	Semester: III									
	Transforms and Numerical Methods									
		(Theory)								
Course Code:		MVJ21MA31D (For EC, EE and IOT)	CIE Marks: 50							
Crec	lits:	L: T:P 3:2:0	SEE Marks: 50							
Hou	rs:	50L	SEE Duration: 3 Hrs.							
Cou	rse Learning (Objectives: The students will be able to								
1	1 Solve the linear differential equations using Laplace transforms									
2	Apprehend an	d apply Fourier transform								
3 Realize and use of Z-Transforms										
4	4 Use of numerical methods to solve ordinary differential equation									
5	Use of statisti	cal methods in curve fitting applications.								

UNIT-I

UNII-I					
Laplace Transforms: Definition, Transforms of elementary functions, Properties,					
Periodic function, Unit step function.					
Inverse Laplace Transforms: Inverse Laplace Transforms, Convolution theorem					
to find inverse Laplace transform.					
Solution of linear differential equations using Laplace transforms	10 Hrs				
Self-study: Solution of simultaneous first order differential equations.					
Applications: Analysis of electrical and electronic circuits, used in Signal					
processing and in control systems.					
Video Links: <u>https://youtu.be/NFuwtTT7VPM</u>					
UNIT-II					
Fourier Transforms: Infinite Fourier transform, Infinite Fourier sine and cosine					
transforms, Inverse Fourier transforms, Inverse. Fourier sine and cosine					
transforms, Convolution theorem.					
	10 Hrs				
Self-study: Complex form of Fourier series.					
Applications: Fourier transforms used in image					
Video Links: <u>https://youtu.be/r18Gi8lSkfM</u>					
UNIT-III					
Z-Transforms: Definition, standard Z-transforms, properties of Z- transforms-					
Shifting property, Reversal property, Multiplication by n, initial value and final					
value theorems. Inverse Z- transform, convolution theorem (proof and problems)					
Application of Z-transforms to solve difference equations.					
Self-study: Damping rule and problems on them.	10 Hrs				
Applications: Fourier transforms used in image processing and Z-transforms in					
Digital signal processing.					
Video Links: <u>https://youtu.be/spUNpyF58BY</u>					
UNIT-IV					
Numerical solution of ordinary differential equations: Numerical solution of					
first order and first degree; Taylor's series method, modified Euler's method,					
Runge-Kutta method of fourth-order. Milne's and Quadratic Spline Method.	10 Hrs				
Self-study: Adams Bash-Method.	10 Hrs				
Applications: To solve initial value problems					
Video Links: <u>https://youtu.be/pbYn3MEZyms</u>					
UNIT-V					

Course	Course Outcomes: After completing the course, the students will be able to							
C201.1	Learn to solve linear differential equations using Laplace transforms							
C201.2	Demonstrate Fourier Transform as a tool for solving Integral equations							
C201.3	Learn to evaluate Z-transform to solve difference equations.							
C201.4	Learn to solve algebraic, transcendental and ordinary differential equations numerically.							
C201.5	Make use of the correlation and regression analysis to fit a suitable mathematical model for the statistical data							

Ref	erence Books
1.	B.S. Grewal, "Higher Engineering Mathematics" Khanna Publishers, 44 th Edition, 2013.
2.	Erwin Kreyszig, "Advanced Engineering Mathematics", Wiley-India publishers, 10 th
	edition, 2014.
3.	Prof G.B.Gururajachar "Engineering Mathematics-III, Academic Excellent series
	Publications, 2016-17
4.	Ramana B. V., "Higher Engineering Mathematics", Tata McGraw-Hill, 2006.

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

SEE for 50 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Total marks: 50+50=100

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C201.1	3	3	0	3	0	0	0	0	0	0	1	0
C201.2	3	3	0	3	0	0	0	0	0	0	0	1
C201.3	2	3	0	3	0	0	0	0	0	0	1	0
C201.4	3	3	0	3	0	0	0	0	0	0	0	0
C201.5	3	3	0	2	0	0	0	0	0	0	0	1

	Semester: III									
	Electric Circuit Analysis with Pspice									
	(Theory)									
Cou	Course Code: MVJ21EE32 CIE Marks:50									
Cre	dits:	L:T:P: 3:2:0	SEE Marks: 50							
Hou	irs:	50L	SEE Duration: 3 Hrs							
Cou	rse Learnir	ng Objectives: The students w	ill be able to							
1	Solve the e	electrical circuits using differen	t analytical methods.							
2	Apply vari	ous network theorems to solve	circuits.							
3	Analyze the series and parallel resonance in RLC circuits.									
4										
5	Analyze co	omplex circuits using network t	opology and two-port networks.							

UNIT-I	
Basic circuit concepts: Ideal and Practical sources, Source Transformations,	
Loop and nodal analysis with linearly dependent and independent sources for DC	
circuits, Analysis of networks involving concepts of super node, Super mesh.	
Laboratory Sessions/ Experimental learning: Verification of Kirchhoff's	10Hrs
Voltage law and current law using PSpice	
Applications: Analysis of electric circuits by reducing their complexity.	
Video link: <u>https://nptel.ac.in/courses/108104139/</u>	
UNIT-II	
Network Theorems: Superposition Theorem, Thevenin's Theorem, Norton's	
theorems; Maximum power transfer theorem, Reciprocity Theorem, Millman's	
theorem.	
Laboratory Sessions/ Experimental learning: Verification of all network	10Hrs
theorems using PSpice	
Applications: Analysis of complex electric circuits by reducing the complexity.	
Video link: http://www.digimat.in/nptel/courses/video/108105112/L20.html	
UNIT-III	
Resonant Circuits : RLC Series and parallel resonance, the frequency response of	
series and parallel circuits, Q factor, Bandwidth. Application.	
Laboratory Sessions/ Experimental learning: Realization of Series/Parallel	
Resonance using Pspice.	10Hrs
Applications: Network topology- to understand the networking concepts	
Resonant circuits- Oscillating circuit, Radio, and communication engineering	
Video link: https://nptel.ac.in/courses/108102097/	
UNIT-IV	
Transient Analysis: Behaviour of circuit elements under switching condition and	
their representation, Evaluation of Initial and Final conditions in series RL, RC,	
and RLC circuits.	
Laboratory Sessions/ Experimental learning: Realization of the transient	10Hrs
response of series/Parallel RL, RC circuits in Pspice.	
Applications: Stability Analysis of systems containing energy storage elements	
Video link: <u>https://nptel.ac.in/courses/108102097/</u>	
UNIT-V	
Network topology: Graph of a network, Concept of tree and Co-tree, Incidence	
matrix, tie-set matrix, cut-set & cut set matrix, the concept of duality and dual	10Hrs
networks.	

Two port networks: Definition of Z, Y, ABCD parameters, Relationship between					
parameter sets.					
Laboratory Sessions/ Experimental learning: Virtual lab experiment – Three-					
phase power measurement for balanced/unbalanced star-connected load					
Applications: Model of voltage, current characteristics of complex electrical					
networks, Modeling of the transmission line.					
Videolink:					
• <u>https://nptel.ac.in/courses/108104139</u>					

Course Outcomes: After completing the course, the students will be able to

C202.1 Solve the electrical circuits using different analytical methods.

C202.2 Apply various network theorems to solve circuits.

C202.3 Analyze the series and parallel resonance in RLC circuits.

C202.4 Analyze transient response in series circuits.

C202.5 Analyze complex circuits using network topology and two-port networks.

Reference Books

-						
1	"Network Analysis", M. E. Van Valkenburg/T.S. Rathore, Third ,2019, Pearson					
1	Education, 978-9353433123.					
2	"Network analysis and Synthesis", D. Anand Kumar, 2018, PHI Learning Pvt.					
4	Ltd.,ISBN-13978-9388028103					
2	"Circuit theory analysis and synthesis", A Chakrabarti, 2018, Dhanpat Rai Publishing Co					
3	Pvt Ltd, ISBN: 9788177000009					
4	"Engineering Circuit Analysis" Hayt, Kemmerly and Durbin, 2005, Tata McGraw Hill					
	Education,978-0070611054					

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

SEE for 50 marks executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Total marks: 50+50=100

CO-PO	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C202.1	3	3	1	1	1	-	-	-	1	-	-	2
C202.2	3	3	1	2	1	-	-	-	1	-	-	2
C202.3	3	3	1	2	1	-	-	-	1	-	-	2
C202.4	3	3	1	2	1	-	-	_	1	-	_	2
C202.5	3	2	1	2	1	-	-	-	1	-	-	2

	Semester: III									
	DIGITAL ELECTRONICS									
Course Code:		MVJ21EE33	CIE Marks: 50							
Cree	dits:	L:T:P: 3:0:0	SEE Marks: 50							
Hou	irs:	40L	SEE Duration: 3 Hrs.							
Cou	rse Learning Objective	es: The students will be able to								
1	Understand the Digital fundamentals, Boolean algebra, and its applications in digital									
1	systems									
2	Design of various combinational digital circuits using logic gates									
3	Design procedures for synchronous and asynchronous sequential circuits									
4	Design counters and registers for the given circuits.									
5	Explain the electronic circuits involved in the making of logic gates									

UNIT-I	
DIGITAL FUNDAMENTALS: Boolean theorems, Logic gates, Universal gates, Sum of products and product of sums, Min-terms and Max-terms, Karnaugh map Minimization	
Laboratory Sessions/ Experimental learning: Design and implementation of code converters using logic gates (i) BCD to excess-3 code and vice versa (ii) Binary to gray and vice-versa Applications: Traffic Signals	8 Hrs
Video link: <u>https://nptel.ac.in/courses/108105113</u>	
UNIT-II	
 COMBINATIONAL CIRCUIT DESIGN: Design of Half and Full Adders, Half and Full Subtractors, Binary Parallel Adder – Carry look ahead Adder, BCD Adder, Multiplexer, Demultiplexer, Magnitude Comparator, Decoder, Encoder, Priority Encoder. Laboratory Sessions/ Experimental learning: - To realize half/full adder and half/full subtractor. Using X-OR and basic gates Using only nand gates. Applications: Microcontrollers for arithmetic subtraction Video link: https://www.youtube.com/watch?v=85XxQZqBNlg 	8 Hrs
UNIT-III SYNCHRONOUS SEQUENTIAL CIRCUITS: Flip flops – SR, JK, T, D, Master/Slave FF – operation and excitation tables. Design – Moore/Mealy models, state minimization, state assignment, Laboratory Sessions/ Experimental learning: Truthtable verification of Flip- Flops: (i) JK Master Slave (ii) D- Type (iii) T- Type. Applications: Data Transfer,Counters Video link: 1. https://www.youtube.com/watch?v=j NrUIwj1gc UNIT-IV	8 Hrs
Circuit implementation – Design of Counters- Ripple Counters, Ring Counters, Shift registers, Universal Shift Register. Application of shift registers. Laboratory Sessions/ Experimental learning: Applications: Realization of 3-bit counters as a sequential circuit and MOD – N counter design using 7476,7490,74193	8 Hrs

Video link:1.https://www.youtube.com/watch?v=Iecj9xmIfXM	
2.https://www.youtube.com/watch?v=aGHpADG8Yo4	
UNIT-V	
MEMORY DEVICES AND DIGITAL INTEGRATED CIRCUITS: Basic memory structure – ROM -PROM – EPROM – EEPROM –EAPROM, RAM – Static and dynamic RAM – Programmable Logic Devices – Programmable Logic Array (PLA) – Programmable Array Logic (PAL) – Field Programmable Gate Arrays (FPGA. Laboratory Sessions/ Experimental learning:Design and testing of Monostable and Astable multivibrators using 555 timers. Applications: Video processor Video link: https://www.youtube.com/watch?v=2aRwFWhLk0o0	8 Hrs

Course	Course Outcomes: After completing the course, the students will be able to							
C203.1	C203.1 Solve different logic equations using K map and compare different logic families							
C203.2	Develop combinational circuit for given circuits.							
C203.3	Develop state diagrams for given clocked sequential circuits.							
	Develop counters and registers of circuits.							
C203.5	Explain the various semiconductor memories and related technology							

Ref	erence Books							
1.	Electronic Devices and Circuit Theory, Robert L Boylestad Louis Nashelsky,							
	Pearson, 11thEdition, Pearson India, 2015.							
2.	Electronic Devices and Circuits, S.Salivahanan & N.Suresh, McGraw Hill, 3rd Edition, 2013.							
3.	Fundamentals of Logic design, Charles H Roth and Larry L Kinney, Cengage Learning, 2019.							

Continuous Internal Evaluation (CIE): Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

SEE for 50 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a

maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C203.1	2	2	2	1	2	-	-	-	-	-	-	-
C203.2	2	2	2	2	3	-	-	-	-	-	-	-
C203.3	2	2	2	2	3	-	-	-	-	-	-	-
C203.4	2	3	3	2	3	-	-	-	-	-	-	-
C203.5	2	2	3	2	3	-	-	-	-	-	-	-

Total marks: 50+50=100

	ANALOG ELECTRONICS AND OPAMP WITH PSPICE (Theory and Practice)								
Cou	rse Code:	MVJ21EE34	CIE Marks:50+50						
Credits:		L: T: P: 3:0:2	SEE Marks: 50 +50						
Hours:		40 L+ 26 P	SEE Duration: 03+03 Hours						
Cou	rse Learning Object	ives: The students will b	e able to						
1	Understand the wo diodes.	rking of different diode	circuits and characteristics of special						
2	Use transistors as m	ultistage amplifiers and fe	edback amplifiers.						
3	3 Understand the basic operations of operational amplifier circuits.								
4	Discuss about various active filters.								
5	Discuss the specific	applications of linear ICs.							

UNIT-I	
Diode circuits: Diode clipping and clamping circuits, Special Diodes Schottky	
diodes, Tunnel diode, Varactor diode characteristics and applications.	
Multistage Amplifiers: Cascade and cascode connections, direct coupled and RC	
Coupled multi-stage amplifiers.	
Laboratory Sessions / Experimental learning: Formation of different waveforms	8Hrs
by using clipper and clamper circuits in PSpice.	
Applications: Analysis of composite picture signals	
Videolink: https://lake.videoken.com/nptel/category/698/search/clipping%20using	
<u>%20diodes/video/tZE0-YcL0XM</u>	
UNIT-II	
Feedback amplifiers: Concepts of feedback – Classification of feedback	
amplifiers - General characteristics of Negative feedback amplifiers Effect of	
Feedback on Amplifier characteristics	
Oscillators: Principle of operation, Condition for Oscillations, analysis and	
derivation of frequency of oscillation of phase shift oscillator, working of crystal	
oscillator and LC Oscillators.	8Hrs
Laboratory Sessions/ Experimental learning: Design and testing of BJT -RC	
phase shift oscillator for given frequency of oscillation in PSpice.	
Applications: Analysis of different pulse generations.	
Video link: 1. https://www.youtube.com/watch?v=0nXEUkFBd8A	
2. <u>https://www.youtube.com/watch?v=SVQutMsLKfQ</u>	
UNIT-III	
Operational Amplifiers: Introduction, Block diagram representation of a typical	
Op-amp, characteristics of an ideal and practical Op-amp, open loop and closed	
loop configuration of op-amp, differential amplifier, inverting & non -inverting	
amplifier, Op-amp with negative feedback.	
General Linear Applications: A.C. amplifier, summing, scaling & averaging	
amplifier.	8 Hrs
Laboratory Sessions/ Experimental learning: Analysis of inverting and non-	
inverting op-amp circuits using PSpice	
Applications: Analysis of audio mixer to add different signals with equal gains	
Videolink: https://lake.videoken.com/nptel/search/AC%20Amplifiers/video/J92DI	
<u>PyPnzY</u>	

UNIT-IV	
Active Filters: First & Second order high pass & low pass Butterworth filters.	
Band pass filters, all pass filters.	
DC Voltage Regulators: voltage regulator basics, voltage follower regulator,	
adjustable output regulator, LM317 Integrated circuits regulators.	
Laboratory Sessions/ Experimental learning: Design and realize an op - amp	
based first order Butterworth (a) low pass (b) high pass and (c)band pass filters for	8 Hrs
a given cut off frequency/frequencies to verify the frequency response	
Characteristic.	
Applications: Analysis of constant power supply	
Videolink: https://lake.videoken.com/nptel/search/ACTIVE%20FILTER/video/b3	
<u>7hZCpVnuc</u>	
UNIT-V	
Signal Generators: Triangular / rectangular wave generator.	
Comparators & Converters: Basic comparator, zero crossing detector, Schmitt	
trigger circuit, voltage to current converter with grounded load, current to voltage	
converter and basics of voltage to frequency and frequency to voltage converters.	8 Hrs
Laboratory Sessions/ Experimental learning: Verify the operation of an op –	0
amp as (a) voltage comparator circuit and (b) zero crossing detector.	
Applications: Generation of different signals	
Video link: <u>https://www.youtube.com/watch?v=L5-a1y1wD8k</u>	
LABORATORY EXPERIMENTS	
1. Design of different clipping circuits.	
2. Design of different clamping circuits.	•11 .•
3. Design and testing of BJT -RC phase shift oscillator for given frequency of o	
4. Design and realize to analyze the frequency response of an $op - amp ample$	ifter under
inverting and non - inverting configuration for a given gain.	• , ,
5. Design and verify the operation of op – amp as an (a) adder (b) subtractor (c)	megrator
and (d) differentiator.	unnan trin
6. Design and realize Schmitt trigger circuit using an op – amp for desired point (UTP) and lower trip point (LTP).	upper unp
7. Design and realize an op-amp based function generator to generate s	auero and
triangular waves of desired frequency.	quale allu
8. Designing of Fixed voltage power supply (voltage regulator) using IC reg	ulators 78
series and 79 series.	ulutors 70
Along with mandatory experiments students are advised to complete two op	en ended
experiments. The following are some suggestions for open ended experiments.	
9. Design and Testing of Full wave – center tapped transformer type and B	ridge type
rectifier circuits with and without Capacitor filter. Determination of rip	
regulation, and efficiency.	,
10. Design and realize an op $-$ amp based function generator to generate sine, s	square and
triangular waves of desired frequency.	1
Course Outcomes: After completing the course, the students will be able to	
C204.1 Explain the working of different diode circuits and characteristics of specia	al diodes.
C204.2 Explain the concept of multistage amplifiers and feedback amplifiers.	
C204.3 Explain basic operations of operational amplifier circuits.	
C204.4 Describe the working of various active filters.	

C204.5 Discuss the specific applications of linear ICs.

Refe	erence Books
1	Electronic Devices and Circuit Theory, Robert L Boylestad Louis Nashelsky,
1	Pearson, 11 th Edition, 2015.
2	Electronic Devices and Circuits, S.Salivahanan & N.Suresh, McGraw Hill, 3rd
2	Edition, 2013
3.	Operational Amplifiers and Linear ICs, David A. Bell Oxford 3rd Edition 2011
4.	Linear Integrated Circuits, S. Salivahanan, et al McGraw Hill 2nd Edition,2014

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the self -study are 20 (2 presentations are be held for 10 marks each). The marks obtained in test, quiz and self -studies are added to get marks out of 100 and report CIE for 50 marks.

Laboratory- 50 Marks

The laboratory session is held every week as per the timetable and the performance of the student is evaluated in every session. The average of the marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are awarded 10 marks. Total marks for the laboratory is 50.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marksare executed by means of an examination.

The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three subdivisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C204.1	3	3	2	-	-	-	-	-	-	-	-	-
C204.2	3	2	1	-	-	-	-	-	-	-	-	1
C204.3	3	3	2	-	-	-	-	-	-	-	-	-
C204.4	3	3	1	1	2	-	-	-	-	-	-	1
C204.5	3	3	1	1	2	-	-	-	-	-	-	1

	Electrical Machines-I (Theory and Practice)								
Cou	rse Code:	MVJ21EE35	CIE Marks:50+50						
Cree	dits:	L:T:P:S: 3:0:2:Y	SEE Marks: 50 +50						
Hou	rs:	40 L+ 26 P	SEE Duration: 03+03 Hours						
Cou	rse Learning Objec	tives: The students will be able to)						
1	Understand the current transformer connect	oncepts of transformers and su tion.	ggest a suitable three phase						
2	Discuss the various	methods for testing and parallel op	peration of a transformer.						
3	3 Explain the detailed working of three phase induction motor.								
4	Explain the performance characteristics of induction machines.								
5	Explain the starting	and speed control of induction mo	tor.						

UNIT-I					
Single phase Transformers: Operation of practical transformer under no-load					
and on-load with phasor diagrams. calculation of equivalent circuit parameters and					
predetermination of efficiency-commercial and all-day efficiency. Voltage					
regulation and its significance.					
Three-phase Transformers: Introduction, Constructional features of three-phase					
transformers (self-study) Transformer connection for three phase operation-					
star/star, delta/delta, star/delta, zigzag/star and V/V, comparative features. Phase	8 Hrs				
conversion-Scott connection for three-phase to two-phase conversion.					
Laboratory Sessions/ Experimental learning: Plotting B-H curve/hysteresis					
loop of different core material specimen for comparative study.					
Applications: R&D in transformer core manufacture					
Video link / Additional online information:					
https://nptel.ac.in/content/storage2/courses/112108150/pdf/PPTs/MTS_16_m.pdf					
UNIT-II					
Testing of Transformers: Open circuit and short circuit tests, Polarity test,					
Sumpner's test, separation of hysteresis and eddy current losses					
Parallel Operation of Transformers: Necessity of Parallel operation, conditions					
for parallel operation- Single phase and three phase. Load sharing in case of					
similar and dissimilar transformers.					
Auto transformers and tap changing transformers: Introduction to					
autotransformer-copper economy, equivalent circuit, no load and on load tap	8Hrs				
changing transformers. Cooling of transformers.	onrs				
Laboratory Sessions/ Experimental learning: Computer simulation of plotting					
efficiency and regulation curves of a single-phase transformer using OC and SC					
test data.					
Applications: Countercheck for manufacturer's load test data					
Video link / Additional online information:					
https://nptel.ac.in/courses/108/105/108105017/					
UNIT-III					
Three Phase Induction Motors: Review of concept and generation of rotating	8Hrs				

·	
magnetic field, Principle of operation, construction, classification and types;	
squirrel-cage, slip-ring (self-study). Slip, Torque equation, torque-slip	
characteristic covering motoring, generating, and braking regions of operation,	
Maximum torque, significance of slip.	
Laboratory Sessions/ Experimental learning: Assembling of poly-phase	
induction machines.	
Applications: Understanding the detailed analysis of poly-phase induction	
motors.	
Web Link and Video Lectures:	
https://www.youtube.com/watch?v=dZyO5gcWP-o	
https://youtu.be/leXNHZM-CZE	
UNIT-IV	
Performance of Three-Phase Induction Motor: Phasor diagram of induction	
motor on no-load and on load, equivalent circuit, losses, efficiency, No-load and	
blocked rotor tests. Performance of the motor from the circle diagram and	
equivalent circuit. Cogging and crawling. Induction motor working as induction	
generator.	
Laboratory Sessions/ Experimental learning: Brake test on slipring induction	8Hrs
motor.	UIIIS
Applications: Induction motor drives.	
Web Link and Video Lectures:	
https://www.youtube.com/watch?v=ze8LY4yq9Wk	
https://youtu.be/eMq9j0KY2Ak	
UNIT-V	
Starting and Speed Control of Three-Phase Induction Motors: Need for	
starter. Direct on line, Star-Delta, and autotransformer starting. Rotor resistance	
starting. Speed control by voltage, frequency, and rotor resistance methods.	
Single-Phase Induction Motor: Double revolving field theory and principle of	
operation. Construction and operation of split-phase, capacitor start, capacitor run,	
and shaded pole motors. Comparison of single-phase motors and applications.	
Laboratory Sessions/ Experimental learning: Assembling of poly-phase	011
induction machines.	8Hrs
Applications: Understanding the detailed analysis of poly-phase induction	
motors.	
Web Link and Video Lectures:	
https://www.youtube.com/watch?v=dZyO5gcWP-o	
https://www.youtube.com/watch?v=u2yo3gew1-0 https://youtu.be/leXNHZM-CZE	
Intps://youtu.be/IEAINTIZM-CZE	
LABORATORY EXPERIMENTS	
1. Open Circuit Characteristics of DC shunt generator.	
 Open Circuit Characteristics of DC shunt generator. Hopkinson's test on identical DC shunt machines. 	
 Open Circuit Characteristics of DC shunt generator. Hopkinson's test on identical DC shunt machines. Fields test on DC series machines. 	
 Open Circuit Characteristics of DC shunt generator. Hopkinson's test on identical DC shunt machines. Fields test on DC series machines. Swinburne's test on a DC shunt motor and speed control of DC shunt motor. 	
 Open Circuit Characteristics of DC shunt generator. Hopkinson's test on identical DC shunt machines. Fields test on DC series machines. Swinburne's test on a DC shunt motor and speed control of DC shunt motor. Brake test on DC shunt motor. 	ency and
 Open Circuit Characteristics of DC shunt generator. Hopkinson's test on identical DC shunt machines. Fields test on DC series machines. Swinburne's test on a DC shunt motor and speed control of DC shunt motor. Brake test on DC shunt motor. O.C. & S.C. Tests on Single phase Transformer-Predetermination of effici 	ency and
 Open Circuit Characteristics of DC shunt generator. Hopkinson's test on identical DC shunt machines. Fields test on DC series machines. Swinburne's test on a DC shunt motor and speed control of DC shunt motor. Brake test on DC shunt motor. O.C. & S.C. Tests on Single phase Transformer-Predetermination of effici regulation. 	ency and
 Open Circuit Characteristics of DC shunt generator. Hopkinson's test on identical DC shunt machines. Fields test on DC series machines. Swinburne's test on a DC shunt motor and speed control of DC shunt motor. Brake test on DC shunt motor. O.C. & S.C. Tests on Single phase Transformer-Predetermination of effici 	ency and

Along with mandatory experiments students are advised to complete two open ended

experiments. The following are some suggestions for open ended experiments.

- 9. Parallel operation of Single-phase Transformers.
- 10. Separation of core losses in a single-phase transformer.
- 11. Load test on DC compound generator.

Course	Course Outcomes: After completing the course, the students will be able to			
C205.1	Understand the construction and operation of 1-phase, 3-Phase transformers.			
C205.2	Analyze the performance of transformers by polarity test, Sumpner's Test, phase conversion, 3-phase connection, and parallel operation.			
C205.3	5.3 Understand the working of three phase induction motors and applications.			
C205.4	Analyze performance characteristics of induction machines.			
C205.5	Understand the starting and speed control of induction motor.			

Ref	Reference Books				
1.	Electric Machines, D. P. Kothari, et al, 4th Edition, 2011.				
2.	Principals of Electrical Machines, V.K Mehta, Rohit Mehta, S Chand, 2 nd edition, 2009				
3.	Electric Machines, MulukuntlaS.Sarma, at el, Cengage, 1st Edition, 2009				
4.	Electrical Technology, B.L Theraja, Volume2, S. Chand, 22nd Edition				

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the self -study are 20 (2 presentations are be held for 10 marks each). The marks obtained in test, quiz and self -studies are added to get marks out of 100 and report CIE for 50 marks.

Laboratory- 50 Marks

The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are awarded 10 marks. Total marks for the laboratory is 50.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marksare executed by means of an examination.

The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the complete syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have

internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

					CO-I	PO Ma	pping					
CO/P O	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2
C205.1	3	3	-	1	2	-	-	-	-	-	-	1
C205.2	3	3	-	1	2	-	-	-	-	-	-	1
C205.3	3	3	-	1	2	-	-	-	-	-	-	1
C205.4	3	3	-	1	2	-	-	-		-	-	1
C205.5	3	3	-	1	2	-	-	-	-	-	-	1

	Semester: III					
CO	CONSTITUTION OF INDIA AND PROFESSIONAL ETHICS AND CYBER LAW					
	(Theory)					
Cou	rse Code:	MVJ21CPH36	CIE Marks: 50			
Cree	lits:	L:T:P: 1:0:0	SEE Marks: 50			
Hours:		15L	SEE Duration: 2 Hrs.			
Cou	Course Learning Objectives: The students will be able to					
	To know the fundamental political codes, structure, procedures, powers, and duties of					
1	Indian constitution, Indian government institutions, fundamental rights, directive					
	principles and the duties of the citizens.					
2	To provide overall legal literacy to the young technograts to manage complex societal					
$\frac{2}{100}$ issues in the present scenario.						
3	To understand engineering ethics & their responsibilities, identify their individual					
3	roles and ethical respon	nsibilities towards society.				

UNIT-I

UNII-I	
Introduction to Indian Constitution The Necessity of the Constitution, The Societies before and after the Constitution adoption. Introduction to the Indian Constitution, The Making of the Constitution, The role of the Constituent Assembly – Preamble and Salient features of the Constitution of India. Fundamental Rights and its Restriction and Limitations in different Complex Situations. Directive Principles of State Policy (DPSP) and its present relevance in our society with examples. Fundamental Duties and its Scope and Significance in Nation Building.	3 Hrs
UNIT-II	
Union Executive and State Executive Parliamentary System, Federal System, Centre-State Relations. Union Executive – President, Prime Minister, Union Cabinet, Parliament - LS and RS, Parliamentary Committees, Important Parliamentary Terminologies. Supreme Court of India, Judicial Reviews and Judicial Activism. State Executives – Governor, Chief Minister, State Cabinet, State Legislature, High Court and Subordinate Courts, Special Provisions (Article 370, 371, 371J) for some States.	3 Hrs
UNIT-III	
Elections, Amendments and Emergency Provisions Elections, Electoral Process, and Election Commission of India, Election Laws. Amendments - Methods in Constitutional Amendments (How and Why) and Important Constitutional Amendments. Amendments – 7,9,10,12,42,44,61,73,74,75,86, and 91,94,95,100,101,118 and some important Case Studies. Recent Amendments with explanation. Important Judgements with Explanation and its impact on society (from the list of Supreme Court Judgements). Emergency Provisions, types of Emergencies and it's consequences. Constitutional Special Provisions: Special Constitutional Provisions for SC & ST, OBC, Special Provision for Women, Children & Backward Classes.	3 Hrs

UNIT-IV

Professional / Engineering Ethics	
Scope & Aims of Engineering & Professional Ethics - Business Ethics,	
Corporate Ethics, Personal Ethics. Engineering and Professionalism, Positive	
and Negative Faces of Engineering Ethics, Code of Ethics as defined in the	
website of Institution of Engineers (India) : Profession, Professionalism,	3 Hrs
Professional Responsibility. Clash of Ethics, Conflicts of Interest.	5 1115
Responsibilities in Engineering - Responsibilities in Engineering and	
Engineering Standards, the impediments to Responsibility. Trust and Reliability	
in Engineering, IPRs (Intellectual Property Rights), Risks, Safety and liability in	
Engineering	
UNIT-V	
Internet Laws, Cyber Crimes and Cyber Laws:	
Internet and Need for Cyber Laws, Modes of Regulation of Internet, Types of cyber terror capability, Net neutrality, Types of Cyber Crimes, India and cyber	3 Hrs

3 I cyber terror capability, Net neutrality, Types of Cyber Crimes, India and cyber law, Cyber Crimes and the information Technology Act 2000, Internet Censorship, Cybercrimes and enforcement agencies.

Course Outcomes: After completing the course, the students will be able to								
C206.1	Have constit	utional knowle	edge a	nd legal literac	ey			
C206.2	Understand	Engineering	and	Professional	ethics	and	responsibilities	of
	Engineers.							
C206.3	Understand	the cyber-crim	es and	l cyber laws fo	r cyber s	safety	measure.	

Ref	erence Books
1.	Durga Das Basu (DD Basu): "Introduction to the Constitution on India", (Students Edition.)Prentice –Hall EEE, 19 th /20 th Edn., (Latest Edition) or 2008.
2.	Shubham Singles, Charles E. Haries, and Et al : "Constitution of India and Professional Ethics" by Cengage Learning India Private Limited, Latest Edition – 2018.
3.	M.Govindarajan, S.Natarajan, V.S.Senthilkumar, "Engineering Ethics", Prentice – Hall of India Pvt. Ltd. New Delhi, 2004.
4.	M.V.Pylee, "An Introduction to Constitution of India", Vikas Publishing, 2002.

	Semester: III						
	Domestic Wiring						
		(Theory and P	ractice)				
Cou	rse Code:	MVJ21EEA37	CIE Marks:50				
Credits: L:T:P::1:0:2 SEE Marks: 50		SEE Marks: 50					
Hours:5L+10PSEE Duration: 02		SEE Duration: 02 Hours					
Cou	Course Learning Objectives: The students will be able to						
1	1 Understand the working principles of different household domestic appliances.						
2	2 Understand the various tools and equipments used for domestic wiring.						
3	3 Acquire necessary knowledge on identifying parts of various electrical appliances.						
Acquire necessary skills/hand on experience/ working knowledge on single-phase		/ working knowledge on single-phase and					
4	three-phase co	three-phase connections, basics of electrical wiring.					
5	Acquire the e	lectrical connections layout diag	grams for various lighting system.				

UNIT-I	
Introduction to wiring a house:	
Flow of electricity, wiring cables and Wire gauges, Calculating Amps, Choosing	
cables, Connecting meter base to panel, Connecting the number of lamps in	3 Hrs
series and parallel circuits, Elements in main panel, identifying phase, neutral,	
and earthing in AC supply.	
UNIT-II	
Tools and Equipment used for domestic wiring:	
Insulated and Grounded tools, AC powered tools, Cordless tools, Specialised	3 Hrs
tools: Multimeters, Tung Tester, Manual and Digital Megger, Switches	5 115
boxes,types of switches and dimmers.	
UNIT-III	
Grounding and Protection	
Methods of grounding, Choosing grounding materials, art of grounding, Fuses	3 Hrs
and circuit breaker selection and installation.	
UNIT-IV	
Room by Room Wiring	
Estimation and cost of wiring, Stocking Up, Outlet box selection, Planning	
Outlet box and switch location, Pulling cable in new construction, Draw, wire	3 Hrs
up & test different types of domestic wiring.	
UNIT-V	
Introduction to wiring fixtures	
Choosing the right box for wiring connection, Lighting, Ceiling Fan, Water	3 Hrs
heater, standby generators.	

Course (Course Outcomes: After completing the course, the students will be able to			
C207.1	207.1 Understand basic concept of residential wiring			
C207.2	2207.2 Explain tools and equipment used for domestic wiring.			
C207.3	Illustrate the grounding process of a residential building and identify different protection devices.			
C207.4	Plan a residential wiring room by room.			
C207.5	Illustrate a complete residential wiring			

Refe	Reference Books				
1.	Practical guide to inspection, testing, and certification of electrical installations,				
	Kitcher C., Routledge. Newnes; 3 rd edition, 2009. ISBN: 0080969070				
2.	Electric wiring: domestic, Scaddan, Brian, Routledge, 2003. ISBN 9780367023348				
3.	Handbook of Repair & Maintenance of domestic electronics appliances, Shashi				
	Bhushan Sinha, BPB Publications, 2016, ISBN: 9788183335027.				
4.	Wiring a house, Rex cauldwell, Taunton press, 5 th edition, 2014, ISBN:162710674X				

	Semester: III					
	Additional Mathematics-I					
	(Common to all branches)					
Cou	Course Code: MVJ21MATDIP-1 CIE Marks:50					
Credits:		L:T:P:S: 1:2:0:0	SEE Marks: 50			
Hours:		40L	SEE Duration: 3 Hrs			
Course Learning Objectives: The students will be able to						
1	Familiarize the important and introductory concepts of Differential calculus					
2	Provide essential concepts integral calculus					
3	Gain knowledge of vector differentiation					
4	4 Learn basics of probability					
5	Ordinary differential equations of first orderand analyze the engineering problems.					

UNIT-I

0111-1		
Differential calculus: Recapitulation of successive differentiation -nth derivative -		
Leibnitz theorem (without proof) and Problems, Polar curves - angle between the	8	
radius vector and tangent, angle between two curves, pedal equation, Taylor's and		
Maclaurin's series expansions- Illustrative examples.	Hrs	
Video Link:		
1. <u>http://nptel.ac.in/courses.php?disciplineID=111</u>		
UNIT-II		
IntegralCalculus: Statement of reduction formulae for the integrals of $\sin^{n}(x)$,		
$\cos^{n}(x)$, $\sin^{n}(x)\cos^{n}(n)$ and evaluation of these integrals with standard limits-		
problems. Double and triple integrals-Simple examples.	8	
	Hrs	
Video Link:		
1. <u>http://nptel.ac.in/courses.php?disciplineID=111</u>		
UNIT-III	<u> </u>	
Vector Differentiation:		
ScalarandVectorpointfunctions,Gradient,Divergence,Curl,SolenoidalandIrrotationalve		
ctorfields.	8Hr	
Vector identities - $div(\phi \vec{A})$, $curl(\phi \vec{A})$, $curl(grad(\phi))$, $div(curl \vec{A})$.	s	
	3	
Video Link:		
1. <u>http://nptel.ac.in/courses.php?disciplineID=111</u>		
UNIT-IV	1	
Probability: Basic terminology, Sample space and events. Axioms of probability.		
Conditional probability – illustrative examples. Bayes theorem-examples.	8Hr	
Video Link:	S	

1. <u>http://nptel.ac.in/courses.php?disciplineID=111</u> UNIT-V

Ordinary Differential Equations of First Order: Introduction - Formation of	
differential equations of first order and first-degree differential equations:	0TT.,,
variable separable form, homogeneous, exact, linear differential equations.	
Video Link:	S
1. http://nptel.ac.in/courses.php?disciplineID=111	

Course O	Course Outcomes: After completing the course, the students will be able to					
C208.1	Apply the knowledge of calculus to solve problems related to polar curves and its applications					
C208.2	Applytheconceptofintegrationandvariablestoevaluatemultipleintegralsandtheirusa gein computing the area and volumes.					
C208.3	Illustrate the applications of multivariate calculus to understand the solenoidal and irrotational vectors and also exhibit the inter dependence of line, surface and volume integrals.					
C208.4	UnderstandthebasicConceptsofProbability					
C208.5	Recognize and solve first-order ordinary differential equations occurring in different branches of engineering.					

Ref	Reference Books				
1.	B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 43 rd Edition, 2013, .				
2.	G. B. Gururajachar, Calculus and Linear Algebra, Academic Excellent Series Publication				
	2018-19				
3.	Chandrashekar K. S, Engineering Mathematics-I, Sudha Publications, 2010.				

Continuous Internal Evaluation (CIE): Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C208.1	3	3	0	2	0	0	0	0	0	0	1	1
C208.2	3	3	0	2	0	0	0	0	0	0	1	1
C208.3	3	3	0	3	0	0	0	0	0	0	1	1
C208.4	2	2	0	3	0	0	0	0	0	0	1	1
C208.5	2	2	0	2	0	0	0	0	0	0	0	1

	Semester: IV							
	Probability Distribution, Optimization and Complex Variables							
		(Theory)						
Cou	rse Code:	MVJ21MA41D (Common to ECE, EEE and	CIE Marks: 50					
		IOT)						
Cre	dits:	L: T:P: 2:2:0	SEE Marks: 100					
Hou	irs:	40L	SEE Duration: 3					
			Hrs.					
Cou	rse Learnin	g Objectives: The students will be able to						
1	Apply disc	Apply discrete and continuous probability distributions in analyzing the probability						
1	models arising in engineering field.							
2	Learn the mathematical formulation of linear programming problem							
3	Learn the mathematical formulation of transportation problem.							
4	Understand	Understand the concepts of Complex variables and transformation for solving						
4	Engineerin	Engineering Problems.						
5	Learn the solutions of partial differential equations numerically							

UNIT-I	
Probability Theory: Random variables (discrete and continuous), probability	
density function, cumulative density function.	
Probability Distributions: Binomial distribution, Poisson distribution. Normal	
distribution, Exponential distribution.	
Joint probability distributions.	8 Hrs
Self-study: Discrete and continuous probability problems	
Applications: Discrete and continuous probability distributions help in analyzing	
the probability models arising in engineering field.	
Video Links: <u>https://youtu.be/cp7_ZF2kNi4</u>	
UNIT-II	
Optimization: Linear Programming, mathematical formulation of linear	
programming problem (LPP), Types of solutions, Graphical Method, simplex	
method, big-M method, Dual – simplex method.	8 Hrs
Self-study: Two phase simplex method	0 1115
Applications: Applications of transportation Problems	
Video Links: <u>https://youtu.be/WZIyL6pcItY</u>	
UNIT-III	
The transportation problem: Initial Basic Feasible Solution (IBFS) by Least Cost	
Method, North West Corner Rule method, Vogel's Approximation Method,	
MODI method (Optimal Solution), Salesman problem, Assignment problem.	8 Hrs
Self-Study Topic: Matrix Minima Method	0 1115
Sen-Study Topic. Matrix Millinia Method	
Video Links: http://nptel.ac.in/courses.php?disciplineID=111	
UNIT-IV	
Complex Variables: Functions of complex variables, Analytic function, Cauchy-	
Riemann equations in Cartesian and polar coordinates, Construction of analytic	
function (Using Milne-Thomson method)	
	8 Hrs
Consequences of Cauchy-Riemann equations, Properties of analytic functions.	
Application to flow problems- complex potential, velocity potential, equipotential	
lines, stream functions, stream lines.	

Self-study: Unique Expression Method	
Applications: Application to flow problems	
Video Links: <u>https://youtu.be/b5VUnapu-qs</u>	
UNIT-V	
Numerical solutions of PDE - Classification of second order equations, finite	
difference approximation to derivatives, solution of heat equations, solution of	
wave equations and solution of Laplace equation.	8 Hrs
Self-study: Crank Nicolson method – problems.	о піз
Applications: To solve boundary value problems	
Video Links: <u>https://youtu.be/nNnnBMF0311</u>	

Course	Course Outcomes: After completing the course, the students will be able to						
C209.1	Apply discrete and continuous probability distributions in analyzing the probability models arising in engineering field.						
C209.2	Learn the mathematical formulation of linear programming problem						
C209.3	Solve the applications of transport problems						
C209.4	Use the concepts of analytic function and complex potentials to solve the problems arising in electromagnetic field theory						
C209.5	Learn the numerical solutions of partial differential equations						

Ref	Reference Books				
1.	B.S. Grewal, "Higher Engineering Mathematics" Khanna Publishers, 44 th Edition, 2013.				
2.	Erwin Kreyszig, "Advanced Engineering Mathematics", Wiley-India publishers,				
	10 th edition, 2014.				
3.	Prof G.B.Gururajachar "Engineering Mathematics-III, Academic Excellent series				
	Publications, 2016-17				
4.	Bali N. P. & Manish Goyal, "A text book of Engineering Mathematics", Laxmi				
	Publications, 8 th Edition				

Continuous Internal Evaluation (CIE): Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks executed by means of an examination. The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions

for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-I	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C209.1	3	3	0	3	0	0	0	0	0	0	1	1
C209.2	3	3	0	3	0	0	0	0	0	0	1	0
C209.3	3	2	0	2	0	0	0	0	0	0	0	0
C209.4	3	3	0	3	0	0	0	0	0	0	0	1
C209.5	3	3	0	3	0	0	0	0	0	0	1	0

	Semester: IV								
	Power System Engineering-I								
		(Theory)							
Cou	rse Code	MVJ21EE42	CIE Marks: 50						
Cree	dits:	L:T:P: 3:0:0	SEE Marks: 50						
Hou	rs:	40L	SEE Duration: 3 Hrs.						
Cou	rse Learning Obje	ctives: The students will be	able to						
1	Understand the different types of power generating sources and structure.								
2	Illustrate the economic aspects of power generation and tariff methods.								
3	3 Evaluate the performances of transmission line and parameters calculations.								
4	Understand mechanical design of transmission lines.								
5	Examine A.C. and D.C. distribution systems.								

UNIT-I

UNIT-I	
GENERATION OF ELECTRIC POWER:	
Conventional generation Sources: Layout of Hydro power station, block diagram of thermal power station and Nuclear Power Plant, brief description of components. Advantages and disadvantage of power plants. Non-Conventional Sources:	
 Solar Power Generation: Role and Potential of Solar Energy Options, Principles of Solar Radiation, Flat Plate and Concentrating Solar Energy Collectors. Wind Power Generation: Role and potential of Wind Energy Option, Horizontal and Vertical Axis Wind Mills. Introduction to geothermal and ocean energy. Laboratory Sessions/ Experimental learning: Visit near any power station to get practical knowledge on working of power station. Applications: All industrial applications 	8Hrs
Video link:	
http://nptel.iitm.ac.inhttps://youtu.be/Yg6XsepGCKY	
UNIT-II	
ECONOMICS ASPECTS OF POWER GENERATION: Introduction to load curve, load duration and integrated load duration, load demand, maximum demand, load factor, diversity factor, capacity factor, utilization and plant use factors. Base load and peak load plants. Cost of generation and their division into fixed and running cost, introduction to Tariff methods and numerical problems. Introduction to underground cables, types of cables. Laboratory Sessions/ Experimental learning: Load estimating using software Applications: Energy auditing of industry and other institutes. Video links: http://nptel.iitm.ac.in https://youtu.be/GRwJqD4StEU	8Hrs
UNIT-III	
INDUCTANCE & CAPACITANCE CALCULATIONS OF	
TRANSMISSION LINES Calculation of Line constants of single phase and three phase lines of symmetrical configuration. Classification of Transmission Lines -Short, Medium and Long line and their model representations, Nominal-T, Nominal- π and A, B, C, D Constants for	8Hrs

symmetrical networks, Numerical Problems.	
Laboratory Sessions/ Experimental learning: Calculation of inductance and	
capacitance of transmission line using MAT LAB -Simulink software.	
Applications: Design of transmission line for different voltages.	
Video link / Additional online information (related to module if any):	
http://nptel.iitm.ac.inhttps://youtu.be/lr1jgbR5ca8	
UNIT-IV	
PERFORMANCE OF FACTORS AFFECTING THE TRANSMISSION	
LINE:	
Skin and proximity effects, Ferranti effect, charging current, corona, Factors affecting corona, critical voltages and power loss.	
Introduction to overhead line insulators, types of insulators, string efficiency, calculation of string efficiency.	
Introduction to sag and tension calculations, effect of wind and ice on weight of	8Hrs
conductor, numerical problems.	
Laboratory Sessions/ Experimental learning: Insulation test of materials for	
high voltage- HVE Lab	
Applications: Design of insulators for different voltage value.	
Video link:	
http://nptel.iitm.ac.inhttps://youtu.be/gd1nruo4_iA	
UNIT-V	
A.C DISTRIBUTION SYSTEM	
Introduction, AC distribution, Single phase, 3-phase, 3 phase 4 wire system, bus bar arrangement, Selection of site for substation. Voltage Drop Calculations (Numerical Problems) in A.C. Distributors for the following cases: Power	
Factors referred to receiving end voltage.	
D.C DISTRIBUTION SYSTEM:	
Introduction to D.C distribution system, Comparison of DC vs. AC, and Under-	
Ground vs. Over- Head Distribution Systems Requirements and Design	8Hrs
features of Distribution Systems.	
Laboratory Sessions/ Experimental learning: Visit near AC power	
distribution substation to get practical knowledge on working of power	
substation	
Applications: Domestic and industrial applications	
Video link / Additional online information (related to module if any):	
http://nptel.iitm.ac.inhttps://youtu.be/_iz8ZkjD7z8	

Course	Course Outcomes: After completing the course, the students will be able to					
C210.1	Discuss the operation of conventional generating stations and renewable sources of					
	electrical power.					
C210.2	Evaluate the economic aspects of power generation and tariff methods					
C210.3	Discuss the performance of typical transmission and distribution system					
	components.					
C210.4	Determine the electrical circuit parameters of transmission lines					
C210.5	Analyze A.C. and D.C. distribution systems for different loads.					

Reference Books

1.	A Text Book on Power System Engineering, M.L.Soni, P.V.Gupta, U.S.Bhatnagar,
	A.Chakrabarthy, ,1999, Dhanpat Rai & Co Pvt. Ltd., ISBN: 978-8177000207.
2.	Power System Engineering, D P Kothari & I J Nagrath, Second Edition, 2007, MC Graw
	Hill Education, ISBN: 9780070647916, 9780070647916
3.	Principles of Power system, V.K Mehta & Rohith Mehta, Revised Edition, 2010, S
	Chand, ISBN: 8121900964, 9788121900966
4.	Electrical Power Systems, C.L. Wadhwa, Fifth Edition, 2009, New Age International,
	ISBN:9788122424683

Continuous Internal Evaluation (CIE): Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C210.1	2	1	2	2	2	-	2	-	-	-	-	-
C210.2	2	1	2	3	2	-	-	-	-	-	-	-
C210.3	2	1	2	1	2	-	-	-	-	-	-	-
C210.4	3	2	2	2	2	-	-	-	-	-	-	-
C210.5	2	2	2	1	2	-	-	-	-	-	-	-

	Semester: IV							
	OOPS with C++ for Electrical Engineering							
		(Theory)						
Cou	rse Code:	MVJ21EE43	CIE Marks: 50					
Credits:		L:T:P: 3:0:0	SEE Marks: 50					
Hours:		40L	SEE Duration: 3 Hrs.					
Cou	Course Learning Objectives: The students will be able to							
1	Become familiar with OOPs concept							
2	Become familiar with C++ concepts, classes and usage							
3	3 Write effective C++ programs for big projects							
4	Become familiar with using and implementing C++ math libraries							
5	Learn how to program for embedded platforms							

UNIT-I	
INTRODUCTION TO OOP and C++: Procedure and Object-Oriented	
Programming, Basic Concepts and Benefits of OOP, Introduction to C++, C++	
statements, Structure of C++ program, Compiling and Linking	
Laboratory Sessions/ Experimental learning:	8Hrs
Applications: Applications Layer, Middleware, Firmware, Embedded Systems	
Web Link and Video Lectures:	
1. C++ Tutorial for Beginners: Full Course, <u>https://youtu.be/vLnPwxZdW4Y</u>	
UNIT-II	
Tokens, Expressions, Control Structure, Functions: Introduction,	
Keywords, Identifiers, Constants, Basic data types, User Defined data types,	
Derived data types, Variables, Operators, Expressions, Overloading, Control	
Structures, Details of functions, Overloading, Friend and Virtual Functions,	
Math Library functions	8Hrs
Laboratory Sessions/ Experimental learning: Experimentation with simple	oms
C++ programs	
Applications: Applications Layer, Middleware, Firmware, Embedded Systems	
Web Link and Video Lectures:	
1. C++ Tutorial for Beginners: Full Course, <u>https://youtu.be/vLnPwxZdW4Y</u>	
UNIT-III	
Classes, Objects, Constructors, Destructors: Specifying, Member functions,	
Nesting, Private members, Arrays, Memory allocation, Static members,	
Friendly functions, Local classes, Details about constructors, Types, Dynamic	
initialization, Two dimensional arrays	
Laboratory Sessions/ Experimental learning: Experimentation for C++	8Hrs
programs on Classes and Objects	01110
Applications: Applications Layer, Middleware, Firmware, Embedded Systems	
Web Link and Video Lectures:	
1. C++ Tutorial for Beginners: Full Course, <u>https://youtu.be/vLnPwxZdW4Y</u>	
2. C++ Full Course for Beginners, <u>https://youtu.be/GQp1zzTwrIg</u>	
UNIT-IV	
Operator Overloading, Type conversion, Inheritance, Extending Classes,	
Pointers, Virtual functions, Polymorphism, Console I/O operations,	

Pointers, virtual functions, Polymorphism, Console I/O operations,	
Working with Files.	8Hrs
Laboratory Sessions/ Experimental learning: Experimentation for C++	
programs on Operator Overloading, Virtual functions, Polymorphism, Console	

I/O, File Operations	
Applications: GUI, Applications Layer, Middleware, Firmware, Embedded	
Systems, IoT	
Web Link and Video Lectures:	
1. C++ Tutorial for Beginners: Full Course, <u>https://youtu.be/vLnPwxZdW4Y</u>	
2. C++ Full Course for Beginners, <u>https://youtu.be/GQp1zzTwrIg</u>	
UNIT-V	
Applications to Electrical Engineering problems: Examples of Matrix	
operations, Writing Matrix Classes, Embedded C++ programming, C++ for	
solving electrical circuit problems	
Laboratory Sessions/ Experimental learning: Experimentation on Circuit and	
Power System Analysis, Embedded Systems	8Hrs
Applications: Circuit Analysis, Power System Analysis, Embedded Systems,	оптя
IoT	
Web Link and Video Lectures:	
1. C++ Tutorial for Beginners: Full Course, <u>https://youtu.be/vLnPwxZdW4Y</u>	
2. C++ Full Course for Beginners, <u>https://youtu.be/GQp1zzTwrIg</u>	

Course	Course Outcomes: After completing the course, the students will be able to					
C211.1	Become familiar with various concepts of OOP and C++					
C211.2	Become well versed in C++ Programming on Desktop or Laptop					
C211.3	Will be able to write C++ programs for GUI, Circuit analysis, Power System					
	analysis					
C211.4	Become familiar with C++ programming on Embedded platform and IoT					
C211.5	Execute small to medium complexity C++ Projects					

Ref	erence Books									
1	E Balagurusamy "OBJECT ORIENTED PROGRAMMING WITH C++", The									
1	McGraw Hill Companies, 4 th Edition									
2	Stanley Lippman, C++ Primer", 5 th Edition, Addison Wesley									
3	Michael Barr, "Programming Embedded Systems in C & C++", O'Reilly Media, Inc.									
4	Guido Buzzi Ferraris, "Scientific C++: Building Numerical Libraries the Object									
	Oriented Way", Addison Wesley Longman									

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions

for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C211.1	1	1	1	1	2	-	-	-	-	-	-	1
C211.2	2	2	2	2	1	-	-	-	-	-	-	1
C211.3	2	2	2	1	2	-	-	-	-	-	-	1
C211.4	3	2	2	1	2	-	-	-	-	-	-	1
C211.5	2	2	2	3	3	-	-	-	-	-	-	1

Electrical Machines-II (Theory and Practice)									
Cou	rse Code:	MVJ21EE44	CIE Marks:50+50						
Cre	dits:	L:T:P: 3:0:2	SEE Marks: 50 +50						
Hou	irs:	40 L+ 26 P	SEE Duration: 03+03 Hours						
Cou	rse Learning Objec	tives: The students will be a	ble to						
1	Understand the detailed working of synchronous motor.								
2	Explain the concept of voltage regulation in alternator.								
3	Explain the detailed working of permanent magnet synchronous motor.								
4	Explain the construction and working of servo motor and BLDC motor.								
5	Explain the construction and working of stepper motor and Linear Electric Machines.								

UNIT-I						
Synchronous Motors: Theory of operation, principle of operation, construction of						
salient and non-salient pole machines, methods of starting, phasor diagram, excitation						
methods, synchronous condenser, mathematical analysis for power developed,						
hunting and its suppression.						
Laboratory Sessions/ Experimental learning: Open Circuit Test to calculate core	011					
loss and to draw open circuit curve for Three Phase Alternator	8Hrs					
Application: Power generation plant.						
Web Link and Video Lectures:						
https://youtu.be/59Jg5zEguVY						
https://youtu.be/nu8wtbxKCRM						
UNIT-II						
Synchronous Generator: armature windings, coil span factor, distribution factor,						
chorded coils and EMF equation.						
Voltage Regulation: Significance, EMF, MMF and ZPF method.						
Salient Pole Synchronous Machine: Two reaction theory, slip test.						
Synchronization: Parallel operation of alternators -synchronization.						
Laboratory Sessions/ Experimental learning: Study the Synchronization of the						
alternator with infinite bus bar.(https://vp-dei.vlabs.ac.in/Dreamweaver/exp1.html)						
Application: Power Factor corrections.						
Web Link and Video Lectures:						
https://youtu.be/b24jORRoxEc						
https://youtu.be/edJFTap0zYw						
UNIT-III						
Permanent Magnet Synchronous Motor (PMSM): Construction, Principle of						
Operation, EMF Equation of PMSM, Control of PMSM, Comparison of						
Conventional and PM Synchronous Motors, Applications of PMSM-Study of						
application of PMSM as traction motor for electric vehicles.						
Laboratory Sessions/ Experimental learning: MATLAB simulation of speed	8Hrs					
control of PMSM.						
Applications: Robotics, machine tools, actuators.						
Video link: <u>https://nptel.ac.in/courses/108/102/108102156/</u>						
UNIT-IV						

 Servo Motors: DC Servo Motors – Construction, Principle of Operation, AC Servo Motors – Construction & Working, Analysis of Two-phase AC Servo Motor, Torque speed characteristics. Brushless D.C. Motors: Principle of Operation, Types, Magnetic circuit analysis, EMF equation, Commutation, Motor characteristics and control, Torque/speed characteristics Laboratory Sessions/ Experimental learning: Speed torque characteristics of AC & DC servo motor. Applications: Robotics, Solar Tracking System, Metal Cutting Metal Forming Machines, Industrial robots, CNC machine tools. Video link: 	8Hrs
https://www.youtube.com/watch?v=UmHtWX2XYSM https://www.youtube.com/watch?v=EQzm51BK6UE&list=PLA5CA7D35114BA425 &index=23	
UNIT-V	
Stepper Motor: Introduction, Variable Reluctance Stepper Motor, Permanent Magnet Stepper Motor, Hybrid Stepper Motor, Windings in Stepper Motors, Characteristics of Stepper Motor, Open – loop Control of Stepper Motor, closed – loop Control of Stepper Motor, Microprocessor – Based Control of Stepper Motor, Applications of Stepper Motor. Linear Electric Machines: Linear Induction motor, DC Linear Motor, Linear Reluctance and Levitation Machines. Laboratory Sessions/ Experimental learning: Demonstration with an experiment, microprocessor-based control of stepper motor. Applications: 3D printing equipment, Textile machines, CNC milling machines, Welding equipment, overhead traveling cranes and beltless conveyors, , maglev (magnetic levitation) trains Video link: https://www.youtube.com/watch?v=UmHtWX2XYSM https://www.youtube.com/watch?v=Tp724MqrosA	8Hrs
LABORATORY EXPERIMENTS 1. Load test on three phase Induction Motor.	

- 1. Load test on three phase Induction Motor.
 - 2. Conduct suitable test to draw the equivalent circuit of single-phase induction motor.
 - 3. Load test on a single-phase induction motor.
 - 4. No-load & Blocked rotor test on three phase Induction motor.
 - 5. Brake test on three phase Induction Motor.
 - 6. Regulation of a three –phase alternator by synchronous impedance & m.m.f. methods.
 - 7. Determination of Xd and Xq of a salient pole synchronous machine.
 - 8. V and Inverted V curves of a three-phase synchronous motor.

Along with mandatory experiments students are advised to complete two open ended experiments. The following are some suggestions for open ended experiments.

- 9. Efficiency of a three-phase alternator.
- 10. Speed control of 3 phase slip ring Induction motor- rotor Resistance control, stator voltage control.
- 11. Regulation of three-phase alternator by Z.P.F. method.

Course Outcomes: After completing the course, the students will be able to										
C212.1	Determine the regulation of an alternator by various methods									
C212.2	Describe the importance of Synchronization of Alternator and discuss V and inverted V curves.									
C212.3	Explain the operation and control of permanent magnet synchronous motors.									
C212.4	Explain Servo motors and brushless DC motors.									
C212.5	Analyse the performance of stepper motors and linear electric machines.									

Reference Books

L											
	1	Electric Machines, D. P. Kothari, et al, 4th Edition, 2011.									
	2	Special Electrical Machines, E.G. Janardanan, PHI, 1 st Edition 2014.									
	3.	Brushless Permanent Magnet and Reluctance Motor Drives, T J E Miller, Clerendon									
		Press, Oxford 1989.									
ĺ	4.	Electrical Technology, B.L Theraja, Volume2, S. Chand, 22nd Edition.									

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the self -study are 20 (2 presentations are be held for 10 marks each). The marks obtained in test, quiz and self -studies are added to get marks out of 100 and report CIE for 50 marks.

Laboratory- 50 Marks

The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are awarded 10 marks. Total marks for the laboratory is 50.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marksare executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

	CO-PO Mapping											
CO/PO	P 0 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2
C212.1	3	2	-	-	-	-	-	-	3	-	-	1
C212.2	3	2	-	-	-	-	-	-	3	-	-	1
C212.3	3	2	-	-	-	-	-	-	3	-	-	1
C212.4	3	2	-	-	-	-	-	-	3	-	-	1
C212.5	3	2	-	-	-	-	-	-	3	-	-	1

	Semester: IV							
	MICROCONTROLLER AND ARM PROCESSOR							
Cou	rse Code:	MVJ21EE45	CIE Marks:50+50					
Credits:		L:T:P:S:3:0:2:Y	SEE Marks: 50+50					
Hou	rs:	40 L+ 26 P	SEE Duration: 03Hours					
Cou	rse Learning Ob	jectives: The students will be able to						
1	Explain the work	king of different microcontrollers and in	nternal organization of 8051.					
2	Understand the various instructions to write assembly language program for different							
2	applications.							
3	3 Understand C data types to develop 8051 timer, counter and serial port programs.							
4	4 Explain the various interrupts and interfacing of parallel peripheral devices to 8051.							
5	Understand the	basics of ARM Embedded systems.						

UNIT-I	
8051 Microcontroller Basics: Review of numbering systems, Architecture and	
pin configuration of 8051, PSW and Flag Bits, 8051 Register Banks, Stack,	
Stack pointer, Program counter, Data pointer, Internal Memory Organization of	
8051, Special Function Registers, Addressing Modes	
Laboratory Sessions/ Experimental learning: Conduct a review on different	011
types of microcontrollers available in market.	8Hrs
Applications: Selection of different microcontrollers for various	
applications/projects.	
Video link:	
https://youtube.videoken.com/embed/SUusup7FfJo	
UNIT-II	
Assembly programming and instructions of 8051: Introduction to 8051	
assembly programming, Assembling and running an 8051 program, Data types	
and Assembler directives, Arithmetic, logic instructions and programs, and	
program control instruction.	
Laboratory Sessions/ Experimental learning:	
1. Simulate a program using Keil to find number of zeroes and ones in a given	011
number.	8Hrs
2. Simulate a program to find whether a number is odd or even using Keil.	
Applications: Generating assembly language algorithms for various	
applications	
Video link :	
https://youtube.videoken.com/embed/oRPluYsxF28	
UNIT-III	
8051 programming in C: Data types and time delay, I/O programming, Logic	
operations, TMOD and TCON, Timer Programming in mode 1 and 2, Counter	
programming, SCON and SBUF, Serial port programming.	
Laboratory Sessions/ Experimental learning: Generate a Program for reading	
and manipulating port data.	011
Applications: Generating baud rates and time delays for various embedded	8Hrs
applications.	
Video link :	
 https://youtube.videoken.com/embed/2AVOxLPKjeA 	
 <u>https://youtube.videoken.com/embed/NhurqshD0HA</u> 	
UNIT-IV	

 8051 Interrupts: 8051 interrupts, Interrupt priority, Interrupt enable register. Interfacing: Stepper motor interfacing, DC motor interfacing, ADC 0808 interfacing to 8051, DAC interfacing, LCD and keyboard interfacing. Laboratory Sessions/ Experimental learning: Simulate a program using Keil to generate a square wave of frequency 100KHz on pin P2.3.Use timer 1 in mode 1. Take crystal frequency of 22MHz. Applications: Interfacing of external devices to microcontrollers. Video link: <u>https://youtube.videoken.com/embed/DpMxQzHhyyc</u> 				
<u>https://youtube.videoken.com/embed/MqhxeOi8R1Q</u> UNIT-V				
 ARM Embedded Systems: Microprocessors versus Microcontrollers, The RISC design philosophy, The ARM Design Philosophy, Embedded System Hardware, Embedded System Software, operating system. ARM Processor Fundamentals: Registers, Current Program Status Register, Pipeline. Laboratory Sessions/ Experimental learning: Simulate a program using keil to toggle Led's connected to Port 1 continuously with some delay. Develop any simple project using Microcontroller. Virtual lab experiment: Interface DAC and LCD to 8051 Video link: ARM controllers for embedded applications. https://nptel.ac.in/courses/106105193/ https://nptel.ac.in/courses/117106111/ 	8Hrs			
LABORATORY EXPERIMENTS				
 Develop code for data movement and block exchange. Find largest or smallest numbers in a series and sorting numbers in ascendid descending order. Develop data conversion programs. Develop counters using conditional statements and loop structure. Perform 16-bit addition, subtraction, Multiplication and division. Control the speed of a DC motor using PWM. Rotate the Stepper motor in specified direction (clockwise or counter-clocl 8. Generate waveforms using DAC. Along with mandatory experiments students are advised to complete two o experiments. The following are some suggestions for open ended experiments. Hardware implementation of a LCD control using 8051 microcontrollers. Interface of Seven segment LED display with 8051 Microcontroller. 	kwise). open ended			

Course	Course Outcomes: After completing the course, the students will be able to					
C213.1	Select microcontrollers for different applications and explain the functional units of 8051.					
C213.2	Develop algorithm and formulate assembly language program for a given task.					
C213.3	Develop program for timers and serial port using C.					
C213.4	Design interfacing circuitry to interface various peripheral devices to microcontroller.					
C213.5	Explain the basics of ARM Embedded systems.					

Reference Books

-	
1	Embedded Systems: Architecture, Programming and Design by Rajkamal, Tata
	McGraw-Hill, 7th Edition, 2006.
2	The 8051 Microcontroller Architecture Programming & Applications by Kenneth J.
	Ayala, Penram International, 1996.
3	8051 Microcontroller and Embedded Systems- using assembly and C by Muhammad
	Ali Mazidi, Janice Gillespie Mazidi, Rollin D. McKinlay, Pearson Education, 2nd
	Edition.
4	ARM Systems Developers Guide by Andrew.N. Sloss, Elsevier Publications, 2008.

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Laboratory- 50 Marks

The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are awarded 10 marks. Total marks for the laboratory is 50.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marksare executed by means of an examination.

The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the entire syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C213.1	3	3	2	2	1	-	-	-	3	-	-	3
C213.2	3	3	3	3	3	-	-	-	-	-	-	3
C213.3	3	3	3	3	3	-	-	-	-	-	-	3
C213.4	3	3	3	3	3	-	-	-	-	-	-	3
C213.5	3	3	3	3	3	-	-	-	-	-	-	3

internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

		Semester: IV						
	Digital Logic Design Using Integrated Circuits (Theory and Practice)							
Cou	rse Code:	MVJ21EEA47	CIE Marks:50					
Cred	lits: L: T:P:	1:0:2	SEE Marks: 50					
Hou	rs:	5L+10P	SEE Duration: 02 H	Iours				
Cou	-	Objectives: The students will be able to						
1		g of Basic Logic gates using IC's.						
2	Design of various combinational digital circuits using logic gates.							
3		hary to gray code and BCD to EX-3 code						
4		esting of various counters to count the data						
5	Design MOD	-N Counters for interfacing to digital disp	lays.					
		UNIT-I						
	olification, real	ly of basic logic gates using Integrated circ ization of Boolean expressions using logic		3 Hrs				
		UNIT-II						
		ractor: Realization of half/full adder full Subtractor using logic gates.	using logic gates,	3 Hrs				
		UNIT-III						
code		zation of Binary to Gray code converter, Binary, BCD to Ex-3 code conversion and		3 Hrs				
		UNIT-IV						
Coun coun	-	and testing of ring counter, Design and	testing of Johnson	3 Hrs				
		Module-V						
		Realization of 3-bit counters as a sequence of N counter using 7490	uential circuit using	3 Hrs				
Cour	rse Outcomes	: After completing the course, the stude	nts will be able to					
215.1		nd basic concept of Basic Logic gates and	l Truth Tables.					
215.2	2 Design o	f Half/full adder/subtractor.						
215.3	3 Design v	arious code converters for sending signals	S					
215.4	4 Design F	Ring and Johnson counters to count the dat	ta in a continuous loop).				
215.5	5 Design o	f 3-bit counters for interfacing to digital d	isplays.					
	rence Books							
1.	Fundament 2016.	als of Digital Circuits, A Anand Kumar, 4						
2.	A Textbook 2017.	of Digital Electronics, Dr. R. S. Sedha, S	S Chand & Co Ltd, 3 ^r	^d Edition,				

		Semeste	r: IV	
		SummerInt	ernship-I	
	se Code:	MVJ21INT48	CIE Marks:50	
	ts: L: T:P:	0:0:4	SEE Marks: 50	
Hours			SEE Duration:	
		Objectives: The students w ld exposure and experience	III be able to	
1				
2	To apply the	theoretical concept in field a	pplication	
3	To prepare th	e comparison statement of di	ifference activities	
/interr	ship commit	n in consultation and approvates of the institutions.		
Cours			se, the students will be able to	
216.1	Develop	skills to work in a team to ac	chieve common goal.	
	Develop	skills of self-learning, eva	aluate their learning and take a	ppropriate
216.2	actions t	o improve it.		
	Prepare	them for life-long learning	g to face the challenges and su	upport the
216.3	technolo	gical changes to meet the soc	cietal needs.	
216.4	Develop	skills of project managemen	t and finance.	
	Understa			

Scheme of Evaluation

Evaluation of the field training/industrial internship shall be conducted during VIII semester bu internal and external examiners for 100 marks. The external examiner shall be from the industry, where the student carried out the field training/Industrial internship. In case of non-availability of external examiner, the concerned head of the department shall appoint an external examiner from the near by college or a senior faculty member from outside the department in consultation with respective BOE and approved by Principal. The field training/industrial internship carries two credits. A student has to get a minimum of 40% marks for a pass. If a student fails to complete the same, then the field training/Industrial internship has to be repeated in its entirety.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
216.1	2	2	2	3	3	2	1	1	2	1	1	2
216.2	2	2	2	3	3	2	1	1	2	1	2	2
216.3	2	2	2	3	3	2	1	1	2	1	2	2
216.4	2	2	2	3	3	2	1	1	2	1	2	2
216.5	2	2	2	3	3	2	1	1	2	1	2	2

Semester: IV								
	Additional Mathematics-II							
		(Common to all branches)						
Cou	rse Code:	MVJ21MATDIP-II	CIE Marks:50					
Credits: L:T:P:S: 1:2:0:0 SEE Marks: 50								
Hou	Hours: 40L SEE Duration: 3 Hrs							
Cou	rse Learning Objectives: T	he students will be able to						
1	To familiarize the important	concepts of linear algebra.						
2	Aims to provide essential co	oncepts differential calculus,	beta and gamma functions.					
3	Introductory concepts of three-dimensional geometry along with methods to solve							
3	them.							
4	Linear differential equations	3						
5	Formation of partial differen	ntial equations.						

UNIT-I	
LinearAlgebra: Introduction - Rank of matrix by elementary row operations - Echelon form. Consistency of system of linear equations - Gauss elimination method. Eigen values and eigen vectors of a square matrix. Diagonalization of a square matrix of order two.	8Hrs
Self study: Application of Cayley-Hamilton theorem (without proof) to compute the inverse of a matrix-Examples. Video Link: <u>http://nptel.ac.in/courses.php?disciplineID=111</u> 	U
UNIT-II	
 Differentialcalculus: Indeterminate forms: L-Hospital rule (without proof), Total derivatives, and Composite functions. Maxima and minima for a function of two variables. BetaandGammafunctions: BetaandGamma function-simpleproblems. Self study: Curve tracing. Video Link: http://nptel.ac.in/courses.php?disciplineID=111 	8Hrs
UNIT-III	
 Analyticalsolidgeometry: Introduction –Directional cosine and Directional ratio of a line, Equation of line in space- differentforms, Angle between two line, shortest distance between two line, plane and equation of plane indifferentforms and problems. Video Link: 1. <u>http://nptel.ac.in/courses.php?disciplineID=111</u> 	8Hrs
UNIT-IV	
Differential Equations of higher order: Linear differential equations of second and higher order equations with constant coefficients. Inverse Differential operator, Operators methods for finding particular integrals, and Euler –Cauchy equation.	8Hrs
Self study: Method of variation of parameters	

Video Link:	
1. http://nptel.ac.in/courses.php?disciplineID=111	
UNIT-V	
Partial differential equation: Introduction- Classification of partial differential equations, formation of partial differential equations. Method of elimination of arbitrary constants and functions. Solutions of non-homogeneous partial differential equations by direct integration. Solution of Lagrange's linear PDE. Self study: One dimensional heat and wave equations and solutions by the method of separable of variable	8Hrs
Video Link:	
1. <u>http://nptel.ac.in/courses.php?disciplineID=111</u>	

Course	Course Outcomes: After completing the course, the students will be able to						
C217.1	Make use of matrix theory for solving system of linear equations and compute eigenvalues and eigenvectors required for matrix diagonalization process.						
C217.2	Learn the notion of partial differentiation to calculate rates of change of multivariate functions and solve problems related to composite functions and Jacobians.						
C217.3	Understand the Three-Dimensional geometry basic, Equation of line in space- differentforms, Angle between two line and studying the shortest distance.						
C217.4	Demonstrate various physical models through higher order differential equations and solve such linear ordinary differential equations.						
C217.5	Constructavarietyofpartial differentialequations and solution by exact methods.						

Ref	erence Books
1.	B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 43 rd Edition, 2013, .
2.	G. B. Gururajachar, Calculus and Linear Algebra, Academic Excellent Series Publication
	2018-19
3.	Chandrashekar K. S, Engineering Mathematics-I, Sudha Publications, 2010.

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C217.1	3	3	0	2	0	0	0	0	0	0	1	1
C217.2	3	3	0	2	0	0	0	0	0	0	1	1
C217.3	3	3	0	3	0	0	0	0	0	0	0	1
C217.4	2	2	0	3	0	0	0	0	0	0	1	1
C217.5	2	2	0	2	0	0	0	0	0	0	0	1

	Semester: V								
	Technical Management for Electrical Industries								
	(Theory)								
Cou	Course Code:MVJ21EE51CIE Marks: 50								
Cree	dits:	L: T:P: 3:0:0	SEE Marks: 50						
Hou	rs:	40L	SEE Duration: 3 Hrs.						
Cou	rse Learning Objec	tives: The students will be able to							
1	Introduce the field	of management, the task of the man	ager, the importance of planning and						
1	types of planning, s	types of planning, staff recruitment, and the selection process.							
2	Understand the star	ff recruitment and selection process	and explain the need for coordination						
2	between the manager and staff.								
3	Explain the social 1	responsibility of business, and the rol	e, and importance of the entrepreneur						
5	in economic develo	opment.							
4	Discuss the importance of Small-Scale Industries and the related terms and problems								
–	involved								
5	Explain the project	feasibility study and project appraisa	al and discuss project financing.						

UNIT-I	
Management: Definition, Importance – Nature and Characteristics of	
Management, Management Functions, Roles of Manager, Levels of Management,	
Managerial Skills, Management & Administration, Management as a Science, Art	
& Profession.	
Planning: Nature, Importance and Purpose of Planning, Types of Plans, Steps in	
Planning, Decision Making – Meaning, Types of Decisions- Steps in Decision	
Making.	08 Hrs
Laboratory Sessions/ Experimental learning: Case study on decision making	
process in a corporate.	
Applications: Planning in engineering field.	
Web Link and Video Lectures:	
1. <u>https://nptel.ac.in/courses/110/105/110105146/</u>	
2. <u>https://nptel.ac.in/courses/122/108/122108038/</u>	
UNIT-II	
Organizing and Staffing: Meaning, Nature and Characteristics of Organization –	
Process of Organization, Principles of Organization, Departmentalization,	
Committees – meaning, Types of Committees, Centralization Vs Decentralization	
of Authority and Responsibility, Span of Control, Nature and Importance of	
Staffing, Process of Selection and Recruitment.	
Directing and Controlling: Meaning and Nature of Directing-Leadership Styles,	08 Hrs
Communication – Meaning and Importance, Coordination- Meaning and	
Importance, Techniques of Coordination, controlling – Meaning and Steps in	
Controlling.	
Laboratory Sessions/ Experimental learning: Case study of steel plant	
departmentalization.	

Applicational Effective communication in a corrected	
Applications: Effective communication in a corporate.	
Web Link and Video Lectures:	
1. <u>https://nptel.ac.in/content/storage2/courses/122106031/slides/3_2s.pdf</u>	
2. <u>https://www.slideshare.net/100005130728571/27-nature-of-directing</u>	
Social Responsibilities of Business: Meaning of Social Responsibility, Social	
Responsibilities of Business towards Different Groups, Social Audit, Business	
Ethics and Corporate Governance.	
Entrepreneurship: Definition of Entrepreneur, Importance of Entrepreneurship,	
Characteristics of successful Entrepreneur, Classification of Entrepreneurs,	
Intrapreneur – An Emerging Class, Comparison between Entrepreneur and	00 II
Intrapreneur, Myths of Entrepreneurship, Problems faced by Entrepreneurs and	08 Hrs
capacity building for Entrepreneurship.	
Laboratory Sessions/ Experimental learning: Case study of a startup.	
Application: Social auditing in electrical industry	
Web Link and Video Lectures:	
1. <u>https://nptel.ac.in/courses/110/106/110106141/</u>	
2. <u>https://nptel.ac.in/courses/127/105/127105007/</u>	
UNIT-IV	
Modern Small Business Enterprises: Role of Small-Scale Industries, Concepts	
and definitions of SSI Enterprises, Government policy and development of the	
Small-Scale sector in India, Sickness in SSI sector, Problems faced by Small Scale	
Industries, Impact of Globalization on SSI, Impact of WTO/GATT on SSIs.	
Institutional Support for Business Enterprises: Introduction, Policies and	
Schemes of Central–Level Institutions, State-Level Institutions.	
Laboratory Sessions/ Experimental learning: Case study on the growth of	08 Hrs
small-scale industries.	
Application: Setting up and functioning of Small-Scale Industries	
Web Link and Video Lectures:	
1. <u>https://www.slideshare.net/syedmubarak15/institutional-support-for-business-</u>	
enterprises	
2. <u>https://www.wto.org/english/docs_e/legal_e/gatt47_01_e.htm</u>	
UNIT-V	
Electrical Project Management Process: Meaning of Project Management,	
Electrical project management process, Project Objectives and Characteristics;	
Project Life Cycle, Generating an Investment Project Proposal, Project Report-	
Need and Significance of Report, Contents, Formulation, Project Analysis-	
Market, Technical, Financial, Economic, Ecological, Project Evaluation and	08 Hrs
Selection, Project Financing, Project Implementation Phase, Prerequisites for	
Successful Project Implementation.	
New Control Techniques: PERT and CPM, Steps involved in developing the	
network, Uses and Limitations of PERT and CPM.	
Laboratory Sessions/ Experimental learning: Preparation of detailed project	

report (DPR).	
Application: Preparation of reports for specific project.	
Web Link and Video Lectures:	
1. <u>https://www.projectmanager.com/project-scheduling</u>	
2.https://kissflow.com/project/basics-of-project-scheduling/	

Course	Course Outcomes: After completing the course, the students will be able to					
C301.1	Understand the concept of management					
C301.2	Understand the staffing process					
C301.3	Explain the social responsibilities of business towards different groups					
C301.4	Explain the role of small-scale industries					
C301.5	Interpret the project objectives					

Ref	erence Books								
2	"Entrepreneurship Development and Small Business Enterprises", Poornima								
з.	"Entrepreneurship Development and Small Business Enterprises", Poornima M.Charanthimath, 2 nd Edition,2014,Pearson.								
4.	"Principles of Management", Tripathy PC & Reddy PN Tata McGraw Hill, 1999.								
2	"Fundamentals of Management", Stephen A. Robbins & David A. Decenzo & Mary Coulter,								
5.	, , 7th Edition, 2011, Pearson Education.								
4.	"Management", Stephen P. Robbins & Mary Coulter,., 10th Edition, 2009, Prentice Hall								
	(India) Pvt. Ltd.								

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE): Total marks: 50+50=100

SEE for 50 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions,

one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three subdivisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C301.1	-	2	-	1	-	-		3	3	3	3	3
C301.2	-	1	-	3	-	-		3	3	3	3	3
C301.3	-	2	-	2	-	3		3	3	2	3	3
C301.4	-	2	-	2	-	2		3	3	3	3	3
C301.5	-	2	-	2	-	2		3	3	3	3	3

	Semester: V								
	Smart Sensor Systems								
Cou	rse Code:	MVJ21EE52	CIE Marks: 50						
Cree	dits:	L: T:P: 3:0:0	SEE Marks: 50						
Hou	irs:	40L	SEE Duration: 3 Hrs.						
Cou	rse Learning Ob	jectives: The students will be abl	le to						
1	Understand the working of different sensors.								
2	Study the conce	ptual approach of various smart ser	nsors						
3	3 Explain different operations of sensors with microcontrollers								
4	4 Discuss about different type of wireless sensing								
5	Explain differen	Explain different applications of smart sensors.							

UNIT-I						
Basics of Sensors: Introduction- Sensor Vs Transducer, Definition for several						
kinds of sensors-Sensors, Smart sensors, Integrated smart sensors, Smart sensor						
systems, Nature of sensors, Sensor technology migration path, General sensing						
system, Sensor Output Characteristics, Various sensing technologies-capacitive,						
piezo electric, Hall effect, Digital output sensors.	8Hrs					
Laboratory Sessions/ Experimental learning: Voltage and Current Detection						
Circuitry						
Applications: Temperature Control of Transformer.						
Video link: 1. https://archive.nptel.ac.in/courses/108/108/108108147/						
UNIT-II						
Smart Sensors: Smart Sensors, Components of Smart Sensors, General						
Architecture of Smart Sensors, Evolution of Smart Sensors, Advantages,						
Application area of Smart Sensors						
Smart Sensor types: Smart temperature sensor, Smart wind sensor and Smart						
Hall sensor, Calibration of smart sensors.						
Laboratory Sessions/ Experimental learning: Simulate the performance of a chemical sensor in virtual lab.						
Applications: Monitoring & Control Mechanisms						
Video link: https://youtu.be/oRydUfgMdgA						
UNIT-III						
Sensor with Microcontroller: Introduction, Amplification and Signal						
Conditioning, Integrated Signal Conditioning, Digital Conversion-A/D converters						
and performance of A/D converters, MCU Control, MCUs for Sensor Interface,						
Techniques and Systems Considerations- Linearization and PWM control, Sensor						

Integration.	
Laboratory Sessions/ Experimental learning: Control of Water flow and	
Level detection Circuitry.	
Applications: Temperature control of furnaces.	
Video link:https://youtu.be/WiKdofvx270	
UNIT-IV	
Wireless Sensing: Wireless Data and Communications-RF spectrum and Spread	
spectrum, Wireless Sensing Networks-Zigbee, Zigbee-Like wireless, 6LoWPAN	
and Z wave. Industrial Wireless Sensing Networks, RF Sensing-Surface Acoustic	
Wave Devices, RADAR, LIDAR, Global positioning system, Remote Emission	
System, Remote Keyless Entry, RF ID.	8Hrs
Laboratory Sessions/ Experimental learning:	
Applications: Health monitoring	
Video link: https://youtu.be/5ZFfqhdf0QI	
UNIT-V	
Smart Applications and System Requirements: Automated consumer products-	
Smart Car, Smart Home, Smart Domestic Appliances, Smart Toys.	
The next phase of sensing systems: Future sensing requirements-sensing in	
automobiles, sensing in smart phones, sensing in health care systems, Cloud	8Hrs
sensing and trusted sensing	onrs
Laboratory Sessions/ Experimental learning: Smart home	
Applications: Smart Dustbin	
Video link:https://youtu.be/2ZEdKhIMz_8	

Course	Course Outcomes: After completing the course, the students will be able to						
C302.1	C302.1 Explain the working of different sensors.						
C302.2	Explain the conceptual approach of various smart sensors						
C302.3	Discuss different operations of sensors with microcontrollers						
C302.4	Explain about different type of wireless sensing						
C302.5	Discuss different applications of smart sensors.						

Reference Books

5.	Frank, Randy, "Understanding smart sensors", Artech House integrated microsystems series, 3 rd Edition, 2013.
	Gerard Meijer, Michiel Pertijs, Kofi Makinwa,"Smart Sensor SystemsEmerging
6.	Technologies and Applications", Wiley (2014)

3 Alan S Morris, Reza Langari, Measurement and Instrumentation: Theory and Application, Academic Press, Elsevier, 2015.

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three subdivisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C302.1	3	2	2	2	2	1	1	-	1	2	-	2
C302.2	3	3	3	2	3	2	2	-	2	3	2	3
C302.3	3	3	3	2	3	2	2	-	2	3	2	3
C302.4	3	3	3	2	3	2	2	-	2	3	2	3
C302.5	3	3	3	3	3	3	3	-	3	3	3	3

	Semester:V									
	ControlSystem Engineering With MATLAB									
	(Theory and Practice)									
Cou	rse Code:	MVJ21EE53	CIE Marks:50+50							
Cree	Credits: L: T:P: 2:2:2 SEE Marks: 50 +50									
Hou	rs:	40 L+ 26 P	SEE Duration: 03+03 Hours							
Cou	rse Learning Obje	ectives: The students will	be able to							
1	Obtain mathemati	cal modeling of control sys	tems.							
2	Obtain transfer fu	nction of systems using var	ious techniques and discuss time response of the							
2	systems.									
3	Determine the stat	bility of LTI systems in tim	e domain							
4	Determine the sta	bility of LTI systems in fre	quency domain and discuss different controllers							
- +	⁴ used in control systems.									
5	Explain different	compensators used in contr	ol systems							

UNIT-I	
Introduction: Open loop and closed loop systems – Examples, Control system	
components. Transfer function of physical systems: Mechanical systems -	
Translational and Rotational systems, Electrical network, Transfer function of DC	
servomotor, AC servomotor.	8Hrs
Laboratory Sessions/ Experimental learning: Obtain the transfer function of	onis
Servomotor by using MATLAB.	
Applications: Modeling of Physical systems helps in Mathematical analysis.	
Video link: https://nptel.ac.in/courses/108101037	
UNIT-II	
Block diagram - Reduction techniques. Signal flow graphs - Mason's gain	
formula, Construction of block diagram from signal flow graph, Construction of	
signal flow graph from block diagram.	
Laboratory Sessions/ Experimental learning: Experiment to obtain the time	8Hrs
response of RLC circuit and determine the time domain specification.	
Applications: Performance analysis of second order system in time domain.	
Video link: https://nptel.ac.in/courses/108106098	
UNIT-III	
Time domain Analysis: Standard Test signals –Time response of first and second	
order system, Time domain specifications, Type of systems, Steady state error	
constants, generalized error coefficients.	
Laboratory Sessions/ Experimental learning: Obtain the root locus for the	8Hrs
given open loop transfer function and analyze the stability using MATLAB	onis
software.	
Applications: Stability Analysis of a given system	
Video link: https://nptel.ac.in/courses/108102044	

UNIT-IV	
Stability Analysis: Concept of stability, Effect of location of poles on stability, R	
H criterion, applications of RH criterion with limitations.	
Root locus technique: Introduction to root locus concepts, Construction rules,	
Analysis of stability by root locus plot.	011
Laboratory Sessions/ Experimental learning: Write a MATLAB program to	8Hrs
obtain the Bode plot and analyze the stability of the system in frequency domain.	
Applications: Performance analysis of second order system in frequency domain	
Video link: http://www.ni.com/tutorial/6450/en/	
UNIT-V	
Frequency Domain Analysis: Frequency domain specification, Bode plots, GM	
and PM, Relative stability.	
Basic Control Actions and Controller: Introduction, elements of industrial	
automatic controller, classification of controllers, P, I, D, PI, PD, and PID	
controllers (only block diagram).	
Introduction to compensators: Introduction, types of compensators, transfer	8Hrs
function of lead, Lag, Lag-Lead Compensators.	
Laboratory Sessions/ Experimental learning: Simulation of compensator by	
using MATLAB.	
Applications: Analysis of system for accuracy and stability improvement.	
Video link: https://www.digimat.in/nptel/courses/video/108107115/L01.html	
LABORATORY EXPERIMENTS	
1. Speed torque characteristics of (i) AC servo motor (ii) DC servo motor.	
2. Synchro pair characteristics	
3. Determine frequency response of a second order system.	
4. Frequency response of a passive RC lead compensating network for the given sp	ecifications.
5. Frequency response of a passive RC lag compensating network for the given spe	cifications.
6. Frequency response characteristics of the lag - lead compensating network	for the given
specifications.	
7. (a) Simulate a typical second order system and determine step response and	evaluate time
response specifications.	
(b)Evaluate the effect of adding poles and zeros on time response of second ordersys	stem.
8. Study a second order system and verify the effect of (a) P, (b) PI, (c) PD and (d)	PID controller
on the step response.	
Along with mandatory experiments students are advised to complete two	o open ended
experiments. The following are some suggestions for open ended experiments.	
9. Determine the stability of system using root locus plot in MATLAB.	
10. Determination of specific cake and medium resistance using Plate and frame filter	er press.
11. Simulate a D.C. Position control system and obtain its step response.	
12. Simulate a DC Servomotor and study its stability.	
Course Outcomes: After completing the course, the students will be able to	
C303.1 Obtain the mathematical model of physical systems.	

C303.2	Obtain transfer function of systems using various techniques and discuss time response
	of the systems
C303.3	Determine the stability of LTI systems in time domain
C303.4	Determine the stability of LTI systems in frequency domain and differentiate the various
	controllers used in control systems
C303.5	Explain different compensators used in control systems.

Ref	erence Books
1	"Control Systems Engineering", I. J. Nagrath, M. Gopal, 7th Edition, New Delhi, 2017.New
	Age International Publishers.
2	"Modern Control Engineering", Ogata K; 5th edition2013Pearson
3	"Automatic Control Systems (with MATLAB programs)" S. Hasan Saeed, KATSON Books,
	8th Edition, New Delhi, 2016.
4	"Control systems", A. Anand Kumar, 2nd edition, PHI, 2018.

Continuous Internal Evaluation (CIE): Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Laboratory- 50 Marks

The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are awarded 10 marks. Total marks for the laboratory is 50.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marksare executed by means of an examination.

The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the entire syllabus. Part - B

Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three subdivisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marksare executed by means of an examination.

The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the complete syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three subdivisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C303.1	3	3	1	2	2	-	-	-	3	2	-	3
C303.2	3	3	1	3	2	-	-	-	3	2	-	3
C303.3	3	3	1	3	2	-	-	-	3	2	-	3
C303.4	3	3	2	3	2	-	-	-	3	2	-	3
C303.5	3	3	2	3	2	-	-	-	3	2	-	3

		Power Electronics wit (Theory and Pr							
Co	urse Code:	MVJ21EE54	CIE Marks:50+50						
Cre	edits:	L: T:P:S:2:2:2: Y	SEE Marks: 50 +50						
Hours:		40 L+ 26 P	SEE Duration: 03+03 Hours						
Co	urse Learning O	bjectives: The students will be ab	le to						
1	Understand the working of power diodes and power transistor.								
2	Understand the	Understand the operation, characteristics, and performance parameters of thyristor.							
3	Explain the working of controlled rectifier for different loads.								
4	Explain the wo	orking of AC voltage controller for	different loads.						
5	Design choppe	r and pulse width modulated inver	ter for different applications.						

UNIT-I					
Introduction: Power electronic systems, Application of power electronics,					
Advantage and disadvantage of power electronics, Types of power electronic					
converter.					
Power Transistors: Introduction, Power MOSFETs (Enhancement and depletion					
type): Steady State Characteristics, Switching Characteristics, Gate Drive, IGBT					
(Construction and Working), Gan, Isolation of Gate Drives.					
Laboratory Sessions/ Experimental learning: Build a circuit for controlling a	0.11				
load by using MOSFET/IGBT in MATLAB.	8Hrs				
Applications: Mobile charging unit, switch mode power supply, induction					
heating, and traction motor control.					
Web Link and Video Lectures:					
1. https://gansystems.com/design-center/application-notes/					
2. <u>https://youtu.be/Z2CORFayCv0</u>					
3. <u>https://youtu.be/tNp39_L_HtU</u>					
UNIT-II					
Thyristors: Introduction, Static Characteristics, switching characteristics, turn on					
methods, Two-Transistor Model, Bidirectional Triode Thyristors, Protection					
Circuits.					
Laboratory Sessions/ Experimental learning: Realize the static characteristics					
of SCR in MATLAB.	011				
Applications: AC voltage stabilizers, light dimmer, AC power control with solid	8Hrs				
relay.					
Web Link and Video Lectures:					
1. <u>https://youtu.be/no1hld5JcCw</u>					
2. <u>https://www.electrical4u.com/thyristor-silicon-controlled-rectifier-scr/</u>					
UNIT-III					
Controlled Rectifiers: Introduction, Performance Parameters, Single-Phase half	011				
wave Converters with R and RL load, Single-Phase Full wave Bridge Converters	8Hrs				

with R, RL and RLE load (continuous current conduction operation only), Single	
phase symmetrical semi converter, Single-Phase Dual Converters, Three-Phase	
Full wave Converters with R and RL Load.	
Laboratory Sessions/ Experimental learning: Simulation of single phase and	
three phase full wave rectifier for R, RL and RLE load in MATLAB	
Applications: Paper mills, textile mills using DC motor drives and DC motor	
control in steel mills, AC fed traction system using a DC traction motor, High	
voltage DC transmission, UPS.	
Web Link and Video Lectures:	
1. <u>https://youtu.be/EpTKSp96111</u>	
2. <u>https://youtu.be/OuyyVgkzKT8</u>	
3. <u>https://youtu.be/Q5Yw4Z_Oydc</u>	
UNIT-IV	
AC Voltage Controllers: Introduction, Single phase half-wave controller with R	
and RL load, Single-Phase Full-Wave Controllers with R and RL Loads, Three-	
Phase Full-Wave Controllers with R load.	
Cycloconverters:	
Laboratory Sessions/ Experimental learning: MATLAB simulation of AC	8Hrs
voltage controller.	
Applications: Adjustable speed drives, Light dimming, industrial heating	
Web Link and Video Lectures: https://youtu.be/6NCml4kY9Jo	
UNIT-V	
DC-DC Converters: Introduction, Buck, Boost, Buck Boost regulator,	
Applications.	
DC-AC converters: Introduction, principle of operation single phase bridge	
inverters with RL Load, three phase bridge inverters, Current source	
inverters, PWM techniques -SPWM technique.	
Laboratory Sessions/ Experimental learning: Build a circuit to step up PV	
output voltage in MATLAB	
Applications: Two stage solar power conversion, Solar PV integration to grid.	8Hrs
Web Link and Video Lectures:	
1. https://www.youtube.com/watch?v=rfChSvb8FX0	
2. https://www.youtube.com/watch?v=Q7cTuZIH8IA	
3. https://www.electrical4u.com/boost-converter-step-up-chopper/	
4. https://www.youtube.com/watch?v=QnUhjnbZ0T8	
5. https://www.youtube.com/watch?v=zNfbbPobtus	
LABORATORY EXPERIMENTS	1
1. Static Characteristics of SCR	
2. Static Characteristics of MOSFET and IGBT	
3. Single phase controlled full wave rectifier with R load, R -L load, R-L-E	load with and
without freewheeling diode.	
4. AC voltage controller with R and RL loads.	

- 5. Speed control of universal motor using ac voltage regulator.
- 6. Speed control of DC motor using single semi converter.
- 7. Speed control of a separately excited D.C. Motor using chopper.
- 8. Single phase MOSFET/IGBT based PWM inverter.

Along with mandatory experiments students are advised to complete two open ended experiments. The following are some suggestions for open ended experiments.

- 1. Speed control of stepper motor
- 2. Study of charging and discharging of capacitor in snubber circuit.
- 3. SCR digital triggering circuit for a single-phase controlled rectifier and ac voltage regulator.

Course	Course Outcomes: After completing the course, the students will be able to								
C304.1	Explain types of power diodes and power transistors								
C304.2	Explain the operation, characteristics, and performance parameters of thyristor.								
C304.3	Explain steady state, switching characteristics and gate control requirements of								
C304.3	controlled rectifiers								
C304.4	Discuss the principle of operation of AC voltage controllers.								
C304.5	Design DC – DC and DC –AC converters for different application.								

Ref	Reference Books									
1.	Power Electronics: Circuits Devices and Applications Mohammad H Rashid, Pearson 4th									
	Edition, 2014.									
2.	Power Electronics, Dr. P S Bimbhra, Khanna Publishers, 7th Edition, 2022.									
3.	Power Electronics: Converters, Applications and Design Ned Mohan et al Wiley 3rd Edition,									
	2014									
4.	Power Electronics Daniel W Hart McGraw Hill 1st Edition, 2011									

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and self-study. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the self -study are 20 (2 presentations are be held for 10 marks each). The marks obtained in test, quiz, and self -studies are added to get marks out of 100 and report CIE for 50 marks.

Laboratory- 50 Marks

The laboratory session is held every week as per the timetable and the performance of the student is evaluated in every session. The average of the marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The

students are encouraged to implement additional innovative experiments in the lab and are awarded 10 marks. Total marks for the laboratory is 50.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marksare executed by means of an examination.

The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the complete syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three subdivisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

	CO-PO Mapping												
CO/PO	CO/PO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12												
C304.1	3	1	1	1	2	3	-	-	3	2	-	3	
C304.2	3	1	1	1	2	3	-	-	3	2	-	3	
C304.3	3	3	2	1	2	3	-	-	3	2	-	3	
C304.4	3	3	2	3	3	3	-	-	3	2	-	3	
C304.5	3	3	2	3	3	3	-	-	3	2	-	3	

		Semester:	V						
		Introduction to) IoT						
		(Theory)							
Cour	se Code:	MVJ21EE551	CIE Marks: 50						
Credi	Credits: L: T:P: 3:0:0 SEE Marks: 50								
Hour	Hours: 40L SEE Duration: 3 Hrs								
Cour	se Learning Objec	tives: The students will be	able to						
1	Understand the ba	sic architecture of Internet	of Things						
2	Analyze different	analog and digital sensors a	and actuators						
3	Understand Wirel	Understand Wireless Sensor/Actuator Network Technologies							
4	Understand different IoT messaging protocols								
5	Apply the IoT con	ncepts to the real-world app	lications						

Γ

UNIT-I	
BASIC IoT ARCHITECTURE: Different layers of IoT system, Things, Data	
Acquisition and Gateways, Edge Analytic Systems, Data Centers and Cloud Storage	
Laboratory Sessions/ Experimental learning: NA	8Hrs
Applications: All IoT Applications	
Web Link and Video Lectures:	
1. <u>https://youtu.be/xsZ9YhVy-7g</u>	
UNIT-II	
SENSORS AND ACTUATORS: Introduction to Sensors and Actuators. Analog and	
Digital Sensors. Sensors based on Serial Communication. Relays, Solenoids.	
Laboratory Sessions/ Experimental learning: Use basic sensors and actuators with	
microcontrollers.	
Applications: All IoT Applications	8Hrs
Web Link and Video Lectures:	
1. https://archive.nptel.ac.in/content//storage2/108/108/108108179/MP4/mod04lec26.	
<u>mp4</u>	
2. <u>https://archive.nptel.ac.in/content//storage2/108/108/108108179/MP4/mod04lec28.</u>	
<u>mp4</u>	
UNIT-III	
WIRELESS TECHNOLOGIES: RFID, Zigbee, ZWave, NB-IoT, LORA, BLE, Wi-	
Fi	
(General Block Diagram Approach).	
Laboratory Sessions/ Experimental learning: Wireless Sensor Network using	8Hrs
Zigbee.	опту
Applications: All IoT Applications	
Applications. All 101 Applications	
Web Link and Video Lectures:	

3. <u>https://archive.nptel.ac.in/content//storage2/108/108/108108179/MP4/mod02lec08.</u>	
<u>mp4</u>	
4. https://archive.nptel.ac.in/content//storage2/108/108/108108179/MP4/mod07lec39.	
<u>mp4</u>	
UNIT-IV	
IoT MESSAGING PROTOCOLS: HTTP, MQTT, CoAP, Websockets (General	
Outlines)	
Laboratory Sessions/ Experimental learning: Messaging using HTTP and MQTT	
Applications: All IoT Applications	
Web Link and Video Lectures: 8H:	rs
1.	
https://archive.nptel.ac.in/content//storage2/108/108/108108179/MP4/mod06lec33.mp4	
https://archive.nptel.ac.in/content//storage2/108/108/108108179/MP4/mod06lec34.mp4	
UNIT-V	
IoT APPLICATIONS:Smart Homes: Security and Safety. Smart Energy: Smart	
Meters, Automatic Meter Reading (AMR), Smart grid, Smart Cities: Smart Vehicles,	
Smart Lighting, Smart Parking.	
Laboratory Sessions/ Experimental learning: Smart Lighting system	_
Web Link and Video Lectures:	rs
1. https://archive.nptel.ac.in/content//storage2/106/105/106105166/MP4/mod10lec46.	
mp4	
2. https://archive.nptel.ac.in/content//storage2/106/105/106105166/MP4/mod11lec51.	
mp4	

Course Outcomes: After completing the course, the students will be able to												
C305.1.1	Understand the architecture of IoT and cloud storage											
C305.1.2	Analyze various types of sensors and actuators											
C305.1.3	Understand various types of Wireless Network Technologies											
C305.1.4	Understand how to send and receive messages using IoT messaging protocols											
C305.1.5 Apply the knowledge of the concept of IoT Technologies to Elec												
0.505.1.5	Engineering Applications											

Ref	erence Books
1.	Introduction to IoT, S. Misra, A. Mukherjee, and A. Roy, Cambridge University Press; First edition, 2022.
2.	IoT for Beginners, Vibha Soni, BPB Publishers, 1 st Edition, 2021.
3.	Recipes to Begin, Expand, and Enhance Your Projects, 2nd Edition, Michael Margolis, Arduino Cookbook and O"Reilly Media, 2011.
4.	Architecting the Internet of Things, Dieter Uckelmann, Mark Harrison, Michahelles and Florian (Eds), Springer, 2011.

	"From Machine-to-Machine to the Internet of Things – Introduction to a New Age
5.	of Intelligence", Jan Ho" ller, Vlasios Tsiatsis, Catherine Mulligan, Stamatis,
	Karnouskos, Stefan Avesand. David Boyle and Elsevier, 2014.
	"From Machine-to-Machine to the Internet of Things – Introduction to a New Age
6.	of Intelligence", Jan Ho" ller, Vlasios Tsiatsis, Catherine Mulligan, Stamatis, Karnouskos,
	Stefan Avesand. David Boyle and Elsevier, 2014.

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE): Total marks: 50+50=100

SEE for 50 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C305.1.1	3	3	1	1	1	-	-	-	-	-	-	1
C305.1.2	3	3	2	2	3	-	-	-	-	-	-	1
C305.1.3	3	3	3	3	3	-	-	-	-	-	-	1
C305.1.4	3	3	3	3	3	-	-	-	-	-	-	1
C305.1.5	3	3	3	3	3	-	-	-	-	-	-	1

		Semeste	r: V			
		Micro (Frid			
		(Theor	y)			
Cot	irse Code:	MVJ21EE552	CIE Marks: 50			
Cre	dits:	L: T:P: 3:0:0	SEE Marks: 50			
Hou	ırs:	SEE Duration: 3 Hrs.				
Cot	irse Learning Ob	ojectives: The students will be	e able to			
1	Illustrate the ba	sic concepts and types of micro	ogrids.			
2	Design modern	control technologies for micro	grids in Islanded mode.			
3	Understand grid	l energy management systems.				
4	Analyse the pov	wer quality impacts in grid inte	gration.			
5	Study concept of	of Microgrid protection scheme	s and configurations.			

UNIT-I	
Introduction to Microgrid: Microgrid Configurations – CERTS Microgrid Test	
Bed- DC Microgrid- HFAC Microgrid -LFAC Microgrid -Hybrid DC- and AC-	
Coupled Microgrid.	
Laboratory Sessions/ Experimental learning: Using Simscape Power Systems to	8Hrs
Simulate Microgrids - Microgrid Development and Analysis	
Application: Ride- Through capability for energy storage.	
Web Link and Video Lectures: <u>https://youtu.be/AIEAGqfXFxk</u>	
UNIT-II	
Power Electronics in Microgrid: Grid Connected Mode – Islanded mode –	
Battery Charging mode – Brick Busses Software Framework- Multi Function grid	
Connected inverters.	
Laboratory Sessions/ Experimental learning: Modeling and simulation of Micro	8Hrs
Grid Connected Solar PV System Using Matlab Simulink.	01115
Application: HIL Real-Time Simulation for Testing of Microgrids and Power	
Electronics Systems.	
Web Link and Video Lectures: <u>https://youtu.be/xdC6S5auGn8</u>	
UNIT-III	
Microgrid Energy Management Systems: Load Sharing and Power	
Management Strategy – Standalone– Grid connected – energy storage –	
VoltageControl and Active Power Management.	
Laboratory Sessions/ Experimental learning: Design and Simulation of Small-	8Hrs
Scale Micro Grid Using MATLAB Simulink.	01115
Application: Micro Grid Energy Management Using Model Predictive Control	
Approach.	
Web Link and Video Lectures: <u>https://youtu.be/u1cmXLeHxic</u>	
UNIT-IV	
Power Quality Enhancement: Compensators and controllers for power quality	8Hrs

issues – Power Quality Improvement technologies – Impact of DG integration on	
Power Quality.	
Laboratory Sessions/ Experimental learning: Power Quality Enhancement in	
Residential Smart Grids Through Power Factor Correction Stages.	
Application: Micro Grid Energy Management Using Model Predictive Control	
Approach.	
Web Link and Video Lectures: <u>https://youtu.be/93CcJk8IcsY</u>	
UNIT-V	
Protection in Microgrid: Device Discrimination-Islanding detection, Effect on	
Feeder Reclosure, Protection for an Islanded Microgrid having IIDG Units-	
Adaptive relaying scheme.	
Laboratory Sessions/ Experimental learning: Adaptive Protection Scheme for	8Hrs
Islanded Mode of Operation using MATLAB Simulink.	
Application: Artificial intelligence-based protection of microgrids	
Web Link and Video Lectures: <u>https://youtu.be/93CcJk8IcsY</u>	

Course O	Course Outcomes: After completing the course, the students will be able to								
C305.2.1	Understand the concepts of microgrids, and networked microgrids.								
C305.2.2	Design power converter for grid coordinations.								
C305.2.3	Understand the operation of microgrid system power sharing and control								
C305.2.4	Analyze power quality issues, control and grid integration system of micro grid								
C305.2.5	Design active fault management system for microgrids								

Ref	erence Books
7.	Power Electronic Converters for Microgrid, Suleiman M,Sharkh, Mohammad A.Abu-Sara Georgios I. Orfanoudakis, Babar Hussain, First Edition, 2014, Wiley-IEEE Press, ISBN: 978-0-470-82403-0
8.	Microgrid: Stability Analysis and Control, Ritwi K Majumder, First Edition, 2010, VDM Publishing 2010, ISBN : 978-3639247695.
3.	Microgrids and Active Distribution Networks, S.Chowhury, S.P.Chowdury and Peter Crossley, First Edition, 2011, IET renewable Energy series 6, ISBN978-1-84919-014-5
4.	Optimum Design of Renewable Energy Systems: Microgrid and Nature Grid Methods, Shin'ya Obara, First Edition, 2014, AEEGT Book Series, ISBN: 978- 1466657960.

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and

take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE): Total marks: 50+50=100

SEE for 50 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three subdivisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C305.2.1	2	2	2	1	2	2	1	-	-	2	-	2
C305.2.2	2	3	2	1	1	2	1	-	-	2	-	2
C305.2.3	2	3	2	1	1	2	1	-	-	2	-	2
C305.2.4	2	3	2	1	2	2	1	-	-	2	-	2
C305.2.5	2	2	2	1	2	2	1	-	-	2	-	2

		Semest	er: V					
		Embedded	Systems					
Cou	rse Code:	MVJ21EE553	CIE Marks: 50					
Cree	dits:	L: T:P: 3:0:0	SEE Marks: 50					
Hou	rs:	40L	SEE Duration: 3 Hrs.					
Cou	rse Learning Ob	jectives: The students will	be able to					
1	Understand the c	concepts of embedded system	n design such as ROM variants, RAM.					
2	Learn the technological aspects of embedded system such as signal conditioning, Sample							
4	&Hold.							
3	Understand the d	lesign trade-offs.						
4	Explain the softw	vare aspects of embedded sy	rstem.					
5	Understand the s	ubsystem interfacing.						

UNIT-I	
Concept of Embedded System Design: Components, classification, skills	
required. Embedded Microcontroller cores: Architecture of 6808 and 6811,	
Embedded Memories ROM variants, RAM.	
Laboratory Sessions/ Experimental learning: Assembly Language Program for	8Hrs
addition of 8-bit numbers stored in an array.	
Applications: Digital electronics.	
Video link: https://nptel.ac.in/courses/106/105/106105193/	
UNIT-II	
Technological Aspects of Embedded System: Applications of embedded	
system: Examples of Embedded systems SOC for bar code scanner. Interfacing	
between analog and digital blocks, Signal conditioning, digital signal processing,	
DAC & ADC interfacing, Sample & hold, Multiplexer interface Internal ADC	
interfacing (excluding 6805 & 6812).	
Laboratory Sessions/ Experimental learning:	8Hrs
1. Interfacing of 8-bit ADC 0809 with 8051 Microcontroller.	
2. Interfacing of 8-bit DAC 0800 with 8051 Microcontroller and Waveform	
generation using DAC.	
Applications: Telecommunications.	
Video link: https://nptel.ac.in/courses/108/102/108102169/	
UNIT-III	
Design Trade Offs Due to Process Incompatibility, Thermal Considerations:	
Data Acquisition System and Signal conditioning using DSP. Issues in embedded	
system design. Design challenge, design technology, trade-offs. Thermal	
considerations.	8Hrs
Laboratory Sessions/ Experimental learning:	
1. Temperature control interfacing with 8051 microcontrollers.	
2.Implementation of Digital FIR filters on 8051 microcontrollers.	

Applications: Computer networks	
Video link: https://nptel.ac.in/courses/106/103/106103182/	
UNIT-IV	
Software aspects of Embedded Systems: Real time programming Languages,	
operating systems. Programming concepts and embedded programming in C.	
Round Robin, Round Robin with interrupts, function queue-scheduling	
architecture.	8Hrs
Laboratory Sessions/ Experimental learning: Implementation of Hopfield	01115
network in C to recognize a simple ASCII character.	
Applications: Systems with artificial intelligence and robotics.	
Video link: https://nptel.ac.in/noc/courses/noc20/SEM2/noc20-ee98/	
UNIT-V	
Subsystem interfacing: With external systems user interfacing, Serial I/O devices,	
Parallel portInterfaces: Input switches, Keyboards and Memory interfacing.	
Laboratory Sessions/ Experimental learning:	
1. Implementation of Serial Communication by using 8051 serial ports.	8Hrs
2. Simple test program using Arm 9 mini 2440 kit (Interfacing LED with ARM 9	01115
mini-2440 kit).	
Applications: Militarydefence systems.	
Video link: https	

Course O	Course Outcomes: After completing the course, the students will be able to									
C305.3.1	Identify the Embedded system components.									
C305.3.2	Apply technological aspects to various interfacing with devices.									
C305.3.3	Elaborate various design trade-offs.									
C305.3.4	Apply software aspects and programming concepts to the design of Embedded System.									
C305.3.5	Explain how to interface subsystems with external systems.									

Ref	erence Books
1	" Introduction to Embedded Systems", Shibu K V, Second Edition, 2017, McGraw Hill Education India Private Limited, 9789339219680.
1.	Education India Private Limited,9789339219680 .
2.	"Embedded System, Architecture, Programming and Design Operational Amplifiers", Raj Kamal, , 2nd Edition, 2008, McGraw Hill Education, 9780070667648
3.	Embedded Microcomputer systems: Real time interfacing Valvano, 2 nd edition, 2011, J.W Cengage Learning India Private Limited,978-111142625.
5.	Cengage Learning India Private Limited,978-111142625.
4.	Embedded System Design: A Unified Hardware / Software Introduction, Wiley, Student
	edition, 2006,978-8126508372.

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE): Total marks: 50+50=100

SEE for 50 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C305.3.1	2	1	2	1	2	-	-	-	-	-	-	3
C305.3.2	2	1	2	2	2	-	-	-	-	-	-	3
C305.3.3	2	2	2	1	1	-	-	-	-	-	-	3
C305.3.4	2	3	3	2	3	-	-	-	-	-	-	2
C305.3.5	2	2	2	2	3	-	-	-	-	-	-	3

Semester: V							
Solar PV Technologies							
(Theory)							
Course Code:		MVJ21EE554	CIE Marks: 50				
Credits:		L: T:P: 3:0:0	SEE Marks: 50				
Hours:		40L	SEE Duration: 3 Hrs.				
Course Learning Objectives: The students will be able to							
1	Acquire knowledge on world energy scenario and PN junction diode						
2	Understand the design of a solar cell.						
3	Explain different emerging solar cell technologies						
4	Explain balance of solar PV systems.						
5	Explain various p	hotovoltaic systems and thei	r lifecycle costing.				

UNIT-I				
Introduction to Solar Photovoltaic energy source:				
Need for sustainable energy, solar PV as a renewable energy source, current status				
of renewable energy sources in India.				
Introduction to Solar Cell:	8Hrs			
Introduction to PN junction equilibrium condition, non-equilibriumcondition, PN				
junction under illumination.				
Applications: Help in better understanding of the solar cell				
Video Link: https://www.youtube.com/watch?v=bdnHTkrKWfc				
UNIT-II				
Solar Cell Design:				
Upper limits of cell parameters, losses in solar cells, solar cell design, design for				
high I_{sc} , design for high V_{oc} , design for high FF, analytical techniques				
Applications: Analyse and design a cell for various requirements				
Video Link: https://www.youtube.com/watch?v=KlHdlVrVj8o				
UNIT-III				
Solar Cell Technologies:				
Production of Si, Si wafer based solar cell technology, thin film solar cell				
technologies, emerging solar cell technologies and concepts.				
Applications: Selection of appropriate solar panel for different applications.	8Hrs			
Video Link:				
https://www.youtube.com/watch?v=9LGLbcjXxqI				
https://www.youtube.com/watch?v=8uGZMyjFugg				
UNIT-IV				
Solar Photovoltaic:				
Solar radiation, solar photovoltaic modules, balance of solar PV systems.	8Hrs			
Applications: Helps in better understanding of solar PV systems				
Video Link: <u>https://www.youtube.com/watch?v=1yvaZZJ5IMc</u>				
UNIT-V				

 Photovoltaic System Design and Applications: Introduction to solar PV systems, standalone PV systems configurations, design methodology of PV systems, wire sizing in PV systems, hybrid PV systems, grid connected PV systems, lifecycle costing. Applications: Installation of solar PV systems Video Link: https://www.youtube.com/watch?v=jZs37m3IXJU 	8Hrs
https://www.youtube.com/watch?v=jZs37m3IXJU https://www.youtube.com/watch?v=mi2BzuEbj9o&t=1275s	

Course Outcomes: After completing the course, the students will be able to				
C305.4.1	Acquire knowledge on world energy scenario and PN junction diode			
C305.4.2	Understand the design of a solar cell.			
C305.4.3	Explain different emerging solar cell technologies			
C305.4.4	Explain balance of solar PV systems.			
C305.4.5	Explain various photovoltaic systems and their lifecycle costing.			

Ref	Reference Books		
1.	Solar Photovoltaics: Fundamentals, Technologies and Applications, Chetan Singh Solanki, 3 rd		
	Edition, PHI Learning PVT Ltd., 2015.		
2.	Renewable Energy: Theory & Practice, Rathore N.S., Kurchania A.K., Panwar N.L., First		
	edition,2006, Himanshu Publications, New Delhi.		
3.	Solar Photo-voltaic Products, Derrick, Francis and Bookalders, Second edition, 1991, ITDG		
	Publishing, UK.		

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions,

one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three subdivisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-P	O Maj	oping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C305.4.1	3	3	3	3	-	2	2	-	-	1	-	-
C305.4.2	3	3	3	3	2	3	2	-	-	1	-	-
C305.4.3	3	3	3	3	2	3	2	-	-	1	-	-
C305.4.4	3	3	3	3	2	3	2	-	-	1	-	-
C305.4.5	3	3	3	1	-	3	2	-	-	1	-	-

		Semester: V			
		Environmental St	udies		
Cou	rse Code:	MVJ21ENV56	CIE Marks: 50		
Credits:		L: T:P: 1:0:0	SEE Marks: 50		
Hou	rs:	15 L	SEE Duration: 2 Hrs.		
Cou	rse Learning Objectives: 7	The students will be ab	le to		
1	Relate interdisciplinary approach to complex environmental problems using basic tools of the natural and social sciences including geo-systems, biology, chemistry, economics, political science, and international processes				
2	2 Study drinking water quality standards and to illustrate qualitative analysis of water.				
3	Critically evaluate the science and policy ramifications of diverse energy portfolios on air and water quality, climate, weapons proliferation, and societal stability.				

UNIT-I

Introduction to environmental studies, Multidisciplinary nature of environmental studies; Scope and importance; Concept of sustainability and sustainable development.

Ecosystems (Structure and Function): Forest, Desert, Rivers, Ocean **Biodiversity:** Types, Hot spots; Threats and Conservation of biodiversity, Deforestation.

Video link: https://nptel.ac.in/courses/127/106/127106004/

UNIT-II

AdvancesinEnergySystems(Merits,Demerits,GlobalStatusandApplications):Hydrogen,Solar,Tidal andWind.

Natural Resource Management (Concept and case-study): Disaster Management, Sustainable
Mining and Carbon Trading.3Hrs

Video link: https://nptel.ac.in/courses/121/106/121106014/

UNIT-III

Environmental Pollution:SurfaceandGroundWaterPollution,Noisepollution, SoilPollutionand Air Pollution.

Waste Management & Public Health Aspects: Bio-medical Waste, Solid waste, Hazardous waste, and E-waste.

Video link:

3Hrs

- https://nptel.ac.in/courses/122/106/122106030/
- https://nptel.ac.in/courses/105/103/105103205/
- https://nptel.ac.in/courses/120/108/120108005/
- https://nptel.ac.in/courses/105/105/105105160/

UNIT-IV	
Global Environmental Concerns (Concept, policies, and case-studies): Global Warming,	
ClimateChange, AcidRain, OzoneDepletion and Fluorideproblemindrinkingwater.	
Video link:	3Hrs
• https://nptel.ac.in/courses/122/106/122106030/	
 https://nptel.ac.in/courses/120108004/ 	
 https://onlinecourses.nptel.ac.in/noc19_ge23/preview 	
UNIT-V	
Latest Developments in Environmental Pollution Mitigation Tools (Concept and	
Applications): G.I.S. & Remote Sensing, Environment Impact Assessment, Environmental	
Management Systems.	
Video linka	3Hrs

Video link:

- https://nptel.ac.in/courses/105/102/105102015/
- https://nptel.ac.in/courses/120/108/120108004/

Course	Outcomes: After completing the course, the students will be able to
C306.1	Describe the principles of ecology and environmental issues that apply to air, land, and
	water issues on a global scale.
C306.2	Develop critical thinking and/or observation skills and apply them to the analysis of a
	problem or question related to the environment.
C306.3	Demonstrate ecology knowledge of a complex relationship between biotic and Abiotic
	components.
C306.4	Apply their ecological knowledge to illustrate and graph a problem
C306.5	Describe the realities that managers face when dealing with complex issues.

Ref	erence Books				
1.	Principals of Environmental Science and Engineering, Raman Siva kumar, Cengage learning,				
	Singapur, 2 nd Edition, 2005.				
2.	Environmental Science - working with the Earth G.Tyler Miller Jr. Thomson Brooks /Cole,				
	11 th Edition, 2006				
3.	Textbook of Environmental and Ecology, Pratiba Singh, Anoop Singh & Piyush Malaviya,				
	ACME Learning Pvt. Ltd. New Delhi, 1st Edition.				

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE for 50 marks, executed by way of tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 40 marks and assignment is evaluated for 10 marks. The three tests are conducted for 40 marks each and the average of all the tests are calculated for 40. The marks for the assignments are 10 (2 assignments for 5

marks each). The marks obtained in test and assignment are added and report CIE for 50 marks.

Semester End Examination (SEE):

SEE for 50 marks, executed by means of an examination. The Question paper contains objective type questions for 100 marks covering the entire syllabus having same complexity in terms of COs and Bloom's taxonomy level.

Total marks: 50+50=100

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C306.1	3	3	3	1	-	2	2	1	1	-	2	1
C306.2	3	3	2	1	-	1	2	-	1	1	2	1
C306.3	3	3	2	1	-	2	2	-	1	1	2	1
C306.4	3	3	2	2	-	2	2	-	1	1	2	1

	Semester: V						
	Research Methodology and IPR						
Course Code:		MVJ21RMI57	CIE Marks:50				
Cree	dits:	L: T:P:S: 1:2:0:0	SEE Marks: 50				
Hou	irs:	30	SEE Duration: 3 Hrs				
Cou	Course Learning Objectives: The students will be able to						
1 To give an overview of the		e research methodology and explain the technique					
1	of defining a research prob	blem and explainthe basic ethics in research.					
2	To develop a suitable of	outline for research studies	s through various sources of				
2	² information from literature review and data collection.						
3							
4	To Demonstrate enhanced Scientific writing skills.						
5	To Develop an Understanding on Various Intellectual Property Rights and importance						
5	of filing patents.	-					

UNIT-I

UNII-I	
Research Methodology:Introduction, Meaning of Research, Objectives of	6 Hrs
Research, Types of Research, Research Approaches, Significance of Research,	
Research Methods versus Methodology, Research and Scientific Method,	
Research Process, Criteria of Good Research, Defining the Research Problem:	
Research Problem, Selecting the Problem, Necessity of Defining the Problem.	
Ethics in Engineering Research: Ethics in Engineering Research Practice, Types of Research Misconduct, Ethical Issues Related to Authorship.	
or research misconduct, Editcul issues related to rationship.	
UNIT-II	
Research Writing and Journal Publication Skills:	6 Hrs
 Understanding the importance of quality research papers, Differences between conference papers, journal articles, and other academic publications, criteria for selecting a journal, understanding impact factors and journal rankings. place of the literature review in research, how to review the literature, structure of a research paper, effective use of figures and tables, preparing a cover letter and author contributions, Responding to reviewers' comments. Attributions and Citations: Giving Credit Wherever Due, Citations: Functions and Attributes, Impact of Title and Keywords on Citations, Knowledge Flow through Citation, Citing Datasets, Styles for Citations, Tools for citation management, Acknowledgments and Attributions, What Should Be Acknowledged, Acknowledgments in, Books Dissertations, Dedication or 	
Acknowledgments.	
UNIT-III	
Research Design: Meaning of Research Design, Need for Research Design,	6 Hrs
Features of a Good Design, Important Concepts Relating to Research Design,	
Different Research Designs, Basic Principles of Experimental Designs, Important	

Experimental Designs.

Γ

Results and Analysis: Importance and scientific methodology in recording results,	
importance of negative results, different ways of recording, industrial requirement,	
artifacts versus true results, types of analysis (analytical, objective, subjective),	
outcome as new idea, hypothesis, concept, theory, model etc.	
UNIT-IV	
Interpretation and Report Writing: Meaning of Interpretation, Technique of	6 Hrs
Interpretation, Precaution in Interpretation, Significance of Report Writing,	
Different Steps in Writing Report, Layout of the Research Report, Oral	
Presentation, Mechanics of Writing a Research Report, Precautions for Writing	
Research Reports.	
UNIT-V	
Introduction to Intellectual Property Rights: Meaning of property, Origin, Nature,	6 Hrs
Meaning of Intellectual Property Rights.	
Kinds of Intellectual property rights-Copy Right, Patent, Trademark, Trade	
Secret and trade dress, Design, Layout Design, Geographical Indication, Plant	
Varieties and Traditional Knowledge.	
Patents: Trips Definition, Patentable and Non-Patentable inventions, Legal	
requirements for patents.	
Patent application process: Prior art search Drafting of a patent Filing of a patent	
Patent application process: Prior art search, Drafting of a patent, Filing of a patent,	
Patent document: specification and claims, Granting of patent, Management of	
IP, Commercialization of IP – Assignment, licensing and infringement.	

Course	Course Outcomes: After completing the course, the students will be able to						
C307.1	formulate the research problem and follow research ethics.						
C307.2	carryto carrying out a Literature survey for the topic identified						
C307.3	Analyse the research and interpret the outcomes of the research.						
C307.4	Enhance their technical writing skills						
C307.5	Understand the importance of Patenting, Licensing and technology transfer.						

Textbooks

1.	. C.R. Kothari, Research Methodology,	Methods	and	Techniques,	2 nd	Revised
	edition, New Age International Publishers,	2015				

2. Neeraj Pandey and Khushdeep Dharni, Intellectual Property Rights, PHI Learning Pvt Ltd, 2014

Reference Books

1.	Geoffrey Marczyk, David De Matteo, David Festinger (2005) Essentials of
	Research Design and Methodology, John Wiley & Sons, Inc.
2.	Carol Ellison (2010) McGraw-Hill's Concise Guide to Writing Research Papers,
	McGraw-Hill

3. Sinha, S.C. and Dhiman, A.K., (2002). Research Methodology, Ess Publications. 2nd volume.

4. Wadehra, B.L. (2000). Law relating to patents, trademarks, copyright designs and geographical indications. Universal Law Publishing

Assessment Details (both CIE and SEE)

 \cdot The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%.

 \cdot The student has to obtain a minimum of 40% of maximum marks in CIE and a minimum of 40% of maximum marks in SEE.

• Semester End Exam (SEE) is conducted for 50 marks (2 hours duration).

• Based on this grading will be awarded.

 \cdot The student has to score a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

• Three Unit Tests each of 30 Marks (30 MCQ's) (duration 01 hour)

1. First test at the end of 5th week of the semester.

2. Second test at the end of the 10th week of the semester.

3. Third test at the end of the 15th week of the semester.

 \cdot Report Writing /Presentation/ Assignment to attain the COs and POs for 20 Marks, (Students can decide the topic for Mini Project and start doing literature survey, report of literature survey can be considered for assignments) At the end of the 13th week of the semester

 \cdot The average of three tests and report writing/presentation/Assignment summing to 50 marks

Semester End Examination:

 \cdot Theory SEE will be conducted by College as per the scheduled timetable, with common question paper for the subject

 \cdot SEE paper will be set for 50 questions of each of 01 marks. The pattern of the question paper is MCQ. The time allotted for SEE is 02 hours

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C307.1	3	2	-	1	2	2	-	-	1	1	1	2
C307.2	3	2	3	2	2	2	-	1	1	1	-	1
C307.3	1	2	3	3	2	2	-	1	1	1	-	1
C307.4	1	2	3	3	3	2	-	1	1	-	1	2

High-3, Medium-2, Low-1

	Semester: V								
	Universal Human Values								
		(Theory)							
Cou	Course Code: MVJ21UHV58 CIE Marks: 50								
Cree	lits:	L: T:P: 2:0:0	SEE Marks: 50						
Hou	rs:	30 L	SEE Duration: 02 Hrs.						
Cou	rse Learning Objective	es: The students will be able to							
1	Appreciate the essential complementarily between 'VALUES' and 'SKILLS' to ensure sustained happiness and prosperity which are the core aspirations of all human beings.								
2	Facilitate the development of a Holistic perspective among students towards life and profession as well as towards happiness and prosperity based on a correct understanding of the								
Highlight plausible implications of such a Holistic understanding in terms of ethical human conduct, trustful and mutually fulfilling human behavior and mutually enriching interaction with Nature.									
		IINIT_I							

UNIT-I	

UNIT-I	
Introduction to Value Education: Right Understanding, Relationship and Physical Facility (Holistic Development and the Role of Education), Understanding Value Education, Self-exploration as the Process for Value Education, Continuous Happiness and Prosperity – the Basic Human Aspirations, Happiness and Prosperity – Current Scenario, Method to Fulfill the Basic Human Aspirations.	
Practical Sessions : (1) Sharing about Oneself (2) Exploring Human Consciousness (3) Exploring Natural Acceptance.	6 Hrs
 Video link: https://www.youtube.com/watch?v=85XCw8SU084 https://www.youtube.com/watch?v=E1STJoXCXUU&list=PLWDeKF97v9SP_Kt6j qzA3p Z3yA7g_OAQz https://www.youtube.com/channel/UCQxWr5QB_eZUnwxSwxXEkQw 	
UNIT-II Harmony in the Human Being: Understanding Human being as the Co-existence of the	
Self and the Body, Distinguishing between the Needs of the Self and the Body, The Body as an Instrument of the Self, Understanding Harmony in the Self, Harmony of the Self with the Body, Programme to ensure self-regulation and Health.	
Practical Sessions : (4) Exploring the difference of Needs of Self and Body (5) Exploring Sources of Imagination in the Self (6) Exploring Harmony of Self with the Body	6 Hrs
Video link:	
• https://www.youtube.com/watch?v=GpuZo495F24	
 https://www.youtube.com/channel/UCQxWr5QB_eZUnwxSwxXEkQw 	
UNIT-III	
Harmony in the Family and Society: Harmony in the Family – the Basic Unit of Human Interaction, 'Trust' – the Foundational Value in Relationship, 'Respect' – as the Right	6 Hrs

Practical Sessions : (7) Exploring the Feeling of Trust (8) Exploring the Feeling of Respect (9) Exploring Systems to fulfill Human Goal	
Respect () Exploring Systems to furnin Human Goal	
Video link:	
 https://www.youtube.com/watch?v=F2KVW4WNnS 	
https://www.youtube.com/channel/UCQxWr5QB_eZUnwxSwxXEkQw	
UNIT-IV	
Harmony in the Nature/Existence: Understanding Harmony in the Nature,	
Interconnectedness, self-regulation and Mutual Fulfillment among the Four Orders of	
Nature, Realizing Existence as Co-existence at All Levels, The Holistic Perception of Harmony in Existence.	
Practical Sessions : (10) Exploring the Four Orders of Nature (11) Exploring Co-existence	
in Existence.	6 Hrs
	• •
Video link:	
 https://www.youtube.com/watch?v=1HR-QB2mCF0 	
 https://www.youtube.com/watch?v=lfN8q0xUSpw 	
 https://www.youtube.com/channel/UCQxWr5QB_eZUnwxSwxXEkQw 	
UNIT-V	
Implications of the Holistic Understanding – a Look at Professional Ethics: Natural	
Acceptance of Human Values, Definitiveness of (Ethical) Human Conduct, A Basis for	
Humanistic Education, Humanistic Constitution and Universal Human Order, Competence	
in Professional Ethics, Holistic Technologies, Production Systems and Management	
Models-Typical Case Studies, Strategies for Transition towards Value-based Life and Profession	
Practical Sessions : (12) Exploring Ethical Human Conduct (13) Exploring Humanistic	6 Hrs
Models in Education (14) Exploring Steps of Transition towards Universal Human Order	
Video link:	
Video link: • https://www.youtube.com/watch?v=BikdYub6RY0	

Course	Course Outcomes: After completing the course, the students will be able to							
C308.1	Explore themselves, get comfortable with each other and with the teacher							
C308.2	Enlist their desires and the desires are not vague.							
C308.3	Restate that the natural acceptance (intention) is always for living in harmony, only							
	competence is lacking							
C308.4	Differentiate between the characteristics and activities of different orders and study the							
	mutual fulfillment among them							
C308.5	Present sustainable solutions to the problems in society and nature							

Refe	erence Books
7.	AICTE SIP UHV-I Teaching Material, https://fdp-si.aicte india.org/ AicteSipUHV
	_download.php
8.	A Foundation Course in Human Values and Professional Ethics, R R Gaur, R Asthana, G P
	Bagaria, 2nd Revised Edition, Excel Books, New Delhi, 2019. ISBN 978-93-87034-47-1

3.	Teachers' Manual for A Foundation Course in Human Values and Professional Ethics, R R
	Gaur, R Asthana, G P Bagaria, 2nd Revised Edition, Excel Books, New Delhi, 2019. ISBN
	978-93-87034-53-2
4	Human Values and Professional Ethics by R R Gaur, R Sangal, G P Bagaria, Excel Books

4. Human Values and Professional Ethics by R R Gaur, R Sangal, G P Bagaria, Excel Books, New Delhi, 2010

Continuous Internal Evaluation (CIE):

CIE for 50 marks is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Total marks: 50+50=100

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C308.1	-	1	-	-	-	2	2	3	2	1	2	1
C308.2	-	1	-	-	-	2	2	3	2	1	2	1
C308.3	-	1	-	-	-	2	2	3	2	1	2	1
C308.4	-	1	-	-	-	2	2	3	2	1	2	1
C308.5	-	1	-	-	-	2	2	3	2	1	2	1

	Semester: VI						
		Electric Vehicle and Bat	tery Management System				
		(Th	eory)				
Cou	rse Code:	MVJ21EE61	CIE Marks:50				
Cre	dits:	L: T:P: 3:0:0	SEE Marks: 50				
Hours: 40L		40L	SEE Duration: 3 Hrs				
Cou	rse Learning	Objectives: The students wil	l be able to				
1	1 Understand the needs and types of electric vehicles.						
2	Understand upcoming technology of hybrid electric vehicles.						
3	Explain the types and operation of electrochemical batteries.						
4	Analyze batte	ry management systems for E	VV.				
5	Ability to ana	lyze different power converte	r topologies used for EVs application.				

UNIT-I	
Introduction to Electric Vehicles: Introduction, conventional vehicles, and	
Electric vehicles, vehicle fundamentals, Types, performance, and configuration of	
EVs, Traction motor characteristics.	
Hybrid Electric Vehicles: Energy consumption concept of Hybrid Electric Drive	
Trains, Architecture of Hybrid Electric Drive Trains, Series Hybrid Electric Drive	8Hrs
Trains, Parallel Hybrid Electric Drive Trains.	
Laboratory Sessions/ Experimental learning: Case study on different EVs	
Applications: Electric vehicles	
Video link: <u>https://youtu.be/T5P9b0_Fv6w</u>	
UNIT-II	
Design of Electric and Hybrid Electric Vehicles:	
Series Hybrid Electric Drive Train Design: Operating patterns, control	
strategies, Sizing of major components, power rating of traction motor, power	
rating of engine/generator, design of PPS	
Parallel Hybrid Electric Drive Train Design: Control strategies of parallel	
hybrid drive train, design of engine power capacity, design of electric motor drive	8Hrs
capacity, transmission design, energy storage design.	
Laboratory Sessions/ Experimental learning: Case study on different energy	
management strategies.	
Applications: Electric vehicles	
Video link: https://nptel.ac.in/courses/108/102/108102121/	
UNIT-III	
Energy storage: Introduction to energy storage requirements in Electric	
vehicles, Types of energy storage.	
Introduction to Batteries: Battery Parameters, Battery Specifications, Types of	8Hrs
Batteries, Construction and working of Lead acid batteries and Lithium-ion	
batteries. Efficiency of batteries; Selection of battery for EVs & HEVs, Traction	

Battery Pack design.	
Laboratory Sessions/ Experimental learning:	
1.MATLAB Simulation of battery pack design.	
2. Conduct experiments to understand the chemical process of different electro	
chemical batteries	
Application: Design of battery packs, Select batteries for EVs.	
Web Link and Video Lectures:1. <u>https://youtu.be/DSoHQupqC30</u>	
2. <u>https://youtu.be/WBbefOjmiEQ</u>	
UNIT-IV	
Battery Management System: Definition, basic functions of battery management	
system, topology of BMS, development process of BMS, Functional blocks:	
Power Module, Battery, DC/DC Converter, load, communication channel, Battery	
Pack Safety, Battery Standards & Tests, IoT based BMS.	8Hrs
Laboratory Sessions/ Experimental learning: MATLAB simulation of BMS.	
Application: Design of battery management systems for EVs.	
Web Link and Video Lectures: <u>https://youtu.be/G8g1WI1L2YY</u>	
UNIT-V	
Power Electronic Converter for Battery Charging: Charging methods for	
battery, Termination methods, charging from grid, The Z-converter, Isolated	
bidirectional DC-DC converter.	
E-mobility Indian Roadmap Perspective. Policy: EVs in infrastructure system,	
integration of EVs in smart grid, social dimensions of EVs.	8Hrs
Laboratory Sessions/ Experimental learning: Modeling of Electric Vehicles using	
MATLAB & Simulink.	
Applications: Electric vehicles	
Video link: <u>https://youtu.be/yCjtiCFTFbk</u>	

Course	Course Outcomes: After completing the course, the students will be able to				
C309.1	Explain needs and typesof EVs.				
C309.2	2 Discuss the construction and working of batteries.				
C309.3	Explain different energy storage devices for EVs.				
C309.4	Model and analyze battery management system for EVs				
C309.5	Design converters for battery charging topologies.				

Reference Books

1.	Larminie, James, and John Lowry, "Electric Vehicle Technology Explained" John Wiley and
	Sons, 2012
2.	Modern Electric, Hybrid Electric, andFuel Cell Vehicles: Fundamentals, Theory, and Design,
	M. Ehsani, Y. Gao, S.Gay and Ali Emadi, 2005, CRC Press, ISBN 0-8493-3154-4
3.	Electric and Hybrid Vehicles: Design Fundamentals, Iqbal Husain CRC Press, 2003, ISBN:
	9780367693930.
4.	Energy Management Strategies for Electric and Plug-in Hybrid Electric Vehicles, Sheldon S.
	Williamson, 2013, Springer, ISBN: 978-1-4614-7710-5

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE): Total marks: 50+50=100

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C309.1	2	2	-	-	2	2	3	-	2	2	-	3
C309.2	2	3	-	-	1	2	3	-	2	2	-	3
C309.3	2	3	-	-	1	2	3	-	2	2	-	3
C309.4	2	3	2	3	2	2	3	-	2	2	-	3
C309.5	2	2	3	3	2	2	3	-	2	2	-	3

	Semester: VI							
	Power System Engineering -II							
	(Theory and Practice)							
Cou	rse Code:	MVJ21EE62	CIE Marks:50+50					
Credits: L: T:P: 2:2:2 SEE Marks: 50 +50			SEE Marks: 50 +50					
Hours:40L+ 26 PSEE Duration: 03+03 Hours								
Cou	rse Learning (Objectives: The students will be able to						
1	Represent a p	ower system element including generation,	transmission lines, and transformers					
2	Understand p	Understand per unit quantities, bus admittance matrix analysis for large systems, and						
2	compute of load flow solution using numerical iterative techniques							
3	Compute short circuit faults calculation occurring in power systems for symmetrical faults							
4	4 Deals with short circuit analysis of power system for steady and transient state							
5	Analysis of	power system stability under transient	state conditions for multi-machine					
5	stability							

UNIT-I		
Per Unit Representation and Topology:		
Per-Unit representation of Power system elements - Per-Unit equivalent reactance		
network of a three phase Power System. Graph Theory: Definitions, Formation of		
element node incidence and Bus Incidence Matrices, Y bus formation by Direct		
and Singular Transformation Methods, Numerical Problems.	4.033	
Laboratory Sessions/ Experimental learning: Preparation of graph for a simple	10Hrs	
power system.		
Applications : Analysis of power system by reducing the complexity.		
Video link: https://freevideolectures.com/course/4337/nptel-electrical-		
distribution-system-analysis/24		
UNIT-II		
Power flow analysis:		
Bus classification, Introduction to load flow studies, necessity of load flow		
analysis, significance of slack bus, operating constraints, data required for load		
flow analysis, Formulation of Power Flow problems, Power flow solution using		
Gauss Seidel method and Newton Raphson method, numerical.	10Hrs	
Laboratory Sessions/ Experimental learning: Write a MATLAB program to		
solve any simple equation using iterative methods.		
Applications: Power system planning and operation		
Video link: https://archive.nptel.ac.in/courses/108/105/108105067/		
UNIT-III		
Symmetrical components and sequence impedance:		
Introduction to symmetrical components, resolution of unbalanced phasor into		
symmetrical components, phase voltage in terms symmetrical components and	10Hrs	
symmetrical components in terms of phase voltage, numerical, relation between	101115	
sequence components of phase and line voltages in star connected system, relation		
between sequence components of phase and line currents in delta connected		

system, effect of neutral in the system,	
Sequence Impedance: Sequence impedance of a symmetrical and an	
unsymmetrical circuit, sequence impedance and networks of three phase	
transformer.	
Laboratory Sessions/ Experimental learning: Evaluation of sequence	
components of phase currents and voltages for any fault in a simple bus system	
using MATLAB programming.	
Applications: Selection of appropriate protective devices based on fault	
condition.	
Video link: https://archive.nptel.ac.in/courses/108/105/108105067/	
UNIT-IV	
Unsymmetrical fault analysis	
Introduction to unsymmetrical faults, fault calculations of synchronous generator,	
Analysis of LG fault on an unloaded generator, Analysis of LL fault on an	
unloaded generator, Analysis of LLG fault on an unloaded generator, Analysis of	
three phase fault on an unloaded generator, numericals, series type of fault.	
Laboratory Sessions/ Experimental learning: Evaluation of sequence	
components of phase currents and voltages for an LG, LL & LLG fault in a simple	10Hrs
bus system using MATLAB programming.	
Applications: To determine the nature of the relaying system needed, critical	
clearing time of circuit breakers, voltage level, and transfer capability between	
systems.	
Video link: <u>https://nptel.ac.in/courses/108106026</u>	
UNIT-V	
Power System Stability analysis	
Elementary concepts of steady state, Dynamic and transient stabilities, derivation	
of swing equation, power angle curve and determination of steady-state stability,	
determination of transient stability by Equal area criterion, application of equal are	
determination of transient stability by Equal area criterion, application of equal are criterion, Critical clearing angle calculation, numerical problems for the solution	
	10Hrs
criterion, Critical clearing angle calculation, numerical problems for the solution	10Hrs
criterion, Critical clearing angle calculation, numerical problems for the solution of swing equation, methods to improve stability.	10Hrs
criterion, Critical clearing angle calculation, numerical problems for the solution of swing equation, methods to improve stability. Laboratory Sessions/ Experimental learning: Determination of Power Angle	10Hrs
criterion, Critical clearing angle calculation, numerical problems for the solution of swing equation, methods to improve stability. Laboratory Sessions/ Experimental learning : Determination of Power Angle curves using MATLAB.	10Hrs
 criterion, Critical clearing angle calculation, numerical problems for the solution of swing equation, methods to improve stability. Laboratory Sessions/ Experimental learning: Determination of Power Angle curves using MATLAB. Applications: To determine the dynamic and transient stability of the system by 	10Hrs
criterion, Critical clearing angle calculation, numerical problems for the solution of swing equation, methods to improve stability. Laboratory Sessions/ Experimental learning: Determination of Power Angle curves using MATLAB. Applications: To determine the dynamic and transient stability of the system by using different methods. Video link: <u>https://nptel.ac.in/courses/108101039</u> LABORATORY EXPERIMENTS	
 criterion, Critical clearing angle calculation, numerical problems for the solution of swing equation, methods to improve stability. Laboratory Sessions/ Experimental learning: Determination of Power Angle curves using MATLAB. Applications: To determine the dynamic and transient stability of the system by using different methods. Video link: <u>https://nptel.ac.in/courses/108101039</u> 	
criterion, Critical clearing angle calculation, numerical problems for the solution of swing equation, methods to improve stability. Laboratory Sessions/ Experimental learning: Determination of Power Angle curves using MATLAB. Applications: To determine the dynamic and transient stability of the system by using different methods. Video link: <u>https://nptel.ac.in/courses/108101039</u> LABORATORY EXPERIMENTS 1. Y Bus Formation for Power Systems with and without Mutual Coupling Transformation and Inspection Method.	g, by Singular
 criterion, Critical clearing angle calculation, numerical problems for the solution of swing equation, methods to improve stability. Laboratory Sessions/ Experimental learning: Determination of Power Angle curves using MATLAB. Applications: To determine the dynamic and transient stability of the system by using different methods. Video link: <u>https://nptel.ac.in/courses/108101039</u> LABORATORY EXPERIMENTS Y Bus Formation for Power Systems with and without Mutual Coupling Transformation and Inspection Method. Formation of Z Bus (without mutual coupling) using Z-Bus Building Algorithm 	g, by Singular
 criterion, Critical clearing angle calculation, numerical problems for the solution of swing equation, methods to improve stability. Laboratory Sessions/ Experimental learning: Determination of Power Angle curves using MATLAB. Applications: To determine the dynamic and transient stability of the system by using different methods. Video link: <u>https://nptel.ac.in/courses/108101039</u> LABORATORY EXPERIMENTS 1. Y Bus Formation for Power Systems with and without Mutual Coupling Transformation and Inspection Method. 2. Formation of Z Bus (without mutual coupling) using Z-Bus Building Algorithm 3. ABCD parameters: i) Formation for symmetric T configuration ii) Verification of Courses of the system o	g, by Singular of AD-BC=1
 criterion, Critical clearing angle calculation, numerical problems for the solution of swing equation, methods to improve stability. Laboratory Sessions/ Experimental learning: Determination of Power Angle curves using MATLAB. Applications: To determine the dynamic and transient stability of the system by using different methods. Video link: <u>https://nptel.ac.in/courses/108101039</u> LABORATORY EXPERIMENTS 1. Y Bus Formation for Power Systems with and without Mutual Coupling Transformation and Inspection Method. 2. Formation of Z Bus (without mutual coupling) using Z-Bus Building Algorithm 3. ABCD parameters: i) Formation for symmetric T configuration ii) Verification of 4. ABCD parameters: i) Formation for symmetric □ configuration ii) Verification 	g, by Singular of AD-BC=1 of AD-BC=1
 criterion, Critical clearing angle calculation, numerical problems for the solution of swing equation, methods to improve stability. Laboratory Sessions/ Experimental learning: Determination of Power Angle curves using MATLAB. Applications: To determine the dynamic and transient stability of the system by using different methods. Video link: <u>https://nptel.ac.in/courses/108101039</u> LABORATORY EXPERIMENTS Y Bus Formation for Power Systems with and without Mutual Coupling Transformation and Inspection Method. Formation of Z Bus (without mutual coupling) using Z-Bus Building Algorithm ABCD parameters: i) Formation for symmetric T configuration ii) Verification of Courses of the system of the systems with and without mutual coupling is a system of the system of the system of the system of the systems of the system o	g, by Singular of AD-BC=1 of AD-BC=1 e the same.

programming.

- 7. Economic load dispatch strategies using Mi-Power package.
- 8. Power angle plot for salient and non-salient synchronous machine.

Along with mandatory experiments students are advised to complete two open ended experiments. The following are some suggestions for open ended experiments.

- 9. Load flow analysis using Gauss seidel and newton Rapson methods Using Mi-Power package.
- 10. Short Circuit Studies using Mi-Power package.
- 11. Load flow analysis of transmission system using newton Rapson method by MATLAB programming.

Cour	rse (Outcomes: After completing the course, the students will be able to							
C310	0.1	Prepare per unit reactance diagram and formulate network matrices and models for solving load flow problems.							
C310	Perform steady state power flow analysis of power systems using numerical iterative techniques								
C310	C310.3 Analyze fault calculation for various faults and the impact of them on sy performances.								
C310	Analyze steady state and transient stability of power system under pre and postfault conditions.								
C310	0.5	Analyze the power system stability concepts.							
Refe	renc	e Books							
1.		odern Power System, D. P. Kothari, 4th Edition ,2011, Tata McGraw Hill, 3N: 0071077758.							
2.		Power System Analysis Operation and Control, Abhijit Chakrabarti and Sunita Halder, 3rd Edition, 2010, PHI Learning Pvt. Ltd., ISBN:8120340159.							
3.	Riz	Power System Analysis and Stability, by S.N. Sivanandam, S.N. Deepa, J. Rizwana ,2014, Vikas Publishing House; First Edition January 2014), ISBN-10 : 9325974134							
4.		wer System Analysis, Hadi Sadat, 1st Edition, 2002, Tata McGraw Hill, 3N: 0071281843							

Continuous Internal Evaluation (CIE): Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the self -study are 20 (2 presentations are be held for 10 marks each). The marks obtained in test, quiz and self -studies are added to get marks out of 100 and report CIE for 50 marks.

Laboratory- 50 Marks

The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are awarded 10 marks. Total marks for the laboratory is 50.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marksare executed by means of an examination.

The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the complete syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three subdivisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C310.1	3	3	3	3	2	-	-	-	1	2	2	1
C310.2	3	3	3	3	3	-	-	-	1	3	3	3
C310.3	3	3	3	3	3	-	-	-	1	3	2	2
C310.4	3	3	2	3	3	-	-	-	1	3	2	1
C310.5	3	3	2	3	3	-	-	-	1	3	2	1

	Semester: VI							
	Signals And Digital Signal Processing							
Cou	Course Code: MVJ21EE63 CIE Marks: 50							
Credits: L:T:P:S:2:2:2:Y SEE Marks: 50								
Hours:		40L+26P	SEE Duration: 3 Hrs.					
Cou	rse Learning (Objectives: The students will be	able to					
1	Explain basic operations on signals and properties of systems.							
2	Apply discrete Fourier representation to periodic signals.							
3	Compute Z – transform and DFT for a given time domain signal.							
4	Design IIR filter by applying appropriate transformation techniques.							
5	Design FIR fi	Design FIR filter by applying appropriate transformation techniques.						

UNIT-I				
Signals Introduction: Definitions of signals and a system, Classification of				
signals, Basic operations on signals, Elementary signals viewed as				
interconnections of operations. Relation between the elementary signals, specific				
systems, Properties of systems.	10Hrs			
Laboratory Sessions/ Experimental learning: Verification of Sampling	IUHIS			
Theorem both in time and frequency domains by using MATLAB.				
Applications:Speech recognition.				
Video link: https://www.youtube.com/watch?v=879pXoml0XI				
UNIT-II				
Time domain Representation for LTI system: Convolution for discrete signals,				
impulse response, properties, solution of difference equations for discrete signals,				
block diagram representation system.				
Laboratory Sessions/ Experimental learning: Evaluate impulse response of a	10Hrs			
system using MATLAB.				
Applications:Digital Speedometer.				
Video link: <u>https://www.youtube.com/watch?v=U8riFeiiu3s</u>				
UNIT-III				
Z Transform: Introduction Z-transform, Properties of ROC, Properties of Z-				
transform only derivations. Basic elements of digital signal processing,				
Advantages of digital signal processing over analog signal processing.				
Discrete Fourier Transform: Properties of DFT, DFT as a linear transformation,				
circular convolution, Use of DFT in linear filtering.				
Laboratory Sessions/ Experimental learning: Computation of N point DFT and				
to plot the magnitude and phase spectrum.				
Applications: Image processing.				
Video link: 1. <u>https://www.youtube.com/watch?v=gkC7cXa8ewk</u>				
2. <u>https://www.youtube.com/watch?v=6spPyJH6dkQ</u>				
UNIT-IV				

Design of IIR Filters from Analog Filters: IIR Filter design by impulse	
invariance. Characteristics of analog filters -Butterworth and Chebyshev.	
Laboratory Sessions/ Experimental learning: Design and implementation of	
IIR filters to meet given specification (Low pass, high pass, band pass and band	
reject filters) by using MATLAB.	10Hrs
Application: High-speed telecommunication.	
Video Link:	
1. <u>https://www.youtube.com/watch?v=3QWvi8EC_DI</u>	
2. <u>https://youtu.be/ryfaCpTHVtQ</u>	
UNIT-V	
Design of FIR Filters: Introduction to filters, Design of linear phase FIR Filters	
using rectangular, Hamming and Hanning windows, FIR filter design by	
frequency sampling method.	
Laboratory Sessions/ Experimental learning:	
Design and implementation of FIR filters to meet given specification (Low pass,	
high pass, band pass and band reject filters) using frequency sampling technique	10Hrs
in MATLAB	
Application: Radio Astronomy.	
VideoLink:	
1. https://www.youtube.com/watch?v=nsK7mmRSTDY	
2.https://www.youtube.com/watch?v=X15bJgOkCGU	
LABORATORY EXPERIMENTS	
1.Computation of N $-$ point DFT and to plot the magnitude and phase spectrum.	
2Verification of Sampling Theorem both in time and frequency domains	
2.Evaluation of impulse response of a system	
3.Linear and circular convolution by DFT and IDFT method.	
4.Solution of a given difference equation.	
5.Calculation of DFT and IDFT by FFT	
•	
6.Design and implementation of IIR filters to meet given specification (Low pass,	
high pass, band pass and band reject filters)	
7.Design and implementation of FIR filters to meet given specification (Low pass,	
high pass, band pass and band reject filters) using different window functions	
8.Design and implementation of FIR filters to meet given specification (Low pass,	
high pass, band pass and band reject filters) using frequency sampling technique.	
10.Realization of IIR and FIR filters	
Along with mandatory experiments students are advised to complete two	
open ended experiments. The following are some suggestions for open ended	
experiments.	
1. To perform circular convolution of given sequences using (a) the convolution	
summation formula (b) the matrix method and (c) Linear convolution from	
circular convolution with zero padding.	
2. Computation of N – point DFT and to plot the magnitude and phase spectrum	

Course O	Course Outcomes: After completing the course, the students will be able to						
C311.1	Explain the generation of signals, behavior of system and the basic operations that can						
	be performed on signals and properties of systems.						
C311.2	Apply convolution in both continuous and discrete domain for the analysis of systems						
	given impulse response of a system.						
C311.3	Introduction to Z transform. Perform Fourier analysis for discrete time, linear time						
	invariant systems.						
C311.4	Design FIR filters by use of window function and frequency sampling method.						
C311.5	Develop a digital IIR filter by direct, cascade, parallel, and ladder methods of						
	realization.						

Ref	Reference Books									
1.	"Signals and Systems", Simon Haykin, Barry Van Veen, John Wiley & Sons, Wiley, 2nd edition									
	2002,978-8126512652									
2.	"Digital Signal Processing –Principles, Algorithms, and Applications", Jhon G. Proakis,									
	Dimitris G. Manolakis, Pearson, 4th Edition, 2007,978-013187374.									
3.	"Digital Signal Processing", A .Nagoor Kani, McGraw Hill Education; 2nd edition, 2017,978-									
	0070086654.									
4.	"Signals and Systems", Oppenheim, Willsky and Nawab, Phi Learning, 2nd Edition,									
	1997, 9332550239.									

Continuous Internal Evaluation (CIE): Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE): Total marks: 50+50=100

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C311.1	3	2	2	2	2	1	-	1	1	3	3	2
C311.2	3	2	2	2	2	1	-	1	1	3	3	2
C311.3	3	2	2	2	2	-	-	1	2	3	3	3
C311.4	3	2	2	2	2	-	-	1	2	3	3	3
C311.5	3	2	2	2	2	-	-	1	2	3	3	3

	Semester VI								
	Non-Conventional Energy Sources								
		(Theory)							
Cou	Course Code:MVJ21EE641CIE Marks: 50								
Cree	Credits: L: T:P: 3:0:0 SEE Marks: 50								
Hou	Hours:40LSEE Duration: 3 Hrs.								
Cou	rse Learning (Objectives: The students will be al	ole to						
1	Understand en	nergy resources and availability of re	enewable energy.						
2	Examine types of solar collectors, their configurations, solar cell system, their characteristics,								
2	and their appl	ications.							
3	3 Discuss generation of energy from hydrogen, wind, and geothermal system.								
4	4 Discuss production of energy from biomass, biogas and tidal.								
5	Discuss sea wave energy and OTEC.								

UNIT-I

Renewable Energy sources: Causes of Energy Scarcity, Solution to Energy	
Scarcity, Factors Affecting Energy Resource Development, Energy Resources and	
Classification, Renewable Energy – Worldwide Renewable Energy Availability,	
Renewable Energy in India. Energy from Sun: Sun- earth Geometric Relationship,	
Layer of the Sun, Earth – Sun Angles and their Relationships, Solar Energy	8Hrs
Reaching the Earth's Surface, Solar Thermal Energy Applications.	onis
Laboratory Sessions/ Experimental learning: Survey and data collection of	
different renewable energy sources available.	
Applications: Get awareness about available RES.	

Web Link and Video Lectures: <u>https://youtu.be/e0nkkKDjY50</u>	
UNIT-II	
Solar Thermal Energy Collectors: Types of Solar Collectors, Configurations of	
Certain Practical Solar Thermal Collectors, Material Aspects of Solar Collectors, Concentrating Collectors, Parabolic Dish –Solar Collector Systems into Building Services, Solar Water Heating Systems, Passive Solar Water Heating Systems, Applications of Solar Water Heating Systems, Active Solar Space Cooling, Solar Air Heating, Solar Dryers, Crop Drying, Space Cooling, Solar Cookers, Solar Pond. Solar Cells: Components of Solar Cell System, Elements of Silicon Solar Cell, Solar Cell materials, Practical Solar Cells, I – V Characteristics of Solar Cells, Efficiency of Solar Cells, Photovoltaic Panels, Applications of Solar Cell Systems. Laboratory Sessions/ Experimental learning: Design of solar torch Applications: solar thermal applications for water and room heating.	8Hrs
Web Link and Video Lectures: <u>https://youtu.be/Dd20RQNBwGY</u>	
UNIT-III	
Hydrogen Energy: Benefits of Hydrogen Energy, Hydrogen Production	
 Technologies, Hydrogen Energy Storage, Use of Hydrogen Energy, Advantages and Disadvantages of Hydrogen Energy, Problems Associated with Hydrogen Energy. Wind Energy: Windmills, Wind Turbines, Wind Resources, Wind Turbine Site Selection. Geothermal Energy: Geothermal Systems, Classifications, Geothermal Resource Utilization, Resource Exploration, Geothermal Based Electric Power Generation, Associated Problems, environmental Effects Solid waste and Agricultural Refuse: Waste is Wealth, Key Issues, Waste Recovery Management Scheme, Advantages and Disadvantages of Waste Recycling, Sources and Types of Waste, Recycling of Plastics. Laboratory Sessions/ Experimental learning: Visit a nearby Wind mill. Applications: Extract power from wind and geothermal energy. Web Link and Video Lectures: https://youtu.be/3JXWrKzlkZQ 	8Hrs
UNIT-IV	
Biomass Energy: Biomass Production, Energy Plantation, Biomass Gasification, Theory of Gasification, Gasifier and their Classifications, Chemistry of Reaction Process in Gasification, Updraft, Downdraft and Cross-draft Gasifiers, Fluidized Bed Gasification, Use of Biomass Gasifier, Gasifier Biomass Feed Characteristics, Applications of Biomass Gasifier, Cooling and Cleaning of Gasifiers. Biogas Energy: Introduction, Biogas and its Composition, Anaerobic Digestion, Biogas Production, Benefits of Biogas, Factors Affecting the Selection of a Particular Model of a Biogas Plant, Biogas Plant Feeds and their Characteristics. Tidal Energy: Introduction, Tidal Energy Resource, Tidal Energy Availability, Tidal Power Generation in India, Leading Country in Tidal Power Plant	8Hrs

Installation Engages Assoilability in Tides Tidel Dessen Desig Typhings for Tidel	
Installation, Energy Availability in Tides, Tidal Power Basin, Turbines for Tidal	
Power, Advantages and Disadvantages of Tidal Power, Problems Faced in	
Exploiting Tidal Energy.	
Laboratory Sessions/ Experimental learning: Visit a biogas plant nearby.	
Applications: Produce bio-fuel for cooking.	
Web Link and Video Lectures: <u>https://youtu.be/_OQtT4yhhWc</u>	
UNIT-V	-
Sea Wave Energy: Introduction, Motion in the sea Waves, Power Associated	
with Sea Waves, Wave Energy Availability, Devices for Harnessing Wave	
Energy, Advantages and Disadvantages of Wave Power.	
Ocean Thermal Energy: Introduction, Principles of Ocean Thermal Energy	
Conversion (OTEC), Ocean Thermal Energy Conversion Sea plants, Basic	
Rankine Cycle and its Working, Closed Cycle, Open Cycle and Hybrid Cycle,	0.77
Carnot Cycle, Application of OTEC in Addition to Produce Electricity,	8Hrs
Advantages, Disadvantages and Benefits of OTEC.	
Laboratory Sessions/ Experimental learning: Visit near RES plant and get	
practical knowledge on working of OTEC.	
Applications: Power generation	
Web Link and Video Lectures: https://youtu.be/ iz8ZkjD7z8	

Course O	Course Outcomes: After completing the course, the students will be able to								
C312.1.1	Understand energy resources and availability of renewable energy								
C312.1.2	C312.1.2 Examine types of solar collectors, their configurations, solar cell system, its characteristics and their applications								
C312.1.3	Discuss generation of energy from hydrogen, wind and geothermal system								
C312.1.4	C312.1.4 Discuss production of energy from biomass, biogas and tidal.								
C312.1.5 Discuss sea wave energy and OTEC.									

Reference Books

1.	Nonconventional Energy Resources ShobhNath Singh Pearson 1 st Edition, 2015.
2.	Nonconventional Energy Resources B.H. Khan McGraw Hill 3 rd edition.
3.	Renewable Energy; Power for a sustainable Future Godfrey Boyle Oxford 3rd Edition, 2012.
4.	Renewable Energy Sources: Their Impact on global Warming and Pollution Tasneem Abbasi
	S.A. Abbasi PHI.

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the

tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE): Total marks: 50+50=100

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C312.1.1	3	3	3	-	-	-	-	-	-	-	-	3
C312.1.2	3	3	3	2	-	-	1	-	-	2	2	3
C312.1.3	3	3	3	-	-	-	-	2	2	2	1	3
C312.1.4	3	3	3	-	-	2	-	-	-	-	-	3
C312.1.5	3	3	3	-	-	-	-	-	-	-	-	3

	Semester: VI								
	Carbon Capture and Storage								
	(Theory)								
Cou	rse Code:	MVJ21EE642	CIE Marks:50						
Credits:		L: T:P: 3:0:0	SEE Marks: 50						
Hou	irs:	40L	SEE Duration: 3 Hrs						
Cou	rse Learning Obje	ectives: The students will be ab	le to						
1	1 Understand the atmospheric impact of carbon and power generation fundamentals.								
2	Explain different carbon absorption techniques from various power generation plants.								
3	3 Detail various carbon adsorption and separation techniques.								
4	4 Discuss the distillation process of carbon and geological storage.								
5	Detail the carbon	sequestration and transportation	systems.						

UNIT-I					
Introduction: The carbon cycle, Mitigating growth of the atmospheric carbon					
inventory, The process of technology innovation.					
Overview of carbon capture and storage: Carbon capture, Carbon storage.					
Power generation fundamentals: Physical and chemical fundamentals, Fossil-					
fueled power plant, Combined cycle power generation, Future developments in	8Hrs				
power-generation technology.					
Web Link and Video Lectures:					
1. <u>https://www.digimat.in/nptel/courses/video/102105088/L49.html</u>					
2. <u>https://www.youtube.com/watch?v=OKMANIFoJLc</u>					
UNIT-II					
Carbon capture from power generation: Introduction, Pre combustion capture,					
Post combustion capture, Oxyfuel combustion capture, Chemical looping capture					
systems, Capture-ready and retrofit power plant, Approaches to zero-emission					
power generation.					
Carbon capture from industrial processes: Cement production, Steel production,					
Oil refining,					
Natural gas processing.	8Hrs				
Absorption capture systems: Chemical and physical fundamentals, Absorption					
applications in post combustion capture.					
Web Link and Video Lectures:					
1. <u>https://nptel.ac.in/courses/108/101/108101039/</u>					
2. <u>https://www.youtube.com/watch?v=2Gj3dLK06ho</u>					
UNIT-III					
Adsorption capture systems: Physical and chemical fundamentals, Adsorption					
process applications,					
Membrane separation systems: Physical and chemical fundamentals, Membrane	8Hrs				
configuration and preparation and module construction, Membrane applications in	onrs				
pre-combustion capture, Membrane and molecular sieve applications in oxyfuel					
combustion, Membrane applications in postcombustion CO2 separation, Membrane					

applications in natural gas processing.	
Web Link and Video Lectures:	
1. https://nptel.ac.in/courses/108/101/108101039/	
2. <u>https://www.youtube.com/watch?v=2Gj3dLK06ho</u>	
UNIT-IV	
Cryogenic and distillation systems: Physical Fundamentals, Distillation column	8Hrs
configuration and operation, Cryogenic oxygen production for oxyfuel combustion,	
Ryan–Holmes process for CO2 –CH4 separation.	
Mineral carbonation: Physical and chemical fundamentals, Current state of	
technology development, Demonstration and deployment outlook.	
Geological storage: Introduction, Geological and engineering fundamentals,	
Enhanced oil recovery, Saline aquifer storage.	
Web Link and Video Lectures:	
1. https://nptel.ac.in/courses/108/101/108101039/	
2. <u>https://www.youtube.com/watch?v=2Gj3dLK06ho</u>	
UNIT-V	
Ocean storage: Introduction, Physical, chemical, and biological fundamentals,	8Hrs
Direct CO2 injection, Chemical sequestration, Biological sequestration.	
Storage in terrestrial ecosystems: Introduction, Terrestrial carbon storage options.	
Other sequestration and use options: Enhanced industrial usage, Algal biofuel	
production.	
Carbon dioxide transportation: Pipeline transportation, Marine transportation.	
Web Link and Video Lectures:	
1. https://nptel.ac.in/courses/108/101/108101039/	
2. <u>https://www.youtube.com/watch?v=2Gj3dLK06ho</u>	

Course Ou	Course Outcomes: After completing the course, the students will be able to							
C312.2.1	Discuss the impacts of climate change and the measures that can be taken to reduce							
	emissions.							
C312.2.2	Discuss carbon capture and carbon storage.							
C312.2.3	Explain the fundamentals of power generation.							
C312.2.4	Explain methods of carbon capture from power generation and industrial processes.							
C312.2.5	Explain different carbon storage methods: storage in coal seams, depleted gas							
C312.2.3	reservoirs and saline formations.							

Ref	Reference Books									
3.	Carbon Capture and Storage, Stephen A. Rackley, 2017, 2 nd Edition, Butterworth-									
	Heinemann- Elsevier, ISBN: 9780128120422.									
4.	Introduction to Carbon Capture and Sequestration, Berend Smit, Jeffrey R Reimer, Curtis M									
	Oldenburg, Ian C Bourg, 2014, 1st Edition, Imperial College Press, London, ISBN: 978-1-									
	78326-327-1.									

3.	Palladium Membrane Technology for Hydrogen Production, Carbon Capture and Other
	Applications Principles, Energy Production and Other Applications,
	Doukelis, A., Panopoulos, K., Koumanakos, A., Kakaras, E. 2015, 1st Edition, Woodhead
	Publishing, ISBN: 9781782422419.
4.	Carbon Capture and Storage Physical, Chemical, and BiologicalMethods, Rao Y.
	Surampalli, Tian C. Zhang, R. D. Tyagi, Ravi Naidu, B. R. Gurjar, C. S. P. Ojha, Song Yan
	, Satinder K. Brar, Anushuya Ramakrishnan, C. M. Kao, 2015, 1st Edition, American
	Society of Civil Engineers, ISBN 978-0-7844-7891-2.

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C312.2.1	3	3	3	2	3	3	3	3	2	2	2	2
C312.2.2	3	3	3	2	3	3	3	3	2	2	2	2
C312.2.3	3	3	3	2	3	3	3	3	2	2	2	2
C312.2.4	3	3	3	2	3	3	3	3	2	2	2	2
C312.2.5	3	3	3	2	3	3	3	3	2	2	2	2

	Semester: VI									
	Introduction To Smart Cities									
		(Theo	ory)							
Cou	rse Code:	MVJ21EE643	CIE Marks: 50							
Cre	dits:	L:T:P: 3:0:0	SEE Marks: 50							
Hou	irs:	40L	SEE Duration: 3 Hrs.							
Cou	rse Learning	Objectives: The students will 	be able to							
1	Understand the concept of a smart city and associated challenges.									
2	Understand the latest technologies used in intelligent building.									
3	Explain the process of planning and drafting a plan for a smart city.									
4	Enumerate the importance of the different smart systems.									
5	Explain the i	mportance of water and waste m	anagement schemes.							

UNIT-I					
INTRODUCTION TO SMART CITIES:					
Introduction to city planning, Concept, objectives of smart cities, history of smart					
city world and India, Key trends in smart cities developments. Need to develop					
smart city, Challenges of managing in India and world.					
Laboratory Sessions/ Experimental learning: Visiting cities and finding					
challenges faced by them.	8Hrs				
Applications: Smart infrastructure can be developed for various applications such					
as air monitoring, traffic control and smart waste management.					
Web Link and Video Lectures:					
1. https://nptel.ac.in/courses/124107158					
https://www.open.edu/openlearn/mod/oucontent/view.php?id=67877#					
UNIT-II					
SMART CITIES PLANNING AND DEVELOPMENT:					
Understanding smart cities, dimension of smart cities, global standards and					
performance benchmarks, practical codes, smart city planning and development,					
financing smart cities development, governance of smart cities.					
Lab oratory Sessions/ Experimental learning: Following start procedures and					
codes for planning smart cities.	8Hrs				
Applications: More effective, data-driven decision-making can be done, safer					
communities can be constructed.					
Web Link and Video Lectures::					
https://www.youtube.com/watch?v=Cp0ezwt1c7s					
UNIT-III					
PROJECT MANAGEMENT IN SMART CITIES:					
Phases, Stages of project and work break down Structure, Project organization					
structure, Planning, Scheduling and CPM, Project cost analysis, resource allocation	8Hrs				
&leveling, Line of balancing technique, Project monitoring and control, Project risk	omrs				
management.					
Laboratory Sessions/ Experimental learning: Performing project cost analysis by					

different techniques						
Applications: Improved infra structure buildings can be built. Increase work force						
engagement can be done.						
Web Link and Video Lectures:						
https://learning.tcsionhub.in/courses/industry-honour-certification/project-						
management-in						
UNIT-IV						
GREEN BUILDING IN SMART CITIES						
Introduction to green buildings, Rating system, Energy saving system, Smart						
material associated with smart building. Technology involved in different						
construction of smart building. Model preparation on smart city. Case study on						
smart city.						
Laboratory Sessions/ Experimental learning: Conducting a case study on smart						
city development and infrastructure.						
Applications: Reduce the environment footprints, enhance the street light control						
and energy infrastructure						
Web Link and Video Lectures:						
https://archive.nptel.ac.in/courses/105/102/105102195/						
UNIT-V						
MANAGEMENT OF WATER RESOURCES AND RELATED						
INFRASTRUCTURE						
Storage and conveyance system of water, sustainable water and sanitation, sewerage						
system, flood management, conservation system.						
Laboratory Sessions/ Experimental learning: Conducting a case study on how						
water and sanitation management in performed in smart city						
Applications: water management, waste management and public safety.						
Web Link and Video Lectures:						
https://www.digimat.in/nptel/courses/video/105101215/L41.html						

Course O	Course Outcomes: After completing the course, the students will be able to								
C312.3.1	Acquaire knowledge on smart cities planning and development								
C312.3.2	Develop work break down structure, scheduling, and project management of smart								
C312.3.2	cities								
C312.3.3	Work out the most energy-efficient technique								
C312.3.4	Acquire knowledge on green buildings in smart cities to save energy and public safety								
C312.3.5	Develop water and waste management procedure to build a smart city								

Ref	Reference Books									
1.	Introduction of smart cities, P.P. Anil kumar, First edition, 2019, Pearson India, ISBN:									
	9353439574.									
2.	Insights into inclusive growth, employment and wellbeing in India, Arup Mitra, First									

	Edition,2013, Springer New Delhi, ISBN: 978-81-322-0655-2.						
3.	A city for all: valuing differences and working with diversity, Jo Beall, Second Edition, 1997,						
	Zed books limited, London, ISBN: 1-85649-477-2.						
4.	Inclusive and sustainable urban planning: a guide for municipalities, UN-Habitat, Third						
	Edition, 2007, Urban Development Planning, United Nations Human Settlements Programme,						

ISBN: 978- 92-1-132024-4.

Continuous Internal Evaluation (CIE): Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and

Semester End Examination (SEE):

Total marks: 50+50=100

report CIE for 50 marks.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C312.3.1	2	2	2	2	2	1	2	-	-	1	1	-
C312.3.2	2	1	2	3	2	1	-	-	-	1	2	-
C312.3.3	2	1	2	1	2	1	-	-	-	-	1	-
C312.3.4	3	2	2	2	2	1	-	-	-	-	1	-
C312.3.5	2	2	2	1	2	1	-	-	-	-	2	-

	Semester: VI								
	Smart Sensors and Systems for Industrial Applications								
Cou	rse Code:	MVJ21EE644	CIE Marks: 50						
Cree	dits:	L: T: P: 3:0:0	SEE Marks: 50						
Hou	irs:	40L	SEE Duration: 3 Hrs.						
Cou	rse Learning O	bjectives: The students will be able to							
1	Understand the different types of sensors and smart sensors.								
2	Learn the principles and operations of active sensors.								
3	Understand the concepts of smart sensors.								
4	4 Study the conceptual approach of various Passive Sensors.								
5	Learn the fundamentals of signal conditioning, data acquisition and communication								
5	systemsused in mechatronics system development.								

UNIT-I	
Introduction to Smart Sensor: Introduction, definition of sensors, smart sensors, integrated smart sensors and integrated smart sensor systems, Classification of sensors, Third and fourth industrial revolution, Smart Sensors applications for Automated homes and vehicles. Laboratory Sessions/ Experimental learning: Automated system using smart sensors. Applications: Automation Video link: 1. https://archive.nptel.ac.in/courses/108/108/108108147/ 2. https://youtu.be/n1XcDq-Ynv0 3. https://youtu.be/fhp61CepgUg	8Hrs
UNIT-II	
Motion, Proximity and Ranging Sensors: Motion Sensors, Potentiometers, Resolver, Encoders – Optical, Magnetic, Inductive, Capacitive, LVDT – RVDT – Synchro – Microsyn, Accelerometer – GPS, Bluetooth, Range Sensors – RF beacons, Ultrasonic Ranging, Reflective beacons, Laser Range Sensor (LIDAR). Laboratory Sessions/ Experimental learning: Measuring analog variations in physical variables by using appropriate resistive sensors in an RC-circuit and measuring the time to charge/discharge the capacitor Applications:Smart systems essentials for physical measurements Video link: 1. <u>https://onlinecourses.nptel.ac.in/noc22_ee36/preview</u> 2. <u>https://youtu.be/sIBHVsoRgLs</u> 3. <u>https://nptel.ac.in/courses/112108092</u>	8Hrs
UNIT-III	
Former Magnetia and Heading Songary Strain Case Load Call Magnetia	

Force, Magnetic and Heading Sensors: Strain Gage, Load Cell, Magnetic	
Sensors -types, principle, requirement, and advantages: Magneto resistive - Hall	
Effect - Current sensor Heading Sensors - Compass, Gyroscope, Inclinometers.	OTTura
Laboratory Sessions/ Experimental learning: Display the distance the object is	8Hrs
placed from the sensor using Arduino.	
Applications: Integrated smart system design	

Video link: 1. https://nptel.ac.in/courses/112104251	
2. https://archive.nptel.ac.in/courses/112/107/112107298/	
UNIT-IV	
Smart Sensors: Optical sensors based on photon detection- introduction, Photon	
absorption in silicon- detection limit- photon detectors with gain, physical	
chemosensory-physical chemosensing-energy domains, Thermal sensors- heat	
transfer mechanisms, different temperature sensing elements.	
Laboratory Sessions/ Experimental learning: To display the temperature in a	8Hrs
room by using thermal sensor.	
Applications: Smart Sensors	
Video link: 1.https://archive.nptel.ac.in/courses/115/107/115107122/	
2. https://www.youtube.com/watch?v=oRydUfgMdgA	
UNIT-V	
Signal Conditioning and DAQ Systems: Amplification – Filtering – Sample and	
Hold circuits – Data Acquisition: Single channel and multi-channel data	
acquisition - Data logging - applications - Automobile, Aerospace, Home	
appliances, Manufacturing, Environmental monitoring.	
Laboratory Sessions/ Experimental learning: Interfacing Data Acquisition	8Hrs
system hardware with computer.	
Applications: LabVIEW programming techniques.	
Video link: 1. https://nptel.ac.in/courses/108105062	
2. <u>https://youtu.be/I_9Pwyxhe40</u>	

Course Outcomes: After completing the course, the students will be able to		
C312.4.1	Expertise in various types for sensors and smart sensors.	
C312.4.2	Acquire knowledge on different sensors and transducers.	
C312.4.3	Apply the various smart sensors in the Automotive and Mechatronics applications.	
C312.4.4	Study the basic principles of various smart sensors	
C312.4.5	Implement the DAQ systems with different sensors for real time applications	

Ref	erence Books
1	"Measurement Systems - Applications and Design", Ernest O Doebelin, Tata McGraw-Hill,
1.	2009.
2	"A Course in Mechanical Measurements and Instrumentation and Control", Sawney A K and
۷.	Puneet Sawney, 12th edition, Dhanpat Rai & Co, New Delhi, 2013.
3.	"Sensors and Transducers", Patranabis D, 2nd Edition, PHI, New Delhi, 2010.
4	"Instrumentation for Engineers and Scientists", John Turner and Martyn Hill, Oxford Science
	Publications, 1999.

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE): Total marks: 50+50=100

					CO-P	O Maj	oping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C312.4.1	3	2	2	2	2	1	1	-	1	2	-	2
C312.4.2	3	3	3	2	3	2	2	-	2	3	2	3
C312.4.3	3	3	3	2	3	2	2	-	2	3	2	3
C312.4.4	3	3	3	2	3	2	2	-	2	3	2	3
C312.4.5	3	3	3	3	3	3	3	-	3	3	3	3

	ABILITY ENHANCEMENT COURSE Troubleshooting and Diagnosis of Electrical Appliances					
Cou	Course Code MVJ21EEA66 CIE Marks 50					
Cree	CreditsL: T: P:0:0: 2SEE Marks50			50		
Hours 15 SEE Dur		SEE Duration	3 hours			
Cou	Course Learning Objectives: The students will be able to					
Acquire knowledge about function and use of various electrical tools, equipment's, and accessories.						
2	2 Acquire knowledge aboutrepair and installation of electric tube light.					
3 Acquireknowledge about repair and maintenance of ceiling fan.						
4 Enable the students to carry out repair and maintenance of electric iron box.						
5	Enable the students to carry out repair and maintenanceof water heater.					

UNIT-I	
D.C. Power supply – Assembly and Applications: Introduction &application of	3Hrs
power supply. Identification of different parts. Testing & fault finding.	
UNIT-II	
Repair and Installation of Electric tube light: Introduction of lighting appliances,	3Hrs
Circuit diagram offluorescent tube with electronic choke& starter. Introduction of	
CFL lamp, LEDlamp.Testing & fault finding.	
UNIT-III	
Repair and Maintenance of Ceiling Fan: Construction, Identification of various	3Hrs
parts, electrical diagram, maintenance of fan (overhauling), repair of some	
commonproblems like low speed, fan not starting, fan rotating in reverse direction.	
UNIT-IV	
Repair and Maintenance of Electric Iron box: Introduction, construction &	3Hrs
working principle, Dismantling & procedure, Testing & Fault finding, Common	
Faults & remedies of electric iron.	
UNIT-V	
Repair and Maintenance of Water Heater: introduction, construction & working	3Hrs
principle, Dismantling &procedure, Testing & Fault finding, Common Faults &	
remedies of Water Heaters.	
I	

Course Outcomes: After completing the course, the students will be able toC314.1Acquire knowledge about function and use of various electrical tools, equipment's,

	and accessories.
C314.2	Acquire knowledge aboutrepair and installation of electric tube light.
C314.3	Acquireknowledge about repair and maintenance of ceiling fan.
C314.4	Enable the students to carry out repair and maintenanceof electric iron box.
C314.5	Enable the students to carry out repair and maintenanceof water heater.

Refere	Reference Books				
1.	Froubleshooting and Repairing Major Appliances, Eric Kleinert, 3rd Edition				
2.	Study of Electrical Appliances and devices - K.B.Bhatia				
3.	Electrical Appliances: The Complete Guide to the Maintenance and Repair of				
	Domestic Electrical Appliancesby Graham Dixon				
4.	Troubleshooting and Maintenance of Electronic Equipment's, Lalak., 2 Edition.				
5.	How to repair small Appliances - Jack Darr				
6.	Maintenance of Domestic Appliances - R. B. Lal				

	Semester: VI									
	Mini Project									
Cou	rse Code:	MVJ21EEMP67	CIE Marks: 50							
Cre	dits:	L: T: P: 0:0:4	SEE Marks: 50							
Hou	irs:	40L	SEE Duration: 3 Hrs.							
Cou	rse Learning O	bjectives: The students will be able to								
1	Support indepe	ndent learning and innovative attitude.								
2	Guide to select	and utilize adequate information from va	ried resources upholding ethics.							
3	Guide to organize the work in the appropriate manner and present information (acknowledging the sources) clearly.									
4	Develop interactive, communication, organization, time management, and presentation skills.									
5	Train students to present the topic of project work in a seminar without any fear, face audience confidently, enhance communication skill, involve in group discussion to present, and exchange ideas.									

Mini Project:Based on the ability/abilities of the student/s and recommendations of the mentor, a single discipline or a multidisciplinary Mini- project can be assigned to an individual student or to a group having not more than 4 students.

Course O	Course Outcomes: After completing the course, the students will be able to						
C315.1	Describe the project and be able to defend it. Develop critical thinking and problem-						
C315.1	solving skills.						
C315.2	Learn to use modern tools and techniques. Communicate effectively and present ideas						
	clearly and coherently both in written and oral forms.						
C315.3	Develop skills to work in a team to achieve a common goal. Develop skills in project						
	management and finance.						
C315.4	Develop skills of self-learning, evaluate their learning and take appropriate actions to						
	improve it.						
C315.5	Prepare them for life-long learning to face the challenges and support the technological						
	changes to meet societal needs.						

Scheme of Evaluation:

Continuous Internal Evaluation: The CIE (50 marks) evaluation shall be based on Phase wise completion of the project work, Project report, Presentation and Demonstration of the actual/model/prototype of the project.

Semester End Examination: SEE marks for the project (50 marks) shall be based on Project report, Presentation and Demonstration of the actual/model/prototype of the project, as per the norms by the examiners appointed.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C315.1	3	2	2	2	2	1	1	-	1	2	-	2
C315.2	3	3	3	2	3	2	2	-	2	3	2	3
C315.3	3	3	3	2	3	2	2	-	2	3	2	3
C315.4	3	3	3	2	3	2	2	-	2	3	2	3
C315.5	3	3	3	3	3	3	3	-	3	3	3	3

	Semester: IV									
	SummerInternship-II									
	irse Code:	MVJ21INT68	CIE Marks:50							
	dits: L: T:P:	0:0:4	SEE Marks: 50							
Hou		Objectives: The students will h	SEE Duration:							
1		Id exposure and experience								
2	To apply the	theoretical concept in field appli	cation							
3	To prepare th	e comparison statement of differ	ence activities							
offic engi	ces/Professiona	Iting firms/QS and QA organiza I organizations and other avenue in in consultation and approval of tees of the institutions.	es related to the civil	3 Hrs						
Cou		: After completing the course,								
316	.1 Develop	skills to work in a team to achie	ve common goal.							
316.	316.2 Develop skills of self-learning, evaluate their learning and take appropriate actions to improve it.									
316.	316.3Prepare them for life-long learning to face the challenges and support the technological changes to meet the societal needs.									
316	.4 Develop	skills of project management an	d finance.							
316	316.5 Understand work ethics and culture of industry.									

Scheme of Evaluation

Evaluation of the field training/industrial internship shall be conducted during VIII semester bu internal and external examiners for 100 marks. The external examiner shall be from the industry, where the student carried out the field training/Industrial internship. In case of non-availability of external examiner, the concerned head of the department shall appoint an external examiner from the near by college or a senior faculty member from outside the department in consultation with respective BOE and approved by Principal. The field training/industrial internship carries two credits. A student has to get a minimum of 40% marks for a pass. If a student fails to complete the same, then the field training/Industrial internship has to be repeated in its entirety.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
316.1	2	2	2	3	3	2	1	1	2	1	1	2
316.2	2	2	2	3	3	2	1	1	2	1	2	2
316.3	2	2	2	3	3	2	1	1	2	1	2	2
316.4	2	2	2	3	3	2	1	1	2	1	2	2
316.5	2	2	2	3	3	2	1	1	2	1	2	2

	Semester: VII								
	Switchgear and Protection								
		(Theory and Practice)							
Cou	rse Code:	MVJ21EE71	CIE Marks:50+50						
Cree	dits:	L:T:P: 3:0:2	SEE Marks: 50 +50						
Hou	rs:	40 L+ 26 P	SEE Duration: 03+03 Hours						
Cou	rse Learning Obj	jectives: The students will be able to							
1	Discuss perform	scuss performance of protective relays, components of protection scheme and relay							
1	terminology.								
2	Explain Overcurrent protection using electromagnetic relays and Overcurrent protective								
2	schemes.								
3	Explain constru-	ction, operating principles of various	us distance relays for distance						
5	⁵ protection.								
4	Discuss construction, operating principles of static and numerical relays for Numerical								
–	protection.								
5	Explain the principle of circuit interruption and different types of circuit breakers								

UNIT-I	
Protective Relays: Introduction, Need for power system protection, evolution of	
protective relays, zones of protection, primary and backup protection, essential	
qualities of protection, classification of protective relays and schemes, basic relay	
terminology.	
Operating Principles and Relay Construction: Electromagnetic relays, thermal	
relays, static relays.	10Hrs
Laboratory Sessions/ Experimental learning: Field visit to show placing and	TURIS
operation of relays in substation.	
Applications: Selection of relays for protection of system components.	
Web Link and Video Lectures:	
3. <u>https://nptel.ac.in/courses/108/101/108101039/</u>	
4. <u>https://youtu.be/NEXWcOgqZOI</u>	
UNIT-II	
Over-Current Protection: Time-current characteristics, current setting, over	
current protective schemes, directional relay, Protection of parallel feeders,	
protection of ring mains, Phase fault and earth fault protection, Combined earth	
fault and phase fault protective scheme.	
Distance Protection: Impedance relay, reactance relay, MHO relay, Effect of arc	
resistance, Effect of power swings, effect of line length and source impedance on	
the performance of distance relays, selection of distance relays.	10Hrs
Laboratory Sessions/ Experimental learning: Design of protection system for	
distribution system.	
Applications: Protection of transmission line and selection of distance relays.	
Web Link and Video Lectures:	

$2 + \frac{1}{100} + $					
3. <u>https://nptel.ac.in/courses/108/101/108101039/</u>					
4. <u>https://youtu.be/XdE149Hk_h0</u>					
Differential protection –Introduction, differential relays, differential protection					
scheme, Wire Pilot protection (Transley scheme), Carrier current protection.					
AC Machines and Bus Zone Protection: Protection of Generators, Protection of					
transformers, Protection of induction motors, Protection of Bus zone protection					
Laboratory Sessions/ Experimental learning: Study the gas actuated Buchholz	10Hrs				
relay for oil filled transformer (virtual lab).					
Application: Protection of machines from internal and external faults.					
Web Link and Video Lectures:					
1. <u>https://nptel.ac.in/courses/108/101/108101039/</u>					
2. <u>https://youtu.be/ZXyq-xxRLnQ</u>					
UNIT-IV					
Numerical Protection Static Relays: Amplitude and Phase comparators, Static					
amplitude comparator, static over current relays, static directional relay, and static					
distance relays.					
Microprocessor Based Relays: Over current relays, directional relays, distance					
relays.					
Laboratory Sessions/ Experimental learning: Industrial visit					
Application: Numerical protection is used in smart grid.					
Web Link and Video Lectures:					
1. https://nptel.ac.in/courses/108/101/108101039/					
2. <u>https://youtu.be/NEXWcOgqZOI</u>					
UNIT-V					
FUSES: Introduction, fuse characteristics, types of fuses, application of HRC					
fuses, discrimination					
Circuit Breakers: Introduction, arcing in circuit breakers, arc interruption					
theories, re-striking and recovery voltage, resistance switching, current chopping,					
interruption of capacitive current, oil circuit breaker, air blast Circuit breakers,					
SF6 circuit breaker, operating mechanism, selection of circuit breakers, ratings of					
circuit breakers, testing of circuit breakers.					
Laboratory Sessions/ Experimental learning:	10Hrs				
1. Circuit Breaker Status Indication from field input(virtual lab)					
 2. Substation Visit 					
Application: MCB & Fuses are used for protection of all electrical machines.					
Web Link and Video Lectures:					
1. <u>https://nptel.ac.in/courses/108/101/108101039/</u>					
2. https://youtu.be/JRv2RVyYMtM					
LABORATORY EXPERIMENTS					

- 12. IDMT non-directional characteristics and calculation of error in operating time for Over current Relay (Electro mechanical type).
- 13. Operating characteristics of Over voltage & Under voltage Relay (Electro mechanical type)
- 14. Operating characteristics of Microprocessor based (numeric) Over / Under voltage Relay.
- 15. Operating Characteristics of Microprocessor Based (Numeric) Over Current Relay.
- 16. Motor protection scheme Studies.
- 17. Spark over characteristics of air insulation subjected to High Voltage AC with Spark over voltage corrected to STP.
- 18. Breakdown strength of transformer oil using oil test kit.
- 19. Generator Protection Scheme

Along with mandatory experiments students are advised to complete two open ended experiments. The following are some suggestions for open ended experiments.

- 20. Field mapping using electrolytic tank for capacitor model
- 21. Generation of standard lightning impulse voltage.
- **22.** Spark over characteristics of air insulation subjected to High Voltage DC.

Course	Course Outcomes: After completing the course, the students will be able to							
C401.1	1.1 Compare and contrast electromagnetic, static and microprocessor-based relays							
C401.2	C401.2 Select relay settings of over current and distance relays.							
C401.3	Analyze different protective schemes for bus-bars, generators, induction motors and transformers							
C401.4	Apply technology to protect power system components.							
C401.5	Analyze quenching mechanisms used in air, oil and vacuum circuit breakers							

Ref	erence Books
9.	Power System Protection and Switchgear, Badriram and D.N. Vishwakarma, 2 ND
	Edition, TMH 2011.
10.	Fundamentals of Switchgear and Protection, J B Gupta, Technical Publications, 1st
	Edition, 2001.
3.	Fundamentals of Power system protection, Y.G.Paithankar and S.R.Bhide,2 nd Edition,
	PHI private limited,NewDelhi,2010
4.	Switch Gear and Protection, Sunil S Rao, Khanna Publication, 1999

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and

take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Laboratory- 50 Marks

The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are awarded 10 marks. Total marks for the laboratory is 50.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marksare executed by means of an examination.

The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the entire syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C401.1	3	3	2	2	3	1	2	1	2	3	1	2
C401.2	3	3	2	2	3	1	2	1	2	3	1	2
C401.3	3	3	2	2	3	1	2	1	2	3	1	2
C401.4	3	3	2	2	3	1	2	1	2	3	1	2
C401.5	3	3	2	2	3	1	2	1	2	3	1	2

	Semester: VII								
	IOT Applications for EEE								
		(Theory)							
Cou	rse Code:	MVJ21EE721	CIE Marks:50+50						
Credits:		L:T:P: 3:0:0	SEE Marks: 50 +50						
Hou	rs:	40 L	SEE Duration: 03+03 Hours						
Cou	rse Learning O	bjectives: The students will be able to							
1	Understand the	basic architecture of Internet of Things							
2	Understand Io7	Concepts applicable to Smart Home A	ppliances.						
3	Understand IoT Concepts applicable to Smart Metering Systems.								
4	Understand IoT Concepts applicable to Smart Grid Systems.								
5	Understand Io7	Concepts applicable to SCADA Syster	ns.						

UNIT-I	
BASIC IoT ARCHITECTURE: Different layers of IoT system, Things, Data	
Acquisition and Gateways, Edge Analytic Systems, Data Centres and Cloud Storage	
Laboratory Sessions/ Experimental learning: Read Sensors and send data to	
Cloud storage	8Hrs
Applications: IoT Applications	
Web Link and Video Lectures:	
https://youtu.be/xsZ9YhVy-7g	
UNIT-II	
SMART HOME APPLIANCES: Introduction, Definition, Benefits. Block	
Diagram of Smart Appliance. Case studies: Microwave Oven, Refrigerator,	
Washing Machine, Air Conditioner, etc	
Laboratory Sessions/ Experimental learning: Remote Control of bulbs,	8Hrs
appliances through Web	01115
Applications: All Home Electrical Appliances	
Web Link and Video Lectures:	
https://www.silabs.com/applications/smart-home/appliances	
UNIT-III	
SMART METERING: Introduction, Smart Metering Infrastructure, Classification	
of Smart Metering Communication Systems, Smart Meter: Benefits, Issues,	
Standards, Deployment	
Laboratory Sessions/ Experimental learning: Accessing Smart Meter reading	
Laboratory Sessions, Experimental featuring. Theessing Smart Meter reading	8Hrc
through Web	8Hrs
	8Hrs
through Web	8Hrs
through Web Applications: Smart Meters in Homes, Buildings, etc	8Hrs
through Web Applications: Smart Meters in Homes, Buildings, etc Web Link and Video Lectures: https://www.slideshare.net/satabdyjena/smart-meteringsystem UNIT-IV	8Hrs
through Web Applications : Smart Meters in Homes, Buildings, etc Web Link and Video Lectures: <u>https://www.slideshare.net/satabdyjena/smart-meteringsystem</u>	8Hrs

Working principle, Characteristics and advantages. Essential technologies: Two way integrated communication, Smart Appliances, Smart Power Meters, Smart Sub

Stations, Phasor Measurement Unit.						
Laboratory Sessions/ Experimental learning: Remote reading of energy	1					
consumption for home devices	l					
Applications: Generating station, Transmission, Substations, Consumers	l					
Web Link and Video Lectures:	l					
1. https://www.tutorialspoint.com/what-is-a-smart-grid-and-how-does-it-work	l					
2. <u>https://circuitdigest.com/article/smart-grid-the-electrical-grid-of-the-future</u>	l					
UNIT-V						
IoT BASED SCADA SYSTEMS: Benefits of IoT based SCADA System, System						
Architecture. Implementation of different SCADA systems. Data communication,	l					
protocols, and media usage. Substation automation, smart transmission and	l					
distribution. Distribution automation, distribution management system and energy	l					
management systems.	l					
Laboratory Sessions/ Experimental learning: Prototype model for IoT based	l					
SCADA System	8Hrs					
Applications: Generating station, transmission, sub station						
Web Link and Video Lectures:						
1. <u>https://youtu.be/6MxWt4gWuKM</u> (IoT Based SCADA System)	1					
2. <u>https://youtu.be/JiNY6S7vwSc</u> (SCADA and IoT for Beginners)	1					
3. <u>https://www.biz4intellia.com/blog/8-benefits-of-adopting-internet-of-things-</u>	1					
(IoT)-in-scada-system/	1					

Course O	Course Outcomes: After completing the course, the students will be able to						
C402.1.1	Apply IoT concepts for Home Appliances, Smart Metering, Grid and SCADA						
C402.1.1	systems						
C402.1.2	Apply IoT concepts for a wide range of IoT applications						
C402.1.3	Perform Use Case and Requirement Analysis for Smart Electrical Systems						
C402.1.4	Design Smart Electrical Systems based on IoT						
C402.1.5	Implement simple IoT applications for Electrical Systems						

Ref	erence Books
1	Smart Metering Technologies. Inderpreet Kaur. BoD – Books on Demand, 2021
2	Smart Grid: Fundamentals of Design and Analysis. James O Momoh. Wiley-IEEE
	Press; 1st edition (March 2012)
3	Power System SCADA and Smart Grids. Mini S Thomas and John Douglas McDonald.
	CRC Press, 1 st Edition
4	Wiley Online library, Chapter 17: SCADA FUNDAMENTALS AND APPLICATIONS
	IN THE IoT, Rich Hunzinger

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE): Total marks: 50+50=100

SEE for 50 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C402.1.1	3	3	1	3	1	-	-	-	-	-	-	1
C402.1.2	3	3	1	3	1	-	-	-	-	-	-	1
C402.1.3	3	3	2	3	2	-	-	-	-	-	-	1
C402.1.4	3	3	3	3	3	-	-	-	-	-	-	1
C402.1.5	3	3	1	3	1	-	-	-	-	-	-	1

	Semester: VII								
		SMART G	RID						
Cou	rse Code:	MVJ21EE722	CIE Marks: 50						
Cre	dits:	L:T:P: 3:0:0	SEE Marks: 50						
Hours:		40L	SEE Duration: 3 Hrs.						
Cou	rse Learning Ob	jectives: The students will be	able to						
1	Understand the c	concepts and introduction of Si	nart Grid						
2	Understand the monitoring techniques in transmission and distribution systems								
3	Employ the knowledge on different smart meters and advanced metering infrastructure.								
4	Develop the solution for various power quality management issues in Smart Grid.								
5	Implement the h	igh-performance computing sy	stems for Smart Grid applications.						

UNIT-I	
Introductionto Smart Grid: Evolution of Electric Grid, Concept, Definitions and Need	
for Smart Grid, Smart grid drivers, functions, opportunities, challenges and benefits, Difference between conventional & Smart Grid, National and International Initiatives in Smart Grid.	
Laboratory Sessions/ Experimental learning: Case Studies and Test beds for the	
Smart Grid.	8Hrs
Applications: Hybridizing Optimization Techniques and Applications to the Smart Grid,	
Computational Challenges.	
Web Link and Video Lectures:	
1. https://nptel.ac.in/courses/108107113	
2. <u>https://youtu.be/ksbTExNURzU</u>	
UNIT-II	1
 Smart Grid Technologies: Technology Drivers, Smart energy resources, Smart substations, Substation Automation, Feeder Automation, Transmission systems: EMS, Wide area monitoring, Protection and control, Distribution systems: DMS, Fault Detection, Isolation and service restoration, Outage management,Plugin Hybrid Electric Vehicles(PHEV). Laboratory Sessions/ Experimental learning: Attack Detection using DC state estimation. Applications: Smart Grid Decision Support and operational technology Web Link and Video Lectures: 1. https://onlinecourses.nptel.ac.in/noc21_ee68/preview 2. https://youtu.be/uFpOU7up-fM 	8Hrs
UNIT-III	
Smart Meters and Advanced Metering Infrastructure: Introduction to Smart Meters,	
Advanced Metering infrastructure (AMI) drivers and benefits, AMI protocols, standards	
and initiatives, AMI needs in the smart grid, Phasor Measurement Unit (PMU), Intelligent	8Hrs
Electronic Devices(IED) & their application for monitoring & protection.	oms
Laboratory Sessions/ Experimental learning: Design of virtual PMU in MATLAB.	
Applications: Monitoring, control and automation in Smart Grids	

Web Link and Video Lectures :	
1https://www.energy.gov/sites/prod/files/2016/12/f34/AMI%20Summary%20Report_09-	
<u>26-16.pdf</u>	
2. <u>https://www.youtube.com/watch?v=2O3LznQQKTE</u>	
UNIT-IV	
Power Quality Management in Smart Grid: Power Quality & EMC in Smart Grid,	
Power Quality issues of Grid connected Renewable Energy Sources, smart services for	
network operations and electricity markets: overview of the smart services, metering	
services and data communication and information management.	
Laboratory Sessions/ Experimental learning: MATLAB Implementation of Unified Power	8Hrs
Quality Conditioner (UPQC) for Power Quality Improvement.	опту
Applications: Power system stability in Smart Grids	
Video Link:	
1.https://onlinecourses.nptel.ac.in/noc21_ee103/preview_	
2. <u>https://youtu.be/EzZS_Uk1c_o</u>	
UNIT-V	
High Performance Computing for Smart Grid Applications: Local Area Network	
(LAN), House Area Network (HAN), Wide Area Network (WAN), Broad band over	
Power line (BPL), IP based Protocols, smart grid cyber security and cyber-Security and	
possible operation for improving methodology for other users.	
Laboratory Sessions/ Experimental learning: Data capturing from PMU using HIL-	8Hrs
PMU setup using C-37 protocol	01115
Two setup using C 57 protocol	
Applications: Communication technologies for Smart Grids	
Applications: Communication technologies for Smart Grids	

Course O	Course Outcomes: After completing the course, the students will be able to					
C402.2.1	Understanding on the concepts of Smart Grid and its present developments.					
C402.2.2	Study about different Smart Grid technologies					
C402.2.3	Acquire knowledge about different smart meters and advanced metering					
C402.2.3	infrastructure.					
C402.2.4	Enrich knowledge on power quality management in Smart Grids.					
C402.2.5	Develop more understanding on LAN, WAN and Cloud Computing for Smart Grid					
C402.2.3	applications.					

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is

evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE): Total marks: 50+50=100

SEE for 50 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C402.2.1	3	2	-	-	-	-	2	2	-	-	-	2
C402.2.2	3	2	2	3	2	2	3	2	2		-	2
C402.2.3	3	2	3	3	3	3	3	2	2	2	2	2
C402.2.4	3	2	3	3	3	3	3	2	3	3	2	3
C402.2.5	3	2	3	3	3	3	3	2	3	3	2	3

	Semester: VII									
	SYSTEM ON CHIP									
Cou	rse Code:	MVJ21EE723	CIE Marks: 50							
Cree	dits:	L:T:P: 3:0:0	SEE Marks: 50							
Hou	irs:	40L	SEE Duration: 3 Hrs.							
Cou	rse Learning O	bjectives: The students will	be able to							
1	Understand the	components of system, hardw	ware and software							
2	Know the basic	concepts of processor archite	ecture and instructions							
3	Describe external and internal memory of SOC									
4	4 Get knowledge of bus models of SOC									
5	Understand SO	C customization and reconfig	guration technologies							

UNIT-I	
Introduction to the System Approach: System Architecture, Components of the	
system, Hardware & Software, Processor Architectures, Memory and Addressing.	
System level interconnection.	
Laboratory Sessions/ Experimental learning: Write-up on Microprocessors,	8Hrs
8086 Functional block diagram, Pin diagram and description.	
Applications: Understand different microprocessor architectures (ARM, Intel etc)	
Video link: https://www.youtube.com/watch?v=3KLOXUYGo9s	
UNIT-II	
Processors: Introduction, Processor Selection for SOC, Basic concepts in	
Processor Architecture, Basic concepts in Processor Micro Architecture, Basic	
elements in Instruction handling. Buffers: minimizing Pipeline Delays, Branches,	
More Robust Processors, and Vector Processors.	
Laboratory Sessions/ Experimental learning: Design and develop an assembly	8Hrs
language program to search a key element "X" in a list of 'n' 16-bit numbers.	
Adopt Binary search algorithm in your program for searching.	
Applications: Consumer device, Networking, and communication.	
Video link: https://nptel.ac.in/courses/108/107/108107029/	
UNIT-III	
Memory Design for SOC: Overview of SOC external memory, Internal Memory,	
Size, Scratchpads and Cache memory, Cache Organization, Cache data, Write	
Policies, Strategies for line replacement at miss time, Types of Cache, Split – I,	
and D - Caches, Multilevel Caches, Virtual to real translation, SOC Memory	
System, Models of Simple Processor – memory interaction.	8Hrs
Laboratory Sessions/ Experimental learning: Design and develop an assembly	onrs
program to sort a given set of 'n' 16-bit numbers in ascending order. Adopt	
Bubble Sort algorithm to sort given elements.	
Applications: Biomedical devices, Media processors, GPS controllers.	
Video link: https://nptel.ac.in/courses/108/107/108107029/	
UNIT-IV	

Interconnect Customization and Configuration: Interconnect Architectures,	
Bus: Basic Architectures, SOC Standard Buses, Analytic Bus Models, Using the	
Bus model, Effects of Bus transactions and contention time.	
Laboratory Sessions/ Experimental learning: Develop an assembly language	8Hrs
program to reverse a given string and verify whether it is a palindrome or not.	01115
Display the appropriate message.	
Applications: ASICs, PC-on-a-chip etc.	
Video link: <u>https://nptel.ac.in/courses/108/107/108107029/</u>	
UNIT-V	
SOC Customization: An overview, Customizing Instruction Processor,	
Reconfiguration Technologies, Mapping design onto Reconfigurable devices,	
Instance- Specific design, Customizable Soft Processor, Reconfiguration -	
overhead analysis and trade-off analysis on reconfigurable Parallelism.	
Application Studies / Case Studies: SOC Design approach, AES algorithms,	
Design and evaluation, Image compression – JPEG compression.	8Hrs
Laboratory Sessions/ Experimental learning: To write and simulate ARM	
assembly language programs for data transfer, arithmetic, and logical operations	
(Demonstrate with the help of a suitable program).	
Applications: Image processing, AI, and ML.	
Video link: https://nptel.ac.in/courses/108/107/108107029/	

Course (Course Outcomes: After completing the course, the students will be able to						
402.3.1	402.3.1 Memorize the system architecture, components of system hardware and software						
402.3.2	02.3.2 Know the basic concepts of processor architecture and instructions and delays						
402.3.3	02.3.3 Describe external and internal memory of SOC and organization						
402.3.4	Explain bus architectures and models of SOC						
402.3.5	Apply the knowledge of SOC design in real time applications						

Ref	erence Books
1.	Design of System on a Chip: Devices and Components - Ricardo Reis, Springe, 1st Ed.,
	2004, 978-1-4419-5454-1.
2.	Co-Verification of Hardware and Software for ARM System on Chip Design
	(Embedded Technology) – Jason Andrews – Newness, BK and
	CDROM,9780080476902.
3.	System on Chip Verification – Methodologies and Techniques – Prakash Rashinkar,
	Peter Paterson and Leena Singh L, , Kluwer Academic Publishers, 2001, 978-
	0792372790.
4.	Engineering the Complex SOC: Fast, Flexible design with configurable
	processors, C.Rowen Prentice Hall, 2004,978-0131455375.

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three subdivisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/P	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1
0	1	2	3	4	5	6	7	8	9	0	1	2
402.3.1	2	2	2	1	2	-	-	-	-	-	-	-
402.3.2	2	2	2	2	3	-	-	-	-	-	-	-
402.3.3	2	2	2	2	3	-	-	-	-	-	-	-
402.3.4	2	3	3	2	3	-	-	-	-	-	-	-
402.3.5	2	2	3	2	3	-	-	-	-	-	-	-

	OPERATION AND MAINTENANCE OF SOLAR ENERGY SYSTEMS (Theory)								
Cou	Course Code: MVJ21EE724 CIE Marks: 50								
Cree	dits:	L:T:P: 3:0:0	SEE Marks: 50						
Hou	irs:	40L	SEE Duration: 3 Hrs.						
Cou	rse Learning Obje	ctives: The students will be able to							
1	Discuss basics of solar resource data, PV technology, buying the PV modules, and								
1	connecting the modules to form arrays.								
2	Discuss inverters, system components, cabling used to connect the components, and								
2	mounting methods	s of the PV system.							
3	3 Explain site assessment, the design process of the grid-connected system, and its sizing.								
4	Explain installation, commissioning, operation, and maintenance of PV systems.								
5	Explain the types	of financial incentives available, the ca	alculation of payback time.						

UNIT-I

UNII-I	
Solar Resource and Radiation: Solar resources, quantifying solar radiation, the	
effect of the Earth's atmosphere on solar radiation, Sun geometry, Geometry for	
installing solar arrays.	
PV Industry and Technology: Semiconductor devices, Mainstream technologies,	
Monocrystalline silicon, Multi crystalline/polycrystalline silicon, thin film solar	
cells, Contacts, Buying solar modules, Standards, Certifications, Warranties,	
Emerging technologies, Dye-sensitized solar cells, Sliver cells, Heterojunction	
with intrinsic thin layer (HIT) photovoltaic cells, III-V Semiconductors, Solar	
concentrators.	
 PV Cells, Modules and Arrays: Characteristics of PV cells, Graphic representations of PV cell performance, Connecting PV cells to create a module, Specification sheets, creating a string of modules, Creating an array, Photovoltaic array performance, Irradiance, Temperature, Shading. Laboratory Sessions/ Experimental learning: To inspect solar panels and make a report about the type of panel, ratings, cost, etc. Applications: Identification of solar panels for different SPV applications. Web Link and Video Lectures: https://www.youtube.com/watch?v=pOx-rtIECuo https://www.youtube.com/watch?v=pOx-rtIECuo https://www.youtube.com/watch?v=RyzJlsxzG4A 	8Hrs
UNIT-II	
Inverters and Other System Components: Introduction, Inverters, Battery	
inverters, Grid interactive inverters, Transformers, Mainstream inverter	
technologies, String inverters, Multi-string inverter, Central inverter, Modular	
inverters, Inverter protection systems, Self-protection, Grid protection, Balance of	8Hrs
system equipment: System equipment excluding the PV array and inverter,	
Cabling, PV combiner box, Module junction box, Circuit breakers and fuses ,PV	
main disconnects/isolators, Lightning and surge protection, System monitoring,	

Metering, Net metering, Gross metering.

Mounting Systems: Roof mounting systems, pitched roof mounts, Pitched roof mounts for tiled roofs, Pitched roof mounts for metal roofs, Rack mounts, Direct mounts, Building-integrated systems, Ground mounting systems, Ground rack mounts, Pole mounts, Sun-tracking systems, Wind loading, Lightning protection. **Laboratory Sessions/ Experimental learning:** To build a cardboard model to demonstrate an SPV and grid connected PV system along with BOS equipment. **Applications:** Installation of PV systems.

Web Link and Video Lectures:

- <u>https://www.youtube.com/watch?v=oPTyem9dmEI</u>
- <u>https://www.youtube.com/watch?v=oPTyem9dmEI</u>

UNIT-III

Site Assessment: Location of the PV array, Roof specifications, Is the site shadefree, Solar Pathfinder, SolmetricSuneye, HORIcatcher, iPhone apps, Software packages, Available area, Portrait installation, Landscape installation, Energy efficiency initiatives, Health, safety and environment (HSE) risks, Local environment, Locating balance of system equipment, Site plan.

Designing Grid-connected PV Systems: Design brief, Existing system evaluation, choosing system components, Modules, Mounting structure, Inverters, Cabling, Voltage sizing, Current sizing, Monitoring, System protection, Overcurrent protection, Fault-current protection, Lightning and surge protection, Grounding/earthing, Mechanical protection, Array protection, Subarray protection, Extra low voltage (ELV) segmentation.

Sizing a PV System: Introduction, Matching voltage specifications, Calculating maximum voltage, Calculating minimum voltage, Calculating the minimum number of modules in a string, Calculating the maximum voltage, Calculating the minimum voltage, Calculating the minimum number of modules in a string, Calculating the minimum voltage, Calculating the minimum number of modules in a string, Matching current specifications, Matching modules to the inverter's power rating, Losses in utility-interactive PV systems, Temperature of the PV module, Dirt and soiling, Manufacturer'stolerance, Shading, Orientation and module tilt angle, Voltage drop, Inverter efficiency, Calculating system yield.

Laboratory Sessions/ Experimental learning: A case study of any grid connected PV system.

Applications: Choosing a site for PV installation, designing solar PV systems for grid connected operation.

Web Link and Video Lectures:

- <u>https://www.youtube.com/watch?v=mi2BzuEbj9o</u>
- <u>https://www.youtube.com/watch?v=2PeyBWy5NF8</u>

UNIT-IV

Installing Grid-connected PV Systems: PV array installation, DC wiring, Cabling routes, and required lengths, Cable sizing, PV combiner box, System grounding/earthing, Inverter installation, Installation checklist, Interconnection

with the utility grid, Required information for installation, and Safety.					
System Commissioning: Introduction, Final inspection of system installation,					
Testing, Commissioning, System documentation.					
System Operation and Maintenance: System maintenance, PV array					
maintenance, Inverter maintenance, System integrity, Troubleshooting,					
Identifying the problem, Troubleshooting PV arrays, troubleshooting					
underperforming systems, Troubleshooting inverters, and Other common problems.					
Laboratory Sessions/ Experimental learning: A case study on commissioning,					
operation, and maintenance of the solar system.					
Applications: Operation and maintenance of the solar system.					
Web Link and Video Lectures:					
https://www.youtube.com/watch?v=bTiHbAzKZGw					
UNIT-V					
Marketing and Economics of Grid-connected PV Systems: Introduction, PV					
system costing, Valuing a PV system, Simple payback, and financial incentives,					
Simple payback, Feed-in tariffs, Rebates, Tax incentives, Loans, Renewable					
portfolio standards and renewable energy certificates, Marketing, Insurance					
Laboratory Sessions/ Experimental learning: A case study on the economic					
aspect of grid integrated solar system.					
Web Link and Video Lectures:					
https://www.youtube.com/watch?v=CQCtkFXQqMI					

Course O	Course Outcomes: After completing the course, the students will be able to						
C402.4.1	Discuss basics of solar resource data, PV technology, buying the PV modules,						
C402.4.1	and connecting the modules to form arrays.						
C402.4.2	Discuss inverters, system components, cabling used to connect the components,						
	and mounting methods of the PV system.						
C402.4.3	Explain site assessment, the design process of the grid-connected system, and its						
	sizing.						
C402.4.4	Explain installation, commissioning, operation, and maintenance of PV systems.						
C402.4.5	Explain the types of financial incentives available, the calculation of payback						
	time.						

Reference Books

1.	Grid-connected Solar Electric Systems, The Earthscan Expert Handbook for Planning,
	Design and Installation Geoff Stapleton and Susan Neill Earthscan 1st Edition, 2012

Continuous Internal Evaluation (CIE): Theory for 50 Marks **CIE** is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE): Total marks: 50+50=100

SEE for 50 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three subdivisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C402.4.1	3	2	2	1	-	-	-	-	-	-	-	3
C402.4.2	3	2	2	1	-	-	-	-	-	-	-	3
C402.4.3	3	2	2	1	-	-	-	-	-	-	-	3
C402.4.4	3	2	2	1	-	-	-	-	-	-	-	3
C402.4.5	3	2	2	1	-	-	-	_	-	-	_	3

	Semester: VII							
	Power System Operation and Control							
Cou	Course Code: MVJ21EE731 CIE Marks: 50							
Cree	dits:	L:T:P: 3:0:0	SEE Marks: 50					
Hou	Hours:40LSEE Duration: 3 Hrs.							
Cou	rse Learning O	bjectives: The students will be able to						
1	Understand the significance of power system operation and control.							
2	Understand the	basics of load frequency control and auto	omatic generation control.					
3	Understand the basics of speed governing system, various methods to control frequency.							
4	Understand the reactive power-voltage interaction and to learn the control actions to be							
	implemented for	or maintaining the voltage profile against	varying system load.					
5	Understand the	reliability and contingency analysis, state	e estimation and related issues.					

UNIT-I						
Economic operation of power system: Statement of economic dispatch problem -	8Hr					
input and output characteristics of thermal plant - incremental cost curve - optimal	S					
generation allocation with line losses neglected and including the effect of transmission						
line losses-statement of unit commitment (UC) problem - constraints on UC problem -						
solution of UC problem using priority list method.						
Experimental learning: Solving unit commitment problem using software.						
Applications: Solving unit commitment problems						
Web Link and Video Lectures:						
• https://nptel.ac.in/content/storage2/courses/108107028/module1/lecture1/lecture1.						
pdf						
https://www.power-technology.com/features/feature-the-top-10-biggest-thermal-						
power-plants-in-india/						
UNIT-II						
Automatic Generation Control (AGC):Introduction-Schematic diagram of load	8Hr					
frequency and excitation voltage regulators of turbo generators-Modeling of Turbine:	S					
First Order Turbine Model- Block Diagram Representation of Steam Turbines and						
Approximate Linear Models- Modeling of Governor: Mathematical Modeling of Speed						
Governing System – Derivation of Small Signal Transfer Function – Block Diagram.						
Experimental learning: Modelling the turbine first order model using MATLAB						
Applications: designing of turbines and machines for power plant						
Web Link and Video Lectures:						
• <u>https://nptel.ac.in/content/storage2/courses/108107028/module1/lecture1/lecture1.</u>						
<u>pdf</u>						
• https://archive.nptel.ac.in/courses/108/105/108105133/						
UNIT-III						
Load –Frequency Control: Necessity of Keeping Frequency Constant. Definitions of	8Hr					
Control Area – Single AreaControl – Block Diagram Representation of an Isolated	S					

Power System – Steady StateAnalysis – Dynamic Response – Uncontrolled Case. Load	
Frequency Control of 2-AreaSystem – Uncontrolled Case and Controlled Case, Tie-	
Line Bias Control.	
Experimental learning: Single and Two area LFC control modelling in MATLAB.	
Applications: Frequency control in power plants	
Web Link and Video Lectures:	
• <u>https://jntua.ac.in/gate-online-</u>	
classes/registration/downloads/material/a159041328312.pdf	
https://www.allumiax.com/blog/top-5-advantages-of-parallel-operation-of-	
generators-or-alternators	
UNIT-IV	
Reactive power and Voltage control: Generation and absorption of reactive power,	8Hr
basics of reactive power control- Automatic Voltage Regulator (AVR)-Reactive Power	S
Compensation in TransmissionSystems - Advantages and Disadvantages of Different	
Types of CompensatingEquipment for Transmission Systems; Load Compensation -	
Specifications of LoadCompensator- Shunt andSeries Compensation.	
Experimental learning: Design of Simulink model for AVR	
Applications: Reactive power control in transmission and distribution systems.	
Web Link and Video Lectures:	
• https://www.electricalindia.in/reactive-power-management-voltage-control-to-	
avoid-blackouts/	
• <u>https://electrical-engineering-portal.com/how-reactive-power-is-helpful-to-</u>	
maintain-a-system-healthy	
UNIT-V	
Power System Security analysis: Introduction-Factors affecting power system	8Hr
security- Contingency Analysis-Linear Sensitivity Factors-AC power flow methods-	s
Contingency Selection and Ranking.Challenges to Electricity Pricing –Construction of	5
Forward Price Curves – Short-time Price Forecasting.	
Experimental learning: Visiting substation equipped with SCADA devices.	
Applications: Automation.	
Web Link and Video Lectures:	
 <u>https://www.inductiveautomation.com/resources/article/what-is-scada</u> 	
• <u>https://www.youtube.com/watch?v=nlFM1q9QPJw</u>	

Course Outcomes: After completing the course, the students will be able to										
C403.1.1	C403.1.1 Describe the day-to-day operation of electric power system.									
C403.1.2	Understand the reactive power-voltage interaction and load frequency control									

	and modelling turbine and generators.					
C403.1.3	Acquire knowledge on real power-frequency interaction in single area system.					
C403.1.4	Describe the significance of power system operation and control for reactive					
	power compensation.					
C403.1.5	Explain security, contingency analysis, state estimation of power systems.					

Ref	Reference Books							
11	Kundur P., 'Power System Stability and Control, McGraw Hill Education Pvt. Ltd.,							
11.	New Delhi, 10th reprint, 2010.							
12	Allen. J. Wood and Bruce F. Wollen berg, 'Power Generation, Operation and Control',							
14,	John Wiley & Sons, Inc., 2016.							
3.	Kothari D.P. and Nagrath I.J., 'Power System Engineering', Tata McGraw-Hill							
5.	Education, Second Edition, 2008.							
4.	Hadi Saadat, 'Power System Analysis', McGraw Hill Education Pvt. Ltd., New Delhi,							
	21st reprint, 2010.							

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C403.1.1	3	3	-	3	-	-	-	-	-	-	2	1
C403.1.2	3	3	-	3	-	-	-	-	-	-	3	1
C403.1.3	3	3	-	3	-	-	-	-	-	-	2	1
C403.1.4	3	3	-	3	-	-	-	-	-	-	3	1
C403.1.5	3	3	-	3	-	-	-	-	-	-	2	1

	Semester: VII										
	Power Quality and FACTS										
	(Theory)										
Cou	rse Code:	MVJ21EE732	CIE Marks: 50								
Cre	dits:	SEE Marks: 50									
Hou	irs:	40L	SEE Duration: 3 Hrs.								
Cou	rse Learning Obje	ectives: The students will b	e able to								
1	Understand power	r quality related terms and I	llustrate power quality issues.								
2	Analyze overvolta	age and transients in power	systems.								
3	Understand various power quality monitoring and compensation techniques.										
4	Explain the basic concepts and requirements of FACTS.										
5	Discuss Voltage S	Source Converter based (FAG	Discuss Voltage Source Converter based (FACTS) Controllers								

IINIT_I

UNIT-I	
Introduction To Power Quality: Terms and definitions & Sources – Overloading,	
under voltage, over voltage - Concepts of transients - short duration variations such	
as interruption - long duration variation such as sustained interruption - Sags and	
swells - Voltage sag - Voltage swell - Voltage imbalance - Voltage fluctuations -	
Power frequency variations.	
Voltage sags: Sources of Sags and Interruptions, Estimating Voltage Sag	
Performance, Fundamental Principles of Protection	8Hrs
Laboratory Sessions/ Experimental learning: Study of effect of nonlinear loads	
on power quality by using MATLAB simulation	
Applications: Identification and classification of power quality issues.	
Video link:	
https://nptel.ac.in/courses/108/107/108107157	
https://nptel.ac.in/content/storage2/108/107/108107157/MP4/mod02lec06.mp4	
UNIT-II	
Harmonics: sources from commercial and industrial loads – Locating harmonic	
sources -Harmonics Vs transients. Effect of harmonics - Harmonic distortion -	
Voltage and current distortions – Harmonic indices – Inter harmonics – Infraction	
harmonics, Principles for compensating Harmonics.	
Over Voltages: Sources of over voltages - Capacitor switching - lightning - ferro	
resonance. Mitigation of voltage swells - surge arresters - low pass filters - power	
conditioners. Lightning protection - shielding - line arresters - protection of	8Hrs
transformers and cables.	oms
Laboratory Sessions/ Experimental learning: Simulation for generation of	
transients.	
Applications: Selection of equipment rating.	
Video link:	
https://www.youtube.com/watch?v=FiGjNyX6h8c	
https://nptel.ac.in/content/storage2/108/107/108107157/MP4/mod02lec07.mp4	
UNIT-III	

Power Quality Monitoring: Monitoring considerations - Monitoring and						
diagnostic techniques for various power quality problems – Power Quality						
measurement equipment - Assessment of Power Quality Measurement Data,						
Application of intelligent Systems- Power Quality Monitoring Standards.						
Laboratory Sessions/ Experimental learning: Design of active shunt compensator	8Hrs					
for harmonics compensation						
Applications: Active filters						
Video link: https://www.youtube.com/watch?v=FiGjNyX6h8c						
UNIT-IV						
Thyristor-based Flexible AC Transmission Controllers (FACTS): Description						
and Characteristics of Thyristor-based FACTS devices: Static VARCompensator						
(SVC), Thyristor Controlled Series Capacitor (TCSC), configurations/modes of						
operation, harmonics, and control of SVC and TCSC, applications of SVC's.						
Laboratory Sessions/ Experimental learning: Design a control scheme for UPFC						
in SIMULINK.						
Applications: Voltage control and power flow control of multiple line. Power flow						
control between the lines.						
Video link:						
https://nptel.ac.in/courses/108/107/108107114/						
https://nptel.ac.in/courses/108/107/108107114/						
UNIT-V						
Voltage Source Converter based (FACTS) Controllers: Fundamentals of Voltage						
Source Converters (VSC) for FACTs, STATCOM: Principle of operation and						
applications, Dynamic voltage restorer (DVR): Operation and applications, Unified						
Power Flow Controller (UPFC): Principle of Operation and control.	8Hrs					
Laboratory Sessions/ Experimental learning: Design a TCR for reactive power	01115					
compensation in SIMULINK.						
Applications: Reactive power compensation in the long transmission lines.						
Video link : <u>https://nptel.ac.in/courses/108/107/108107114/</u>						

Course O	Course Outcomes: After completing the course, the students will be able to									
C403.2.1 Understand power quality related terms and Illustrate power quality issues.										
C403.2.2 Analyze overvoltage and transients in power systems.										
C403.2.3 Understand various power quality monitoring and compensation techniques.										
C403.2.4 Explain the basic concepts and requirements of FACTS.										
C403.2.5	Discuss Voltage Source Converter based (FACTS) Controllers.									

Ref	erence Books								
1.	"Electric Power Quality", Dugan, Roger C, Santoso, Surya, McGranaghan, Mark F								
	Beaty, H. Wayne McGraw-Hill professional publication 2003.								
2.	"Power Quality in Power Systems and Electrical Machines", Mohammad A.S Masoum,								
	Ewald F.Fuchs, Academic Press, Elsevier, 2015.								
3.	"Understanding FACTS: Concepts and Technology of Flexible AC Transmission								
	Systems", N.G. Hingorani, L. Gyugyi, IEEE Press, N.Y., 2000.								
4.	"Thyristor-based FACTS controllers for Electrical Transmission Systems", R. Mohan								
	Mathur, R K Verma, Wiley IEEE Press.								

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C403.2.1	3	3	-	1	1	-	-	-	-	-	-	2
C403.2.2	3	3	-	2	1	-	-	-	-	-	-	2
C403.2.3	3	3	-	2	1	-	-	-	-	-	-	2
C403.2.4	3	3	-	2	1	-	-	-	-	-	-	2
C403.2.5	3	2	-	2	1	-	-	-	-	-	-	2

	Semester VII									
	Electric Drives and Control									
		(Theory)							
Cou	rse Code:	MVJ21EE733	CIE Marks:100							
Cree	dits:	L:T:P:3:0:0	SEE Marks: 100							
Hou	rs:	40L	SEE Duration: 3 Hrs.							
Cou	rse Learning Ob	jectives: The students will	be able to							
1	Understand the f	undamental concepts and dy	namic conditions of electric drives.							
2	Study the various speed control strategies of DC motor control.									
3	3 Develop solid state control of induction motor drive.									
4										
5	Incorporate the i	ndustrial applications in driv	e motor control.							

UNIT-I

UNII-I						
Introduction: Introduction to Electric Drives - Need of electric drives, basic						
parts, types of drives, Selection of drives, Heating and cooling of electric drives,						
classes of duties, Speed - Torque characteristics of various types of loads and						
drive motors Multi quadrant operation,						
Laboratory Sessions/ Experimental learning: Speed- Torque characteristics of	8Hrs					
drive motor						
Applications: Analysis on dynamics of drive motors						
Video link: 1. https://archive.nptel.ac.in/courses/108/104/108104140/						
2. <u>https://youtu.be/QaLGo0R0SYU</u>						
UNIT-II						
Control of DC Drives: Ward - Leonard control scheme- Chopper controlled DC						
motor drives- Four quadrant chopper circuit - DC motor drive using half						
controlled and fully controlled single phase and three phase rectifiers, continuous						
conduction modes of operation, 4-quadrant operation using dual converter-						
Braking of DC drives. Analysis of Closed Loop Control of DC Motor.						
Laboratory Sessions/ Experimental learning: Simulation of closed loop control						
of converter fed DC motor.						
Applications: Solid state speed control of DC motors.						
Video link: 1. <u>https://youtu.be/aW7JYwrzTJI</u>						
2. <u>https://youtu.be/D0yHlNbf5-w</u>						
3. <u>https://youtu.be/5qzUm3PvWXA</u>						
UNIT-III						
Induction Motor Drive: Stator voltage controller fed closed loop control of						
induction motor, Four quadrant closed loop control, open loop VFVS fed IM,						
Cycloconverter fed IM, closed loop control of VSI & CSI fed IM drives, Closed						
loop control of static rotor resistance control- Slip power recovery scheme- Vector						
control strategies- Braking of induction motor.						
Laboratory Sessions/ Experimental learning: Speed control of slip ring						
induction motor.						
Applications: Solid state speed control of three phase induction motor.						
Video link: 1. <u>https://nptel.ac.in/courses/108104140</u>						

2. https://youtu.be/LXdB0_pbIWA							
3. https://youtu.be/Wf5sFR68cBI							
UNIT-IV							
Speed control of 3 phase Synchronous Motors: - True synchronous and self							
controlled modes of operations. Synchronous motor drive with voltage source							
inverter, load commutated thyristor inverter and Cycloconverter - Power factor							
control –Permanent Magnet AC (PMAC) motor drives.							
Laboratory Sessions/ Experimental learning: Simulation of Synchronous Motor							
Drives using MATLAB.	8Hrs						
Applications: Speed Control of Synchronous Motors							
Video link: 1. <u>https://youtu.be/lp5U1ez1_w8</u>							
2. https://youtu.be/b24jORRoxEc							
3. <u>https://youtu.be/oGoDbEHkc0Y</u>							
UNIT-V							
Digital Control and Drive Applications: Microprocessor/Microcontroller and							
PLC based control of drives- Solar and battery powered Drives- Drive circuits for							
stepper motors.							
Industrial Drives: The drive selection, Steel rolling mills, Paper mills, Lifts and							
Cranes.							
Laboratory Sessions/ Experimental learning: Speed control of stepper motors.							
Applications: Measurement of energy conservation in electrical drives.							
Video link: 1. https://youtu.be/OQdoPDB-iYk							
2. https://onlinecourses.nptel.ac.in/noc21_ee112/preview_							
3. <u>https://youtu.be/8XrhTxJCaq8</u>							

Course O	Course Outcomes: After completing the course, the students will be able to							
C403.3.1	Discuss the basic components of the drive system from automation perspective.							
C403.3.2	Analyze the various converter and chopper fed DC drive with appropriate control.							
C403.3.3	Explain the various speed control methodologies for induction motor drive.							
C403.3.4	Examine the synchronous motor control strategies with pertinent techniques.							
C403.3.5	Apply digital control techniques on industrial drive applications.							

Ref	erence Books
1.	Fundamentals of Electrical Drives, Gopal K Dubey, Narosa Publishing House, 2014.
2.	Electric Drives (Concepts and Applications), Vedam Subrahmaniam, , Tata McGraw-
	Hill, 2010
3.	A First Course on Electric Drives, Pillar S.K , Wiley Eastern Limited, 2012
4.	Programmable Logic Controllers principles & Applications, John Webb, PHI, 2009.

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is

evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

SEE for 50 marks executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Total marks: 50+50=100

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C403.3.1	3	3	3	3	-	2	-	-	-	-	-	3
C403.3.2	3	3	3	3	-	2	-	-	-	-	-	3
C403.3.3	3	3	3	3	-	2	-	-	-	-	-	3
C403.3.4	3	3	3	3	-	2	-	-	-	-	-	3
C403.3.5	3	3	3	3	-	2	-	-	-	-	-	3

	Semester: VII									
	PLC and SCADA									
		(Theory)								
Cou	rse Code:	MVJ22EE734	CIE Marks:50							
Cree	dits:	L:T:P: 3:0:0	SEE Marks: 50							
Hou	rs:	40L	SEE Duration: 3 Hrs							
Cou	rse Learnin	g Objectives: The students will be able to								
	Discuss ar	chitecture of industrial automation system	n and draw block diagram of							
1	industrial automation & control system.									
2	Describe the basic and application of PLC for automation.									
3	3 Discuss the fundamentals of PLC Wiring Diagram and Ladder Logic Program.									
4	Discuss different program control instruction in PLC									
5	Discuss the	e fundamentals of SCADA and HMI.								

UNIT-I					
 Programmable Logic Controllers: Introduction, Parts of a PLC, Principles of Operation, Modifying the Operation, PLCs versus Computers, PLC Size and Application. PLC Hardware Components: The I/O Section, Discrete I/O Modules, Analog I/O Modules, Special I/O Modules, I/O Specifications, The Central Processing Unit (CPU), Memory Design, Memory Types. Basics of PLC Programming: Processor Memory Organization, Program Scan, PLC Programming Languages, Relay-Type Instructions, Instruction Addressing, Branch Instructions, Internal Relay Instructions, Programming Examine If Closed and Examine If Open Instructions, Modes of Operation. Laboratory Sessions/ Experimental learning: Study hardware and software used in PLC Applications: Industrial and commercial applications. Videa Link: https://prtol.ac.ip/courses/108/105/108105088/ 					
Video Link: https://nptel.ac.in/courses/108/105/108105088/					
UNIT-II					
DevelopingFundamentalPLCWiringDiagramsandLadderLogicPrograms:ElectromagneticControlRelays,Contactors,MotorStarters,ManuallyOperatedSwitches,MechanicallyOperatedSwitches,Sensors,OutputControl Devices,Seal-In Circuits,Latching Relays,ConvertingRelaySchematicsintoPLCLadderPrograms,WritingaLadderLogicProgramDirectlyfromaNarrativeDescription.LaboratorySessions/Experimental learning:ImplementationLogic	8Hrs				
and verification of truth table in virtual lab or Logix Pro 500.					
Applications: Industrial and commercial applications					
Video Link: http://www.digimat.in/nptel/courses/video/108105088/L31.html					
UNIT-III					
Programming Timers and counters: Timer Instructions, On/offDelay Timer Instruction, Retentive Timer, Cascading Timers, Programming Counter Instructions, Up-Counter, Down-Counter, Cascading Counters, Incremental	8Hrs				

Encoder, Combining Counter and Timer Functions for different applications. Laboratory Sessions/ Experimental learning: Implementation of On-Delay					
Timer and Off-Delay Timer in Virtual lab.					
Application: Counter and timer applications					
Video Link: <u>https://www.youtube.com/watch?v=qD1WGwe0AQ0</u>					
UNIT-IV					
Program Control Instructions: Master Control Reset Instruction, Jump					
Instruction, Subroutine Functions, Immediate Input and Immediate Output					
Instructions, Forcing External I/O Addresses, Safety Circuitry, Selectable Timed					
Interrupt, Fault Routine, Temporary End Instruction, Suspend Instruction.	8Hrs				
Laboratory Sessions/ Experimental learning: Implementation of arithmetic					
instruction using Virtual lab					
Application: Conveyor belt control in industries.					
Video Link: <u>https://www.youtube.com/watch?v=grr-3XhBSuY</u>					
UNIT-V					
SCADA Fundamentals: Introduction, Open system: Need and advantages,					
building blocks of SCADA systems, Remote terminal unit (RTU), Evolution of					
RTUs, Components of RTU, and human-machine interface (HMI) subsystem,					
Power supplies, Advanced RTU functionalities, Intelligent electronic devices					
(IEDs), SCADA communication systems.	8Hrs				
Laboratory Sessions/ Experimental learning: Study of key concepts within					
SCADA systems					
Application: Temperature control using PLC and SCADA					
Video Link: https://youtu.be/X0U8-4ZPcro					

Course O	Course Outcomes: After completing the course, the students will be able to							
C403.4.1	Explain the architecture of industrial automation system and draw a block							
C405.4.1	diagram of industrial automation & control system							
C403.4.2	C403.4.2 Explain basic concepts and Application of PLC to process control industries.							
C403.4.3	Develop the fundamental PLC Wiring Diagrams and Ladder Logic Programsfor							
C403.4.3	different applications.							
C403.4.4 Develop the ladder diagram using different program control instructions.								
C403.4.5	Explain the fundamentals of SCADA and HMI.							

Tex	tbooks/ Reference Books							
1.	Programmable Logic controllers, Frank D Petruzella, The McGraw Hill ,4 th edition.							
2.	Introduction Programmable Logic Controllers, Gary Dunning, Cengage3rd Edition,2006.							
3.	Process Control Instrumentation Technology By. C.D. Johnson, PHI							
4.	Industrial Instrumentation and Control By. S.K. Singh the McGraw Hill Companies							

Continuous Internal Evaluation (CIE): Theory for 50 Marks CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

SEE for 50 marks executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping										PSO				
CO/P	PO	PO	PO	PS	PS									
0	1	2	3	4	5	6	7	8	9	10	11	12	01	02
C403.	3	2	-	2	-	-	-	-	-	-	-	3		
4.1													-	-
C403.	3	2	2	2	2	-	-	-	-	-	-	3	_	_
4.2														
C403.	3	3	3	2	2	-	-	-	-	-	-	3	_	_
4.3														
C403.	3	2	2	2	1	-	-	-	-	-	-	2	_	_
4.4														
C403.	3	2	-	2	-	-	-	-	-	-	-	2	_	_
4.5														

Total marks: 50+50=100

	IOT based Smart Appliances									
	(Theory)									
Course Code:MVJ21EE741CIE Marks:100										
Cree	dits:	L:T:P: 3:0:0	SEE Marks: 100							
Hours: 40L SEE Duration: 3 Hrs										
Course Learning Objectives: The students will be able to										
1	Assess the gene	esis and impact of IoT applications,	architectures in real world.							
2	Illustrate divers	se methods of deploying smart obje	cts and connect them to network.							
3	Compare differ	ent Application protocols for IoT.								
4	4 Infer the role of Data Analytics and Security in IoT.									
5	_ Identify sensor technologies for sensing real world entities and understand the role of									
5	⁵ IoT in various domains of Industry.									

UNIT-I						
What is IoT, Genesis of IoT, IoT and Digitization, IoT Impact, Convergence of IT						
and IoT, IoT Challenges, IoT Network Architecture and Design, Drivers Behind						
New Network Architectures, Comparing IoT Architectures, A Simplified IoT						
Architecture, The Core IoT Functional Stack, IoT Data Management and Compute						
Stack.						
Laboratory Sessions/ Experimental learning: Case study on different types of	8Hrs					
architectures.						
Applications : IoT based sensors and its applications						
Video link: 1. https://youtu.be/WUYAjxnwjU4						
2. <u>https://youtu.be/BXDxYh1EV2w</u>						
UNIT-II						
Smart Objects: The "Things" in IoT, Sensors, Actuators, and Smart Objects,						
Sensor Networks, Connecting Smart Objects, Communications Criteria, IoT						
Access Technologies.						
Laboratory Sessions/ Experimental learning: Design a model of IoT based	8Hrs					
temperature monitor						
Applications: Electric actuators, Thermal or magnetic actuators.						
Video link: 1. https://youtu.be/z3VEZPwl5gA						
2. <u>https://youtu.be/SXz0XR68dwE</u>						
UNIT-III						
IP as the IoT Network Layer, The Business Case for IP, The need for						
Optimization, Optimizing IP for IoT, Profiles and Compliances, Application						
Protocols for IoT, The Transport Layer, IoT Application Transport Methods.	011					
Laboratory Sessions/ Experimental learning: IoT based traffic light control for	8Hrs					
emergency vehicles.						
Applications: Vehicle tracking system, Traffic management						
- · · ·						

Video link :	
1. https://youtu.be/IfzGf4kI2a8	
2. <u>https://youtu.be/nyUZn93Lr-o</u>	
UNIT-IV	
Data and Analytics for IoT, An Introduction to Data Analytics for IoT, Machine Learning, Big Data Analytics Tools and Technology, Edge Streaming Analytics, Network Analytics, Securing IoT, A Brief History of OT Security, Common Challenges in OT Security, How IT and OT Security Practices and Systems Vary, Formal Risk Analysis Structures: OCTAVE and FAIR, The Phased Application of Security in an Operational Environment Laboratory Sessions/ Experimental learning: Design a system to control the direction and speed of DC motor Applications: Real time monitoring in healthcare systems. Video link: 1. https://youtu.be/5meTtLGc2j8 2.https://youtu.be/qko-f1VDhCM	8Hrs
UNIT-V	
 IoT Physical Devices and Endpoints - Arduino UNO: Introduction to Arduino, Arduino 10 Hours UNO, Installing the Software, Fundamentals of Arduino Programming. IoT Physical Devices and Endpoints – Raspberry Pi: Introduction to Raspberry Pi, About the Raspberry Pi Board: Hardware Layout, Operating Systems on Raspberry Pi, Configuring Raspberry Pi, Programming Raspberry Pi with Python, Wireless Temperature Monitoring System Using Pi, DS18B20 Temperature Sensor, Connecting Raspberry Pi via SSH, Accessing Temperature from DS18B20 sensors, Remote access to Raspberry Pi, Smart and Connected Cities, An IoT Strategy for Smarter Cities, Smart City IoT Architecture, Laboratory Sessions/ Experimental learning: Controlling IoT LED using Raspberry Pi Applications: Raspberry Pi IoT Garden, An Industrial IoT controller Video link: 1. <u>https://youtu.be/s2AKMERnBhQ</u> 	8Hrs

Course Outcomes: After completing the course, the students will be able to						
C404.1.1	Interpret the impact and challenges posed by IoT networks leading to new					
	architectural models.					
C404.1.2	Compare and contrast the deployment of smart objects and the technologies to					
	connect them to network.					
C404.1.3	Appraise the role of IoT protocols for efficient network communication.					
C404.1.4	Elaborate the need for Data Analytics and Security in IoT.					

	Illustrate different sensor technologies for sensing real world entities and identify
C404.1.5	the applications of IoT in Industry.

Ref	Reference Books							
1.	IoT Fundamentals: Networking Technologies, Protocols, and Use Cases for the Internet							
	of Things, David Hanes, Gonzalo Salgueiro, Patrick Grossetete, Robert Barton, Jerome							
	Henry, 1 st Edition, Pearson Education (Cisco Press Indian Reprint). (ISBN: 978-							
	9386873743)							
2.	Internet of Things, Srinivasa K G, CENGAGE Leaning India, 2017							
3.	Internet of Things (A Hands -onApproach), Vijay Madisetti and ArshdeepBahga, 1st							
	Edition, VPT, 2014. (ISBN: 978-8173719547)							

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

SEE for 50 marks executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C404.1.1	3	3	3	3	3	2		-	-	-	-	3
C404.1.2	3	3	3	3	3	2		-	-	-	-	3
C404.1.3	3	3	3	3	3	2		-	-	-	-	3
C404.1.4	3	3	3	3	3	2		-	-	-	-	3
C404.1.5	3	3	3	3	3	2		-	-	-	-	3

Total marks: 50+50=100

	DISASTER MANAGEMENT										
(Theory)											
Course Code:		MVJ21EE742	CIE Marks: 50								
Cree	dits:	L:T:P: 3:0:0	SEE Marks: 50								
Hou	irs:	40L	SEE Duration: 3 Hrs.								
Cou	rse Learning Ob	jectives: The students will h	e able to								
1	Discuss disaster	Discuss disaster management, its planning, occurrence of cyclones and their hazard									
1	potential.	potential.									
2	Discuss the role	Discuss the role of IMD, cyclone warning system in India and cyclone disaster									
2	management plan.										
3	Discuss the role of different institutions, defence, and other services in natural disaster										
3	management.										
4	Discuss the role	Discuss the role of Central Water Commission in river water sharing, Draught, its									
4	assessment, and	drought management plan.									
5	Discuss reasons	for the occurrence of earthqu	ake, Tsunamis, and thunderstorms.								

UNIT-I	
Disaster Management Plan (DMP): - General introduction.	
 Cyclones and their Hazard Potential: Classification of Low-Pressure Systems, Movement of Cyclones in Indian Seas, Storm Surges. Hazard Potential of Cyclonic Storms, Cyclone Prediction and Dissemination of Warnings, Dissemination of Cyclone Warnings. Case study: A study on Hazard Risks and Vulnerabilities in Regions Requiring Special Attention. Applications: Reduce vulnerability to hazards & cope with disaster. Web Link and Video Lectures: https://www.youtube.com/watch?v=TB97oX7ANGo 	8Hrs
<u>https://nptel.ac.in/courses/105104183</u> UNIT-II	
India Meteorological Department and Cyclone Warnings in India: Cyclone	1
Warnings through INSAT, Port Warnings with Day and Night hoisting Signals.	
Cyclones Disaster Management – Plan: Hazard Potentials Associated with Cyclones, Vulnerability Reduction, Early Warning.	
Action Plan for Cyclone Disaster Management.	8Hrs

Case study: A study on cyclones and its impact on India. Applications: helps removing people and property from a threatened location by facilitating timely and effective rescue, relief, and rehabilitation. Web Link and Video Lectures:

• https://nptel.ac.in/courses/105104183	
 <u>https://nptei.ac.in/courses/105/104/105104183/</u> <u>https://archive.nptel.ac.in/courses/105/104/105104183/</u> 	
UNIT-III	
Role of Different Institutions in Natural Disaster Management: Role of Zilla	
Parishad, Role of PRA Groups in Disaster Management, Role of NGOs, Self	
Help Groups in Disaster Management, Role of Red Cross in Disaster	
Management.	
Management.	
The Role of Defence and other Services in Disaster Management: Role of Air	
Force in DisasterManagement, Role of Medical and Health Department in	
Cyclone disaster management, National Disaster Response Force (NDRF), Role	011
of Remote Sensing in Disaster Management, Role of Broadcast, Educational	8Hrs
Media in disaster management.	
Created and Data of NCOs during Created 10 and therein	
Case study: Role of NGOs during Covid 19 pandemic.	
Applications: helps to provide effective rescue, relief, and rehabilitation.	
Web Link and Video Lectures:	
• <u>https://www.youtube.com/watch?v=F6expVc06PI</u>	
<u>https://egyankosh.ac.in/bitstream/123456789/25512/1/Unit-3.pdf</u>	
Floods: Definition of Flood, Role of Central Water Commission, Flood Warning	
Signals and Precautionary Actions, Water Purification Technologies in Flood	
Affected Areas.	
Drought: Drought Management Plan, Drought Assessment, Drought Parameters,	
Role of Banking, Insurance, Microfinance in drought mitigation, Drought	011
Monitoring, Drought Research Unit (IMD), Rainwater harvesting.	8Hrs
Case study: A study on impact of floods and drought on India.	
Applications: helps to provide effective rescue, relief, and rehabilitation.	
Web Link and Video Lectures:	
• <u>https://nptel.ac.in/courses/105104183</u>	
<u>https://archive.nptel.ac.in/courses/105/104/105104183/</u>	
Earthquakes: Plate Tectonics, Seismicity of India, Earthquake Forecast and	
disaster management, Tsunamis, Landslides and Avalanches, Volcanoes.	
Hazards associated with Convective Clouds: Lightning, Some Effects of	
Electric Shock, Favours and Frowning's of Thunderstorms, Hailstorms,	
Tornadoes, Waterspouts, Dust-Devils, Nowcasting, Summer Thunderstorms over	011
India, Cold Waves and Heat Waves in India.	8Hrs
Case study: Case study on Gorkha Farthquake	
Case study: Case study on Gorkha Earthquake Applications: helps removing people and property from a threatened location by	
facilitating timely and effective rescue, relief, and rehabilitation.	
Web Link and Video Lectures:	
WED LINK AND VIDED LECTURES;	

- https://archive.nptel.ac.in/courses/105/104/105104183/
- <u>https://nptel.ac.in/courses/105104183</u>
- https://nptel.ac.in/courses/105104183

Course O	Course Outcomes: After completing the course, the students will be able to								
C404.2.1	Discuss disaster management plan, cyclones, and their hazard potential.								
C404.2.2	Understand the role of IMD and cyclone prediction and cyclone warning system								
	in India.								
C404.2.3	Understand the role of different institutions defense and other services in natural								
	disaster management.								
C404.2.4	Understand the role of Central Water Commission in river water sharing,								
	Draught, its assessment, and draught management plan.								
C404.2.5	Understand occurrence of earthquake, Tsunamis, and thunderstorms.								

Reference Books

1.	"Earth and Atmospheric Disaster Management Natural and Man-made" Navale										
	Pandharinath, C. K. Rajan, BS Publications 2009										
2.	"National Disaster Management Plan" by National Disaster Management Authority										
	Revised Edition - November, 2019										

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C404.2.1	3	3	1	1	1	-	-	-	1	-	-	2
C404.2.2	3	3	1	2	1	-	-	-	1	-	-	2
C404.2.3	3	3	1	2	1	-	-	-	1	-	-	2
C404.2.4	3	3	1	2	1	-	-	-	1	-	-	2
C404.2.5	3	2	1	2	1	-	-	-	1	-	-	2

	Semester: VII										
	Introduction to Electric Vehicles										
		(Theory	y)								
Cou	rse Code:	MVJ21EE743	CIE Marks:50								
Credits:		L:T:P: 3:0:0	SEE Marks: 50								
Hou	irs:	40L	SEE Duration: 3 Hrs								
Cou	rse Learning Ob	jectives: The students will	be able to								
1	1 Understand the fundamental laws and vehicle mechanics.										
2	Understand worl	king of Electric Vehicles and	l recent trends.								
3	Analyze differen	t energy storage systems us	ed in electric vehicles.								
4											
5	Develop and des	ign major components of El	ectric and Hybrid Electric Vehicles								

UNIT-I	
Vehicle Mechanics: Roadway Fundamentals, Laws of Motion, Vehicle Kinetics, Dynamics of Vehicle Motion, Propulsion Power, Force-Velocity Characteristics, Maximum Gradability, Velocity and Acceleration, Constant FTR, Level Road, Velocity Profile, Distance Traversed, Tractive Power, Energy Required, Non- constant FTR, General Acceleration, Propulsion Systems. Laboratory Sessions/ Experimental learning: Simulation of an EV Applications: Designing an Electric Vehicle Web Link and Video Lectures: https://www.youtube.com/watch?v=LZ82iANWBL0	8Hrs
UNIT-II	
Electric and Hybrid Electric Vehicles: Configuration of Electric Vehicles, Performance of Electric Vehicles, Traction motor characteristics, Tractive effort and Transmission requirement, Vehicle performance, Tractive effort in normal driving. Concept of Hybrid Electric Drive Trains, Architecture of Hybrid Electric Drive Trains, Series Hybrid Electric Drive Trains, Parallel hybrid electric drive trains Laboratory Sessions/ Experimental learning: Industrial Visit Applications: Selection of appropriate motors for Electric vehicles Web Link and Video Lectures: https://www.youtube.com/watch?v=q6BYr5-fq5U	8Hrs
UNIT-III	
 Energy storage for EV and HEV: Energy storage requirements, Battery parameters, Types of Batteries, Fuel Cell basic principle and operation, Types of Fuel Cells, PEMFC and its operation, Supercapacitors Laboratory Sessions/ Experimental learning: Application: Selection of the most efficient energy storage system for an EV. Web Link and Video Lectures: 	8Hrs

1
l
l
l
8Hrs
l
l
l
l
 I
l
l
l
l
l
8Hrs
l
l
1
1
1
l

Course O	Course Outcomes: After completing the course, the students will be able to								
C404.3.1	Explain the roadway fundamentals, laws of motion, vehicle mechanics and propulsion system design.								
C404.3.2	Explain the working of electric vehicles and hybrid electric vehicles in recent trends.								
C404.3.3	Model batteries, Fuel cells, PEMFC and super capacitors								
C404.3.4	Develop the electric propulsion unit and its control for application of electric vehicles.								
C404.3.5	Develop and design major components of Electric and Hybrid Electric Vehicles								

Reference Books

1. Modern Electric, Hybrid Electric, and Fuel Cell Vehicles: Fundamentals, Theory, and Design, M. Ehsani, Y. Gao, S.Gay and Ali Emadi,1 Edition,2005, CRC Press, ISBN:.978-0849331541.

 Energy Management Strategies for Electric and Plug-in Hybrid Electric Vehicles, Sheldon S. Williamson, 1 Edition, 2013, Springer, ISBN: 1493955233
 Modern Electric Vehicle Technology, C.C. Chan and K.T. Chau,4 Edition,2001,Oxford University press, ISBN: 9780198504160
 Electric and Hybrid Vehicles: Design Fundamentals, Iqbal Husain, 1 Edition,2003, CRC Press,ISBN: 084931466.

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C404.3.1	2	3	1	1	-	-	-	-	-	-	-	-
C404.3.2	2	3	1	2	-	-	-	-	-	-	-	-
C404.3.3	2	3	1	2	-	-	-	-	-	-	-	-
C404.3.4	2	3	1	2	-	-	-	-	-	-	-	-
C404.3.5	2	3	1	3	-	-	-	-	-	-	-	-

	Semester: VII								
	AIRCRAFT POWER SYSTEM								
	(Theory)								
Cou	rse Code:	MVJ21EE744	CIE Marks: 50						
Cree	dits:	L:T:P: 3:0:0	SEE Marks: 50						
Hou	irs:	40L	SEE Duration: 3 Hrs.						
Cou	rse Learning Ob	jectives: The students will	be able to						
1	Understand the electrical and electronics components of aircraft system.								
2	Explain electrical machines and power units in aircraft system.								
3	Explain power distribution in aircraft systems.								
4	4 Explain different controls, transducers and lighting used in aircraft system.								
5	Explain the fuel	management and engine sys	tem in aircraft.						

UNIT-I

UNII-I	
Electrical and Electronic fundamentals for aircraft systems: Electrostatics and	
Capacitors, Direct Current, Current, Voltage and Resistance, Power and Energy,	
Electromagnetism, and Inductors, Alternating Current and Transformers, Safety,	
Semiconductor Theory, Diodes, Transistors, Integrated Circuits.	
Digital fundamentals for aircraft systems: Logic Gates, Combinational Logic	
Systems, Monostable and Bistable Devices, Encoders and Decoders, Multiplexers,	
Bus Systems and Computers	8Hrs
Applications: Concepts can be used to understand basics of power components of	
any aircraft system.	
Web Link and Video Lectures:	
Web Link and Wideb Lectures.	
1. <u>https://www.youtube.com/watch?v=BzBhHKLQO3k</u>	
2. <u>https://www.youtube.com/watch?v=d5sXmNplQHw</u>	
UNIT-II	
Generators and motors: Working Principle, AC Generators, 3 Phase Generation	
and Distribution, AC Motors, Practical Aircraft Generating Systems.	
Power supplies: Regulators, External Power, Inverters, Transformer Rectifier	
Units, Auxiliary Power Unit, Emergency Power.	
Applications: Concepts can be used to understand the different power sources	8Hrs
available for aircraft system.	
Web Link and Video Lectures:	
Web Link and Video Lectures: 1. <u>https://www.youtube.com/watch?v=b0qa0_1mmOw</u>	

Wiring and Circuit Protection: Overview, Construction and Materials, Specifications, Shielding/ Screening, Circuit Protection.				
Distribution of Power Supplies: Single Engine/General Aviation, Twin Engine General Aviation Aircraft, Large Aircraft Systems, Split Bus System, Parallel Bus System, Battery Charging, Control and Protection, Load Shedding				
Laboratory Sessions/ Experimental learning: Wiring of aircraft model.	8Hrs			
Applications: Power Distribution in Aircraft.				
 Web Link and Video Lectures: 1. <u>https://www.youtube.com/watch?v=DTe8mrw7pko</u> 2. <u>https://www.youtube.com/watch?v=5uaebpWwz0A</u> 				
UNIT-IV				
 Lights: Lighting Technologies, Flight Compartment Lights, Passenger Cabin Lights, Exterior Lights. Controls and Transducers: Switches, Relays and Contactors, Variable Resistors, Linear Displacement Transducers, Fluid Pressure Transducers, Temperature Transducers, Strain Transducers, Rotary Position Transducers, electronic flight instrument system 	8Hrs			
Applications: Concept can be used to design lighting				
Web Link and Video Lectures: 1. <u>https://www.youtube.com/watch?v=3WxhYtkADKs</u> 2. <u>https://www.youtube.com/watch?v=WhQ8Ai4fa_Q</u> 3. <u>https://www.youtube.com/watch?v=FS18iIpeHEk</u> UNIT-V				
Engine system: Starting and Ignition, Indicating Systems Overview, Primary				
 Fuel Management: introduction, storage overview, Fuel Quantity Measurement and Indication, Fuel Feed and Distribution, Fuel Transfer. 	8Hrs			
 Web Link and Video Lectures: 1. <u>https://www.youtube.com/watch?v=gIdXLMVP6VU</u> 2. <u>https://www.youtube.com/watch?v=R0_Hn3WeOCI</u> 				

Course Outcomes: After completing the course, the students will be able to							
C404.4.1	Understand the electrical and electronic components of the aircraft system.						
C404.4.2	Understand the electrical and electronic components of the aircraft system.						
C404.4.3	Describe power distribution in aircraft systems.						

	Explain different controls, transducers, and lighting used in aircraft systems.
C404.4.5	Explain the fuel management and engine system in aircraft.

Reference Books

1	Aircraft electrical and Electronics systems, Mike Tooley and David Wyatt, Elsevier								
1.	Book Aid International								
2.	Aircraft Electrical System by EHJ Pallett, 3 rd edition Pearson								

3. Aircraft Electricity and Electronics by Thomas K Eismin, Sixth edition MC. Graw Hill

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C404.4.1	3	1	-	-	-	1	-	-	-	-	2	2
C404.4.2	3	1	-	-	-	1	-	-	-	-	2	2
C404.4.3	3	2	-	-	-	1	-	-	-	-	2	2
C404.4.4	3	2	-	-	-	1	-	-	-	-	2	2
C404.4.5	3	2	-	-	-	1	-	-	-	-	2	2

	Semester: VII									
	PROJECT PHASE – I									
Cou	rse Code:	MVJ221EEP75	CIE Marks: 50							
Cree	dits:	L:T:P: 0:0:4	SEE Marks: 50							
Hou	rs:		SEE Duration:							
Cou	rse Learning Ob	jectives: The students will be able to								
	Develop interact	ive, communication, organization, time	e management, and presentation							
1	skills.									
2	Impart flexibility and adaptability.									
3	Inspire independ	ent and team working.								
4	Expand intellect	al capacity, credibility, judgment, intui	tion.							
5	Adhere to punctuality, setting and meeting deadlines.									
6	Instill responsibilities to oneself and others.									
	seminar without any fear, face									
7	audience confide	ently, enhance communication skill,	involve in group discussion to							
	present and exchange ideas.									

Project Work Phase - II: Each student of the project batch shall involve in carrying out the project work jointly in constant consultation with internal guide, co-guide, and external guide and prepare theproject report as per the norms avoiding plagiarism.

Cours	e Outcomes: After completing the course, the students will be able to
405.1	Describe the project and be able to defend it. Develop critical thinking and problem- solving skills.
405.2	Learn to use modern tools and techniques. Communicate effectively and to present ideas clearly and coherently both in written and oral forms.
405.3	Develop skills to work in a team to achieve common goal. Develop skills of project management and finance.
405.4	Develop skills of self-learning, evaluate their learning and take appropriate actions to improve it.
405.5	Prepare them for life-long learning to face the challenges and support the technological changes to meet the societal needs.

Continuous Internal Evaluation: The CIE (50 marks) evaluation shall be based on Phase wise completion of the project work, Project report, Presentation and Demonstration of the actual/model/prototype of the project.

Semester End Examination: SEE marks for the project (50 marks) shall be based on Project report, Presentation and Demonstration of the actual/model/prototype of the project, as per the norms by the examiners appointed.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
405.1	2	2	2	3	3	2	1	1	2	1	1	2
405.2	2	2	2	3	3	2	1	1	2	1	2	2
405.3	2	2	2	3	3	2	1	1	2	1	2	2
405.4	2	2	2	3	3	2	1	1	2	1	2	2
405.5	2	2	2	3	3	2	1	1	2	1	2	2

High-3, Medium-2, Low-1

	Semester: VIII									
	PROJECT PHASE – II									
Cou	rse Code:	MVJ21EE81	CIE Marks: 50							
Cree	dits:	L:T:P: 0:0:20	SEE Marks: 50							
Hou	rs:		SEE Duration:							
Cou	rse Learning Ob	jectives: The students will	be able to							
	Develop interact	ive, communication, organi	zation, time management, and presentation							
1	skills.									
2	Impart flexibility and adaptability.									
3	Inspire independent and team working.									
4	Expand intellectual capacity, credibility, judgment, intuition.									
5	Adhere to punctuality, setting and meeting deadlines.									
6	Instill responsibilities to oneself and others.									
	t work in a seminar without any fear, face									
7	audience confid	ently, enhance communication	tion skill, involve in group discussion to							
	present and exch	ange ideas.								

Project Work Phase - II: Each student of the project batch shall involve in carrying out the project work jointly in constant consultation with internal guide, co-guide, and external guide and prepare theproject report as per the norms avoiding plagiarism.

Cours	Course Outcomes: After completing the course, the students will be able to						
407.1	Describe the project and be able to defend it. Develop critical thinking and problem- solving skills.						
407.2	Learn to use modern tools and techniques. Communicate effectively and to present ideas clearly and coherently both in written and oral forms.						
407.3	Develop skills to work in a team to achieve common goal. Develop skills of project management and finance.						
407.4	Develop skills of self-learning, evaluate their learning and take appropriate actions to improve it.						
407.5	Prepare them for life-long learning to face the challenges and support the technological changes to meet the societal needs.						

Continuous Internal Evaluation: The CIE (50 marks) evaluation shall be based on Phase wise completion of the project work, Project report, Presentation and Demonstration of the actual/model/prototype of the project.

Semester End Examination: SEE marks for the project (50 marks) shall be based on Project report, Presentation and Demonstration of the actual/model/prototype of the project, as per the norms by the examiners appointed.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
407.1	2	2	2	3	3	2	1	1	2	1	1	2
407.2	2	2	2	3	3	2	1	1	2	1	2	2
407.3	2	2	2	3	3	2	1	1	2	1	2	2
407.4	2	2	2	3	3	2	1	1	2	1	2	2
407.5	2	2	2	3	3	2	1	1	2	1	2	2

High-3, Medium-2, Low-1

		Semester:	VIII								
	Research/Industrial Internship										
Cou	Course Code: MVJ21INT82 CIE Marks: 50										
Cree	dits:	L:T:P: 0:0:10	SEE Marks: 50								
Hou	rs:		SEE Duration:								
Cou	rse Learning	Objectives: The students will l	be able to								
1	To get the field exposure and experience										
2	To apply the theoretical concept in field application										
3	To prepare th	ne comparison statement of diffe	rence activities								

Internship: This shall be carried out by students in industry set-up related to the construction/ materials testing laboratories/research organizations/project management consulting firms/QS and QA organizations/ planning and design offices/Professional organizations and other avenues related to the civil engineering domain in consultation and approval of internship guide/HOD /internship committees of the institutions.

Course	Course Outcomes: After completing the course, the students will be able to										
408.1	Develop skills to work in a team to achieve common goal.										
408.2	Develop skills of self-learning, evaluate their learning and take appropriate actions to improve it.										
408.3	Prepare them for life-long learning to face the challenges and support the technological changes to meet the societal needs.										
408.4	Develop skills of project management and finance.										
408.5	Understand work ethics and culture of industry.										

Evaluation of the field training/industrial internship shall be conducted during VIII semester bu internal and external examiners for 100 marks. The external examiner shall be from the industry, where the student carried out the field training/Industrial internship. In case of nonavailability of external examiner, the concerned head of the department shall appoint an external examiner from the near by college or a senior faculty member from outside the department in consultation with respective BOE and approved by Principal. The field training/industrial internship carries two credits. A student has to get a minimum of 40% marks for a pass. If a student fails to complete the same, then the field training/Industrial internship has to be repeated in its entirety.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
408.1	2	2	2	3	3	2	1	1	2	1	1	2
408.2	2	2	2	3	3	2	1	1	2	1	2	2
408.3	2	2	2	3	3	2	1	1	2	1	2	2
408.4	2	2	2	3	3	2	1	1	2	1	2	2
408.5	2	2	2	3	3	2	1	1	2	1	2	2

High-3, Medium-2, Low-1

Semester: VIII										
Seminar										
Cou	ourse Code: MVJ21EES83 CIE Marks: 50									
Credits:		L:T:P: 0:0:2	SEE Marks: 50							
Hours:			SEE Duration:							
Course Learning Objectives: The students will be able to										
	To inculcate self-learning, face audience confidently, enhance communication skill,									
1	involve in group discussion and present and exchange ideas.									

Seminar:Each student, under the guidance of a faculty, is required to choose, preferably, a recent topic of his/her interest relevant to the course of specialization. Carryout literature survey; organize the Course topics in a systematic order.

- Conduct literature survey in the domain area to find appropriate topic.
- Prepare the synopsis report with own sentences in a standard format.
- Learn to use MS word, MS power point, MS equation and Drawing tools or any such facilities in the preparation of report and presentation.
- Present the seminar topic orally and/or through power point slides.
- Communicate effectively to answer the queries and involve in debate/discussion.

The participants shall take part in discussion to foster friendly and stimulating environment in which the students are motivated to reach high standards and become self-confident.

Cours	e Outcomes: After completing the course, the students will be able to
409.1	Develop knowledge in the field of Civil Engineering and other disciplines through independent learning and collaborative study.
409.2	Identify and discuss the current, real-time issues and challenges in engineering & technology. Develop written and oral communication skills.
409.3	Explore concepts in larger diverse social and academic contexts.
409.4	Apply principles of ethics and respect in interaction with others.
409.5	Develop the skills to enable life-long learning.

Evaluation of the field training/industrial internship shall be conducted during VIII semester bu internal and external examiners for 100 marks. The external examiner shall be from the industry, where the student carried out the field training/Industrial internship. In case of nonavailability of external examiner, the concerned head of the department shall appoint an external examiner from the near by college or a senior faculty member from outside the department in consultation with respective BOE and approved by Principal. The field training/industrial internship carries two credits. A student has to get a minimum of 40% marks for a pass. If a student fails to complete the same, then the field training/Industrial internship has to be repeated in its entirety.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
409.1	2	2	2	3	3	2	1	1	2	1	1	2
409.2	2	2	2	3	3	2	1	1	2	1	2	2
409.3	2	2	2	3	3	2	1	1	2	1	2	2
409.4	2	2	2	3	3	2	1	1	2	1	2	2
409.5	2	2	2	3	3	2	1	1	2	1	2	2

High-3, Medium-2, Low-1