Course Title	Data Mining and Data warehousing	Semester	VI
Course Code	MVJ21IS61	CIE	50
Total No. of Contact Hours	40	SEE	50
No. of Contact Hours/week	4 (L:T:P::2:1:0)	Total	100
Credits	3	Exam. Duration	3 Hours

Course objective is to:

Gather and analyze large sets of data to gain useful business understanding

Understand the data mining functionalities, technologies and steps in pre-processing the data Learn data mining algorithms, methods and tools

Module-1 L1, L2, L3 12 Hours

Raw data to valuable information-Lifecycle of Data - What is data warehousing - The building Blocks: Defining Features - Data warehouses and data marts - Overview of the components - Metadata in the data warehouse - Basic elements of data warehousing - Principles of dimensional modelling: Star schema, Snowflake schema and Galaxy schema.

Application:

Identify the potential risk of default and manage and control collections

Performance analysis of each product, service, interchange, and exchange rates

Store and analyze information about faculty and students

Maintain student portals to facilitate student activities

Video Link:

https://www.youtube.com/watch?v=8lHpioyvSng

Module-2	L1,L2,L3	12 Hours
		1

Introduction to Data Mining Systems, Knowledge Discovery Process -Data Objects and attribute types, Statistical description of data, Data Preprocessing- Data Cleaning, Data Integration and Transformation, Data Reduction.

Application:

Financial Analysis

Telecommunication Industry.

Intrusion Detection

Retail Industry

Higher Education

Video Link:

https://www.youtube.com/watch?v=QRZIYzxEFDg

Module-3 L1,L2,L3 12 Hours

Market Basket Analysis, Frequent Item sets, Closed Itemsets, Association Rules, Frequent Itemset Mining Methods- Apriori algorithm, Generating Association rules from Frequent Itemsets, A Pattern- Growth Approach for mining frequent Itemsets, Mining Frequent Itemsets using the Vertical Data Format.

Application:

Market Basket Analysis

Medical Diagnosis:

Census Data

Protein Sequence

Video Link:

https://www.youtube.com/watch?v=RiFrbyiYpRs

Module-4 L1,L2,L3 12 Hours

Classification and Prediction ,Basic Concepts, Decision Tree Induction, Bayesian Classification ,Rule Based Classification, Classification by Back propagation , Support Vector Machines, Lazy learners.

Application:

Sentiment Analysis

Email Spam Classification

Document Classification

Image Classification

Video Link:

https://www.youtube.com/watch?v=gkagE_fE2sk

	Module-5	L1,L2,L3	12 Hours
--	----------	----------	----------

Types of Data in Cluster Analysis, Data similarity and dissimilarity measures, A Categorization of Major Clustering Methods -Partitioning Methods-K-means, K-medoids, Hierarchical Methods-Agglomerative vs Divisive, Distance measures, BIRCH, Clustering High-Dimensional Data-Outlier Analysis and Detection.

Application:

Clustering analysis

In the field of biology, it can be used to derive plant and animal taxonomies.

Identification of areas of similar land use in an earth observation database.

Video Link:

https://www.youtube.com/watch?v=2QTeuO0C-fY

Experimental Part:

Apriori Algorithm for market Basket Analysis

Bayesian Classification

Decision Tree Induction Algorithm

Frequent Pattern-Growth Algorithm

Course outcomes:

Course	ducomes.
CO1	Design data warehouse by applying principles of dimensional modelling and ETL concepts
CO2	Analyze various data pre-processing techniques for efficient data mining.
CO3	Apply association rule mining for finding hidden and interesting patterns in data.
604	Apply statistical procedure, machine learning and neural network based classification
CO4	algorithms for data prediction
CO5	Apply clustering algorithms for the application and generalizations for real time problems
Text/R	eference Books:
1	Jiawei Han, Micheline Kamber and Jian Pei, Data Mining Concepts and Techniques, Third
1.	Edition, Elsevier, 2012.
2	Paulraj Ponniah, Data Warehousing Fundamentals: A Comprehensive Guide for IT
2.	Professionals, Wiley, 2010

3.	Alex Berson, Stephen J Smith, Data warehousing, Data mining, and OLAP, Tata McGraw Hill
3.	edition, 2007
4.	Pang-Ning Tan, Michael Steinbach and Vipin Kumar, Introduction to Data Mining, Pearson
4.	Education, 2007
_	G. K. Gupta ,Introduction to Data Mining with Case Studies, Easter Economy Edition,
5.	Prentice Hall of India, 2006

CIE Assessment:

CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation. Generally, there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of three tests

Quizzes/mini tests (4 marks)

Mini Project / Case Studies (8 Marks)

Activities/Experimentations related to courses (8 Marks)

SEE Assessment:

Question paper for the SEE consists two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.

Part B also covers the entire syllabus consisting of five questions having choices and may contain sub-divisions, each carrying 16 marks. Students have to answer five full questions.

One question must be set from each unit. The duration of examination is 3 hours.

CO-PO Mapping

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3		2					
CO2	3	3	3	3	3		2					
CO3	3	3	3	3	3	3						3
CO4	3	3	3	3	3	3		3				3
CO5	3	3	3	3	3	3						3

High-3, Medium-2, Low-1

Course Title	Introduction to Data Science	Semester	VI
Course Code	MVJ21IS621	CIE	50
Total No. of Contact Hours	40	SEE	50
No. of Contact Hours/week	4 (L:T:P::3:1:0)	Total	100
Credits	3	Exam. Duration	3 Hours

Course objective is to:

Understanding R for data science

Learn about requirement of data analysis

Can understand how machine learning algorithm works

How to visualize the data

Real world data analysis

Module -1	L1,L2,L3	12 Hours
		1

What You Will Learn – What You Won't Learn – Prerequisites – Running R Code.

Data Visualization: Introduction - First Steps - Aesthetic mapping - Common Problems - Facets -

Geometric Objects – Statistical Transformations – Position adjustments – Coordinate systems – Layered Grammar of Graphics.

Workflow Basics: Coding Basics – What's in a name? – Calling Functions – Exercises.

Data Transmission: Introduction – Filter rows with filter() – Arrange rows with arrange() – Select

Columns with select() – Add new variables with mutate() – Grouped summaries with summarise() – Grouped mutates.

Workflow: Scripts.

Application: Data visualization can be used in storytelling of insight obtained from Bigdata.

Video Link:

https://nptel.ac.in/courses/111/104/111104100/

Module -2	L1,L2,L3	12 Hours
-----------	----------	----------

Exploratory Data Analysis: Introduction - Questions - Variation - Covariation - Patterns and

models.

Introduction: What is Data science? Big Data and Data Science Hype – Getting Past the Hype – Why

Now: Datafication- The Current Landscape - A Data science Profile - Thought Experiment: Meta-

Definition – What is a Data Scientist, Really? In Academia – In Industry

Application: Banking, Health care, Transport, Manufacturing, Agriculture etc

Video Link:

https://www.digimat.in/nptel/courses/video/106106179/L08.html

Module - 3 L1,L2,L3 12 Hours

Statistical Thinking in the Age of Big Data - Exploratory Data Analysis - The Data Science Process -

Thought Experiment: How Would you Simulate Chaos?

Algorithms: Machine Learning Algorithms - Three Basic Algorithms - Exercise: Basic Machine

Learning Algorithms – Summing It All Up – Though Experiment: Automated Statistician.

Application: Recommendation Systems(You tube)

Video Link:

https://nptel.ac.in/noc/courses/noc20/SEM1/noc20-cs28/

Module-4	L1,L2,L3	12 Hours
----------	----------	----------

Thought Experiment: Learning by Example - Naïve Bayes - Fancy It Up: Laplace Smoothing -

Comparing Naïve Bayes to K-NN – Sample Code in Bash – Scraping the Web: API and Other Tools – Jake's Exercise: Naïve Bayes for Article Classification.

Data Visualization and Fraud Detection: Data Visualization History - What Is Data Science, Redux? -

A Sample of Data Visualization Projects - Mark's Data Visualization Projects - Data Science and Risk -

Data Visualization at Square - Ian's Thought Experiment - Data Visualization for the Rest of Us

Application: Spam filter can be applied to get rid of unwanted spam messages in Email and SMS.

Video Link:

https://www.youtube.com/watch?v=9YXojHh ZPY

Module-5	L1,L2,L3	12 Hours

Social Network Analysis at Morning Analytics - Social Network Analysis - Terminology from Social

Networks - Thought Experiment - Morning side Analytics - More Background on Social Network

Analysis from a Statistical Point of View - Data Journalism

Data Engineering: MapReduce, Pregel, and Hadoop

Application: To find out the trending news for the day, Trending hash tags in face book or Twitter

Video Link:

https://www.youtube.com/watch?v=uEFbdGISAfQ

Practical Experiments:

YouTube Data Analysis

Machine Learning algorithms – Hands-On Training

Share Market Analysis - Hands-On Training

Fraud Analysis of Trade document using Data Science

Identifying Revenue drop from customer behavior pattern in Banking Industry

Course outcomes:

CO1	R programming for data science
CO2	Analyze the data
CO3	Machine learning algorithms
CO4	Visualize the different data with different form
CO5	Interpret, analytic and visualize read world data

Text/R	eference Books:
1.	Hadley Wickham and Garrett Grolemund , R for Data Science, Publisher: O'Reilly Media
2.	Cathy O'Neil and Rachel Schutt, Doing Data Science Straight Talk from the Frontline, Publisher: O'Reilly Media
3.	Ricardo Anjoleto Farias, Nataraj Dasgupta, Vitor Bianchi Lanzetta, Hands-On Data Science with R, O'reilly, 2018.

CIE Assessment:

CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation. Generally, there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of three tests

Quizzes/mini tests (4 marks)

Mini Project / Case Studies (8 Marks)

Activities/Experimentations related to courses (8 Marks)

SEE Assessment:

- i. Question paper for the SEE consists two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.
- ii. Part B also covers the entire syllabus consisting of five questions having choices and may contain sub-divisions, each carrying 16 marks. Students have to answer five full questions.
- iii. One question must be set from each unit. The duration of examination is 3 hours.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	3					2	3	3
CO2	3	3	3	2	3					2	3	3
CO3	3	3	2	2	3					2	3	3
CO4	3	3	2	2	3					2	3	3
CO5	3	3	3	2	3					2	3	3

High-3, Medium-2, Low-1

Course Title	Introduction to Cyber Security	Semester	VI
Course Code	MVJ21IS622	CIE	50
Total No. of Contact Hours	40	SEE	50
No. of Contact Hours/week	4 (L:T:P::4:0:0)	Total	100
Credits	3	Exam. Duration	3 Hours

Course objective is to:

Explain the fundamental definitions of different security issues.

Familiarize cybercrimes happening with mobile and wireless devices.

Use cybercrime tools to analyze the security gaps.

Familiarize with different OSI layers and security aspects.

Explain lega	l aspects a	nd Indian I	IT Act.
--------------	-------------	-------------	---------

Module-1 L1,L2,L3 12 Hours

Syllabus Content:

Cybercrime definition and origins of the world, Cybercrime and information security, Classifications of cybercrime, Cybercrime and the Indian ITA 2000, A global Perspective on cybercrimes, How criminal plan the attacks, Social Eng., Cyber fraud vs. Cybercrime Cyber stalking, Cybercafe and Cybercrimes, Botnets, Attack vector, Cloud computing.

Application:

security services that are invoked at the interface between an application

Video Link:

https://www.youtube.com/watch?v=gfFKuiZ9Y7s

Module-2 L1,L2,L3	12 Hours
-------------------	----------

Syllabus Content:

Proliferation of Mobile and Wireless Devices, Trends in Mobility, Credit Card Frauds in Mobile and Wireless Computing Era, Security Challenges Posed by Mobile Devices, Registry Settings for Mobile Devices, Authentication Service Security, Attacks on Mobile/Cell Phones, Mobile Devices: Security Implications for Organizations, Organizational Measures for Handling Mobile, Devices-Related Security Issues, Organizational Security Policies and Measures in Mobile Computing Era, Laptops.

Application:

the usage of small wireless mobile devices such as PDAs, Blackberrys and smartphones

Video Link:

https://www.youtube.com/watch?v=frM 7UMD -A

Module-3 L1,L2,L3 12 Hours

Syllabus Content:

Proxy Servers and Anonymizers, Phishing, Password Cracking, Keyloggers and Spywares, Virus and Worms, Steganography, DoS Attacks, SQL Injection, Buffer Over Flow, Attacks on Wireless Networks, Phishing, Identity Theft (ID Theft), Case Study.

Application:

Application-level gateway

Video Link:

https://www.youtube.com/watch?v=6MvRi2Gqh Y

	Module-4	L1,L2,L3	12 Hours
ı			

Syllabus Content:

Historical Background of Cyber forensics, Digital Forensics Science, The Need for Computer Forensics, Cyberforensics and Digital Evidance, Forensics Analysis of Email, Digital Forensics Lifecycle, Chain of Custody Concept, Network Forensics, Approaching a Computer Forensics Investigation, Setting of a Computer Forensics Laboratory: Understanding the Requirements, Computer Forensics and Steganography, Relevance of the OSI 7 Layer Model to the Computer Forensics and Social Networking Sites: The Security/Privacy Threats, Forensics Auditing, Anti Forensics.

Application:

Application of Digital Forensics With increasing digital crime in each branch

Video Link:

https://www.youtube.com/watch?v=2ESqwX3qb94

Module-5 L1,L2,L3 12 H	lours
------------------------	-------

Syllabus Content:

Cyber law: The Indian Context, The Indian IT Act, Digital Signature and the Indian IT Act, Amendments to the Indian IT Act, Cybercrime and Punishment, Cyber law, Technology and Students: Indian Scenario.

Application:

Case IV: Ownership of Program

Video Link:

https://www.youtube.com/watch?v=ZFHCZt5VnMs

Hands on Experiments:

Cyber fraud vs Cybercrime stalking, Cybercafé and Cybercrimes.

Mobile Devices: Security Implementation for organizations.

Phishing, Password cracking, Dos Attacks.

Cyber forensics and digital Evidence.

Course	Course outcomes:						
CO1	Understand Cybercrime and Cyber offenses						
CO2	Explain cybercrime happening with Mobile and Wireless Devices.						
CO3	Analyze cybercrimes using different tools and methods.						
CO4	Cyber forensics and Digital forensics						
CO5	Legal aspects of cybercrimes.						

Text/R	Text/Reference Books:								
1.	"Cyber Security", Nina Godbole, SunitBelapure, Wiley India, New Delhi, 2011.								
2.	"Information Systems Security", Nina Godbole, Wiley India, New Delhi, 2017.								
3.	"Cyber Security & Global Information Assurance", Kennetch J. Knapp, Information Science Publishing, 2009.								
4.	"Cryptography and Network Security", William Stallings, Pearson Publication, 2005.								
5.	"Cyber Security", Avantika Yadav, Narosa Publishing, 2017.								

CIE Assessment:

CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation. Generally, there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of three tests

Quizzes/mini tests (4 marks)

Mini Project / Case Studies (8 Marks)

Activities/Experimentations related to courses (8 Marks)

SEE Assessment:

- i. Question paper for the SEE consists two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.
- ii. Part B also covers the entire syllabus consisting of five questions having choices and may contain sub-divisions, each carrying 16 marks. Students have to answer five full questions.
- iii. One question must be set from each unit. The duration of examination is 3 hours.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	3					2	3	3
CO2	3	3	3	2	3					2	3	3
CO3	3	3	2	2	3					2	3	3
CO4	3	3	2	2	3					2	3	3
CO5	3	3	3	2	3					2	3	3

High-3, Medium-2, Low-1

Course Title	JAVA	Semester	VI
Course Code	MVJ21IS623	CIE	50
Total No. of Contact Hours	40	SEE	50
No. of Contact Hours/week	4 (L:T:P::2:1:0)	Total	100
Credits	3	Exam. Duration	3 Hours

Course objective is to: : This course will enable students to

Construct client-server applications using Java socket API

Identify the need for advanced Java concepts like Enumerations and Collections

Make use of JDBC to access database through Java Programs

Adapt servlets to build server side programs

Demonstrate the use of JavaBeans to develop component-based Java software

Module-1 L1,L2,L3 12 Hours

Syllabus Content:

Enumerations, Autoboxing and Annotations(metadata): Enumerations, Enumeration fundamentals, the values() and value Of() Methods, java enumerations are class types, enumerations Inherits

Enum, example, type wrappers, Autoboxing, Autoboxing and Methods, Autoboxing/Unboxing occurs in Expressions, Autoboxing/Unboxing, Boolean and character values, Autoboxing/Unboxing helps prevent errors, A word of Warning. Annotations, Annotation basics, specifying retention policy, Obtaining Annotations at run time by use of reflection, Annotated element Interface, Using Default values, Marker Annotations, Single Member annotations, Built-In annotations

Application:

choices on a menu, rounding modes, command line flags, etc.

Autoboxing & Auto unboxing:

Annotations

Video Link: https://www.youtube.com/watch?v=vJ-Zn4fo0MQ&t=608s

Module-2	L1,L2,L3	12 Hours

Syllabus Content:

The collections and Framework: Collections Overview, Recent Changes to Collections, The Collection Interfaces, The Collection Classes, Accessing a collection Via an Iterator, Storing User Defined Classes in Collections, The Random Access Interface, Working With Maps, Comparators, The Collection Algorithms, Why Generic Collections, The legacy Classes and Interfaces,

Parting Thoughts on Collections.

Application: Writing an application

Video Link:https://www.youtube.com/watch?v=Ma7u6KEKzPE

Module-3 L1,L2,L3 12 Ho	ours
-------------------------	------

Syllabus Content:

String Handling: The String Constructors, String Length, Special String Operations, String Literals, String Concatenation, String Concatenation with Other Data Types, String Conversion and toString() Character Extraction, charAt(), getChars(), getBytes() toCharArray(), String Comparison, equals() and equalsIgnoreCase(), regionMatches() startsWith() and endsWith(), equals() Versus == , compareTo() Searching Strings, Modifying a String, substring(), concat(), replace(), trim(), Data Conversion Using valueOf(), Changing the Case of Characters Within a String, Additional String Methods, StringBuffer, StringBuffer Constructors, length() and capacity(), ensureCapacity(), setLength(), charAt() and setCharAt(), getChars(), append(), insert(), reverse(), delete() and deleteCharAt(), replace(), substring(), Additional StringBuffer Methods, StringBuilder

Application: Datatype

Video Link: https://www.youtube.com/watch?v=N63JCXwdd14

Module-4	L1,L2,L3	12 Hours
----------	----------	----------

Syllabus Content:

Background; The Life Cycle of a Servlet; Using Tomcat for Servlet Development; A simple Servlet;

The Servlet API; The Javax.servlet Package; Reading Servlet Parameter; The Javax.servlet.http

package; Handling HTTP Requests and Responses; Using Cookies; Session Tracking. Java Server

Pages (JSP): JSP, JSP Tags, Tomcat, Request String, User Sessions, Cookies, Session Objects

Application: java-based web application.

Video Link: https://www.youtube.com/watch?v=ewiOaDitBBw

|--|

Syllabus Content:

JDBC Overview – JDBC implementation – Connection class – Statements - Catching Database Results, handling database Queries. Networking– InetAddress class – URL class- TCP sockets - UDP sockets, Java Beans –RMI.

Application: Connecting, storing, retrieving data between program and any database.

Video Link: https://www.youtube.com/watch?v=Cq4lwVE2Fzk

Practical Experiments:

- Program to demonstrate working of Inet Address class and the methods of the InetAddress class for Java Networking
- 2. Program to demonstrate how to apply event handling mechanism to JCheckBox Swing Components:
- 3. Program to demonstrate JDBC
- 4. Program to demonstrate RMI
- 5. Program to demonstrate SERVLETS
- 6. Program to demonstrate JSP

Program to demonstrate JAVA BEANS

Course outcomes:

CO1	Interpret the need for advanced Java concepts like enumerations and collections in						
COI	developing modular and efficient programs						
CO2	Build client-server applications and TCP/IP socket programs						

CO3	Illustrate database access and details for managing information using the JDBC API
CO4	Describe how servlets fit into Java-based web application architecture
CO5	Develop reusable software components using Java Beans

Text	Reference Books:
1.	Herbert Schildt: JAVA the Complete Reference, 7th/9th Edition, Tata McGraw Hill, 2007.
2.	Jim Keogh: J2EE-TheCompleteReference, McGraw Hill, 2007.
3.	Stephanie Bodoff et al: The J2EE Tutorial, 2nd Edition, Pearson Education, 2004.
4.	Uttam K Roy, Advanced JAVA programming, Oxford University press, 2015.
5.	Herbert Schildt: JAVA the Complete Reference, 7th/9th Edition, Tata McGraw Hill, 2007.
1	'

CIE Assessment:

CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation. Generally, there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of three tests

Quizzes/mini tests (4 marks)

Mini Project / Case Studies (8 Marks)

Activities/Experimentations related to courses (8 Marks)

SEE Assessment:

Question paper for the SEE consists two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.

Part B also covers the entire syllabus consisting of five questions having choices and may contain sub-divisions, each carrying 16 marks. Students have to answer five full questions.

One question must be set from each unit. The duration of examination is 3 hours.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	3	2	2	2		2				1
CO2		3	3	2	2	2		2				2
CO3		3	3	2	2	2		2				3
CO4		3	3	2	2	2		2				2

CO5	3	3	2	2	2	2		3

High-3, Medium-2, Low-1

Course Title	Database Management System	Semester	VI
Course Code	MVJ21IS624	CIE	50
Total No. of Contact Hours	40	SEE	50
No. of Contact Hours/week	4 (L:T:P::2:1:0)	Total	100
Credits	3	Exam. Duration	3 Hours

Course objective is to:

- Provide Key Knowledge in database system concepts, applications and advantages.
- To get knowledge about SQL programming
- Design a database as redundant and error free
- Students can build a database application for real world problems
- Can derive the knowledge or pattern from real world data

Module-1	L1,L2,L3	12 Hours

Introduction: Database-System Applications – Purpose of Database – View of Data – Database Languages – Relational Databases – Database Design – Data Storage and Querying – Transaction Management – Database Architecture – Data mining and Information Retrieval – Specialty Databases – Database Users and Administrators.

Introduction to Relational Model: Structure of Relational Database – Database Schema – Keys – Schema Diagrams – Relational Query Languages – Relational Operations – Relational Algebra.

Application: This module will give basic knowledge of database and SQL.

Video Link: https://www.youtube.com/watch?v=X9bQsAoqmfl

Module-2 L1,L2,L3 12 Hours

Introduction to SQL: Overview of the SQL Query Languages – SQL Definition – Basic Structure of SQL Queries – Additional Basic Operations – Set Operations – Null Values – Aggregate Functions - Nested Subqueries – Modification of Database.

Intermediate SQL: Join Expressions – Views – Integrity Constraints – SQL Data types and Schemas – Authorization.

Advanced SQL: Functions and Procedures – Triggers.

Application: Students can learn more complex queries and can design error free database using constraints.

Video Link: https://www.youtube.com/watch?v=fRMv14j5XJU

Module-3	L1,L2,L3	12 Hours
----------	----------	----------

Relational Database Design: Features of Good Relational Designs – Atomic Domains and First Normal Form – Decomposition Using Functional Dependencies – Functional-Dependency Theory – Algorithm for Decomposition – 2^{nd} Normal Form, 3^{rd} Normal Form, Boyce Codd Normal Form Decomposition using Multivalued Dependencies – 4^{th} Normal Form and domain Key Normal Form.

Application: Students can learn how to divide the table without any data lose and can execute queries without any anomalies.

Video Link: https://www.youtube.com/watch?v=Ko LE3TNO64&t=1s

https://www.youtube.com/watch?v=p62he-WUp9E

Module-4	L1,L2,L3	12 Hours
----------	----------	----------

Transaction: Transaction Concept – A Simple Transaction Model – Transaction Atomicity and Durability – Transaction Isolation – Serializability – Isolation Levels – Implementation of Isolation Level –

Concurrency Control: Lock-Based Protocol – Timestamp-Based Protocols – Validation-Based Protocol.

Advanced SQL: Accessing SQL From a Programming Language.

Application design and Development: Application Programs and User Interfaces – Web Fundamentals – Servlet and JSP

Application: Students can develop a web-based application for accessing database.

Video Link: https://www.youtube.com/watch?v=w83Ug6IwVTw

https://www.youtube.com/watch?v=Thm0xW9oTow

https://www.youtube.com/watch?v=C J6K8DodS8

Module-5 L1	1,L2,L3	12 Hours
-------------	---------	----------

Data Warehousing, Data Mining, and Information Retrieval: Data Warehousing and Mining – Data Warehousing – Data Mining – Classification – Association Rules – Data mining algorithms using Weka Tools.

Application: Students can develop an application using JAVA with Weka for data mining operations.

Video Link: https://www.youtube.com/watch?v=XlbM9ibjUuM

Practical Experiments

Accessing Database through JDBC (Hands-On)

Clustering – Using Weka tool (Hands-On)

Classification using Weka tool (Hands-On)

Machine Learning algorithms using Weka tool (Hands-On)

Course outcomes:

CO1	Understand the database requirements of real-world problems
CO2	Querying the data according to different requirements
CO3	Design database for real world problems like bank, commercial shops
CO4	Develop application program to real world problems
CO5	Database mining to derive pattern among different data sets

Text/R	eference Books:
1.	Database System Concepts, Sixth Edition, by Abraham Silberschatz, Henery F. Korth, S.
	Sundarshan
2.	Fundamentals of Database Systems, Ramez Elmasri and Shamkant B. Navathe, 7 th Edition,
۷.	2017, Pearson.
3.	Database Management System, Ramakrishnan and Gehrke, 3 rd Edition, Mc-GrawHill, 2013.
4.	Data Mining Concepts and Techniques, Second Edition, by Jiawei Han and Micheline
7.	Kamber, Elsevier.

CIE Assessment:

CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation. Generally, there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of three tests

Quizzes/mini tests (4 marks)

Mini Project / Case Studies (8 Marks)

Activities/Experimentations related to courses (8 Marks)

SEE Assessment:

Question paper for the SEE consists two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.

Part B also covers the entire syllabus consisting of five questions having choices and may contain sub-divisions, each carrying 16 marks. Students have to answer five full questions.

One question must be set from each unit. The duration of examination is 3 hours.

Mapping

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	2	3	3	2	2	2	3	2
CO2	3	3	3	2	2	3	2	2	2	2	2	1
CO3	2	3	3	2	2	3	2	2	1	1	2	2
CO4	2	3	3	2	2	2	2	1	1	1	2	2
CO5	2	3	2	3	1	1	2	2	1	2	2	1

High-3, Medium-2, Low-1

Course Title	ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING	Semester	VI
Course Code	MVJ21IS63	CIE	50
Total No. of Contact Hours	40 L:T:P::40:0:0	SEE	50
No. of Contact Hours/week	3	Total	100
Credits	4	Exam. Duration	3 Hours

Course objective is to: This course will enable students to

- Describe the basic principles, techniques, and applications of Artificial Intelligence
- Analyze and explain different AI learning methods.
- Define machine learning and problems relevant to machine learning.
- Differentiate supervised, unsupervised and reinforcement learning

L1,L2	

INTRODUCTION: What Is AI? The Foundations of Artificial Intelligence ,The History of Artificial Intelligence, The State of the Art .

Intelligent Agents: Agents and Environments, Good Behavior: The Concept of Rationality, The Nature of Environments, The Structure of Agents. Knowledge Representation Issues, Using Predicate Logic, Representing knowledge using Rules.

Experimental Learning: Implementation of Relational and Inheritable Knowledge

Video Links

https://www.youtube.com/watch?v=3MW3ICnkQ9k

Madula 2	RBT Level	Harris O
Module-2	L1,L2 , L3	Hours 8

PROLOG- The natural Language of Artificial Intelligence: Introduction, Converting English to Prolog Facts and Rules, Goals, Prolog Terminology, Variables, Control Structures, Arithmetic operators, Matching in Prolog, Backtracking, Cuts, Recursion, Lists, Dynamic databases, Input/Output and Streams

Using Predicate Logic: Representing simple facts in logic, representing instance and ISA relationships, Computable Functions and Predicates, Resolution, Natural Deduction.

Experimental Learning:

Implementing programs in PROLOG to solve problems of Predicate Logic

Video Links:

- https://www.youtube.com/watch?v=pzUBrJLIESU
- https://www.youtube.com/watch?v=2juspgYR7as
- https://www.youtube.com/watch?v=h9jLWM2IFr0
- https://www.youtube.com/watch?v=-v1K9AnkAeM

Module-3	R	RBT Level	Hours 8
Woudle-3	L	.1,L2 , L3	Hours 8

Syllabus Content:

Introduction: well posed learning problems, Designing a Learning system, Perspective and Issues in Machine Learning. Concept Learning: Concept learning task, Concept learning as search, Find-S algorithm, Version space, Candidate Elimination algorithm, Inductive Bias.

Application:

Designing Supervised Learning Problems

Video Link:

http://web4.cs.ucl.ac.uk/staff/D.Barber/textbook/091117.pdf

http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/index.html

Module-4	RBT Level	Hours 0
Wodule-4	L1,L2 ,L3	Hours 8

Syllabus Content

Decision Tree Learning: Decision tree representation, Appropriate problems for decision tree learning, Basic decision tree learning algorithm, hypothesis space search in decision tree learning, Inductive bias in decision tree learning, Issues in decision tree learning.

Application:

Designing Supervised Learning Problems

Video Link:

http://web4.cs.ucl.ac.uk/staff/D.Barber/textbook/091117.pdf

http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/index.html

Module-5	RBT Level	Hours 8
Wioddie-3	L1,L2 ,L3	110uis 8

Syllabus Content:

Artificial Neural Networks: Introduction, Neural Network representation, Appropriate problems, Perceptron's,

Backpropagation algorithm

Application: Solving real time problems like Automatic Vehicle Design etc.

Video Link:

https://becominghuman.ai/understanding-decision-trees-43032111380f

https://onlinecourses.science.psu.edu/stat507/node/59/

Course outcomes: CO1 Identify AI based problems and understand Intelligent agents CO2 Apply predicate logic and heuristic techniques to solve AI problems. CO3 Identify the problems for machine learning. And select the either supervised, unsupervised or reinforcement learning.

CO4	Explain theory of probability and statistics related to machine learning
CO5	Investigate concept learning, ANN, Bayes classifier, k nearest neighbor, Q, Question

Text/R	Text/Reference Books:							
1	Artificial Intelligence: A Modern Approach, Stuart Rusell, Peter Norving, Pearson Education 2nd Edition.							
2	Tom M. Mitchell, Machine Learning, India Edition 2013, McGraw Hill Education.							
3	Trevor Hastie, Robert Tibshirani, Jerome Friedman, h The Elements of Statistical Learning, 2nd edition, springer series in statistics.							
4	EthemAlpaydın, Introduction to machine learning, second edition, MIT press							
5	E. Rich , K. Knight & S. B. Nair - Artificial Intelligence, 3/e, McGraw Hill.							
6	Dan W. Patterson, Introduction to Artificial Intelligence and Expert Systems – Prentice Hal of India.							
7	G. Luger, "Artificial Intelligence: Structures and Strategies for complex problem Solving", Fourth Edition, Pearson Education, 2002.							
8	N.P. Padhy "Artificial Intelligence and Intelligent Systems", Oxford University Press-2015							

CIE Assessment:

CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation. Generally, there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of three tests

Quizzes/mini tests (4 marks)

Mini Project / Case Studies (8 Marks)

Activities/Experimentations related to courses (8 Marks)

SEE Assessment:

Question paper for the SEE consists two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.

Part B also covers the entire syllabus consisting of five questions having choices and may contain

sub-divisions, each carrying 16 marks. Students have to answer five full questions.

One question must be set from each unit. The duration of examination is 3 hours.

CO-PO N	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	3					2	3	3
CO2	3	3	3	2	3					2	3	3
CO3	3	3	2	2	3					2	3	3
CO4	3	3	2	2	3					2	3	3
CO5	3	3	3	2	3					2	3	3

High-3, Medium-2, Low-1

Course Title	Machine Learning Laboratory	Semester	VI
Course Code	MVJ21IS63	CIE	50
Total No. of Contact Hours	30	SEE	50
No. of Contact Hours/week	3 (L:T:P::0:1:2)	Total	100
Credits	4	Exam. Duration	3 Hours

Course objective is to:

This course will enable students to

Make use of data sets in implementing the machine learning algorithms

Implementing the machine learning concepts and algorithms in any suitable language of choice.

SI No	Experiment Name	RBT Level	Hours
1	Implementation of FIND-Algorithm	L3	4
2	Implementation of Candidate-Elimination algorithm	L3	4
3	Implementation of ID3 algorithm	L3	4
4	Implementation of Backpropagation algorithm	L3	4
5	Implementation of naïve Bayesian Classifier	L3	4
6	Implementation of Bayesian network	L3	4
7	Implementation of EM algorithm	L3	4
8	Implementation of k-Means algorithm	L3	4

9	Implementation of k-Nearest Neighbour algorithm	L3	4			
10	Implementation of Locally Weighted Regression algorithm	L3	4			
Course	outcomes:					
CO1	Understand the implementation procedures for the machine learning al	gorithms.				
CO2	Design Java/Python programs for various Learning algorithms					
CO3	Apply appropriate data sets to the Machine Learning algorithms					
CO4	Identify and apply Machine Learning algorithms to solve real world prob	lems				
	Perform statistical analysis of machine learning techniques.					
CO5						

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	3					2	3	3
CO2	3	3	3	2	3					2	3	3
CO3	3	3	2	2	3					2	3	3
CO4	3	3	2	2	3					2	3	3
CO5	3	3	3	2	3					2	3	3

Course Title	CRYPTOGRAPHY AND NETWORK SECURITY	Semester	VI
Course Code	MVJ21IS64	CIE	50
Total No. of Contact Hours	50 L:T:P::40:10:0	SEE	50
No. of Contact Hours/week	4	Total	100
Credits	4(IPCC)	Exam. Duration	3 Hours

Course objective is to: This course will enable students to

- Acquire fundamental knowledge on the concepts of finite fields and number theory.
- To gain various block cipher and stream cipher models.
- Describe the principles of public key cryptosystems, hash functions and digital signature.
- Learn the various malicious attacks and firewall applications.

To develop various security protocols for web and email applications

 Module-1
 RBT Level

 L1,L2, L3

INTRODUCTION & NUMBER THEORY: Services, Mechanisms and attacks- Classical Encryption techniques (Symmetric cipher model, substitution techniques, transposition techniques. finite fields and number theory: Groups, Rings, Fields-Modular arithmetic- Euclid"s algorithm-Finite fields-Polynomial Arithmetic —Prime numbers-Fermat"s and Euler"s theorem- Testing for primality -The Chinese remainder theorem- Discrete logarithms.

Hours 10

Applications: Developing cryptographic algorithms

Video link / Additional online information (related to module if any):

- https://www.cc.gatech.edu/~echow/ipcc/hpc-course/
- https://nptel.ac.in/courses/111/103/111103020/

Module-2	RBT Level	Hours 10
Wiodule-2	L2, L3	110015 10

BLOCK CIPHERS & PUBLIC KEY CRYPTOGRAPHY: Data Encryption Standard-Block cipher principles-block cipher modes of operation-Advanced Encryption Standard (AES)-Blowfish-RC5 algorithm. Public key cryptography: Principles of public key cryptosystems-The RSA algorithm-Key management - Diffie Hellman Key exchange- Elliptic curve arithmetic-Elliptic curve cryptography.

Applications: Online transactions

Video link / Additional online information (related to module if any):

- http://www.infocobuild.com/education/audio-video-courses/computerscience/IntroductionToCryptography-Ruhr/lecture-08.html
- https://www.comparitech.com/blog/information-security/diffie-hellman-key-exchange/

Module-3	RBT Level	Hours 10
iviodule-5	L2,L3 , L4	Hours 10

HASH FUNCTIONS AND DIGITAL SIGNATURES: Authentication requirement — Authentication function — MAC — Hash function — Security of hash function and MAC — MD5 - SHA - HMAC — CMAC - Digital signature and authentication protocols — DSS — EI Gamal — Schnorr.

Applications: Cyber forensic

Video link / Additional online information (related to module if any):

- https://www.educba.com/md5-alogrithm/
- https://www.tutorialspoint.com/cryptography/cryptography/cryptography/digital-signatures.htm

Module-4	RBT Level	Hours 10
Wodule-4	L3,L4 , L6	110013 10

SECURITY PRACTICE & SYSTEM SECURITY: Authentication applications — Kerberos — X.509 Authentication services - Internet Firewalls for Trusted System: Roles of Firewalls — Firewall related terminology- Types of Firewalls - Firewall designs - SET for E-Commerce Transactions. Intruder — Intrusion detection system — Virus and related threats — Countermeasures.

Applications: Antivirus / Malware detecting software

Video link / Additional online information (related to module if any):

- https://www.simplilearn.com/what-is-kerberos-article
- https://searchsecurity.techtarget.com/feature/The-five-different-types-of-firewalls

Module-5	RBT Level	Hours 10
Woudle-5	L4,L5 ,L6	Tiouis 10

E-MAIL, IP & WEB SECURITY: E-mail Security: Security Services for E-mail-attacks possible through E-mail - establishing keys privacy-authentication of the source-Message Integrity-Non-repudiation-Pretty Good Privacy-S/MIME. IPSecurity: Overview of IPSec - IP and IPv6-Authentication Header-Internet Key Exchange (Phases of IKE, ISAKMP/IKE Encoding). Web Security: SSL/TLS Basic Protocol-computing the keys- client authentication-PKI as deployed by SSL-SET

Applications: Email and Banking applications

Video link / Additional online information (related to module if any):

- https://www.barracuda.com/glossary/email-security
- https://www.youtube.com/watch?v=ubHZQrECeew

Course	outcomes:
CO1	Implement number theory for various identified attacks.
CO2	Design and develop the public key cryptographic algorithms.
CO3	Develop the digital signature and hashing algorithms
CO4	Design a firewall for detecting malicious attacks.
CO5	Design the protocols for improving security on email, web and IP.

Text/R	eference Books:
1	William Stallings, Cryptography and Network Security, 6th Edition, Pearson Education, March 2013.
2	Charlie Kaufman, Radia Perlman and Mike Speciner, "Network Security", Prentice Hall of India, 2002.
3	Behrouz A. Ferouzan, "Cryptography & Network Security", Tata Mc Graw Hill, 2007.
4	Man Young Rhee, "Internet Security: Cryptographic Principles", " Algorithms and Protocols", Wiley Publications, 2003.
5	Charles Pfleeger, "Security in Computing", 4th Edition, Prentice Hall of India, 2006.
6	Ulysess Black, "Internet Security Protocols", Pearson Education Asia, 2000.

	CO-PO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	1	-	-	-	-	-	1	-	2	-	-	2	3
CO2	3	2	2	1	-	-	-	-	-	2	-	1	2	2
CO3	2	3	1	3	-	1	1	1	-	1	-	2	2	1
CO4	3	2	2	1	-	2	-	-	-	-	2	1	2	2
CO5	2	2	3	3	-	1	2	1	2	-	1	2	2	2

Course Title	CRYPTOGRAPHY AND NETWORK SECURITY LABORATORY	Semester	VI
Course Code	MVJ21ISL64	CIE	50
Total No. of Contact Hours	40 L:T:P::10:0:30	SEE	50
No. of Contact Hours/week	3	Total	100
Credits	4	Exam. Duration	3 Hours

Course objective is to: This course will enable students to

1. Compare and contrast symmetric and asymmetric encryption systems and their vulnerability to various attacks.

- 2. Learn the various number theory concepts and applications.
- 3. Analyse the message digest algorithms and create digest values.
- 4. To develop and apply authentication, email security, web security services and mechanisms
- 5. Create java script for web applications for providing security.

SI No	Experiment Name	RBT Level	Hours
1	Write a program that contains a string (char pointer) with a value		
	\Hello World'. The program should XOR each character in this	L3	3
	string with 0 and displays the result.		
2	Write a program that contains a string (char pointer) with a value		
	\Hello World'. The program should AND or and XOR each character	L3	3
	in this string with 127 and display the result.		
3	Write a Java program to perform encryption and decryption using		
	the following algorithms: a) Ceaser Cipher b) Substitution Cipher c)	L3	3
	Hill Cipher.		
4	Write a Java program to implement the DES algorithm logic.	L3	3
5	Write a C/JAVA program to implement the BlowFish algorithm		
	logic.	L3	3
6	Write a C/JAVA program to implement the Rijndael algorithm logic.	L3	3
7	Using Java Cryptography, encrypt the text "Hello world" using	_	_
	BlowFish. Create your own key using Java key tool.	L3	3
8	Write a Java program to implement RSA Algorithm with p=3, q=11.	L3	3
9	Implement the Diffie-Hellman Key Exchange mechanism using		
	HTML and JavaScript. Consider the end user as one of the parties	L3	3
	(Alice) and the JavaScript application as other party (bob).		
10	Calculate the message digest of a text using the MD5 algorithm in	_	_
	JAVA.	L3	3
11	Calculate the message digest of a text using the SHA-1 algorithm in		
	JAVA.	L3	3
12	Using Java Cryptography, encrypt the text "Hello world" using		
	BlowFish. Create your own key using Java key tool.	L3	3
L	1	1	

OPEN ENDED EXPERIMENT		
Perform encryption and decryption using mono-alphabetic		
cipher. The program should support the following :		
o Construct an input file named plaintext.txt		
(consisting of 1000 alphabets, without any space or		
special characters)		
 Encrypt the characters of plaintext.txt and store the 		
corresponding ciphertext characters in		
ciphertext.txt		
o Compute the frequency of occurrence of each	L3	3
alphabet in both plaintext.txt and ciphertext.txt and		
tabulate the results		
2. Write a program to perform the following using Playfair		
cipher technique		
o Encrypt a given message M with different keys		
{k1,k2,,kn}. Print key and cipher text pair		
Decrypt the cipher texts obtained in (i) to get back		
M		

Course	outcomes:
004	Identify the major types of threats to information security and the associated attacks,
CO1	Services and Mechanisms
CO2	Design and develop cryptographic algorithms using public key cryptography.
CO3	Generate the own key for developing cryptography algorithms.
CO4	Implement the key exchange algorithms using scripts.
CO5	Design the various security protocols for web applications.

1	CO-PO/PSO Mapping												•	
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	1	-	-	-	-	-	-	1	-	1	-	-

CO2	1	1	2	-	-	-	-	-	-	2	-	1	1	2
CO3	2	2	1	-	-	-	-	-	-	1	-	1	-	3
CO4	2	1	1	-	-	-	-	-	-	2	-	1	-	3
CO5	2	2	1	-	-	-	-	-	-	2	-	1	1	2

High-3, Medium-2, Low-1