	Semester: III					
	DISCRETE MATHEMATICAL STRUCTURES AND PROBABILITY					
		(Theory)				
Cou	rse Code:	MVJ21MCS/IS31	CIE Marks:50			
Credits:		4	SEE Marks: 50			
Hours:			SEE Duration: 3 Hrs			
Cou	rse Learning Objective	es: The students will be able to				
1	Prepare for a background in abstraction, notation, and critical thinking for the					
1	mathematics most directly related to computer science.					
2	Understand and apply mathematical induction, combinatorics, discrete probability,					
2	sequence and recurrence, elementary number theory.					
3	Understand and apply	probability distribution, sampli	ng theory and joint probability			
	distributions.					

UNIT-I	
Properties of the Integers: The Well Ordering Principle-Mathematical	Hrs 8
Induction.	
Principles of Counting: Fundamental Principles of Counting, The Rules of Sum	
and Product, Permutations, Combinations - The Binomial and Multinomial	
Theorem, Combinations with Repetition.	
Application: Distribution with repetition.	
Video Link:	
1. <u>http://nptel.ac.in/courses.php?disciplineID=111</u>	
2. http://www.class-central.com/subject/math(MOOCs)	
3. <u>http://academicearth.org/</u>	
UNIT-II	
The Principle of Inclusion and Exclusion: The Principle of Inclusion and	Hrs 8
Exclusion, Generalizations of the Principle. Derangements-Nothing is in its	
Right Place, Rook Polynomials.	
Recurrence Relations: First Order Linear Recurrence Relation, The Second	
Order Linear Homogeneous Recurrence Relation with Constant Coefficients.	
Application: Arrangement with forbidden position.	
Video Link:	
1. <u>http://nptel.ac.in/courses.php?disciplineID=111</u>	
2. http://www.class-central.com/subject/math(MOOCs)	
3. <u>http://academicearth.org/</u>	
UNIT-III	
Relations: Cartesian Products, Relations, Properties of Relations,	Hrs 8
Equivalence Relations. Zero-One Matrices and Directed Graphs. Partial	

Orders-Hasse Diagrams and extreme elements.	
Functions: Plain and One to One, Onto Functions. The Pigeon-hole	
Principle, Function Composition and Inverse Functions.	
Application: Zero-one matrix and Hasse diagram	
Video Link:	
• <u>http://nptel.ac.in/courses.php?disciplineID=111</u>	
 <u>http://www.class-central.com/subject/math(MOOCs)</u> 	
• <u>http://academicearth.org/</u>	
UNIT-IV	
Probability Distributions: Random variables (discrete and continuous),	Hrs 8
probability mass/density functions. Binomial distribution, Poisson	
distribution. Exponential and normal distributions, problems.	
Joint probability distribution: Joint Probability distribution for two	
discrete random variables, expectation, covariance, correlation coefficient.	
Application: Finding correlation between random variables.	
Video Link:	
http://nptel.ac.in/courses.php?disciplineID=111	
 <u>http://www.class-central.com/subject/math(MOOCs)</u> 	
• <u>http://academicearth.org/</u>	
UNIT-V	
 Sampling Theory: Sampling, Sampling distributions, standard error, test of hypothesis for means and proportions, confidence limits for means, student's t-distribution and Chi-square distribution. Coding Theory: Coding of binary information and error detection. Application: Testing the level of significance & the goodness of fit for large sample and small sample. Video Link: 	Hrs 8
1. <u>http://nptel.ac.in/courses.php?disciplineID=111</u>	
2. http://www.class-central.com/subject/math(MOOCs)	
3. <u>http://academicearth.org/</u>	

Cours	se Outcomes: After completing the course, the students will be able to
CO1	Demonstrate the application of discrete structures in different fields of computer
	Science.
CO2	Solve problems using recurrence relations and generating functions.
CO3	Solving logical problem using concepts of relations and functions.

CO4	Develop probability distribution of discrete, continuous random variables and joint
	probability distribution occurring in digital signal processing, information meory
	and Design engineering.
CO5	Demonstrate testing of hypothesis of sampling distributions.

R	ef	erence Books						
1	ι.	B.S. Grewal, "Higher Engineering Mathematics" Khanna Publishers, 43rd						
		Edition,2013.						
2	2.	Ralph P. Grimaldi: Discrete and Combinatorial Mathematics, 5th Edition, Pearson						
		Education. 2004.						
	3.	Ramana B. V., "Higher Engineering Mathematics", Tata Mc Graw-Hill, 2006.						
4	1.	Bali N. P. & Manish Goyal, "A text book of Engineering Mathematics", Laxmi						
		Publications, 8th Edition						

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

						CO-PO)/PSO	Mapp	oing					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	-	3	-	-	-	-	-	-	1	1	2	-
CO2	2	3	-	3	-	-	-	-	-	-	1	1	1	-
CO3	2	3	-	3	-	-	-	-	-	-	1	1	2	3
CO4	3	3	-	3	-	-	-	-	-	-	1	1	2	-
CO5	3	3	-	3	-	-	-	-	-	-	1	1	2	2

		Semester: III				
	OBJECT ORIENTED PROGRAMMING					
		(Theory)				
Cou	rse Code:	MVJ21IS32	CIE Marks:50			
Cree	dits:	4	SEE Marks: 50			
Hours:		40 L+26T	SEE Duration: 3 Hrs			
Cou	rse Learning Objective	es: The students will be	able to			
1	Identify the need for Java - an object-oriented language. Set up Java JDK environment to create, debug and run simple Java programs.					
2	Illustrate the use of classes and distinguish the usage of different types of Inheritance and constructors in real world.					
3	Demonstrate the use of exceptions and to create multi-threaded programs					
4	Illustrate the use of Collections with elements in Java program.					
5	Develop Java Application using JDBC connectivity.					

UNIT-I	
Prerequisites: Basic Knowledge about C or C++	Hrs 8
Introduction to Object Oriented Concepts and Java: Java's Magic: the Byte	
code; Java Development Kit (JDK); The Java Buzz words, Object Oriented	
Programming - Two Paradigms, Abstraction, The Three OOP Principles and its	
advantages, Simple Java programs. Data types, variables and arrays, Operators,	
Control Statements.	
Laboratory Sessions/ Experimental learning:	
A professor in college will allow a student to be excused from the final exam if	
either of the following is true:	
• They have a 90% average or higher in the class and have missed 3 or less class	
lectures.	
• They have a 80% average or higher in the class and have not missed any class	
lectures.	
The program below will determine whether a student can get out of the exam or	
not. Rewrite the program so only one if statement is used.	
Applications: Arrays in mathematical vectors, matrices.	
Video link / Additional online information (related to module if any):	
• Differences between JVM vs JRE vs JDK in Java:	
https://www.youtube.com/watch?v=5Bp6GLU6HKE	

UNIT-II

Classes, Inheritance, Packages and Interfaces: Classes fundamentals;	Hrs 8
Declaring objects; Assigning object reference variables; Introducing Methods,	
Constructors, this keyword, Finalize Method. Inheritance: Inheritance basics,	
using super, creating multi-level hierarchy ,when constructors are called, method	
overriding, using abstract classes. Packages, Access Protection, Importing	
Packages, Interfaces.	
Laboratory Sessions/ Experimental learning:	
Write a program that calculates the number of buckets of paint to use for a room	
and the optimal number of cans to purchase. You need to ask the height of the	
room and the length and width of the room. The room is rectangular. You must	
paint the walls and the ceiling but not the floor. There are no windows or	
skylights. You can purchase the following size buckets of paint.	
• 5-liter bucket costs \$15 each and covers 1500 square feet.	
• 1-liter bucket costs \$4 and covers 300 square feet.	
Applications: Inheritance in Banking Sectors	
Video link / Additional online information (related to module if any):	
Types of Inheritance: <u>https://www.youtube.com/watch?v=ZP27c7i5zpg</u>	
UNIT-III	
UNIT-III Exception Handling and Multi-Threaded Programming: Exception Handling	Hrs 8
UNIT-III Exception Handling and Multi-Threaded Programming: Exception Handling fundamentals, Exception Types, Uncaught Exceptions, Using try catch, Multiple	Hrs 8
UNIT-III Exception Handling and Multi-Threaded Programming: Exception Handling fundamentals, Exception Types, Uncaught Exceptions, Using try catch, Multiple catch clauses, Nested try statements, throw, throws, finally, Java's built-in	Hrs 8
UNIT-III Exception Handling and Multi-Threaded Programming: Exception Handling fundamentals, Exception Types, Uncaught Exceptions, Using try catch, Multiple catch clauses, Nested try statements, throw, throws, finally, Java's built-in exceptions, Programming Examples.	Hrs 8
UNIT-IIIException Handling and Multi-Threaded Programming: Exception Handlingfundamentals, Exception Types, Uncaught Exceptions, Using try catch, Multiplecatch clauses, Nested try statements, throw, throws, finally, Java's built-inexceptions, Programming Examples.Multi-Threaded Programming: The java thread model, Main thread, Creating	Hrs 8
UNIT-III Exception Handling and Multi-Threaded Programming: Exception Handling fundamentals, Exception Types, Uncaught Exceptions, Using try catch, Multiple catch clauses, Nested try statements, throw, throws, finally, Java's built-in exceptions, Programming Examples. Multi-Threaded Programming: The java thread model, Main thread, Creating Thread, Creating multiple threads, Using isAlive() and join(),Thread priorities,	Hrs 8
UNIT-III Exception Handling and Multi-Threaded Programming: Exception Handling fundamentals, Exception Types, Uncaught Exceptions, Using try catch, Multiple catch clauses, Nested try statements, throw, throws, finally, Java's built-in exceptions, Programming Examples. Multi-Threaded Programming: The java thread model, Main thread, Creating Thread, Creating multiple threads, Using isAlive() and join(),Thread priorities, Synchronization; Interthread Communication - Bounded buffer problem.	Hrs 8
UNIT-III Exception Handling and Multi-Threaded Programming: Exception Handling fundamentals, Exception Types, Uncaught Exceptions, Using try catch, Multiple catch clauses, Nested try statements, throw, throws, finally, Java's built-in exceptions, Programming Examples. Multi-Threaded Programming: The java thread model, Main thread, Creating Thread, Creating multiple threads, Using isAlive() and join(),Thread priorities, Synchronization; Interthread Communication - Bounded buffer problem. Laboratory Sessions/ Experimental learning:	Hrs 8
UNIT-III Exception Handling and Multi-Threaded Programming: Exception Handling fundamentals, Exception Types, Uncaught Exceptions, Using try catch, Multiple catch clauses, Nested try statements, throw, throws, finally, Java's built-in exceptions, Programming Examples. Multi-Threaded Programming: The java thread model, Main thread, Creating Thread, Creating multiple threads, Using isAlive() and join(),Thread priorities, Synchronization; Interthread Communication - Bounded buffer problem. Laboratory Sessions/ Experimental learning: The Producer-Consumer problem describes two processes, the producer and the	Hrs 8
UNIT-III Exception Handling and Multi-Threaded Programming: Exception Handling fundamentals, Exception Types, Uncaught Exceptions, Using try catch, Multiple catch clauses, Nested try statements, throw, throws, finally, Java's built-in exceptions, Programming Examples. Multi-Threaded Programming: The java thread model, Main thread, Creating Thread, Creating multiple threads, Using isAlive() and join(),Thread priorities, Synchronization; Interthread Communication - Bounded buffer problem. Laboratory Sessions/ Experimental learning: The Producer-Consumer problem describes two processes, the producer and the consumer, which share a common, fixed-size buffer used as a queue. The	Hrs 8
UNIT-III Exception Handling and Multi-Threaded Programming: Exception Handling fundamentals, Exception Types, Uncaught Exceptions, Using try catch, Multiple catch clauses, Nested try statements, throw, throws, finally, Java's built-in exceptions, Programming Examples. Multi-Threaded Programming: The java thread model, Main thread, Creating Thread, Creating multiple threads, Using isAlive() and join(),Thread priorities, Synchronization; Interthread Communication - Bounded buffer problem. Laboratory Sessions/ Experimental learning: The Producer-Consumer problem describes two processes, the producer and the consumer, which share a common, fixed-size buffer used as a queue. The producer's job is to generate data, put it into the buffer, and start again. At the	Hrs 8
UNIT-III Exception Handling and Multi-Threaded Programming: Exception Handling fundamentals, Exception Types, Uncaught Exceptions, Using try catch, Multiple catch clauses, Nested try statements, throw, throws, finally, Java's built-in exceptions, Programming Examples. Multi-Threaded Programming: The java thread model, Main thread, Creating Thread, Creating multiple threads, Using isAlive() and join(),Thread priorities, Synchronization; Interthread Communication - Bounded buffer problem. Laboratory Sessions/ Experimental learning: The Producer-Consumer problem describes two processes, the producer and the consumer, which share a common, fixed-size buffer used as a queue. The producer's job is to generate data, put it into the buffer, and start again. At the same time, the consumer is consuming the data (i.e. removing it from the buffer),	Hrs 8
UNIT-III Exception Handling and Multi-Threaded Programming: Exception Handling fundamentals, Exception Types, Uncaught Exceptions, Using try catch, Multiple catch clauses, Nested try statements, throw, throws, finally, Java's built-in exceptions, Programming Examples. Multi-Threaded Programming: The java thread model, Main thread, Creating Thread, Creating multiple threads, Using isAlive() and join(),Thread priorities, Synchronization; Interthread Communication - Bounded buffer problem. Laboratory Sessions/ Experimental learning: The Producer-Consumer problem describes two processes, the producer and the consumer, which share a common, fixed-size buffer used as a queue. The producer's job is to generate data, put it into the buffer, and start again. At the same time, the consumer is consuming the data (i.e. removing it from the buffer), one piece at a time.	Hrs 8
UNIT-III Exception Handling and Multi-Threaded Programming: Exception Handling fundamentals, Exception Types, Uncaught Exceptions, Using try catch, Multiple catch clauses, Nested try statements, throw, throws, finally, Java's built-in exceptions, Programming Examples. Multi-Threaded Programming: The java thread model, Main thread, Creating Thread, Creating multiple threads, Using isAlive() and join(),Thread priorities, Synchronization; Interthread Communication - Bounded buffer problem. Laboratory Sessions/ Experimental learning: The Producer-Consumer problem describes two processes, the producer and the consumer, which share a common, fixed-size buffer used as a queue. The producer's job is to generate data, put it into the buffer, and start again. At the same time, the consumer is consuming the data (i.e. removing it from the buffer), one piece at a time. Make sure that the producer won't try to add data into the buffer if it's full and that	Hrs 8
 UNIT-III Exception Handling and Multi-Threaded Programming: Exception Handling fundamentals, Exception Types, Uncaught Exceptions, Using try catch, Multiple catch clauses, Nested try statements, throw, throws, finally, Java's built-in exceptions, Programming Examples. Multi-Threaded Programming: The java thread model, Main thread, Creating Thread, Creating multiple threads, Using isAlive() and join(),Thread priorities, Synchronization; Interthread Communication - Bounded buffer problem. Laboratory Sessions/ Experimental learning: The Producer-Consumer problem describes two processes, the producer and the consumer, which share a common, fixed-size buffer used as a queue. The producer's job is to generate data, put it into the buffer, and start again. At the same time, the consumer is consuming the data (i.e. removing it from the buffer), one piece at a time. Make sure that the producer won't try to add data into the buffer if it's full and that the consumer won't try to remove data from an empty buffer. Write a java code 	Hrs 8

Applications: Multithreads in Browsers, Servers	
Video link / Additional online information (related to module if any):	
• Multithreading: <u>https://www.youtube.com/watch?v=O_Ojfq-OIpM</u>	
UNIT-IV	
The collections and Framework: Collections Overview, Recent Changes to	Hrs 8
Collections, The Collection Interfaces, The Collection Classes, Accessing a	
collection Via an Iterator, Storing User Defined Classes in Collections.	
Java Lambda expressions: Java Lambda expressions, Using Java Lambda	
expressions, Lambda expression vs method in java, Lambda expression in the	
array list.	
Laboratory Sessions/ Experimental learning:	
Write a Java program to iterate through all elements in a array list .	
Write a Java program to create a new array list, add some colors (string) and print	
out the collection	
Applications: Elements in group	
Video link / Additional online information (related to module if any):	
• <u>https://www.youtube.com/watch?v=Q_9vV3H-dt4</u>	
UNIT-V	
JDBC: The Concept of JDBC; JDBC Driver Types; JDBC Packages; A Brief	Hrs 8
Overview of the JDBC process; Database Connection; Associating the	
JDBC/ODBC Bridge with the Database; Statement Objects; ResultSet;	
Transaction Processing; Metadata, Data types; Exceptions.	
Laboratory Sessions/ Experimental learning:	
Develop Student Management System application with swings as the front end	
and database as the back end using JDBC connectivity.	
Applications: Scientific Applications, Financial Applications	
Video link / Additional online information (related to module if any):	
• Java JDBC : <u>https://www.youtube.com/watch?v=hEWBIJxrLBQ</u>	

Cours	se Outcomes: After completing the course, the students will be able to					
CO1	Illustrate the Object Oriented Programming concepts and basic characteristics of					
	Java.					
CO2	Demonstrate the principles of classes, inheritance, packages and interfaces.					
CO3	Experiment with exception handling Mechanisms and Create multi-threaded					
	programs.					

CO4	Interpret the need for advanced Java concepts like collections in developing modular and efficient programs.
CO5	Develop an application with Database using JDBC connectivity.

Reference Books

1.	Herbert Schildt, Java The Complete Reference, 7 /9th Edition, Tata McGraw Hill, 2007.									
2.	Jim Keogh: J2EE-The Complete Reference, McGraw Hill, 2007.									
3.	Effective Java, Third Edition, Joshua Bloch, Addison-Wesley Professional, 2017									
4.	Richard Warburton, Java 8 Lambdas: Pragmatic Functional Programming Kindle									
	Edition.									

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO/PSO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	1	-	-	-	-	-	-	-	-	3	2	-
CO2	3	3	1	-	-	-	-	-	-	-	-	3	2	-
CO3	3	3	1	2	-	-	-	-	-	1	-	3	2	3
CO4	3	3	3	3	-	-	-	2	2	2	-	3	2	-
CO5	3	3	3	3	-	-	2	2	3	2	-	3	2	3

	Semester: III							
	OPERATING SYSTEMS							
Cou	Course Code: MVJ21IS33 CIE Marks:100							
Crea	Credits: L:T:P:S:3:1:0:0 SEE Marks: 100							
Hou	Hours: 40L+26T SEE Duration: 3 Hrs							
Cou	rse Learning Objectives: The students	s will be able to						
1	1 Introduce concepts and terminology used in OS.							
2	2 Explain threading and multithreaded systems.							
3	3 Illustrate process synchronization and concept of Deadlock.							
4	Introduce Memory and Virtual memor	y management, File sy	stem and storage techniques.					

UNIT-I

Introduction: What operating systems do; Computer System organization;	8 Hrs
Computer System architecture; Operating System operations; Distributed system;	l
Special-purpose systems; Computing environments. Operating System Services;	l
User - Operating System interface; System calls; Types of system calls; System	l
programs; Operating system design and implementation; Operating System	l
structure; Virtual machines; System boot.	l
Process Management: Process concept; Process scheduling; Operations on	l
processes; Inter process communication.	
UNIT-II	
Multi-threaded Programming: Overview; Multithreading models; Thread	8 Hrs
Libraries; Threading issues. Process Scheduling: Basic concepts; Scheduling	l
Criteria; Scheduling Algorithms; Multiple-processor scheduling; Thread	l
scheduling.	l
Process Synchronization: Synchronization: The critical section problem;	l
Peterson's solution; Synchronization hardware; Semaphores; Classical problems	l
of synchronization; Monitors.	l
UNIT-III	
Deadlocks : Deadlocks; System model; Deadlock characterization; Methods for	8 Hrs
handling deadlocks; Deadlock prevention; Deadlock avoidance; Deadlock detection and	l
recovery from deadlock.	l
Memory Management: Memory management strategies: Background; Swapping;	l
Contiguous memory allocation; Paging; Structure of page table; Segmentation	l
UNIT-IV	
Virtual Memory Management: Background: Demand paging: Copy-on-write: Page	8 Hrs
virtual Memory Management. Background, Demand paging, Copy on whice, rage	0 1115
replacement; Allocation of frames; Thrashing.	01113
replacement; Allocation of frames; Thrashing.File System, Implementation of File System: File system: File concept; Access	0 1113

Implementing File system: File system structure; File system implementation;					
Directory implementation; Allocation methods; Free space management.					
UNIT-V					
Mass Storage Structure-Disk Structure-Disk Attachment-Disk Scheduling-Disk	8 Hrs				
Management- Swap-Space Management.					
Protection: Domain of protection, Access matrix, Implementation of access matrix,					
Access control, Revocation of access rights, Capability- Based systems.					
Case Studies: Windows, Unix, Linux, Android.					

Cours	Course Outcomes: After completing the course, the students will be able to					
CO1	Illustrate the fundamental concepts of operating systems					
CO2	Compare and illustrate various process scheduling algorithms.					
CO3	Ability to recognize and resolve Deadlock problems, Memory Management techniques.					
CO4	Apply appropriate memory and file management schemes.					
CO5	Appreciate the need of access control and protection in Operating System and illustrate					
	various disk scheduling algorithms.					

Ref	erence Books
1.	Abraham Silberschatz, Peter Baer Galvin, Greg Gagne, Operating System Concepts 7th
	edition,Wiley-India, 2006
2.	D.M Dhamdhere, Operating Systems: A Concept Based Approach 3rd Ed, McGraw-Hill, 2013.
3.	Tanenbaum, A., "Modern Operating Systems", Prentice-Hall of India. 2004
4.	P.C.P. Bhatt, An Introduction to Operating Systems: Concepts and Practice 4th Edition

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will

have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO/PSO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	2	-	-	-	-	-	-	-	-	-	2	-
CO2	2	2	3	-	-	-	-	-	-	-	-	-	2	-
CO3	3	2	3	-	-	-	-	-	-	-	-	-	3	-
CO4	3	2	3	-	-	-	-	-	-	-	-	-	2	2
CO5	3	2	3	-	-	-	-	-	-	-	-	-	2	-

High-3, Medium-2, Low-1

	Semester: III								
	DATA STRUCTURES AND APPLICATIONS & LAB								
		(Theory an	d Practice)						
Cou	rse Code:	MVJ21IS34	CIE Marks:50+50						
Cree	lits:	4	SEE Marks: 50 +50						
Hou	rs:		SEE Duration: 03+03 Hours						
Cou	rse (Theory) Lo	earning Objectives: The stud	lents will be able to						
1	Identify the im	portance of data structures &	memory allocation.						
2	Perform operation	tions on stacks and queues and	d its applications.						
3	Apply the open	rations of linked list, Trees &	Graphs in various applications.						
4	Apply searching	ng and sorting operations in re	al time applications.						
Cou	rse (Laborator	y) Learning Objectives: The	students will be able to						
1	Linear data structures and their applications such as stacks, queues and lists,								
2	Non-Linear data structures and their applications such as Trees & Graphs								
3	Sorting and Ha	ashing techniques.							

UNIT-I

Introduction: Data Structures, Classifications (Primitive & Non-Primitive), Data structure	Hrs 10
Operations, Review of Arrays, Structures, Self-Referential Structures. Pointers and Dynamic	
Memory Allocation Functions. Representation of Linear Arrays in Memory, dynamically	
allocated arrays.	
Abstract Data Type, Array Operations: Traversing, inserting, deleting, searching, and	
sorting,	

Array ADT: Multidimensional Arrays, Polynomials and Sparse Matrices.

Strings: Basic Terminology, Storing, Operations and Pattern Matching algorithms. Programming Examples.

Laboratory Sessions/ Experimental learning:

- Create an array of structure which has the following members Student name, Student USN, Marks1, Marks2, Marks3. Allocate memory to store 5 students details initially. When new student details need to be entered or to be deleted in this array, dynamically change the array size. Write a program to implement this scenario and display the result.
- 2. Find the bug for the following code and then Debug it

```
int minval(int *A, int n) {
```

int currmin;

```
for (int i=0; i<n; i++)
```

```
if (A[i] < currmin)
```

```
currmin = A[i];
```

return currmin;

```
}
```

 Compile the following code and debug it. #include <stdio.h>

```
#include <string.h>
```

struct student

```
{
```

int id;

char name[30];

float percentage;

```
};
```

int main()

```
{
```

int i;

```
struct student record1 = {1, "Raju", 90.5};
```

struct student *ptr;

```
printf("Records of STUDENT1: \n");
```

printf(" Id is: %d \n", ptr->id);	
printf(" Name is: %s \n", ptr->name);	
printf(" Percentage is: %f \n\n", ptr->percentage);	
return 0;	
}	
Real Time Applications: System memory allocation	
Video link / Additional online information (related to module if any):	
1. https://nptel.ac.in/courses/106106130/	
2. https://nptel.ac.in/courses/106105085/	
3. https://nptel.ac.in/courses/106/106/106106127/	
4. https://www.coursera.org/lecture/data-structures/arrays-OsBSF	
UNIT-II	L
Stacks: Definition, Stack Operations, Stack ADT, Array Representation of Stacks, Stacks	Hrs 10
using Dynamic Arrays, Stack Applications: Polish notation, Infix to postfix conversion,	
evaluation of postfix expression.	
Recursion - GCD, Tower of Hanoi.	
Queues: Definition, Array Representation, Queue Operations, Queue ADT, Circular	
Queues, Circular queues using Dynamic arrays, Dequeues, Priority Queues. Programming	
Examples.	
Laboratory Sessions/ Experimental learning:	
Design, Develop and Implement a menu driven Program in C for the following operations	
on DEQUEUE of Integers (Array Implementation of Queue with maximum size MAX)	
a. Insert an Element on to DEQUEUE	
b. Delete an Element from DEQUEUE	
c. Demonstrate Overflow and Underflow situations on DEQUEUE	
d. Display the status of DEQUEUE	
e. Exit Support the program with appropriate functions for each of the above operations	
Real Time Applications: Game applications, Ticket booking applications (Eg: Train,	
restaurant etc)	
Video link / Additional online information (related to module if any):	
1.https://nptel.ac.in/courses/106106130/	
2. https://nptel.ac.in/courses/106102064/	
3. https://nptel.ac.in/courses/106105085/	
4.https://nptel.ac.in/courses/106/106/106106127/	

UNIT-III	
Linked Lists: Definition, Representation of linked lists in Memory, Memory allocation;	Hrs 10
Garbage Collection. Linked list operations: Traversing, Searching, Insertion, and Deletion.	
Doubly Linked lists, Circular linked lists, and header linked lists. Linked Stacks and Queues.	
Applications of Linked lists – Polynomials. Programming Examples	
Hashing: Hash Table organizations, Hashing Functions, Static and Dynamic Hashing.	
Laboratory Sessions/ Experimental learning:	
1.Design, Develop and Implement a Program in C for the following operations on Singly	
Circular Linked List (SCLL) with header nodes a. Represent and Evaluate a Polynomial	
P(x,y,z) = 6x2 y 2 z-4yz5 +3x3 yz+2xy5 z-2xyz3 b. Find the sum of two polynomials	
POLY1(x,y,z) and POLY2(x,y,z) and store the result in POLYSUM(x,y,z) Support the	
program with appropriate functions for each of the above operations	
2. Debug the following code and explain the process	
//Insert a value into an ordered linked list	
void insert(lnode*& curr, int val) {	
if (curr == NULL)	
curr = new lnode(val, NULL);	
else if (lnode->val > val)	
curr = new lnode(val, curr->next);	
else {	
curr = curr->next;	
insert(curr, val);	
}	
}	
Real Time Applications: Music Player, Image Viewer, Web browser, Process Management, Mechanical field	
Video link / Additional online information (related to module if any):	
1. https://nptel.ac.in/courses/106106130/	
2. https://nptel.ac.in/courses/106102064/	
https://nptel.ac.in/courses/106105085/	
UNIT-IV Trace Terminology Binary Trace Properties of Binary trace Array and linked	Hrs 10
Presentation of Dinamy Trees, Properties of Binary trees, Array and linked	1115 10
Representation of Binary Trees, Binary Tree Traversals - Inorder, postorder, preorder;	

Additional Binary tree operations. Threaded binary trees, Binary Search Trees – Definition,					
Insertion, Deletion, Traversal, Searching, Application of Trees-Evaluation of Expression,					
AVL Trees, Splay Trees, B-Tree, Programming Examples					
Laboratory Sessions/ Experimental learning:					
Design, Develop and Implement a menu driven Program in C for the following operations					
on AVL Trees					
i) Construct an AVL tree by inserting the following elements in the given order.					
63, 9, 19, 27, 18, 108, 99, 81.					
ii)searching for a node					
iii)Deleting a node					
Real Time Applications: Indexing in databases, Programming Languages, Computer chess					
games, Computer file system, Undo function in text editor, representing city region					
telephone network etc.					
Video link:					
 https://nptel.ac.in/courses/106102064/ 					
• http://www.digimat.in/nptel/courses/video/106106127/L50.html					
https://www.youtube.com/watch?y_ffgg_zmbaxw					
https://www.youtube.com/watch.v=ngg_zhouxw					
UNIT-V					
UNIT-V Graphs: Definitions, Terminologies, Matrix and Adjacency List Representation of Graphs,	Hrs 10				
UNIT-V Graphs: Definitions, Terminologies, Matrix and Adjacency List Representation of Graphs, Elementary Graph operations, Traversal methods: Breadth First Search and Depth First	Hrs 10				
UNIT-V Graphs: Definitions, Terminologies, Matrix and Adjacency List Representation of Graphs, Elementary Graph operations, Traversal methods: Breadth First Search and Depth First Search, Topological Sort.	Hrs 10				
UNIT-V Graphs: Definitions, Terminologies, Matrix and Adjacency List Representation of Graphs, Elementary Graph operations, Traversal methods: Breadth First Search and Depth First Search, Topological Sort. Sorting and Searching: Quick sort, Insertion Sort, Radix sort, Merge Sort, Address	Hrs 10				
UNIT-V Graphs: Definitions, Terminologies, Matrix and Adjacency List Representation of Graphs, Elementary Graph operations, Traversal methods: Breadth First Search and Depth First Search, Topological Sort. Sorting and Searching: Quick sort, Insertion Sort, Radix sort, Merge Sort, Address Calculation Sort.	Hrs 10				
UNIT-V Graphs: Definitions, Terminologies, Matrix and Adjacency List Representation of Graphs, Elementary Graph operations, Traversal methods: Breadth First Search and Depth First Search, Topological Sort. Sorting and Searching: Quick sort, Insertion Sort, Radix sort, Merge Sort, Address Calculation Sort. Laboratory Sessions/ Experimental learning:	Hrs 10				
UNIT-V Graphs: Definitions, Terminologies, Matrix and Adjacency List Representation of Graphs, Elementary Graph operations, Traversal methods: Breadth First Search and Depth First Search, Topological Sort. Sorting and Searching: Quick sort, Insertion Sort, Radix sort, Merge Sort, Address Calculation Sort. Laboratory Sessions/ Experimental learning: Sort a given set of elements using the sorting Method which divides input array in two halves,	Hrs 10				
UNIT-V Graphs: Definitions, Terminologies, Matrix and Adjacency List Representation of Graphs, Elementary Graph operations, Traversal methods: Breadth First Search and Depth First Search, Topological Sort. Sorting and Searching: Quick sort, Insertion Sort, Radix sort, Merge Sort, Address Calculation Sort. Laboratory Sessions/ Experimental learning: Sort a given set of elements using the sorting Method which divides input array in two halves, calls itself for the two halves and then merges the two sorted halves" and determine the time	Hrs 10				
UNIT-V Graphs: Definitions, Terminologies, Matrix and Adjacency List Representation of Graphs, Elementary Graph operations, Traversal methods: Breadth First Search and Depth First Search, Topological Sort. Sorting and Searching: Quick sort, Insertion Sort, Radix sort, Merge Sort, Address Calculation Sort. Laboratory Sessions/ Experimental learning: Sort a given set of elements using the sorting Method which divides input array in two halves, calls itself for the two halves and then merges the two sorted halves" and determine the time required to sort the elements. Repeat the experiment for different values of n, the number of	Hrs 10				
UNIT-V Graphs: Definitions, Terminologies, Matrix and Adjacency List Representation of Graphs, Elementary Graph operations, Traversal methods: Breadth First Search and Depth First Search, Topological Sort. Sorting and Searching: Quick sort, Insertion Sort, Radix sort, Merge Sort, Address Calculation Sort. Laboratory Sessions/ Experimental learning: Sort a given set of elements using the sorting Method which divides input array in two halves, calls itself for the two halves and then merges the two sorted halves" and determine the time required to sort the elements. Repeat the experiment for different values of n, the number of elements in the list to be sorted and plot a graph of the time taken versus n. The elements can	Hrs 10				
UNIT-V Graphs: Definitions, Terminologies, Matrix and Adjacency List Representation of Graphs, Elementary Graph operations, Traversal methods: Breadth First Search and Depth First Search, Topological Sort. Sorting and Searching: Quick sort, Insertion Sort, Radix sort, Merge Sort, Address Calculation Sort. Laboratory Sessions/ Experimental learning: Sort a given set of elements using the sorting Method which divides input array in two halves, calls itself for the two halves and then merges the two sorted halves" and determine the time required to sort the elements. Repeat the experiment for different values of n, the number of elements in the list to be sorted and plot a graph of the time taken versus n. The elements can be read from a file or can be generated using the random number generator.	Hrs 10				
UNIT-V Graphs: Definitions, Terminologies, Matrix and Adjacency List Representation of Graphs, Elementary Graph operations, Traversal methods: Breadth First Search and Depth First Search, Topological Sort. Sorting and Searching: Quick sort, Insertion Sort, Radix sort, Merge Sort, Address Calculation Sort. Laboratory Sessions/ Experimental learning: Sort a given set of elements using the sorting Method which divides input array in two halves, calls itself for the two halves and then merges the two sorted halves" and determine the time required to sort the elements. Repeat the experiment for different values of n, the number of elements in the list to be sorted and plot a graph of the time taken versus n. The elements can be read from a file or can be generated using the random number generator. Real Time Applications: Graph Theory, E-Commerce websites, Google Maps, Facebook	Hrs 10				
UNIT-V Graphs: Definitions, Terminologies, Matrix and Adjacency List Representation of Graphs, Elementary Graph operations, Traversal methods: Breadth First Search and Depth First Search, Topological Sort. Sorting and Searching: Quick sort, Insertion Sort, Radix sort, Merge Sort, Address Calculation Sort. Laboratory Sessions/ Experimental learning: Sort a given set of elements using the sorting Method which divides input array in two halves, calls itself for the two halves and then merges the two sorted halves" and determine the time required to sort the elements. Repeat the experiment for different values of n, the number of elements in the list to be sorted and plot a graph of the time taken versus n. The elements can be read from a file or can be generated using the random number generator. Real Time Applications: Graph Theory, E-Commerce websites, Google Maps, Facebook Video link:	Hrs 10				
UNIT-V Graphs: Definitions, Terminologies, Matrix and Adjacency List Representation of Graphs, Elementary Graph operations, Traversal methods: Breadth First Search and Depth First Search, Topological Sort. Sorting and Searching: Quick sort, Insertion Sort, Radix sort, Merge Sort, Address Calculation Sort. Laboratory Sessions/ Experimental learning: Sort a given set of elements using the sorting Method which divides input array in two halves, calls itself for the two halves and then merges the two sorted halves" and determine the time required to sort the elements. Repeat the experiment for different values of n, the number of elements in the list to be sorted and plot a graph of the time taken versus n. The elements can be read from a file or can be generated using the random number generator. Real Time Applications: Graph Theory, E-Commerce websites, Google Maps, Facebook Video link: • https://www.youtube.com/watch?v=hk5rQs7TQ7E&feature=youtu.be	Hrs 10				
UNIT-V Graphs: Definitions, Terminologies, Matrix and Adjacency List Representation of Graphs, Elementary Graph operations, Traversal methods: Breadth First Search and Depth First Search, Topological Sort. Sorting and Searching: Quick sort, Insertion Sort, Radix sort, Merge Sort, Address Calculation Sort. Laboratory Sessions/ Experimental learning: Sort a given set of elements using the sorting Method which divides input array in two halves, calls itself for the two halves and then merges the two sorted halves" and determine the time required to sort the elements. Repeat the experiment for different values of n, the number of elements in the list to be sorted and plot a graph of the time taken versus n. The elements can be read from a file or can be generated using the random number generator. Real Time Applications: Graph Theory, E-Commerce websites, Google Maps, Facebook Video link: • https://www.youtube.com/watch?v=hk5rQs7TQ7E&feature=youtu.be https://www.youtube.com/watch?v=hk5rQs7TQ7E&feature=youtu.be	Hrs 10				

S No	Experiment Name	Hrs							
	A courier company has								
	customers through its sa								
	to deliver the respective								
	S.No								
	1	Agra	25						
1	2	Chennai	50	3					
1	3	Kolkata	59	5					
	4	Mumbai	72						
	5	Delhi	12						
	a) To display name of	cities where sales	sman has delivered maximum						
	and minimum numb	per of items							
	To search the number of	f items to be deliv	ered of a user supplied city.						
2	Implement Knuth-Morr	mplement Knuth-Morris- Pratt pattern matching algorithm using C							
2	program.	5							
	Design, Develop and In	nplement a menu	driven Program in C with the						
	listed operations for the								
	(LIFO) order. (Use A								
	maximum size MAX).								
	a. Push an Element								
3	b. Pop an Element	3							
3	c. Demonstrate how it c	5							
	d. Demonstrate Overflow and Underflow situations								
	e. Display the status								
	f. Exit								
	Support the program wi	Support the program with appropriate functions for each of the above							
	operations								
	Design, Develop and Im	plement a Progra	m in C for converting an Infix						
4	Expression to Postfix 1	Expression. Prog	ram should support for both	3					
•	parenthesized and free p	č							
	-, *, /, % (Remainder), ^	(Power) and alph	nanumeric operands.						
	Design, Develop and Ir	nplement a menu	driven Program in C for the						
5	following operations	on Ring Buffe	r of Integers (Use Array	3					
	Implementation)								

	a. Insert an Element on to Ring Buffer	
	b. Delete an Element from Ring Buffer	
	c. Demonstrate Overflow and Underflow situations on Ring Buffer	
	d. Display the status of Ring Buffer	
	e. Exit	
	Support the program with appropriate functions for each of the above	
	operations	
	Design, Develop and Implement a menu driven Program in C for the	
	following operations on Singly Linked List (SLL) of Student Data with	
	the fields: USN, Name, Programme, Sem, PhNo	
6	a. Create a SLL of N Students Data by using front insertion	2
U	b. Display the status of SLL and count the number of nodes in it	5
	c. Perform Insertion / Deletion at End of SLL	
	d. Perform Insertion / Deletion at Front of SLL	
	e. Exit	
	Design, Develop and Implement a menu driven Program in C for the	
	following operations on Doubly Linked List (DLL) of Employee Data	
	with the fields: SSN, Name, Dept, Designation, Sal, PhNo.	
	a. Create a DLL of N Employees Data by using end insertion.	
7	b. Display the status of DLL and count the number of nodes in it.	3
	c. Perform Insertion and Deletion at End of DLL .	
	d. Perform Insertion and Deletion at Front of DLL .	
	e. Demonstrate how this DLL can be used as Double Ended Queue.	
	f. Exit	
	Design, Develop and Implement a menu driven C Program for the	
	following operations on Binary Search Tree (BST) of Integers.	
8	a) Create a BST of N Integers: 6, 9, 5, 2, 8, 15, 24, 14, 7, 8, 5, 2.	3
0	b) Traverse the BST recursively in inorder, preorder & postorder	0
	Search the BST for a given element (KEY) and report the appropriate	
	message	
	Design, Develop and Implement a Program in C for the following	
9	operations on Graph(G) of Cities	3
	a. Create a Graph of N cities using Adjacency Matrix.	

	b. Print all the nodes reachable from a given starting node in a digraph	
	using DFS/BFS method	
	Develop a C program to sort a given set of n integer elements using	
10	Quick Sort method. Run the program for varied values of n and show	3
	the results of each iteration.	
	Given a File of N employee records with a set K of Keys(4-digit) which	
	uniquely determine the records in file F. Assume that file F is maintained	
	in memory by a Hash Table (HT) of m memory locations with L as the	
11	set of memory addresses (2- digit) of locations in HT. Let the keys in K	2
11	and addresses in L are Integers. Design and develop a Program in C that	3
	uses Hash function H: $K \rightarrow L$ as H(K)=K mod m (remainder method),	
	and implement hashing technique to map a given key K to the address	
	space L. Resolve the collision (if any) using linear probing.	

Course	(Theory) Outcomes: After completing the course, the students will be able to
CO1	Identify the necessity of data structure and its storage process.
CO2	Analyze the various operations performed on stack and queues for different
	applications.
CO3	Perform various operations on linked list for different applications.
CO4	Learn Trees and its applications.
CO5	Analyze the concepts of Graphs, searching, sorting & hashing in real time.
Course	(Laboratory) Outcomes: After completing the course, the students will be able
to	
CO1	To understand how sensors and embedded systems work
CO2	Design and implement an accessory with BLE connectivity using standard mobile application development tools
CO3	To understand how to communicate with other mobile devices using various
	communication platforms such as Bluetooth and Wi-Fi.
CO4	Develop and demonstrate applications e.g. smartphone-based, sensor station
CO5	To understand how to program on embedded and mobile platforms.

Tex	t Books/ Reference Books
1.	Ellis Horowitz and Sartaj Sahni, Fundamentals of Data Structures in C, 2nd Ed,
	Universities Press, 2014.
2.	Seymour Lipschutz, Data Structures Schaum's Outlines, Revised 1st Ed, McGraw Hill,
	2014.
3.	Reema Thareja, Data Structures using C, 3rd Ed, Oxford press, 2012.

4.	Mark Allen Weiss, -Data Structures and Algorithm Analysis in Cl, 2nd Edition,
	Pearson Education, 1997.
5.	Gilberg & Forouzan, Data Structures: A Pseudo-code approach with C, 2nd Ed,
	Cengage Learning,2014.
6.	Jean-Paul Tremblay & Paul G. Sorenson, An Introduction to Data Structures with
	Applications, 2nd Ed, McGraw Hill, 2013
7.	A M Tenenbaum, Data Structures using C, PHI, 1989
8.	Robert Kruse, Data Structures and Program Design in C, 2nd Ed, PHI, 1996.
9.	http://opendatastructures.org, https://donsheehy.github.io/datastructures

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks

					CO-]	PO/PS	O Maj	pping (Theor	y)				
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	-	-	-	1	-	-	-	-	-	-	2	2	-
CO2	3	3	3	-	-	-	-	-	1	-	1	2	1	-
CO3	2	2	2	1	3	-	-	-	-	-	1	3	2	3
CO4	3	2	3	-	-	-	-	-	-	2	3	2	2	-
CO5	3	2	3	-	-	-	-	-	-	2	3	2	2	2

out of 100 and report CIE for 50 marks.

Laboratory- 50 Marks

The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are awarded 10 marks. Total marks for the laboratory is 50.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the entire syllabus. Part - B Students have

to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

				(СО-РС)/PSO	Mapp	ing (La	aborat	ory)				
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	-	3	3	-	-	3	-	3	2	1	-
CO2	3	3	2	-	3	3	-	-	3	-	3	2	1	2
CO3	3	3	2	-	3	3	-	-	3	-	3	2	2	3
CO4	3	3	2	-	3	3	-	-	3	-	3	2	2	2

		Semester: III					
		ANALOG AND DIGITAL ELECTR	RONICS AND LAB				
		(Theory and Practic	ce)				
Cou	rse Code:	MVJ21IS35	CIE Marks:50+50				
Cree	lits:	4	SEE Marks: 50 +50				
Hou	rs:		SEE Duration: 03+03 Hours				
Cou	rse (Theory) Le	arning Objectives: The students will	be able to				
1	Analyse the wo	rking of oscillators and use of regulator	ors.				
2	Make use of simplifying techniques in the design of combinational circuits.						
3	Illustrate combinational and sequential digital circuits.						
4	Demonstrate the use of flipflops and design registers and counters.						
5	Design and test Analog-to-Digital and Digital-to-Analog conversion techniques.						
Cou	rse (Laboratory	y) Learning Objectives: The students	will be able to				
1	Analog compor	nents and circuits including transistor,	regulator, etc.				
2	Combinational logic circuits.						
3	Flip - Flops and	their operations.					

4	Counters and Registers using Flip-flops.
5	Synchronous and Asynchronous Sequential Circuits

UNIT-I	
Prerequisites: Basic analog Circuits	Hrs 8
Metal Oxide Semiconductor Field Effect transistor (MOSFET): Structure and I-V	
characteristics, MOSFET as a switch, MOSFET as an amplifier, CMOS and its	
applications.	
Oscillators: Basic working and applications of RC Phase shift oscillator, Wien Bridge	
oscillator, LC oscillator, Colpitt oscillator, Crystal Oscillator.	
Linear Power Supplies: Constituents of a Linear Power Supply, Designing Mains Transformer, Linear IC voltage regulators, Regulated Power Supply Parameters.	
UNIT-II Prereguisites: Digital Electronic Fundamentals	Hrs 8
Kornough mane: Minimum forms of switching functions, two and three variable	
Karnaugh maps. four variable Karnaugh maps. Ovina McChudyy Mathadi	
Karnaugn maps, lour variable Karnaugn maps, Quine-McClusky Method:	
determination of prime implicants, The prime implicant chart, Petricks method,	
simplification of incompletely specified functions, simplification using map-entered	
variables	
Activity: Writing and Analyzing C program for K-maps.	
UNIT-III Combinational Circuits: Multiplayer Deceders, Adders, Subtractors, BCD arithmetic	Ung Q
complicational circuits. Multiplexel, Decoders, Adders, Subtractors, DeD antimiete,	11150
carry look anead adder, seriar adder, ALO-Design and popular MSI chips, digitar	
comparator, parity checker/generator, code converters, priority encoders,	
decoders/drivers for display devices,	
Activity: Designing a 32-bit ALU	
UNIT-IV Flip-Flops and Registers:	Hrs 8
Flip Flops: S-R J-K D and T flip flops Edge-triggered JK FLIP-FLOPs	
Registers: Types of Registers, Serial In - Serial Out, Serial In - Parallel out, Parallel In	
- Serial Out, Parallel In - Parallel Out, Universal Shift Register, Applications of Shift	
Registers.	
Counters: Asynchronous Counters Decoding Gates Synchronous Counters Changing	
the Counter Modulus, Decode Counters, Applications of Counters	
A stivity Implementing 2 digit counters using sever segment display	
Acuvity: Implementing 2 digit counters using seven segment display	
UNIT-V	
List of Fractical Experiments/framus-off:	Hrs 10

- Plotting the V-I characteristics of MOSFET
- Implementing adders and subtractors
- Implementing the simplified equation obtained from K-maps and verify with the truth table

	LABORATORY EXPERIMENTS	
S No	Experiment Name	Hrs
1.	Study of transistor phase shift oscillator and observe the effect of	
	variation in R & C on oscillator frequency and compare with theoretical	3
	value.	
2.	Design and test IC 723 voltage regulator.	3
3.	Given a 4-variable logic expression, simplify it using Entered Variable	
	Map and realize the simplified logic expression using 8:1 multiplexer	3
	IC.	
4.	a) Realization and implementation of 2-bit comparator using logic	
	gates.	3
	b) Implementation of 4-bit magnitude comparator using IC 7485.	
5.	To design and construct basic flip-flops R-S ,J-K,J-K Master slave flip-	3
	flops using gates and verify their truth table.	5
6.	Implementation of SISO, SIPO, PISO and PIPO shift registers using	3
	Flip- flops.	5
7.	Design and implementation of 3-bit synchronous up/down counter	3
8.	Design and implement a ring counter and Johnson counter using 4-bit	2
	shift register and demonstrate its working.	5
9.	Design and implement a mod-n (n<8) synchronous up counter using J-	3
	K Flip-Flop ICs and demonstrate its working.	5
10.	Design and implement an asynchronous counter using decade counter	
	IC to count from 0 to n (n<=9) and demonstrate on 7-segment display	3
	(using IC-7447).	

Cours	Course (Theory) Outcomes: After completing the course, the students will be able to							
CO1	Design and analyze analog circuits using transistors, power supply, MOSFETS,							
	regulator IC and opamp.							
CO2	Simplify digital circuits using Karnaugh Map, POS and Quine-McClusky Methods							
CO3	Explain construction and working of data processing circuits							
CO4	Understanding the various types of latches and flip flops and building the registers							
	and counters using flip flops.							

CO5	Explain the basic principles of A/D and D/A conversion circuits and develop the
	same.
Cours	se (Laboratory) Outcomes: After completing the course, the students will be able
to	
CO1	Demonstrate various Electronic Devices like Cathode ray Oscilloscope, Signal generators, Digital Trainer Kit, Multimeters and components like Resistors,
	Capacitors, Op amp and Integrated Circuit
CO2	Examine and verify different analog circuits.
CO3	Design and demonstrate various combinational logic circuits.
CO4	Design and demonstrate various types of counters and Registers using Flip-flops
CO5	Design and demonstrate the working of DAC.

Tex	t Books/ Reference Books
1.	Donald P Leach, Albert Paul Malvino & Goutam Saha, Digital Principles and
	Applications, 8th Edition, Tata McGraw Hill, 2015.
2.	M. Morris Mani, Digital Design, 4th Edition, Pearson Prentice Hall, 2008.
3.	David A. Bell, Electronic Devices and Circuits, 5th Edition, Oxford University Press,
	2008

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks

out of 100 and report CIE for 50 marks.

Laboratory- 50 Marks

The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are awarded 10 marks. Total marks for the laboratory is 50.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the entire syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

Γ	CIE As	sessme	ent:											
-	Regular	Lab w	ork :20)										
	Record	writing	g :5											
	Lab Tes	sts(Min	imum	2 tests	shall b	e cond	ucted f	for 15 r	narks a	and aver	age of ty	vo will l	be	
	taken)													
	Viva 10) marks	5											
-	SEE As	sessm	ent:											_
	Examinations will be conducted for 100 marks and scaled-down to 50. The weightage shall													
	be,													
	i.	Writeu	p:201	narks										
	ii. Conduction : 40 marks													
	iii. Analysis of results : 20 marks													
	iv.	Viva : 1	20											
					CO-	PO/PS	O Maj	oping (Theor	y)				
CO/PC	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO
CO1	3	3	2	2	-	-	-	-	-	-	-	1	2	-
CO2	3	3	2	2	-	-	_	-	-	-	-	1	2	-
CO3	3	3	3	2	-	-	-	-	-	-	-	1	2	-
CO4	3	3	2	2	-	-	-	-	-	-	-	1	2	_

High-3, Medium-2, Low-1

3

3

2

3

CO5

	CO-PO/PSO Mapping (Laboratory)													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2	-	-	-	-	-	-	-	-	2	-
CO2	3	3	2	2	-	-	-	-	-	-	-	-	1	-
CO3	3	3	3	2	-	-	-	-	-	-	-	-	2	1

1

1

2

CO4	3	3	2	2	-	-	-	-	-	-	-	-	2	-
CO5	3	3	3	2	-	-	-	-	-	-	-	-	1	2

	Semester: III									
(CONSTITUTION OF INDIA, PROFESSIONAL ETHICS AND CYBER LAW									
		(Theory)								
Cou	rse Code:	MVJ21CPH36	CIE Marks:50							
Cree	lits:	1	SEE Marks: 50							
Hou	rs:	20	SEE Duration: 3 Hrs							
Cou	rse Learning Objective	es: The students will be	e able to							
	To know the fundamer	To know the fundamental political codes, structure, procedures, powers, and duties of								
1	Indian constitution, Indian government institutions, fundamental rights, directive									
	principles and the duties of the citizens.									
	To provide overall legal literacy to the young technocrats to manage complex societal									
2	issues in the present scenario.									
	To understand engineer	ring ethics & their respo	nsibilities, identify their individual roles							
3	and ethical responsibilities towards society.									

UNIT-I	
Introduction to Indian Constitution	Hrs 3
The Necessity of the Constitution, The Societies before and after the	
Constitution adoption. Introduction to the Indian Constitution, The Making of	
the Constitution, The role of the Constituent Assembly – Preamble and Salient	
features of the Constitution of India. Fundamental Rights and its Restriction	
and Limitations in different Complex Situations. Directive Principles of State	
Policy (DPSP) and its present relevance in our society with examples.	
Fundamental Duties and its Scope and Significance in Nation Building.	
UNIT-II	
Union Executive and State Executive	Hrs 3
Parliamentary System, Federal System, Centre-State Relations. Union	
Executive – President, Prime Minister, Union Cabinet, Parliament - LS and RS,	
Parliamentary Committees, Important Parliamentary Terminologies. Supreme	
Court of India, Judicial Reviews and Judicial Activism. State Executives -	
Governor, Chief Minister, State Cabinet, State Legislature, High Court and	
Subordinate Courts, Special Provisions (Article 370, 371, 371J) for some	
States.	
UNIT-III	
Elections, Amendments and Emergency Provisions	Hrs 3
Elections Electoral Process and Election Commission of India Election Laws	

Amendments - Methods in Constitutional Amendments (How and Why) and	
Important Constitutional Amendments. Amendments –	
7,9,10,12,42,44,61,73,74,75,86, and 91,94,95,100,101,118 and some important	
Case Studies. Recent Amendments with explanation. Important Judgements	
with Explanation and its impact on society (from the list of Supreme Court	
Judgements).	
Emergency Provisions, types of Emergencies and it's consequences.	
Constitutional Special Provisions:	
Special Constitutional Provisions for SC & ST, OBC, Special Provision for	
Women, Children & Backward Classes.	
UNIT-IV	
Professional / Engineering Ethics	Hrs 3
Scope & Aims of Engineering & Professional Ethics - Business Ethics,	
Corporate Ethics, Personal Ethics. Engineering and Professionalism, Positive	
and Negative Faces of Engineering Ethics, Code of Ethics as defined in the	
website of Institution of Engineers (India) : Profession, Professionalism,	
Professional Responsibility. Clash of Ethics, Conflicts of Interest.	
Responsibilities in Engineering - Responsibilities in Engineering and	
Engineering Standards, the impediments to Responsibility. Trust and	
Reliability in Engineering, IPRs (Intellectual Property Rights), Risks, Safety	
and liability in Engineering.	
UNIT-V	
Internet Laws, Cyber Crimes and Cyber Laws:	Hrs 3
Internet and Need for Cyber Laws, Modes of Regulation of Internet, Types of	
cyber terror capability, Net neutrality, Types of Cyber Crimes, India and cyber	
law, Cyber Crimes and the information Technology Act 2000, Internet	
Censorship, Cybercrimes and enforcement agencies.	

CO1 Have constitutional knowledge and legal literacy	
CO2 Understand Engineering and Professional ethics and responsibilities of Engin	neers.
CO3 Understand the cyber crimes and cyber laws for cyber safety measure.	

Text Books:

1.	Constitution of India and Professional Ethics, T.S. Anupama, Sunstar Publisher
----	--

Refere	ence Books:
1.	Durga Das Basu (DD Basu): "Introduction to the Constitution on India", (Students Edition.)Prentice –Hall EEE, 19 th /20 th Edn., (Latest Edition) or 2008.
2.	Shubham Singles, Charles E. Haries, and Et al : "Constitution of India and Professional Ethics" by Cengage Learning India Private Limited, Latest Edition – 2018.
3	M.Govindarajan, S.Natarajan, V.S.Senthilkumar, "Engineering Ethics", Prentice –Hall of India Pvt. Ltd. New Delhi, 2004.
4.	M.V.Pylee, "An Introduction to Constitution of India", Vikas Publishing, 2002.
5.	Latest Publications of NHRC - Indian Institute of Human Rights, New Delhi.

Continuous Internal Evaluation (CIE): Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CIE Assessment:

CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation. Generally, there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of three tests

- Quizzes/mini tests (4 marks)
- Mini Project / Case Studies (8 Marks)
- Activities/Experimentations related to courses (8 Marks)

SEE Assessment:

- Question paper for the SEE consists two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.
- ii. Part B also covers the entire syllabus consisting of five questions having choices and may contain sub-divisions, each carrying 16 marks. Students have to answer five full questions. One question must be set from each unit.
- iii. The duration of examination is 3 hours.

	Sei	mester: III				
	SOFTWARE ENGINEERING & DESIGN					
Cou	rse Code: MVJ21IS71	CIE Marks:50+50				
Cred	lits: L:T:P: 3:0:0	SEE Marks: 50 +50				
Hou	rs:26	SEE Duration: 03 Hours				
Cou	rse Learning Objectives: The students wil	l be able to				
1	Design a software system, component, or process to meet desired needs within realistic					
-	constraints.					
2	Assess professional and ethical responsi	bility				
3	Function on multi-disciplinary teams					
4	Use the techniques, skills, and modern en	ngineering tools necessary for engineering practice				
E	Analyze, design, implement, verify, valid	late, implement, apply, and maintain software systems				
5	or parts of software systems					

UNIT-I	
Introduction, Software Processes, Requirements Engineering:	5 Hrs
Case Study : Create a software process model for library management system	
Case Study : Create a Function and Non Functional requirement for library management	
system	
UNIT-II	
Modelling Concepts and Class Modelling	6 Hrs
Case study: Design a class model for Library management system / online ticket	
Reservation system	
Hands on : Usage of UML Tools (Gliffy /smart draw)	
UNIT-III	
System Models: Interaction models Structural models . Behavioral models, Design	5 Hrs
Principles, Implementation issues	
Case study: Design a interaction model for Library management system / online ticket	
Reservation system / Coffee Vending Machine	
Hands on : Usage of UML Tools (Gliffy /smart draw)	
UNIT-IV	
Software Testing, Software Evolution, Project Planning, Quality management	5 Hrs
Case Study : Project scheduling for Library management system / online ticket	
Reservation system / Coffee Vending Machine	
Hands on : Usage of UML Tools (Gliffy /smart draw)	

UNIT-V

Software Testing, Software Evolution:

Cours	se Outcomes: After completing the course, the students will be able to
CO1	Design a software system, component, or process to meet desired needs within
	realistic constraints.
CO2	Assess professional and ethical responsibility
CO3	Function on multi-disciplinary teams
CO4	Use the techniques, skills, and modern engineering tools necessary for engineering
	practice
CO5	Analyze, design, implement, verify, validate, implement, apply, and maintain
	software systems or parts of software systems

Reference Books 1. Ian Sommerville: Software Engineering, 9th Edition, Pearson Education, 2012. (Listed topics only from Chapters 1,2,3,4, 5, 7, 8, 9, 23, and 24) 2. Michael Blaha, James Rumbaugh: Object Oriented Modelling and Design with UML,2nd Edition, Pearson Education,2005.

Continuous Internal Evaluation (CIE): Theory for 50 Marks

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	P07	P08	PO9	PO10	PO11	PO12
CO1	3	3	0	3	0	0	0	0	0	0	1	1
CO2	2	3	0	3	0	0	0	0	0	0	1	1
CO3	2	3	0	3	0	0	0	0	0	0	1	1
CO4	3	3	0	3	0	0	0	0	0	0	1	1
CO5	3	3	0	3	0	0	0	0	0	0	1	1

	Semester: III						
	ADDITIONAL MATHEMATICS-I						
		(Theory)					
Cou	rse Code:	MVJ21MATDIP-1	CIE Marks:50				
Credits:		-	SEE Marks: 50				
Hours:		40 SEE Duration: 3 Hrs					
Cou	Course Learning Objectives: The students will be able to						
	To familiarize the impo	ortant and basic concepts of Diff	erential calculus and Differential				
1 Equation, ordinary/part		tial differential equations and	Vector calculus and analyze the				
	engineering problems.						

UNIT-I

To familiarize the important and basic concepts of Differential calculus and Differential Hrs 8 Equation, ordinary/partial differential equations and Vector calculus and analyse the engineering problems.

Hrs 8

UNIT-II Integral Calculus:

	ary megrareated	as, reduction formatic and problem	5.
$c\frac{\pi}{2}$	CTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	C TA	
sinmr dr	cosmr dr	sin ^m cos ⁿ x dx	
Sur Aux	COS XUX	Sin cos x ax	

Evaluation of double and triple integrals and Simple Problems.

Video Link

- <u>https://www.youtube.com/watch?v=rCWOdfQ3cwQ</u>
- https://nptel.ac.in/courses/111/105/111105122/

UNIT-III

 Vector Calculus: Derivative of vector valued functions, Velocity, Acceleration and related problems, Scalar and Vector point functions, Gradient, Divergence, Curl, Solenoidal and Irrotational vector fields. Vector identities-div(φA), curl (φA), curl(grad φ), div(curl A)
 Hrs 8

 Video Links:
 •

 •
 https://www.math.ust.hk/~machas/vector-calculus-for-engineers.pdf

 •
 https://www.whitman.edu/mathematics/calculus_online/chapter16.html

 UNIT-IV
 Video Links

Probability:	Hrs 8
Introduction - Conditional Probability, Multiplication theorem, independent events,	
Baye's theorem and Problems	
Video Links:	
• <u>https://nptel.ac.in/courses/111/105/111105041/</u>	
• <u>https://www.khanacademy.org/math/statistics-probability/probability-library</u>	
UNIT-V	
Differential equation: Homogeneous differential equation, Linear differential equation,	Hrs 8
Bernoulli's differential equation and Exact differential equation.	
Video Link: https://www.mathsisfun.com/calculus/differential-equations.html	

Cours	se Outcomes: After completing the course, the students will be able to
CO1	Apply the knowledge of Differential calculus in the modeling of various physical
	and engineering phenomena
CO2	Apply the concept of integration and variables to evaluate multiple integrals and their
	usage in computing the area and volumes.
CO3	Study on Vector calculus to understand the various solution of the Application to
	Engineering problems.
CO4	Understand the basic Concepts of Probability
CO5	Solve first order linear differential equation analytically using standard methods.

Text B	Text Books:					
	B.S. Grewal, "Higher Engineering Mathematics" Khanna Publishers,					
1.	43 rd Edition, 2013.					
2.	Ramana B. V., "Higher Engineering Mathematics", Tata Mc Graw-Hill, 2006.					

Ref	Reference Books					
1.	Erwin Kreyszig, "Advanced Engineering Mathematics", Wiley-India publishers,					
	10thedition,2014.					
2.	G. B. Gururajachar: Calculus and Linear Algebra, Academic Excellent Series					
	Publication, 2018-19					

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CIE Assessment:

CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation. Generally,

there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final

IA marks to be awarded will be the average of three tests

- Quizzes/mini tests (10 marks)
- Assignment (10 marks)

SEE Assessment:

- i. Question paper for the SEE consists of two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.
- ii. Part B also covers the entire syllabus consisting of five questions having choices and may contain sub-divisions, each carrying 16 marks. Students have to answer five full questions.
- iii. One question must be set from each unit. The duration of examination is 3 hours.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	-	3	-	-	-	-	-	-	1	1
CO2	2	3	-	3	-	-	-	-	-	-	1	1
CO3	2	2	-	2	-	-	-	-	-	-	1	-
CO4	3	2	-	3	-	-	-	-	-	-	-	1
CO5	3	3	-	2	-	-	-	-	-	-	-	-