses/108106073/

Module-3]	L1, L2, L	8Hrs.	
Conductor	and	Dielectrics:	Current	and	current	density.	Continuity	of	current.	Bo	oundary
conditions.											

Poisson's and Laplace equations: Derivations and solution for single variables, Uniqueness theorem.

Laboratory Sessions/ Experimental learning: Develop a simple dc motor with coil, magnet and battery.

Applications: Analysis of boundary value problems using poison's and Laplace's equations.

Video link :

https://nptel.ac.in/courses/108106073/

Module-4	L1, L2,L3	8Hrs.						
Time varying magnetic field & Magnetic force: Biot-Savart's law, Magnetic flux and flux density.								
Ampere's circuital law, Curl. Force on a moving charge and differential curr	ent element, N	lagnetic						
Boundary Condition.								
Inductance, Time-varying fields & Maxwell's equations: Faraday's law,	Displacement	current.						
Maxwell's equations in point form and integral form, relation between field	eld theory and	l circuit						
theory.								

Laboratory Sessions/ Experimental learning: Group discussion on various applications of EMFT and prepare and submit a detailed report.

Applications: Working principle of different electrical equipments (induction cooker) and electrical machines (transformer, generators, induction motors etc).

Analysis of magnetic field strengths using Ampere circuital law.

Video link:

https://nptel.ac.in/courses/108106073/

https://nptel.ac.in/courses/108104130/

Module-5

L1, L2, L3 8Hrs.

Uniform plane wave: Wave equation, Wave propagation in free space and in dielectrics. Pointing vector and power considerations. Propagation in good conductors, skin effect, Poynting Theorem.

Laboratory Sessions/ Experimental learning: Simulation of magnetic circuit using FEMM software.

Applications: waveguides for optical fiber communication, microwave ovens, broad casting and radar installations.

Video link:

https://nptel.ac.in/courses/108106073/

https://nptel.ac.in/courses/117101056/

r	
Course	e outcomes: At the end of the course, the student will be able to
CO1	Apply vector calculus and the laws of electrostatics to solve diverse engineering problems.
CO2	Apply the concepts of electrostatics and magneto statics for various applications.
CO2	Apply boundary conditions for Electromagnetic field and analyze the boundary value
CO3	problems using Poisson's and Laplace's Equations.
CO4	Analyse magnetic field intensity using Biot-Savart's & Ampere's circuital law and realize
C04	its applications.
CO5	Examine the methods of wave propagation based on its parameters.
CO1	Apply vector calculus and the laws of electrostatics to solve diverse engineering problems.
Refere	nce Books:
1.	Engineering Electromagnetics by William H Hayt, McGraw Hill, 8th Edition 2014.
2.	Principles of Electromagnetics by Matthew N. O. Sadiku, Oxford, 6th Edition 2015.
3.	Electromagnetics by Joseph Edminster, Schaum's Outline Series, McGraw-Hill, Edition IV, 2013.
4.	Electromagnetics with Applications by Kraus J.D. and Fleisch D.A, 5th Edition McGraw-Hill
т.	International Book Company.
5.	Field and Wave Electromagnetics by Cheng D.K, 2nd Edition, Pearson Education.

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	1	2	3		3					2	
CO2	2	3	2	2	3		3					3	
CO3	3	3	2	2	3		2					3	

CO4	3	1	2	2	3	3			3
CO5	3	3	1	2	3	2			3

Course Title	Linear integrated circuits	Semester	3
Course Code	MVJ19EE46	CIE	50
Total No. of Contact Hours	60 L: T : P :: 40 : 0 : 20	SEE	50
No. of Contact Hours/week	3	Total	100
Credits	3	Exam. Duration	3Hrs

- Discuss the basics of Linear ICs such as Op-amp, Regulator, Timer and PLL.
- Design of various circuit using linear ICs.
- Explain the concept and various types of converters.
- Discuss the specific applications of linear ICs.
- Discuss the basics of PLL and Timer

Module-1	L1,L2,L3	08Hrs.

Operational Amplifiers: Introduction, Block diagram representation of a typical Op-amp, characteristics of an ideal and practical Op-amp, equivalent circuit, open loop and closed loop configuration of op-amp, DC Characteristics, AC Characteristics, Frequency compensation, differential amplifier, inverting & non –inverting amplifier, Op-amp with negative feedback.

General Linear Applications: A.C. amplifier, summing, scaling & averaging amplifier, inverting and non-inverting configuration, Instrumentation amplifier. V to I and I to V converter, Op-amp circuits using Diodes – Half wave rectifier, Full wave rectifier.

Laboratory Sessions/ Experimental learning: Analysis of inverting and non-inverting op-amp circuits

Applications: Analysis of audio mixer to add different signals with equal gains

Video link: https://lake.videoken.com/nptel/search/AC%20Amplifiers/video/J92DIPyPnzY

Module-2	L1,L2,L3	08Hrs.							
Active Filters: First & Second order high pass & low pass Butterworth filters. Band pass filters, all									
pass filters.									
DC Voltage Regulators: voltage regulator basics, voltage follower regulator, adjustable output									
regulator, LM317 Integrated circuits regulators.									
Laboratory Sessions/ Experimental learning: Design and realize an op – am	p based first or	rder							
Butterworth (a) low pass (b) high pass and (c)band pass filters for a given cut off									
frequency/frequencies to verify the frequency response Characteristic.									
Applications: Analysis of constant power supply.									

Module-3	L1,L2,L3	08Hrs
Signal Generators: Triangular / rectangular wave generator.		
Comparators & Converters: Basic comparator, zero crossing detector, inv	verting & non-	inverting
Schmitt trigger circuit, voltage to current converter with grounded load, current	•	
and basics of voltage to frequency and frequency to voltage converters.	C	
Laboratory Sessions/ Experimental learning: Design and realize Schmitt tri	igger circuit us	ing an
op – amp. (Virtual Lab)	00	U
Applications: Study of different ways to remove noise from signals used in di	igital circuits.	
Video link:	6	
https://lake.videoken.com/nptel/search/Schmitt%20trigger%20circuit/video/If	OclVN4ERo	
Module-4	L1,L2,L3	08Hrs
Signal processing circuits: Precision half wave & full wave rectifiers		
Signal processing circuits: Precision half wave & full wave rectifiers Application of op-amp: Clipper and clamper circuit using opamp, oscillators	,phase shift oso	cillator.
	-	
Application of op-amp: Clipper and clamper circuit using opamp, oscillators	-	
Application of op-amp: Clipper and clamper circuit using opamp, oscillators Laboratory Sessions/ Experimental learning: Design and verify the output	-	
Application of op-amp: Clipper and clamper circuit using opamp, oscillators Laboratory Sessions/ Experimental learning: Design and verify the output amp RC phase shift oscillator for a desired frequency.	waveform of a	n op –
 Application of op-amp: Clipper and clamper circuit using opamp, oscillators Laboratory Sessions/ Experimental learning: Design and verify the output of amp RC phase shift oscillator for a desired frequency. Applications: Generation of high frequency signals. Video link: https://lake.videoken.com/nptel/search/oscillator%20circuits/vide 	waveform of a o/7opJx3dcyG	n op – 4
Application of op-amp: Clipper and clamper circuit using opamp, oscillators Laboratory Sessions/ Experimental learning: Design and verify the output of amp RC phase shift oscillator for a desired frequency. Applications: Generation of high frequency signals. Video link: https://lake.videoken.com/nptel/search/oscillator%20circuits/vide Module-5	waveform of an o/7opJx3dcyG	n op – 4 08Hrs
 Application of op-amp: Clipper and clamper circuit using opamp, oscillators Laboratory Sessions/ Experimental learning: Design and verify the output of amp RC phase shift oscillator for a desired frequency. Applications: Generation of high frequency signals. Video link: https://lake.videoken.com/nptel/search/oscillator%20circuits/vide 	waveform of an o/7opJx3dcyG	n op – 4 08Hrs
Application of op-amp: Clipper and clamper circuit using opamp, oscillators Laboratory Sessions/ Experimental learning: Design and verify the output of amp RC phase shift oscillator for a desired frequency. Applications: Generation of high frequency signals. Video link: https://lake.videoken.com/nptel/search/oscillator%20circuits/vide Module-5	waveform of an o/7opJx3dcyG	n op – 4 08Hrs
Application of op-amp: Clipper and clamper circuit using opamp, oscillators Laboratory Sessions/ Experimental learning: Design and verify the output of amp RC phase shift oscillator for a desired frequency. Applications: Generation of high frequency signals. Video link: https://lake.videoken.com/nptel/search/oscillator%20circuits/vide Module-5 Timers: Functional block diagram of 555, Applications-Astable and Mor	waveform of an o/7opJx3dcyG	n op – 4 08Hrs ⁄ibrators
Application of op-amp: Clipper and clamper circuit using opamp, oscillators Laboratory Sessions/ Experimental learning: Design and verify the output of amp RC phase shift oscillator for a desired frequency. Applications: Generation of high frequency signals. Video link: https://lake.videoken.com/nptel/search/oscillator%20circuits/vide <u>Module-5</u> Timers: Functional block diagram of 555, Applications-Astable and Mor Ramp generator. Phase locked loops: Introduction, Basic principles, phase detector/compara	waveform of an o/7opJx3dcyG	n op – 4 08Hrs ⁄ibrators
Application of op-amp: Clipper and clamper circuit using opamp, oscillators Laboratory Sessions/ Experimental learning: Design and verify the output of amp RC phase shift oscillator for a desired frequency. Applications: Generation of high frequency signals. Video link: https://lake.videoken.com/nptel/search/oscillator%20circuits/vide Module-5 Timers: Functional block diagram of 555, Applications-Astable and Mor Ramp generator.	waveform of a o/7opJx3dcyG L1,L2,L3 nostable multiv ator, voltage c	n op – 4 08Hrs vibrators
Application of op-amp: Clipper and clamper circuit using opamp, oscillators Laboratory Sessions/ Experimental learning: Design and verify the output of amp RC phase shift oscillator for a desired frequency. Applications: Generation of high frequency signals. Video link: https://lake.videoken.com/nptel/search/oscillator%20circuits/vide <u>Module-5</u> Timers: Functional block diagram of 555, Applications-Astable and Mor Ramp generator. Phase locked loops: Introduction, Basic principles, phase detector/compara oscillator (VCO).	waveform of a o/7opJx3dcyG L1,L2,L3 nostable multiv ator, voltage c	n op – 4 08Hrs vibrators
Application of op-amp: Clipper and clamper circuit using opamp, oscillators Laboratory Sessions/ Experimental learning: Design and verify the output amp RC phase shift oscillator for a desired frequency. Applications: Generation of high frequency signals. Video link: https://lake.videoken.com/nptel/search/oscillator%20circuits/vide <u>Module-5</u> Timers: Functional block diagram of 555, Applications-Astable and Mor Ramp generator. Phase locked loops: Introduction, Basic principles, phase detector/compara oscillator (VCO). Laboratory Sessions/ Experimental learning: Design and verify an IC 555 t	waveform of a o/7opJx3dcyG L1,L2,L3 nostable multiv ator, voltage c	n op – 4 08Hrs vibrators

Course	Course outcomes: At the end of the course, the student will be able to										
CO1	CO1 Describe the characteristics of ideal and practical operational amplifier.										
CO2	Design filters and signal generators using linear ICs.										
CO3	Demonstrate the application of Linear ICs as comparators and rectifiers.										

CO4	Design of various circuits using op-amp.
CO5	Explain the basics of PLL and Timer.

Refere	ence Books:
1.	Op-Amps and Linear Integrated Circuits, Ramakant A Gayakwad Pearson 4thEdition 2015
2.	Operational Amplifiers and Linear ICs David A. Bell Oxford 3rd Edition 2011
3.	Linear Integrated Circuits; Analysis, Design and Applications B. Somanthan Nair Wiley
5.	India 2013
4.	Linear Integrated Circuits S. Salivahanan, et al McGraw Hill 2nd Edition,2014

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1										
CO2	3	2	3	2	2							2
CO3	3	2	3	2	2							2
CO4	3	2	3	2	2							2
CO5	2	2	2	2								2

Course Title	Electrical Machines-1 Laboratory	Semester	IV
Course Code	MVJ19EEL47	CIE	50
Total No. of Contact Hours	42 L:T:P::12:0:30	SEE	50
No. of Contact Hours/week	2	Total	100
Credits	1	Exam. Duration	3hrs

Course objective is to enables students to get practical experience in testing and performance evaluation of DC Generators, DC Motors and transformers.

Sl.	Name of Experiment											
No												
1	Open Circuit Characteristics of DC shunt generator											
2	Load test on DC compound generator											
3	Swinburne's test on a DC shunt motor and speed control of DC shunt motor											
4	Brake test on DC shunt motor											
5	0.C. &	S.C. Te	sts on	Single	phase '	Transf	ormer-	Predeter	rminatio	n of efficie	ncy and re	gulation
6	Sumpne	r's test	on ide	ntical s	ingle p	hase ti	ansfor	mers				
7	Separati	on of c	ore los	ses in a	u single	e phase	transf	ormer				
Course	outcon	nes: At	the end	d of the	cours	e, the s	tudent	will be	able to			
CO1	Determ	ine the	no loa	d and l	oad ch	aracter	ristics of	of DC sl	nunt /con	npound gei	nerator	
CO2	Determ	ine the	efficie	ency of	DC sh	unt mo	otor by	conduc	ting brak	te test		
CO3	Predete tests	ermine	the effi	ciency	of DC	shunt	motor/	DC ser	ries mach	ine by con	ducting ne	ecessary
CO4	Predete	ermine	the effi	ciency	and re	gulatio	on of tr	ansform	ner by co	nducting n	ecessary to	ests
CO5								_	hase to t ble test.	wo phase c	onversion	and to
						СО-РО) Mapp	ing				
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3				2	3	3		
CO2	3	3	3	3				2	3	3		
CO3	3	3	3	3				2	3	3		3
CO4	3	3	3	3				2	3	3		
CO5	3	3	3	3				2	3	3		3
Llig	gh-3 Medium-2 Low-1											

Course Title	Microcontroller Laboratory	Semester	IV
Course Code	MVJ19EEL48	CIE	50
Total No. of Contact Hours	42 L:T:P::12:0:30	SEE	50
No. of Contact Hours/week	2	Total	100
Credits	1	Exam. Duration	3hrs

- To write algorithm and demonstrate assembly language programs for data transfer, arithmetic, Boolean and logical instructions.
- To write algorithm and demonstrate assembly language programs for code conversions.
- To write algorithm and demonstrate assembly language programs using subroutines for generation of delays, counters, configuration of SFRs for serial communication and timers.
- To experiment interfacing of stepper motor and dc motor for controlling the speed and DAC interface to generate different waveforms.
- To experiment interfacing of LCD and elevator to 8051.

Sl.	Name of Experiment
No	
	PART A: SOFTWARE PROGRAMS
	The experiments here can be implemented on a simulator using KEIL IDE using assembly
	language.
1	Data movement and block exchange.
2	Find largest or smallest numbers in a series & Sorting numbers in ascending / descending
	order
3	Data conversion programs
4	Counters using conditional statements and loop structures.
	PART B: HARDWARE PROGRAMS
	The experiments may be implemented using KEIL IDE with embedded 'c' programming
-	Control the speed of a DC motor using PWM.
-	Rotate the Stepper motor in specified direction (clockwise or counter-clockwise).
	Generate waveforms using DAC.
	Hardware implementation of LCD control using 8051 microcontrollers.

Course	Course outcomes: At the end of the course, the student will be able to											
CO1	Design and develop assembly programs using 8051 assembly language instructions.											
CO2	Design and develop C programs for a given problem statement.											
CO3	Create a hex file, program the microcontroller and conduct a hardware experiment											
CO4	Plan and work with a small team to carryout experiments using microcontroller concepts to solve engineering problems.											
					(CO-PO	Марр	ing				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	1				3			3
CO2	3	3	2	2	1				3			3
CO3	3	3	3	3	1				3		2	3
CO4	3	3	3	3	3				3		3	3