	Semester: VII							
	COMPUTER COM	IMUNIC	ATION NI	ETWORK				
	(Theo	ry and P	ractice)					
Cou	rse Code: MVJ21IO42			CIE Marks: 50+50				
Crec	lits: L:T:P: 3:0:1			SEE Marks: 50+50				
Hou	rs: 40 L+ 26 P			SEE Duration: 03+03 Hours				
Cou	rse Learning Objectives: The students	will be ab	ole to					
1	Understand the layering archit	tecture	of OSI re	ference model and TCP/IP				
1	protocol suite.							
2	2 Know about the protocols associated with each layer.							
2	l earn the different networking a	architect	tures and t	their representations				
4	Acquire a knowledge of variou	s routin	g techniq	ues and the transport layer				
4	services							
5	Learn the security features and t	functior	ality of ap	plication layer protocols.				

UNIT-I

Prerequisites: Basic knowledge on computers & programming			
Introduction: Data Communications: Components, Representations,			
Data Flow, Networks: Network criteria, Physical Structures, Network			
Types: LAN, WAN, Switching, Internet.			
Network Models: Protocol Layering: Scenarios, Principles, Logical			
Connections, TCP/IP Protocol Suite: Layered Architecture, Layers in			
TCP/IP suite, Description of layers, Encapsulation and Decapsulation,			
Addressing, Multiplexing and Demultiplexing, The OSI Model: OSI Versus			
TCP/IP.			
Laboratory Sessions/ Experimental learning:			
2. Study and draw the layout of LAN connection in Computer			
Networks Lab in NetSim. List out the type of cabling involved.			
Applications: Ethernet, Fibernet, Satellite Communication.			
Video link / Additional online information:			
3. http://www.redbooks.ibm.com/abstracts/gg243376.html			

4. https://nptel.ac.in/courses/106/106/106106091/			
https://nptel.ac.in/courses/106/105/106105080/			
UNIT-II Data-Link Laver: Introduction: Nodes and Links Services Categories of	8 Hrs		
link, Sublavers, Link Laver addressing: Types of addresses, ARP. Data Link			
Control (DLC) services: Framing, Flow and Error Control, Data Link Layer			
Protocols: Simple Protocol, Stop and Wait protocol, Piggybacking.			
Media Access Control: Random Access: ALOHA, CSMA, CSMA/CD,			
CSMA/CA.			
Wired LANs: Ethernet: Ethernet Protocol: IEEE802, Ethernet Evolution,			
Standard Ethernet: Characteristics, Addressing, Access Method,			
Efficiency, and Implementation.			
Wireless LANs: Introduction: Architectural Comparison, Characteristics,			
Access control			
Laboratory Sessions/ Experimental learning:			
1. Study and analyze packet transfer using CSMA/CD and CSMA/CA			
using NetSim.			
Applications: Collision detection and avoidance in wired and wireless			
network.			
Video link / Additional online information:			
https://nptel.ac.in/courses/106/105/106105183/			
UNIT-III			
wireless LANS: Introduction: Architectural Comparison, Characteristics,	опіз		
IEEE 802.11: Architecture, MAC Sublayer, Addressing Mechanism, Physical			
Layer, Bluetooth: Architecture, Layers.			
Connecting Devices: Hubs, Switches.			
Virtual LANs: Membership, Configuration, Communication between			
Switches and Routers, Advantages.			
Network Layer: Introduction, Network Layer services: Packetizing,			
Routing and Forwarding, Other services, Packet Switching: Datagram			

Approach, Virtual Circuit Approach, IPV4 Addresses, Address Space,					
Classful Addressing, Classless Addressing, DHCP.					
Laboratory Sessions/ Experimental learning:					
1. Study of different types of connecting devices.					
Applications: Bluetooth, WiFi, WiMax					
Video link / Additional online information:					
https://nptel.ac.in/courses/117/102/117102062/					
UNIT-IV	8 Urs				
Transport Layer. Introduction. Transport Layer Services, Connectionless	0 1115				
and Connection oriented Protocols, Transport Layer Protocols: Simple					
protocol, Stop and wait protocol, Go-Back-N Protocol, Selective repeat					
protocol.					
Transport-Layer Protocols on the Internet: User Datagram Protocol:					
User Datagram, UDP Services, UDP Applications, Transmission Control					
Protocol: TCP Services, TCP Features, Segment, Connection, State					
Transition diagram, Windows in TCP, Flow control, Error control, TCP					
congestion control.					
Laboratory Sessions/ Experimental learning:					
2. Study of IP addressing, subnet mask and subnetting.					
Applications: Routing and forwarding packets.					
Video link / Additional online information:					
https://nptel.ac.in/content/storage2/courses/106105080/pdf/M6L2.pdf					
UNIT-V					
Application Layer: Introduction: providing services, Application- layer	8 Hrs				
paradigms, Standard Client -Server Protocols: World wide web, Hyper					
Text Transfer Protocol, FTP: Two connections, Control Connection, Data					
Connection, Electronic Mail: Architecture, Wed Based Mail, Telnet: Local					
versus remote logging. Domain Name system: Name space, DNS in					
internet, Resolution, DNS Messages, Registrars, DDNS, security of DNS.					
Laboratory Sessions/ Experimental learning:					

2. Transport analysis using TCP/UDP using NetSim.

Applications: MS Teams, Zoom, Cisco webex

Video link / Additional online information:

2. http://www.digimat.in/nptel/courses/video/106105183/L11.html

http://www.digimat.in/nptel/courses/video/106105183/L06.html

LABORATORY EXPERIMENTS

26. Implement a point to point network with four nodes and duplex links between them. Analyze the network performance by setting the queue size and varying

Application and the second the second the second the second the second second

27. Implement a four node point to point network with links n0-n1, n1-n2 and n2n3. Apply TCP agent between n1-n2 and UDP between n1-n3. Apply relevant applications over TCP and UDP agents changing the parameter and determine the number of packets sent by TCP/UDP.

28. Implement Ethernet LAN using n (6-10) nodes. Compare the throughput by

- 29. Implement ESS with transmission nodes in Wireless LAN and obtain the performance parameters.
- 30. Implementation of Link state routing algorithm.
- 31. Write a program for a HLDC frame to perform the following.i) Bit stuffing ii) Character stuffing.
- 32. Write a program for distance vector algorithm to find suitable path for transmission. For the given data, use CRC-CCITT polynomial to obtain CRC code. Verify the program for the cases. a. Without error, b. With error
- 33. Implementation of Sliding Window Protocol.
- 34. Write a program for congestion control using leaky bucket algorithm.

Cours	se Outcomes: After completing the course, the students will be able to					
CO1	Implement Netsim tool for learning and practicing of network algorithms.					
CO2	Apply the knowledge of C programming for network operation.					
CO3	Evaluate the network with different configurations to measure the					
	performance parameters.					
CO4	Analyse the data link layer and routing protocols using C programming					
CO5	Implement congestion control and avoidance protocol in wired and wireless					
	networks.					

Text Books	X.
1.	Behrouz A Forouzan," Data Communication and Networks", 3rd Ed. TMH.
2.	Andrew S Tanebaum, "Computer Networks", 4th Ed. PHI/ Pearson education.
Reference	Books:
1.	S. Keshav, "An Engineering approach to Computer Networks", 5th Ed. Pearson.
2.	W.A. Shay, "Understanding communication and Networks", Thomson.
3.	Irvine Olifer, "Computer Networks: Principles, Technology and Protocols", Wiley India.
4.	William Stalling, "Data and Computer communications", 7th Ed. PHI

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Laboratory- 50 Marks

The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are awarded 10 marks. Total marks for the laboratory is 50.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the entire syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

1												
	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	2	1	-	-	1	-	-	1
CO2	3	3	3	2	2	1	-	-	1	-	-	1
CO3	3	3	3	3	2	1	-	2	1	-	-	1
CO4	3	3	3	3	2	1	-	-	1	-	-	1
CO5	3	3	3	2	2	1	-	2	1	_	_	1

	Semest	er: VII				
	DESIGN OF SMART CITIES (Theory)					
Course Code: MVJ21IO711		CIE Marks: 50				
Credits: L:T:P: 3:0:0		SEE Marks: 50				
Hou	Irs: 40L	SEE Duration: 3 Hrs.				
Cou	rse Learning Objectives: The students v	rill be able to				
1	1 To acquire specific scripting knowledge to develop interactive applications.					
2	To understand the basics of android application development.					
3	To apply the programming skills in developing application pertaining to Industrial, medical,					

UNIT-I				
Smart City Introduction: Introduction, Smart City, Complexities of Smart	8Hrs			
Cities, Urban Network, Sensor Network, Role of Urban Networks, Trends	l			
in Urban Development, Community Resource Sensing.	l			
Applications: Philosophy and project management, Phases and Stages of	l			
Project, Work Breakdown Structure	l			
Video link / Additional online information :	l			
1. <u>https://www.youtube.com/watch?v=tKJZxsEeVzk</u>	l			
2. <u>https://www.youtube.com/watch?v=lmRkYi6WAhE</u>	l			
UNIT-II				
Urban Planning	8Hrs			
Urban Planning, Databases, Principles of Urban Planning, Data	l			
Organization, Role of Planning in Smart Cities, Case Studies.	l			
Applications: Project Organization Structure, Planning, Scheduling.				
Video link / Additional online information:				
1. <u>https://www.youtube.com/watch?v=q_XmlG3CwNk</u>	l			
2. <u>https://www.youtube.com/watch?v=2F0Bdfb1GqY</u>	l			
UNIT-III				
Energy Sustainability in Smart Cities:	8Hrs			
Energy, Decision Making, Energy as a catalyst for Sustainable	l			
Transformation, Cohesion and efficiency of smart cities.	1			

Applications: Internet of Vehicle (IoV) Importance Video link / Additional online information:				
1. https://www.youtube.com/watch?v=j_5GldeUpRg				
2. https://www.youtube.com/watch?v=BJSiN9FH5UU				
3. https://www.youtube.com/watch?v=g8JgdzbOYUA				
UNIT-IV				
Security, Privacy and Ethics in Smart Cities	8Hrs			
Security challenges in Internet of Things, Security threats in IoT, IoT				
related safety measures for a safer smart city.				
Applications: Structural concept, Specific applications, Structural health				
monitoring-Process control and stabilization				
Video link / Additional online information :				
1. <u>https://www.youtube.com/watch?v=ye0RGdlxGX0</u>				
2. <u>https://www.youtube.com/watch?v=92c4xj5N2mk</u>				
UNIT-V				
Smart Cities Planning and Development : City Planning, Understanding	8Hrs			
Smart Cities, Dimensions of Smart Cities, Global standards and				
performance benchmark of smart cities, Financing smart cities				
development, Governance of smart cities.				
Applications: Perspectives on Intelligent Transport Systems (ITS), ITS				
Highway safety perspective, Environmental aspects of ITS.				
Video link / Additional online information:				
1. https://www.youtube.com/watch?v=i8LhbDJf2WU				
2. https://www.youtube.com/watch?v=IYZA06kRktw	l			

Cours	Course Outcomes: After completing the course, the students will be able to				
CO1	Design dynamic systems to process user & sensor data				
CO2	On a profound level to implement hardware & software for wireless sensor				
	networks in day to day life				
CO3	Implement secured application using android Software Development Kit				
CO4	Solve the need for smart systems in a distributed environment.				

CO5	Understand the Internet of Things (IoT) architecture and building blocks	
	for various domains	

Text Books	5.					
1	Fadi Al-Turjman, Intelligence in IoT-enabled Smart Cities,1st					
1 .	edition, CRC Press ,2019.					
	Giacomo Veneri, and Antonio Capasso , Hands-on Industrial					
	Internet of Things: Create a					
2.	powerful industrial IoT infrastructure using Industry 4.0 , 1 st edition,					
	Packt					
	Publishing,2018					
Reference	Books:					
1	John Dean, Web Programming with HTML5, CSS and JavaScript, 1					
1.	st edition, Jones and Bartlett Publishers Inc.,. 2018					
	Subhas Chandra Mukhopadhyay, Smart Sensing Technology for					
2.	Agriculture and					
	Environmental Monitoring, 1 st edition, Springer, 2012					
7	Mashrur A. Chowdhury, and Adel Sadek, Fundamentals of Intelligent					
Э.	Transportation Systems Planning, Artech House, Inc., 2003.					

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the entire syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/P	PO	PO1	PO1	PO1								
0	1	2	3	4	5	6	7	8	9	0	1	2
CO1	3	3	3	2	1	1	-	-	1	-	-	1
CO2	3	3	3	2	1	1	-	-	1	-	-	1
CO3	3	3	3	2	1	1	-	-	1	-	-	1
CO4	3	3	3	2	1	1	-	-	1	-	-	1
CO5	3	3	3	2	1	1	-	-	1	-	-	1

High-3, Medium-2, Low-1

	Semester: VII						
	CRYPTOGRAPHY & CYBER SECURITY (Theory)						
Cou	rse Code: MVJ21IO712	CIE Marks: 50					
Cree	dits: L:T:P: 3:0:0	SEE Marks: 50					
Hou	rs: 40L	SEE Duration: 3 Hrs.					
Cou	rse Learning Objectives: The studen	ts will be able to					
1	Outline the basic principles of Cyber security and its applications						
2	Familiarize with Cryptography and very essential algorithms						
3	Use the theorems needed for cryptographic operations and compare & contrast different types of cryptography						
4	State the concepts & uses of Digital signature and web security						
5	Demonstrate the need and sur Transactions & Intrusion detection	nmarize the concept of Secure Electronic In system.					

UNIT-I					
Introduction: Services, Mechanisms, Mechanism Attacks, The OSI	8Hrs				
Security Architecture, A Model for Network Security, Cyber Attacks,					
Defence Strategies and Techniques, Guiding Principles					
Mathematical Background of Cryptography: Integer Arithmetic,					
Modular Arithmetic, Matrices, The Greatest Comma Divisor, Useful					
Algebraic Structures, Chinese Remainder Theorem					
Applications: Time Stamping, Electronic Money, Secure Network					
Communication					
Video link / Additional online information :					
1. https://nptel.ac.in/courses/117103063/					
3. https://nptel.ac.in/courses/117107095/					
4. http://nptelvideos.com/video.php?id=2441					
5. http://www.nptelvideos.com/video.php?id=429					
UNIT-II					
Basics of Cryptography: Preliminaries, Elementary Substitution Ciphers,					
Elementary Transport Ciphers, Other Cipher Properties.					
Symmetric Ciphers: Symmetric Ciphers model, Substitution Techniques,					
Transposition Techniques, Simplified DES, Data encryption Standard					

(DES), The strength of DES, Differential and Linear Cryptanalysis, Block					
Cipher Design Principles and modes of operation, Evaluation Criteria for					
Advanced Encryption standard, The AES Cipher.					
Applications: wireless security, processor security, file encryption.					
Video link / Additional online information:					
1. https://nptel.ac.in/courses/117106087/					
2. <u>https://www.youtube.com/watch?v=ANHTfY9feZg</u>					
3. <u>https://nptel.ac.in/courses/108102095/</u>					
UNIT-III					
Principles of public key Cryptosystem, The RSA algorithms, Key	8Hrs				
management, Diffie – Hellman key exchange, Elliptic Curve Arithmetic,					
Authentication functions, Hash functions.					
Digital Signatures, Authentication protocols, Digital signature standard.					
Web security consideration, Secure Socket Layer, Transport layer					
security, secure electronic transaction.					
Applications: Random number generator, permutation generator					
Video link / Additional online information:					
1. <u>https://www.youtube.com/watch?v=m4sjTt7rhow</u>					
2. https://nptel.ac.in/courses/117101106/					
3. https://nptel.ac.in/courses/108108114/					
UNIT-IV					
Intruders, Intrusion Detection, Password Management, Malicious	8Hrs				
software programs – Viruses and related Threats, Virus Countermeasures					
Firewall Design Principles, Trusted Systems					
Applications: Cyber-attacks, Cybercrime, Cyber security.					
Video link / Additional online information :					
1. https://nptel.ac.in/courses/108105113/					
2. https://nptel.ac.in/courses/117106086/					
UNIT-V					

Transport Level Security: Web Security Considerations, Secure Sockets	8Hrs				
Layer, Transport Layer Security, HTTPS, Secure Shell (SSH)					
Applications: Encryption, message authentication and integrity, and					
replay attack protection					
Video link / Additional online information:					
1. https://nptel.ac.in/courses/117102052/					

Cour	se Outcomes: After completing the course, the students will be able to
CO1	Design dynamic systems to process user & sensor data
CO2	On a profound level to implement hardware & software for wireless sensor
	networks in day to day life
CO3	Implement secured application using android Software Development Kit
CO4	Solve the need for smart systems in a distributed environment.
CO5	Understand the Internet of Things (IoT) architecture and building blocks
	for various domains

Text Bo	oks:				
1	Fadi Al-Turjman, Intelligence in IoT-enabled Smart Cities,1st edition, CRC				
1.	Press ,2019.				
	Giacomo Veneri, and Antonio Capasso , Hands-on Industrial Internet of				
2	Things: Create a				
۵.	powerful industrial IoT infrastructure using Industry 4.0 , 1 st edition, Packt				
	Publishing,2018				
Referen	ce Books:				
1	John Dean, Web Programming with HTML5, CSS and JavaScript, 1 st				
1.	edition, Jones and Bartlett Publishers Inc.,. 2018				
	Subhas Chandra Mukhopadhyay, Smart Sensing Technology for				
2.	Agriculture and				
	Environmental Monitoring, 1 st edition, Springer, 2012				
7	Mashrur A. Chowdhury, and Adel Sadek, Fundamentals of Intelligent				
J.	Transportation Systems Planning, Artech House, Inc., 2003.				

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/P	PO	PO1	PO1	PO1								
0	1	2	3	4	5	6	7	8	9	0	1	2
CO1	3	3	3	2	1	1	-	-	1	-	-	1
CO2	3	3	3	2	1	1	-	-	1	-	-	1
CO3	3	3	3	2	1	1	-	-	1	-	-	1
CO4	3	3	3	2	1	1	-	-	1	-	-	1
CO5	3	3	3	2	1	1	-	-	1	-	-	1

	Semester: VII							
	APPLICATIONS OF IOT IN ROBOTICS							
	(The	pry)						
Cou	rse Code: MVJ21IO723	CIE Marks:100						
Cred	lits: 3 (L : T : P :: 3 : 0 : 0)	SEE Marks: 100						
Hou	rs: 40L+26T	SEE Duration: 3 Hrs						
Cou	rse Learning Objectives: The students will be	e able to						
	To learn basics of Internet of Things (Ic	T), and its execution using multiple robotic						
1	sensors							
	To understand Internet of Robotic Things (IoRT) and its various implementations in							
2	² industry and automation							
3	To implement IoT and Robotics application in autonomous driving and health care							
4								
5								

UNIT-I				
Introduction to IoT and Vision systems:				
Machine Vision, optoelectronic sensors, 3D & 2D machine vision technologies, robot	8Hr s.			
navigation, control schemes, motion controllers, intelligent algorithms, and vision				
systems.				
Video link / Additional online information :				
https://www.youtube.com/watch?v=WUYAjxnwjU4&list=PLE7VH8RC N3bpVn-				
e8QzOAHziEgmjQ2qE				
UNIT-II				
Robotic Sensors:				
Optical sensors and actuators; Mechanical sensors and actuators; Acoustic sensors and	8Hr s.			
actuators;				
Performance characteristics of sensors and actuators.				
Video link / Additional online information:				
1. <u>https://www.youtube.com/watch?v=nE1C4ghfvac&list=PLgMDNELGJ1CbufZj</u>				
<u>qWa8uoSlQWKqVwPN7</u>				
UNIT-III				
Internet of Robotic Things :				
Communication architecture for IoRT; Decentralized and automated IoT infrastructure	8Hr s.			
using				
Blockchain; IoRT Platforms Architecture, IoRT applications.				

Applications:	
Video link / Additional online information:	
1. https://www.youtube.com/watch?v=lRm9GiGoZKg&list=PLLy_2iUCG87AjAX	
KbNMiKJZ2T9vvGpMB0	
<u>https://www.youtube.com/watch?v=rYWJdZ5qg6M&list=PLbRMhDVUMngcdU</u> bBySzyzcPiFTYWr4rV	
UNIT-IV	
Autonomous Vehicle Systems:	
Introduction to Autonomous Driving; Perception in Autonomous Driving; Robot	8Hr s.
Operating System (ROS) Overview - Client Systems for Autonomous Driving - Decision	
planning and control in autonomous vehicle systems - Cloud Platform for Autonomous	
Driving.	
Video link / Additional online information :	
1. <u>https://www.youtube.com/watch?v=iTnbD180VMg</u>	
UNIT-V	
Industrial Internet of Things :	
IIoT Architecture; IIoT Applications and Challenges; IIoT Standards and Frameworks;	8Hr s.
HoT security concerns	
Video link / Additional online information:	
1. <u>https://www.youtube.com/watch?v=hv-</u>	
aBonZMRQ&list=PLWbMIWDTOauBvP0ZxvoIshg55WPMF37UI	
https://www.youtube.com/watch?v=p7kYStiASLo&list=PLbRMhDVUMngdcLdH4- YF1uJI4IuhcDZPR	

Cours	Course Outcomes: After completing the course, the students will be able to					
CO1	Understand IoT ecosystem in robotic paradigm					
CO2	Analyze IoT infrastructure and develop IoRT applications					
CO3	Apply IoT in robotics over different platforms					
CO4	Implement Cloud robotics in automations					
CO5	Implement automated applications using multiple robotic sensors					

Reference B	ooks								
7.	Vermesan,	Ovidiu,	and	Joël	Bacquet,	eds.,	"Cognitive	Hyperconnected	Digital

	Transformation: Internet of Things Intelligence Evolution", 1st edition, River
	Publishers, 2017.
8.	A.K.Gupta, S.K.Arora, and J.Riescher, "Industrial Automation and Robotics", 1 st
	edition, Mercury Learning and Information LLC,2017
3.	A.K Dubey, A.Kumar, and S.R Kumar., AI and IoT-based Intelligent Automation in
	Robotics, 1st edition. Wiley, 2020

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the entire syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/P	PO	PO1	PO1	PO1								
0	1	2	3	4	5	6	7	8	9	0	1	2
CO1	2	3	1	2	-	-	-	-	-	-	-	2
CO2	3	3	2	3	1	-	-	-	-	-	-	2
CO3	3	3	2	3	1	-	-	-	-	-	-	2
CO4	3	3	2	3	2	-	-	-	-	-	-	2
CO5	3	3	2	3	2	-	-	-	-	-	-	2

Semester: VII							
Mobile Application Development for IOT							
(Theory)							
Course Code: MVJ21I0724 CIE Marks: 50							
Credits: 3 (L : T : P :: 3 : 0 : 0)	SEE Marks: 50						
Hours: 40L	SEE Duration: 3 Hrs.						
Course Learning Objectives: The students will be able to							
1 Learn the mobile application developmen	t for Internet of Things (IoT) devices.						

UNIT-I

IoT Product Conceptualization: IoT Product Development Lifecycle, IoT	8 Hrs.
Product Conceptualizations IoT Programming Fundamentals: Getting	
Started, IoT Programming setup for LED flashing, Program to display	
message on screen, Program to read LDR level and display on screen,	
Android APK to perform read write operation, Particle android APK to	
control LED intensity, LED switching with HTML interface, Cloud based	
motion detection, Displaying temperature sensor data on terminal,	
Publishing sensor values on the cloud, Performing computation on	
sensor values.	
Applications: Wearables, Smart Grids, Industrial IoT	
Video link / Additional online information (related to module if any):	
https://youtu.be/BXDxYh1EV2w (nptel video)	
UNIT-II	
IoT Programming Applications: Gas level detection using MQ2 sensor,	8 Hrs.
Blink Android Application for controlling LED from mobile, Integration of	
Temperature and Gas Sensor with Blynk Mobile Application, Printing real-	
time Date and Time values on serial terminal, Display temperature value	
on serial terminal, Display temperature values on 16*2 LCD display	
Interfacing: Interfacing of Nokia 5110 display, display image on Nokia	

5110, Particle Electron displaying battery charging level status, GPS			
tracking device interface to get coordinates.			
Applications: Sensor integration, Self-driven cars, smart home.			
Video link / Additional online information (related to module if any):			
https://youtu.be/BXDxYh1EV2w (nptel video)			
UNIT-III			
IoT Product Hardware Development: Product realization, Connection	8 Hrs.		
diagram of IoT product, Engineering board development, Product board			
customization and optimization, Flowchart of IoT warehouse monitoring			
system, Wireless communication between the multiple kits, Particle cloud			
IDE.			
Applications: Data acquisition, Communication systems, Data			
processing			
Video link / Additional online information (related to module if any):			
https://youtu.be/BXDxYh1EV2w (nptel video)			
UNIT-IV			
IoT Advance Wireless Interfaces: Bluetooth communication between	8 Hrs.		
master and slave module, Data visualization on ThingSpeak cloud using			
webhook services, Storing data into google excel sheet and sending the			
sheets to emails. Applications: Smart city, self-driven cars, Farming ,			
Wearables			
Video link / Additional online information:			
https://youtu.be/BXDxYh1EV2w (nptel video)			
UNIT-V			
IoT Production System: IoT Warehouse Monitoring System, IoT Product	8 Hrs.		
Packaging, Future of IoT Product Development.			
Applications: Asset tracking, Asset Management, Inventory Optimization			
Video link / Additional online information:			
https://voutu.be/BXDxYh1EV2w (nptel.video)			

Course O	Course Outcomes: After completing the course, the students will be able to							
CO1	Understand fundamentals of IOT programming.							
CO2	Analyse the various IoT programming applications.							
CO3	Develops IoT applications using standardized hardware							
CO4	Discuss concepts of IoT Advance Wireless Interfaces and IoT Produc System.							

Text I	Books:
1.	IoT Product Development with Programming: Stepwise programming approach with Particle Development board Kindle Edition by Mahesh Jadhav and Tejas Sarang Patil.
Refere	ence Books:
1.	Kale, Vivek. Parallel Computing Architectures and APIs: IoT Big Data Stre Processing 1st edition, CRC Press, 2019.
2.	IoT Product Development with Programming: Stepwise programming approa with Particle Development board Kindle Edition by Mahesh Jadhav and Tejas Sarang Patil.

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up

to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	1	1	-	-	1	-	1	1
CO2	3	3	3	2	1	1	-	-	1	-	1	1
CO3	3	3	3	2	1	1	-	-	1	-	1	1
CO4	3	3	3	2	1	1	-	-	1	-	1	1
CO5	3	3	3	2	1	1	_	_	1	_	1	1

	Semester: VII								
	DIGITAL IMAGE PROCESSING								
	(THEORY)								
Cou	Course Code: MVJ21I0725 CIE Marks: 50								
Cree	dits: 3 (L: T : P :: 3: 0 : 0)		SEE Marks: 50						
Hou	rs: 40L		SEE Duration: 3 Hrs.						
Cou	rse Learning Objectives: The stude	ents will be able to	0						
1	Learn the fundamentals of digit	al image process	ssing						
	nage enhancement technique								
2	used in digital image processing	used in digital image processing							
	Study the image restoration te	chniques and m	nethods used in digital image						
3	processing								
	Understand region-based s	segmentation	and segmentation using						
4	morphological watersheds								
5	Know the color fundamentals a techniques.	and various mo	orphological image processing						

UNIT-I

Prerequisites: Discrete Fourier Transform, MATLAB Basics	8 Hrs.
Introduction to Digital Image Processing: What is Digital Image	
Processing? Origin of Digital Image Processing, Fundamental Steps in	
Digital Image Processing, Components of an Image Processing System,	
Elements of Visual Perception, Image Sensing and Acquisition, Image	
Sampling and Quantization, Some Basic Relationships Between Pixels,	
Linear and Nonlinear Operations.	
Applications of Image Processing: Medical imaging, Robot vision,	
Character recognition, Remote Sensing.	
Laboratory Sessions/ Experimental learning:	
1. Implementation and analysis of image sampling methods including	
uniform, grid, jittered and best candidate algorithms using MATLAB	
Applications: Medical imaging, Robot vision, Character recognition,	
Remote Sensing.	
Video link / Additional online information :	

1. <u>https://nptel.ac.in/courses/117/105/117105079/</u>								
https://www.tutorialspoint.com/dip/index.htm								
UNIT-II	0.11							
Spallal Domain: Some Basic Intensity Transformation Functions,								
Histogram Processing, Fundamentals of Spatial Filtering, Smoothing								
Spatial Filters, Sharpening Spatial Filters								
Frequency Domain: Preliminary Concepts, The Discrete Fourier								
Transform (DFT) of Two Variables, Properties of the 2-D DFT, Filtering in								
the Frequency Domain, Image, Smoothing and Image Sharpening Using								
Frequency Domain Filters, Selective Filtering.								
Laboratory Sessions/ Experimental learning:								
1. Implementation and analysis of image smoothing and								
sharpening algorithms using MATLAB.								
Applications: Image Enhancement, Image Analysis								
Video link / Additional online information:								
1. <u>https://nptel.ac.in/courses/117/105/117105079/</u>								
2. https://www.tutorialspoint.com/dip/index.htm								
UNIT-III								
Restoration: Noise models, Restoration in the Presence of Noise Only	8 Hrs.							
using Spatial Filtering and Frequency Domain Filtering, Linear, Position-								
Invariant Degradations, Estimating the Degradation Function, Inverse								
Filtering, Minimum Mean Square Error (Wiener) Filtering, Constrained								
Least Squares Filtering.								
Laboratory Sessions/ Experimental learning:								
1. Test the restoration with the Inverse Filter for deblurring and								
denoising. Identify the problem with the Inverse Filter and discuss								
the solution for the same.								
Applications: Image Enhancement, Image Analysis, Error detection and								
correction								
Video link / Additional online information:								

1. <u>https://nptel.ac.in/courses/117/105/117105079/</u>	
2. <u>https://www.tutorialspoint.com/dip/index.htm</u>	
UNIT-IV	
Segmentation: Point, Line, and Edge Detection, Thresholding, Region-	8 Hrs.
Based Segmentation, Segmentation Using Morphological Watersheds.	
Representation and Description: Representation, Boundary descriptors.	
Laboratory Sessions/ Experimental learning:	
1. Develop and implement a MATLAB code for Image segmentation	
using thresholding technique.	
Applications: Object tracking, Pattern recognition	
Video link / Additional online information:	
1. <u>https://nptel.ac.in/courses/117/105/117105079/</u>	
2 .https://www.tutorialspoint.com/dip/index.htm	
UNIT-V	
Color Image Processing: Color Fundamentals, Color Models, Pseudo	8 Hrs.
color Image Processing.	
Morphological Image Processing: Preliminaries, Erosion and Dilation,	
Opening and Closing, The Hit-or-Miss Transforms, Some Basic	
Morphological Algorithms. Four morphological principles, Skeletons and	
object marking.	
Laboratory Sessions/ Experimental learning:	
1. Implementation and analysis of multimodal image fusion using	
MATLAB.	
Applications: Color conversion, Object marking	
Video link / Additional online information:	
1. <u>https://nptel.ac.in/courses/117/105/117105079/</u>	
2. https://www.tutorialspoint.com/dip/index.htm	

Course Outcomes: After completing the course, the students will be able toCO1Analyze image processing algorithms used for sampling and quantization.

CO2	Apply and analyze image processing techniques in both the spatial and								
	frequency (Fourier) domains.								
CO3	Implement and analyse various image restoration algorithms								
CO1	Design image analysis techniques for image segmentation and evaluate the								
CO4	methodologies for segmentation.								
COS	Conduct independent study and analyze various Morphological Image								
	Processing techniques.								

Textboo	oks:
1	Rafel C Gonzalez and Richard E. Woods, "Digital Image Processing"-, PHI
<u> </u> .	3 rd Edition, 2010.
	Milan Sonka, Vaclav Hlavac, Roger Boyle, –" Image Processing, Analysis,
2.	and Machine Vision ", Cengage Learning, Fourth Edition, 2013, ISBN: 978-
	81-315-1883-0
Referer	ice Books:
1	S.Jayaraman, S.Esakkirajan, T.Veerakumar, "Digital Image Processing"- Tata
<u></u> .	McGraw Hill 2014.

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the entire syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal

choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO M	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	2	1	-	-	1	-	-	1
CO2	3	3	3	2	2	1	-	-	1	-	-	1
CO3	3	3	3	2	2	1	-	-	1	-	-	1
CO4	3	3	3	2	2	1	-	-	1	-	-	1
CO5	3	3	3	2	2	1	-	-	1	-	-	1

	Semester: VII										
	Satellite and Radar Communication										
	(Theory)										
Cou	rse Code: MVJ21IO731	CIE Marks: 50									
Cree	dits: 3 (L : T : P :: 3 : 0 : 0)	SEE Marks: 50									
Hou	rs: 40L	SEE Duration: 3 Hrs.									
Cou	rse Learning Objectives: The studer	nts will be able to									
1	Provide a conceptual knowledge of communication through satellites.										
2	Study the concept of navigation - both inertial and by navigation satellites.										
3	3 Understand typical challenges of satellite-based systems										
4	Learn the basic principle of radar equation										
5	Motivate to learn modern radar a	and navigational techniques.									

UNIT-I				
Prerequisites: Digital Communication Systems	8 Hrs.			
Introduction to Satellite Communication: Orbital aspects of Satellite Communication: Introduction to geo-synchronous and geo-stationary satellites, Kepler's laws, Locating the satellite with respect to the earth, Sub-satellite point, Look angles, Mechanics of launching a synchronous satellite.				
Applications: DTH, or satellite television, services (such as the DirecTV and DISH Network services				
Video link / Additional online information:				
https://nptel.ac.in/courses/117/105/117105131/#				
UNIT-II				
Satellite sub-systems: Attitude and Orbit control systems, Telemetry, Tracking and command control system, Power supply system, Space craft antennas, Multiple access techniques, comparison of FDMA, TDMA, and CDMA. Earth station equipment, tracking systems.	8 Hrs.			
Satellite Link Design: Basic transmission theory, System noise temperature and G/T Ratio, Noise figure and noise temperature, Calculation of system noise temperature, G/T ratio for earth stations, Link budgets - Uplink and downlink budget calculations, Error control for				

digital satellite links, Prediction of rain attenuation and propagation impairment counter measures. Applications: Mobile Communication, Error detection and correction Video link / Additional online information: https://nptel.ac.in/courses/117/105/117105131/# https://www.youtube.com/watch?v=FTHt-c8hWKw **UNIT-III** Communication Satellites: Introduction, Related Applications, Frequency Bands, Payloads, Satellite Vs. Terrestrial Networks, Satellite Telephony, Satellite Television, Satellite radio, Regional satellite Systems, National Satellite Systems. Remote Sensing Satellites: Classification of remote sensing systems, orbits, Payloads, Types of images: Classification, Interpretation, Applications. Weather Forecasting Satellites: Fundamentals: Images, Orbits, Payloads, And Applications. 8 Hrs. Navigation Satellites: Development of Satellite Navigation Systems, GPS system, Applications. Applications: Communication, Weather forecasting, Remote sensing, Navigation Video link / Additional online information: https://nptel.ac.in/courses/117/105/117105131/# https://nptel.ac.in/courses/121/107/121107009/ https://onlinecourses.nptel.ac.in/noc19_ce45/preview **UNIT-IV** 8 Hrs. Introduction to Radar: Radar block diagram and operation, Radar frequencies, Applications of radar, Prediction of range performance, Minimum detectable signal, Receiver noise, Probability density function, SNR, Integration of radar pulses, Radar cross-section of targets, PRF and range ambiguities, Transmitter power, System losses.

Electronically steered Phased Array Antenna in Radar: Phase shifters, Frequency scan arrays, Array elements, Feeds for arrays, Computer Control of Phased-Array Radar. Applications: Ground surveillance, missile control, fire control, air traffic control (ATC), moving target indication (MTI). Video link / Additional online information:	
https://onlinecourses.nptel.ac.in/noc19_ee58/preview	l
https://nptel.ac.in/courses/108/105/108105154/	l
UNIT-V	
Radar Technology and Applications: Doppler Effect, CW radar, FM CW radar, Multiple frequency CW radar, MTI radar, Delay line canceller, Range gated MTI radar, Blind speeds, Staggered PRF, Limitations to the performance of MTI radar, Non-coherent MTI radar. Tracking radar: sequential lobing, conical scan, Monopulse: amplitude comparison and phase comparison methods, Radar antennas. Radar displays.	8 Hrs.
Applications: Ground surveillance, weapons location, and vehicle search	l
Video link / Additional online information:	1
https://nptel.ac.in/courses/108/105/108105154/	1
https://youtu.be/XFapyIIzX_8	l
https://freevideolectures.com/course/5299/introduction-radar- systems/42	

Cours	se Outcomes: After completing the course, the students will be able to
CO1	Apply the basics of digital transmission related to satellite communication
CO2	Comprehend the design of satellite subsystems
CO3	Evaluate spacecraft subsystem performance and trades
CO4	Model the characteristics of radar echoes from different types oftargets and clutter.
CO5	Calculate and simulate receiver noise and losses.

Text B	ooks:
1.	T. Pratt, C.W. Boastian and Jeremy Allnutt, "Satellite Communication", 2013, 2nd edition, John Wiley and Sons, Bangalore, India.
2.	Merril. I. Skolnik, "Introduction to Radar Systems", 2/e, MGH, 1981.
Refere	ence Books:
1.	Dennis Roddy, Satellite Communications, 4th Edition, McGraw- Hill International edition, 2006
2.	Timothy Pratt, Charles Bostian, Jeremy Allnutt, Satellite Communications, 2nd Edition, Wiley India Pvt. Ltd , 2017, ISBN: 978-81-265-0833-4

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the entire syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12

CO1	3	-	-	-	2	-	-	-	-	-	-	-
CO2	3	3	2	-	2	-	-	-	-	-	-	-
CO3	3	3	3	2	-	-	-	-	-	-	-	-
CO4	3	3	3	2	1	-	-	-	-	-	-	-
CO5	3	3	3	-	2	-	-	-	-	-	-	-

	Semester: VII					
	FUZZY LOGIC AND NE	EURAL NETWORKS				
	(Theor	ry)				
Cou	Course Code: MVJ21I0732 CIE Marks: 50					
Cree	dits: 3 (L : T : P :: 3 : 0 : 0)	SEE Marks: 50				
Hou	rs: 40L	SEE Duration: 3 Hrs.				
Cou	rse Learning Objectives: The students wil	l be able to				
	Make the students to understand abo	ut the concept of fuzzy set theory and				
1	fuzzy systems.					
2	Analyse the fuzzy system-based rules and fuzzy logic decision making.					
3	Understand the basics of Neural Networks and its architecture.					
4	Know about the single and multilayer feed forward networks.					
5	Provide the adequate knowledge abou	ut the Associative memory.				

UNIT-I

Fuzzy Set Theory: Fuzzy versus Crisp, Crisp sets, Fuzzy Sets, Crisp	8Hrs.
Relations, Fuzzy Relations.	
Fuzzy Systems: Crisp Logic, Predicate Logic, Fuzzy Logic, Fuzzy	
Quantifiers, Fuzzy Interference, Fuzzy rule-based system, Defuzzification	
methods, Applications.	
Laboratory Sessions/ Experimental learning:	
1. Implementation of Fuzzy operations.	
2. Implementation of Fuzzy relations.	
Applications: Facial Pattern recognition, air conditioners, washing	
machines, vacuum cleaners, antiskid breaking systems.	
Video link / Additional online information:	
1. https://nptel.ac.in/courses/108/104/108104157/	
UNIT-II	
Fuzzy Rule- Based Systems: Natural Language, Linguistic Hedges, Rule-	8Hrs.
Based Systems, Canonical Rule Forms, Decomposition of Compound	

Rules, Likelihood and Truth Qualification, Aggregation of Fuzzy Rules,				
Graphical Techniques of Inference.				
Fuzzy Decision Making : Fuzzy Synthetic Evaluation, Fuzzy Ordering,				
Preference and consensus, Multi-objective Decision Making, Fuzzy				
Bayesian Decision Method, Decision Making under Fuzzy States and				
Fuzzy Actions.				
Laboratory Sessions/ Experimental learning:				
1. Development of fuzzy membership functions and Fuzzy set				
properties				
2. Implementation of Air Conditioning system using Fuzzy Logic				
Algorithm.				
3. Implementation of Facial Pattern Recognition using Fuzzy Logic				
Algorithm.				
Applications: Facial Pattern recognition, air conditioners, washing				
machines, vacuum cleaners, antiskid breaking systems.				
Video link / Additional online information:				
1. https://www.digimat.in/nptel/courses/video/117105084/L01.html				
2. https://www.digimat.in/nptel/courses/video/127105006/L01.html				
UNIT-III	011			
Prerequisites: Fundamentals of computing, Analysation, Mathematical	8Hrs.			
calculations.				
Introduction to Neural Networks: Basic concepts of Neural networks,				
Human Brain, Model of an Artificial Neuron, Artificial Neural network				
architectures, Characteristics of Artificial Neural Networks, Learning				
methods, Taxonomy of Neural Network Architectures, Early Neural				
Network Architectures, Rosenblatt's perceptron, ADALINE and				
MADALINE networks.				
Laboratory Sessions/ Experimental learning:				
1. Implementation of Simple Neural Network in pattern				
recognition/matching.				

Applications: Speech recognition, character recognition, human face			
recognition			
Video link / Additional online information:			
1. <u>https://nptel.ac.in/courses/117/105/117105084/</u>			
UNIT-IV	_		
Back Propagation Networks: Architecture: The perceptron model, the	8Hrs.		
solution, Single Layer Artificial Neural Network, Model of multilayer			
Perceptron. Back propagation Learning: Input layer, Hidden layer,			
Output layer Computations, Error calculation, Training of neural network,			
Steepest Descent, Effect of learning rate, Adding of Momentum term,			
Back propagation algorithm.			
Laboratory Sessions/ Experimental learning:			
1. Implementation of Perceptron Learning Algorithm for AND gate			
2. Application of Back Propagation technique in financial data.			
Applications: Voice Recognition, Financial forecasting			
Video link / Additional online information:			
1. <u>https://nptel.ac.in/courses/106/106/106106184/</u>			
2. <u>https://nptel.ac.in/courses/108/108/108108148/</u>			
UNIT-V			
Associative Memory: Auto correlators, Hetero correlators, Wang et al's	8Hrs.		
Multiple Encoding Strategy, Exponential BAM (Bidirectional Associative			
Memory), Associative memory for Real coded pattern pairs, Applications.			
Laboratory Sessions/ Experimental learning:			
1. Development of auto associative network using outer product rule			
Applications: Used for parallel searches, speedup databases, page tables			
used by virtual memory in neural networks			
Video link / Additional online information:			

1. <u>http://www.nptelvideos.in/2012/12/neural-networks-and-</u>

applications.html

2. <u>https://nptel.ac.in/courses/117/105/117105084/</u>

Cours	se Outcomes: After completing the course, the students will be able to
001	Acquire the comprehensive knowledge of fuzzy set theory and fuzzy logic
CO1	systems.
<u> </u>	Apply the concepts of Fuzzy rule-based system and fuzzy decision making in
02	real time applications.
CO3	Analyze the organization of the Brain, Biological and Artificial Neuron Models.
CO4	Design Perceptron Model, Single layer Artificial Neural Network, Back
	propagation network architecture, Model for Multilayer Perceptron.
CO5	Illustrate the concepts of associative memory in neural networks.

Text Boo	oks:							
1.	Rajasekharan and Rai, "Neural Networks, Fuzzy logic, Genetic algorithms:							
	synthesis and applications" by – PHI Publication.							
2.	Timothy. J. Ross, "Fuzzy logic with engineering applications", McGraw Hill							
	International Edition, 1997.							
3	James A Freeman and Davis Skapura, "Neural Networks", Pearson							
	Education, 2002.							

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	1	1	1	-	-	1	-	-	1
CO2	3	3	3	1	1	1	-	-	1	-	-	1
CO3	3	3	3	1	1	1	-	-	1	-	-	1
CO4	3	3	3	1	1	1	-	-	1	-	-	1
CO5	3	3	3	1	1	1	-	-	1	-	-	1

Semester: VII						
INFORMATION THEORY AND CODING						
		(Theory)				
Cou	rse Code: MVJ21IO733		CIE Marks: 50			
Cree	lits: L:T:P: 3:0:0		SEE Marks: 50			
Hou	rs: 40L		SEE Duration: 3 Hrs.			
Cou	rse Learning Objectives: The stude	nts will be able t	0			
1	Understand the concept of Entropy, Rate of information and order of the source with reference to dependent and independent source.					
2	Study various source encoding algorithms.					
3	3 Model discrete & continuous communication channels.					
4	Study various error control coding algorithms.					
5	Emphasize encoding and error correction circuits for different coding algorithms					

UNIT-I						
Prerequisites: Probability theory, Encoder, and decoder concept	8 Hrs					
Information Theory: Introduction, Measure of information,						
Information content of message, average information content of						
symbols in long independent sequences, average Information content						
of symbols in long dependent sequences, Markov Statistical Model of						
Information Sources, Entropy, and Information rate of Markoff Sources.						
Laboratory session/Experiment:						
1. Design a markoff model for calculating the steady state						
probabilities						
Applications: Board games played with dice, Predicting the weather,						
Stock market.						
Video link / Additional online information:						
1. https://nptel.ac.in/courses/117/104/117104129/						
2. https://nptel.ac.in/courses/108/102/108102117/						
https://nptel.ac.in/courses/117/101/117101053/						
UNIT-II						

Source Coding: Source coding theorem, Prefix Codes, Kraft McMillan	8 Hrs		
Inequality property – KMI Encoding of the Source Output, Shannon's			
Encoding Algorithm, Shannon Fanon Encoding Algorithm, Huffman			
codes, Extended Huffman coding, Arithmetic Coding, Lempel – Ziv			
Algorithm.			
Laboratory session/Experiment:			
1. Design a digital image compression and encoding using LZW			
algorithm			
Application: Lossless compression			
Video link / Additional online information:			
1. <u>https://www.youtube.com/watch?v=aTHVz5pECog</u>			
2. <u>https://www.youtube.com/watch?v=yHw1ka-4g0s&t=358s</u>			
https://nptel.ac.in/courses/117/104/117104129/			
UNIT-III	0 11		
information Channels. Communication Channels, Channel Models,	ð Hrs		
Channel Matrix, Joint probability Matrix, Binary Symmetric Channel,			
System Entropies, Mutual Information, Channel Capacity, Channel			
Capacity of: Binary Symmetric Channel, Binary Erasure Channel,			
Muroga's Theorem, Continuous Channels, Fano's Inequality and the			
Converse to the Coding Theorem.			
Laboratory session/Experiment:			
1. Compare the channel capacities of different channels			
Applications: To model data networks, where packets either arrive			
correctly or are lost due to buffer overflows or excessive delays.			
Video link / Additional online information:			
1. <u>https://nptel.ac.in/courses/117/104/117104129/</u>			
2. <u>https://nptel.ac.in/courses/108/102/108102117/</u>			

3. <u>https://nptel.ac.in/courses/117/101/117101053/</u>			
UNIT-IV			
Error Control Coding: Introduction, examples of Error control coding,	8 Hrs		
methods of controlling Errors, Types of Errors, types of Codes, Linear			
Block Codes: matrix description of Linear Block Codes, Error Detection			
and Error Correction Capabilities of Linear Block Codes, Single Error			
Correcting Hamming Codes			
Binary Cyclic Codes : Algebraic Structure of Cyclic Codes, Encoding using an (n-k) Bit Shift register, Syndrome Calculation, Error Detection and Correction.			
Laboratory session/Experiment:			
1. Design encoding circuit for(6,3)linear code			
Applications: Binary cyclic codes in stegnography			
Video link / Additional online information:			
1. <u>https://nptel.ac.in/courses/117/104/117104129/</u>			
2. <u>https://nptel.ac.in/courses/108/102/108102117/</u>			
https://nptel.ac.in/courses/117/101/117101053/			
UNIT-V			
Some Important Cyclic Codes: Golay Codes, BCH Codes, Reed- Solomon Codes	8 Hrs		
Solomon coucs.			
Convolution Codes: Convolution Encoder, Time domain approach,			
Transform domain approach, Code Tree, Trellis and State Diagram, The			
Viterbi Algorithm.			
Introduction to Cryptography: Symmetric key and Asymmetric key			
cryptography.			
Laboratory cossion/Exportment:			
Laboratory session/Experiment:			
1. Write a MATLAB code for Reed-Solomon code			

Applications: Satellite communications, Compact disc players, DVDs,						
disk drives, solid-state drives, quantum-resistant cryptography and two-						
dimensional bar codes.						
Video link / Additional online information:						
1. <u>https://nptel.ac.in/courses/117/104/117104129/</u>						
2. <u>https://nptel.ac.in/courses/108/102/108102117/</u>						
https://nptel.ac.in/courses/117/101/117101053/						

Course Outcomes: After completing the course, the students will be able to

CO1	Acquire the knowledge of dependent & independent Source, measure of information, Entropy, Rate of Information and Order of a source
CO2	Represent the information using Shannon Encoding, Shannon Fano, Prefix and Huffman Encoding Algorithms
CO3	Model the continuous and discrete communication channels using input, output and joint probabilities
CO4	Determine a codeword comprising of the check bits computed using Linear Block codes, cyclic codes & convolutional codes
CO5	Design the encoding and decoding circuits for Linear Block codes, cyclic codes, convolutional codes, BCH and Golay codes.

Ref	erence Books
1.	K. Sam Shanmugam, "Digital and analog communication systems", John Wiley
	India Pvt. Ltd, 1996.
2.	K Giridhar, "Information Theory And Coding", 4th Edition, Pooja Publication,
	Bangalore, 2001.
3.	Simon Haykin, "Digital communication", John Wiley India Pvt. Ltd, Third Edition,
	2010.
4.	Muralidhar Kulkarni, K.S. Shivaprakasha, "Information Theory and Coding", Wiley
	India Pvt. Ltd, 2015, ISBN:978-81-265-5305-1.

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10

marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	-	1	-	-	1	-	2	2
CO2	3	3	3	2	-	1	-	-	1	-	2	2
CO3	3	3	3	2	-	1	-	-	1	-	2	2
CO4	3	3	3	2	-	1	-	-	1	-	2	2
CO5	3	3	3	2	-	1	-	-	1	-	2	2

	Semester: VII						
	INDUSTRIAL AND MEDICAL IOT						
		(Theory)					
Cou	rse Code: MVJ21IO734	CIE Marks: 50					
Cree	dits: 3 (L: T : P :: 3 : 0 : 0)	SEE Marks: 50					
Hou	rs: 40L	SEE Duration: 3 Hrs.					
Cou	rse Learning Objectives: The stude	nts will be able to					
1	To develop knowledge in Industrial Internet of Things (IIoT) fundamentals.						
2	To gain conceptual understanding of networking and wireless communication protocols used in IIoT deployments						
3	To Understand the various Internet of Things (IoT) Protocols like COAP, MQTT.						
4	To enables healthcare professionals to be more watchful and connect with the patients proactively.						
5	To gain knowledge in Low power and wireless connectivity to other devices and the cloud						

UNIT-I

Prerequisites: IOT, Medical Electronics	8Hrs.
Industrial IOT Introduction: Introduction to IOT, what is IIOT? IOT Vs.	
IIOT, History of IIOT, Components of IIOT - Sensors, Interface, Networks,	
Key terms – IOT Platform, Interfaces, API, clouds, Data Management	
Analytics, Mining & Manipulation; Role of IIOT in Manufacturing Processes	
Use of IIOT in plant maintenance practices, Sustainability through	
Business excellence tools Challenges & Benefits in implementing IIOT	
Laboratory Sessions/ Experimental learning:	
1. Long-Distance Serial Link Between Two Arduino Devices	
2. IoT on the MATLAB Platform	
Applications: Automated and remote equipment management and monitoring, Pinpoint inventories	
Video link / Additional online information :	
1. http://www.nitttrc.edu.in/nptel/courses/video/106105195/L32.html	
2. https://www.henryharvin.com/blog/iot-courses-online/	
3. http://vlabs.iitb.ac.in/vlab/	

UNIT-II					
IIoT Architecture: IOT components; Various Architectures of IOT and	8Hrs.				
IIOT, Advantages & disadvantages, Industrial Internet - Reference					
Architecture; IIOT System components: Sensors, Gateways, Routers,					
Modem, Cloud brokers, servers, and its integration, WSN, WSN network					
design for IOT					
Laboratory Sessions/ Experimental learning:					
1. Experiment on Gate way as a service deployment in IoT Toolkit					
2. Design of mixer					
Applications: Internet gateways: , Edge or fog computing, Cloud or data					
center					
Video link / Additional online information:					
1. https://onlinecourses.nptel.ac.in/noc20_cs66/preview					
2. https://www.youtube.com/watch?v=-RHYCpsn8TA					
3. <u>https://www.youtube.com/watch?v=xsZ9YhVy-7g</u>					
https://www.digimat.in/nptel/courses/video/106105166/L02.html					
UNIT-III	<u></u>				
IOMT Introduction ; What are IOMT and its working? Tracking assets and	8Hrs.				
resources, Internet of things in hospitals, collection and integration of					
clinical data, Major benefits of IoT in healthcare, Disadvantages of IoT in					
healthcare					
Laboratory Sessions/ Experimental learning:					
1. Experiment on HTTP-to-CoAP semantic mapping Proxy in IoT					
Toolkit.					
Applications: Activity Trackers During Cancer Treatment, Heart Monitors					
with Reporting, Medical Alert Systems					
Video link / Additional online information:					
1. https://www.youtube.com/watch?v=uDzRyrA1Z5Q					
2. https://www.youtube.com/watch?v=9lNB7DK1-oo					
3. https://nptel.ac.in/courses					

https://nptel.ac.in/courses/108105154					
UNIT-IV					
Healthcare Technologies: Home Monitoring System for Aged Care,	8Hrs.				
Smart Medicinal Packages for Medication Adherence, Smart Drug					
Delivery System for Automated Drug Dispensation, Connected Rural					
Healthcare Consultation, Population and Environment Monitoring of					
Infectious Diseases					
Laboratory Sessions/ Experimental learning:					
1. Experiment on Gate way as a health care service deployment in					
IoT Toolkit.					
Applications: Remote patient monitoring, Glucose monitoring, Ingestible					
Sensors, Trackable Inhaler, Wearables to Fight Depression, Connected					
Contact Lenses					
Video link / Additional online information:					
1. http://nitttrc.edu.in/nptel/courses/video/106105166/L58.html					
2. <u>https://www.youtube.com/watch?v=UvQFH5RGOnU</u>					
3. <u>https://www.youtube.com/watch?v=_qO9nETG7QU</u>					
https://onlinecourses.nptel.ac.in/noc22_cs53/preview					
UNIT-V	0] [ro				
Meanship Fitness & Activity Manitar Application Design: Design of IOT	ohis.				
wearable Fitness & Activity Monitor Application Design. Design of 101					
based pulse oximeter, Reliability of IoT-Aware BPNM Healthcare process					
Laboratory Sessions/ Experimental learning:					
1. Speed Control of motors using PWM with python					
programming.					
2. Create Wireless network of sensors using Zigbee.					
Applications: leap fitness step counter, Strava, Pacer Pedometer Video link / Additional online information :					
1. https://nevonprojects.com/wireless-patient-health-monitor/					
2. https://www.youtube.com/watch?v=mlTuag3fPA0					

https://nptel.ac.in/courses/106105160

Cours	Course Outcomes: After completing the course, the students will be able to						
CO1	Develop conceptual design of Medical and Industrial IoT architecture.						
CO2	Develop conceptual design of Medical and Industrial IoT architecture.						
CO3	Develop conceptual design of Medical and Industrial IoT architecture.						
CO4	Study about Internet of Medical Things (IoMT) and its applications in						
001	Healthcare industry						
CO5	Design various applications using IoT in Healthcare Technologies.						

Text Books:							
	Veneri, Giacomo, and Antonio Capasso. Hands-on Industrial Internet						
1.	of Things: Create a Powerful Industrial IoT Infrastructure Using Industry						
	4.0, 1st edition, Packt Publishing Ltd, 2018.						
2	Reis, Catarina I., and Marisa da Silva Maximiano, eds. Internet of Things						
۷.	and advanced application in healthcare, 1st edition, IGI Global, 2016.						
Reference Books:							
1	Alasdair Gilchrist, Industry 4.0: The Industrial Internet of Things, 1st						
1.	Edition, Apress, 2017						

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the

entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO M	apping	J										
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	-	-	-	-	-	-	-	-	1
CO2	3	3	3	-	-	-	-	-	-	-	-	1
CO3	3	3	3	-	-	-	-	-	-	-	-	1
CO4	3	3	3	-	-	-	-	-	-	-	-	1
CO5	3	3	3	-	-	-	-	-	-	-	-	1

	Semester: VII							
	VIRTUAL AND AUGMENTED REALITY							
	(Theory)							
Cou	irse Code: MVJ21IIO735	CIE Marks: 50						
Cred	1its: 3 (L : T : P :: 3: 0 : 0)	SEE Marks: 50						
Hou	rs: 40L	SEE Duration: 3 Hrs.						
Cour	rse Learning Objectives: The students will be a	able to						
	Establish and cultivate a broad and comprehensive understanding of the virtual r							
1	and Augmented Reality.							
2	Exhibit various elements and components used in AR/VR Hardware							
3	Provide various factors involved in multisensory action of human being							
	Provide a detailed analysis of the engineering	ng, scientific and functional aspects of VR						
4	systems and the fundamentals of VR/AR modelling and programming.							
	Understand virtual reality, augmented reality	and using them to build Biomedical,						
5	engineering and robotics application.							

UNIT-I							
Prerequisites: Intermediate programming ability in object-oriented languages,	8 Hrs						
Basic linear algebra							
Introduction to Immersive Technologies: A Brief History of Virtual Reality, The							
five Classic Components of a VR System, Early Commercial VR Technology , VR $$							
becomes an Industry, Reality, Virtuality and Immersion , VR, AR, MR, xR:							
similarities and differences.							
Laboratory Sessions/ Experimental learning:							
Choose an existing VR application and write a summary including a personal							
critical reflection on its look and feel especially in relation to immersion,							
presence, agency and interactivity.							
Applications: VR in Sport, Mental Health, Medical Training.							
Video link / Additional online information:							
https://nptel.ac.in/courses/121/106/121106013/							
UNIT-II							
Motion Tracking and Navigation: Position and Motion Trackers , Inside	8 Hrs						
Out/Outside In , Tracker Performance Parameters , Optical, Active and Passive							
Trackers , Inertial and Hybrid Trackers, HMD Trackers , Magnetic Trackers ,							
Mechanical Trackers , Ultrasonic Trackers , Navigation and Manipulation							
Interfaces, Tracker-Based Navigation/Manipulation Interfaces.							
Laboratory Sessions/ Experimental learning:							

Design an immersive environment in Unity-3D or Unreal that will develop and	
enhance Work in groups. Start by building a simple 3D world that an interactive	
player can move around in. Connect the controllers and create a simple	
interaction loop. Measure velocity, acceleration, distances, and other motion and	
spatial parameters of the user and the controllers.	
Applications: Industrial Training and Simulation, Flight Training and	
Simulation, Pilot Head Tracking, Live Aircraft, Sports motion Analysis.	
Video link / Additional online information:	
https://nptel.ac.in/courses/106/106/106106138/	
UNIT-III	
The Human behind the lenses: Human Perception and Cognition, The Human	8 Hrs
Visual System, VR Health and Safety Issues, Effects of VR Simulations on Users	
, Cyber sickness, before and now Guidelines for Proper VR Usage.	
Laboratory Sessions/ Experimental learning:	
Create a well-rounded multisensory action that is meaningful, safe and	
accommodates all senses, visual, auditory and tactile.	
Applications: Human–Computer Interaction, e-Sports, Games, Cultural heritage	
Video link / Additional online information:	
https://nptel.ac.in/noc/courses/noc18/SEM1/noc18-ge08/	
UNIT-IV	
Augmented and Mixed Reality: Taxonomy, technology and features of augmented	8 Hrs
reality, difference between AR and VR, Challenges with AR, AR systems and	
functionality, Augmented reality methods, visualization techniques for	
augmented reality, wireless displays in educational augmented reality	
applications, mobile projection interfaces, marker-less tracking for augmented	
reality, enhancing interactivity in AR environments, evaluating AR systems.	
Laboratory Sessions/ Experimental learning:	
Experiment with Photo grammetry and improve the visual look and feel of your	
environment	
Applications: Healthcare	
Video link / Additional online information:	
https://www.coursera.org/learn/ar-technologies-video-streaming	
UNIT-V	
Medical Applications of xR: Behavioural Therapy, Virtual and Augmented	8 Hrs
Surgery, Triage and Diagnostics, Applications of VR in Robotics: Robot	
Programming, Robot Tele operation.	
Laboratory Sessions/ Experimental learning:	

Add a training component to your existing prototype. Define the mechanics that will progressively improve user's performance to mastery through an interaction loop using the dual concept of challenge / reinforcing. Video link / Additional online information: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5622235/

Course Outcomes: After completing the course, the students will be able toCO1Acquire various principles and concepts of virtual reality and its application.CO2Understand the optical motion tracking and navigation in virtual reality.CO3Analyse and solve problems related to their expertise in Augment and Virtual
Environments.CO4Develop detailed analysis of the engineering, scientific and functional aspects of VR
systems and the fundamentals of VR modelling and programming.CO5Illustrate the knowledge of integrating hardware, software, tools for AR/VR
technology.

Ref	erence Books
1	C. Burdea and Philippe Coiffet, "Virtual Reality Technology", First Edition, Gregory,
	John Wiley and Sons, Inc.,2008
2	Steven M. LaValle, "Virtual Reality", 2016. Online version: http://msl.cs.uiuc.edu/vr/
3.	Alan B. Craig, "Understanding Augmented Reality, Concepts and Applications", Morgan
	Kaufmann, First Edition, 2013.
4.	Dieter Schmalstieg and Tobias Hollerer, "Augmented Reality: Principles and Practice
	(Usability)" by Pearson Education (US), Addison-Wesley Educational Publishers Inc,
	New Jersey, United States, 2016. ISBN: 9780321883575

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	3	1	-	-	1	-	-	1
CO2	3	3	3	2	3	1	-	-	1	-	-	1
CO3	3	3	3	2	3	1	-	-	1	-	-	1
CO4	3	3	3	2	3	1	-	-	1	-	-	1
CO5	3	3	3	2	3	1	-	-	1	-	-	1

	Semester: VII										
	MEMS AND MICROSYSTEMS (THEORY)										
Cou	Course Code: MVJ21IO744 CIE Marks: 50										
Credits: L:T:P: 3:0:0 SEE Marks: 50											
Hou	Hours: 40L SEE Duration: 3 Hrs.										
Cou	rse Learning Objectives: The students	s will be able to									
1	To understand the fundamental knowledge/ overview in the field of Micro Electromechanical Systems.										
2	To learn about the operation and	application of MEMS circuits, design.									
3	To understand techniques used to sniff traffic across a network										
4	To familiarize with the microsyste	m fabrication process.									
5	To develop the practical applications u	sing MEMS.									

UNIT-I	
OVERVIEW OF MEMS AND MICROSYSTEMS: MEMS & Microsystems, 8 B	Irs
Typical MEMS and Micro system Products, Evolution of Micro fabrication,	
Microsystems and Microelectronics. The Multidisciplinary nature of	
Microsystem, Design and Manufacture, Microsystem and Miniaturization,	
Applications of Microsystems in the Automotive Industry and in other	
industries.	
Applications: Pumping devices, gear trains, moveable mirrors	
Video link / Additional online information (related to module if any):	
https://nptel.ac.in/courses/117105082	
UNIT-II	
WORKING PRINCIPLES OF MICROSYSTEMS: Introduction, Micro 8 H	rs
sensors, Micro actuation, MEMS with Micro actuators, Micro	
accelerometers Micro fluids. Engineering Science for Microsystems	
Design and Fabrication: Introduction, Atomic Structure of Matter, Ions	
and Ionization Molecular Theory of Matter and Intermolecular Forces,	
Plasma Physics, Electrochemistry.	
Applications: Miniature robots, tweezers, tools, lens, and lasers	
Video link / Additional online information (related to module if any):	

UNIT-III								
Engineering Mechanics for Microsystems Design: Introduction, Static	8 Hrs							
Bending of Thin Plates, Mechanical Vibration, Thermo mechanics,								
Fracture Mechanics, Thin Film Mechanics								
MATERIALS FOR MEMS AND MICROSYSTEMS: Introduction, Substrates								
and wafers, Active Substrate materials, silicon as a substrate material,								
silicon compounds and silicon piezoresistors.								
Applications: Biomedical, optical								
Video link / Additional online information (related to module if any):								
https://nptel.ac.in/courses/117105082								
UNIT-IV								
MICROSYSTEMS FABRICATION PROCESS: Introduction,	8 Hrs							
Photolithography, Ion Implantation, Diffusion, Oxidation, Chemical								
Vapour Deposition, Physical Vapour deposition, Deposition by Epitaxy,								
Etching. MICROSYSTEMS DESIGN: Introduction, Design considerations,								
Process Design, Design of a silicon Die for a Micro pressure sensor, Design								
of Micro fluidic network systems.								
Applications: Wireless networks, aerospace								
Video link / Additional online information (related to module if any):								
 <u>https://nptel.ac.in/courses/117105082</u> 								
UNIT-V								
MICROSYSTEMS PACKAGING: Introduction, Overview of Mechanical	8 Hrs							
Packaging of Microelectronics, Micro system Packaging, Interfaces in								
Micro system Packaging, Essential Packaging Technologies, Three-								
dimensional Packaging, Assembly of Microsystems, Selection of								
Packaging Materials, Signal Mapping and Transduction, Design Case:								
Pressure Sensor Packaging.								
Applications: Consumer products								
Video link / Additional online information (related to module if any):								
 <u>https://nptel.ac.in/courses/117105082</u> 								

Cours	Course Outcomes: After completing the course, the students will be able to									
CO1	Understand the technologies related to Micro Electro Mechanical Systems.									
CO2	Understand design and fabrication processes involved with MEMS devices.									
CO3	Analyse the MEMS devices and develop suitable mathematical models									
CO4	Design and Fabricate using the MEMS Devices.									
CO5	Know various application areas for MEMS device.									

Reference Books

1. MEMS & Microsystems Design and Manufacture – Tai Ran Hsu, TMH 2002.

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the entire syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO DO Monning											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	1	-	-	-	-	1	-	-	-	3
CO2	3	3	1	-	-	-	-	2	-	1	-	3
CO3	3	3	1	2	-	-	-	-	-	1	-	3
CO4	3	3	3	3	-	3	2	2	2	2	-	3
CO5	3	3	3	3	-	3	2	2	3	2	-	3

	Semester: VII									
PROJECT PHASE – I										
Cou	Course Code: MVJ21IOPR76 CIE Marks: 50									
Credits: L:T:P: 0:0:3 SEE Marks: 50										
Hours: 40L SEE Duration: 3 Hrs.										
Cou	Course Learning Objectives: The students will be able to									
1	To support independent learning.									
2	To develop interactive, communication, organization, time management, and presentation skills.									
3	To impart flexibility and adaptab	ility.								
4	To expand intellectual capacity, credibility, judgment, intuition.									
5	To train students to present the topic of project work in a seminar without any fear, face audience confidently, enhance communication skill, involve in group discussion to present and exchange ideas.									

Project Work Phase - I: Each student of the project batch shall involve in carrying out the project work jointly in constant consultation with internal guide, co-guide, and external guide and prepare the project report as per the norms avoiding plagiarism.

Cours	Course Outcomes: After completing the course, the students will be able to									
CO1	Describe the project and be able to defend it.									
CO2	Learn to use modern tools and techniques.									
CO3	Develop skills to work in a team to achieve common goal. Develop skills of									
	project management and finance.									
CO4	Develop skills of self-learning, evaluate their learning and take appropriate									
	actions to improve it.									
CO5	Prepare them for life-long learning to face the challenges and support the									
	technological changes to meet the societal needs.									
Sche	me of Evaluation:									
Intor	mal Marke: The Internal marke (50 marke) evolution shall be based on Dhase									

Internal Marks: The Internal marks (50 marks) evaluation shall be based on Phase wise completion of the project work, Project report, Presentation and Demonstration of the actual/model/prototype of the project.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	3	3	2	1	1	2	1	1	2
CO2	2	2	2	3	3	2	1	1	2	1	2	2
CO3	2	2	2	3	3	2	1	1	2	1	2	2

CO4	2	2	2	3	3	2	1	1	2	1	2	2
CO5	2	2	2	3	3	2	1	1	2	1	2	2