MVJ College of Engineering, Whitefield, Bangalore

An Autonomous Institution, Affiliated to VTU, Belagavi

Scheme of Teaching and Examination 2019-20 Outcome Based Education (OBE) and Choice Based Credit System (CBCS) Effective from the academic year 2019-20

I SEMESTER M.TECH- (Aeronautical Engineering)

			Teaching hours/week		Examination							
S No		Course	Course Title	Teaching Department	Theory Lecture	Tutorial	Practical/ Drawing	Duration in Hours	CIE Marks	SEE Marks	Total marks	Credits
	Туре	Code			L	Т	Р	D	C	SI	To	
1	PCC	MVJ19MAE11	Applied Mathematics	AE	3	2	-	3	50	50	100	4
2	PCC	MVJ19MAE12	Aerodynamics	AE	3	2	-	3	50	50	100	4
3	PCC	MVJ19MAE13	Introduction to Aerospace Vehicles and Systems	AE	3	2	-	3	50	50	100	4
4	PCC	MVJ19MAE14	Aerospace Propulsion	AE	3	2	-	3	50	50	100	4
5	PCC	MVJ19MAE15	Research Methodology & IPR	AE	2	-	-	3	50	50	100	2
6	PCC	MVJ19MAEL16	Aerodynamic Lab	AE	-	-	3	3	50	50	100	2
7	PCC	MVJ19MAEL17	Propulsion Lab	AE	-	-	3	3	50	50	100	2
				Total	14	8	6	21	350	350	700	22

II SEMESTER M.TECH- (Aeronautical Engineering)

					Teaching hours/week		Examination					
S No		Course	Course Title	Teaching Department	Theory Lecture	Tutorial	Practical/ Drawing	Duration in Hours	CIE Marks	SEE Marks	Total marks	Credits
	Туре	Code			L	Т	Р	Dı	C	SE	To	
1	PCC	MVJ19MAE21	Aircraft Performance & Flight Mechanics	AE	3	2	-	3	50	50	100	4
2	PCC	MVJ19MAE22	Applied Computational Fluid Dynamics	AE	3	2	-	3	50	50	100	4
3	PCC	MVJ19MAE23	Airframe Structures and Structural Design	AE	3	2	-	3	50	50	100	4
4	PEC	MVJ19MAE24X	Professional Elective-I	AE	3	2	-	3	50	50	100	4
5	PEC	MVJ19MAE25X	Professional Elective-II	AE	3	2	_	3	50	50	100	4
6	PCC	MVJ19MAEL26	Structures Lab	AE	-	-	3	3	50	50	100	2
7	PCC	MVJ19MAE27	Technical Seminar	AE	-	-	2	-	100	-	100	2
				Total	15	10	5	18	400	300	700	24

Professional Electiv	/e-I	Professional Elective-II				
Course Code MVJ19MAE24X	Course Title	Course Code	Course Title MVJ19MAE25X			
MVJ19MAE241	Practical Finite Element Method	MVJ19MAE251	Theory of Combustion			
MVJ19MAE242	Helicopter Dynamics	MVJ19MAE252	Unmanned Aerial Vehicles			
MVJ19MAE243	Theory of Plates and Shells	MVJ19MAE253	Composite Materials and Fabrication Techniques			

Note:

1.Technical Seminar: CIE marks shall be awarded by a committee comprising of HoD as Chairman, Guide/co-guide in any and a senior faculty of the department. Participation in seminar by all postgraduate students of the same and other semesters of the programme shall be mandatory.

The CIE marks awarded for Technical Seminar, shall be based on the evaluation of Seminar Report, Presentation skill and Question and Answer session in the ratio 50:25:25.

III SEMESTER M.TECH- (Aeronautical Engineering)

					Teaching hours/week		Examination					
S No		Course	Course Title	Teaching Department	Theory Lecture	Tutorial	Practical/ Drawing	Duration in Hours	CIE Marks	SEE Marks	Total marks	Credits
	Туре	Code			L	Т	Р	Dı	C	SE	To	
1	PCC	MVJ19MAE31	Aircraft Flight Dynamics & Automatic Flight Control	AE	3	2	-	3	50	50	100	4
2	PEC	MVJ19MAE32	Professional Elective-III	AE	3	-	-	3	50	50	100	3
3	PEC	MVJ19MAE33	Professional Elective-IV	AE	3	-	_	3	50	50	100	3
4	PCC	MVJ19MAEP34	Minor Project	AE	-	-	3	3	50	50	100	2
5	PCC	MVJ19MAEP35	Major Project Phase-1	AE	-	-	3	3	100	-	100	2
6	PCC	MVJ19MAEI36	Internship	AE	-	-	2	3	50	50	100	7
				Total	9	2	8	18	350	250	600	21

Note:

1. Major Project Phase-1: Students in consultation with the guide/co-guide if any, shall pursue literature survey and complete the preliminary requirements of selected Project work. Each student shall prepare relevant introductory project document, and present a seminar.

CIE marks shall be awarded by a committee comprising of HoD as Chairman, Guide and a senior faculty of the department. The CIE marks awarded for project work phase -1, shall be based on the evaluation of Project Report, Project Presentation skill and Question and Answer session in the ratio 50:25:25.

Professional Electiv	7e-III	Professional Ele	ective-IV
Course Code MVJ19MAE32X	Course Title	Course Code	Course Title MVJ19MAE33X
MVJ19MAE321	Artificial Intelligence and Robotics	MVJ19MAE331	Hypersonic Aerodynamics
MVJ19MAE322	Flight Vehicle Design	MVJ19MAE332	Flight Testing
MVJ19MAE323	Theory of Aeroelasticity	MVJ19MAE333	Fatigue and Fracture Mechanics

Probability & Statistics-Prerequisite for the MVJ19MAE321Course

Properties of probability function, conditional probability, Law of total probability and Bayer's rule, discrete and continuous random variables, expectations and variance, covariance. Normalization techniques, Principle component analysis, Correlations, Multi Co linearity, Data Imputation techniques, Visualization techniques for different types of data (Box plot, histogram, contour plot etc). Computations with more random variables. Basic Statistical models, distribution features, linear regression models, Logistic Regression, Lasso Regression, Ridge Regression, Random Forest, XGboost, maximum likely hood principles, method of least square and its relation with maximum likelihood

					eachi 1rs/w		Examination					
S No		Course	Course Title	Teaching Department	Theory Lecture	Tutorial	Practical/ Drawing	uration in Hours	CIE Marks	SEE Marks	Total marks	Credits
	Туре	Code			L	Т	Р	D	Ö	SI	To	
1	PC	MVJ19MAEP41	Major Project Phase-2	AE	-	-	4	3	50	50	100	19
				Total	-	-	4	3	50	50	100	19

Note:

1. Major Project Phase-2:

CIE marks shall be awarded by a committee comprising of HoD as Chairman, Guide/co-guide, if any and a Senior faculty of the department. The CIE marks awarded for project work phase -2, shall be based on the evaluation of Project Report subjected to plagiarism check, Project Presentation skill and Question and Answer session in the ratio 50:25:25. SEE shall be at the end of IV semester. Project work evaluation and Viva-Voce examination (SEE), after satisfying the plagiarism check.

Course Title	APPLIED MATHEMATICS	Semester	Ι
Course Code	MVJ19MAE11	CIE	50
Total No. of Contact Hours	60 L : T : P :: 50 : 10 : 0	SEE	50
No. of Contact Hours/week	4	Total	100
Credits	4	Exam. Duration	3hrs

Course objective is to:

- 1. Use of Fourier series and its Application
- 2. Acquire Knowledge of principal of vectors Differentiation and integrals
- 3. Acquire knowledge of numerical solution to equations
- 4. Apply finite difference approximate in various forms.

M. J1. 1	TOOTA	1011
Module-1	L3&L4	10Hrs.

Review of Fourier series and Applications, Review of Laplace Transforms and Applications. classification of second order linear partial differential equations, Canonical forms for hyperbolic, parabolic and elliptic equations, Homogeneous and Non Homogeneous equations with constant coefficients, Applications

Applications: Forced oscillation, Approximation by Trignomotric polynomials, Frequencies and damps down motionlessness

Video link ;https://www.khanacademy.org/

http://www.nptelvideos.in

https://www.classcentral.com/

|--|

Vector Functions, General rules for differentiation, Velocity and Acceleration, Gradient of a scalar field, Directional Derivative, Properties of Gradient, Divergence of vector point function, Curl of a vector point function, Properties of Divergence and Curl. Applications Integration of vector functions, Line integral, Circulation, Work done by a force, Surface integrals, Volume integrals, Divergence Theorem of Gauss, Green's Theorem in the plane, Stoke's Theorem, problems on all the three theorems and Applications

Applications: Vector Integration is widely used in Aeronautical Engineering -In studying surface ,area,Velocity,acceleration,Force,pressure.

Video link: <u>http://15mat31svit.blogspot.com/2017/11/module-5-vector-integration-and.html</u> <u>https://solitaryroad.com/c254.html</u>

Module-3	L3&L4	10Hrs.
Review of Complex analysis, Complex analysis applied to poten	tial theory, I	Electrostatic fields,
conformal mapping, Heat problems, Fluid flow, General properties of	of Harmonic	functions, Complex

Integration, Cauchy's Theorem, Cauchy's Integral Formula, Cauchy's Integral Formula for Derivatives, Taylor's and Laurent's series. Applications. Singular point, Residue, Method of finding Resides, Residue Theorem, Contour Integration, Integration round the unit circle, Rectangular contour, Applications

Applications: Applications to flow problems- complex potential, velocity potential, equipotential lines, stream functions, stream lines.

Video link : <u>https://www.khanacademy.org/</u>

http://www.nptelvideos.in/

https://www.classcentral.com/

Module-4	L3&L4	10Hrs.

Numerical Solutions algebraic and transcendental equations: False position method, Newton – Raphson method, Iteration method, Aitken's method, Solution of linear simultaneous equations. Gauss elimination method, Inverse of a matrix, Gauss-Seidal method, Crout's method. Solution of Ordinary Differential Equations: Taylor's Series method, Picard's method, Euler's method, Euler's Modified method, Runge-Kutta 4thorder method. Predictor and corrector method (Milen's and Adams-Bashfourth) Applications

Applications: Steady state analysis, Spring Mass system, Equilibrium & Min Potential energy

Video link: https://www.math.ust.hk/~machas/numerical-methods.pdf

https://www.sciencedirect.com/topics/engineering/numerical-method

Module-5	L3&L4	10 Hrs.	

Finite differences, Interpolation, Newton's Forward & Backward Interpolation formulae, Lagrange's formula, Newton's Divided difference, Central difference formulae (all formulae with proof). Numerical Differentiation, Numerical Integration (all rules with proof). Applications

Applications: Experimental Data Analysis, Linear Regression & Population analysis, Computer work By Numerical Integration.

Video link : https://www.math.ust.hk/~machas/numerical-methods.pdf

https://www.sciencedirect.com/topics/engineering/numerical-method

https://www.khanacademy.org/

http://www.nptelvideos.in/

Course outcomes:				
CO1	Apply Fourier series and its Application			
CO2	Evaluate Differential and integral.			
CO3	Analyse numerical solution to equations			
CO4	Determine finite difference approximate in various forms.			
CO5	Apply Numerical solution and its Applications			

Refer	ence Books:
1.	Erwin Kreyszing, Advanced Engineering Mathematics, John Wiley &Sons(Asia) Pvt. Ltd. 8 th edition
2.	H K Dass, Advanced Engineering Mathematics, S Chand and Company Ltd. 12 th edition.
3.	Bali and Iyengar, Engineering Mathematics, Laxmi Publications (P) Ltd. 6 th edition
4.	C. Ray Wylie and Louis C Barret, Advanced Engineering, Mathematics Tata McGraw Hill Publishing Co. Ltd. 6th edition.
5	Michael D Greenberg, Advanced Engineering Mathematics, Pearsons India Ltd. 2nd edition.
6	B S Grewal, Higher Engineering Mathematics, 12th edition.

					CO-PO	O Mapp	oing					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	0	3	0	0	0	0	0	0	1	0
CO2	3	3	0	3	0	0	0	0	0	0	0	1
CO3	2	3	0	3	0	0	0	0	0	0	1	0
CO4	3	3	0	3	0	0	0	0	0	0	0	0
CO5	3	3	0	2	0	0	0	0	0	0	0	1

Course Title	AERODYNAMICS	Semester	Ι
Course Code	MVJ19MAE12	CIE	50
Total No. of Contact Hours	60 L : T : P :: 40 : 0 : 20	SEE	50
No. of Contact Hours/week	04	Total	100
Credits	4	Exam. Duration	3hrs

Course objective is to:		
Module-1	RBT L3,L	10
Gain knowledge of incompressible flows over aerofoil	4	Hrs.

Basics of Aerodynamics: Properties of fluids, Characteristics of Atmosphere, Type of fluid flows, Generation of Lift, Drag and Moment, Incompressible flows over airfoils, calculation of lift and drag from measured pressure distribution, Streamlined and bluff-body, Reynolds number and Mach number, Conservation law of mass and momentum, Euler and Bernoulli's equations, pitot-tube measurement of airspeed. Pressure coefficient. Streamlines, path lines and streak lines. Angular velocity, vorticity, circulation Stream function, velocity potential and their relationship. Governing equation for irrotational and incompressible fluid flow. Laboratory Sessions/ Experimental learning:

Flow over an aerofoil: Pressure distribution and Force at various angles of attack

Applications

Applicable in standard Airplane Design

Video link / Additional online information (related to module if any): https://nptel.ac.in/courses/101105059/

Module-2 Understand aerofoil and wing aerodynamic characteristics and theory of lift generation	RBT L3,L 4	10 Hrs.
Aerodynamics of Airfoils and Wings: Airfoil nomenclature and classific aerodynamic characteristics of symmetric and cambered airfoils, Cer aerodynamic centre and aerodynamic moment, Concept of point vortex vortex sheet, Kutta condition, Kelvins circulation theorem and starting vort airfoil theory and symmetric airfoil. Finite wing nomenclature. Incompre wing, vortex filament, bound vortex, horse shoe vortex, downwash, induc and drag. Type of drag. Biot-Savart law and Helmholtzs vortex theorem. Pu theory and limitations. Elliptic lift distributions, expression for induced ar induce drag. Two dimensional and three dimensional wings lift curve sle aspect ratio. High lift devices. Laboratory Sessions/ Experimental learning: Flow over the various wing configurations Applications	ntre of pre x, line vorte rtex, Classica ressible flow ce angle of Prandtls liftir ngle of attac	essure, ex and al thin v over attack ng line ck and
Applicable in standard Airplane Design Video link / Additional online information (related to module if any):		

Video link / Additional online information (related to module if any):

https://nptel.ac.in/courses/101/104/101104073/

Module-3	RBT	10
Learn about flow over aerofoils airfoils at subsonic, transonic and	L3,L4	Hrs.
supersonic speeds	L3,L4	1115.

High speed Aerodynamics: Fundamentals of thermodynamic concepts, conservation of energy. Speed of sound, Mach wave and Mach angle. Normal shock wave, Oblique shock wave, Expansion fan, Prandtl-Meyer expansion. Family of shocks. Flow through convergent divergent nozzle. Hodograph and pressure turning angle. Rankine- Hugoniot relation.

Laboratory Sessions/ Experimental learning:

Estimation of Static Stability Derivatives at various speeds

Applications

Applicable in standard Airplane Design

Video link / Additional online information (related to module if any): https://nptel.ac.in/courses/101105023/

Module-4	RBT	10
Acquire knowledge of compressible gas dynamics	L3,L4	Hrs.

Compressible flow over airfoil: Full velocity potential equation. Small perturbationtheory. Linearized velocity potential equation and boundary conditions. Pressure coefficient for small perturbation. Prandtl- Glauret compressibility correction. Critical Mach number, Drag Divergence Mach Number, Sound barrier. Transonic area rule, supercritical airfoil, swept wing and delta wing.

Laboratory Sessions/ Experimental learning:

Estimation Compressible flow pressure distribution and thereby estimate Drag Divergence Mach number for the given aerofoil

Applications

Applicable in standard Airplane Design

Video link / Additional online information (related to module if any):

https://nptel.ac.in/courses/101105023/

Module-5					RB	Т	10			
Acquire k	nowled	dge of	heat addi	tion in a	duct flo	ows		L3,	L4	Hrs.
 • 1 01					–	M 1	Б	1.	n	 a

One dimensional flow through constant area duct: Fanno flow and Fanno line, Rayleigh flow and Rayleigh line. Method of characteristics and its application. Flow past Wedge and cone **Laboratory Sessions/ Experimental learning:**

Estimation of compressible flow past a wedge and cone in a supersonic wind tunnel. **Applications**

Applicable in standard Airplane Design or Ducted Engine design

Video link / Additional online information (related to module if any):

https://nptel.ac.in/courses/101105023/

Cours	Course outcomes:						
CO1	Solve aerodynamic problems related to pressure distribution						
CO2	Estimate the lift coefficient of an arbitrary wing configuration						
CO3	Evaluate compressible one dimensional flows through varying area ducts						
CO4	Analyse problems related to normal and oblique shock wave						
CO5	Analyse problems with heat addition and removal through constant area ducts						

Refere	ence Books:							
1.	Anderson J.D., Introduction to Flight, McGraw Hill, 1987							
2.	McCormick B.W., Aerodynamics, Aeronautics and Flight Mechanics, John Wiley & Sons New York, 1979.							
3.	Anderson J.D., Foundation of Aerodynamics, McGraw Hill Book Co, New York, 1985.							
4.	John D. Anderson, Fundamentals of Aerodynamics, McGraw-Hill publication							

5.	John D. Anderson, Modern compressible flow, McGraw-Hill publication.							
6.	E L Houghton and P W Carpenter, Aerodynamics for Engineering students, Edward Arnold publication, 1993							
7.	Yahya, S M., Fundamentals of compressible flow, Wiley Eastern. 1991							
8.	Radhakrishnan E, Compressible Flows 1997							

CO-PO	Mapping	5										
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	1	0	1	1	0	0	1	0	1
CO2	3	3	3	1	1	1	0	0	0	1	0	1
CO3	3	3	3	1	0	1	0	0	0	1	0	1
CO4	3	3	3	1	2	1	1	0	0	1	0	1
CO5	3	3	3	1	1	1	1	0	1	1	0	1

Course Title	INTRODUCTION TO AEROSPACE VEHICLES AND SYSTEMS	Semester	Ι
Course Code	MVJ19MAE13	CIE	50
Total No. of Contact Hours	60 L : T : P :: 40 : 0 : 20	SEE	50
No. of Contact Hours/week	04	Total	100
Credits	04	Exam. Duration	3 Hrs

Course objective is to:

- 1. Understand configurational features of fixed wing and rotary wing aircraft
- 2. Learn various aircraft systems and flight testing concepts
- 3. Gain knowledge of standards and specifications used in aircraft and system designs
- 4. Understand spacecraft launch vehicles

Module-1	RBT Level	Hrs.					
General introduction to aeronautics: Fixed wing & Rotary wing aircraft: Light aircraft, Fighter aircraft, Passenger aircraft, and Cargo aircraft; Light helicopter, large passenger and cargo helicopters Exploded views of various types of aircraft, identification of various structural parts and their functions and materials used. Aircraft Systems: System design and development processes; Mechanical	L3,L4	10					
systems: Components and functions of Hydraulics & Landing Gear systems.							
Laboratory Sessions/ Experimental learning: NA							
Applications: Cargo, military uses, construction, firefighting, search and rescue, tourism							
	Video link / Additional online information (related to module if any):						
https://www.youtube.com/watch?v=vp9XhvezpXI							
Module-2	RBT Level	Hrs.					
Aircraft Electrical Systems: Generation, distribution and typical aircraft electrical systems and recent trends; Avionic systems: Flight control systems; Navigation system, Communication and radar systems their components and functions; Emergency systems and advanced systems.	L3,L4	10					
electrical systems and recent trends; Avionic systems: Flight control systems; Navigation system, Communication and radar systems their components and	L3,L4	10					
 electrical systems and recent trends; Avionic systems: Flight control systems; Navigation system, Communication and radar systems their components and functions; Emergency systems and advanced systems. Satellites & orbital dynamics: Satellite missions, Different types of satellites and their applications, Spacecraft configurations. Laboratory Sessions/ Experimental learning: NA 							
 electrical systems and recent trends; Avionic systems: Flight control systems; Navigation system, Communication and radar systems their components and functions; Emergency systems and advanced systems. Satellites & orbital dynamics: Satellite missions, Different types of satellites and their applications, Spacecraft configurations. 							
 electrical systems and recent trends; Avionic systems: Flight control systems; Navigation system, Communication and radar systems their components and functions; Emergency systems and advanced systems. Satellites & orbital dynamics: Satellite missions, Different types of satellites and their applications, Spacecraft configurations. Laboratory Sessions/ Experimental learning: NA Applications: Communications Satellite, Remote Sensing Satellite, Navigation 4 							
 electrical systems and recent trends; Avionic systems: Flight control systems; Navigation system, Communication and radar systems their components and functions; Emergency systems and advanced systems. Satellites & orbital dynamics: Satellite missions, Different types of satellites and their applications, Spacecraft configurations. Laboratory Sessions/ Experimental learning: NA Applications: Communications Satellite, Remote Sensing Satellite, Navigation HEO, GPS, GEOs, Drone Satellite, Ground Satellite, Polar Satellite 							

Spacecraft Launch Vehicles: Rocket propulsion principles and types and propellants; Sounding Rockets, Staging of rockets; major subsystems of launch vehicles and their functions; Different types of satellite launch vehicles, General description about Launch Vehicles of Indian origin.	L3,L4	10
Laboratory Sessions/ Experimental learning: NA Applications: weaponry, ejection seats, launch vehicles for artificial satellite and space exploration Video link / Additional online information (related to module if any):	s, human spac	eflight,
https://www.youtube.com/watch?v=lbuCMYy7AeI		
https://www.youtube.com/watch?v=JyaYF9tpEQw		
Module-4	RBT Level	Hrs.
Standards & Specifications and Testing & Certification Aspects: Introduction to aircraft international and standards specifications for Military and Civil aircraft, Company standards; Airworthiness certification aspects aircraft; Ground testing and qualification testing.	L3,L4	10
Flight testing: Purpose and scope, Test plans and procedures; flight test instrumentation; general flying and handling characteristics of aircraft; Preparation, and conduct of tests, fault reporting.		
Applications: The test plan separates the application of the loads and enviro	nments as c	
handling loads, aerodynamic loads (static and transient), internal pressures. Video link / Additional online information (related to module if any): https://www.youtube.com/watch?v=t4vAV-hXgMw	innents as e	grouna-
Video link / Additional online information (related to module if any):	RBT Level	Hrs.
Video link / Additional online information (related to module if any): https://www.youtube.com/watch?v=t4vAV-hXgMw		
Video link / Additional online information (related to module if any): https://www.youtube.com/watch?v=t4vAV-hXgMw Module-5 Introduction to aerospace industries and institutions and their roles: Aircraft design and production industries; Components and systems manufactures, Service industries, Research and Development organizations and Academic institutions. Introduction to Airport Engineering: Development of air transportation, ICAO, IAAI,AAI, Aircraft characteristics which affect airport planning; Airport planning: Airport Master Plan, Regional Plan, Site selection; Terminal	RBT Level L3,L4	Hrs. 10 acilities
Video link / Additional online information (related to module if any): https://www.youtube.com/watch?v=t4vAV-hXgMw Module-5 Introduction to aerospace industries and institutions and their roles: Aircraft design and production industries; Components and systems manufactures, Service industries, Research and Development organizations and Academic institutions. Introduction to Airport Engineering: Development of air transportation, ICAO, IAAI,AAI, Aircraft characteristics which affect airport planning; Airport planning: Airport Master Plan, Regional Plan, Site selection; Terminal area and airport layout, Visual aids and ATC Laboratory Sessions/ Experimental learning: NA Applications: The planning, design, construction, and operation and main providing for the landing and takeoff, loading and unloading, servicing, mainter aircraft	RBT Level L3,L4	Hrs. 10 acilities

Course outcomes:						
CO1	Apply the knowledge to aircraft system layouts					
CO2	Analyse standards and specifications for design of aircraft.					
CO3	Apply the knowledge to Spacecraft Launch Vehicles and their functions.					
CO4	Draw test plan and specify flight test instrumentation for flight test programs					
CO5	Apply the knowledge to Airport planning and site selection.					

Refere	nce Books:
1.	ChennaKeshu S and Ganapathy K K, Aircraft Production Technology and Management,
1.	Interline Publishing, Bangalore 1993.
2	Ian Moir and Allan Seabridge, Aircraft Systems, mechanical, electrical and avionics
2.	subsystems integration, Professional Engineering Publishing Limited, UK, 2001
3.	Ralph D Kimberlin, Flight Testing of Fixed wing Aircraft, AIAA Education Series, 2003
4.	J. Gordon Leishman, Principles of Helicopter Aerodynamics, Cambridge Aerospace
4.	series,2000.
5.	Jane's, All The World Aircraft.
6	S K Khanna, M G Arora and S S Jain, Airport Planning and Design, NEM Chand and
0	Brothers Roorki, 6th Edition, 2001.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	1	1	0	1	1	0	0	1	0	1
CO2	3	1	0	1	1	1	0	0	0	1	0	1
CO3	3	1	1	1	0	1	0	0	0	1	0	1
CO4	3	1	1	1	2	1	1	0	0	1	0	1
CO5	3	1	1	1	1	1	1	0	1	1	0	1

Course Title	AEROSPACE PROPULSION	Semester	Ι
Course Code	MVJ19MAE14	CIE	50
Total No. of Contact Hours	60 L : T : P :: 40 : 10: 10	SEE	50
No. of Contact Hours/week	4	Total	100
Credits	4	Exam. Duration	3 Hrs.

Course objective is to:

- 1. Understand and apply the basic thermodynamic principles in aircraft propulsion.
- 2. Understand and solve the problems on turboprop, turbojet and turbofan engines.
- 3. Acquire knowledge on chemical rocket propulsion
- 4. Describe the working of solid rocket motors
- 5. Understand the liquid and hybrid rocket propulsion.

Module-1	L2,L3	8 Hrs.
Introduction to propulsion devices		

Introduction to various air breathing and non-air breathing engines: Turbojet, Turboprop, Turbofan, Ramjet, Scramjet, rockets - Conservation equations and derivation of the thrust equation for air breathing and non-air breathing engines - Efficiencies of air breathing and non-air breathing engines.

Laboratory Sessions/ Experimental learning:

- Learn NASA's EngineSim Applet Version 1.8a (latest edition) by using Beginner's Guide to Propulsion <u>https://www.grc.nasa.gov/WWW/K-12/airplane/ngnsim.html</u>
- 2. Calculate and draw the performance curves using EngineSim Applet Version 1.8a

Applications: Performance and efficiency calculation in airplane engines

Video link / Additional online information (related to module if any):

- 1. <u>https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-50-introduction-to-propulsion-</u> systems-spring-2012/lecture-notes/MIT16_50S12_lec17.pdf
- 2. <u>https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-50-introduction-to-propulsion-</u> systems-spring-2012/lecture-notes/MIT16_50S12_lec18.pdf
- 3. <u>https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-50-introduction-to-propulsion-</u> systems-spring-2012/lecture-notes/MIT16_50S12_lec19.pdf

Hrs.

4. https://nptel.ac.in/courses/101106033/

	Module-2	L3,L4	8]
Cycle analysis			

Cycle analysis of Ramjet, Turbojet, Turbofan, Turboprop, Turbo-shaft engines - Engine health

monitoring systems.

Fuel cells: Working and construction of fuel cells, Various types of fuel cells, Application of fuel cells in aero industry.

Maintenance, overhaul and testing: Overhaul, Maintenance techniques, engine performance monitoring, The test cell, Performance testing, Ground operating procedures, Starting a gas turbine engines, Engine operation and checks, Engine ratings

Laboratory Sessions/ Experimental learning:

- 1. Learn NASA's Range Games Version 1.3 (latest edition) by using Beginner's Guide to Propulsion https://www.grc.nasa.gov/WWW/K-12/airplane/ngnsimr.html
- Calculate and understand the aircraft motion and performance using Range Games Version 1.3

Applications: Performance and efficiency calculation in airplane engines, Aircraft engine maintenance overhaul and testing industry

Video link / Additional online information (related to module if any):

- 1. <u>https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-50-introduction-to-propulsion-</u> systems-spring-2012/lecture-notes/MIT16_50S12_lec16.pdf
- 2. https://nptel.ac.in/courses/101106033/
- 3. <u>https://www.youtube.com/watch?v=OTdnvk-h3cE</u>
- 4. <u>https://youtu.be/rSN05n0t5mk</u>

Module-3	L3,L4	8 Hrs.

Solid rocket motors

Solid propellants :Various solid propellants, The burring rate, Propellant grain and grain configuration, Propellant grain stress and strain, Propellant Ingredients, Three dimensional grains, Burning rate augmentation

Solid Rocket Components and Motor Design: Motor case, Nozzle, Rocket motor design approach.

Combustion of Solid Propellants : Physical and chemical processes, Ignition process, Ignitors,

Extinction or Thrust termination, Combustion instability

Laboratory Sessions/ Experimental learning:

- 1. Make Sugar rocket by using potassium nitrate (small size)
- 2. Find the specific impulse of the sugar rocket
- Applications: Rocket Manufacturing industries

Video link / Additional online information (related to module if any):

1. <u>https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-50-introduction-to-propulsion-</u> systems-spring-2012/lecture-notes/MIT16_50S12_lec9.pdf https://nptel.ac.in/courses/101106033/
 https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-50-introduction-to-propulsion-systems-spring-2012/lecture-notes/MIT16_50S12_lec13.pdf
 https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-512-rocket-propulsion-fall-2005/lecture-notes/lecture_16.pdf
 https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-512-rocket-propulsion-fall-2005/lecture-notes/lecture_16.pdf
 https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-512-rocket-propulsion-fall-2005/lecture-notes/lecture_17_18.pdf
 Module-4
 L3.L4

Liquid Propellant Rocket Engine

Liquid propellants: Propellant Properties, Liquid Oxidizers, Liquid Fuels, Liquid Monopropellants, Gelled Propellants, Gaseous Propellants, Safety and Environmental Concerns,

Liquid Rocket Components and Engine Design: Combustion Chamber, propellant tank, Nozzles, Propellant Feed Systems, Injectors, Tank Pressurization, Flow and Pressure Balance, Rocket Engines for Maneuvering, Orbit Adjustments or Attitude Control, Valves and Pipe Lines, Engine Support Structure.

Combustion of Liquid Propellants: Combustion Process, Analysis and Simulation, Combustion Instability, cooling of liquid engines.

Laboratory Sessions/ Experimental learning:

1. Case study on Indian cryogenic engines.

Applications: Aerospace industry

Video link / Additional online information (related to module if any):

- 1. https://nptel.ac.in/courses/101106033/
- 2. <u>https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-512-rocket-propulsion-fall-</u> 2005/lecture-notes/lecture_19.pdf
- 3. <u>https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-512-rocket-propulsion-fall-</u> 2005/lecture-notes/lecture_21.pdf
- 4. <u>https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-512-rocket-propulsion-fall-</u> 2005/lecture-notes/lecture_24.pdf

Module-5						L3,L4		8 Hrs.		
Hybrid	propellant	rocket:	Applications	and	Propellants,	Performa	nce	Analysis	and	Grain

Configuration, Combustion Instability

Thrust Vector Control :TVC Mechanisms with a Single Nozzle, TVC with Multiple Thrust Chambers or Nozzles

Selection of Rocket Propulsion Systems: Selection Process, Criteria for Selection

Electric Propulsion: Ideal Flight Performance, Electro thermal Thrusters, Non-Thermal Electric Thrusters, Optimum Flight Performance, Mission Applications, Electric Space-Power Supplies and Power-Conditioning.

Rocket Testing: Rocket Testing: Ground Testing and Flight Testing, Types of Tests facilities and safeguards, monitoring and control of toxic materials, instrumentation and data management. Ground Testing, Flight Testing, Trajectory monitoring, post -accident procedures. Description of atypical space launch vehicle launch procedure.

Laboratory Sessions/ Experimental learning:

- 1. Develop a model ion propulsion laboratory kit
- 2. Calculate the specific impulse of a hybrid rocket using thrust stand

Applications: Aerospace industry

Video link / Additional online information (related to module if any):

- 1. https://nptel.ac.in/courses/101106033/
- 2. <u>https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-512-rocket-propulsion-fall-</u> 2005/lecture-notes/lecture_17_18.pdf

Course outcomes:

Upon completion of the course, students will be able to:

CO14.1	Explain the construction and working principle of various propulsion devices
CO14.2	Enumerate and suggest solution for gas turbine engine related problems
CO14.3	Solve chemical rocket combustion related problems
CO14.4	Estimate solid rocket burn rate and related parameters
CO14.5	Determine the requirements of hybrid rockets and space missions

Reference	Books:
1.	Kroes, Michael J. Aircraft power plants. McGraw-Hill/Glencoe, 1990.
2.	Treager, Irwin E., and Irwin E. Treagan. Aircraft gas turbine engine technology. Vol. 1995. New York, USA: McGraw-Hill, 1979.
3.	Sutton, George P., and Oscar Biblarz. "Rocket Propulsion Elements JOHN WILEY & SONS." Inc., New York, 2001.
4.	E. Irwin Treager, "Aircraft Gas Turbine Engine Technology", 3 rd Edition, 1995 'ISBN-02018281.
5.	Cohen, H. Rogers, and G. Rogers. "GFC and Saravanamuttoo, HIH "Gas Turbine Theory"." (1989).
6.	Cornelisse, Jacobus W., Herman FR Schöyer, and Karel F. Wakker. Rocket propulsion and spaceflight dynamics. Pitman Publishing, 1979.

					CO-I	PO Map	ping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	1	1	0	1	1	0	0	1	0	1
CO2	3	1	0	1	1	1	0	0	0	1	0	1
CO3	3	2	1	1	0	1	0	0	0	1	0	1
CO4	3	2	1	1	2	1	1	0	0	1	0	1
CO5	3	1	1	1	1	1	1	0	1	1	0	1

Course Title	RESEARCH METHODOLOGY AND IPR	Semester	Ι
Course Code	MVJ19MAE15	CIE	50
Total No. of Contact Hours	25 L : T : P :: 20 : 0 : 5	SEE	50
No. of Contact Hours/week	2	Total	100
Credits	2	Exam. Duration	03 Hrs

Course objective is to: The Students are able to

- 1. Study an overview of research methodology and explain techniques of defining a research problem
- 2. Learn the functions of literature review in research and research design
- **3.** Describe the details of sampling designs, measurement and scaling techniques and also different methods of data collections.
- 4. Illustrate several parametric tests of hypotheses and Chi-square test.
- 5. Describe the art of interpretation and the art of writing research reports & IPR Acts.

5. Describe the art of interpretation and the art of writing research reports a	c II K Acts.	
Module-1	RBT Level	Hrs.
Research Methodology : Introduction, Meaning of Research, Objectives of Research, Motivation in Research, Types of Research, Research Approaches, Significance of Research, Research Methods versus Methodology, Research and Scientific Method, Importance of Knowing How Research is Done, Research Process, Criteria of Good Research, and Problems Encountered by Researchers in India.	L2,L3	05
Defining the Research Problem : Research Problem, Selecting the Problem, Necessity of Defining the Problem, Technique Involved in Defining a Problem, An Illustration		
Laboratory Sessions/ Experimental learning:1. Study of an Experimental and Theoretical Determination of a research models.		
2. Determination of Problems encountered in research		
Applications: Defining Research and Doing research		
Video link / Additional online information (related to module if any):		
https://www.digimat.in/nptel/courses/video/121106007/L01.html		
https://www.youtube.com/watch?v=EVcPmmfK1Do		
Module-2	RBT Level	Hrs.
Reviewing the literature : Place of the literature review in research, Bringing clarity and focus to your research problem, Improving research methodology, Broadening knowledge base in research area, Enabling contextual findings, How to review the literature, searching the existing literature, reviewing the	L2,L3	05
selected literature, Developing a theoretical framework, Developing a conceptual framework, Writing about the literature reviewed.		
Research Design: Meaning of Research Design, Need for Research Design,		

 Features of a Good Design, Important Concepts Relating to Research Design, Different Research Designs, Basic Principles of Experimental Designs, Important Experimental Designs Laboratory Sessions/ Experimental learning: Validate any Literature related to research. A study of different research designs. Applications: Proceeding to further research, Development of Model Video link / Additional online information (related to module if any): https://nptel.ac.in/courses/121106007/ Module-3 Design of Sampling: Introduction, Sample Design, Sampling and Nonsampling Errors, Sample Survey versus Census Survey, Types of Sampling Designs. Measurement and Scaling: Qualitative and Quantitative Data, Classifications of Measurement Tools, Scaling, Scale Classification Bases, Scaling Technics, Multidimensional Scaling, Deciding the Scale. Data Collection: Experimental and Surveys, Collection of Primary Data, Collection of Secondary Data, Selection of Appropriate Method for Data Collection, Case Study Method. Laboratory Sessions/ Experimental learning: Determination of methods of collecting data for research Determine the sources of error analysis in the research methods Applications: Qualitative and Quantitative Research, Finding out Sampling and nonsampling errors, Video link / Additional online information (related to module if any): https://nptel.ac.in/courses/110107080/ 	RBT Level	Hrs. 05
Module-4 Testing of Hypotheses: Hypothesis, Basic Concepts Concerning Testing of Hypotheses, Testing of Hypothesis, Test Statistics and Critical Region, Critical Value and Decision Rule, Procedure for Hypothesis Testing, Hypothesis Testing for Mean, Proportion, Variance, for Difference of Two Mean, for Difference of Two Proportions, for Difference of Two Variances, P-Value approach, Power of Test, Limitations of the Tests of Hypothesis.	RBT Level	Hrs. 05
 Chi-square Test: Test of Difference of more than Two Proportions, Test of Independence of Attributes, Test of Goodness of Fit, and Cautions in Using Chi Square Tests Laboratory Sessions/ Experimental learning: Determine the Hypothesis testing in a statistical method that is used in making statistical decisions using experimental data. Validate chi-square test by superposition theorem. 		

		Γ
Applications: Accuracy in testing, statistical methods.		
Video link / Additional online information (related to module if any):		
https://www.youtube.com/watch?v=14PQawp_rjk		
https://nptel.ac.in/courses/103106120/ Module-5	RBT Level	II.ac
	KD1 Level	Hrs.
Interpretation and Report Writing: Meaning of Interpretation, Technique of Interpretation, Precaution in Interpretation, Significance of Report Writing, Different Steps in Writing Report, Layout of the Research Report, Types of Reports, Oral Presentation, Mechanics of Writing a Research Report, Precautions for Writing Research Reports.	L2,L3	05
Intellectual Property : The Concept, Intellectual Property System in India, Development of TRIPS Complied Regime in India, Patents Act, 1970, Trade Mark Act, 1999,The Designs Act 2000, The Protection of Plant Varieties and Farmers' Rights Act 2001. Competing Rationales for Protection of IPRs, Leading International Instruments Concerning IPR, World Intellectual Property Organisation (WIPO),WIPO and WTO, Paris Convention for the Protection of Industrial Property, National Treatment, Right of Priority, Common Rules, Patents, Marks, Industrial Designs, Trade Names, Indications of Source, Unfair Competition, Patent Cooperation Treaty (PCT), Advantages of PCT Filing, Trade Related Aspects of Intellectual Property Rights(TRIPS) Agreement, Covered under TRIPS Agreement, Features of the Agreement, Protection of Intellectual Property under TRIPS, Copyright and Related Rights, Trademarks.		
 Laboratory Sessions/ Experimental learning: Determine the Technique of Interpretation & Precaution in Interpretation. Applications: Report Writing, Intellectual Property System in India Video link / Additional online information (related to module if any): https://www.youtube.com/watch?v=Xp2PVO3do34 		
https://nptel.ac.in/courses/109105112/		

Course	Course outcomes: The Students are able to						
CO1	Explain an overview of research methodology and explain techniques of defining a research						
COI	problem						
CO2	Use the functions of literature review in research and research design.						
CO3	Compute the details of sampling designs, measurement and scaling techniques and also						
COS	different methods of data collections						
CO4	Learn several parametric tests of hypotheses and Chi-square test applications						
CO5	Apply the art of interpretation, the art of writing research reports & to use IPR Acts						

Referen	Reference Books:						
1.	C.R. Kothari, Gaurav Garg, Research methodology, Methods and Techniques", New Age International,4th Edition, 2018						
2.	Ranjit Kumar, Research Methodology a step-by-step guide for beginners, (For the topic Reviewing						

the literature under module 2), SAGE Publications Ltd., 3rd Edition, 2011.

3. Study Material (For the topic Intellectual Property under module 5), Professional Programme Intellectual Property Rights, Law and Practice, The Institute of Company Secretaries of India, Statutory Body under an Act of Parliament, September 2013

4. Garg B.L, An introduction to Research Methodology, et al ,RBSA Publishers 2002

CO-PO	Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	1	2	2	1	1	1	1	1	2
CO2	3	2	1	1	2	2	1	1	1	1	1	2
CO3	3	2	2	2	2	2	1	1	1	1	1	1
CO4	3	2	2	2	2	2	1	1	1	1	1	1
CO5	3	2	2	1	2	2	1	1	1	1	1	2

Course Title	AERODYNAMIC LAB	Semester	Ι
Course Code	MVJ19MAEL16	CIE	50
Total No. of Contact Hours	40 L : T : P :: 20 : 0 : 20	SEE	50
No. of Contact Hours/week	04	Total	100
Credits	02	Exam. Duration	3 Hrs

Course objective is to:

Familiarization with various wind tunnel experimental facilities

Understand different sensors and measurement techniques and model set up system

Conduct the test, acquire the data and analyse and document

Laboratory Sessions

- 1. Calibration of test section of a subsonic wind tunnel.
- 2. Smoke flow visualization on a wing model at different angles of incidence at low speeds.
- 3. Tuft flow visualisation on a wing model at different angles of incidences at low speeds: Identify zones of attached and separated flows
- 4. Surface pressure distribution around building models in multiple model arrangement
- 5. Surface pressure distribution on a cambered wing at different angles of incidence and calculation of lift and pressure drag.
- 6. Calculation of total drag of a cambered airfoil at a low incidence using pitot-static probe wake survey
- 7. Measurement of typical boundary layer velocity profile on the wind tunnel wall (at low speeds) using a pitot probe and calculation of boundary layer displacement and momentum thickness in the presence of a circular cylinder model.
- 8. Study the effect of Blockage ratio on drag & pressure distribution of a circular cylinder
- 9. Study of pressure distribution on hemi spherical objects.
- 10. Measurement of turbulence level in a low speed wind tunnel
- 11. Study of wake behind wing under a reverse flow condition at various angles of attack & compare it with normal flow conditions
- 12. Conduct a series of test to obtain the stagnation pressure response of pitot probe in a wind

tunnel for varied yaw angle and obtain the response curve in terms of error, (percentage of velocity head) to yaw angle.

- 13. To determine longitudinal static stability derivative of an aircraft configuration model at various angles of attack and side slips
- 14. To determine lateral and directional static stability derivative of an aircraft configuration model at various angles of attack and side slips

Course	Course outcomes:					
CO1	Demonstrate various experimental facilities					
CO2	Explain the use of different sensors and measurement techniques					
CO3	Perform the test, acquire the data and analyse and document					
CO4	CO4 Study of wake behind wing under a reverse flow condition					
CO5	CO5 Determine longitudinal static stability derivative.					

Conduct of Practical Examination:

1.	All laboratory experiments are to be included for practical examination.
2.	Students are allowed to pick one experiment from the lot.
3.	Strictly follow the instructions as printed on the cover page of answer script for breakup of Marks.
4.	Change of experiment is allowed only once and marks allotted to the procedure part to be made zero.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	1	2	1	0	0	1	1	0	2
CO2	3	2	1	1	2	1	0	0	1	1	0	2
CO3	3	2	1	1	2	1	0	0	1	1	0	2
CO4	3	2	1	1	2	1	0	0	1	1	0	2
CO5	3	2	1	1	2	1	0	0	1	1	0	2

AIRC	RAFT PROPULSION LABORATO SEMESTER – I	DRY	
[As per C	Choice Based Credit System (CBCS) S	cheme]	
Laboratory Code	MVJ19MAEL17	CIE	50
Number of Lecture Hours/Week	01 Hr Tutorial (Instructions) 02 Hours Laboratory	SEE	50
RBT Level	L1, L2, L3	Credits	2
-	ropulsion experimental facilities pulsion experiments and measurement teo	chniques	
 Cascade testing of a model of th Estimation of propeller perform Estimation of propeller perform 		rvey.	
 Estimation of propener perform Forced Convective heat transfer 			
5. Measurement of Burning Veloc			
	tween flame speed and air-fuel ratio for	or a slow burning gas	seous fuel.
7. Construction of flame stability	diagram through flame lift up and flan	ne fall back	
8. Determination of heat of combu			
9. Fuel - injection characteristics (spray cone geometry; spray speed etc.	for various type of i	injectors)
10. Measurement of static overal through axial flow fan unit	l pressure rise & rotor static pressu	re rise & fan overa	ll efficiency
11. Effect of inlet flow distortion of rise & fan overall efficiency thr	on Measurement of static overall presough axial flow fan unit .	ssure rise & rotor st	atic pressure
12. Measurement of static overal through contra rotating axial flo	l pressure rise & rotor static pressure w fan unit	re rise & fan overa	ll efficiency
	on Measurement of static overall prices in the static stat		r static

14. Effect o	f inlet flow conditions on under-expanding /over-expanding nozzle.
Course out	nomes:
CO1	Understand the working procedure of piston engine, Gas Turbine Engine
CO2	Evaluate the calorific value of the fuel provided and heat transfer rate of the provided metal plate.
CO3	Experiment the flow over nozzle and free jet & wall jet to determine the flow properties
CO4	Estimate the pressure distribution over airfoil and thrust generated.
CO5	Calculate the performance of the jet engine and fuel injection system

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	1	2	1	0	0	1	1	0	2
CO2	3	2	1	1	2	1	0	0	1	1	0	2
CO3	3	2	1	1	2	1	0	0	1	1	0	2
CO4	3	2	1	1	2	1	0	0	1	1	0	2
CO5	3	2	1	1	2	1	0	0	1	1	0	2

Course Title	AIRCRAFT PERFORMANCE&FLIGHT MECHANICS	Semester	II
Course Code	MVJ19MAE21	CIE	50
Total No. of Contact Hours	60 L : T : P :: 40 : 0 : 20	SEE	50
No. of Contact Hours/week	04	Total	100
Credits	4	Exam. Duration	3hrs

Course objective is to:									
Module-1	RBT	10							
Understand the steady performance of airplanes	L3,L4	Hrs.							
Aircraft Performance: Aviation history. Principles of Flight. Aircraft aero									
Thrust. Steady and level Flight. Variation of Thrust, Drag, Power available,	and Power	required							
with speed and altitude. Minimum drag, minimum power, Maximum and r	ninimum lev	el flight							
speeds.									
Laboratory Sessions/ Experimental learning:									
Estimation of Drag and Lift at various speeds and thereby drag polar e	estimation								
Applications									
Applicable in standard Airplane Design									
Video link / Additional online information (related to module if any):									
https://nptel.ac.in/courses/101106041/									
Module 1 to Module 5									
https://nptel.ac.in/courses/101104007/									
Module 1									
Module-2	RBT	10							
Understand the accelerated performance of airplane	L3,L4	Hrs.							
Steady Performance: Airplane Steady Performance: General equation of motio		0							
performance, Steady Climbing, Gliding Flights; Minimum rate of sink and ra	nge in a glide	e. Range							
and Endurance of jet and piston prop airplanes.	1 - 664 T								
Accelerated Performance: Estimation of take-off and landing distances. Gro									
Field Length. Turn performance; Bank angle, load factor, pull-up & p	ull-down in	aneuver							
accelerated climbing, V-n diagram. Laboratory Sessions/ Experimental learning:									
Estimation of Drag and Lift at various turn performance									
Applications									
Applicable in standard Airplane Design									
Video link / Additional online information (related to module if any):									
https://nptel.ac.in/courses/101106041/									
Module 5 to Module 10									
https://nptel.ac.in/courses/101104007/									
Module 1									
Module-3	RBT	10							
Acquire knowledge of static longitudinal stability of airplane	L3,L4	Hrs.							

Static Longitudinal Stability and Control: Equilibrium conditions, Definition of static stability, Definition of longitudinal static stability, stability criteria, Contribution of airframe components: Wing contribution, Tail contribution, Fuselage contribution, Power effects- Propeller airplane and Jet airplane. Trim condition. Static margin, stick fixed neutral points. Longitudinal control, Elevator power, Elevator angle versus equilibrium lift coefficient, Elevator required for landing, Restriction on forward C.G. range, Hinge moment parameters, Stick-free Neutral point, Stick force gradient in unaccelerated flight, Restriction on aft C.G

Laboratory Sessions/ Experimental learning:

Estimation of Static Stability Derivatives at various speeds

Applications

Applicable in standard Airplane Design

Video link / Additional online information (related to module if any):

https://nptel.ac.in/courses/101106043/

Module 1 to 4

https://nptel.ac.in/courses/101104007/

Module 3

Module-4	RBT	10
Acquire knowledge of static directional and lateral stability of airplane	L3,L4	Hrs.

Static Directional Stability and Control: Introduction, Definition of directional stability, Static directional stability rudder fixed, Contribution of airframe components, Directional control. Rudder power, Stick-free directional stability, Requirements for directional control, Rudder lock, Dorsal fin. One engine inoperative condition, Weather cocking effect.

Static Lateral Stability And Control: Introduction, definition of Roll stability. Estimation of dihedral effect., Effect of wing sweep, flaps, and power, Lateral control, Estimation of lateral control power, Aileron control forces, Balancing the aileron.

Laboratory Sessions/ Experimental learning:

Estimation of Static stability derivatives at various speeds

Applications

Applicable in standard Airplane Design

Video link / Additional online information (related to module if any):

https://nptel.ac.in/courses/101106043/

Module 5 to Module 6

https://nptel.ac.in/courses/101104007/

Module 4

Module-5 RBT 10	
	0
Gain knowledge of dynamic longitudinal stability of airplanes L3,L4 H	Irs.

Dynamic Longitudinal Stability: Definition of Dynamic longitudinal stability: types of modes of motion: long or phugoid motion, short period motion. Airplane Equations of longitudinal motion, Derivation of rigid body equations of motion, Orientation and position of the airplane, gravitational and thrust forces, Small disturbance theory.

Dynamic Lateral and Directional Stability: Routh's criteria. Factors affecting period and damping of oscillations. Effect of wind shear.

Laboratory Sessions/ Experimental learning:

Estimation of Dynamic Stability Derivatives

Applications

Applicable in standard Airplane Design

Video link / Additional online information (related to module if any):

https://nptel.ac.in/courses/101106043/

Module 7 to Module 11

https://nptel.ac.in/courses/101104007/

Course	Course outcomes:									
CO1	Apply knowledge to calculate steady and accelerated performance									
CO2	Apply knowledge to calculate steady and accelerated performance									
CO3	Solve problems of longitudinal static stability for stick fix and stick free condition									
CO4	Solve problems of lateral and traverse static stability for stick fix and stick free condition									
CO5	Analyse dynamic stability for rigid airframe									

Refere	ence Books:
1.	Anderson J.D., Introduction to Flight, McGraw Hill, 1987
2.	Perkins, C.D., and Hage, R.E., Airplane Performance, stability and Control, John Wiley
۷.	& Sons Inc, New York, 1988
3.	McCormick B.W., Aerodynamics, Aeronautics and Flight Mechanics, John Wiley & Sons
5.	New York, 1979.
4.	Anderson J.D., Foundation of Aerodynamics, McGraw Hill Book Co, New York, 1985.
5.	Ojha S.K., Flight Performance of Aircraft, AIAA Education Series. Editor in Chief,
5.	J.S.Przemieniecki 1995.
6	Bandu N. Pamadi, Performance Stability, Dynamics and Control of Airplanes, AIAA 2 nd
6.	Edition Series, 2004.

CO-PO	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	1	0	1	1	0	0	1	0	1
CO2	3	3	3	1	1	1	0	0	0	1	0	1
CO3	3	3	3	1	0	1	0	0	0	1	0	1
CO4	3	3	3	1	2	1	1	0	0	1	0	1
CO5	3	3	3	1	1	1	1	0	1	1	0	1

Course Title	APPLIED COMPUTATIONAL FLUID DYNAMICS	Semester	Π
Course Code	MVJ19MAE22	CIE	50
Total No. of Contact Hours	60 L : T : P :: 40 : 10:10	SEE	50
No. of Contact Hours/week	4	Total	100
Credits	4	Exam. Duration	3hrs

Course objective is to: This course will enable students to

- 1. Understand CFD ideas and Mathematical behavior of PDEs
- 2. Acquire the knowledge to solve CFD problems through finite difference discritisation
- 3. Gain knowledge for grid generation and optimize grids
- 4. Acquire the knowledge to solve CFD problems through finite volume technique

Module-1	RBT Level	Hrs.
Introduction: CFD ideas to understand, CFD Application, Models of flows, Substantial derivative, Divergence of velocity. Governing Equations (no derivation) of flow; continuity, momentum, energy. Physical Boundary conditions. Conservative & Non-conservative forms of equations, Integral vrs Differential Forms of Equations. Form of Equations particularly suitable for CFD work. Shock capturing, Shock fitting. Mathematical Behavior of Partial Differential Equations: Classification of partial differential equations – Cramer Rule, Eigenvalue method. Equations of mixed type. Classification Impact on Physical & Computational Fluid Dynamics: Case studies. Laboratory Sessions/ Experimental learning: Ansys Lab	L2,L3	12
Applications: Choice of PDE vis a vis Flow behavior		
Video link / Additional online information (related to module if any):		
Nptel Video: CFD by Prof. S Chakraborty IIT Kharagpur Module-2	RBT Level	Hrs.
Discretization: Essence of discritization- Finite difference quotient, solution process, Reflection Boundary condition. Difference equation-Explicit and Implicit approach. Errors and stability analysis. Stability regions of standard time –steeping techniques. Solution of finite difference equations; Time marching and Space marching. Upwind and Mid-point leap frog schemes. shock capturing, Numerical viscosity, artificial viscosity. Relaxation technique; successive over relaxation/ successive under relaxation. Alternating Direction Implicit (ADI) Method. Lax –Wendroff second order scheme (without and with artificial viscosity). Effect of conservative smoothing. Unsteady problem-Explicit versus Implicit Scheme.	L3,L4	12
Laboratory Sessions/ Experimental learning: Ansys Lab Applications: Flow analysis using Finite Difference Techniques Video link / Additional online information (related to module if any): Nptel Video: CFD by Prof. S Chakraborty IIT Kharagpur Module-3	RBT Level	Hrs.

Grid Generation: Structured Grid Generation:-Algebraic Methods, Numerical grid generation methods, Surface grid generation, Multi Block Structured grid generation. Unstructured Grid Generation:- Delaunay-Voronoi Method, advancing front methods (AFM) Modified for Quadrilaterals, iterative paving method, Quadtree & Octree method. Multi-grid methods (Cycling Strategies). PDE mapping methods, use of grid control functions, and Chimera grids. Laboratory Sessions/ Experimental learning: Ansys Lab Applications: Body fitting Grid generation Video link / Additional online information (related to module if any): Natel Video: CED by Brof. S Chellreborty UT Khamamur	L3,L4	12
Nptel Video: CFD by Prof. S Chakraborty IIT Kharagpur Module-4	RBT Level	Hrs.
Adaptive Grid Methods: Adaptive Structured Grid Generation, Unstructured adaptive grid Methods. Mesh refinement methods, and Mesh enrichment method. Unstructured Finite Difference mesh refinement. Approximate Transformation & Computing Techniques: Matrices & Jacobian. Generic form of governing Flow Equations with strong conservative form in transformed space. Transformation of Equation from physical plane into computational Plane -examples. Control function methods. Variation Methods. Domain decomposition. Need for Parallel Computing in CFD algorithms. Laboratory Sessions/ Experimental learning: Ansys Lab Applications: Adaptive Grid formulation Video link / Additional online information (related to module if any): Nptel Video: CFD by Prof. S Chakraborty IIT Kharagpur	L3&L4	12
Module-5	RBT Level	Hrs.
Module-5 Finite Volume Techniques: Spatial discretisation:-Cell Centered Formulation and Cell vertex Formulation. Temporal discretisation:- Explicit time-stepping and Implicit time- stepping, time step calculation, Boundary conditions Case studies- Laplace equation, Diffusion problem, Convection and diffusion, Unwinding scheme, and Unsteady flows. High Resolution schemes-Total variation diminishing scheme, Hybrid differencing scheme, weighted essentially non-oscillatory scheme, artificial dissipation, and flux limiters. CFD Application to Some Problems: Aspects of numerical dissipation & dispersion. Approximate factorization, Flux Vector splitting. Application to Turbulence-Models. Large eddy simulation, Direct Numerical Solution. Computational solution to turbulent and laminar boundary layers. Heat through conduction and radiation. Post-processing and visualization, contour plots, vector plots etc. Laboratory Sessions/ Experimental learning: Ansys Lab Applications: Flow analysis through Finite Volume Technique Video link / Additional online information (related to module if any): Nptel Video: CFD by Prof. S Chakraborty IIT Kharagpur	RBT Level	Hrs. 12
Finite Volume Techniques: Spatial discretisation:-Cell Centered Formulation and Cell vertex Formulation. Temporal discretisation:- Explicit time-stepping and Implicit time- stepping, time step calculation, Boundary conditions Case studies- Laplace equation, Diffusion problem, Convection and diffusion, Unwinding scheme, and Unsteady flows. High Resolution schemes-Total variation diminishing scheme, Hybrid differencing scheme, weighted essentially non-oscillatory scheme, artificial dissipation, and flux limiters. CFD Application to Some Problems: Aspects of numerical dissipation & dispersion. Approximate factorization, Flux Vector splitting. Application to Turbulence-Models. Large eddy simulation, Direct Numerical Solution. Computational solution to turbulent and laminar boundary layers. Heat through conduction and radiation. Post-processing and visualization, contour plots, vector plots etc.		

	domain
CO2	Develop adaptive structured and unstructured grids
CO3	Apply knowledge to solve CFD problems through finite difference and finite volume techniques

Reference Books:				
1.	F. Wendt (Editor), Computational Fluid Dynamics - An Introduction, Springer – Verlag, Berlin; 1992.			
2.	Charles Hirsch, Numerical Computation of Internal and External Flows, Vols. I and II. John Wiley & Sons, New York; 1988.			

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	2	0	0	0	0	0	0	1	0
CO2	3	2	2	3	0	0	0	0	0	0	0	1
CO3	2	3	3	2	0	0	0	0	0	0	1	0

Course Title	AIRFRAME STRUCTURES AND STRUCTURAL DESIGN	Semester	П
Course Code	MVJ19MAE23	CIE	50
Total No. of Contact Hours	60 L : T : P :: 40 : 10 : 10	SEE	50
No. of Contact Hours/week	4	Total	100
Credits	4	Exam. Duration	03

Course objective is to: This course will enable students to

- 1. Understand the fundamentals of structural analysis of airframe parts.
- 2. Acquire knowledge on practical aircraft stress analysis.
- 3. Understand the fundamentals of Buckling and stability as applied to aircraft structures and design against fatigue.
- 4. Acquire knowledge on Wing box structure and Fuselage.
- 5. Acquire knowledge on Empennage structure, Landing gear and engine mounts

Module-1	L3,L4	10Hrs.
Fundamentals of structural analysis and structural components of aircraft:	Basic elasticit	y, Two
dimensional problems in elasticity, Loads on structural components, fu	unction of st	ructural
components, fabrication of structural components, connections, numerical Stat	ically determir	nate and
indeterminate structures as applied to aircraft structures: Statically determinate	: Equilibrium	of force
systems, truss structures, externally braced wings, landing gear, beams - shear a	and moments,	torsion-
stresses and deflection. Statically indeterminate structures: Bending moment in	n frames and r	rings by
elastic centre method, Continuous structure - moment distribution method. Nur	nerical problei	ns

Laboratory Sessions/ Experimental learning: Analysis of truss elements for different loading conditions using Ansys

Applications: For determinate and indeterminate structures.

Video link / Additional online information (related to module if any):

https://cosmolearning.org/courses/introduction-aerospace-structures/

Module-2

L3,L4 10Hrs.

Introduction to practical aircraft stress analysis: Introduction to wing stress analysis by modified beam

theory, Introduction to fuselage stress analysis by modified beam theory, Loads and stresses on ribs and frames. Numerical problems.

Laboratory Sessions/ Experimental learning: Deflection of a Simply Supported Beam.

Applications: Modified beam theory for wing and fuselage stress analysis.

https://cosmolearning.org/courses/introduction-aerospace-structures/		
Module-3	L3	10Hrs.
Buckling and stability as applied to aircraft structures: Introduction, column crippling stress, buckling of this sheets, Thin skin-stringer panels, skin-strin stiffened panels. Numerical problems, Overview of structural design proces Material and mechanical properties, failure theories, Design criteria- safe life a against fatigue, prediction of aircraft fatigue life.	nger panels, Ir s: Structural i	ntegrally ntegrity
Laboratory Sessions/ Experimental learning:		
Buckling load of slender Eccentric Columns and Construction of Southwell Plo	ot	
Applications: Structural design process		
Video link / Additional online information (related to module if any):		
https://cosmolearning.org/courses/introduction-aerospace-structures/		
Module-4	L3,L4	10Hrs
Laboratory Sessions/ Experimental learning: Determination of shear centre for open and closed sections Applications: Aircraft wings and fuselage. Video link / Additional online information (related to module if any):		
Determination of shear centre for open and closed sections Applications: Aircraft wings and fuselage.		
Applications: Aircraft wings and fuselage. Video link / Additional online information (related to module if any): https://cosmolearning.org/courses/introduction-aerospace-structures/ Module-5	L3,L4	10Hrs
Determination of shear centre for open and closed sections Applications: Aircraft wings and fuselage. Video link / Additional online information (related to module if any): https://cosmolearning.org/courses/introduction-aerospace-structures/ Module-5 Empennage structure, Landing gear and engine mounts: Landing gear: Introduction, Horizontal stabilizer, vertical stabilizer, elevator and rudder. Intro and arrangements, stowage and retraction, detail design. Engine mounts: Introdu engine mounts, inlet of jet engines, wing-pod (pylon) mounts, rear fuselage m fuselage mounts (fighters).	Empennage st duction, develo action, propelle	tructure opment er drive
Determination of shear centre for open and closed sections Applications: Aircraft wings and fuselage. Video link / Additional online information (related to module if any): https://cosmolearning.org/courses/introduction-aerospace-structures/ Module-5 Empennage structure, Landing gear and engine mounts: Landing gear: Introduction, Horizontal stabilizer, vertical stabilizer, elevator and rudder. Intro and arrangements, stowage and retraction, detail design. Engine mounts: Introdu engine mounts, inlet of jet engines, wing-pod (pylon) mounts, rear fuselage m fuselage mounts (fighters). Laboratory Sessions/ Experimental learning: Study on Empennage structure.	Empennage st duction, develo action, propelle	tructure opment er drive
Determination of shear centre for open and closed sections Applications: Aircraft wings and fuselage. Video link / Additional online information (related to module if any): <u>https://cosmolearning.org/courses/introduction-aerospace-structures/</u> <u>Module-5</u> Empennage structure, Landing gear and engine mounts: Landing gear: Introduction, Horizontal stabilizer, vertical stabilizer, elevator and rudder. Intro and arrangements, stowage and retraction, detail design. Engine mounts: Introdu engine mounts, inlet of jet engines, wing-pod (pylon) mounts, rear fuselage m fuselage mounts (fighters). Laboratory Sessions/ Experimental learning: Study on Empennage structure. Applications: Aircraft empennage, landing gear and engine mounts.	Empennage st duction, develo action, propelle	tructure opment er drive
Determination of shear centre for open and closed sections Applications: Aircraft wings and fuselage. Video link / Additional online information (related to module if any): https://cosmolearning.org/courses/introduction-aerospace-structures/ Module-5 Empennage structure, Landing gear and engine mounts: Landing gear: Introduction, Horizontal stabilizer, vertical stabilizer, elevator and rudder. Intro and arrangements, stowage and retraction, detail design. Engine mounts: Introdu engine mounts, inlet of jet engines, wing-pod (pylon) mounts, rear fuselage m fuselage mounts (fighters). Laboratory Sessions/ Experimental learning: Study on Empennage structure.	Empennage st duction, develo action, propelle	tructure opment er drive
Determination of shear centre for open and closed sections Applications: Aircraft wings and fuselage. Video link / Additional online information (related to module if any): <u>https://cosmolearning.org/courses/introduction-aerospace-structures/</u> <u>Module-5</u> Empennage structure, Landing gear and engine mounts: Landing gear: Introduction, Horizontal stabilizer, vertical stabilizer, elevator and rudder. Intro and arrangements, stowage and retraction, detail design. Engine mounts: Introdu engine mounts, inlet of jet engines, wing-pod (pylon) mounts, rear fuselage m fuselage mounts (fighters). Laboratory Sessions/ Experimental learning: Study on Empennage structure. Applications: Aircraft empennage, landing gear and engine mounts.	Empennage st duction, develo action, propelle	tructure opment er drive
Determination of shear centre for open and closed sections Applications: Aircraft wings and fuselage. Video link / Additional online information (related to module if any): https://cosmolearning.org/courses/introduction-aerospace-structures/ Module-5 Empennage structure, Landing gear and engine mounts: Landing gear: Introduction, Horizontal stabilizer, vertical stabilizer, elevator and rudder. Introd and arrangements, stowage and retraction, detail design. Engine mounts: Introdu engine mounts, inlet of jet engines, wing-pod (pylon) mounts, rear fuselage m fuselage mounts (fighters). Laboratory Sessions/ Experimental learning: Study on Empennage structure. Applications: Aircraft empennage, landing gear and engine mounts. Video link / Additional online information (related to module if any):	Empennage st duction, develo action, propelle	tructure opment er drive
Determination of shear centre for open and closed sections Applications: Aircraft wings and fuselage. Video link / Additional online information (related to module if any): https://cosmolearning.org/courses/introduction-aerospace-structures/ Module-5 Empennage structure, Landing gear and engine mounts: Landing gear: Introduction, Horizontal stabilizer, vertical stabilizer, elevator and rudder. Introd and arrangements, stowage and retraction, detail design. Engine mounts: Introdu engine mounts, inlet of jet engines, wing-pod (pylon) mounts, rear fuselage m fuselage mounts (fighters). Laboratory Sessions/ Experimental learning: Study on Empennage structure. Applications: Aircraft empennage, landing gear and engine mounts. Video link / Additional online information (related to module if any):	Empennage st duction, develo action, propelle	tructure opment er drive
Determination of shear centre for open and closed sections Applications: Aircraft wings and fuselage. Video link / Additional online information (related to module if any): https://cosmolearning.org/courses/introduction-aerospace-structures/ Module-5 Empennage structure, Landing gear and engine mounts: Landing gear: Introduction, Horizontal stabilizer, vertical stabilizer, elevator and rudder. Intro and arrangements, stowage and retraction, detail design. Engine mounts: Introdu engine mounts, inlet of jet engines, wing-pod (pylon) mounts, rear fuselage m fuselage mounts (fighters). Laboratory Sessions/ Experimental learning: Study on Empennage structure. Applications: Aircraft empennage, landing gear and engine mounts. Video link / Additional online information (related to module if any): https://cosmolearning.org/courses/introduction-aerospace-structures/	Empennage st duction, develo action, propelle	tructure opment er drive

CO110.2	Demonstrate knowledge of practical aircraft stress analysis.
CO110.3	Analyse Buckling and stability as applied to aircraft structures and design against fatigue

CO110.4	Demonstrate knowledge of Wing box structure and Fuselage.
CO110.5	Demonstrate knowledge of Empennage structure, Landing gear and engine mounts

Reference	ee Books:
1.	T.H.G. Megson, 'Aircraft structures for engineering students', fourth edition, Butterworth-
1.	Heinemann, USA, 2007
2.	Michael Chun-Yung Niu, Airframe structural design, Lockheed Aeronautical systems
۷.	company, Burbank, California, Hong Kong Conmilt Press Ltd, USA, February 2002
3.	Peery D. J. and Azar J. J., Aircraft Structures, 2nd edition, McGraw Hill N.Y., 1993
4.	E.F. Bruhn, 'Analysis and design of flight vehicle structures', Jacobs Publishing, Inc,
4.	USA, 1973

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	1	1	1	1	1	1	0	2
CO2	3	3	3	3	1	1	1	1	1	1	0	2
CO3	3	3	3	3	1	1	1	1	1	1	0	2
CO4	3	2	3	2	1	1	1	1	1	1	0	2
CO5	3	2	3	2	1	1	1	1	1	1	0	2

Course Title	PRACTICAL FINITE ELEMENT ANALYSIS	Semester	п
Course Code	MVJ19MAE241	CIE	50
Total No. of Contact Hours	60 L : T : P :: 40 : 0 : 20	SEE	50
No. of Contact Hours/week	3	Total	100
Credits	3	Exam. Duration	

- 1. Understand the basic concepts of FEA and strength of materials.
- 2. Acquire the knowledge on Meshing and its types
- 3. Learn the static and dynamic analysis
- Learn the Thermal, Fatigue, Crash & NVH Analysis.
 Understand the concepts of Post Processing Techniques.

Module-1	RBT Level	Hrs.
Introduction to Finite Element Analysis: Methods to Solve any Engineering	L3, L4	12
Problem, analytical or Numerical Problem, Brief Introduction to Different		
Numerical Methods, DOF, What is FEM, Advantages of FEA, Design Cycles,		
Absolute vs. Relative Design. History of Finite Element Method, Present,		
Theoretical Finite Element Analysis, Software Based FEM, Practical		
Applications of FEA, Failure Analysis, Future of FEA.		
Basics of Statics and Strength of Materials: Stress, Types of Stress, Types of		
Forces, Types of Moments, Material Properties and Boundary Conditions: E,		
G&U, Material Classification, Material Properties, Boundary Conditions, How		
to Apply Constraints.		
Laboratory Sessions/ Experimental learning: Ansys Lab		
Applications: Piece-wise approximation of physical fields on finite elements.		
Video link / Additional online information (related to module if any):		
Nptel Video: FEM by Dr. R. Krishnakumar, IIT Madras		

Module-2	RBT Level	Hrs.
Introduction to Meshing: Need for Meshing, Types of Elements, Element	L3, L4	12
Type, Element Length, Meshing Techniques, Meshing in Critical Areas, 1-D		
Meshing: Stiffness Matrix- Assembly of Two Rod Elements, Beam Element,		
Special Features of Beam Elements		
2-D Meshing: Family of 2-d Elements, Thin Shell Elements, Effect of Mesh		
Density in the Critical Region, Effect of Biasing in the Critical Region,		
Symmetric Boundary Conditions, Different Element Type, Options for Shell		
Meshing, Geometry Associative Mesh, 3-D Meshing: When to Use 1-d,2-d,3-		
d Elements, DOFS for Solid Elements, Tetra Meshing Techniques, Quality		

Charles for Totas Mashing Deish Mashing Oral's Cl. 1. C. D. 1184.1		1
Checks for Tetra Meshing, Brick Meshing, Quality Checks for Brick Meshing, Checks for Meshing		
Laboratory Sessions/ Experimental learning: Ansys Lab Applications: Meshing reduces the degrees of freedom from infinite to finite. Video link / Additional online information (related to module if any): Nptel Video: Computer Aided design by Dr. Anoop Chawla, IIT Delhi.		
Module-3	RBT Level	Hrs.
Linear Static & Non-Linear Analysis: Definition, Design Modifications Based on Linear Static Analysis. Linear Static Solvers, Solution Restart Method, h-element vs. p-element, Sub-modelling, Linear Buckling Analysis. Comparison of Linear and Nonlinear FEA, Types of Nonlinearity, Stress- Strain Measures for Nonlinear Analysis, Solution Techniques for Nonlinear Analysis, Newton Raphson Method, Essential Steps to Start with Nonlinear FEA,	L3, L4	12
Dynamic Analysis : Static Analysis vs. Dynamic Analysis, Difference Between Time Domain and Frequency Domain, Types of Loading, Simple Harmonic Motion, Free Vibration, Free - Free Run, How to Avoid Resonance, Damping Consideration, Forced Vibration, Single DOF System: Frequency Response Analysis, Transient Response Analysis, Dynamic Analysis Solvers, Two DOF System, Frequency Response Analysis Base Excitation, Bracket, Transient Response Analysis.		
Laboratory Sessions/ Experimental learning: Ansys Lab Applications: Static analysis is performed in a non-runtime environment, dynamic analysis adopts the opposite approach and is executed while a program is in operation.it performs continuous and concurrent risk assessments, searching for vulnerabilities within web applications and speeding interventions Video link / Additional online information (related to module if any): Nptel Video: Vibration of structures by Prof. A. Dasgupta, IIT Kharagpur.		
Modulo 4	RBT Level	IIno
Module-4		Hrs.
Thermal Analysis: Introduction, Conduction Heat Transfer, Steady State Conduction, Unsteady State Conduction, Convection Heat Transfer, Forced Convection (Internal Flow), Forced Convection (External Flow), Meshing for Thermal Analysis, Free/Natural Convection, Radiation Heat Transfer, Practical Application of Thermal Analysis.	L3, L4	12
Fatigue Analysis: Why Fatigue Analysis, Static, Dynamic and Fatigue Analysis Comparison, what is Fatigue, History of Fatigue, Definitions, Various Approaches in Fatigue Analysis, Stress Life Approach, Strain Life Approach, Fracture Mechanics Approach, Cycle Counting, Multi-Axial Fatigue, CAE (Fatigue) and Test Data Correlation		

Laboratory Sessions/ Experimental learning: Ansys Lab	al or man	
Applications: To understand the physical phenomenon either natur made and most important to control them.		
Video link / Additional online information (related to module if any)	:	
Nptel Video: FEM by Dr. R. Krishnakumar, IIT Madras.		
		1
Module-5	RBT Level	Hrs.
Crash Analysis & NVH Analysis: Introduction, Structural Crash W		12
Transient Dynamics Solution Methodology, Explicit & Implicit		
Lagrangian and Eulerian Codes, Effect of Process and Residual Stress		
Analysis, Typical Application of Crash Worthiness Simulations in		
Industries, Introduction to NVH Concepts, Frequency Range of FE	•	
Analysis, FEA for Structural Dynamics, FEA for Acoustics, Model V Model Updating, Design Modification, Vibration and Noise Control.		
Descrite Hanne to Minne Descrite Assessed and Hannesses Company Inte		
Result, How to View Results, Average and Unaverage Stresses, Inter of Results and Design Modifications, CAE Reports, Experimental V and Data Acquisition, How to Measure Fatigue Life, How to Measure Frequency	Validation	
of Results and Design Modifications, CAE Reports, Experimental V and Data Acquisition, How to Measure Fatigue Life, How to Measure	Validation	
of Results and Design Modifications, CAE Reports, Experimental V and Data Acquisition, How to Measure Fatigue Life, How to Measure Frequency Laboratory Sessions/ Experimental learning: Ansys Lab Applications: Virtual prototype concepts enable modelling of various	Validation re Natural	
of Results and Design Modifications, CAE Reports, Experimental V and Data Acquisition, How to Measure Fatigue Life, How to Measure Frequency Laboratory Sessions/ Experimental learning: Ansys Lab Applications: Virtual prototype concepts enable modelling of various relating to noise and vibration to a great detail	Validation re Natural problems	
of Results and Design Modifications, CAE Reports, Experimental V and Data Acquisition, How to Measure Fatigue Life, How to Measure Frequency Laboratory Sessions/ Experimental learning: Ansys Lab Applications: Virtual prototype concepts enable modelling of various relating to noise and vibration to a great detail Video link / Additional online information (related to module if any)	Validation re Natural problems	
of Results and Design Modifications, CAE Reports, Experimental V and Data Acquisition, How to Measure Fatigue Life, How to Measure Frequency Laboratory Sessions/ Experimental learning: Ansys Lab Applications: Virtual prototype concepts enable modelling of various relating to noise and vibration to a great detail Video link / Additional online information (related to module if any) Nptel Video: Accident analysis lecture 46 by IIT Kharagpur.	Validation re Natural problems	
of Results and Design Modifications, CAE Reports, Experimental V and Data Acquisition, How to Measure Fatigue Life, How to Measure Frequency Laboratory Sessions/ Experimental learning: Ansys Lab Applications: Virtual prototype concepts enable modelling of various relating to noise and vibration to a great detail Video link / Additional online information (related to module if any)	Validation re Natural problems	
of Results and Design Modifications, CAE Reports, Experimental V and Data Acquisition, How to Measure Fatigue Life, How to Measure Frequency Laboratory Sessions/ Experimental learning: Ansys Lab Applications: Virtual prototype concepts enable modelling of various relating to noise and vibration to a great detail Video link / Additional online information (related to module if any) Nptel Video: Accident analysis lecture 46 by IIT Kharagpur.	Validation re Natural problems	
of Results and Design Modifications, CAE Reports, Experimental V and Data Acquisition, How to Measure Fatigue Life, How to Measure FrequencyLaboratory Sessions/ Experimental learning: Ansys Lab Applications: Virtual prototype concepts enable modelling of various relating to noise and vibration to a great detailVideo link / Additional online information (related to module if any) Nptel Video: Accident analysis lecture 46 by IIT Kharagpur.Course outcomes:CO1Describe the concepts of FEA and strength of materials.CO2Analyse Meshing and its types	Validation re Natural problems	
of Results and Design Modifications, CAE Reports, Experimental V and Data Acquisition, How to Measure Fatigue Life, How to Measure FrequencyLaboratory Sessions/ Experimental learning: Ansys Lab Applications: Virtual prototype concepts enable modelling of various relating to noise and vibration to a great detailVideo link / Additional online information (related to module if any) Nptel Video: Accident analysis lecture 46 by IIT Kharagpur.Course outcomes:CO1Describe the concepts of FEA and strength of materials.CO2Analyse Meshing and its typesCO3Evaluate static and dynamic analysis	Validation re Natural problems	
of Results and Design Modifications, CAE Reports, Experimental V and Data Acquisition, How to Measure Fatigue Life, How to Measure FrequencyLaboratory Sessions/ Experimental learning: Ansys Lab Applications: Virtual prototype concepts enable modelling of various relating to noise and vibration to a great detailVideo link / Additional online information (related to module if any) Nptel Video: Accident analysis lecture 46 by IIT Kharagpur.Course outcomes:CO1Describe the concepts of FEA and strength of materials.CO2Analyse Meshing and its types	Validation re Natural problems	

Referen	nce Books:
1.	Nitin S. Gokhale, Practical Finite Element Analysis, Finite to Infinite, 2008.
2.	G.R. Liu & S. S. Quek, Finite Element Method: A Practical Course, Butterworth-Heinemann, 2003
3.	Bryan J. Mac Donald, Practical Stress Analysis with Finite Elements, Glasnevin Publishing, 2007
4.	Practical Aspects of Finite Element Simulation, Altair's Academic Program, 2015

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	1	1	1	1	1	1	0	1
CO2	3	3	2	2	1	1	1	1	1	1	0	1
CO3	3	3	2	2	1	1	1	1	1	1	0	1
CO4	3	3	2	2	1	1	1	1	1	1	0	1
CO5	3	3	2	2	1	1	1	1	1	1	0	1

Course Title	HELICOPTER DYNAMICS	Semester	II
Course Code	MVJ19MAE242	CIE	50
Total No. of Contact Hours	60 L: T : P :: 40 : 0 : 20	SEE	50
No. of Contact Hours/week	4	Total	100
Credits	4	Exam. Duration	3 Hrs

- 1. Comprehend the basic concepts of helicopter dynamics.
- 2. Acquire the knowledge of basic helicopter performance
- 3. Understand the Rotor Airfoil Aerodynamics
- 4. Gain knowledge on the Stability and Control of Helicopter
- 5. Learn about the standards, specifications and conceptual design of Helicopters

Module-1	L3,L4	8Hrs.

INRODUCTION

A history of helicopter flight; Fundamentals of Rotor Aerodynamics; Momentum theory analysis in hovering flight. Disk loading, power loading, thrust & power coefficients. Figure of merit, rotor solidity and blade loading coefficient. Power required in flight. Axial climb, descent, and autorotation. Blade Element Analysis: Blade element analysis in hovering and forward flight. Rotating blade motion. Types of rotors. Concept of blade flapping, lagging and coning angle. Equilibrium about the flapping hinge, and lead/lag hinge.

Laboratory Sessions/ Experimental learning: Estimation of propeller performance

Applications: Rotor Aerodynamics and rotor configuration

Video link / Additional online information (related to module if any):

https://nptel.ac.in/courses/101/104/101104017/

Module-2	L3,L4	8Hrs.
DACIC HELICODTED DEDEODMANCE		

BASIC HELICOPTER PERFORMANCE

Hovering and axial climb performance. Forward flight performance; Induced power, blade profile power, parasite power, tail rotor power, climb power total power. Effects of gross weight, density and altitude. Speed for minimum power, maximum range. Factors affecting forward speed, and ground effect.

Laboratory Sessions/ Experimental learning: Study of wake behind wing under a reverse flow condition at various angles of attack & compare it with normal flow conditions

Applications: Performance of Helicopter and factors affecting its performance

Video link / Additional online information (related to module if any):

https://nptel.ac.in/courses/101/104/101104017/

Module-3	L3	8Hrs.
ROTOR AIRFOIL AERODYNAMICS		

Rotor airfoil requirements, effects of Reynolds number and Mach number. Airfoil shape definition, Airfoil pressure distribution. Pitching moment. Maximum lift and stall characteristics, high angle of attack range. Rotor Wakes and Blade Tip Vortices: Flow visualization techniques, Characteristics of rotor wake in hover, and forward flight. Other characteristics of rotor wake. Structure of the tip vortices. Flow topology of dynamic stall.

Laboratory Sessions/ Experimental learning: Smoke flow visualization on a wing model at different angles of incidence at low speeds

Applications: Aerodynamics of Airfoils and its characteristic features Video link / Additional online information (related to module if any):

https://nptel.ac.in/courses/101/104/101104017/

Module-4	L3,L4	8Hrs.
HELICOPTER FLICHT DVNAMICS		

HELICOPTER FLIGHT DYNAMICS

Forward speed disturbance, vertical speed disturbance, pitching angular velocity disturbance, side-slip disturbance, yawing disturbance. Static stability of helicopters: longitudinal, lateral-directional. Dynamic stability aspects. Main rotor and tail rotor control.

Laboratory Sessions/ Experimental learning: To determine longitudinal static stability derivative of an aircraft configuration model at various angles of attack and side slips

Applications: Helicopter stability & control

Video link / Additional online information (related to module if any):

https://nptel.ac.in/courses/101/104/101104062/

Module-5		8Hrs.
STANDARDS SPECIFICATIONS & TESTING ASPECTS		

STANDARDS, SPECIFICATIONS & TESTING ASPECTS

Scope of requirements. General and operational requirements. Military derivatives of civil rotorcraft. Structural strength and design for operation on specified surfaces. Rotorcraft vibration classification. Flight and Ground Handling Qualities-General requirements and definitions. Control characteristics, beak forces. Levels of handling qualities. Flight Testing- General handing flight test requirements and, basis of limitations. Conceptual Design of Helicopters: Overall design requirements .Design of main rotors, Fuselage design, Empennage design, Design of tail rotors, High speed rotorcraft Laboratory. Sessions/ Experimental learning: Surface pressure distribution on a combared wing et

Laboratory Sessions/ Experimental learning: Surface pressure distribution on a cambered wing at different angles of incidence and calculation of lift and pressure drag.

Applications: Helicopter standards, its regulations involved and design requirements

Video link / Additional online information (related to module if any):

https://nptel.ac.in/courses/101/104/101104069/

Course	e outcomes:
CO1	Apply the basic concepts of Helicopter Dynamics and Analysis of Blade Element
CO2	Understand the basic Helicopter Performance and the factors affecting its performance characteristics
CO3	Understand the aerodynamics of Rotor Airfoil and acquire knowledge of Rotor wake and Blade tip vortices
CO4	Acquire knowledge of Stability and Control of Helicopter
CO5	Acquire knowledge of the Design of Helicopters and its Standards and Specifications

Reference Books:

1.	J. Gordon Leishman, Principles of Helicopter Aerodynamics, Cambridge University Press, 2002.
2.	George H. Saunders, Dynamics of Helicopter Flight, John Wiley & Sons, Inc, NY, 1975.
3.	W Z Stepniewski and C N Keys, Rotary Wing Aerodynamics, Dover Publications, Inc, New York, 1984.
4.	ARS Bramwell, George Done, and David Balmford, Helicopter Dynamics, 2nd Edition,
т.	Butterworth-Heinemann Publication, 2001.

					CO-F	PO Map	ping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	1	-	1	1	1	1	1	-	1
CO2	3	2	2	1	1	1	1	1	1	1	-	1
CO3	3	1	1	1	1	1	1	1	1	1	-	1
CO4	3	-	1	1	-	1	1	1	1	1	-	1
CO5	3	-	2	1	-	1	1	1	1	1	-	1

Course Title	THEORY OF PLATES AND SHELLS	Semester	2 nd
Course Code	MVJ19MAE243	CIE	50
Total No. of Contact Hours	60 L : T : P :: 40 : 0 : 20	SEE	50
No. of Contact Hours/week	04	Total	100
Credits	04	Exam. Duration	3hours

Course objective is to:		
 Understand the stresses developed in plates under bending Learn the stresses developed in plates under buckling Learn the stresses developed in shells under bending Acquire the knowledge of the stresses developed in shells under buckling 	lg	
Module-1	RBT Level	Hrs.
 Introduction: Plate and Shell Structures in Aerospace Vehicles. Flexural rigidity of plates. Flexural rigidity of shells. Introduction to bending and buckling of plates and shells. Reinforced plates. Eccentrically compressed shells. Bending of Thin Plates - Pure bending of plates. Isotropic and orthotropic flat plates. Flexural rigidity of plate. Bending of plates by distributed lateral load. Combined bending and tension or compression. Bending and twisting moments. Shear stress. Laboratory Sessions/ Experimental learning: 3 point Flexural testing 4 point flexural testing Applications: Application in wings section of aircrafts 	L3	12
 Application in wings section of aneralis Application in automobile (Mechanical Engineering) Video link / Additional online information: Introduction https://www.youtube.com/watch?v=kpAnsW-WB58&feature=emb_logo Classification of plate theory https://www.youtube.com/watch?v=WZN8SDXOX5Q&feature=emb_logo Matlab coding https://www.youtube.com/watch?v=cwRoevN67fs&feature=emb_logo 		
Module-2	RBT Level	Hrs.
Bending Of Thin Plates - Strain Energy, Slopes of deflection of surface. Different edge conditions: - built in edge, simply supported edge and, free edge. Combined bending and tension or compression of plates. Strain energy by: - bending of plates, bending by lateral loads, combined bending and tension or compression of plates.	L3	12

Buckling Of Thin Plates:- Method of calculation of critical loads. Buckling of simply supported rectangular plates uniformly compressed in one direction. Buckling of uniformly compressed rectangular plates simply supported along two opposite sides perpendicular to the direction of compression and having various edge conditions along the other two sides. Critical values of compressive stress.		
 Laboratory Sessions/ Experimental learning: 1. Strain energy and slopes of deflection of surface plotting using computer softwares 2. Structural Modeling of Sandwich Beam of Rectangular Cross-section and Analyses for Stress for Unsymmetrical bending case 		
Applications:1. Application in fuselage section of aircrafts2. Application in Car outer body coverings (Mechanical Engineering)		
Video link / Additional online information:		
 Energy Principles <u>https://www.youtube.com/watch?v=02p5T_WCre0&feature=emb_logo</u> Transformation of tensors <u>https://www.youtube.com/watch?v=qaOzuDTQVBU&feature=emb_logo</u> 		
Module-3	RBT Level	Hrs.
Module-3 Buckling of Reinforced Plates: Stability of plates reinforced by ribs. Simply supported rectangular plates with longitudinal ribs. General equation for critical compressive stress. Critical compressive stress for a plate stiffened by one rib. Study of the experimental value of buckling of plates.	Level	Hrs.
Buckling of Reinforced Plates: Stability of plates reinforced by ribs. Simply supported rectangular plates with longitudinal ribs. General equation for critical compressive stress. Critical compressive stress for a plate stiffened by one rib. Study	Level	Hrs.
Buckling of Reinforced Plates: Stability of plates reinforced by ribs. Simply supported rectangular plates with longitudinal ribs. General equation for critical compressive stress. Critical compressive stress for a plate stiffened by one rib. Study of the experimental value of buckling of plates. Bending of Thin Shells: Deformation of an element of a shell. Expression for components of normal stresses. Flexural rigidity of shell. Case of deformation with	Level	Hrs. 12
 Buckling of Reinforced Plates: Stability of plates reinforced by ribs. Simply supported rectangular plates with longitudinal ribs. General equation for critical compressive stress. Critical compressive stress for a plate stiffened by one rib. Study of the experimental value of buckling of plates. Bending of Thin Shells: Deformation of an element of a shell. Expression for components of normal stresses. Flexural rigidity of shell. Case of deformation with presence of shearing stresses. Laboratory Sessions/ Experimental learning: Buckling of thin plates and studying the effects using ansys 	Level	

Module-4	RBT Level	Hrs.
Strain Energy of Deformation Of Shells: Strain energy of deformation of shell:- bending and stretching of middle surface. Symmetrical deformation of a circular cylindrical shell. Differential equation for bending of strip. Unsymmetrical deformation of a circular cylindrical shell.		
Laboratory Sessions/ Experimental learning:1. Strain energy deformation in shells and studying the effects using ansys2. Bending of strip and studying the effects using ansys		
 Applications: 1. In aircraft fuselage 2. Water containers 3. Oil containers 4. Concrete mixers 	L3,L4	12
 Video link / Additional online information: 1. Reduced stiffness <u>https://www.youtube.com/watch?v=QTHrs8nqo18&feature=emb_logo</u> 2. Navier solution <u>https://www.youtube.com/watch?v=yNMfqsoSLEw&feature=emb_logo</u> 		
Module-5	RBT Level	Hrs.
Buckling of Shells: Symmetrical buckling of cylindrical shell under the action of uniform axial compression:-differential equation, critical stress. Symmetrical buckling of cylindrical shell under the action of uniform axial pressure. Unsymmetrical buckling of cylindrical shell under the action of uniform axial pressure. Study of the experimental values of cylindrical shells in axial compression. Bent or eccentrically compressed shells.		
 Laboratory Sessions/ Experimental learning: 1. Symmetrical buckling of cylindrical shell subjected to uniform axial compression in Ansys 2. Unsymmetrical buckling of cylindrical shell subjected to uniform axial compression in Ansys 	L3,L4	12
Applications: 1. Fuselage of aircrafts		

Video link / Additional online information:

- Levy solution <u>https://www.youtube.com/watch?v=ipTErjTeCmY&feature=emb_logo</u>
 Buckling of plates
- https://www.youtube.com/watch?v=S11B2-qaWPc&feature=emb_logo

Course outcomes:	The student shall be able to:
------------------	-------------------------------

C01	Estimate the stresses developed in plates and shells under bending
CO2	Analyse the stresses developed in thin plates under buckling
CO3	Analyse the stresses developed in shells under buckling and bending
CO4	Calculate strain energy deformation in shells
CO5	Analyse symmetrical and unsymmetrical buckling in shell

Reference Bo	poks:
1.	Timoshenko, S.P. and Gere, J.M., Theory of Elastic Stability, McGraw-Hill Book Co. 1986
2.	Timoshenko, S.P. Winowsky. S., and Kreger, Theory of Plates and Shells, McGraw- Hill Book Co. 1990
3.	Flugge, W., Stresses in Shells, Springer – Verlag, 1985

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	1	-	1	1	1	1	1	-	1
CO2	3	3	2	1	1	1	1	1	1	1	-	1
CO3	3	3	2	1	1	1	1	1	1	1	-	1
CO4	3	3	2	1	-	1	1	1	1	1	-	1
CO5	3	3	2	1	-	1	1	1	1	1	-	1

Course Title	THEORY OF COMBUSTION	Semester	II
Course Code	MVJ19MAE251	CIE	50
Total No. of Contact Hours	60 L : T : P :: 50 : 10: 0	SEE	50
No. of Contact Hours/week	4	Total	100
Credits	4	Exam. Duration	3hrs

Course Objective is to:		
 Understand basic combustion theory Acquire knowledge of diffusion flame Know the combustion process in engines 		
Module-1	RBT Level	Hrs.
Basics of Combustion theory: Combustion Stochiometry and Thermo chemical Calculation, Chemical Kinetics and Equilibrium, Transport Phenomena-Theory of Viscosity, conductivity and diffusivity.		
Laboratory Sessions/ Experimental learning :		
To determine the kinematic viscosity using Torsion viscosmeter		
To determine the kinematic viscosity using Redwood viscosmeter		
To determine the stoichiometric Air/Fuel ratio for selective gases like CO, H ₂ , CH ₄ , C ₂ H ₂ , C ₂ H ₆ , C ₃ H ₈ , Natural gas.		
Applications:		
1. In light machinery thin oils (for example, lubricant oil used in clocks) with		
low viscosity is used. 2. In heavy machinery, highly viscous oils (example: grease) are used.	L2,L3,L4	10
 In heavy machinery, highly viscous ons (example, grease) are used. In lubrication, viscosity is the most significant characteristic of lubricating oils. 		
4. It is also very vital in greases.		
Video link / Additional online information (related to module if any) :		
https://www.youtube.com/watch?v=Ts4LtHD1IvI		
https://sagemetering.com/applications/energy/natural-gas-flow-meter-for-conservat		
https://pubs.acs.org/doi/suppl/10.1021/ed200506d/suppl_file/ed200506d_si_002.doc		
https://www.youtube.com/watch?v=FJi4ODPQSE0		
Module-2	RBT Level	Hrs.
Pre-Mixed Flames: Description of premixed flames, Burning velocity and parametric dependences, Experimental methods of measuring burning velocity,	L3.L4	10

	RBT	1
https://www.youtube.com/watch?v=77ME6rzwarE		
https://www.youtube.com/watch?v=_gqO3ncLfRg		
Video link / Additional online information (related to module if any) :		
Its principal uses are as jet engine fuel. The most common jet fuel worldwide is a kerosene-based fuel classified as JET A-1.		
3. Jet fuel is a colorless, combustible, straight-run petroleum distillate liquid.		
hydrogen or a hydrocarbon fuel such as RP-1, and a liquid oxidizer, such as liquid oxygen.		
2. Bipropellant liquid rockets generally use a liquid fuel, such as liquid		
1. Liquid fuel combustion in Petrol and Diesel engines.		
Applications :	L3,L4	10
1. To determine the large-scale burning rates of pool fire for liquid fuel from small-scale flammability tests performed in a Tewarson Calorimeter Apparatus.		
Laboratory Sessions/ Experimental learning :		
Diffusion Flame: Jet flame physical description, theoretical analysis-Burke- Schumann's analysis, mechanism of soot formation, Difference between premixed and diffusion flames, Liquid fuel combustion, Difference between premixed and diffusion flames, Liquid fuel combustion, Difference between premixed and diffusion flames, Liquid fuel combustion- Conservation equations, calculation of mass burning rate, Droplet burning time, Droplet combustion in convective environment.		
Module-3	Level	Hrs.
https://www.youtube.com/watch?v=ibmEZo_0Ad4	RBT	
https://www.youtube.com/watch?v=hB7yHvxPYPY		
https://www.youtube.com/watch?v=ATab44UxN48		
Video link / Additional online information (related to module if any) :		
Applications : Burning velocity determines the performance of the vehicle		
Laboratory Sessions/ Experimental learning : To determine experimentally, the burning velocity measurement of natural gas.		
energy, quenching distance, stability limits and flame stabilization. Turbulent premixed flame.		

 Combustion in Reciprocating and Gas- Turbine Engines: Description of the combustion process in piston engines, Combustion efficiency and factors affecting it, Rankine-Hugoniot curves, Deflagration and Detonation in reciprocating engines and preventive methods. Description of different types of combustion chambers in gas-turbine engines, primary requirements of the combustor, Flow structure, recirculation and flame stabilization in main combustion chamber, afterburners. Laboratory Sessions/ Experimental learning : Combustion in different types of combustion chambers and determining its efficiency. Flame stabilization in the combustion chamber Applications : Combustion in Reciprocating and Gas Turbine Engines Combustion in piston engines and to determine the combustion efficiency. Video link / Additional online information (related to module if any) : https://www.youtube.com/watch?v=9rieabf_Jnk https://www.youtube.com/watch?v=2cWkEKNvqCA 	L3	10
Module-5	RBT Level	Hrs.
Combustion in Rocket Engines and Emission: Types of Rockets based on combustion, Solid fuel combustion, combustion of carbon particle-simplified analysis, boundary layer combustion, combustion of carbon sphere with CO burning gas phase. Chemical Emission from combustion and its effects, Exhaust gas analysis, Emission control methods. Laboratory Sessions/ Experimental learning :		
To determine the calorific value of the solid fuel through Bomb Calorimeter. Applications : Mostly they are rocket applications which solid fuels consisting both fuel and oxidizer in the solid. Video link / Additional online information (related to module if any) :	1.3 & 1.4	10
Applications : Mostly they are rocket applications which solid fuels consisting both fuel and oxidizer in the solid.	L3 & L4	10
 Applications : Mostly they are rocket applications which solid fuels consisting both fuel and oxidizer in the solid. Video link / Additional online information (related to module if any) : 	L3 & L4	10
Applications : Mostly they are rocket applications which solid fuels consisting both fuel and oxidizer in the solid. Video link / Additional online information (related to module if any) : https://www.youtube.com/watch?v=xfs-9DqgNXI	L3 & L4	10
Applications : Mostly they are rocket applications which solid fuels consisting both fuel and oxidizer in the solid. Video link / Additional online information (related to module if any) : https://www.youtube.com/watch?v=xfs-9DqgNXI https://www.youtube.com/watch?v=Sk7XyAoVUmk	L3 & L4	10
Applications : Mostly they are rocket applications which solid fuels consisting both fuel and oxidizer in the solid. Video link / Additional online information (related to module if any) : https://www.youtube.com/watch?v=xfs-9DqgNXI https://www.youtube.com/watch?v=Sk7XyAoVUmk https://www.youtube.com/watch?v=H4AOjbgwkxY	L3 & L4	10
Applications :Mostly they are rocket applications which solid fuels consisting both fuel and oxidizer in the solid.Video link / Additional online information (related to module if any) :https://www.youtube.com/watch?v=xfs-9DqgNXIhttps://www.youtube.com/watch?v=Sk7XyAoVUmkhttps://www.youtube.com/watch?v=H4AOjbgwkxYhttps://www.youtube.com/watch?v=598ZSwm8Ie0	L3 & L4	10
Applications : Mostly they are rocket applications which solid fuels consisting both fuel and oxidizer in the solid. Video link / Additional online information (related to module if any) : https://www.youtube.com/watch?v=xfs-9DqgNXI https://www.youtube.com/watch?v=Sk7XyAoVUmk https://www.youtube.com/watch?v=H4AOjbgwkxY https://www.youtube.com/watch?v=598ZSwm8Ie0 https://www.youtube.com/watch?v=V6VPJA2jg7s	L3 & L4	10

Course ou	tcomes:
CO1	Apply basic combustion theory
CO2	Solve Problems related diffusion flame.
CO3	Describe combustion process in engine.

Reference Books:						
1.	Charles E. Baukal, Industrial Combustion, CRC, 2012					
2.	Fundamentals of combustion, D P Mishra, PHI Publication, 2007					
3.	G. Singer Combustion, Fossil Power Systems, 4th Ed. 1993 Ed Pub.					

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	1	1	1	0	0	0	1	0	0	0
CO2	3	3	1	1	1	0	0	0	1	0	0	0
CO3	3	3	1	1	1	0	0	0	1	0	0	0

Course Title	UNMANNED AERIAL VEHICLES	Semester	II
Course Code	MVJ19MAE252	CIE	50
Total No. of Contact Hours	60 L : T : P :: 50 : 10 : 0	SEE	50
No. of Contact Hours/week	04	Total	100
Credits	04	Exam. Duration	3 Hrs

- 1. Comprehend the basic aviation history and UAV systems
- 2. Acquire the knowledge of basic aerodynamics, performance, stability and control of UAVs
- 3. Understand the propulsive aspects, and loads and structures.

Module-1	RBT Level	Hrs.
Introduction: Aviation History and Overview of UAV systems, Classes and Missions of UAVs, Definitions and Terminology, UAV fundamentals,		12
Examples of UAV systems-very small, small, Medium and Large UAV.	·	

Laboratory Sessions/ Experimental learning: Demo in UAV lab

Applications: Mapping of Landslide Affected Area, Infested Crop Damage Assessment, monitoring activities

Video link / Additional online information (related to module if any):

https://www.youtube.com/watch?v=_CRYi34uuYY

Module-2	RBT Level	Hrs.
The Air Vehicle Basic Aerodynamics: Basic Aerodynamics equations, Aircraft		
polar, the real wing and Airplane, Induced drag, the boundary layer, Flapping		
wings, Total Air-Vehicle Drag	L3,L4	12
Performance: Overview, Climbing flight, Range and Endurance – for propeller		
driven aircraft, range- a jet-driven aircraft, Guiding Flight		

Laboratory Sessions/ Experimental learning: Demo in the Aerodynamics lab

Applications: Aerodynamic forces in fluid flow, though common applications include fixed-wing or rotary-wing aircraft, wind turbines and propellers, ground and marine vehicles, internal flows Video link / Additional online information (related to module if any):

https://www.youtube.com/watch?v=X1gEXs_gna4

https://www.youtube.com/watch?v=5ltjFEei3AI

Module-3	RBT Level	Hrs.
Stability and Control: Overview, Stability, longitudinal, lateral, dynamic		
stability, Aerodynamics control, pitch control, lateral control, Autopilots,		
sensor, controller, actuator, airframe control, inner and outer loops, Flight-	L3,L4	12
Control Classification, Overall Modes of Operation, Sensors Supporting the		
Autopilot		
Laboratory Sessions/ Experimental learning:NA	•	

Applications: Aircraft designer must ensure that a pilot can reasonably control the aircraft Video link / Additional online information (related to module if any):

https://www.youtube.com/watch?v=mGG_LVO5Tis

https://www.youtube.com/watch?v=WhQ8Ai4fa_Q

Module-4	RBT Level	Hrs.
Propulsion: Overview, Thrust Generation, Powered Lift, Sources of Power,		
The Two-Cycle Engine, The Rotary Engine, The Gas Turbine, Electric Motors,		
Sources of Electrical Power.	1214	12
Loads and Structures	L3,L4	12
Loads, Dynamic Loads, Materials, Sandwich Construction, Skin or Reinforcing		
Materials, Resin Materials, Core Materials, Construction Techniques.		
		•

Laboratory Sessions/ Experimental learning:

Applications: Gas turbines are used to power aircraft, trains, ships, electrical generators.

Video link / Additional online information (related to module if any):

https://www.youtube.com/watch?v=BUn5-0VG3Hw

Module-5	RBT Level	Hrs.
Mission Planning and Control, Air Vehicle and Payload Control,		
Reconnaissance/Surveillance Payloads, Weapon Payloads, Other Payloads,	L3,L4	12
Data-Link Functions and Attributes, Data-Link Margin, Data-Rate Reduction,	L3,L4	12
Launch Systems, Recovery Systems, Launch and Recovery Trade-offs		

Laboratory Sessions/ Experimental learning:NA

Applications: Deployment and recovery of ROV's, AUV's, Subsea Drills used in the Offshore Video link / Additional online information (related to module if any):

https://www.youtube.com/watch?v=Fgw1w4Roij0

 $https://www.youtube.com/watch?v{=}tfVIrJmScUw$

Course	Course outcomes:				
CO1	Apply the basic concepts of UAV systems.				
CO2	Explain the basic of aerodynamics and Performance.				
CO3	Apply the stability and control required for UAV.				
CO4	Analyse the propulsion loads and structures for the UAV.				
CO5	Apply the knowledge to mission planning and control and data-link functions.				

Referen	nce Books:
1.	Paul Gerin Fahlstrom, Thomas James Gleason, Introduction to UAV Systems, 4th Edition, Wiley Publication, 2012
2.	Landen Rosen, Unmanned Aerial Vehicle, Alpha Editions, ISBN13: 9789385505034
3.	Unmanned Aerial Vehicles: DOD"s Acquisition Efforts, Publisher : Alpha Editions, ISBN13 : 9781297017544

					CO-F	O Map	ping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	0	2	1	0	0	1	1	0	1
CO2	3	2	2	1	2	1	0	0	1	1	0	1
CO3	3	2	1	1	2	1	0	0	1	1	0	1
CO4	3	2	1	1	2	1	0	0	1	1	0	1
CO5	3	2	1	1	2	1	0	0	1	1	0	1

Course Title	COMPOSITE MATERIALS AND FABRICATION TECHNIQUES	Semester	П
Course Code	MVJ19MAE253	CIE	50
Total No. of Contact Hours	60 L : T : P :: 50 : 0 : 10	SEE	50
No. of Contact Hours/week	4	Total	100
Credits	4	Exam. Duration	3hrs

- 1. Understand the basic characteristics of composite materials
- 2. Understand the advanced processing and fabrication techniques
- 3. Acquire the knowledge of on micro-and macro-mechanical behavior of composite laminate
- 4. Acquire the knowledge composite materials.
- 5. Acquire the knowledge of MMCs and application of MMCs

Module-1	RBT Level	Hrs.
 Introduction to Composite Materials: Definition, classification and characteristics of composite materials – fibrous composites, laminated. Matrix materials Fiber Reinforced Plastic Processing: Layup and curing, fabricating process - open and closed mould process - hand layup techniques structural laminate bag molding, production procedures for bag molding. Laboratory Sessions/ Experimental learning: Optional Applications: Composites are latest application in Aeronautical and Aerospace. Video link / Additional online information: https://nptel.ac.in/courses/112104229/ 	L3, L4	12
Module-2	RBT Level	Hrs.
Advanced Processing Techniques and Application of Composites Filament winding, pultrusion, pulforming, thermo - forming, injection, injection molding, liquid molding, blow molding, Automobile, Aircrafts, missiles, Space hardware, Electrical and electronics, marine, recreational and Sports equipment, future potential of composites. Laboratory Sessions/ Experimental learning: Optional Applications: Manufacturing of aircraft structural components Video link / Additional online information: https://nptel.ac.in/courses/112104221/	L3, L4	12
Module-3	RBT Level	Hrs.
Fabrication of Composite Structures : Cutting, machining, drilling, mechanical fasteners and adhesive bonding, joining, computer-aided design and manufacturing, tooling, fabrication equipment.	L3, L4	12

Macro	-Mechanical Behavior of a Lamina: Stress-strain relation for an		
	opic lamina- Restriction on elastic constants-Strengths of an orthotropic		
	and Failure theories for an orthotropic lamina.		
Labor	atory Sessions/ Experimental learning: Optional		
Applic	ations: fabrication of aircraft structural components		
	link / Additional online information:		
https://	swayam.gov.in/nd1_noc19_me67/		
	/www.youtube.com/watch?v=VMH6qbED7pg		
	Module-4	RBT Level	Hrs.
of mix	Mechanical Behaviour of a Lamina , Determination of elastic constants-Rule tures, transformation of coordinates, micro-mechanics based analysis and nental determination of material constants.		
strain v	-Mechanical Behaviour of a Laminate: Classical plate theory- Stress and ariation in a laminate- Resultant forces and moments- A B & D matrices- h analysis of a laminate.	L3, L4	12
Labor	atory Sessions/ Experimental learning: Optional		
Applic	ations: Aeronautical and Aerospace applications		
Video	link / Additional online information:		
https://	slideplayer.com/slide/2389089/		
	Module-5	RBT Level	Hrs.
metal 1	Matrix Composites: Introduction, Reinforcement materials, role of matrix, types, characteristics and selection of base metals. Advantage, antage and Application of MMCs.		
Labor	atory Sessions/ Experimental learning: Optional	L3, L4	12
Applic	ations: One application is in the ventral fins for the aircraft		
Video	link / Additional online information:		
http://v	www.infocobuild.com/education/audio-video-courses/mechanical-		
engine	ering/ManufacturingOfComposites-IIT-Kanpur/lecture-17.html		
	e outcomes:		
Course			
Course CO1	Characterize the composite materials for application		
	Characterize the composite materials for application Fabricate composite parts		
CO1			
CO1 CO2	Fabricate composite parts		

Reference Books:				
1.	K.K Chawla, Composites Science and Engineering, Springer Verlag, 1998 R M Jones, " Mechanics of Composite Materials", McGraw-Hill, New York, 1975			

2.	Meing Schwaitz, Composite materials hand book, McGraw Hill Book Company. 1984
3.	John Wenbag, Composite Materials Fabrication`, Wolfgang Publications, 21 April 2011
4.	Forming Metal handbook, 9th edition, ASM handbook, V15. 1988, P327 338.
5.	Artar Kaw, Mechanics of composites by CRC Press. 2002.

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	2	2	2	1	0	0	0	0	0	0	0	0	
CO2	2	2	2	2	0	0	0	0	0	0	0	0	
CO3	2	2	2	1	0	0	0	0	0	0	0	0	
CO4	2	2	2	1	0	0	0	0	0	0	0	0	
CO5	3	2	2	0	0	0	0	0	0	0	0	0	

Course Title	STRUCTURES LAB	Semester	II
Course Code	MVJ9MAEL26	CIE	50
Total No. of Contact Hours	40 L : T : P :: 00 : 00 : 40	SEE	50
No. of Contact Hours/week	03	Total	100
Credits	2	Exam. Duration	03 Hrs

Course objective is to: The Students are able to

- 1. Familiarize with various structural experiment facilities
- 2. Familiarize with different structural experiments
- **3.** Conduct the test acquire the data and analyse
- 4. Determine the shear flow in different sections
- **5.** Understand the vibration analysis of the structural members

List of Experiments

- 1. Determine the Bending Modulus of sandwich Beam
- 2. Tensile, compressive and flexural testing of a composite material part.
- 3. Determination of natural frequency and mode shapes of a cantilever beam for the following cases.
 - a. Constant cross section
 - b. Varying cross section
 - c. Constant cross section and varying stiffness
- 4. Determining of Shear centre through shear flow measurement for following cases.
 - a. Close section Symmetrical bending
 - b. Open section Unsymmetrical bending
- 5. Determine the index factor `K` in a tensile filed of Wagner Beam Structural Modelling of a 3-D Wing.
- 6. Structural Modelling of fuselage bulk head of an aircraft.
- 7. Determine the Shear flow analysis under defined load conditions on a spar of 3D wing.
- 8. Determine the Shear flow analysis under defined load conditions in a bulkhead.
- 9. Estimation of shear flow in a plate of varying stiffness under bending and torsion.
- 10. Free and forced vibration analysis of a structural frame.
- 11. Analysis of active vibration control in a smart material part.
- 12. Experimental determination of behaviour of a composite beam subjected to combined loading.

Course outcomes: The Students are able to						
CO1	Demonstrate various experiment facilities					
CO2	Explain the use of different measurement techniques					

CO3	Perform the test, acquire the data, analyse and document
CO4	Estimate the shear flow in different sections
CO5	Analyse the vibration analysis of structural members

Conduct of Practical Examination:

1	All laboratory experiments are to be included for practical examination.
2	Students are allowed to pick one experiment from the lot
3	Strictly follow the instructions as printed on the cover page of answer script for breakup of Marks.
4	Change of experiment is allowed only once and Marks allotted to the procedure part to be made zero.

CO-PO	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	1	1	1	1	1	1	1	0	0
CO2	3	3	2	1	1	1	1	1	1	1	0	0
CO3	3	3	2	2	2	2	1	1	1	1	0	0
CO4	3	3	2	2	2	2	1	1	1	1	0	0
CO5	3	3	2	2	2	2	1	1	1	1	0	0

Course Title	AIRCRAFT FLIGHT DYNAMICS & AUTOMATIC FLIGHT CONTROL	Semester	III
Course Code	MVJ19MAE31	CIE	50
Total No. of Contact Hours	60 L : T : P :: 40 : 10:10	SEE	50
No. of Contact Hours/week	4	Total	100
Credits	4	Exam. Duration	3hrs

Course objective is to: This course will enable students to

- 1. Understand the Concept of control and airframe parameters
- 2. Acquire knowledge of vehicles equations of motion and stability parameters
- 3. Gain knowledge of pitch, roll and yaw analysis
- 4. Understand the feedback control for pitch, roll, and yaw of airplanes
- 5. Learn autopilot techniques for pitch, roll, and yaw of airplanes

Module-1	RBT Level	Hrs.
Review of feedback system analysis and aerodynamic fundamentals: Mathematical models of linear open loop and closed loop systems. Transfer functions. Stability of open and close loops- Bode plot, Root locus, Nyquist Criteria. Multi-loop vehicular control systems. Definition of airframe parameters, coefficients and reference geometries, aerodynamic characteristics of plan forms and fuselage and effectiveness of control surfaces. Aircraft static and dynamic stability-review. Laboratory Sessions/ Experimental learning: MAT Lab Applications: Flight Control system stability Video link / Additional online information (related to module if any): Nptel Video: Flight Dynamics by Dr. Nandan Kumar Sinha IIT Madras	L3,L4	10
Module-2	RBT Level	Hrs.
 Vehicle equations of motion and axis systems: Newton's Second Law and reference frames Expansion of inertial forces and moments, gravity forces and their linearization, Expansion of aerodynamic forces and moments and direct thrust forces, Complete linarized equations of motion, description of dimensional and non-dimensional stability axis derivatives. Perturbed forces and moment derivatives. Recasting equations of motion in acceleration format. Laboratory Sessions/ Experimental learning: MAT Lab Applications: Development of Equations of Motion of Aircraft Video link / Additional online information (related to module if any): Nptel Video: Flight Dynamics by Dr. Nandan Kumar Sinha IIT Madras 	L3,L4	10
Module-3	RBT Level	Hrs.
Longitudinal dynamics: Review of simplifying assumptions and derivation of simplified longitudinal equations of motion in Laplace form, longitudinal controls and control input transfer functions, two degrees of freedom short	L3,L4	10

beriod approximations and typical example transfer functions of conventional dircraft and their responses Lateral dynamics: Simplified lateral equations of motion in Laplace form, lateral controls and control input transfer functions, wo degrees of freedom Dutch roll approximations, typical example transfer functions of conventional aircraft and their responses. Laboratory Sessions/ Experimental learning: MAT Lab Applications: Analyses of Longitudinal and Lateral motions of Aircraft Video link / Additional online information (related to module if any): Nptel Video: Flight Dynamics by Dr. Nandan Kumar Sinha IIT Madras						
Module-4	RBT Level	Hrs.				
Classical Feedback Control- Position feedback, rate feedback, and acceleration feedback. Root locus analysis with possible locations of adjustable gain. Longitudinal stability Augmentation- Pitch attitude feedback, Pitch rate feedback, velocity feedback, incidence angle feedback and normal acceleration feedback to elevator. Lateral-Direction stability Augmentation- Sideslip feedback, roll rate feedback, yaw rate feedback, roll attitude feedback, and yaw attitude feedback to aileron. Sideslip angle feedback, roll rate feedback, yaw rate feedback, roll attitude feedback to rudder. Laboratory Sessions/ Experimental learning: MAT Lab	L3, L4	10				
Applications: Development of Feedback Control Systems. Video link / Additional online information (related to module if any): Notel Video: Flight Dynamics by Dr. Nandan Kumar Sinha IIT Madras						
Aircraft Stability and control Augmentation. Inner loop stability and control. Typical inner loop systems-yaw damper, pitch damper, angle-of-attack eedback, load factor feedback. Outer loop Autopilot/Navigation control loop. Pitch attitude hold, Altitude hold, Bank angle hold, heading hold. Compensation filters-lead compensators, lag compensators, Lead-lag compensators, stability realization through compensators. Autopilots-basic principles- Height control, heading control autopilots, examples. ILS coupled Autopilot Control-Flight path Kinematics, ILS localizer coupling loop, ILG glide slope coupling loop. Automatic landing. Visibility categories and		Hrs. 10				
Aircraft Stability and control Augmentation. Inner loop stability and control. Typical inner loop systems-yaw damper, pitch damper, angle-of-attack eedback, load factor feedback. Outer loop Autopilot/Navigation control loop. Pitch attitude hold, Altitude hold, Bank angle hold, heading hold. Compensation filters-lead compensators, lag compensators, Lead-lag compensators, stability realization through compensators. Autopilots-basic principles- Height control, heading control autopilots, examples. ILS coupled Autopilot Control-Flight path Kinematics, ILS localizer coupling loop, ILG glide slope coupling loop. Automatic landing. Visibility categories and						
Aircraft Stability and control Augmentation. Inner loop stability and control. Typical inner loop systems-yaw damper, pitch damper, angle-of-attack eedback, load factor feedback. Outer loop Autopilot/Navigation control loop. Pitch attitude hold, Altitude hold, Bank angle hold, heading hold. Compensation filters-lead compensators, lag compensators, Lead-lag compensators, stability realization through compensators. Autopilots-basic principles- Height control, heading control autopilots, examples. ILS coupled Autopilot Control-Flight path Kinematics, ILS localizer coupling loop, ILG glide slope coupling loop. Automatic landing. Visibility categories and autopilot requirements. Automatic flare control.						
Aircraft Stability and control Augmentation. Inner loop stability and control. Typical inner loop systems-yaw damper, pitch damper, angle-of-attack feedback, load factor feedback. Outer loop Autopilot/Navigation control loop. Pitch attitude hold, Altitude hold, Bank angle hold, heading hold. Compensation filters-lead compensators, lag compensators, Lead-lag compensators, stability realization through compensators. Autopilots-basic principles- Height control, heading control autopilots, examples. ILS coupled Autopilot Control-Flight path Kinematics, ILS localizer coupling loop, ILG glide slope coupling loop. Automatic landing. Visibility categories and autopilot requirements. Automatic flare control. Laboratory Sessions/ Experimental learning: MAT Lab Applications: Augmentation of aircraft stability for various flight phases. Video link / Additional online information (related to module if any): Nptel Video: Flight Dynamics by Dr. Nandan Kumar Sinha IIT Madras						
Aircraft Stability and control Augmentation. Inner loop stability and control. Typical inner loop systems-yaw damper, pitch damper, angle-of-attack eedback, load factor feedback. Outer loop Autopilot/Navigation control loop. Pitch attitude hold, Altitude hold, Bank angle hold, heading hold. Compensation filters-lead compensators, lag compensators, Lead-lag compensators, stability realization through compensators. Autopilots-basic principles- Height control, heading control autopilots, examples. ILS coupled Autopilot Control-Flight path Kinematics, ILS localizer coupling loop, ILG glide slope coupling loop. Automatic landing. Visibility categories and autopilot requirements. Automatic flare control. Laboratory Sessions/ Experimental learning: MAT Lab Applications: Augmentation of aircraft stability for various flight phases. Video link / Additional online information (related to module if any): Nptel Video: Flight Dynamics by Dr. Nandan Kumar Sinha IIT Madras Course outcomes:						

CO5	Apply automatic flight control for pitch, roll and yaw motions
CO4	Evaluate feedback control for pitch, roll and yaw motions

Referen	Reference Books:							
1.	Nelson, R.C., Flight Stability and Automatic Control, McGraw-Hill Book Co., 2007							
2.	Babister, A. W, Aircraft dynamic Stability and Response, Pergamon Press, Oxford, 1980.							

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	2	3	0	0	0	0	0	0	1	0	
CO2	3	2	2	3	0	0	0	0	0	0	0	1	
CO3	2	3	2	3	0	0	0	0	0	0	1	0	
CO4	3	2	3	3	0	0	0	0	0	0	0	0	
CO5	3	2	2	2	0	0	0	0	0	0	2	1	

Course Title	ARTIFICAL INTELLIGENCE AND ROBOTICS	Semester	III
Course Code	MVJ19MAE321	CIE	50
Total No. of Contact Hours	60 L : T : P :: 40 : 10 : 10	SEE	50
No. of Contact Hours/week	3	Total	100
Credits	3	Exam. Duration	3hrs

Course objective is to: This course will enable students to

- 1. Understand the Propositional Logic in Artificial Intelligence.
- 2. Acquire the knowledge of Machine Learning and Data Mining.
- 3. Gain knowledge on the fundamentals of data analysis and neural networks.
- 4. Gain Knowledge of Robotics Kinematics
- 5. Understand Robotics sensors, actuators and drive systems.

Module-1	RBT Level	Hrs.

Introduction & Propositional Logic: History of AI, Propositional	L2,L3	10
logicComputability & Complexity, Applications, Ist Order Predicate logic,		
limitations of logic, modelling uncertainties. Logic Programming: Prolog		
system & Implementation, Execution control, Constraint Logic programming,		
Planning and examples.		
Laboratory Sessions/ Experimental learning:		
AI based computer simulation lab		
Applications: Aanalyse the relationship between a fact, a statement that is true,		
and a rule, which is a conditional statement.		
Video link / Additional online information:		
https://nptel.ac.in/noc/courses/noc19/SEM2/noc19-me71/		
Module – 2	RBT Level	Hrs.
Machine Learning and Data Mining: Data analysis, learning rule, nearest	L3,L4	10
neighbor method, Decision tree learning, Clustering-Distance matrices, Hierarchical learning. Neural Networks: Mathematical Model, Neural		10
associative memory, spelling correction program, support vector machine,		
application of deep learning, application of neural network.		
Laboratory Sessions/ Experimental learning: AI based computer simulation lab		
1		

Applications: Data mining and data analysis can improve the efficiency of robots in the domain of sensor data collection, procession and meaningful execution of the obtained data. Video link / Additional online information: <u>https://nptel.ac.in/noc/courses/noc19/SEM2/noc19-me71/</u> <u>https://nptel.ac.in/noc/courses/noc20/SEM1/noc20-ge09/</u>		
Module – 3	RBT Level	Hrs.

Module – 5	RBT Level	Hrs.
https://nptel.ac.in/noc/courses/noc18/SEM2/noc18-ee41/		
Applications: For efficient synthesis of optimum controls strategies of robots. Video link / Additional online information		
Laboratory Sessions/ Experimental learning: AI & robotics-based computer simulation lab		
systems.		
loop, applications, electromagnetic systems dynamics, multi input-multi output		
components & terminologies, proportional controllers, open-loop versus closed		
trajectory planning, Cartesian –space trajectory. Motion Control System: Basic		
space versus Cartesian space description, basic trajectory planning, joint space		
Trajectory Planning & Motion Control Systems: Path versus trajectory, joint	L3,L4	10
Module – 4	RBT Level	Hrs.
Video link / Additional online information: https://nptel.ac.in/noc/courses/noc18/SEM2/noc18-me61/		
applications.		
Applications: Application of mathematical principals and basics dynamics of robots will be applied in developing better and much efficient robots of specific		
-		
Laboratory Sessions/ Experimental learning: AI based computer simulation lab		
dynamics of manipulators.		
robots, kinematics of serial manipulators, kinematics of parallel manipulators,		
configuration, robot programming methods. Mathematical representation of		
degrees of motion, manipulation of Robot components, joints, symbols, robot		
Robotics: Introduction, fundamentals, classification, degrees of freedom,	L3,L4	10

Robot	Sensors and Actuators: Internal sensors, external sensors, force sensors,	L3,L4	10			
thermo	couples, acceleration sensors, torque sensors, hydraulic and pneumatic					
actuato	ors, electrical actuators, servo motors, stepper motors, micro actuators &					
motors	, displacement transducers, comparison of actuating systems. Drive					
System	s: Motion conversion & dividers-rotation to linear motion, harmonic					
divider	rs, and dynamics of a robot.					
Labor	atory Sessions/ Experimental learning:					
AI bas	ed computer simulation lab					
applica Video	ations: To be applied on the basics design and development of an ation-oriented robot in component selection and modelling of subsystems. link / Additional online information: /nptel.ac.in/noc/courses/noc18/SEM2/noc18-me61/					
Cours	e outcomes:		•			
CO1	Apply the Propositional Logic in Artificial Intelligence					
CO2	Perform data mining					
CO3	Understand the fundamentals of data analysis and neural networks.					
CO^2	Model Robotic kinematics					
CO3						

Referen	ce Books:
1	Wolfgang Ertel, Introduction to Artificial Intelligence, Springer, 2017.
2	Appu Kuttan K.K., Robotics, I K International Publishing House, Pvt. Ltd. 2012
3	Vinod Chandra S.S., and Anand Hareendran S, Artificial Intelligence and Machine Learning, PHI Learning Pvt. Ltd., 2014.
4	Saeed B Niku, Introduction to Robotics-Analysis, Control, Application, Wiley, 2011.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	3	3	0	1	0	0	0	0	0
CO2	3	3	2	3	3	0	1	0	0	0	0	0
CO3	3	3	3	2	1	0	3	0	0	0	0	0
CO4	3	3	3	2	1	0	3	0	0	0	0	0
CO5	2	3	3	1	3	0	1	0	0	0	0	0

Course Title	FLIGHT VEHICLE DESIGN	Semester	
Course Code	MVJ19MAE322	CIE	50
Total No. of Contact Hours	60 L : T : P :: 40 : 0 : 20	SEE	50
No. of Contact Hours/week	4	Total	100
Credits	3	Exam. Duration	3Hrs

Course objective is to: : This course will enable students to

- 1. Understand the overview of aircraft design process
- 2. Acquire knowledge of configuration layout and design of structural components
- 3. Analyses engine selection and carry out control surface sizing
- 4. Understand design aspects of subsystems

Module-1	RBT Level	Hrs.
Overview of Design Process		
 Introduction, Requirements, Standards and Specifications, Phases of design, Conceptual Design Process, Initial Sizing, Take-off weight build up, Empty weight estimation, Fuel fraction estimation, Take- off weight calculation, Thrust to Weight Ratio & Wing Loading: Thrust to Weight Definitions, Statistical Estimate of T/W. Thrust matching, Spread sheet in design, Wing Loading and its effect on Stall speed, Take-off Distance, Catapult take-off, and Landing Distance. Wing Loading for Cruise, Loiter, Endurance, Instantaneous Turn rate, Sustained Turn rate, Climb, & Glide, Maximum ceiling. Laboratory Sessions/ Experimental learning: Design and modelling of the aircraft components based on the requirements chosen in CAAD lab Applications: Apply the design requirements for an aircraft in response to requirements based on fundamental principles and statistical data in the initial phase of design. Video link 	L3,L4	10 Hours
1. https://nptel.ac.in/courses/101/106/101106035/		
2. https://nptel.ac.in/courses/101/106/101106035/		
Module-2	RBT Level	Hrs.

Configuration Layout & loft	L3.L4	10
	23,21	Hours
Aerodynamic shape optimisation, Conic Lofting, Conic Fuselage Development, Conic Shape Parameter,		
Wing-Tail Layout & Loft. Aerofoil Linear Interpolation. Aerofoil Flat-wrap Interpolation. Wing aerofoil		
layout-flap wrap. Wetted area determination. Special considerations in Configuration Layout:		
Aerodynamic, Structural, Delectability. Crew station, Passenger, and Payload arrangements. Design of		
Structural Components: Fuselage, Wing, Horizontal & Vertical Tail. Spreadsheet for fuselage design.		
Tail arrangements, Horizontal & Vertical Tail Sizing. Tail Placement. Loads on Structure. V-n Diagram,		
Gust Envelope.		

Loads distribution, Shear and Bending Moment analysis.		
Laboratory Sessions/ Experimental learning: Structural analysis and Aerodynamic analysis in Ansys lab		
Applications: Analyse the various constraints coming from specifications and choose key parameters (total weight, wing plan form, thrust/power required etc.)		
Video link / Additional online information		
1.https://nptel.ac.in/courses/101/106/101106035/ 2.https://nptel.ac.in/courses/101/106/101106035/ 3.https://nptel.ac.in/courses/101/106/101106035/#		
Module-3	RBT Level	Hrs.
Engine Selection & Flight Vehicle Performance	L3	
Engine selection criteria, Turbojet Engine Sizing, Installed Thrust Correction, Spread Sheet for Turbojet Engine Sizing. Propeller Propulsive System. Propeller design for cruise. Take-off, Landing & Enhanced Lift Devices:- Ground Roll, Rotation, Transition, Climb, Balanced Field Length, Landing Approach, Braking. Enhanced lift design -Passive & Active.		10 Hours
Laboratory Sessions/ Experimental learning: Modelling of engine selected in CAAD lab		
Applications: Compare different engine configurations and choose the design which meets the requirements.		
Video link		
1.https://nptel.ac.in/courses/101101002/		
Module-4	RBT Level	Hrs.

	Stability & Control: Longitudinal Static Stability, Pitch Trim Equation. Effect of Airframe	L3,L4	
-	onents on Static Stability. Lateral stability- Contribution of Airframe components. Directional stability. Contribution of Airframe components. Aileron Sizing, Rudder Sizing. Flying qualities.		10
	r Harper Scale. Environmental constraints, Aerodynamic requirements.		Hours
Laboi	atory Sessions/ Experimental learning: Performance analysis in Matlab		
• •	cations: Calculate and compare performance and stability characteristics against design goals and te a layout		
Video	o link :		
	1.https://nptel.ac.in/courses/101104062/ 2.https://nptel.ac.in/courses/101104062/#		
	Module-5	RBT Level	Hrs.
	n Aspects of Subsystems: Flight Control system, Landing Gear and subsystem, Propulsion and ystem Integration, Air Pressurization and Air Conditioning System, Electrical & Avionic	L3,L4	
Syster	ns, Structural loads, Safety constraints, Material selection criteria.		10
••	cations: Calculate and compare performance and stability characteristics against design goals enerate a layout		Hours
	ratory Sessions/ Experimental learning: Assemble the CAD models of the components and performance using CFD tool in Ansys lab.		
• •	cations: Analyse design issues for aerodynamics, propulsion, structure, weights, stability, and performance and generate a layout.		
Video	o link :		
	1. <u>https://nptel.ac.in/content/storage2/nptel_data3/html/mhrd/ict/text/101108047/lec29.pdf</u>		
Cour	se outcomes:		
CO1	Define a configuration for given specifications i.e. thrust to weight ratio and wing loading		
CO2	Solve problems related to configuration layout & airframe components sizing		
CO3	Workout engine selection and perform stability analysis		
CO4	Model subsystems		
CO5	Understand and Comprehend the complexities involved during development of flight vehicles		
Refer	ence Books:		
1.	Daniel P. Raymer, Aircraft Design – A Conceptual Approach, AIAA, education Series, IVth Edit	ion, 2006	
2.	Thomas C Corke, Design of Aircraft, Pearson Edition. Inc, 2003		
3.	J Roskam, Airplane Design -VOL 1 to 9		

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	2	0	0	0	0	0	0	0	0
CO2	3	3	2	2	0	0	0	0	0	0	0	0
CO3	3	3	3	3	0	0	0	0	0	0	0	0
CO4	3	3	3	3	0	0	0	0	0	0	0	0
CO5	3	3	3	2	0	0	0	0	0	0	0	0

Course Title	THEORY OF AERO ELASTICITY	Semester	III
Course Code	MVJ19MAE323	CIE	50
Total No. of Contact Hours	60 L : T : P :: 40 : 10:10	SEE	50
No. of Contact Hours/week	4	Total	100
Credits	3	Exam. Duration	3hrs

Course objective is to: This course will enable students to

- Understand the deformation of structure under static and dynamic loads
- Acquire knowledge of aero elastic effects on airplane performance and maneuvers.
- Know the wind tunnel model similarities and testing of models.

Module-1	RBT Level	Hrs.

 Aeroelastic phenomenon: flutter, buffeting, dynamic loads problems, load distribution, divergence, control effectiveness & reversal. Deformation of airplane structures under static loads: Forces acting on aeroplane, Influence coefficients. Properties of influence coefficients. Deformation under distributed forces. Simplified elastic airplane. Bending, torsional and shear stiffness curves. Laboratory Session/Experimental Learning: Aerodynamic interaction between wing and truss in transonic flow using ANSYS Applications: Structural Strength Control Effectiveness 	L3,L4	10
3. Moment acting on body		
4. Unsteady flow flutter analysis Video links:		
https://nptel.ac.in/courses/101104005/		
https://youtu.be/pi5hAK0FdWA		
Module-2	RBT Level	Hrs.
Static aeroelastic phenomena: Load distribution and divergence-wing torsional divergence (two-dimensional case, & finite wing case). Prevention of aeroelastic instabilities. Control effectiveness and reversal: Aileron effectiveness and reversal -2 dimensional case, and finite wing case. Strip theory. Aileron effectiveness in terms of wing -tip helix angle. Critical aileron reversal speed. Rate of change of local pitching moment coefficient with aileron angle.	L3,L4	10
Laboratory Session/Experimental Learning: Effect of wing sweep and thickness on drag divergence mach number Applications:		

1.Mach divergence2.Flutter Analsys Video links:		
https://nptel.ac.in/courses/101104005/		
Module-3	RBT Level	Hrs.

Deformation of airplane structures under dynamic loads: Differential and Integral forms of equations of motions of vibrations. Natural modes and frequencies of complex airplane structures - introduction. Dynamic response phenomenon. Dynamic problems of Aeroelasticity: Determination of critical flutter speed. Aeroelastic modes. Wing bending and torsion flutter. Coupling of bending and torsion oscillations and destabilizing effects of geometric incidences. Flutter prevention and control. Laboratory Session/Experimental Learning: Comparison of flutter speed Between Theodorsen, Wagner and Quasi-steady approximation for 2D Applications: 1. Selection of optimal approximation based on the condition 2. Analyze the airspeed at different * location video links:	L3,L4	10
https://nptel.ac.in/courses/101104005/		
Module-4	RBT Level	Hrs.
Test model similarities: Dimensional concepts. Vibration model similarity laws. Dimensionless form of equation of motion. Mode shapes and natural frequencies in dimensionless forms. Model scale factors. Flutter model similarity law. Scale factors. Structural simulation:-shape, mass and stiffness. Laboratory Session/Experimental Learning: Study of wingtip washout using flat wing varying stiffness Applications: 1. load distribution 2. Position of Aerodynamic center 3. Design consideration to reduce wingtip stall Video links: https://nptel.ac.in/courses/101104005/	L3, L4	10
Module-5	RBT Level	Hrs.
Testing techniques: Measurement of structural flexibility, natural frequencies and mode shapes. Polar plot of the damped response. Identification and measurement of normal modes. Steady state and dynamic Aeroelastic model testing. Laboratory Session/Experimental Learning: Calculate first 7 flexible modes in Simple aeroelastic model of a Generic transport aircraft Applications: 1. Flutter mechanism between different modes	L3 ,L4	10
2.First mode: Wing bending		

Course outcomes:		
CO1	Estimate structural deformations under static loading conditions.	
CO2	Estimate structural deformations under dynamic loading conditions.	
CO3	Analyze effect of aero elasticity on airplane performance and stability.	
CO4	Develop wind tunnel models for aeroelastic testing.	
CO5	Different testing techniques for static and dynamic Aeroelastic model.	

Reference Books:

1.	Dowell, E. H., Crawley, E. F., Curtiss Jr., H. C., Peters, D. A., Scanlan, R. H., and Sisto, F., A Modern Course in Aeroelasticity, Kluwer Academic Publishers, 3rd Edition, 1995.
2.	Bisplinghoff, R., Ashley, H., and Halfman, R. L., Aeroelasticity, Dover, 1955.
3.	Fung, Y. C., An Introduction to the Theory of Aeroelasticity, Dover, 1969.
4.	Megson THG, Aircraft structures for Engineering students, Edward Arnold.
5.	Bisplinghoff, R. and Ashley, H., Principles of Aeroelasticity, Dover, 1962.

					CO-I	PO Map	ping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	3	0	0	0	0	0	0	1	0
CO2	3	3	2	3	0	0	0	0	0	0	0	1
CO3	2	3	2	3	0	0	0	0	0	0	1	0
CO4	3	2	3	3	0	0	0	0	0	0	0	0
CO5	3	2	2	2	0	0	0	0	0	0	2	1

High-3, Medium-2, Low-1

Course Title	HYPERSONIC	Semester	III
	AERODYNAMICS		
Course Code	MVJ19MAE331	CIE	50

Total No. of Contact Hours	60 L:T:P:: 50:10:0	SEE	50
No. of Contact Hours/week	4	Total	100
Credits	3	Exam. Duration	3hrs

Course objective is to: This course will enable students to

- 1. Understand basic theory of hypersonic flight
- Acquire knowledge of viscous effects in high speed aerodynamics
 Gain knowledge of hypersonic test requirements

Madula 1	RBT Level	Hrs.
Assumptions underlying inviscid hypersonic theory. Normal shock waves, oblique &	L3 and L4	10
 Applications: 1. A hypersonic wind tunnel is designed to generate a <u>hypersonic</u> flow field in the working section, thus simulating the typical flow features of this flow regime - including compression shocks and pronounced boundary layer effects, entropy layer and viscous interaction zones and most importantly high total temperatures of the flow. The speed of these tunnels varies from <u>Mach 5</u> to 15. 2. The Hypersonic Wind Tunnel (HWT) operates at Mach 5, 8, and 14 with stagnation pressures to 21 MPa and temperatures to 1400K. 		
Video link / Additional online information (related to module if any) :		
https://www.youtube.com/watch?v=j493HvCkMbM		
https://www.youtube.com/watch?v=gEXPVuAPyb0		
https://www.youtube.com/watch?v=LJUjFe_2AUw&list=PLf_lu4AHS69DvXx9qbtFvpuwtoxBvPvns		
https://www.youtube.com/watch?v=C4W-FDPy0Fg&list=PLf_lu4AHS69DvXx9qbtFvpuwtoxBvPvns&index=3		
https://www.youtube.com/watch?v=vL1qAfS0gic https://nptel.ac.in/content/storage2/courses/101103003/pdf/mod7.pdf		

https://nptel.ac.in/content/storage2/nptel_data3/html/mhrd/ict/text/101105024/lec36.pdf https://freevideolectures.com/course/3265/high-speed-aero-dynamics		
Module-2	RBT Level	Hrs.
 Small Disturbance Theory. Slightly blunted slender bodies, large incidence & correlation of Similitude. Unsteady flow theory. Non equilibrium effects. Newtonian Theory. Twodimensional axis symmetric bodies, simple shapes & free layers. Optimum shapes, shock layer structure. Laboratory Sessions/ Experimental learning: Experimental leanings to study two dimensional axi-symmetric bodies and simple shapes subjected to hypersonic flow in hypersonic wind tunnel. Applications: To determine the unsteady flow over two dimensional axi-symmetric bodies and simple shapes for a space vehicle reentry. 	L3 and L4	10
Video link / Additional online information (related to module if any) :		
https://m.youtube.com/watch?v=He0yMe6aZoc		
https://nptel.ac.in/content/storage2/nptel_data3/html/mhrd/ict/text/101105024/lec36.pdf https://freevideolectures.com/course/3265/high-speed-aero-dynamics		
Module-3	RBT Level	Hrs.

Newtonian Theory. Shock layer structure with cross flow. Conical flow, bodies of	L3	10
revolution at small incidences. Theory of Thin Shock Layers. Basic concepts, successive	and	
approximation schemes. Constant stream tube-area approximation. Two-dimensional axis symmetric blunt faced bodies.	L4	
Laboratory Sessions/ Experimental learning:		
Experiment to study the melting of models due to aerodynamic heating at hypersonic wind	-	
tunnel.		
Applications:		
1. Re-entry of space vehicles.		
2. Most controlled objects enter at hypersonic speeds due to their sub-orbital (e.g.,		
intercontinental ballistic missile reentry vehicles), orbital (e.g., the Soyuz), or		
unbounded (e.g., meteors) trajectories. Various advanced technologies have been developed to enable atmospheric <i>reentry</i> and flight at extreme velocities.		
3. Study of objects entering an atmosphere from <u>space</u> at high velocities relative to		
the atmosphere will cause very high levels of <u>heating</u> .		
Video link / Additional online information (related to module if any) :		

https://nptel.ac.in/content/storage2/nptel_data3/html/mhrd/ict/text/101105024/lec36.pdf https://freevideolectures.com/course/3265/high-speed-aero-dynamics Module-4	RBT Level	Hrs.
https://www.youtube.com/watch?v=Jb4prVsXkZU https://www.youtube.com/watch?v=XRz9clQYN5M https://m.youtube.com/watch?v=RChIt5wdqBs https://m.youtube.com/watch?v=VAQBXw6cVdE		
https://www.youtube.com/watch?v=rPks77igQ01		

boundary lay and interact	ws. Hypersonic Viscous effects, Boundary Layer equations. Similar laminar yer solutions. Local similarity concept. Viscous interactions - flow models ion parameters. Weak pressure interaction. Strong pressure interaction. ures of rarified gas flows.	L3 and L4	10
Shock tunne flows.	Sessions/ Experimental learning: I testing of materials subjected to unsteady with supersonic and hypersonic		
Application	s: Is to study about weak and strong pressure interactions. Video		
	ional online information (related to module if any) :		
	utube.com/watch?v=916u-pQc8		
	utube.com/watch?v=6wWYKQirmJ4		
	utube.com/watch?v=quD-BF19usw		
<u>https://m.you</u>	utube.com/watch?v=sN_8IQTf-YQ		
	ac.in/content/storage2/nptel_data3/html/mhrd/ict/text/101105024/lec36.pdf deolectures.com/course/3265/high-speed-aero-dynamics		
	Module-5	RBT Level	Hrs.
			10
hypersonic f tunnel design	Testing. Hypersonic Scaling, high enthalpy & high speed, types of facilities. Shock tunnels & expansion tubes. Features of Hypersonic wind n. Instrumentation to hypersonic vehicle testing. Test model similarity laws. Sessions/ Experimental learning:	L3 & L4	10
hypersonic f tunnel design Laboratory Experiment	Cacilities. Shock tunnels & expansion tubes. Features of Hypersonic wind n. Instrumentation to hypersonic vehicle testing. Test model similarity laws. Sessions/ Experimental learning: to test materials at high enthalpy shock tunnel Applications:	L4	10
hypersonic f tunnel design Laboratory Experiment Material test	Cacilities. Shock tunnels & expansion tubes. Features of Hypersonic wind n. Instrumentation to hypersonic vehicle testing. Test model similarity laws. Sessions/ Experimental learning:	L4	10
hypersonic f tunnel design Laboratory Experiment Material test tunnel.	Cacilities. Shock tunnels & expansion tubes. Features of Hypersonic wind n. Instrumentation to hypersonic vehicle testing. Test model similarity laws. Sessions/ Experimental learning: to test materials at high enthalpy shock tunnel Applications: ting during high speed flows upto supersonic and hypersonic level in shock	L4	10
hypersonic f tunnel design Laboratory Experiment Material test tunnel. Video link / https://m.you	Cacilities. Shock tunnels & expansion tubes. Features of Hypersonic wind n. Instrumentation to hypersonic vehicle testing. Test model similarity laws. Sessions/ Experimental learning: to test materials at high enthalpy shock tunnel Applications: ting during high speed flows upto supersonic and hypersonic level in shock Additional online information (related to module if any): utube.com/watch?v=NXP3VZ7ldyg	L4	10
hypersonic f tunnel design Laboratory Experiment Material test tunnel. Video link / https://m.you	 Cacilities. Shock tunnels & expansion tubes. Features of Hypersonic wind n. Instrumentation to hypersonic vehicle testing. Test model similarity laws. Sessions/ Experimental learning: to test materials at high enthalpy shock tunnel Applications: Ching during high speed flows upto supersonic and hypersonic level in shock Additional online information (related to module if any): 	L4	10
hypersonic f tunnel design Laboratory Experiment Material test tunnel. Video link / https://m.you https://m.you	Cacilities. Shock tunnels & expansion tubes. Features of Hypersonic wind n. Instrumentation to hypersonic vehicle testing. Test model similarity laws. Sessions/ Experimental learning: to test materials at high enthalpy shock tunnel Applications: ting during high speed flows upto supersonic and hypersonic level in shock Additional online information (related to module if any): utube.com/watch?v=NXP3VZ7ldyg	L4	10
hypersonic f tunnel design Laboratory Experiment i Material test tunnel. Video link / https://m.you https://m.you	 Facilities. Shock tunnels & expansion tubes. Features of Hypersonic wind n. Instrumentation to hypersonic vehicle testing. Test model similarity laws. Sessions/ Experimental learning: to test materials at high enthalpy shock tunnel Applications: ting during high speed flows upto supersonic and hypersonic level in shock Additional online information (related to module if any): utube.com/watch?v=NXP3VZ7ldyg utube.com/watch?v=KMly0DVpQ08 	L4	10
hypersonic f tunnel design Laboratory Experiment f Material test tunnel. Video link / https://m.you https://m.you https://nptel. https://freevi	Facilities. Shock tunnels & expansion tubes. Features of Hypersonic wind n. Instrumentation to hypersonic vehicle testing. Test model similarity laws. Sessions/ Experimental learning: to test materials at high enthalpy shock tunnel Applications: ing during high speed flows upto supersonic and hypersonic level in shock Additional online information (related to module if any) : itube.com/watch?v=NXP3VZ7ldyg itube.com/watch?v=KMly0DVpQ08	L4	
hypersonic f tunnel design Laboratory Experiment f Material test tunnel. Video link / https://m.you https://m.you https://nptel. https://freevi	Facilities. Shock tunnels & expansion tubes. Features of Hypersonic wind n. Instrumentation to hypersonic vehicle testing. Test model similarity laws. Sessions/ Experimental learning: to test materials at high enthalpy shock tunnel Applications: ing during high speed flows upto supersonic and hypersonic level in shock Additional online information (related to module if any) : itube.com/watch?v=NXP3VZ7ldyg itube.com/watch?v=KMly0DVpQ08	L4	
hypersonic f tunnel design Laboratory Experiment = Material test tunnel. Video link / https://m.you https://m.you https://nptel. https://freevi Course outo	Facilities. Shock tunnels & expansion tubes. Features of Hypersonic wind n. Instrumentation to hypersonic vehicle testing. Test model similarity laws. Sessions/ Experimental learning: to test materials at high enthalpy shock tunnel Applications: ting during high speed flows upto supersonic and hypersonic level in shock Additional online information (related to module if any) : utube.com/watch?v=NXP3VZ7ldyg utube.com/watch?v=08ykxNNJccE#searching ac.in/content/storage2/nptel_data3/html/mhrd/ict/text/101105024/lec36.pdf deolectures.com/course/3265/high-speed-aero-dynamics	L4	

CO3	Perform hypersonic wind tunnel testing.
Reference Boo	yks:

1.	John D Anderson Jr. Hypersonic and High Temperature Gas Dynamics, AIAA, 2000.
2.	Frank K.Lu and Dart E. Marran, Advanced Hypersonic Test Facilities, AIAA 2002.
3.	Cherynl C.G., Introduction to Hypersonic Flow, Academic Press, 1961.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	1	1	0	0	0	1	0	0	0
CO2	3	3	2	1	1	0	0	0	1	0	0	0
CO3	3	3	2	1	1	0	0	0	1	0	0	0

High-3, Medium-2, Low-1

Course Title	FLIGHT TESTING	Semester	III
Course Code	MVJ19MAE332	CIE	50
Total No. of Contact Hours	60 L:T:P::40:10:10	SEE	50
No. of Contact Hours/week	4	Total	100
Credits	3	Exam. Duration	3hrs

Course objective is to: This course will enable students to

- Understand the Concept of flight testing and requirement of flight test instrumentation
- Acquire knowledge of flight test techniques
- Acquire the knowledge of handling qualities

Module-1	RBT Level	Hrs.
----------	--------------	------

Introduction: Sequence, Planning and governing regulations of flight testing. Aircraft weight and center of gravity, flight testing tolerances. Various Flight test Method, Method of reducing data uncertainty in flight test data -sources and magnitudes of error, avoiding and minimizing errors. Flight test instrumentation: Planning flight test instrumentation, selection of flight test, Measurement of flight parameters. Onboard and ground based data acquisition system. Radio telemetry.	L2, L3	10
Laboratory Session/Experimental Learning: Flight instrument response using Matlab		
Applications:		
1. Calibration of flight instruments		
2. Measurement of flight parameters		
3. Pilot View		
Module-2	RBT Level	Hrs.
Performance flight testing - range, endurance and climb: Airspeed – in flight calibration. Level flight performance for propeller driven aircraft and for Jet aircraft - Techniques and data reduction. Estimation of range, endurance and climb performance. Performance flight testing -take-off, landing, Contribution of various factors on Climb performance, Environment effect on climb performance. Turning flight: Maneuvering performance estimation. Environment effect on maneuvering performance. Take-off and landing methods, procedures and data reduction.	L3, L4	10
Laboratory Session/Experimental Learning: Takeoff and landing distance with loading factor		
and velocity		
and velocity Applications:		

2.	takeoff distance with environmental conditions					
3.	effect of weight on Landing and takeoff distance					
4.	Runway Requirement Video link:					
<u>https:</u>	https://youtu.be/tEWuP1NVdgE?list=PLtUPB3SCffXP43al7ILIR5qaZF_5fEDXm					
	Module-3					
		Level				

 Stability and control - longitudinal and maneuvering: Static & dynamic longitudinal stability: -methods of flight testing and data reduction techniques. Maneuvering stability methods & data reduction. Stability and control - lateral & directional: Lateral and directional static & dynamic stability:-Coupling between rolling and yawing moments. Definition of Roll stability. Adverse yaw effects. Aileron reversal. Regulations, test techniques and method of data reduction. Laboratory Session/Experimental Learning: Calculating stability derivatives for stability and control using Matlab Applications: 1. controllability of the aircraft 2. Stability analysis at various conditions 3. Design appropriate Autopilot Video link: https://youtu.be/9GNVZi35xZg?list=PLtUPB3SCffXPbKOXpvNMi6YI_tUqfFv82 	L3	10
Module-4	RBT Level	Hrs.
Static Directional Stability and Control: Introduction, Definition of directional stability, Static directional stability rudder fixed, Contribution of airframe components, Directional control. Rudder power, Stick-free directional stability, Requirements for directional control, Rudder lock, Dorsal fin. One engine inoperative condition. Weather cocking effect. Laboratory Session/Experimental Learning: Calculating stability derivatives for stability and control using Matlab Applications: 1. control requirement of the aircraft 2. Stability analysis at various conditions 3. Design appropriate Autopilot Video link: https://youtu.be/nHPAVy35Wrs?list=PLtUPB3SCffXPbKOXpvNMi6Y1_tUqfFv82	L3,L4	10
Module-5	RBT Level	Hrs.

Flving qual	ities: MIL and FAR regulations. Cooper-Harper scale. Pilot Rating. Flight test	L3,L4	10
procedures.	Hazardous flight testing: Stall and spin- regulations, test and recovery Test techniques for flutter, vibration and buffeting.	,	
Handling qu	alities during emergency conditions.		
Laboratory ANSYS	Session/Experimental Learning: Calculating vibration on the aircraft wing using		
Application	s:		
1. Flutter A	nalysis 2.		
Acoustic An	nalysis		
Video Link:			
https://youtu	1.be/bGA_Hr85IQg		
Course out	comes:		
001			
CO1	Apply the Concept of flight testing and planning of flight testing		
CO2	Specify the requirement of flight test instrumentation		
CO3	Estimate aircraft performance and stability from flight test data		
CO4	Evaluate handling qualities from flight test data		
CO5	Flight test during emergency or inoperative conditions		

Reference B	ooks:
1.	Ralph D Kimberlin, Flight Testing of Fixed Wing Aircraft, AIAA educational Series,2003.
2.	Perkins, C.D., Hege R.E, Airplane performance, stability and control, John Wiley & sons inc, New York, 1988.
3.	AGARD, Flight Test Manual Vol. I to IV

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	0	0	0	0	0	0	2	0
CO2	3	3	2	3	0	0	0	0	0	0	0	1
CO3	3	3	2	3	0	0	0	0	0	0	1	0
CO4	3	2	3	3	0	0	0	0	0	0	0	0

CO5	3	2	2	2	0	0	0	0	0	0	2	1

High-3, Medium-2, Low-1

Course Title	FATIGUE AND FRACTURE MECHANICS	Semester	III
Course Code	MVJ19MAE333	CIE	50
Total No. of Contact Hours	60 L:T:P::40:0:20	SEE	50
No. of Contact Hours/week	4	Total	100
Credits	3	Exam. Duration	3 Hours

Course objective is to: This course will enable students to

- 1. Understand the principles of fracture mechanics and the stress analysis of members with cracks.
- 2. Acquire knowledge of plastic fracture mechanics.
- 3. Understand the principles of dynamics and crack arrest.
- 4. Acquire the knowledge of fatigue and fatigue crack growth rate and fracture resistance of materials.
- 5. Understand the numerical methods of computational fracture mechanics and fracture toughness of materials.

Module-1	RBT Level	Hrs.
Fracture Mechanics Principles: Introduction, Mechanisms of Fracture, a		
crack in a structure, the Graffiti's criterion, modem design, - strength,		
stiffness and toughness. Stress intensity approach. Stress Analysis for		
Members with Cracks: Linear elastic fracture mechanics, Crack tip stress and		
deformations; Relation between stress intensity factor and fracture		
toughness, Stress intensity based solutions. Crack tip plastic zone estimation,		
Plane stress and plane strain concepts. Dugdale approach, the thickness		
effect.		
Laboratory Sessions/ Experimental learning, Conduct the experiment of		
Laboratory Sessions/ Experimental learning: Conduct the experiment of stress analysis for members with cracks.	L3&L4	10
A solid state the forst and the forst and the size of		
Applications: To apply the fracture mechanics principles in aircraft structural		
design.		
Video link / Additional online information (related to module if any):		
https://nptel.ac.in/courses/112106065/		
https://nptel.ac.in/courses/113107078/		
http://www.nptelvideos.in/2012/12/engineering-fracture-mechanics.html		
https://swayam.gov.in/nd1_noc19_me42/preview		
https://www.springer.com/gp/book/9783030292409		
Module-2	RBT Level	Hrs.

Elastic - Plastic Fracture Mechanics: Introduction, Elasto-plastic factor criteria, crack resistance curve, I-integral, Crack opening displacement, crack tip opening displacement. Importance of R-curve in fracture mechanics, Experimental determination of I-integral, COD and CTOD. Laboratory Sessions/ Experimental learning: Conduct the experimental determination of specimen using COD and CTOD. Applications: To find and solve the elastic plastic fracture of the aircraft structure. Video link / Additional online information (related to module if any): https://nptel.ac.in/courses/112106065/ https://onlinelibrary.wiley.com/doi/full/10.1111/ffe.12487 https://onlinelibrary.wiley.com/doi/full/10.1111/ffe.12487	L3&L4	10
Module-3	RBT Level	Hrs.
Dynamic and Crack Arrest: Introduction, the dynamic stress intensity and elastic energy release rate, crack branching, the principles of crack arrest, and the dynamic fracture toughness. Laboratory Sessions/ Experimental learning: Conduct the experimental study of dynamic fracture toughness of a specimen. Applications: To determine the dynamic and crack arrest of the structural materials. Video link / Additional online information (related to module if any): https://nptel.ac.in/courses/112106065/ https://nptel.ac.in/courses/113107078/ https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29EM.1943-7889.0001607	L3&L4	10
Module-4	RBT Level	Hrs.
Fatigue and Fatigue Crack Growth Rate: Fatigue loading, Various stages of crack propagation, the load spectrum, approximation of the stress spectrum, the crack growth integration, fatigue crack growth laws. Fracture Resistance of Materials: Fracture criteria, fatigue cracking criteria, effect of alloying and second phase particles, effect of processing and anisotropy, effect of temperature, closure. Laboratory Sessions/ Experimental learning: Conduct the experiment on material testing of the specimen using fatigue test. Applications: To predict the the fatigue strength of the aircraft parts. Video link / Additional online information (related to module if any):	L3&L4	10

https://i	nptel.ac.in/courses/112106065/							
https://i	nptel.ac.in/courses/113107078/							
https://	www.youtube.com/watch?v=OlexdbPETPw							
https://	www.youtube.com/watch?v=mndOapHRUAQ							
practice	www.intechopen.com/books/applied-fracture-mechanics/good- for-fatigue-crack-growth-curves-description onlinelibrary.wiley.com/doi/book/10.1002/9781118013373							
	Module-5	RBT Level	Hrs.					
traditio displace energy numeric size rec rate an modes, Laborat • Po • C Applica and to Video I https://i https://i	Itational Fracture Mechanics: Overview of numerical methods, nal methods in computational fracture mechanics – stress and ement marching, elemental crack advance, virtual crack extension, the domain integral, finite element implementation. Limitations of cal fracture analysis, Fracture Toughness testing of metals: Specimen puirements, various test procedures, effects of temperature, loading d plate thickness on fracture toughness. Fracture testing in shear fatigue testing and NDT methods. Fory Sessions/ Experimental learning: erform the numerical methods in computational fracture mechanics. onduct the experiment on non destructive testing of metals. tions: To perform the computational analysis in fracture mechanics determine the fatigue and fracture testing of the aircraft materials. ink / Additional online information (related to module if any): nptel.ac.in/courses/112106065/ nptel.ac.in/courses/113106070/ www.springer.com/gp/book/9789400725942 onlinelibrary.wiley.com/doi/abs/10.1111/ffe.12912	L3&L4	10					
~								
	outcomes:							
CO1	Apply the principles of fracture mechanics and the stress analysis of	members with cr	acks.					
CO2	Solve the problems related to plastic fracture mechanics.							
CO3	Examine the principles of dynamics and crack arrest.							
CO4	Analyze the problems related to fatigue and fatigue crack growth rate and fracture resistance of materials.							
04		Analyze the numerical methods of computational fracture mechanics and fracture toughness of materials.						

Referen	nce Books:
1.	Karen Helen, Introduction to Fracture Mechanics , McGraw Hill Pub 2000.
2.	Jayatilake, Fracture of Engineering Brittle Materials, Applied Science, London.2001.
3.	T. L. Anderson, Fracture Mechanics Application -, CRC press 1998.
4.	David Broek, and Artinus Nijhoff, Elementary Engineering Fracture of Mechanics-, London 1999.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	1	1	0	0	0	0	0	1	1
CO2	3	3	2	1	0	0	0	0	1	0	0	1
CO3	3	3	1	2	0	1	0	0	0	0	1	1
CO4	3	3	2	0	1	1	0	0	0	0	0	1
CO5	3	3	2	0	2	1	0	0	1	1	0	1

High-3, Medium-2, Low-1