	Semester: III									
	Engineering Mathematics for EEE									
	(Theory)									
Cou	rse Code:	MVJ22EE31	CIE Marks:50							
Cree	dits:	L: T:P: 2:2:0	SEE Marks: 50							
Hours:		40L + 10P	SEE Duration: 3 Hrs							
Cou	rse Learning	g Objectives: The students will be able to								
1	Acquaintthe	estudentswithdifferentialequationsandtheirapp	olicationsinelectricalengineering							
2	Findtheasso	ociationbetweenattributesandthe correlationbe	etweentwovariables							
3	Learn to use Fourier series to represent periodical physical phenomena in engineeringanalysisand toenablethestudenttoexpressnonperiodicfunctionstoperiodicfunctionusingFourier series andFourier transforms.									
4	Learn theba	sic ideas of the theory of probability and random	msignals.							

UNIT-I					
OrdinaryDifferentialEquationsofHigherOrder:					
Importance of higher-order of the second structure o					
Higher-orderlinearODEswithconstantcoefficients-Inversedifferentialoperator, problems. LineardifferentialequationswithvariableCoefficients- Cauchy'sandLegendre'sdifferentialequations -Problems.	8Hr s				
Applications: Applicationoflineardifferential equations to L-Ccircuit and L-C-Rcircuit.					
Self-Study: Finding the solution by the method of undetermined coefficients and method ofvariationofparameters.					
UNIT-II					
Curvefitting, Correlation and regressions:					
Principles of least squares, Curvefitting by the method of least squares in the form $y=a+bx, y=a+bx+cx^2, and y=ax^b$. Correlation, Co- efficient of correlation, Lines of regression, Angle between regression lines, standard error of estimate, rank correlation.					
Self-study: Fittingofcurvesinthe form <i>y</i> = <i>ae</i> ^{bx}					
UNIT-III					

Fourierseries: Periodic functions, Dirchlet's condition, conditions for a Fourier series expansion,Fourier seriesof functions with period 2π and with arbitrary period. Half rang Fourier series.Practicalharmonicanalysis.Applicationtovariation of periodiccurrent.Self-study:Typicalwaveforms,complex formofFourierseries				
UNIT-IV	1			
 FouriertransformsandZ-transforms: Infinite Fourier transforms: Definition, Fourier sine, and cosine transform. Inverse FouriertransformsInverse Fourier cosine and sinetransforms. Problems. Z-transforms:Definition,Standardz- transforms,Damping,andshiftingrules,Problems.Inversez-transform andapplications to solvedifferenceequations. Self-study:ConvolutiontheoremsofFourier and z-transforms 	8Hr s			
UNIT-V				
Probabilitydistributions:Reviewofbasicprobabilitytheory,Randomvariables- discreteandcontinuousProbabilitydistribution function, cumulative distribution function, Mathematical Expectation, mean andvariance, Binomial, Poisson,Exponential and Normal distribution (without proofs for mean andSD)–Problems.Sampling Theory:Introduction to sampling distributions, standard error, Type-I and Type-IIerrors.Student'st-distribution, Chi-squaredistributionas a testof goodness offit.Self-study:Testof hypothesis formeans, single proportions only.	8Hr s			

Course	Outcomes: After completing the course, the students will be able to
C201 1	Understand that physical systems can be described by differential equations and solve such equations are solve such equ
C201.1	ations
C201.2	Make use of correlation and regression analysis to fit a suitable mathematical model for statistic stati
C201.2	aldata
C201.3	Demonstrate the Fourier series to study the behavior of periodic functions and their application
C201.5	sinsystemcommunications, digital signal processing, and field theory.
C201 4	TouseFouriertransformstoanalyzeproblemsinvolvingcontinuous-
C201.4	timesignalsandtoapplyZ-Transform techniques to solvedifferenceequations
C201.5	$\label{eq:posterior} Apply discrete and continuous probability distributions in analyzing the probability$

Tex	tbooks/ Reference Books
1.	B. S. Grewal : "Higher EngineeringMathematics", KhannaPublishers, 44thEd., 2021.
2.	E. Kreyszig: "Advanced EngineeringMathematics", John Wiley&Sons, 10thEd., 2018.
3.	V.Ramana: "HigherEngineeringMathematics" McGraw-Hill Education, 11thEd., 2017
4.	SrimantaPal &SubodhC.Bhunia : ** EngineeringMathematics ** Oxford UniversityPress, 3rdEd., 2016.

	Semester: III							
	Electric Circuit Analysis							
		(Theory)						
Cou	rse Code:	MVJ22EE32	CIE Marks:50+50					
Credits:		L:T:P: 3:0:2	SEE Marks: 50+50					
Hou	rs:	40L + 10P	SEE Duration: 3 Hrs					
Cou	rse Learnin	g Objectives: The students will be able to						
1	Solve the e	electrical circuits using different network red	luction methods.					
2	Apply various network theorems to solve complex electric circuits.							
3	Analyze resonance and transient response of electric circuits.							
4	4 Apply the Laplace transform to basic waveforms.							
5	Analyze power consumed by three phase balanced and unbalanced load, different network topology and two-port networks.							

LINIT.I				
Basic circuit concents: Active and passive elements. Concent of ideal and				
practical sources Source transformation Analysis of networks by (i) Network				
reduction method (star to delta and delta to star transformation) (ii) Mesh and				
Node voltage methods for DC circuits with independent and dependent sources	OTT			
Node voltage methods for DC circuits with independent and dependent sources.	onrs			
Concept of Super-Iviesn and Super node analysis.				
Applications: Analysis of electric circuits by reducing their complexity.				
Video link: <u>https://nptel.ac.in/courses/108104139/</u>				
UNIT-II				
Network Theorems: Thevenin's theorem, Norton's theorem, Millman's				
theorem, Super Position theorem and Maximum power transfer theorem.				
Analysis of networks (Problems with independent AC and DC sources).	8Hrs			
Applications : Analysis of complex electric circuits by reducing the complexity.				
Video link: http://www.digimat.in/nptel/courses/video/108105112/L20.html				
UNIT-III				
Laplace Transformation (LT): Laplace transformation (LT). Initial and Final				
value theorems. Solution of electrical circuits using LT.				
Applications: Application of waveform synthesis in communication, speech				
processing, medical science				
Video link: https://nptel.ac.in/courses/108102097/				
UNIT-IV				
Resonant Circuits: Analysis of simple series RLC and parallel RLC circuits				
under resonances. Problems on Resonant frequency, Bandwidth and Quality				
factor at resonance				
Transient Analysis: Behavior of circuit elements under switching action,				
Evaluation of initial and final conditions. Transient analysis of RL and RC	8Hrs			
circuits under DC excitations.				
Applications : Analysis of resonant circuits and transient behavior of RL, RC				
and RLC circuits in communication engineering				
Video link: https://nptel.ac.in/courses/108102097/				

	UNIT-V						
Unbalan	ced Three Phase Systems: Analysis of three phase systems (3-wire						
and 4 with	and 4 wire system), calculation of real and reactive Powers.						
Two Po	ort networks: Definition, Open circuit impedance, Short circuit						
admittan	ce and Transmission parameters and their evaluation for simple	OTTma					
circuits.		onrs					
Applicat	ions: Model of voltage, current characteristics of complex electrical						
networks	, Modeling of the transmission line.						
Video lin	k: https://nptel.ac.in/courses/108104139						
	Practice (Laboratory) Part						
SlNo	Experiments						
	(to be carried out using discrete components)						
1	Study of the effect of open and short circuits in simple circuits.						
2	Determination of resonant frequency, bandwidth, and Q of a series circu	ıit.					
3	Determination of resonant frequency, bandwidth, and Q of a parallel circuit.						
4	Verification of Thevenin's theorem.						
5	Verification of Norton's theorem.						
6	Verification of Superposition theorem.						
7	Verification of maximum Power transfer theorem.						
8	8 Power factor correction.						
Along w	ith mandatory experiments students are advised to complete two op	en ended					
experim	ents. The following are some suggestions for open ended experiments	•					
9	Measurement of time constant of an RC circuit.						
10	Measurement of power in three phase Circuits using two watt meter met	thod.					

Course	Course Outcomes: After completing the course, the students will be able to							
C202 1	Solve the complex electrical circuits using different network reduction and Mesh							
C202.1	and Node voltage methods for dependent and independent source.							
C202.2	Apply various network theorems to solve complex electric circuits.							
C202.3	Analyze the resonance and transient behavior of RL, RC and RLC circuits.							
C202.4	Analyze the basic waveforms and waveform synthesis.							
C202 5	Analyze star-delta connected balanced and unbalanced three phase loads,							
C202.3	complex circuits using network topology and two-port networks.							

Ref	erence Books
1	"Fundamentals of Electric Circuits", Charles Alexander, Matthew Sadik, Seventh,
1	2021, McGraw-Hill Education, ISBN: 978-1-260-57079-3
2	"Network Analysis", M. E. Van Valkenburg, T.S. Rathore, Third, 2019, Pearson
2	Education, ISBN: 978-9353433123.
2	"Circuit theory analysis and synthesis", A Chakrabarti, 2018, Dhanpat Rai Publishing
3	Co Pvt Ltd, ISBN: 9788177000009
4	"Engineering Circuit Analysis" Hayt, Kemmerly and Durbin, 2005, Tata McGraw
4	Hill Education, ISBN: 978-0070611054

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

SEE for 50 marks executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping									PSO					
CO/P O	P 0 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
C202.1	3	3	1	1	1	-	-	-	1	-	-	2	-	-
C202.2	3	3	1	2	1	-	-	-	1	-	-	2	-	-
C202.3	3	3	1	2	1	-	-	-	1	-	-	2	-	-
C202.4	3	3	1	2	1	-	-	-	1	-	-	2	-	-
C202.5	3	2	1	2	1	-	-	-	1	-	-	2	-	-

Total marks: 50+50=100

ANALOG ELECTRONIC CIRCUITS (Theory and Practice)							
Cou	rse Code:	MVJ22EE33	CIE Marks:50+50				
Credits:		L: T: P: 3:0:2	SEE Marks: 50 +50				
Hou	rs:	40 L+ 26 P	SEE Duration: 03+03 Hours				
Cou	rse Learning Object	ives: The students will b	e able to				
1	Analyze transistor biasing and thermal stability circuits.						
2	Explain the working of transistor at low frequencies.						
3	Understand the working of multistage amplifiers.						
4	Analyze feedback amplifiers.						
5	Develop skills to design power amplifiers and oscillators.						

UNIT-I	
 Diode Circuits: Diode clipping (series, shunt and double ended clippers) and clamping circuits (Positive and negative clamping) Transistor Biasing: The operating point, load line analysis, DC analysis and design of fixed bias circuit, emitter stabilized bias circuit, collector to base bias circuit, voltage divider bias circuit, modified DC bias with voltage feedback, Transistor switching circuits (only CE mode). Laboratory Sessions / Experimental learning: Formation of different waveforms by using clipper and clamper circuits in PSpice. Applications: Analysis of composite picture signals Video link: https://www.youtube.com/watch?v=x-5HcKU1gH8 	8Hrs
UNIT-II	
 Transistor at Low Frequencies: Hybrid model, h-parameters for CE mode, midband analysis of single stage amplifier, simplified hybrid model, analysis for CE (emitter voltage follower circuit) modes. Transistor frequency response: General frequency considerations, effect of various capacitors on frequency response, Miller effect capacitance, Laboratory Sessions/ Experimental learning: Static Transistor characteristics for CE modes and determination of h parameters. Applications: Amplifying and switching apparatuses. 	8Hrs

Video link: <u>https://www.youtube.com/watch?v=in6ElwzGOkE</u>					
UNIT-III					
Multistage amplifiers: Cascade connection, analysis for CE-CC mode, CE-CE					
mode, CASCODE stage-unbypassed and bypassed emitter resistance modes,					
Darlington connection using h-parameter model.					
Laboratory Sessions/ Experimental learning: BJT Darlington emitter follower with and without bootstrapping.					
Applications: Voltage regulators, Servo drives					
Video link: <u>https://www.youtube.com/watch?v=m4sjTt7rhow</u>					
UNIT-IV					
Feedback Amplifiers: Classification of feedback amplifiers, concept of feedback, general characteristics of negative feedback amplifiers, Input and output resistance with feedback of various feedback amplifiers, analysis of different practical feedback amplifier circuits.					
Laboratory Sessions/ Experimental learning: Design of Voltage series feedback amplifier.	8 Hrs				
Applications: Regulated power supplies.					
Video link: https://www.youtube.com/watch?v=F-wUTfOT8ZQ					
Power Amplifiers: Classification of power amplifiers, Analysis of class A, Class B, class C and Class AB amplifiers.					
Oscillators: Concept of positive feedback, frequency of oscillation for RC phase oscillator, Wien Bridge oscillator, crystal oscillator and its types.					
Laboratory Sessions/ Experimental learning: Design and testing of BJT -RC phase shift oscillator for given frequency of oscillation in PSpice.					
Applications: Analysis of different pulses.					
Video link: https://www.youtube.com/watch?v=SVQutMsLKfQ					
LABORATORY EXPERIMENTS					
1. Experiments on series, shunt, and double ended clippers.					
2. Experiments on positive and negative clampers.					
5. Static Transistor characteristics for CE modes and determination of h parame	iers.				
4. Inequency response of single stage by the coupled amplituer and determined and half power points bandwidth input and output impedances	mation of				
 5. Design and testing of Class A and Class B power amplifier and to a conversion efficiency. 	determine				
6. Design and testing of BJT-RC phase shift oscillator for given frequency of os	scillation.				

- 7. Design and testing of Wien bridge oscillator for given frequency of oscillation using EDA software PSpice.
- 8. Design and testing of crystal oscillator for given frequency of 2MHz and compare with the theoretical frequency using EDA software PSpice.

Along with mandatory experiments students are advised to complete two open ended experiments. The following are some suggestions for open ended experiments.

- 1. Design of voltage series feedback amplifier.
- 2. Simulate Wien Bridge oscillator using PSpice and determine the frequency of oscillation.

Course Outcomes: After completing the course, the students will be able to

C203.1	Analyze transistor biasing and thermal stability circuits.
C203.2	Analyze transistor at low frequencies.
C203.3	Understand the working of multistage amplifiers.
C203.4	Understand the working of feedback amplifiers.
C203.5	Design power amplifiers and different oscillators.

Reference Books

Kele	rence books
1	Electronic Devices and Circuit Theory, Robert L Boylestad Louis Nashelsky, Pearson, 11 th Edition, 2015.
2	Electronic Devices and Circuits, S.Salivahanan&N.Suresh, McGraw Hill, 3rd Edition, 2013
3	Electronic Devices and Circuits, David A bell, 5E. Fifth Edition - 30 April 2008. ISBN-13: 978-0195693409 ISBN-10: 019569340X.
4	Analog Electronics, J.B. Gupta,S.K. Kataria & Sons; Edition : 2nd 2014; Reprint : 2022;

	CO-PO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C203.1	3	3	2	-	-	-	-	-	-	-	-	-	-	-
C203.2	3	2	1	-	-	-	-	-	-	-	-	1	-	-
C203.3	3	3	2	-	-	-	-	-	-	-	-	-	-	-
C203.4	3	3	1	1	2	-	-	-	-	-	-	1	-	-
C203.5	3	3	1	1	2	-	-	-	-	-	-	1	-	-

	Semester: III							
	Transformers and Generators							
		(Theory)						
Cou	rse Code:	MVJ22EE34	CIE Marks: 50					
Cree	lits:	L: T:P 3:0:0	SEE Marks: 50					
Hou	Hours: 40L SEE Duration: 3 Hrs.							
Cou	rse Learning (Objectives: The students will be able to						
1	Understand th	e concept of single-phase transformers ar	nd their analysis.					
2	Explain the m	ethods of testing of transformer and auto-	transformer tap changing					
2	mechanism.							
3	3 Understand the requirement for the parallel operation of transformers							
4	4 Analyze the performance of Synchronous Generators							
5	Discuss the ty	ypes and operating mechanism of salient	and non-salient generators and					
3	wind power generators.							

UNIT-I					
Single phase Transformers: Necessity of transformer, principle of operation, Types and construction, EMF equation, Losses and efficiency, condition for maximum efficiency, Operation of practical transformer under no-load and on-load with phasor diagrams. Equivalent circuit.					
Laboratory Sessions/ Experimental learning: Plotting B-H curve/hysteresis loop of different core material specimen for comparative study.					
Applications: R&D in transformer core manufacture					
Video link / Additional online information: https://nptel.ac.in/courses/108106071					
UNIT-II					
 Testing of transformer: Open circuit and Short circuit tests, calculation of equivalent circuit parameters. Predetermination of efficiency, voltage regulation and its significance. Numerical. Auto-transformer and tap changing transformer: Introduction to autotransformer-equivalent circuit, no load and on load tap changing transformers. Numerical. 	8 Hrs				
Laboratory Sessions/ Experimental learning: Computer simulation of plotting efficiency and regulation curves of a single-phase transformer using OC and SC test data.					

Applications: Counter check for manufacturer's load test data	
Video link / Additional online information [.]	
https://pptol.ac.ip/courses/102/105/102105017/	
<u>mtps://mptel.ac.m/courses/106/105/10810501//</u>	
UNIT-III	
Three-phase Transformers: Introduction, Constructional features of three- phase transformers. Transformer connection for three phase operation– star/star, delta/delta and star/delta, scott connection.	
Parallel Operation of Transformers: Necessity of Parallel operation, conditions for parallel operation– Single phase and three phase. Load sharing in case of similar and dissimilar transformers. Numerical.	
Laboratory Sessions/ Experimental learning: Computer simulation of parallel operation of 3 phase transformer and load sharing of similar transformers.	8 Hrs
Applications: load sharing concepts of similar transformers in distribution system.	
Video link / Additional online information: https://archive.nptel.ac.in/courses/108/105/108105017/	
UNIT-IV	
 Synchronous Generators: Construction, Types of rotor, Armature windings, winding factors, EMF equation.Harmonics–causes, reduction and elimination. Armature reaction, Synchronous reactance, Equivalent circuit. Synchronous Generators Analysis: Voltage regulation. Voltage regulation by EMF, MMF and ZPF methods. Excitation control for constant terminal voltage. Numerical. Laboratory Sessions/ Experimental learning: Computer simulation of plotting efficiency and regulation curves of aSynchronous Generators by EMF, MMF and ZPF methods data. Applications: Counter check for manufacturer's regulation and efficiency test data. Video link / Additional online information: https://archive.nptel.ac.in/courses/108/105/108105131/ 	8 Hrs
UNIT-V	
Synchronous Generators (Salient Pole): Effects of saliency, two-reaction theory, Parallel operation of generators and load sharing. Methods of	8 Hrs

Synchronization. **Performance of Synchronous Generators:** Power angle characteristic (salient and non-salient pole), power angle diagram, reluctance power, Hunting and damper windings. Numerical.

Wind power Generator –Basic components of wind energy conversion system, types of wind generators.

Laboratory Sessions/ Experimental learning: Assembling of induction generator.

Applications:Understanding the detailed operation of wind power generators Video link / Additional online information:

Video link: https://nptel.ac.in/courses/103103206

Course	Course Outcomes: After completing the course, the students will be able to						
C204.1	Explain the construction, working of single phase Transformer.						
C204.2	Understand the testing and tap changing mechanism of transformers						
C204.3	Analyze the performance and parallel operation of three phase Transformer.						
C204.4	Analyze the regulation of Synchronous Generator by using various methods						
C204 5	Discuss the type and operating principle of salient pole and non-salient pole						
C204.3	generator and wind power generators.						

Tex	tbooks/ Reference Books
1	Electric Machines, D. P. Kothari, et al, 4th Edition, 2011.
2	Principals of Electrical Machines, V.K Mehta, Rohit Mehta, S Chand, 2nd edition,
	2009
3.	Non-conventional Energy sources by G D Rai Khanna Publishers, 6 th edition,2017
4.	Ramana B. V., "Higher Engineering Mathematics", Tata McGraw-Hill, 2006.

	CO-PO Mapping													
CO/PO	P	PO	PO	PO	PO	PO	PO	PO8	PO	PO1	PO1	PO1	PS	PSO
	0	2	3	4	5	6	7		9	0	1	2	01	2
	1													
C204.1	3	2	1	2	-	-	-	-	1	-	-	-	-	-
C204.2	3	2	-	1	-	-	-	-	1	-	-	-	-	-
C204.3	2	2	1	2	-	-	-	-	1	-	-	-	-	-
C204.4	3	2	-	1	-	-	-	-	1	-	-	-	-	-
C204.5	3	2	-	2	-	-	-	-	1	-	-	-	2	1

	Semester: III								
	Transformers & Generators Laboratory								
		(Practical)							
Cou	rse Code:	MVJ22EEL35	CIE Marks:50						
Cree	dits:	L: T:P: 0:0:2	SEE Marks: 50						
Hou	rs:	50L	SEE Duration: 3 Hrs.						
Cou	rse Learnin	g Objectives: The students will be able to							
	Along with	prescribed hours of teaching -learning pro-	cess, provide opportunity to						
1	perform the	e experiments at their own time, at their own	n pace, at any place as per their						
	convenience and repeat any number of times to understand the concept.								
2	2 Provide unhindered access to perform whenever the students wish.								
2	Vary differ	circuit without the risk of							
5	damaging equipment/device or injuring themselves.								

SL No	LABORATORY EXPERIMENTS
1	Open Circuit and Short circuit tests on single-phase step up or step down transformer and predetermination of (i) Efficiency and regulation (ii) Calculation of parameters of equivalent circuit.
2	Sumpner's test on similar transformers and determination of combined and individual transformer efficiency
3	Parallel operation of two similar single-phase transformers of different kVA and determination of load sharing and analytical verification given the Short circuit test data.
4	Separation of no load losses in single phase transformer
5	Voltage regulation of an alternator by EMF method.
6	Voltage regulation of an alternator by MMF method.
7	Slip test – Measurement of direct and quadrature axis reactance and predetermination of regulation of salient pole synchronous machines.
8	Load test on single phase transformer - Find the efficiency of a single-phase transformer under various load conditions
Aloi expe	ng with mandatory experiments students are advised to complete two open ended eriments. The following are some suggestions for open ended experiments.
9	Voltage regulation of an alternator by ASA method.
10	Voltage regulation of an alternator by ZPF method.

Course Outcomes: After completing the course, the students will be able to						
C205.1	Calculate equivalent circuit parameters of single-phase transformer.					
C205.2	Apply various methods to do the experiments on transformers and analyze the results.					
C205.3	Analyze the performance of Transformer by doing OC and SC test.					
C205.4	Apply various methods to find regulation of an alternator.					
C205.5	Analyze the performance of synchronous generator by conducting slip test					

CO-PO Mapping														
CO/PO	P 0 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2
C205.1	3	2	-	2	1	-	-	-	1	-	-	1	-	1
C205.2	3	2	-	1	1	-	-	-	2	-	-	1	-	-
C205.3	3	2	-	1	1	-	-	-	2	-	-	1	-	2
C205.4	3	2	-	2	1	-	-	-	2	-	-	1	-	2
C205.5	3	2	-	1	1	-	-	-	1	-	-	1	-	-

DIGITAL LOGIC CIRCUITS (Theory and Practice)								
Course	Course Code: MVJ22EE36 CIE Marks: 50 + 50							
Credits	:	L:T:P: 3:0:2	SEE Marks: 50 + 50					
Hours:		40 L+ 26 P	SEE Duration: 03 + 03 Hours					
Course	Learning Obj	ectives: The students will be able to						
1	Illustrate simplification of algebraic equations using Karnaugh Maps and Quine-							
1	McClusky methods.							
2	Design decoders, encoders, digital multiplexer, adders, subtractors and binary							
Δ	comparators.							
3	Explain latches and flip-flops, registers, and counters.							
4	Develop state diagrams for synchronous sequential circuits and analyze Melay ad Moore							
	Models.							
5	Understand th	e applications of sequential circuits.						

UNIT- 1				
Principles of Combinational Logic: Definition of combinational logic, canonical				
forms, Generation of switching equations from truth tables, Karnaugh maps-3,4,5				
variables, incompletely specified functions (Don't care terms) Simplifying Max term				
equations, Quine-McCluskey minimization technique, Quine-McCluskey using don't				
care terms, Reduced prime implicants Tables.				
Laboratory Sessions/ Experimental learning: Design and implementation of code converters using logic gates (i) BCD to excess-3 code and vice versa (ii) Binary to gray and vice-versa.	8Hrs			
Applications: Traffic Signals				
Video link: https://nptel.ac.in/courses/108105113				
UNIT- 2				
Analysis and Design of Combinational logic: General approach to combinational				
logic design, Decoders, BCD decoders, Encoders, digital multiplexers, Using				
multiplexers as Boolean function generators, Adders and subtractors, Cascading full				
adders, Look ahead carry, Binary comparators.				
Laboratory Sessions/ Experimental learning: - Realization of half/full adder and half/full subtractor using (a) X-OR and basic gates. (b) only NAND gates.	8Hrs			
Applications: Microcontrollers for arithmetic subtraction				
Video link: <u>https://www.youtube.com/watch?v=85XxQZqBNlg</u>				
UNIT-3				
Flip-Flops: Basic Bistable elements, Latches, Timing considerations, The master-slave				
flip-flops (pulse triggered flip-flops): SR flip-flops, JK flip-flops, Edge triggered flip-	8Hrs			

flops, Characteristic equations.

Laboratory Sessions/ Experimental learning: Truthtable verification of Flip-Flops: (i) JK Master Slave (ii) D- Type (iii) T- Type.	
Applications: Data Transfer, Counters	
Video link: 1. <u>https://www.youtube.com/watch?v=EAhtV0H6z0Y</u> 2. <u>https://www.youtube.com/watch?v=j_NrUIwj1gc</u>	
UNIT-4	
 Flip-Flops Applications: Registers, binary ripple counters, synchronous binary counters, Counters based on shift registers, Design of a synchronous counter, Design of a synchronous mod-n counter using clocked T, JK, D and SR flip-flops. Laboratory Sessions/ Experimental learning: Realization of 3-bit counters as a 	
sequential circuit	8 Hrs
Applications: Data storage, Frequency Dividers. Video link: 1. <u>https://www.youtube.com/watch?v=Iecj9xmIfXM</u> 2. <u>https://www.youtube.com/watch?v=aGHpADG8Yo4</u>	
Sequential Circuit Design: Mealy and Moore models State machine notation	
 Sequential Circuit Design: Meary and Moore models, State machine notation, Synchronous Sequential circuit analysis, Construction of state diagrams, counter design. Memories: Read only and Read/Write Memories, Programmable ROM, EPROM, Flash memory. Laboratory Sessions/ Experimental learning:Realization of MOD – N counter design using 7476, 7490, 74193. Applications: Video processor 	8 Hrs
Video link: <u>https://www.youtube.com/watch?v=2aRwFWhLk0o0</u>	

Course (Course Outcomes: After completing the course, the students will be able to					
C206.1	Explain the concept of combinational and sequential logic circuits.					
C206.2	Analyze and design combinational circuits.					
C206.3	Describe and characterize flip flops and its applications.					
C206.4	Design the sequential circuits using SR, JK, D and T flip-flops and Melay and Moore					
	applications.					
C206.5	Analyze the applications of sequential circuits.					

Reference Books						
1	John M Yarbrough, Digital logic applications and design, Thomson Learning, 2001.					
2	Morris Mano, Digital Design, PHI, 3rd edition					
3	D.P.Kothari and J S Dhillon, -Digital circuits and design, Pearson, 2016					

4 Donald D Givone, Digital Principles and design, MC Graw Hill 2002

CO-PO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C206.1	3	3	2	3	2	-	-	-	2	-	-	1	-	-
C206.2	3	3	2	3	3	-	-	-	2	-	-	1	-	-
C206.3	3	3	3	3	3	-	-	-	2	-	-	1	-	-
C206.4	3	3	3	3	3	-	-	-	2	-	-	1	-	-
C206.5	3	3	3	2	3	-	-	-	2	-	-	1	-	-

Semester-IV								
ELECTRIC MOTORS (Theory)								
Course	Code:	MVJ22EE41	CIE Marks:50					
Credits	5:	L:T:P:: 3:0:0	SEE Marks: 50					
Hours:		40 L	SEE Duration: 03 Hours					
Course	Learning Objective	es: The students will be able to						
1	Study the constructional features of Motors and select a suitable drive for specific aapplication.							
2	Study the constructional features of Three Phase and Single-phase induction Motors.							
3 Understand different test to be conducted for the assessment of the performance. characteristics of motors.								
4	Study the speed control of motor by different methods.							
5	Explain the construction and operation of Synchronous motor and special motors.							

UNIT-I	
DC Motors: Construction and working principle. Back E.M.F and its significance,	
Torque equation, Classification, Characteristics of shunt, series & compound	
motors, Speed control of shunt motor, Application of motors.	
 Losses and Efficiency- Losses in DC motors, power flow diagram, efficiency, condition for maximum efficiency. Testing of DC Motors: Direct & indirect methods of testing of DC motors-Swinburne's test, Field's test, merits and demerits of tests. (Only theory). 	8 Hrs
 Laboratory Sessions/ Experimental learning: Testing DC machines using any indirect method of testing. Applications: Understand the construction and operation of a DC motor. Video link / Additional online information: 1. <u>https://youtu.be/kOj8dA9cKXo</u> 	
UNIT-II	
Three Phase Induction Motors: Concept and generation of rotating magnetic field, Principle of operation, construction, classification and types; squirrel-cage, slip-ring. Slip and its significance, Torque equation, torque-slip characteristic	8Hrs

covering motoring, generating and braking regions of operation, Maximum torque	
(numerical as applicable).	
Laboratory Sessions/ Experimental learning: Construction of model of rotors	
Applications: Selection of appropriate motors according to the requirements	
Video link / Additional online information:	
1 https://youtu.be/dZyO5geWP-0	
2. https://youtu.be/BPflycxM-Fo	
UNIT-III	
Performance of Three-Phase Induction Motor: Phasor diagram of induction	
motor on no-load and on load, equivalent circuit, losses, efficiency, No-load and	
blocked rotor tests. Performance of the motor from the equivalent circuit. Cogging	
and crawling. (numerical as applicable)	
	811 mg
Laboratory Sessions/ Experimental learning: Determine the efficiency of a	01115
three phase induction motor using load test.	
Applications: Countercheck for manufacturer's load test data	
Web Link and Video Lectures:	
1. <u>https://youtu.be/eMig9jUK y 2Ak</u>	L
UNIT-IV Starting and Sneed Control of Three Dhase Induction Materia Necessity of	
starting and speed Control of Three-Phase Induction Motors: Necessity of	
starting speed control by V/f method	
starting, speed control by v/1 method.	
Single-Phase Induction Motor: Construction and operation of single phase	
induction motor, Double revolving field theory. Types: Split-phase, Capacitor start	
Induction run, Capacitor start capacitor run and Shaded pole motors.	811 mg
I aboratory Sessions/ Experimental learning: Speed control of three phase slip	01115
ring induction motor using stator voltage control	
Applications: Speed control of three-phase induction motors	
Web Link and Video Lectures:	
1. https://www.voutube.com/watch?v=ze8LY4va9Wk	
2. https://www.digimat.in/nptel/courses/video/108105131/L72.html	
UNIT-V	
Synchronous Motor: Principle of operation, methods of starting, phasor	
diagrams, torque and torque angle, effect of change in excitation. V and inverted V	
curves.Synchronous condenser,	
Other Motors: Construction and operation of Universal motor, AC servomotor,	011
Linear induction motor, PMSM, SRM and BLDC	onrs
Laboratory Sessions/ Experimental learning: V and Inverted V-curves of a	
three-phase synchronous motor.	
Applications: Operation and use of special electric motors for different	

applications.

Web Link and Video Lectures:

1. https://youtu.be/eMq9j0KY2Ak

2. <u>https://www.youtube.com/watch?v=o4qJMMBRSJw</u>

Course C	Course Outcomes: After completing the course, the students will be able to					
C210.1	Understand the construction and operation, characteristics, Testing of DC Motors and determine losses and efficiency.					
C210.2	Understand the construction and operation, classification and types of Three phase Induction motors.					
C210.3	Describe the performance characteristics and applications of three phase Induction motors					
C210.4	Demonstrate and explain Speed Control methods of three phase induction motor and types of single phase induction motors.					
C210.5	Construction and operation of Synchronous motors, universal motor, AC servomotor, Linear induction motor, PMSM, SRM and BLDC motors.					

Refer	rence Books
1.	"Alexander Langsdorf" Theory of Alternating Current Machines, McGraw Hill, 2nd Edition, 2001
	2001.
2.	"B.LTheraja" Electrical Technology, , Volume2, S. Chand, 22nd Edition."
3.	"R Krishnan" Permanent magnet synchronous and brushless DC motor drives, CRC Press,
	2010.
4.	"E G Janardanan" Special Electrical Machines, Prentice-Hall of India Pvt.Ltd

	CO-PO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C210.1	2	3	1	1	-	-	1	-	2	2	1	2	-	-
C210.2	1	1	2	1	-	-	1	-	2	2	1	2	-	-
C210.3	3	2	2	2	-	-	-	-	2	2	-	2	-	-
C210.4	-	2	2	1	-	-	-	-	2	2	-	2	-	-
C210.5	3	3	-	1	2	-	-	-	2	2	-	2	-	-

	Semester: IV							
	TRANSMISSION AND DISTRIBUTION							
		(Theory)						
Cou	rse Code:	MVJ22EE42	CIE Marks:50					
Cree	lits:	L:T:P: 3:0:0	SEE Marks: 50					
Hou	rs:	40L	SEE Duration: 3 Hrs					
Cou	rse Learning	g Objectives: The students will be able to						
1	Understand	the concepts of various supporting structur	es used for transmission of power.					
2	Calculate the	e parameters of a transmission line like ind	uctance and capacitance.					
3	3 Understand the different classification of transmission lines and representation by suitable equivalent circuits							
4	ect the performance of the transmission							
-	line.							
5	Understand	design considerations in DC and AC distri	bution systems.					

UNIT-I	
Introduction to Power System: Feeders, distributors, Advantages of higher	
voltage transmission: HVAC, EHVAC, UHVAC and HVDC.	
Overhead Transmission Lines: Introduction to types of supporting structures and	
line conductors-Conventional conductors; Aluminium Conductor steel reinforced	
(ACSR), All – aluminium alloy conductor (AAAC) and All –aluminium conductor	
(AAC). High temperature conductors; Thermal resistant aluminium alloy (ATI),	
Super thermal resistant aluminium alloy (ZTAI), Gap type thermal resistant	
aluminium alloy conductor steel reinforced (GTACSR).	8 Hrs
Laboratory Sessions/ Experimental learning: Visit nearby power station to get	
practical knowledge on various type of insulators used for power transmission.	
Applications: To transmit required amount of power based on insulator installed	
on lines.	
Video link / Additional online information:	
1. <u>https://archive.nptel.ac.in/courses/108/102/108102047/</u>	
2.https://onlinecourses.nptel.ac.in/noc22_ee98/preview	
UNIT-II	
Transmission Line Parameters: Bundled and Stranded Conductors- Resistance	
for Solid Conductors – Skin Effect- Calculation of Inductance for Single Phase	
and Three Phase, Single and Double Circuit Lines, Concept of GMR & GMD,	
Symmetrical Conductor Configuration with and without Transposition, Numerical	
Problems, Capacitance- Calculations for Symmetrical Single and Three Phase,	8Hrs
Single and Double Circuit Lines, Effect of Ground on Capacitance, Numerical	
Problems.	
Laboratory Sessions/ Experimental learning: Calculation of inductance and	
capacitance of transmission line using MAT LAB -Simulink software.	

Applications: Transmission line parameters are used for the analysis of an	
electrical network.	
Video link : https://archive.nptel.ac.in/courses/108/102/108102047/	
UNIT-III	1
 Performance of Transmission Lines: Classification of Transmission Lines, Short, Medium and Long Lines and Their Exact Equivalent Circuits, Nominal-T, Nominal-Π, Mathematical Solutions to Estimate Regulation and Efficiency of All Types of Lines. Long Transmission Line, Rigorous Solution, Evaluation of A, B, C, D Constants, Interpretation of the Long Line Equations, Surge Impedance and Surge Impedance Loading, Ferranti Effect, Numerical Problems. Laboratory Sessions/ Experimental learning: Calculation of efficiency and regulation of various transmission lines using MAT LAB -Simulink software. Applications: Design of transmission line for different voltages levels and distance. Web Link and Video Lectures: 	8Hrs
UNII-IV Common Diamenting and single still 1. It. C. J.	
Corona: Phenomenon, Disruptive and visual critical voltages, Corona Loss. Advantages and disadvantages of corona. Methods of reducing corona. Sag and Tension Calculations: Sag and Tension Calculations with Equal and Unequal Heights of Towers, Effect of Wind and Ice on Weight of Conductor, Numerical Problems. Underground Cable: Types of cables, constructional features, insulation resistance, thermal rating, charging current, grading of cables. Laboratory Sessions/ Experimental learning: Calculation of inductance and capacitance of transmission line using MAT LAB -Simulink software. Applications:Design of transmission line parameters considering the effect of various factors for different voltages. Web Link and Video Lectures: https://archive.nptel.ac.in/courses/108/102/108102047/	8Hrs
UNIT-V	l
 A.C Distribution System: Introduction, AC distribution, Single phase, 3-phase, 3 phase 4 wire system, bus bar arrangement, Selection of site for substation. Voltage Drop Calculations (Numerical Problems) in A.C, Ring and radial main systems, introduction to HVAC systems and EHVAC systems. D.C Distribution System: Introduction to D.C distribution system, Comparison of DC vs. AC, and Under-Ground vs. Over- Head Distribution Systems Requirements and Design features of Distribution Systems, Introduction HVDC systems. Reliability of Distribution System: Definition of reliability, failure, probability concepts, limitation of distribution systems. Laboratory Sessions/ Experimental learning: Visit near AC power distribution substation to get practical knowledge on working of power substation equipment installed in system. Applications: Distribution of power for domestic and industrial applications Video link : 	8Hrs

https://archive.nptel.ac.in/courses/108/107/108107112/	

Course Outcomes: After completing the course, the students will be able to								
C211.1	Explain transmission and distribution scheme, identify the importance of different							
	transmission systems and types of insulators.							
C211.2	Analyze and compute the parameters of the transmission line for different configurations.							
C211.3	Assess the performance of overhead lines efficiency and regulation.							
C211.4	Interpret corona and sag calculations explain the use of underground cables.							
C211.5	Analyse A.C. and D.C. distribution systems for different loads and can perform voltage							
	drop calculations.							

Reference Books

1 M.L. Soni, P.V. Gupta, U.S. Bhatnagar, A. Chakrabarthy, -A Text Book on Power System Engineering, Dhanpat Rai & Co Pvt. Ltd. 1999.

2 C.L. Wadhwa – Electrical Power Systems, Fifth Edition, New Age International, 2009

3 V.K Mehta & Rohith Mehta- Principles of Power system, Revised Edition, S Chand.

4 Electric Power Distribution, A.S. Pabla, Tata Mc Graw Hill (India) Pvt. Ltd., 6th Edition, 2011.

	CO-PO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C211.1	2	1	2	2	2	-	2	-	-	-	-	-	2	-
C211.2	2	1	2	3	2	-	-	-	-	-	-	-	1	_
C211.3	2	1	2	1	2	-	-	-	-	-	-	-	1	1
C211.4	3	2	2	2	2	-	-	-	-	-	-	-	2	1
C211.5	2	2	2	1	2	-	-	-	-	-	-	-	1	1

	Semester: IV							
	Microcontrollers							
		(Theory)						
Cou	rse Code:	MVJ22EE43	CIE Marks:50+50					
Credits:		L:T:P: 3:0:2	SEE Marks: 50+50					
Hou	rs:	40L+26P	SEE Duration: 3 Hrs					
Cou	rse Learning	Objectives: The students will be able to						
1	Explain the	working of different microcontrollers and i	nternal organization of 8051.					
2	2 Understand the various instructions to write assembly language program for different applications							
3	3 Understand C data types to develop 8051 timer, counter programs.							
4	Understand the various interrupts and serial port programs.							
5	Explain the	Explain the interfacing of parallel peripheral devices to 8051.						

UNIT-I					
8051 Microcontroller Basics: Review of numbering systems, Architecture and					
pin configuration of 8051, PSW and Flag Bits, 8051 Register Banks, Stack, Stack					
pointer, Program counter, Data pointer, Internal Memory Organization of 8051,					
Special Function Registers, Addressing Modes					
Laboratory Sessions/ Experimental learning: Conduct a review on different					
types of microcontrollers available in market.					
Applications: Selection of different microcontrollers for various					
applications/projects.	8 Hrs				
Video link:	0 1115				
https://www.tube.wideel.com/ambed/SLIveup7Efle					
https://youtube.videoken.com/embed/SOusup/Fijo					
https://youtube.videoken.com/embed/AdMxMBH393Q					
https://youtube.videoken.com/embed/-YYpIdk4_W8					
https://youtube.videoken.com/embed/3hltHQXAQm8					
UNIT-II					
Assembly programming and instructions of 8051 Introduction to 8051 assembly					
programming, Assembling and running an 8051 program, Data types and					
Assembler directives Arithmetic, logic instructions and programs, Jump, loop and					
call instructions, IO port programming.					
Introduction to the ARM: Instruction set Introduction, Data processing					
instructions, Load - Store instruction, Software interrupt instructions, Program	8Hrs				
status register instructions, Loading constants, Conditional Execution. ALP					
programming.					
Laboratory Sessions/ Experimental learning:					
1. Simulate a program using Keil to find number of zeroes and ones in a					
given number.					

2. Simulate a program to find whether a number is odd or even using Keil.	
Applications: Generating assembly language algorithms for various applications	
Video link : <u>https://youtube.videoken.com/embed/oRPluYsxF28</u>	
UNIT-III	
8051 Programming in C : I/O programming in 8051C, Logic operations in 8051	
C, Data conversion program in 8051 C, Accessing code ROM space in 8051C.	
8051 Timer Programming in Assembly and C : Programming 8051 timers,	
Counter programming, Programming timers 0 and 1 in 8051 C.	
Laboratory Sessions/ Experimental learning: Generate a Program for reading	8Hrs
and manipulating port data.	
Video link :	
https://voutube.videoken.com/embed/2AVOxLPKjeA	
https://voutube.videoken.com/embed/NhurgshD0HA	
UNIT-IV	
8051 Serial Port Programming in Assembly and C: Basics of serial	
communication, 8051 connection to RS232, 8051 serial port programming in	
assembly, serial port programming in 8051 C.	
8051/52 Interrupt Programming in Assembly and C: 8051 interrupts,	
Programming timer, external hardware, serial communication interrupt, Interrupt	
priority in 8051/52, Interrupt programming in C	
Laboratory Sessions/ Experimental learning: Simulate a program using Keil to	
generate a square wave of frequency 100KHz on pin P2.3.Use timer 1 in mode 1.	8Hrs
Take crystal frequency of 22MHz.	
Applications : Interfacing of external devices to microcontrollers.	
Video link:	
https://youtube.videoken.com/embed/DpMxQzHhyyc	
https://woutube.wideeken.com/ambed/MabyaQiPP1Q	
<u>intips.//youtube.videokeii.com/embed/iviqiixeOiok1Q</u>	
UNIT-V	
Interfacing: LCD interfacing, Keyboard interfacing. ADC, DAC and Sensor	
Interfacing: ADC 0808 interfacing to 8051, Serial ADC Max1112 ADC	
interfacing to 8051, DAC interfacing, Sensor interfacing and signal conditioning.	
Motor Control: Relay, PWM, DC and Stepper Motor: Relays and opt isolators,	
stepper motor interfacing, DC motor interfacing and PWM.	
8051 Interfacing with 8255: Programming the 8255, 8255 interfacing, C	
programming for 8255.	
	8Hrs
Laboratory Sessions/ Experimental learning:	
1. Develop any simple project on togeling the bits in LED display sing	
Microcontroller.	
2. Virtual lab experiment: Interface DAC and LCD to 8051.	
Applications: Interfacing of external devices to microcontrollers.	

Video link:	
https://youtube.videoken.com/embed/MqhxeOi8R1Q	

Course Outcomes: After completing the course, the students will be able to	

C212.1	Select microcontrollers for different applications and explain the functional units of 8051.
C212.2	Develop algorithm and formulate assembly language program for a given task.
C212.3	Develop program for timers and serial port using C.
C212.4	To explain writing assembly language programs using subroutines for generation of
	delays, counters, configuration of SFRs for serial communication and timers.

Reference Books

1	8051 Microcontroller and Embedded Systems- using assembly and C by Muhammad Ali
	Mazidi, Janice Gillespie Mazidi, Rollin D. McKinlay, Pearson Education, 2nd Edition.
2	ARM Systems Developers Guide by Andrew.N. Sloss, Elsevier Publications, 2008.
2	Embedded Systems: Architecture, Programming and Design by Rajkamal, Tata McGraw-
3	Hill, 7th Edition, 2006.
4	The 8051 Microcontroller Architecture Programming & Applications by Kenneth J. Ayala,
	Penram International, 1996.

CO-PO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C212.1	3	3	2	2	1	-	-	-	3	-	-	3	-	-
C212.2	3	3	3	3	3	_	-	_	-	-	-	3	-	-
C212.3	3	3	3	3	3	-	-	-	-	-	-	3	-	-
C212.4	3	3	3	3	3	_	-	-	-	-	-	3	-	_
C212.5	3	3	2	3	3	-	-	-	3	-	-	3	-	-

Semester: IV								
Electric Motors Laboratory (Practical)								
Course Code:	MVJ22EEL44	CIE Marks:50						
Credits:	L:T:P: 0:0:2	SEE Marks: 50						
Hours:	20	SEE Duration: 3 Hrs						
Course Learning Objectives: Enables students to get practical experience in testing and performance evaluation of DC Generators, DC Motors and transformers.								

Sl No	Experiment Name	RBT Level	Hours
1	Swinburne's test on a DC shunt motor and speed control of DC shunt	L3	2
2	Load test on DC shunt motor.	L3	2
3	Field test on DC series machines.	L3	2
4	Brake test on three phase Induction Motor.	L3	2
5	No-load & Blocked rotor test on three phase Induction motor	L3	2
6	Equivalent circuit of a single-phase induction motor.	L3	2
7	Load test on three-phase induction motor.	L3	2
8	Load test on single-phase induction motor.	L3	2
Along v	with mandatory experiments students are advised to complete two open en	ded experiment	nts. The
followir	g are some suggestions for open ended experiments.		
1	Brake test on single-phase induction motor.	L3	2
2	Speed-control of three-phase slip-ring induction motor-rotor resistance	L3	2
3	Determination of Xd and Xq of a salient pole synchronous machine.	L3	2

Course ou	tcomes:
C213.1	Predetermine the efficiency of DC shunt motor/ DC series machine by conducting necessary
	tests
C213.2	Determine the performance curves of DC shunt motor by conducting load test
C213.3	Draw the equivalent circuit of a single phase and a three-phase induction motor.
C213.4	Determine the performance curves of three phase and single-phase induction motor by conducting load test
C213.5	Assess the performance of Induction machines using different testing methods

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C213.1	2	3	3	2				1	3	3		2
C213.2	2	3	3	2				1	3	3		2
C213.3	2	3	3	2				1	3	3		2
C213.4	2	3	3	2				1	3	3		2
C213.5	2	3	3	2				1	3	3		2

	OPAMPSANDLIC (Theory)									
Cou	Course Code: MVJ22EE45 CIE Marks:50									
Credits:		L: T: P: 3:0:0	SEE Marks: 50							
Hou	rs:	40 L	SEE Duration: 03 Hours							
Cou	rse Learning Objecti	ves: The students will be	e able to							
1	Understand the basic	s of Linear ICs such as O	p-amp, Regulator, Timer & PLL.							
2	Learn the designing of	of various circuits using li	near ICs.							
3	3 Use these linear ICs for specific applications.									
4	4 Understand the concept and various types of converters.									
5	Use these ICs, in Har	dware projects.	Use these ICs, in Hardware projects.							

UNIT-I	
Operationalamplifiers: Introduction,BlockdiagramrepresentationofatypicalOp- amp,schematic symbol,characteristicsofanOp-amp,idealop- amp,equivalentcircuit,idealvoltagetransfer curve, open loop configuration, differential amplifier, inverting & non –inverting amplifier,Op-amp with negative feedback.	
GeneralLinearApplications:D.C.&A.Camplifiers,peakingamplifier,summing,scali ng& averagingamplifier,invertingandnon- invertingconfiguration,differentialconfiguration,instrumentationamplifier	8Hrs
Laboratory Sessions / Experimental learning: Analysis of inverting and non- inverting op-amp circuits	
Applications: Analysis of audio mixer to add different signals with equal gains	
Video link: https://youtu.be/clTA0pONnMs	
UNIT-II	
Butterworth filters (derivation), Band pass filters, Band reject filters & all pass filters (Explaination).	
DC Voltage Regulators: voltage regulator basics, voltage follower regulator, adjustable output regulator, LM317 & LM337 Integrated circuits regulators.	
Laboratory Sessions/ Experimental learning: Design and realize an op – amp based first order Butterworth (a) low pass (b) high pass and (c)band pass filters for a given cut off frequency/frequencies to verify the frequency response Characteristic.	8Hrs
Applications: Analysis of constant power supply	
Video link: <u>https://www.youtube.com/watch?v=LL3U-Gp-qGk</u>	
UNIT-III	

 Signal generators: Working and derivation of frequency of oscillation for Phase shift oscillator, crystal oscillator, square wave generator, sawtooth wave generator, triangular wave generator, rectangular wave generator. Comparators & Converters: Basic comparator, zero crossing detector, inverting & non-Inverting Schmitt trigger circuit, voltage to current converter with grounded load, current to voltage converter. Laboratory Sessions/ Experimental learning: Design and realize Schmitt trigger circuit using an op – amp. (Virtual Lab) Applications: Study of different ways to remove noise from signals used in digital circuits. 	8 Hrs
Video link: <u>https://www.youtube.com/watch?v='/FepL3KO-LI</u> UNIT-IV	
 Signal processing circuits: Precision half wave & full wave rectifiers limiting circuits, clamping circuits, peak detectors, sample & hold circuits. A/D & D/A Converters: Basics, R–2R D/A Converter, Integrated circuit 8-bit D/A, successive approximation ADC, flash ADC, linear ramp ADC, dual slope ADC. Laboratory Sessions/ Experimental learning:Design and verify output of R–2R D/A Converter Applications: A/D and D/A conversion Video link: https://www.youtube.com/watch?v=kMGap-0XwGs 	8 Hrs
UNIT-V	Γ
 Phase Locked Loop (PLL): Basic PLL, components, performance factors, applications of PLL IC-phase shift and frequency, applications. 555. Timer: Internal architecture of 555 timer, Mono stable, Astable-multivibrators and applications. Laboratory Sessions/ Experimental learning: Design and verify an IC 555 timerbased pulse generator for the specified pulse. Applications: Application on 555 timer in pulse width modulation Video link: https://www.youtube.com/watch?v=WFsPI8_ZKbc 	8 Hrs

Course Outcomes: After completing the course, the students will be able to				
C214.1	Explain the basics of linear ICs.			

C21	214.2 Design circuits using linear ICs.		
C214.3 Demonstrate the application of Linear ICs.		Demonstrate the application of Linear ICs.	
C214.4 Explain the different types of A/D and D/A converters.		Explain the different types of A/D and D/A converters.	
C214.5 Use ICs in the electronic projects.		Use ICs in the electronic projects.	
Refe	Reference Books		
1	Operational Amplifiers and Linear ICs, David A. Bell ,Oxford, 3rd Edition 2011		

2 Op-Amps and Linear Integrated Circuits, Ramakant A Gayakwad, Pearson, 4th Edition, 2015

3 Linear Integrated Circuits, S. Salivahanan, et al, Wiley India, 2013

4 Op-Amps and Linear Integrated Circuits, Concept and Application, James M Fiore, Cengage, 2009.

							CO-	PO M	[appir	ıg				
CO/PO	PO1	PO 2	P O 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO2
C214.1	2	1	-	-	-	-	-	-	-	-	-	-		
C214.2	3	2	3	2	2	-	-	-	-	-	-	2		
C214.3	3	2	3	2	2	-	-	-	-	-	-	2		
C214.4	3	2	3	2	2	-	-	-	-	-	-	2		
C214.5	2	2	2	2	-	_	_	_	-	-	-	2		

	Semester: V					
	BIOLOGY FOR ENGINEERS					
		(Theory)				
Cou	rse Code:	MVJ22BI47	CIE Marks: 50			
Cred	lits:	L:T:P: 3:0:0	SEE Marks: 50			
Hou	rs:	40L	SEE Duration: 3 Hrs.			
Cou	rse Learning Objectiv	ves: The students will be able to				
1	To familiarize the students with the basic biological concepts and their engineering					
1	applications.					
2	To enable the students with an understanding of biodesign principles to create novel					
2	devices and structures					
3	To provide the stud	ents an appreciation of how biologica	ll systems can be re-designed as			
5	substitute products for natural systems.					
4	To motivate the stu	dents to develop interdisciplinary visi	on of biological engineering.			
5	To familiarize the students with the basic biological concepts and their engineering					
5	applications.					

UNIT-I	
CELL BASIC UNIT OF LIFE	
Introduction. Structure and functions of a cell. Stem cells and their application.	08 Uma
Biomolecules: Properties and functions of Carbohydrates, Nucleic acids,	00 1115
proteins, lipids. Importance of special biomolecules:Properties and functions of	
enzymes, vitamins and hormones.	
UNIT-II	
P APPLICATION OF BIOMOLECULES	
Carbohydrates in cellulose-based water filters production, PHA and PLA in	
bioplastics production, Nucleic acids in vaccines and diagnosis, Proteins in food	08 Hrs
production, lipids in biodiesel and detergents production, Enzymes in biosensors	
fabrication, food processing, detergent formulation and textile processing.	
UNIT-III	
ADAPTATION OF ANATOMICAL PRINCIPLES FOR	
BIOENGINEERING DESIGN	08 Hrs
Brain as a CPU system. Eye as a Camera system. Heart as a pump system. Lungs	
as purification system. Kidney as a filtration system.	
UNIT-IV	
NATURE-BIOINSPIRED MATERIALS AND MECHANISMS:	
Echolocation, Photosynthesis. Bird flying, Lotus leaf effect, Plant burrs, Shark	08 Hrs
skin, Kingfisher beak. Human Blood substitutes - hemoglobin-based oxygen	
carriers (HBOCs) and perflourocarbons (PFCs).	

TRENDS IN BIOENGINEERING:

Muscular and Skeletal Systems as scaffolds, scaffolds and tissue engineering, Bioprinting techniques and

08 Hrs

materials. Electrical tongue and electrical nose in food science, DNA origami and Biocomputing, Bioimaging and Artificial Intelligence for disease diagnosis. Bioconcrete. Bioremediation. Biomining.

Course	Course Outcomes: After completing the course, the students will be able to					
215.1	Elucidate the basic biological concepts via relevant industrial applications and case studies.					
215.2	Evaluate the principles of design and development, for exploring novel bioengineering projects.					
215.3	Corroborate the concepts of biomimetics for specific requirements.					
215.4	Think critically towards exploring innovative biobased solutions for socially relevant problems.					

Refe	Reference Books				
1.	Biology for Engineers, Rajendra Singh C and Rathnakar Rao N, Rajendra Singh C and Rathnakar Rao N Publishing, Bengaluru, 2023.				
2.	Human Physiology, Stuart Fox, Krista Rompolski, McGraw-Hill eBook. 16th Edition, 2022				
3.	Biology for Engineers, Thyagarajan S., Selvamurugan N., Rajesh M.P., Nazeer R.A., Thilagaraj W., Barathi S., and Jaganthan M.K., Tata McGraw-Hill, New Delhi, 2012.				
4.	Biology for Engineers, Arthur T. Johnson, CRC Press, Taylor and Francis, 2011				

	Semester: IV					
		UNIVERSALHUM	ANVALUES			
Cour	Course Code: MVJ22UHV48 CIE Marks: 50					
Cred	lits:	L: T:P: 1:0:0	SEE Marks: 50			
Hou	rs:	15L	SEE Duration: 2Hrs.			
Cour	rse Learning Obje	ctives: The students will be ab	e to			
	Appreciatethee	ssentialcomplementarybetwee	en'VALUES'and'SKILLS'toensure			
1	coreaspirationsofallhuman- beings.					
2	Facilitatethedev profession as understanding	velopmentofaHolisticperspect well as towards happines oftheHumanrealityandtheres	iveamongstudentstowardslifeand s and prosperity based on a correct tofexistence.Suchaholistic			
	perspective forms the basis of Universal Human Values and movement towards value-based living in a natural way.					
	Highlightplausi	bleimplicationsofsuchaHolist	icunderstandingintermsofethical			
3	humanconduct, interaction with	trustfulandmutuallyfulfillingh 1 Nature.	umanbehaviorandmutually. enriching			

UNIT-I

Introduction to Value Education: Right Understanding, Relationship and					
Physical Facility (Holistic Development and the Role of Education),					
Understanding Value Education, Self-exploration as the Process for Value					
Education, Continuous Happiness, and Prosperity-the Basic Human Aspirations,					
Happiness, andProsperity-CurrentScenario,MethodtoFulfillthe Basic Human					
Aspirations.					
PracticalSessions:(1)SharingaboutOneself(2)ExploringHumanConsciousness	8Hr				
(3)ExploringNaturalAcceptance.	S				
Videolink:					
1 https://www.voutuba.com/watch?v=25VCw2SU024					
$\frac{1}{1000} = \frac{1}{1000} = 1$					
$L. nups://www.youude.com/watch/v=E1S1JoACAUU&iist=PLwDeKF9/v9SP_Kt$					
6jqzA3p Z3yA/g_OAQz					
https://www.youtube.com/channel/UCQxWr5QB_eZUnwxSwxXEkQw					
UNIT-II					
Harmony in the Human Being:Understanding Human being as the Co-existence					
of the Selfand the Body, distinguishing between the Needs of the Self and the Body, The	011				
Body as an Instrument of the Self, Understanding Harmony in	ðHr s				
theSelf,HarmonyoftheSelfwiththeBody,Programtoensureself-regulation and Health.	5				

Practical Sessions: (4) Exploring the difference of Needs of Self and Body (5) Exploring		
Sources of Imagination in the Self (6) Exploring Harmony of Self with the Body.		
Videolink:	1	
1. https://www.youtube.com/watch?v=GpuZo495F24 https://www.youtube.com/channel/UCQxWr5QB_eZUnwxSwxXEkQw		
UNIT-III		
HarmonyintheFamilyandSociety:HarmonyintheFamily— theBasicUnit ofHumanInteraction,'Trust'-theFoundationalValueinRelationship,'Respect'		
-as the Right Evaluation, Other Feelings, Justice in Human-to-Human Relationship, Understanding Harmony in the Society, Vision for the Universal Human Order.		
Practical Sessions: (7) Exploring the Feeling of Trust (8) Exploring the Feeling of Respect (9) Exploring Systems to fulfill Human Goal	8Hr s	
Videolink:		
1. https://www.youtube.com/watch?v=F2KVW4WNnS https://www.youtube.com/channel/UCQxWr5QB_eZUnwxSwxXEkQw		
UNIT-IV		
Harmony in the Nature/Existence: Understanding Harmony in the Nature, Interconnectedness,self-regulationandMutualFulfillmentamongtheFourOrders of Nature, Realizing Existence as Co-existence at All Levels, The Holistic Perception of Harmony in Existence.		
Practical Sessions: (10) Exploring the Four Orders of Nature (11) Exploring Co- existence in Existence.	8Hr s	
Videolink:	1	
 https://www.youtube.com/watch?v=1HR-QB2mCF0 https://www.youtube.com/watch?v=lfN8q0xUSpw https://www.youtube.com/channel/UCQxWr5QB_eZUnwxSwxXEkQw 		
UNIT-V		
Implications of the Holistic Understanding – a Look at Professional Ethics: NaturalAcceptanceofHumanValues,Definitivenessof(Ethical)HumanConduct, A Basis for Humanistic Education, Humanistic Constitution and Universal Human Order, Competence in Professional Ethics, Holistic Technologies, Production SystemsandManagementModels-TypicalCaseStudies,StrategiesforTransition towards Value-based Life and ProfessionPracticalSessions:(12)ExploringEthicalHumanConduct(13)ExploringHumanist ic Models in Education (14) Exploring Steps of Transition towards Universal Human Order		

Videolink:

1. https://www.youtube.com/watch?v=BikdYub6RY0 https://www.youtube.com/channel/UCQxWr5QB_eZUnwxSwxXEkQw

Course (Course Outcomes: After completing the course, the students will be able to					
C216.1	Explore themselves, get comfortable with each other and with the teacher					
C216.2	Enlist their desires and the desires are not vague.					
C216.3	Restatethatthenaturalacceptance(intention)isalwaysforlivingin harmony, only competence is lacking					
C216.4	Differentiatebetweenthecharacteristicsandactivitiesofdifferentorders. and study the mutual fulfillment among them					
C216.5	Presentsustainablesolutionsto theproblemsinsocietyandnature					

Reference Books											
1.	AICTESIPUHV-ITeachingMaterial,https://fdp-si.aicteindia.org/AICTESipUHV _download.php										
2.	AFoundationCoursein HumanValuesandProfessional Ethics,RRGaur,RAsthana, GPBagaria,2ndRevisedEdition,ExcelBooks,NewDelhi,2019.ISBN978-93-87034-47-1										
3.	Teachers'ManualforAFoundationCourseinHumanValuesandProfessionalEthics, RRGaur,RAsthana,GPBagaria,2ndRevisedEdition,ExcelBooks,NewDelhi,2019. ISBN 978-93-87034-53-2										
4.	HumanValuesandProfessionalEthicsbyRRGaur,RSangal,GPBagaria,Excel Books, New Delhi, 2010										
	Semester: V										
------	--	---	-------------------------------	--	--	--	--	--	--	--	--
	Engineering Management and Entrepreneurship										
	(Theory)										
Cou	rse Code:	MVJ22EE51	CIE Marks:50								
Cree	dits:	L:T:P: 3:0:0	SEE Marks: 50								
Hou	irs:	40L	SEE Duration: 3 Hrs								
Cou	rse Learnin	ng Objectives: The students will be able to									
1	Introduce	the field of management, the task of the	e manager, the importance of								
1	planning a	nning and types of planning, staff recruitment, and the selection process.									
2	Understand	Understand the staff recruitment and selection process and explain the need for									
2	coordination between the manager and staff.										
3	Explain th	e social responsibility of business, and th	e role, and importance of the								
5	^o entrepreneur in economic development.										
1	Discuss the	Discuss the importance of Small-Scale Industries and the related terms and problems									
4	involved	involved									
5	Explain th	ne project feasibility study and project a	appraisal and discuss project								
5	financing.										

UNIT-I	
Management: Definition, Importance – Nature and Characteristics of	
Management, Management Functions, Roles of Manager, Levels of	
Management, Managerial Skills, Management & Administration, Management	
as a Science, Art & Profession.	
Planning: Nature, Importance and Purpose of Planning, Types of Plans, Steps	
in Planning, Decision Making - Meaning, Types of Decisions- Steps in	
Decision Making.	8Hrs
Laboratory Sessions/ Experimental learning: Case study on decision making	
process in a corporate.	
Applications: Planning in engineering field.	
Web Link and Video Lectures:	
1. <u>https://nptel.ac.in/courses/110/105/110105146/</u>	
2. <u>https://nptel.ac.in/courses/122/108/122108038/</u>	
UNIT-II	
Organizing and Staffing: Meaning, Nature and Characteristics of Organization	
- Process of Organization, Principles of Organization, Departmentalization,	
Committees -meaning, Types of Committees, Centralization Vs	
Decentralization of Authority and Responsibility, Span of Control, Nature and	
Importance of Staffing, Process of Selection and Recruitment.	
Directing and Controlling: Meaning and Nature of Directing-Leadership	QUra
Styles, Communication – Meaning and Importance, Coordination- Meaning and	01115
Importance, Techniques of Coordination, controlling – Meaning and Steps in	
Controlling.	
Laboratory Sessions/ Experimental learning: Case study of steel plant	
departmentalization.	
Applications: Effective communication in a corporate.	

Web Link and Video Lectures:	
1. <u>https://nptel.ac.in/content/storage2/courses/122106031/slides/3_2s.pdf</u>	
2. <u>https://www.slideshare.net/100005130728571/27-nature-of-directing</u>	
UNIT-III	
 Social Responsibilities of Business: Meaning of Social Responsibility, Social Responsibilities of Business towards Different Groups, Social Audit, Business Ethics and Corporate Governance. Entrepreneurship: Definition of Entrepreneur, Importance of Entrepreneurship, Characteristics of successful Entrepreneur, Classification of Entrepreneurs, Intrapreneur – An Emerging Class, Comparison between Entrepreneur and Intrapreneur, Myths of Entrepreneurship, Problems faced by Entrepreneurs and capacity building for Entrepreneurship. Laboratory Sessions/ Experimental learning: Case study of a startup. Application: Social auditing in electrical industry Web Link and Video Lectures: 1.https://nptel.ac.in/courses/110/106/110106141/ 2.https://nptel.ac.in/courses/127/105/127105007/ 	8Hrs
UNIT-IV	
 Modern Small Business Enterprises: Role of Small-Scale Industries, Concepts and definitions of SSI Enterprises, Government policy and development of the Small-Scale sector in India, Sickness in SSI sector, Problems faced by Small Scale Industries, Impact of Globalization on SSI, Impact of WTO/GATT on SSIs. Institutional Support for Business Enterprises: Introduction, Policies and Schemes of Central–Level Institutions, State-Level Institutions. Laboratory Sessions/ Experimental learning: Case study on the growth of small-scale industries. Application: Setting up and functioning of Small-Scale Industries Web Link and Video Lectures: 1. https://www.slideshare.net/syedmubarak15/institutional-support-for-business-enterprises 2. https://www.wto.org/english/docs_e/legal_e/gatt47_01_e.htm 	8Hrs
UNIT-V	
 Electrical Project Management Process: Meaning of Project Management, Electrical project management process, Project Objectives and Characteristics; Project Life Cycle, Generating an Investment Project Proposal, Project Report-Need and Significance of Report, Contents, Formulation, Project Analysis-Market, Technical, Financial, Economic, Ecological, Project Evaluation and Selection, Project Financing, Project Implementation Phase, Prerequisites for Successful Project Implementation. New Control Techniques: PERT and CPM, Steps involved in developing the network, Uses and Limitations of PERT and CPM. Laboratory Sessions/ Experimental learning: Preparation of detailed project report (DPR). Application: Preparation of reports for specific project. 	8Hrs

Web Link and Video Lectures:

1.https://www.projectmanager.com/project-scheduling

2.https://kissflow.com/project/basics-of-project-scheduling/

Course	Course Outcomes: After completing the course, the students will be able to								
C301.1	Understand the concept of management								
C301.2	Understand the staffing process								
C301.3	Explain the social responsibilities of business towards different groups								
C301.4	Explain the role of small-scale industries								
C301.5	Interpret the project objectives								

Tex	Textbooks/ Reference Books										
3.	"Entrepreneurship Development and Small Business Enterprises", Poornima										
	M.Charanthimath, , 2 nd Edition,2014,Pearson.										
4.	"Principles of Management", Tripathy PC & Reddy PN Tata McGraw Hill, 1999.										
3.	"Fundamentals of Management", Stephen A. Robbins & David A. Decenzo & Mary										
	Coulter, , , 7th Edition, 2011, Pearson Education.										
4.	"Management", Stephen P. Robbins & Mary Coulter,., 10th Edition, 2009, Prentice										
	Hall (India) Pvt. Ltd.										

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

SEE for 50 marks executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping													PSO	
CO/P O	P 0 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
C301.1	-	2	-	1	-	-		3	3	3	3	3	-	-
C301.2	-	1	-	3	-	-		3	3	3	3	3	-	-
C301.3	-	2	-	2	-	3		3	3	2	3	3	-	-
C301.4	-	2	-	2	-	2		3	3	3	3	3	-	-
C301.5	-	2	-	2	-	2		3	3	3	3	3	-	-

	Semester: V										
	Signals and DSP										
	(Theory)										
Cou	Course Code: MVJ22EE52 CIE Marks:50+50										
Cree	dits:	L:T:P: 3:0:2	SEE Marks: 50+50								
Hou	irs:	40L + 26P	SEE Duration: 3 Hrs								
Cou	rse Learnin	g Objectives: The students will be able	to								
1	Explain ba	sic operations on signals and properties o	f systems.								
2	Apply cont	tinuous Fourier representation to periodic	and aperiodic signals.								
3	Compute DFT for a given time domain signal.										
4	4 Design IIR filter by applying appropriate transformation techniques.										
5	Design FIF	R filter by applying appropriate transform	ation techniques.								

UNIT-I						
Signals Introduction: Definitions of signals and a system, Classification of						
signals, Basic operations on signals, Elementary signals viewed as						
interconnections of operations. Relation between the elementary signals,						
specific systems, Properties of systems.						
Laboratory Sessions/ Experimental learning: Verification of Sampling	8Hrs					
Theorem both in time and frequency domains by using MATLAB.						
Application: Speech recognition.						
Web Link and Video Lectures:						
https://www.youtube.com/watch?v=879pXoml0XI						
UNIT-II						
Impulse response of an LTI system, convolution integral, graphical convolution,						
solution of differential and difference equations, block diagram representation						
system.						
Laboratory Sessions/ Experimental learning: Evaluate impulse response of a	0.7.7					
system using MATLAB.						
system using MATLAB.	01115					
system using MATLAB. Application: Digital Speedometer.	01115					
system using MATLAB.Application: Digital Speedometer.WebLinkandVideoLectures:	01115					
system using MATLAB. Application: Digital Speedometer. Web Link and Video Lectures: https://www.youtube.com/watch?v=U8riFeiiu3s	01115					
system using MATLAB. Application: Digital Speedometer. Web Link and Video Lectures: https://www.youtube.com/watch?v=U8riFeiiu3s UNIT-III	01115					
system using MATLAB. Application: Digital Speedometer. Web Link and Video Lectures: https://www.youtube.com/watch?v=U8riFeiiu3s UNIT-III Z Transform: Introduction Z-transform, Properties of ROC, Properties of z						
system using MATLAB. Application: Digital Speedometer. Web Link and Video Lectures: https://www.youtube.com/watch?v=U8riFeiiu3s UNIT-III Z Transform: Introduction Z-transform, Properties of ROC, Properties of z transform. Basic elements of digital signal processing, Advantages of digital	01115					
system using MATLAB. Application: Digital Speedometer. Web Link and Video Lectures: https://www.youtube.com/watch?v=U8riFeiiu3s UNIT-III Z Transform: Introduction Z-transform, Properties of ROC, Properties of z transform. Basic elements of digital signal processing, Advantages of digital signal processing over analog signal processing.						
system using MATLAB. Application: Digital Speedometer. Web Link and Video Lectures: https://www.youtube.com/watch?v=U8riFeiiu3s UNIT-III Z Transform: Introduction Z-transform, Properties of ROC, Properties of z transform. Basic elements of digital signal processing, Advantages of digital signal processing over analog signal processing. Discrete Fourier Transform:Properties of DFT, DFT as a linear	01115					
system using MATLAB. Application: Digital Speedometer. Web Link and Video Lectures: https://www.youtube.com/watch?v=U8riFeiiu3s UNIT-III Z Transform: Introduction Z-transform, Properties of ROC, Properties of z transform. Basic elements of digital signal processing, Advantages of digital signal processing over analog signal processing. Discrete Fourier Transform: Properties of DFT, DFT as a linear transformation, circular convolution, Use of DFT in linear filtering.						
system using MATLAB. Application: Digital Speedometer. Web Link and Video Lectures: https://www.youtube.com/watch?v=U8riFeiiu3s UNIT-III Z Transform: Introduction Z-transform, Properties of ROC, Properties of z transform. Basic elements of digital signal processing, Advantages of digital signal processing over analog signal processing. Discrete Fourier Transform:Properties of DFT, DFT as a linear transformation, circular convolution, Use of DFT in linear filtering. Laboratory Sessions/ Experimental learning: Computation of N point DFT	8Hrs					
system using MATLAB. Application: Digital Speedometer. Web Link and Video Lectures: https://www.youtube.com/watch?v=U8riFeiiu3s UNIT-III Z Transform: Introduction Z-transform, Properties of ROC, Properties of z transform. Basic elements of digital signal processing, Advantages of digital signal processing over analog signal processing. Discrete Fourier Transform:Properties of DFT, DFT as a linear transformation, circular convolution, Use of DFT in linear filtering. Laboratory Sessions/ Experimental learning: Computation of N point DFT and to plot the magnitude and phase spectrum.	8Hrs					
system using MATLAB. Application: Digital Speedometer. Web Link and Video Lectures: https://www.youtube.com/watch?v=U8riFeiiu3s	8Hrs					
system using MATLAB. Application: Digital Speedometer. Web Link and Video Lectures: https://www.youtube.com/watch?v=U8riFeiiu3s UNIT-III Z Transform: Introduction Z-transform, Properties of ROC, Properties of z transform. Basic elements of digital signal processing, Advantages of digital signal processing over analog signal processing. Discrete Fourier Transform:Properties of DFT, DFT as a linear transformation, circular convolution, Use of DFT in linear filtering. Laboratory Sessions/ Experimental learning: Computation of N point DFT and to plot the magnitude and phase spectrum. Application: Image processing. Web Link and Video Lectures:	8Hrs					
system using MATLAB. Application: Digital Speedometer. Web Link and Video Lectures: https://www.youtube.com/watch?v=U8riFeiiu3s UNIT-III Z Transform: Introduction Z-transform, Properties of ROC, Properties of z transform. Basic elements of digital signal processing, Advantages of digital signal processing over analog signal processing. Discrete Fourier Transform:Properties of DFT, DFT as a linear transformation, circular convolution, Use of DFT in linear filtering. Laboratory Sessions/ Experimental learning: Computation of N point DFT and to plot the magnitude and phase spectrum. Application: Image processing. Web Link and Video Lectures: 1. https://www.youtube.com/watch?v=gkC7cXa8ewk	8Hrs					

	UNIT-IV	
Design of	of IIR Filters from Analog Filters: IIR Filter design by impulse	
invarianc	e, Bilinear transformation. Characteristics of analog filters -	
Butterwo	orth and Chebyshev, frequency transformation in analog domain	
Laborat	ory Sessions/ Experimental learning: Design and implementation of	
IIR filter	s to meet given specification (Low pass, high pass, band pass and band	
reject filt	ers) by using MATLAB.	8Hrs
Applicat	ion: High-speed telecommunication.	
Web Lin	k and Video Lectures:	
1. h	ttps://www.youtube.com/watch?v=3QWvi8EC_DI	
https://yo	outu.be/ryfaCpTHVtQ	
	UNIT-V	
Design o	f FIR Filters : Introduction to filters, Design of linear phase FIR Filters	
using re	ctangular, Hamming and Hanning windows, FIR filter design by	
frequenc	y sampling method.	
Laborat	ory Sessions/ Experimental learning:	
Design a	nd implementation of FIR filters to meet given specification (Low pass,	
high pass	s, band pass and band reject filters) using frequency sampling technique	8Hrs
in MATI	LAB	
Applicat	ion: Radio Astronomy.	
Web Lin	ik and Video Lectures:	
1. <u>https:/</u>	/www.youtube.com/watch?v=nsK7mmRSTDY	
2. <u>https://</u>	www.youtube.com/watch?v=Xl5bJgOkCGU	
Practice	(Laboratory) Part	
SlNo	Experiments	
1	(to be carried out using discrete components)	
1	Computation of N – point DFT and to plot the magnitude and phase spe	ctrum.
2	Verification of Sampling Theorem both in time and frequency domains	
3	Evaluation of impulse response of a system	
4	Linear and circular convolution by DFT and IDFT method.	
5	Solution of a given difference equation.	
6	Calculation of DF1 and IDF1 by FF1	r
6	Design and implementation of IIR filters to meet given specification (I	Low pass,
7	nigh pass, band pass and band reject filters)	r
/	Design and implementation of FIR filters to meet given specification (I	Low pass,
0	nigh pass, band pass and band reject filters) using different window fun	ctions
8	Design and implementation of FIR filters to meet given specification (I	Low pass,
0	high pass, band pass and band reject filters) using frequency sampling to	ecnnique.
9	Realization of IIR and FIR filters	
Along w	ith mandatory experiments students are advised to complete two op ents. The following are some suggestions for onen ended experiments	en ended
10	To perform circular convolution of given sequences using (a) the co	nvolution
10	summation formula (b) the matrix method and (c) Linear convolution	tion from
	circular convolution with zero padding	
11	Computation of N $-$ point DFT and to plot the magnitude and phase spe	ctrum

Course	Course Outcomes: After completing the course, the students will be able to									
C302.1	Explain the generation of signals, behaviour of system and the basic operations									
	that can be performed on signals and properties of systems.									
C302 2	Apply convolution in both continuous and discrete domain for the analysis of									
C302.2	systems given impulse response of a system.									
C302 3	Introduction to Z transform. Perform Fourier analysis for continuous and discrete									
C302.3	time, linear time invariant systems.									
C202 4	Develop a digital IIR filter by direct, cascade, parallel, ladder methods of									
C302.4	realization.									
C302.5	Design FIR filters by use of window function and frequency sampling method.									

Ref	erence Books
1	Simon Haykin, Barry Van Veen, "Signals and Systems", John Wiley & Sons,2nd
	edition 2002
c	Jhon G. Proakis, Dimitris G. Manolakis, "Digital Signal Processing -Principles,
2	Algorithms, and Applications", Pearson, 4th Edition, 2007.
2	A .Nagoor Kani, "Digital Signal Processing", McGraw Hill Education; 2nd edition,
3	2017
4	Oppenheim, Willsky and Nawab, "Signals and Systems", Phi Learning, 2nd Edition,
4	1997.

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

SEE for 50 marks executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping													PSO	
CO/P O	P 0 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
C302.1	3	3	1	1	1	-	-	-	1	-	-	2	-	-
C302.2	3	3	1	2	1	-	-	-	1	-	-	2	-	-
C302.3	3	3	1	2	1	-	-	-	1	-	-	2	-	-
C302.4	3	3	1	2	1	-	-	-	1	-	-	2	-	-
C302.5	3	2	1	2	1	-	-	-	1	-	-	2	-	-

	Semester: V								
	Power Electronics								
	(Theory)								
Course Code: MVJ22EE53 CIE Marks:50									
Credits:		L:T:P: 3:0:2	SEE Marks: 50						
Hou	irs:	40L	SEE Duration: 3 Hrs						
Cou	rse Learnir	ng Objectives: The students	will be able to						
1	Understan	d the working of power diodes	and power transistor.						
2	Understan	d the operation, characteristics	, and performance parameters of thyristor.						
3	3 Explain the working of controlled rectifier for different loads.								
4	Explain the working of AC voltage controller for different loads.								
5	Design cho	opper and pulse width modula	ted inverter for different applications.						

UNIT-I

Introduction: Power electronic systems, Application of power electronics,	
Advantage and disadvantage of power electronics, Types of power electronic	
converter.	
Power Transistors: Introduction, Power MOSFETs (Enhancement and	
depletion type): Steady State Characteristics, Switching Characteristics, Gate	
Drive, IGBT (Construction and Working), Gan, Isolation of Gate Drives.	
Laboratory Sessions/ Experimental learning: Build a circuit for controlling a	8Hrs
load by using MOSFET/IGBT in MATLAB.	01115
Applications: Mobile charging unit, switch mode power supply, induction	
heating, and traction motor control.	
Web Link and Video Lectures:	
1. <u>https://gansystems.com/design-center/application-notes/</u>	
2. <u>https://youtu.be/Z2CORFayCv0</u>	
3. <u>https://youtu.be/tNp39_L_HtU</u>	
UNIT-II	
Thyristors: Introduction, Static Characteristics, switching characteristics, turn	
on methods, Two-Transistor Model, Bidirectional Triode Thyristors, Protection	
Circuits.	
Laboratory Sessions/ Experimental learning: Realize the static characteristics	
of SCR in MATLAB.	OTIma
Applications: AC voltage stabilizers, light dimmer, AC power control with	onrs
solid relay.	
Web Link and Video Lectures:	
1. <u>https://youtu.be/no1hld5JcCw</u>	
2. <u>https://www.electrical4u.com/thyristor-silicon-controlled-rectifier-scr/</u>	
UNIT-III	

	1			
 Controlled Kectifiers: Introduction, Performance Parameters, Single-Phase half wave Converters with R and RL load, Single-Phase Full wave Bridge Converters with R, RL and RLE load (continuous current conduction operation only), Single phase symmetrical semi converter, Single-Phase Dual Converters, Three-Phase Full wave Converters with R and RL Load. Laboratory Sessions/ Experimental learning: Simulation of single phase and three phase full wave rectifier for R, RL and RLE load in MATLAB Applications: Paper mills, textile mills using DC motor drives and DC motor control in steel mills, AC fed traction system using a DC traction motor, High 				
voltage DC transmission, UPS.				
Web Link and Video Lectures:				
1. https://youtu.be/EpTKSp9611I				
2. https://youtu.be/OuyyVgkzKT8				
3. https://youtu.be/O5Yw4Z_Ovdc				
UNIT-IV	I			
AC Voltage Controllers: Introduction, Single phase half-wave controller with				
R and RL load, Single-Phase Full-Wave Controllers with R and RL Loads,				
Three-Phase Full-Wave Controllers with R load.				
Cycloconverters:				
Laboratory Sessions/ Experimental learning: MATLAB simulation of AC	8Hrs			
voltage controller.				
Applications: Adjustable speed drives Light dimming industrial heating				
Web Link and Video Lectures: https://youtu.be/6NCml4kY9Io				
UNIT-V	<u> </u>			
DC-DC Converters: Introduction, Buck, Boost, Buck, Boost, regulator,				
Applications				
DC-AC converters . Introduction principle of operation single phase bridge				
inverters with RI Load three phase bridge inverters. Current source inverters				
PWM techniques - SPWM technique				
I shoretory Sessions/Experimental learning: Build a circuit to stan up DV				
entruit voltage in MATLAR				
output voltage in MATLAD				
Applications, Two stags color newson conversion Solar DV integration to grid	OTTma			
Applications: Two stage solar power conversion, Solar PV integration to grid.	8Hrs			
Applications: Two stage solar power conversion, Solar PV integration to grid. Web Link and Video Lectures:	8Hrs			
Applications: Two stage solar power conversion, Solar PV integration to grid. Web Link and Video Lectures: 1. <u>https://www.youtube.com/watch?v=rfChSvb8FX0</u>	8Hrs			
Applications: Two stage solar power conversion, Solar PV integration to grid. Web Link and Video Lectures: 1. https://www.youtube.com/watch?v=rfChSvb8FX0 2. https://www.youtube.com/watch?v=q7cTuZIH8IA	8Hrs			
Applications: Two stage solar power conversion, Solar PV integration to grid. Web Link and Video Lectures: 1. https://www.youtube.com/watch?v=rfChSvb8FX0 2. https://www.youtube.com/watch?v=rfChSvb8FX0 3. https://www.electrical4u.com/boost-converter-step-up-chopper/	8Hrs			
Applications: Two stage solar power conversion, Solar PV integration to grid.Web Link and Video Lectures:1. https://www.youtube.com/watch?v=rfChSvb8FX0 2. https://www.youtube.com/watch?v=q7cTuZIH8IA 3. https://www.youtube.com/watch?v=QnUhjnbZ0T8	8Hrs			
Applications: Two stage solar power conversion, Solar PV integration to grid.Web Link and Video Lectures:1. https://www.youtube.com/watch?v=rfChSvb8FX0 2. https://www.youtube.com/watch?v=q7cTuZIH8IA 3. https://www.electrical4u.com/boost-converter-step-up-chopper/4 4. https://www.youtube.com/watch?v=QnUhjnbZ0T8 5. https://www.youtube.com/watch?v=ZNfbbPobtus	8Hrs			

Course	Course Outcomes: After completing the course, the students will be able to								
C303.1	Explain types of power diodes and power transistors								
C303.2	Explain the operation, characteristics, and performance parameters of thyristor.								
C303.3	Explain steady state, switching characteristics and gate control requirements of								
	controlled rectifiers								

C303.4	Discuss the principle of operation of AC voltage controllers.
C303.5	Design DC – DC and DC –AC converters for different application.

Tex	tbooks/ Reference Books
5.	Power Electronics: Circuits Devices and Applications Mohammad H Rashid, Pearson
	4th Edition, 2014.
6.	Power Electronics, Dr. P S Bimbhra, Khanna Publishers, 7 th Edition, 2022.
3.	Power Electronics: Converters, Applications and Design Ned Mohan et al Wiley 3rd
	Edition, 2014
4.	Power Electronics Daniel W Hart McGraw Hill 1 st Edition, 2011

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

SEE for 50 marks executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												PSO		
CO/P O	P 0 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
C303.1	3	1	1	1	2	3	-	-	3	2	-	3	-	-
C303.2	3	1	1	1	2	3	-	-	3	2	-	3	-	-
C303.3	3	3	2	1	2	3	-	-	3	2	-	3	-	-
C303.4	3	3	2	3	3	3	-	-	3	2	-	3	-	-
C303.5	3	3	2	3	3	3	-	-	3	2	-	3	-	-

	Semester: V								
	Power Electronics Laboratory								
	(Practical)								
Cou	Course Code: MVJ22EEL54 CIE Marks:50								
Cree	dits:	L: T:P: 0:0:2	SEE Marks: 50						
Hou	rs:	20L	SEE Duration: 3 Hrs.						
Cou	rse Learnin	g Objectives: The students will be able to							
1	Conduct ex	xperiments on semiconductor devices to obta	ain their static characteristics.						
2	Demonstra	te the performance of single phase control	led full wave rectifier and AC						
2									
3	Control the speed of a DC motor and universal motor.								
1	Demonstra	te the working of single phase full bridge	inverter connected to resistive						
4	load.								

SL No	LABORATORY EXPERIMENTS
1	Static Characteristics of SCR
2	Static Characteristics of MOSFET and IGBT
3	Single phase controlled full wave rectifier with R load, R –L load, R-L-E load with
	and without freewheeling diode.
4	AC voltage controller with R and RL loads.
5	Speed control of universal motor using ac voltage regulator.
6	Speed control of DC motor using single semi converter.
7	Speed control of a separately excited D.C. Motor using chopper.
8	Single phase MOSFET/IGBT based PWM inverter.
Alor	g with mandatory experiments students are advised to complete two open ended
expe	riments. The following are some suggestions for open ended experiments.
9	Speed control of stepper motor
10	Study of charging and discharging of capacitor in snubber circuit.
11	SCR digital triggering circuit for a single-phase controlled rectifier and ac voltage
	regulator.
Cou	rse Outcomes: After completing the course, the students will be able to
	Obtain statia characteristics of comisonductor devices to discuss their

Course Outcomes. After completing the course, the students will be able to									
C304 1	Obtain static characteristics of semiconductor devices to discuss their								
C304.1	performance.								
C204.2	Verify the performance of single phase controlled full wave rectifier and AC								
C304.2	voltage controller with R and RL loads.								
C304.3	Illustrate the speed control of a DC motor and universal motor								
C204 4	Verify the performance of single-phase full bridge inverter connected to resistive								
C304.4	load.								

CO-PO Mapping												PSO		
CO/P O	P 0 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
C304.1	3	1	1	1	2	3	-	-	3	2	-	3	-	-
C304.2	3	1	1	1	2	3	-	-	3	2	-	3	-	-
C304.3	3	3	2	1	2	3	-	-	3	2	-	3	-	-
C304.4	3	3	2	3	3	3	-	-	3	2	-	3	-	-
C304.5	3	3	2	3	3	3	-	-	3	2	-	3	-	-

	Semester: V								
	Non-Conventional Energy Systems								
	(Theory)								
Cou	rse Code:	MVJ22EE551	CIE Marks:50						
Cree	lits:	L:T:P: 3:0:0	SEE Marks: 50						
Hou	rs:	40L	SEE Duration: 3 Hrs						
Cou	rse Learnin	g Objectives: The students will be able to							
1	Understand	d energy resources and availability of renewa	able energy.						
2	Examine t	types of solar collectors, their configurat	ions, solar cell system, their						
2	characteris	tics, and their applications.							
3	Discuss generation of energy from hydrogen, wind, and geothermal system.								
4	Discuss production of energy from biomass, biogas and tidal.								
5	Discuss sea	a wave energy and OTEC.							

UNIT-I

Renewable Energy sources: Causes of Energy Scarcity, Solution to Energy
Scarcity, Factors Affecting Energy Resource Development, Energy Resources
and Classification, Renewable Energy – Worldwide Renewable Energy
Availability, Renewable Energy in India. Energy from Sun: Sun- earth
Geometric Relationship, Layer of the Sun, Earth – Sun Angles and their
Relationships, Solar Energy Reaching the Earth's Surface, Solar Thermal
Energy Applications.8Hrs

Laboratory Sessions/ Experimental learning: Survey and data collection of different renewable energy sources available.

Applications: Get awareness about available RES.

Web Link and Video Lectures: <u>https://youtu.be/e0nkkKDjY50</u>

UNIT-II

Hydrogen Energy: Benefits of Hydrogen Energy, Hydrogen Production Technologies, Hydrogen Energy Storage, Use of Hydrogen Energy, Advantages	
and Disadvantages of Hydrogen Energy, Problems Associated with Hydrogen	
Energy. Wind Energy Windmills, Wind Turkings, Wind Descurses, Wind Turking Site	
Selection	
Selection. Ceothermal Energy: Geothermal Systems Classifications Geothermal	
Resource Utilization, Resource Exploration, Geothermal Based Electric Power	8Hrs
Generation, Associated Problems, environmental Effects	
Solid waste and Agricultural Refuse: Waste is Wealth, Key Issues, Waste	
Recovery Management Scheme, Advantages and Disadvantages of Waste	
Recycling, Sources and Types of Waste, Recycling of Plastics.	
Laboratory Sessions/ Experimental learning: Visit a nearby Wind mill.	
Applications: Extract power from wind and geothermal energy.	
web Link and video Lectures: <u>mtps://youtu.de/3JA wrK2IKZQ</u>	
UNIT-IV Diamage Energy Diamage Droduction Energy Diantation Diamage	
Gasification, Theory of Gasification, Gasifier and their Classifications,	
draft Gasifiers, Fluidized Bed Gasification, Use of Biomass Gasifier, Gasifier	
Biomass Feed Characteristics, Applications of Biomass Gasifier, Cooling and	
Cleaning of Gasifiers. Biogas Energy: Introduction, Biogas and its Composition,	
Anaerobic Digestion, Biogas Production, Benefits of Biogas, Factors Affecting	
the Selection of a Particular Model of a Biogas Plant, Biogas Plant Feeds and	
their Characteristics.	8Hrs
Tidal Energy: Introduction, Tidal Energy Resource, Tidal Energy Availability,	
Tidal Power Generation in India, Leading Country in Tidal Power Plant	
Installation, Energy Availability in Tides, Tidal Power Basin, Turbines for Tidal	
Power, Advantages and Disadvantages of Tidal Power, Problems Faced in	
Exploiting Tidal Energy.	
Laboratory Sessions/ Experimental learning: Visit a biogas plant nearby.	
Applications: Produce bio-fuel for cooking.	
web Link and video Lectures: <u>https://youtu.be/_OQt14ynnwc</u>	
UNIT-V See Ways Energy Introduction Motion in the see Ways, Dower Associated	
with Son Wayes, Waye Energy, Availability, Devices, for Hernossing Waye	
Energy Adventages and Disadvantages of Wave Dower	
Ocean Thermal Energy: Introduction Principles of Ocean Thermal Energy	
Conversion (OTEC) Ocean Thermal Energy Conversion Sea plants Basic	
Ranking Cycle and its Working Closed Cycle Open Cycle and Hybrid Cycle	
Carnot Cycle Application of OTEC in Addition to Produce Electricity	8Hrs
Advantages Disadvantages and Benefits of OTEC	
Laboratory Sessions/ Experimental learning: Visit near RES plant and get	
practical knowledge on working of UTEC.	
Applications: Power generation	
Applications: Power generation Web Link and Video Lectures : <u>https://youtu.be/_iz8ZkjD7z8</u>	

Course O	Course Outcomes: After completing the course, the students will be able to								
C305.1.1	Understand energy resources and availability of renewable energy								
C305.1.2	Examine types of solar collectors, their configurations, solar cell system, its								
	characteristics and their applications								
C305.1.3	Discuss generation of energy from hydrogen, wind and geothermal system								
C305.1.4	Discuss production of energy from biomass, biogas and tidal.								
C305.1.5	Discuss sea wave energy and OTEC.								

Textbooks/ Reference Books

-	
1	Nonconventional Energy Resources ShobhNath Singh Pearson 1 st Edition, 2015.
2	Nonconventional Energy Resources B.H. Khan McGraw Hill 3 rd edition.
3	Renewable Energy; Power for a sustainable Future Godfrey Boyle Oxford 3rd Edition,
	2012.
4	Renewable Energy Sources: Their Impact on global Warming and Pollution Tasneem
	Abbasi S.A. Abbasi PHI.

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

SEE for 50 marks executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												PSO		
CO/P	PO	PO1	PO1	PO1	PSO	PSO								
0	1	2	3	4	5	6	7	8	9	0	1	2	1	2
C305.1 .1	3	3	3	-	-	-	-	-	-	-	-	3	-	-
C305.1 .2	3	3	3	2	-	-	1	-	-	2	2	3	-	-
C305.1 .3	3	3	3	-	-	-	-	2	2	2	1	3	-	-
C305.1 .4	3	3	3	-	-	2	-	-	-	-	-	3	-	-
C305.1 .5	3	3	3	-	-	-	-	-	-	-	-	3	-	-

	Semester: V								
	Introduction to Semiconductor devices								
Cou	Course Code: MVJ22EE552 CIE Marks: 50								
Cree	lits:	L: T:P: 3:0:0	SEE Marks: 50						
Hou	rs:	40L	SEE Duration: 3 Hrs.						
Cou	rse Learning Objec	tives: The students will be able	to						
1	1 Learn the fundamental physics of semiconductor material.								
2	Understand the structure, characteristics and applications of semiconductor devices								
3	3 Study the working and applications fundamentals of Field effect tansistors								
4	4 Gain knowledge in optoelectronic devices and applications								
5	Learn about the fab	rication process of semiconducto	r devices						

UNIT-I	
Electrical Conductivity in an Intrinsic Semiconductors – Energy band diagram	
- direct and indirect band gap semiconductors - Carrier concentration in intrinsic	
semiconductors – Band gap determination- extrinsic semiconductors (Qualitative)-	
Hall effect - determination of Hall co-efficient - Applications of Hall effect.	00 II.ua
Laboratory Sessions/ Experimental learning: Determine band gap and hall	00 115
coefficient of a semiconductor material	
Applications: Semiconductor devices	
Video link: https://nptel.ac.in/courses/108108122	
UNIT-II	
P-N junction formation -Forward bias- Reverse bias -Ohmic contact	
Special Diodes - Zener Diode - VI Characteristics – Zener diode as peak clipper,	
Tunneling Effect-Tunnel diode, Varactor Diode, –Point Contact Diode-Shcottkey	
Diode, PIN Diode.	00 11
Laboratory Sessions/ Experimental learning: Study characteristics of PN	Uð HIS
junction diode, Zener diode & Tunnel diode	
Applications: Clippers, clampers and voltage regulators	
Video link: https://archive.nptel.ac.in/courses/122/106/122106025/	
UNIT-III	
Field Effect Transistor(FET)- Construction of JFET, idea of channel formation,	
pinch- off voltage, Transfer and output characteristics. MOSFET: MOS Diode,	
Basic construction of MOSFET and working, I-V characteristics, enhancement	
and depletion modes, Complimentary MOS (CMOS)	00 II.ua
Laboratory Sessions/ Experimental learning: Transfer and Output	00 115
Characteristics of JFET, IV characteristics of MOSFET	
Applications: SMPS, Audio amplifiers	
Video link: https://archive.nptel.ac.in/courses/115/102/115102014/	
UNIT-IV	
Opto Electronic materials and devices - carrier generation and recombination	
processes - Absorption, emission and scattering of light in metals, insulators and	
semiconductors (concepts only) - Photo electric effect-Photo current in a P-N	08 Urs
diode - Photo transistor-solar cell - LED - Organic LED- Non Linear Optical	VO 1115
materials-properties and applications	
Laboratory Sessions/ Experimental learning: Characteristics of Photo diode	

and Solar cell	
Applications: Solar power generation	
Video link: https://archive.nptel.ac.in/courses/113/104/113104012/	
UNIT-V	
Semiconductor devices fabrication: Semiconductor device fabrication process:	
Oxidation, Diffusion, Ion implantation, Lithography, Thin film deposition	
technique, Epitaxy, Examples: P-N junction device fabrication.	
Laboratory Sessions/ Experimental learning: Design of PN junction diode	08 Hrs
using Ansys	
Applications: Semiconductor design and fabrication	
Video link: https://archive.nptel.ac.in/courses/113/106/113106062/	

Course Outcomes: After completing the course, the students will be able to								
C305.2.1	Understand the physics of semiconductor materials.							
C305.2.2	Understand semiconductor devices							
C305.2.3	Explain about the fundamentals of Field effect tansistors							
C305.2.4	Develop appplications using optoelectronic devices							
C305.2.5	Understand semiconductor fabrication process.							

Ref	erence Books
1.	"Semiconductor Device Fundamentals", Robert F. Pierret, Pearson education, 2006
ſ	"Principles of Electronic Materials and Devices", S.O. Kasap. McGraw Hill Education
4.	(Indian Edition), 2020.
2	"Semiconductor Optoelectronics: Physics and Technology", Jasprit Singh, , McGraw-Hill
э.	Education (Indian Edition), 2019.
4.	"Electrical Properties of Materials", Laszlo Solymar, Walsh, Donald, Syms and Richard R.A.,
	Oxford Univ. Press (Indian Edition) 2015.
5.	"VLSI Technology", S.M.Sze(2nd Edition) McGraw Hill Companies Inc.

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE): Total marks: 50+50=100 **SEE** for 50 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three subdivisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C305.2.1	-	2	-	1	-	-		3	3	3	3	3
C305.2.2	-	1	-	3	-	-		3	3	3	3	3
C305.2.3	-	2	-	2	-	3		3	3	2	3	3
C305.2.4	-	2	-	2	-	2		3	3	3	3	3
C305.2.5	-	2	-	2	-	2		3	3	3	3	3

	Semester: V							
	Introducyion to Embedded System Design							
		(Theory)						
Cou	rse Code:	MVJ22EE553	CIE Marks:50					
Cree	dits:	L:T:P: 3:0:0	SEE Marks: 50					
Hou	irs:	40L	SEE Duration: 3 Hrs					
Cou	rse Learnin	ng Objectives: The students will be able to						
1	Understand	d the concepts of embedded system design s	uch as ROM variants, RAM.					
2	Learn the	technological aspects of embedded system	n such as signal conditioning,					
2	Sample & I	Hold.						
3	3 Understand the design trade-offs.							
4	4 Explain the software aspects of embedded system.							
5	Understand the subsystem interfacing.							

UNIT-I				
Concept of Embedded System Design: Components, classification, skills required. Embedded Microcontroller cores: Architecture of 6808 and 6811, Embedded Memories ROM variants, RAM.				
Laboratory Sessions/ Experimental learning: Assembly Language Program	8Hrs			
for addition of 8-bit numbers stored in an array.				
Applications: Digital electronics.				
Video link: https://nptel.ac.in/courses/106/105/106105193/				
UNIT-II				
Technological Aspects of Embedded System: Applications of embedded				
system: Examples of Embedded systems SOC for bar code scanner. Interfacing				
between analog and digital blocks, Signal conditioning, digital signal				
processing, DAC & ADC interfacing, Sample & hold, Multiplexer interface				
Internal ADC interfacing (excluding 6805 & 6812).				
Laboratory Sessions/ Experimental learning:				
1. Interfacing of 8-bit ADC 0809 with 8051 Microcontroller.				
2. Interfacing of 8-bit DAC 0800 with 8051 Microcontroller and Waveform				
generation using DAC.				
Applications: Telecommunications.				
Video link: https://nptel.ac.in/courses/108/102/108102169/				
UNIT-III				
Design Trade Offs Due to Process Incompatibility, Thermal Considerations:				
Data Acquisition System and Signal conditioning using DSP. Issues in				
embedded system design. Design challenge, design technology, trade-offs.				
Thermal considerations.				
Laboratory Sessions/ Experimental learning:				
1. Temperature control interfacing with 8051 microcontrollers.				
2.Implementation of Digital FIR filters on 8051 microcontrollers.				
Applications: Computer networks				
Video link: https://nptel.ac.in/courses/106/103/106103182/				
UNIT-IV				

Software aspects of Embedded Systems: Real time programming Languages, operating systems. Programming concepts and embedded programming in C. Round Robin, Round Robin with interrupts, function queue-scheduling architecture.	
Laboratory Sessions/ Experimental learning: Implementation of Hopfield	8Hrs
network in C to recognize a simple ASCII character.	
Applications: Systems with artificial intelligence and robotics.	
Video link: https://nptel.ac.in/noc/courses/noc20/SEM2/noc20-ee98/	
UNIT-V	
Subsystem interfacing: With external systems user interfacing, Serial I/O	
devices, Parallel portInterfaces: Input switches, Keyboards and Memory	
interfacing.	
Laboratory Sessions/ Experimental learning:	
1. Implementation of Serial Communication by using 8051 serial ports.	8Hrs
2. Simple test program using Arm 9 mini 2440 kit (Interfacing LED with ARM	
9 mini-2440 kit).	
Applications: Militarydefence systems.	
Video link: https://nptel.ac.in/noc/courses/noc20/SEM2/noc20-ee98/	

Course O	utcomes: After completing the course, the students will be able to
C305.3.1	Identify the Embedded system components.
C305.3.2	Apply technological aspects to various interfacing with devices.
C305.3.3	Elaborate various design trade-offs.
C305.3.4	Apply software aspects and programming concepts to the design of Embedded System.
C305.3.5	Explain how to interface subsystems with external systems.

Tex	tbooks/ Reference Books
1	"Introduction to Embedded Systems", Shibu K V, Second Edition, 2017, McGraw Hill
	Education India Private Limited,9789339219680.
2	"Embedded System, Architecture, Programming and Design Operational Amplifiers", Raj Kamal, , 2nd Edition, 2008, McGraw Hill Education, 9780070667648
3	Embedded Microcomputer systems: Real time interfacing Valvano, 2 nd edition, 2011,
	J.W Cengage Learning India Private Limited, 978-111142625.
4	Embedded System Design: A Unified Hardware / Software Introduction, Wiley,
	Student edition, 2006,978-8126508372.

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

SEE for 50 marks executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping					PSO									
CO/P	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO
0	1	2	3	4	5	6	7	8	9	0	1	2	1	2
C305.3 .1	2	1	2	1	2	-	-	-	-	-	-	3	-	-
C305.3 .2	2	1	2	2	2	-	-	-	-	-	-	3	-	-
C305.3 .3	2	2	2	1	1	-	-	-	-	-	-	3	-	-
C305.3 .4	2	3	3	2	3	-	-	-	-	-	-	2	-	-
C305.3 .5	2	2	2	2	3	-	-	-	-	-	-	3	-	-

		Semester: V		
		Fundamentals of Electric Vehic	cles	
		(Theory)		
Cou	rse Code:	MVJ22EE554	CIE Marks:50	
Cree	Credits: L:T:P: 3:0:0 SEE Marks: 50			
Hours: 40L SEE Duration: 3 Hrs		SEE Duration: 3 Hrs		
Course Learning Objectives: The students will be able to				
1	Understand	d the fundamental laws and vehicle mechanic	cs.	
2	2 Understand working of Electric Vehicles and recent trends.			
3	3 Analyze different energy storage systems used in electric vehicles.			
4 Develop the electric propulsion unit and its control for application of electric vehicles				
5	5 Develop and design major components of Electric and Hybrid Electric Vehicles			
		IINIT-I		

JINII-I

UNIT-I	
Vehicle Mechanics: Roadway Fundamentals, Laws of Motion, Vehicle Kinetics, Dynamics of Vehicle Motion, Propulsion Power, Force-Velocity Characteristics, Maximum Gradability, Velocity and Acceleration, Constant FTR, Level Road, Velocity Profile, Distance Traversed, Tractive Power, Energy Required, Non-constant FTR, General Acceleration, Propulsion Systems. Laboratory Sessions/ Experimental learning: Simulation of an EV Applications: Designing an Electric Vehicle Web Link and Video Lectures: <u>https://www.youtube.com/watch?v=LZ82iANWBL0</u>	8Hrs
 Electric and Hybrid Electric Vehicles: Configuration of Electric Vehicles, Performance of Electric Vehicles, Traction motor characteristics, Tractive effort and Transmission requirement, Vehicle performance, Tractive effort in normal driving. Concept of Hybrid Electric Drive Trains, Architecture of Hybrid Electric Drive Trains, Series Hybrid Electric Drive Trains, Parallel hybrid electric drive trains Laboratory Sessions/ Experimental learning: Industrial Visit Applications: Selection of appropriate motors for Electric vehicles Web Link and Video Lectures: <u>https://www.youtube.com/watch?v=q6BYr5-fq5U</u> 	8Hrs
UNIT-III	
Energy storage for EV and HEV: Energy storage requirements, Battery parameters, Types of Batteries, Fuel Cell basic principle and operation, Types of Fuel Cells, PEMFC and its operation, Supercapacitors Laboratory Sessions/ Experimental learning: Application: Selection of the most efficient energy storage system for an EV. Web Link and Video Lectures: 1. <u>https://www.youtube.com/watch?v=IgxY_Xz4OMA_https://www.youtube.com/watch?v=y0Pa35ftnOI</u>	8Hrs
UNIT-IV	

Electric Propulsion: EV consideration, DC motor drives and speed control,	
Induction motor drives, Permanent Magnet Motor Drives, Switch Reluctance	
Motor Drive for Electric Vehicles, Configuration and control of Drives.	
Laboratory Sessions/ Experimental learning: Simulation of an EV drive with	
MATLAB/SIMULINK	8Hrs
Application: Electric Vehicles	
Web Link and Video Lectures:	
1. <u>https://www.youtube.com/watch?v=9JFSJmD3m1E</u>	
https://www.youtube.com/watch?v=OhiZH7geedQ	
UNIT-V	
Design of Electric and Hybrid Electric Vehicles:	
Series Hybrid Electric Drive Train Design: Operating patterns, control	
strategies, Sizing of major components, power rating of traction motor, power	
rating of engine/generator.	
Design of Parallel Hybrid Electric Drive Train Design: Control strategies of	
parallel hybrid drive train, design of engine power capacity, design of electric	
motor drive capacity, transmission design.	8Hrs
Laboratory Sessions/ Experimental learning: : Develop an electric	
propulsion unit and its control for application in electric vehicles	
Application: Design of power transmission system in an electric vehicle	
Web Link and Video Lectures:	
1. <u>https://www.youtube.com/watch?v=zzpOtJA-Rqw</u>	
https://www.youtube.com/watch?y=GgtesA-8tKs	

Course O	utcomes: After completing the course, the students will be able to
C305 4 1	Explain the roadway fundamentals, laws of motion, vehicle mechanics and
0.505.4.1	propulsion system design.
C305.4.2	Explain the working of electric vehicles and hybrid electric vehicles in recent
	trends.
C305.4.3	Model batteries, Fuel cells, PEMFC and super capacitors
C305.4.4	Develop the electric propulsion unit and its control for application of electric
	vehicles.
C305.4.5	Develop and design major components of Electric and Hybrid Electric
	Vehicles

Tex	tbooks/ Reference Books
1	Modern Electric, Hybrid Electric, and Fuel Cell Vehicles: Fundamentals, Theory, and
	Design, M. Ehsani, Y. Gao, S.Gay and Ali Emadi,1 Edition,2005, CRC Press,
	ISBN:.978-0849331541.
2	Energy Management Strategies for Electric and Plug-in Hybrid Electric Vehicles,
	Sheldon S. Williamson, 1 Edition, 2013, Springer, ISBN:1493955233
3	Modern Electric Vehicle Technology, C.C. Chan and K.T. Chau,4
	Edition,2001,Oxford University press, ISBN: 9780198504160

4	Electric and Hybrid Vehicles: Design Fundamentals, Iqbal Husain, 1 Edition, 2003,
	CRC Press, ISBN: 084931466.

Continuous Internal Evaluation (CIE): Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

SEE for 50 marks executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping						PSO								
CO/P	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO
0	1	2	3	4	5	6	7	8	9	0	1	2	1	2
C305.4 .1	2	3	1	1	-	-	-	-	-	-	-	-	-	-
C305.4 .2	2	3	1	2	-	-	-	-	-	-	-	-	-	-
C305.4 .3	2	3	1	2	-	-	-	-	-	-	-	-	-	-
C305.4 .4	2	3	1	2	-	-	-	-	-	-	-	-	-	-
C305.4 .5	2	3	1	3	-	-	-	-	-	-	-	-	-	-

	Semester: V						
	Sensors Technologies						
	(Theory)						
Cou	Course Code: MVJ22EE555 CIE Marks:50						
Credits:		L:T:P: 3:0:0	SEE Marks: 50				
Hou	irs:	40L	SEE Duration: 3 Hrs				
Cou	rse Learnir	ng Objectives: The students v	vill be able to				
1	1 Understand the working of different types of sensors.						
2	Discuss recent trends in sensor technology and their selection.						
3	3 Explain basics of smart sensors						
4	4 Discuss need of transducers, their classification, advantages and disadvantages.						
5	Explain ba	sics of signal conditioning and	signal conditioning equipment				

UNIT-I

Г

Introduction to sensors: Capacitance, magnetism, Induction, Resistance,			
Piezoelectric Effect, Hall effect, Thermoelectric effect, Sound waves,			
Temperature and thermal properties of materials. Different types of sensors-			
Displacement and Level Sensors: Inductive, Magnetic and Optical			
Acceleration: Accelerometers, Seismic Sensors.			
Force and Strain: Strain Gauge, Pressure sensors.	8Hrs		
Laboratory Sessions/ Experimental learning: Measurement of level in a tank			
using capacitive type level probe in virtual lab			
Applications: Automation.			
Web Link and Video Lectures:			
https://www.youtube.com/watch?v=onNkjSbcSWc			
UNIT-II			
Acoustic sensor: Resistive and Fiber-optic microphones, Humidity and			
Moisture sensor: capacitive, resistive and thermal conductivity, Light			
Detectors: Photodiode, Phototransistor, Photo resistor, Radiation Detectors:			
Scintillating Detectors and Ionization Detectors			
Temperature sensor: Pyroelectric Effect, Coupling with object, Static & Dynamic heat exchange, RTD, Thermistors, Thermocouple circuits, proximity sensors-inductive, optical, capacitive, magnetic and ultrasonic, Hall effect sensors	011		
Gas sensors: Optical gas sensor, Metal oxide semiconductor gas sensor, Field effect transistor gas sensor, Piezoelectric gas sensor, Polymer gas sensor, Nano-structured based gas sensors			
Laboratory Sessions/ Experimental learning: Characteristics the temperature sensor (RTD) in virtual lab			
Applications: Medical applications, temperature control, position control.			
Web Link and Video Lectures: https://nptel.ac.in/courses/108/108/108108147/			

UNIT-III				
Basics of smart sensors: Introduction, Mechanical-Electronic transitions in				
sensing, nature of sensors, types of smart sensors, overview of smart sensing				
and control systems. Interfacing sensors with microprocessors and micro				
Laboratory Sessions/ Experimental learning: Interfacing of sensors through				
micro controller	8Hrs			
Application: Sancor arrow				
Application: Sensor anay				
Web Link and Video Lectures:				
https://www.youtube.com/watch?v=q8UuRkOQ9A0				
UNIT-IV Introduction to Transducars: Introduction Different types of transducars				
Resistive transducers: Potentiometers metal and semiconductor strain gauges				
Strain gauge applications: Load and torque measurement Self and mutual				
inductive transducers- capacitive transducers, eddy current transducers, tacho				
generators and stroboscope. Piezoelectric transducers, photoelectric transducers,				
Magneto strictive transducers, Basics of Gyroscope.				
Laboratory Sessions/ Experimental learning: Strain gauge characteristics				
Laboratory Sessions/ Experimental learning: Strain gauge characteristics	8Hrs			
Laboratory Sessions/ Experimental learning: Strain gauge characteristics using virtual lab.	8Hrs			
Laboratory Sessions/ Experimental learning: Strain gauge characteristics using virtual lab.	8Hrs			
Laboratory Sessions/ Experimental learning: Strain gauge characteristics using virtual lab.Application: Torque measurement, vibration measurement, velocity measurement	8Hrs			
Laboratory Sessions/ Experimental learning: Strain gauge characteristicsusing virtual lab.Application:Torque measurement, vibration measurement, velocitymeasurement.WebLinkandVideoLectures:	8Hrs			
Laboratory Sessions/ Experimental learning:Strain gauge characteristicsusing virtual lab.Application:Torque measurement, vibration measurement, velocitymeasurement.WebLinkLinkandVideoLectures:https://www.youtube.com/watch?v=1uPTyjxZzyo	8Hrs			
Laboratory Sessions/ Experimental learning: Strain gauge characteristics using virtual lab. Application: Torque measurement, vibration measurement, velocity measurement. Web Link and Video Lectures: https://www.youtube.com/watch?v=1uPTyjxZzyo UNIT-V	8Hrs			
Laboratory Sessions/ Experimental learning: Strain gauge characteristics using virtual lab. Application: Torque measurement, vibration measurement, velocity measurement. Web Link and Video Lectures: https://www.youtube.com/watch?v=1uPTyjxZzyo UNIT-V Signal Conditioning: Introduction, Functions of Signal Conditioning	8Hrs			
Laboratory Sessions/ Experimental learning: Strain gauge characteristics using virtual lab. Application: Torque measurement, vibration measurement, velocity measurement. Web Link and Video Lectures: https://www.youtube.com/watch?v=1uPTyjxZzyo UNIT-V Signal Conditioning: Introduction, Functions of Signal Conditioning Equipment, Amplification, Types of Amplifiers, Mechanical Amplifiers Fluid	8Hrs			
Laboratory Sessions/ Experimental learning: Strain gauge characteristics using virtual lab. Application: Torque measurement, vibration measurement, velocity measurement. Web Link and Video Lectures: https://www.youtube.com/watch?v=1uPTyjxZzyo UNIT-V Signal Conditioning: Introduction, Functions of Signal Conditioning Equipment, Amplification, Types of Amplifiers, Mechanical Amplifiers Fluid Amplifiers, Optical Amplifiers, Electrical and electronicAmplifiers.	8Hrs			
Laboratory Sessions/ Experimental learning: Strain gauge characteristics using virtual lab.Application: Torque measurement, vibration measurement, velocity measurement.WebLink Link and Video 	8Hrs			
Laboratory Sessions/ Experimental learning: Strain gauge characteristics using virtual lab. Application: Torque measurement, vibration measurement, velocity measurement. Web Link and Video Lectures: https://www.youtube.com/watch?v=1uPTyjxZzyo UNIT-V Signal Conditioning: Introduction, Functions of Signal Conditioning Equipment, Amplification, Types of Amplifiers, Mechanical Amplifiers Fluid Amplifiers, Optical Amplifiers, Electrical and electronicAmplifiers. Data Acquisition Systems and Conversion: Introduction, Objectives and Configuration of Data	8Hrs 8Hrs			
Laboratory Sessions/ Experimental learning: Strain gauge characteristics using virtual lab. Application: Torque measurement, vibration measurement, velocity measurement. Web Link and Video Lectures: https://www.youtube.com/watch?v=1uPTyjxZzyo UNIT-V Signal Conditioning: Introduction, Functions of Signal Conditioning Equipment, Amplification, Types of Amplifiers, Mechanical Amplifiers Fluid Amplifiers, Optical Amplifiers, Electrical and electronicAmplifiers. Data Acquisition Systems and Conversion: Introduction, Objectives and Configuration of Data Acquisition System, Data Acquisition Systems, Data Conversion. Link acquisition System, Data Acquisition Systems, Data Conversion.	8Hrs 8Hrs			
Laboratory Sessions/ Experimental learning: Strain gauge characteristics using virtual lab.Application: measurement.Torque measurement, vibration vibration vibration 	8Hrs 8Hrs			
Laboratory Sessions/ Experimental learning: Strain gauge characteristics using virtual lab. Application: Torque measurement, vibration measurement, velocity measurement. Web Link and Video Lectures: https://www.youtube.com/watch?v=1uPTyjxZzyo With the state of the st	8Hrs 8Hrs			
Laboratory Sessions/ Experimental learning: Strain gauge characteristics using virtual lab. Application: Torque measurement, vibration measurement, velocity measurement. Web Link and Video Lectures: https://www.youtube.com/watch?v=1uPTyjxZzyo UNIT-V Signal Conditioning: Introduction, Functions of Signal Conditioning Equipment, Amplification, Types of Amplifiers, Mechanical Amplifiers Fluid Amplifiers, Optical Amplifiers, Electrical and electronicAmplifiers. Data Acquisition Systems and Conversion: Introduction, Objectives and Configuration of Data Acquisition System, Data Acquisition Systems, Data Conversion. Laboratory Sessions/ Experimental learning: Signal amplification. Application: Automation. WebLinkandVideoLectures: https://www.youtube.com/watch?v=MGC21 WeNKSI	8Hrs 8Hrs			

Course Outcomes: After completing the course, the students will be able to				
C305.5.1	Explain working of different types of transducers and sensors.			
C305.5.2	Describe different type of sensors and its application.			
C305.5.3	Explain basics of smart sensors			
C305.5.4	Identify need of transducers, their classification, advantages and disadvantages.			
C305.5.5	Discuss basics of signal conditioning and signal conditioning equipment			

Textbooks/ Reference Books	

1	R.K Rajput, "Electrical and Electronic Measurements and instrumentation", S. Chand,
	3 rd Edition, 2013.
2	Daniel E. Suarez, "Smart Sensors and Sensing Technology", Nova Science Publishers,
	2011
3	Murthy D. V. S, "Transducers and Instrumentation", Prentice Hall, New Delhi, 2 nd
	Edition, 2008.
4	Patranabis, "Sensors and Transducers", Prentice Hall India Pvt. Ltd, 2nd Edition,
	2003.

Continuous Internal Evaluation (CIE): Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

SEE for 50 marks executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO	CO-PO Mapping PSO													
CO/P	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO
0	1	2	3	4	5	6	7	8	9	0	1	2	1	2
C305.5	3	3	3	1	1	-	-	-	-	-	-	3	_	_
.1													-	-
C305.5	3	3	3	3	3	-	-	-	-	-	-	3	_	_
.2													-	-
C305.5	3	3	3	3	3	-	-	-	-	-	-	3		
.3													-	-
C305.5	3	3	3	3	3	-	-	-	-	-	-	3		
.4													-	-
C305.5	3	3	3	3	3	-	-	-	-	-	-	3		
.5													-	-

	Semester: VI					
	Power System Analysis I					
		(Theory)				
Cou	Course Code:MVJ22EE61CIE Marks:50+50					
Credits:		L:T:P: 3:0:2	SEE Marks: 50+50			
Hours:		40L	SEE Duration: 3 Hrs			
Cou	rse Learnin	g Objectives: The students will be able to				
1	1 Understand per unit quantities, network models and bus admittance matrix					
2	Compute steady state load flow analysis with numerical iterative techniques					
3	3 Compute short circuit faults occurring in power systems					
4	4 Explain numerical solution of swing equation for multi-machine stability					
5	Illustrate p	roblems of unit commitment and economic	load dispatch			

UNIT-I	
Per Unit Representation and Topology: Per-Unit representation of Power system elements - Per-Unit equivalent reactance network of a three phase Power System. Graph Theory: Definitions, Formation of element node incidence and Bus Incidence Matrices, Y bus formation by Direct and Singular Transformation Methods, Numerical Problems Laboratory Sessions/ Experimental learning: Preparation of graph for a simple power system. Applications: Analysis of power system by reducing the complexity.	8Hrs
<td>8Hrs</td>	8Hrs
UNIT-III	
 Short Circuit Analysis: Symmetrical short circuit on Synchronous Machine, Bus Impedance matrix building algorithm, Symmetrical fault analysis through bus impedance matrix, Symmetrical components, Sequence impedance, Sequence networks, Analysis of unsymmetrical fault at generator terminals, use of bus impedance matrix for analyzing unsymmetrical fault occurring at any point in a power system. Laboratory Sessions/ Experimental learning: Evaluation of sequence components of phase currents and voltages for a LG fault in simple 4 bus system using MATLAB programming. Applications: Selection of appropriate protective devices 	8Hrs

Video link: <u>https://www.youtube.com/watch?v=HcMh7ahJxfo</u>	
UNIT-IV	
Power System Stability: Introduction, Dynamic and Transient Stabilities.	
Derivation of Swing Equation, Power Angle Curve and Determination of Steady	
State Stability. Determination of Transient Stability by Equal Area Criterion and	
its application, Critical Clearing Angle Calculation. Methods to improve	
Stability - Application of Auto Reclosing and Fast Operating Circuit Breakers	
Laboratory Sessions/ Experimental learning: Determination of Power Angle	8Hrs
curves using MATLAB.	
Applications: To determine nature of the relaying system needed, critical	
clearing time of circuit breakers, voltage level of and transfer capability	
between systems	
Video link: <u>https://www.youtube.com/watch?v=-NkoZx8gdqM</u>	
UNIT-V	1
Economic Operation of Power System: Introduction and Performance curves,	
Economic load dispatch of hydro-thermal scheduling neglecting losses and	
generator limits Economic generation scheduling including generator limits and	
neglecting losses Economic dispatch including transmission losses Derivation of	
transmission loss formula.	
Unit Commitment: Introduction, Constraints and unit commitment solution by	
prior list method andDynamic forward DP approach (Flow chart and Algorithm	8Hrs
only).	
Laboratory Sessions/ Experimental learning: Optimal generation scheduling	
for thermal power plants using Mi-power.	
Applications: To minimize the total cost of system production, yet maintain all	
the requirements such as loads, operating restrictions	
Video link: <u>https://nptel.ac.in/courses/108/104/108104052/</u>	

Course C	Outcomes: After completing the course, the students will be able to						
C310.1	Prepare per unit reactance diagram and formulate network matrices and models						
	for solving load flow problems.						
C310.2	Perform steady state power flow analysis of power systems using numerical						
	iterative techniques						
C310.3	Analyze short circuit faults in power system.						
C310.4	Analyse steady state and transient stability in power systems.						
C310.5	Solve economic load dispatch and unit commitment problems.						

Tex	tbooks/ Reference Books
1	D. P. Kothari, "Modern Power System "McGraw Hill, 4th Edition, 2011.
2	John.J.Grainger, William D. Stevenson, "Power System Analysis", Tata Mc Graw Hill
	Publishing company, New Delhi, 2003.
3	J.Duncan Glover et al, "Power System Analysis and Design", Cengage, 4th Edition,
	2008

Continuous Internal Evaluation (CIE): Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

SEE for 50 marks executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping										PSO				
CO/P O	P 0 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
C310.1	3	2	2	1	-	-	3	-	-	-	-	2	-	-
C310.2	3	2	2	1	-	-	3	-	-	-	-	2	-	-
C310.3	3	2	2	1	-	-	3	-	-	-	-	2	-	-
C310.4	3	2	2	1	-	-	3	-	-	-	-	2	-	-
C310.5	3	2	2	1	-	-	3	-	-	-	-	2	-	-

	Semester: VI								
	Control Systems								
		(Theory)							
Cou	rse Code:	MVJ22EE62	CIE Marks:50						
Cree	dits:	L:T:P: 3:0:0	SEE Marks: 50						
Hours: 40L SEE Duration: 3 Hrs									
Cou	rse Learnin	ng Objectives: The students will be able to							
1	Obtain ma	thematical modeling of control systems.							
2	Obtain tra	Obtain transfer function of systems using various techniques and discuss time							
2	response of the systems.								
3	Determine	the stability of LTI systems in time domain							
4	Determine the stability of LTI systems in frequency domain and discuss differe								
4	controllers	used in control systems.							
5	Explain di	fferent compensators used in control systems	 }						

UNIT-I					
Introduction: Open loop and closed loop systems – Examples, Control system					
components. Transfer function of physical systems: Mechanical systems -					
Translational and Rotational systems, Electrical network, Transfer function of					
DC servomotor, AC servomotor.	OTTug				
Laboratory Sessions/ Experimental learning: Obtain the transfer function of	οπις				
Servomotor by using MATLAB.					
Applications: Modeling of Physical systems helps in Mathematical analysis.					
Video link: https://nptel.ac.in/courses/108101037					
UNIT-II					
Block diagram - Reduction techniques. Signal flow graphs - Mason's gain					
formula, Construction of block diagram from signal flow graph, Construction of					
signal flow graph from block diagram.					
Laboratory Sessions/ Experimental learning: Experiment to obtain the time	8Hrs				
response of RLC circuit and determine the time domain specification.					
Applications: Performance analysis of second order system in time domain.					
Video link: https://nptel.ac.in/courses/108106098					
UNIT-III					
 Time domain Analysis: Standard Test signals –Time response of first and second order system, Time domain specifications, Type of systems, Steady state error constants, generalized error coefficients. Laboratory Sessions/ Experimental learning: Obtain the root locus for the given open loop transfer function and analyze the stability using MATLAB software. Applications: Stability Analysis of a given system Video link: <u>https://nptel.ac.in/courses/108102044</u> 	8Hrs				
UNIT-IV					
Stability Analysis: Concept of stability, Effect of location of poles on stability,	8Hrs				
R H criterion, applications of RH criterion with limitations.	U III 5				

Root locus technique : Introduction to root locus concepts, Construction rules,	
Analysis of stability by foot locus plot.	
Laboratory Sessions/ Experimental learning: Write a MATLAB program to	
obtain the Bode plot and analyze the stability of the system in frequency	
domain.	
Applications: Performance analysis of second order system in frequency	
domain	
Video link: <u>http://www.ni.com/tutorial/6450/en/</u>	
UNIT-V	
Frequency Domain Analysis: Frequency domain specification, Bode plots,	
GM and PM, Relative stability.	
Basic Control Actions and Controller: Introduction, elements of industrial	
automatic controller, classification of controllers, P, I, D, PI, PD, and PID	
controllers (only block diagram).	
Introduction to compensators: Introduction, types of compensators, transfer	8Hrs
function of lead, Lag, Lag-Lead Compensators.	
Laboratory Sessions/ Experimental learning: Simulation of compensator by	
using MATLAB.	
Applications: Analysis of system for accuracy and stability improvement.	
Video link: https://www.digimat.in/nptel/courses/video/108107115/L01.html	

Course C	Course Outcomes: After completing the course, the students will be able to							
C311.1	Obtain the mathematical model of physical systems.							
C311.2	Obtain transfer function of systems using various techniques and discuss time response of the systems							
C311.3	Determine the stability of LTI systems in time domain							
C311.4	Determine the stability of LTI systems in frequency domain and differentiate the various controllers used in control systems							
C311.5	Explain different compensators used in control systems.							

Tex	tbooks/ Reference Books
1	"Control Systems Engineering", I. J. Nagrath, M. Gopal, 7th Edition, New Delhi,
	2017.New Age International Publishers.
2	"Modern Control Engineering", Ogata K; 5th edition2013Pearson
3	"Automatic Control Systems (with MATLAB programs)" S. Hasan Saeed, KATSON
	Books, 8th Edition, New Delhi, 2016.
4	"Control systems", A. Anand Kumar, 2nd edition, PHI, 2018.

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for

10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

SEE for 50 marks executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping										PSO				
CO/P O	P 0 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
C311.1	3	3	1	2	2	-	-	-	3	2	-	3	-	-
C311.2	3	3	1	3	2	-	-	-	3	2	-	3	-	-
C311.3	3	3	1	3	2	-	-	-	3	2	-	3	-	-
C311.4	3	3	2	3	2	-	-	-	3	2	-	3	-	_
C311.5	3	3	2	3	2	-	-	-	3	2	-	3	-	-

	Semester: VI								
	Solar PV Technologies								
		(The	ory)						
Cou	rse Code:	MVJ22EE631	CIE Marks:50						
Credits:		L:T:P: 3:0:0	SEE Marks: 50						
Hou	rs:	40L	SEE Duration: 3 Hrs						
Cou	rse Learnin	g Objectives: The students	vill be able to						
1	Acquire kr	nowledge on world energy sce	nario and PN junction diode						
2	Understand the design of a solar cell.								
3	3 Explain different emerging solar cell technologies								
4	Explain ba	lance of solar PV systems.							
5	Explain va	rious photovoltaic systems and	their lifecycle costing.						

UNIT-I					
Introduction to Solar Photovoltaic energy source:					
Need for sustainable energy, solar PV as a renewable energy source, current					
status of renewable energy sources in India.					
Introduction to Solar Cell:	OTTma				
Introduction to PN junction equilibrium condition, non-equilibriumcondition,	01115				
PN junction under illumination.					
Applications: Help in better understanding of the solar cell					
Video Link: https://www.youtube.com/watch?v=bdnHTkrKWfc					
UNIT-II					
Solar Cell Design:					
Upper limits of cell parameters, losses in solar cells, solar cell design, design for					
high I_{sc} , design for high V_{oc} , design for high FF, analytical techniques	8Hrs				
Applications: Analyse and design a cell for various requirements					
Video Link: https://www.youtube.com/watch?v=KlHdlVrVj8o					
UNIT-III					
Solar Cell Technologies:					
Production of Si, Si wafer based solar cell technology, thin film solar cell					
technologies, emerging solar cell technologies and concepts.					
Applications: Selection of appropriate solar panel for different applications.	8Hrs				
Video Link:					
https://www.youtube.com/watch?v=9LGLbcjXxqI					
https://www.youtube.com/watch?v=8uGZMyjFugg					
UNIT-IV					
Solar Photovoltaic:					
Solar radiation, solar photovoltaic modules, balance of solar PV systems.	011				
Applications: Helps in better understanding of solar PV systems	ðHrs				
Video Link: https://www.youtube.com/watch?v=1yvaZZJ5IMc					
UNIT-V					
Photovoltaic System Design and Applications:	8U ra				
Introduction to solar PV systems, standalone PV systems configurations, design	01115				
methodology of PV systems, wire sizing in PV systems, hybrid PV systems, grid connected PV systems, lifecycle costing. Applications: Installation of solar PV systems Video Link: https://www.youtube.com/watch?v=jZs37m3IXJU

https://www.youtube.com/watch?v=mi2BzuEbj9o&t=1275s

Course Outcomes: After completing the course, the students will be able to									
C312.1.1	.1 Acquire knowledge on world energy scenario and PN junction diode								
C312.1.2	Understand the design of a solar cell.								
C312.1.3	Explain different emerging solar cell technologies								
C312.1.4	Explain balance of solar PV systems.								
C312.1.5	Explain various photovoltaic systems and their lifecycle costing.								

Tex	tbooks/ Reference Books
1	Solar Photovoltaics: Fundamentals, Technologies and Applications, Chetan Singh
	Solanki, 3 rd Edition, PHI Learning PVT Ltd., 2015.
2	Renewable Energy: Theory & Practice, Rathore N.S., Kurchania A.K., Panwar N.L.,
	First edition, 2006, Himanshu Publications, New Delhi.
3	Solar Photo-voltaic Products, Derrick, Francis and Bookalders, Second edition, 1991,
	ITDG Publishing, UK.

Continuous Internal Evaluation (CIE): Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

SEE for 50 marks executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping										PSO				
CO/P	PO	PO1	PO1	PO1	PSO	PSO								

0	1	2	3	4	5	6	7	8	9	0	1	2	1	2
C312.1 .1	3	3	3	3	-	2	2	-	-	1	3	3	-	-
C312.1 .2	3	3	3	3	2	3	2	-	-	1	3	3	-	-
C312.1 .3	3	3	3	3	2	3	2	-	-	1	3	3	-	-
C312.1 .4	3	3	3	3	2	3	2	-	-	1	3	3	-	-
C312.1 .5	3	3	3	1	-	3	2	-	-	1	3	3	-	-

	Semester: VI									
	PWM Techniques for Power Electronics Converters									
	(Theory)									
Cou	rse Code:	MVJ22EE632	CIE Marks:50							
Credits:		L:T:P: 3:0:0	SEE Marks: 50							
Hou	rs:	40L	SEE Duration: 3 Hrs							
Cou	rse Learnin	ng Objectives: The students will be able to	•							
1	To impart	knowledge of PWM techniques in controllin	ig the converter operation.							
2	To impart	knowledge of designing and analyzing D	C – DC PWM converters and							
2	control mo	control modules.								
3	3 To impart knowledge of designing and analyzing DC – AC converters.									
4	To impart knowledge of AC –DC converters and multilevel controllers									
5	To impart kn	owledge of analyzing different types of resonant con	verters and their control							

UNIT-I	
PWM DC/DC Converters:	
PWM control-basic principle, typesbasic equation- continuous and discontinuous	
mode-funcions of DC -DC converters with PWM-voltage control mode, -Boost	
converter-modes of operation-buck converter-modes of operation-Buck boost -modes	
of operation-application,	
Laboratory Sessions/ Experimental learning: Build a circuit for controlling a load by	
using PWM DC-DC converter MATLAB.	QUma
	01115
Applications: Mobile charging unit, switch mode power supply, induction heating, and	
traction motor control.	
Web Link and Video Lectures:	
1.https://archive.nptel.ac.in/courses/108/108/108108035/	
2. https://en.wikipedia.org/wiki/Boost_converter	
UNIT-II	
Control Modules:	
Basic Principles and Characteristics of PWM Control Modules - Circuit Analysis,	
Simple PWM, Voltage-Controlled PWM, Current-Controlled PWM- Compensated	
PWM, IC Control Modules - Control Module TL494, Control Module	
SG1524/2524/3524, Control Module TDA 1060.	
Laboratory Sessions/ Experimental learning: Realize the control circuit using	8Hrs
MATLAB	
Applications: Effective control of voltage and current in appliances.	
Web Link and Video Lectures:	
1. https://archive.nptel.ac.in/courses/108/105/108105180/	
2. <u>https://archive.nptel.ac.in/courses/108/105/108105186/</u>	
UNIT-III	
DC/AC Converters – Inverters:	8Hrs

Single-Phase Voltage Inverters - Pulse-Controlled Output Voltage, Pulse-Width	
Modulated Inverters - Unipolar PWM, Three-Phase Inverters-Over modulation (ma >	
1), Asynchronous PWM, Space Vector Modulation - Space Vector Modulation: Basic	
Principles, Application of Space Vector Modulation Technique, Direct and Inverse	
Sequencing, Real Drive Influence.	
Laboratory Sessions/ Experimental learning: . MATLAB simulation of DC/AC	
converter.	
Application: Social auditing in electrical industry	
Web Link and Video Lectures:	
1. https://archive.nptel.ac.in/courses/108/108/108035/	
2. <u>https://www.youtube.com/watch?v=Dg5AIy0bY1A</u>	
UNIT-IV	
AC/DC Converters – Rectifiers:	
PWM Rectifiers - Advanced Control Techniques of PWM Rectifiers, PWM Rectifier	
with Current Output, PWM Rectifiers in Active Filters, Some Topologies of PWM	
Rectifiers, Applications of PWM Rectifiers.	
Laboratory Sessions/ Experimental learning: Simulation of single phase and three	
phase full wave rectifier for R, RL and RLE load in MATLAB	8Hrs
Application: Paper mills, textile mills using DC motor drives and DC motor control in	
steel mills, AC fed traction system using a DC traction motor, High voltage DC	
transmission, UPS.	
Web Link and Video Lectures:	
3. https://archive.nptel.ac.in/courses/108/102/108102145/	
https://www.daenotes.com/electronics/basic-electronics/ac-dc-converters-rectifiers	
UNIT-V	
Resonant Converters:	
Resonant Circuits - Resonant Converters of Class D, Series Resonant Converters,	
Parallel Resonant Converters, Series - Parallel Resonant Converter, Soft Switching	
PWM DC/DC Converters -Phase Shift Bridge Converters, Resonant Transitions PWM	
Converters, Control Circuits of Resonant Converters.	
Laboratory Sessions/ Experimental learning: Design the resonant converter using	
MATLAB	8Hrs
Application: application in renewable energy conversion system	
Web Link and Video Lectures:	
1.https://www.youtube.com/watch?v=xpAqoKBEfoI	
2.https://nptel.ac.in/courses/108108036	

Course Outcomes: After completing the course, the students will be able to								
C312.2.1	Understand the concept of PWM techniques in controlling the converter operation							
C312.2.2	Understand the concept of DC – DC PWM converters and control modules							
C312.2.3	Analyze DC – AC converters with PWM.							

C312.2.4	Explain the role of AC –DC converters and multilevel controllers
C312.2.5	Design different types of resonant converters and their control

Textbooks/ Reference Books								
1	"Power Electronics Converters and Regulators", Branko L. Doki and Branko Blanu, Springer							
	(International Publishing, Switzerland), 3 rd Edition, 2015							
2	"Power Electronics Converters, Applications, and Design", Ned Mohan at el, Wiley, 3 rd							
	Edition,2014							

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

SEE for 50 marks executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping										PSO				
CO/PO	2	2	-	1	-	-	-	1	2	1	1	1	2	2
C312.2.1	2	1	-	2	-	-	-	-	1	-	-	-	2	1
C312.2.2	2	2	-	2	-	1	-	-	1	-	-	-	2	2
C312.2.3	2	2	-	1	-	-	-	1	-	1	1	1	2	2
C312.2.4	2	2	-	1	-	-	-	1		-	-	1	2	2
C312.2.5	2	2	-	1	-	-	-	1	2	1	1	1	2	2

	Semester: VI								
	Design of analog and mixed mode VLSI circuits								
	(Theory)								
Cou	rse Code:	MVJ22EE633	CIE Marks:50						
Cree	dits:	L:T:P: 3:0:0	SEE Marks: 50						
Hou	rs:	40L	SEE Duration: 3 Hrs						
Cou	rse Learnin	ng Objectives: The students will be able to)						
1	Understand the characteristics of CMOS circuit construction								
2	Introduce the concepts and techniques of modern integrated circuit design and testing (CMOS VLSI).								
3	3 Design CMOS combinational and sequential logic at the transistor level, with mask layout.								
4	Design for higher performance or lower area using alternative circuit families								
5	Testing and	d Verification of VLSI Design							

UNIT-I					
Introduction: A Brief History, MOS Transistors, MOS Transistor Switches,					
CMOS Logic, Circuit and System Representations, MOS Transistor Theory,					
Ideal I-V Characteristics, Non-ideal I-V Effects, DC Transfer Characteristics,					
Review of MOS electrical properties, Expression for threshold voltage and drain					
current, Secondary effects of MOSFET, review of CMOS and bipolar					
technologies.					
Laboratory Sessions/ Experimental learning: Design and demonstrate the					
MOS transistor connected as a diode using any CAD tool.					
Applications: integrated circuit (IC) chips, including microprocessors,					
microcontrollers, memory chips.					
Video link: https://nptel.ac.in/courses/117/101/117101058/					
UNIT-II					
MOS and Bi-CMOS Circuit Design Processes: MOS Layers, Stick Diagrams,					
Design Rules and Layout.Bi-CMOS processes, Integration and Isolation					
considerations, Integrated Analog/Digital CMOS Process.					
Basic inverter - Inverter Device sizing, Enhancement load and Depletion load					
inverters, CMOS inverter, CMOS inverter logic levels, Inverter device sizing,					
combinational logic implementation using NMOS and CMOS inverters.	8Hrs				
Laboratory Sessions/ Experimental learning: Draw layout of inverter using					
Cadence Tool.					
Applications: Design of CMOS inverter circuit with different scaling functions.					
Video link: 1. https://nptel.ac.in/courses/117106093/					
2. <u>https://nptel.ac.in/courses/117106092/</u>					
UNIT-III					
Scaling of MOS Circuits: Scaling Models & Scaling Factors for Device					
Parameters.	8Hrs				
Subsystem Design Processes: Some General considerations, An illustration of					

Design Processes, Illustration of the Design Processes- Regularity, Design of an	
ALU Subsystem, The Manchester Carry-chain and Adder Enhancement	
Techniques, Semiconductor memories, memory chip organization, RAM Cells,	
dynamic memory cell.	
Laboratory Sessions/ Experimental learning: Simulation of CMOS Inverter	
characteristics with different values of Inverter Ratio (Kr) using LTspice/Pspice	
software.	
Applications: Design of nMOS and CMOS inverter circuit.	
Video link: 1. <u>https://www.youtube.com/watch?v=eqnMAaYU4OY</u>	
2 <u>https://www.youtube.com/watch?v=zNqmohJHDwc</u>	
UNIT-IV	
Subsystem Design: Some Architectural Issues, Switch Logic, Gate(restoring)	
Logic, Parity Generators, Multiplexers, The Programmable Logic Array (PLA),	
CMOS Logic Gate Design, Basic Physical Design of Simple Gate, CMOS Logic	
Structures, Clocking Strategies, I/O Structures, Low Power Design.	8Hrs
Laboratory Sessions/ Experimental learning: Design Manchester Carry-chain	UIIIS
using CMOS transistors using any CAD tool.	
Applications: Designing of PLA and PLD	
Video link: https://nptel.ac.in/courses/117106093/	1
UNIT-V	
UNIT-V Memory, Registers and Aspects of system Timing-System Timing	
UNIT-V Memory, Registers and Aspects of system Timing-System Timing Considerations, Some commonly used Storage/Memory elements.	
UNIT-V Memory, Registers and Aspects of system Timing-System Timing Considerations, Some commonly used Storage/Memory elements. Testing and Verification: Introduction, Logic Verification, Logic Verification	
UNIT-V Memory, Registers and Aspects of system Timing-System Timing Considerations, Some commonly used Storage/Memory elements. Testing and Verification: Introduction, Logic Verification, Logic Verification Principles, Manufacturing Test Principles, Design for testability, Chip Level	
UNIT-V Memory, Registers and Aspects of system Timing-System Timing Considerations, Some commonly used Storage/Memory elements. Testing and Verification: Introduction, Logic Verification, Logic Verification Principles, Manufacturing Test Principles, Design for testability, Chip Level Test Techniques, System Level Test Techniques, Layout Design for Improved	
UNIT-V Memory, Registers and Aspects of system Timing-System Timing Considerations, Some commonly used Storage/Memory elements. Testing and Verification: Introduction, Logic Verification, Logic Verification Principles, Manufacturing Test Principles, Design for testability, Chip Level Test Techniques, System Level Test Techniques, Layout Design for Improved Testability.	
UNIT-V Memory, Registers and Aspects of system Timing-System Timing Considerations, Some commonly used Storage/Memory elements. Testing and Verification: Introduction, Logic Verification, Logic Verification Principles, Manufacturing Test Principles, Design for testability, Chip Level Test Techniques, System Level Test Techniques, Layout Design for Improved Testability. Laboratory Sessions/ Experimental learning: Perform a survey on Prime-	8Hrs
UNIT-V Memory, Registers and Aspects of system Timing-System Timing Considerations, Some commonly used Storage/Memory elements. Testing and Verification: Introduction, Logic Verification, Logic Verification Principles, Manufacturing Test Principles, Design for testability, Chip Level Test Techniques, System Level Test Techniques, Layout Design for Improved Testability. Laboratory Sessions/ Experimental learning: Perform a survey on Prime- Time CAD tool from Synopsis for timing Analysis.	8Hrs
UNIT-V Memory, Registers and Aspects of system Timing-System Timing Considerations, Some commonly used Storage/Memory elements. Testing and Verification: Introduction, Logic Verification, Logic Verification Principles, Manufacturing Test Principles, Design for testability, Chip Level Test Techniques, System Level Test Techniques, Layout Design for Improved Testability. Laboratory Sessions/ Experimental learning: Perform a survey on Prime- Time CAD tool from Synopsis for timing Analysis. Applications:Testing of Imperfections in chip fabrication.	8Hrs
UNIT-V Memory, Registers and Aspects of system Timing-System Timing Considerations, Some commonly used Storage/Memory elements. Testing and Verification: Introduction, Logic Verification, Logic Verification Principles, Manufacturing Test Principles, Design for testability, Chip Level Test Techniques, System Level Test Techniques, Layout Design for Improved Testability. Laboratory Sessions/ Experimental learning: Perform a survey on Prime- Time CAD tool from Synopsis for timing Analysis. Applications: Testing of Imperfections in chip fabrication. Video link:	8Hrs
UNIT-V Memory, Registers and Aspects of system Timing-System Timing Considerations, Some commonly used Storage/Memory elements. Testing and Verification: Introduction, Logic Verification, Logic Verification Principles, Manufacturing Test Principles, Design for testability, Chip Level Test Techniques, System Level Test Techniques, Layout Design for Improved Testability. Laboratory Sessions/ Experimental learning: Perform a survey on Prime- Time CAD tool from Synopsis for timing Analysis. Applications: Testing of Imperfections in chip fabrication. Video link: 1. https://youtu.be/V-GL-oQSa14 (Fault design & Testability)	8Hrs
UNIT-VMemory, Registers and Aspects of system Timing-System Timing Considerations, Some commonly used Storage/Memory elements.Testing and Verification: Introduction, Logic Verification, Logic Verification Principles, Manufacturing Test Principles, Design for testability, Chip Level Test Techniques, System Level Test Techniques, Layout Design for Improved Testability.Laboratory Sessions/ Experimental learning: Perform a survey on Prime- Time CAD tool from Synopsis for timing Analysis.Applications: Testing of Imperfections in chip fabrication.Video link: 1.1.https://youtu.be/V-GL-oQSa14 (Fault design & Testability) 2.2.https://youtu.be/P7AQJn7K8Os (Combinational Circuit Test Pattern	8Hrs

Course O	Course Outcomes: After completing the course, the students will be able to								
C312.3.1	Demonstrate understanding of MOS transistor theory, CMOS fabrication flow								
	and technology scaling.								
C312.3.2	Draw the basic gates using the stick and layout diagrams with the knowledge								
	ofphysical design aspects								
C312.3.3	Demonstrate ability to design Combinational, sequential and dynamic logic								
	circuits as per the requirements								
C312.3.4	Interpret Memory elements along with timing considerations								
C312.3.5	Interpret testing and testability issues in VLSI Design								

Textbooks/ Reference Books

1	"CMOS Digital Integrated Circuits: Analysis and Design" - Sung Mo Kang & Yosuf
	Leblebici, Third Edition, Tata McGraw-Hill.
2	"CMOS VLSI Design- A Circuits and Systems Perspective"- Neil H. E. Weste, and
	David Money Harris4th Edition, Pearson Education.
3	Adel Sedra and K. C. Smith, "Microelectronics Circuits Theory and Applications", 6th
	or 7th Edition, Oxford University Press, International Version, 2009.

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

SEE for 50 marks executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping											PSO			
CO/P	PO	PO1	PO1	PO1	PSO	PSO								
0	1	2	3	4	5	6	7	8	9	0	1	2	1	2
C312.3	2	1	2	2	2	-	-	-	-	-	-	3		
.1													-	-
C312.3	2	2	2	2	2	-	-	-	-	-	-	3		
.2													-	-
C312.3	2	2	2	1	2	-	-	-	-	-	-	3		
.3													-	-
C312.3	3	3	2	2	2	-	-	-	-	-	-	3		
.4													-	-
C312.3	2	3	2	1	2	-	-	-	-	-	-	3		
.5													-	-

	Semester: VI							
	Battery Management Systems							
		(Theory)						
Cou	rse Code:	MVJ22EE634	CIE Marks:50					
Credits:		L:T:P: 3:0:0	SEE Marks: 50					
Hours:		40L	SEE Duration: 3 Hrs					
Cou	rse Learnin	g Objectives: The students will be able	0					
1	Understand	types of batteries and principle of operation.						
2	2 Understand about the modeling of battery.							
3	3 Explain about the Battery Management System Architecture.							
4	4 Understandbattery safety and protection for Electric Vehicle battery.							
5	Explain Bat	tery Management System integration to variou	s application.					

UNIT-I	
Introduction to Batteries	
Types of batteries (e.g., lithium-ion, lead-acid, nickel-cadmium), Basic principles of	
battery operation, Importance of battery management.	
Laboratory Sessions/ Experimental learning: Identify the specifications and	8Hrs
parameters of different types of batteries used in EV.	
Applications: Electric vehicles	
Video link: https://youtu.be/A3fHQsIkYeU?si=tkdTvyQdXpjaW7Yx	
UNIT-II	
Battery Modeling	
Mathematical modeling of battery behavior, Equivalent circuit models, State of Charge	
(SoC) and State of Health (SoH) estimation (Extended Kalman Filter based method)	
Laboratory Sessions/ Experimental learning: Using MATLAB estimate SoC and SoH	8Hrc
using EKF.	01115
Applications: Design and develop SoC and SoHestimation for battery used in Electric	
Vehicles.	
Video link: https://youtu.be/pPzj-YBCadg?si=YdLjjiL2Mxg5z-Ao	
UNIT-III	
Battery Management System Architecture	
Overview of BMS components, Functions of each component (e.g., cell balancing,	
voltage monitoring, temperature monitoring) ,Communication protocols (e.g., CAN bus)	
for BMS integration	
Laboratory Sessions/ Experimental learning: Monitor the temperature of the battery	8Hrs
using CAN bus interface.	
Application: Develop Battery management system for Electric Vehicles.	
WebLinkandVideo	
Lectures: https://youtu.be/zmO3nHkH8Ak?si=dZGPxgF8UyQ3Yffd	
UNIT-IV	[
Battery Safety and Protection	
Overcharge protection, Over-discharge protection, Overcurrent protection, Thermal	8Hrs
management and temperature monitoring	

Laborator	v Sessions/	Experiment	al learnin	g: Design	protection	circuits	for
Ourselance and Ourselance anotaction and Tama anotacian							
Overcharge	and Overcuri	rent protection	n and Tempe	rature mom	toring.		
Applicatio	n: Design of s	afety and pro	tection syste	em for batter	y.		
Web	Link	and	Video	Lectures	:https://yout	u.be/9M_l	DO-
<u>xe5h0?si=g</u>	<u>FYHY_LpFn</u>	<u>pRtGXL</u>					
			UNI	T-V			
BMS Integ	ration in Ap	plications					
Automotive	e BMS, Rene	wable energy	y storage sy	stems, Port	able electro	nics, Med	lical
devices							
Applicatio	ns: Electric v	ehicles					
Video link	https://youtu	.be/-ua6MNF	n9EE?si=U	849g36dWZ	yjwSUa		
							·
Course Outcomes: After completing the course, the students will be able to							
C312.4.1	312.4.1 Understand principle of operation of battery and Importance of Battery management.						
C312.4.2	Understand about Equivalent-circuit based modeling of battery.						
C312.4.3	Explain abou	ut battery mar	nagement sy	stem archite	ctures and co	ommunica	tion protocols.
C312.4.4	Understandc	ontrol circuit	for battery	afety and pr	otection for	Electric V	ehicle battery.

C312.4.5 | Explain Battery Management System integration to automobile.

Tex	tbooks/ Reference Books
1	Gregory L. Plett, "Battery Management Systems: Vol. II Equivalent-Circuit Methods", Artech
	House, London, 2016.
2	Davide Andrea, "Battery Management Systems for Large Lithium-Ion Battery Packs", Artech
	House, London, 2010.
3	Phillip Weicker, "A Systems Approach to Lithium-Ion Battery Management", Artech House,
	London, 2014.

Continuous Internal Evaluation (CIE): Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

SEE for 50 marks executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO	Mapp	oing											PSO	
CO/P	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO
0	1	2	3	4	5	6	7	8	9	0	1	2	1	2
C312.4	2	1	2	2	2	-	-	-	-	-	-	3	_	_
.1													-	-
C312.4	2	2	2	2	2	-	-	-	-	-	-	3	_	_
.2													-	-
C312.4	2	2	2	1	2	-	-	-	-	-	-	3	_	_
.3													-	-
C312.4	3	3	2	2	2	-	-	-	-	-	-	3		
.4													-	-
C312.4	2	3	2	1	2	-	-	-	-	_	_	3		
.5													-	-

	Semester: VI							
	Industrial Insrumentation							
		(Theory)						
Cou	rse Code:	MVJ22EE635	CIE Marks:50					
Credits:		L:T:P: 3:0:0	SEE Marks: 50					
Hours:		40L	SEE Duration: 3 Hrs					
Cou	rse Learnin	ng Objectives: The students will be a	able to					
1	Understand	l the basics in measurement technique	es of force, torque and speed and					
2	2 Learn about methods of measurement of acceleration, Vibration and density							
3	3 Gain knowledge on basics of transmitter and types of transmitters.							
4	4 Understand micro electromechanical systems.							
5	Understand	the digital data acquisition system an	nd control.					

UNIT-I

UNIT					
Measurement of force, torque and speed Different types of load cells - Hydraulic,					
Pneumatic, strain gauge. Magneto elastic and Piezoelectric load cells - Different methods					
of torque measurement Strain gauge-Relative angular twist-Speed measurement-					
Capacitive tacho-Drag cup type tacho-D.C and A.C tacho generators - Stroboscope.	9 Un				
Laboratory Sessions/ Experimental learning: Speed measurement of machines.	0111				
Applications: Electrical and mechanical engineering	5				
Web Link and Video Lectures:					
<u>1.https://youtu.be/EakRe6ICM-Q</u>					
2. https://www.watelectrical.com/electric-drive-working-and-its-applications/					
UNIT-II					
Measurement of acceleration, vibration and density - Accelerometers - LVDT,					
Piezoelectric, Strain gauge and Variable reluctance type accelerometers - Mechanical type					
vibration instruments - Seismic instruments as accelerometer - Vibration sensor -					
Calibration of vibration pickups - Units of density and specific gravity - Baume scale and					
API scale - Pressure type densitometers - Float type densitometers - Ultrasonic					
densitometer - gas densitometer.	011				
Laboratory Sessions/ Experimental learning:LVDT experiment for measurement of					
displacement.	S				
Applications: Manufacture industries					
Web Link and Video Lectures:					
1.https://youtu.be/EakRe6ICM-Q					
2.https://nptel.ac.in/content/storage2/courses/108105066/PDF/L13(DK)(PE)%20((EE)NP					
TEL)%20.pdf					
UNIT-III					
TRANSMITTER: Pneumatic transmitter: Operation - Electronic transmitter: Study of					
2wire and 4 wire transmitters –Operation of Electronics and Smart transmitters – Principle					
of operation of flow, level, temperature and pressure transmitters - Installation and	9 Un				
Calibration of smart and conventional transmitters	om				
Laboratory Sessions/ Experimental learning: Demonstration of Different types of	5				
transmitters					

Application:Communication sect	ors
--------------------------------	-----

Web Link and Video Lectures:

<u>1. https://freevideolectures.com/course/4600/nptel-energy-conservation-waste-heat-recovery/52</u>

2. https://youtu.be/E76q-9q7ZDg

UNIT-IV

Micro Electromechanical system (MEMS): Advantages and Applications, MEMS micro sensors and actuators, Manufacturing process: Bulk micro machining and surface micromachining, MEMS accelerometers Virtual instrumentation system: architecture of virtual instruments – Virtual instruments and traditional instruments – concepts of graphical programming.

Laboratory Sessions/ Experimental learning: Case study on Virtual instrumentation system.

Application: automation industries

Web Link and Video Lectures:

1.<u>https://nptel.ac.in/content/storage2/courses/108103009/download/M7.pdf</u>

2. https://youtu.be/l46GUVBisUo

UNIT-V

Digital Data Acquisition systems & control: Use of signal conditioners, scanners, signal converters, recorders, display devices, A/D & D/A circuits in digital data acquisition. Instrumentation systems. Types of Instrumentation systems. Components of an analog Instrumentation Data – Acquisition system. Multiplexing systems. Uses of Data Acquisition systems. Use of Recorders in Digital systems. Digital Recording systems. Modern Digital Data Acquisition system. Analog Multiplexed operation, operation of sample Hold circuits.

Laboratory Sessions/ Experimental learning: working of A/D & D/A in circuit. **Application:** signal transmission and microprocessor applications

Web Link and Video Lectures:

- 1. <u>https://www.youtube.com/watch?v=_LAuDTNW5dw</u>
- 2. <u>https://new.siemens.com/global/en/products/buildings/fire-</u>
- safety/applications/li-ion-battery-storage-system.html

Course Outcomes: After completing the course, the students will be able to								
C312.5.1	Describe the different types of measurement techniques to measure force, torque and speed.							
C312.5.2	Describe the techniques of acceleration, Vibration and density							
C312.5.3	Describe the basics of transmitter and its types.							
C312.5.4	Describe the basics of micro electromechanical system							
C312.5.5	Describe the digital data acquisition systems & control.							

Tex	Textbooks/ Reference Books								
1	S.K. Singh, 'Industrial Instrumentation and Control', Tata McGraw Hill, 2003. 7. D.P.								
	Eckman', Industrial Instrumentation', Wiley Eastern Ltd								
2	R.K. Jain, 'Mechanical and Industrial Measurements', Khanna Publishers, New Delhi, 1999.								

3 D. Patranabis, 'Principles of Industrial Instrumentation', Tata McGraw Hill Publishing Company Ltd, 1996.

Continuous Internal Evaluation (CIE): Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

SEE for 50 marks executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping											PSO			
CO/P	PO	PO1	PO1	PO1	PSO	PSO								
0	1	2	3	4	5	6	7	8	9	0	1	2	1	2
C312.5	3	1	-	2	-	-	-	-	-	-	-	2	3	1
.1														
C312.5	3	1	-	2	-	-	-	-	-	-	-	2	3	1
.2														
C312.5	3	2	-	2	-	-	-	-	-	-	-	2	3	2
.3														
C312.5	3	2	-	2	-	-	-	-	-	-	-	2	3	2
.4														
C312.5	3	2	-	2	-	-	-	-	-	_	-	2	3	2
.5														

	Semester: VI							
	Renewable Energy Sources							
		(Theory)						
Cou	rse Code:	MVJ22EE641	CIE Marks:50					
Cree	dits:	L:T:P: 3:0:0	SEE Marks: 50					
Hou	rs:	40L	SEE Duration: 3 Hrs					
Cou	rse Learnin	ng Objectives: The students will be able to						
1	Understand	d energy resources and availability of renewa	able energy					
	Examine t	types of solar collectors, their configurat	ions, solar cell system, their					
2	characteris	tics, and their applications.						
3	3 Discuss generation of energy from hydrogen, wind, and geothermal system							
4	Discuss production of energy from biomass, biogas and tidal.							
5	Discuss sea wave energy and OTEC.							

UNIT-I

٦

 Renewable Energy sources: Causes of Energy Scarcity, Solution to Energy Scarcity, Factors Affecting Energy Resource Development, Energy Resources and Classification, Renewable Energy – Worldwide Renewable Energy Availability, Renewable Energy in India. Energy from Sun: Sun- earth Geometric Relationship, Layer of the Sun, Earth – Sun Angles and their Relationships, Solar Energy Reaching the Earth's Surface, Solar Thermal Energy Applications. Laboratory Sessions/ Experimental learning: Survey and data collection of different RES available. Applications: Get awareness about available RES. Web Link and Video Lectures: https://youtu.be/e0nkkKDjY50 	8Hrs
UNIT-II	
 Solar Thermal Energy Collectors: Types of Solar Collectors, Configurations of Certain Practical Solar Thermal Collectors, Material Aspects of Solar Collectors, Concentrating Collectors, Parabolic Dish –Solar Collector Systems into Building Services, Solar Water Heating Systems, Passive Solar Water Heating Systems, Applications of Solar Water Heating Systems, Active Solar Space Cooling, Solar Air Heating, Solar Dryers, Crop Drying, Space Cooling, Solar Cookers, Solar pond. Solar Cells: Components of Solar Cell System, Elements of Silicon Solar Cell, Solar Cell materials, Practical Solar Cells, I – V Characteristics of Solar Cells, Efficiency of Solar Cells, Photovoltaic Panels, Applications of Solar Cell Systems. Laboratory Sessions/ Experimental learning: Design of solar torch Applications: solar thermal applications for water and room heating. Web Link and Video Lectures: https://youtu.be/Dd20RQNBwGY 	8Hrs
UNIT-III	
Hydrogen Energy: Benefits of Hydrogen Energy, Hydrogen Production Technologies, Hydrogen Energy Storage, Use of Hydrogen Energy, Advantages and Disadvantages of Hydrogen Energy, Problems Associated with Hydrogen	8Hrs

Course O	Course Outcomes: After completing the course, the students will be able to							
C313.1.1	Understand energy resources and availability of renewable energy							
C313.1.2	Examine types of solar collectors, their configurations, solar cell system, its							
	characteristics and their applications							
C313.1.3	Discuss generation of energy from hydrogen, wind and geothermal system							
C313.1.4	Discuss production of energy from biomass, biogas and tidal.							
C313.1.5	Discuss sea wave energy and OTEC.							

Textbooks/ Reference Books

1	Nonconventional Energy Resources ShobhNath Singh Pearson 1 st Edition, 2015
2	Nonconventional Energy Resources B.H. Khan McGraw Hill 3 rd edition
3	Renewable Energy; Power for a sustainable Future Godfrey Boyle Oxford 3 rd
	Edition, 2012
4	Renewable Energy Sources: Their Impact on global Warming and Pollution Tasneem
	Abbasi S.A. Abbasi PHI.

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

SEE for 50 marks executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping										PSO				
CO/P	PO	PO1	PO1	PO1	PSO	PSO								
0	1	2	3	4	5	6	7	8	9	0	1	2	1	2
C313.1 .1	2	1	2	2	2	-	-	-	-	-	-	3	-	-
C313.1 .2	2	2	2	2	2	-	-	-	-	-	-	3	-	-
C313.1 .3	2	2	2	1	2	-	-	-	-	-	-	3	-	-
C313.1 .4	3	3	2	2	2	-	-	-	-	-	-	3	-	-
C313.1 .5	2	3	2	1	2	_	-	_	-	-	-	3	-	-

	Semester: VI							
	Smart Sensors and Systems							
		(Theory)						
Cou	rse Code:	MVJ22EE642	CIE Marks:50					
Cree	dits:	L:T:P: 3:0:0	SEE Marks: 50					
Hou	rs:	40L	SEE Duration: 3 Hrs					
Cou	rse Learnin	g Objectives: The students will be able to						
1	Understand	d the different types of sensors and smart set	nsors.					
2	Learn the p	principles and operations of active sensors.						
3	3 Understand the concepts of smart sensors.							
4	4 Study the conceptual approach of various Passive Sensors.							
5	Learn the	fundamentals of signal conditioning, data	acquisition and communication					
systemsused in mechatronics system development.								

UNIT-I				
Introduction to Smart Sensor: Introduction, definition of sensors, smart				
sensors, integrated smart sensors and integrated smart sensor systems,				
Classification of sensors, Third and fourth industrial revolution, Smart Sensors				
applications for Automated homes and vehicles.				
Laboratory Sessions/ Experimental learning: Automated system using smart	8Hrs			
sensors.	oms			
Applications: Automation				
Video link: 1. https://archive.nptel.ac.in/courses/108/108/108108147/				
2. https://youtu.be/n1XcDq-Ynv0				
3. https://youtu.be/fhp61CepgUg				
UNIT-II				
Motion, Proximity and Ranging Sensors: Motion Sensors, Potentiometers,				
Resolver, Encoders – Optical, Magnetic, Inductive, Capacitive, LVDT – RVDT				
- Synchro - Microsyn, Accelerometer - GPS, Bluetooth, Range Sensors - RF				
beacons, Ultrasonic Ranging, Reflective beacons, Laser Range Sensor (LIDAR).				
Laboratory Sessions/ Experimental learning: Measuring analog variations in				
physical variables by using appropriate resistive sensors in an RC-circuit and				
measuring the time to charge/discharge the capacitor				
Applications: Smart systems essentials for physical measurements				
Video link: 1. https://onlinecourses.nptel.ac.in/noc22_ee36/preview_				
2.https://youtu.be/sIBHVsoRgLs				
3. https://nptel.ac.in/courses/112108092				
UNIT-III				
Force, Magnetic and Heading Sensors: Strain Gage, Load Cell, Magnetic				
Sensors –types, principle, requirement, and advantages: Magneto resistive – Hall				
Effect – Current sensor Heading Sensors – Compass, Gyroscope, Inclinometers.				
Laboratory Sessions/ Experimental learning: Display the distance the object	8Hrs			
is placed from the sensor using Arduino.				
Applications: Integrated smart system design				
Video link: 1. https://nptel.ac.in/courses/112104251				

	2. https://archive.nptel.ac.in/courses/112/107/112107298/					
	UNIT-IV					
Smart Sensors: Optical sensors based on photon detection- introduction, Photon absorption in silicon- detection limit- photon detectors with gain, physical chemosensory-physical chemosensing-energy domains, Thermal sensors- heat transfer mechanisms, different temperature sensing elements. Laboratory Sessions/ Experimental learning: To display the temperature in a room by using thermal sensor. Applications: Smart Sensors Video link: 1. <u>https://archive.nptel.ac.in/courses/115/107/115107122/</u> 2. https://www.youtube.com/watch?v=oRydUfgMdgA						
	UNIT-V					
 Signal Conditioning and DAQ Systems: Amplification – Filtering – Sample and Hold circuits – Data Acquisition: Single channel and multi-channel data acquisition – Data logging - applications - Automobile, Aerospace, Home appliances, Manufacturing, Environmental monitoring. Laboratory Sessions/ Experimental learning: Interfacing Data Acquisition system hardware with computer. Applications: LabVIEW programming techniques. Video link: 1. <u>https://nptel.ac.in/courses/108105062</u> 2 https://youtu.be/I_9Pwyxhe40 						
<u> </u>						
Course O	utcomes: After completing the course, the students will be able to					
C313.2.1	Expertise in various types for sensors and smart sensors.					
U313.2.2	Acquire knowledge on different sensors and transducers.					
C313.2.3	3 Apply the various smart sensors in the Automotive and Mechatronics applications.					
C313.2.4	Study the basic principles of various smart sensors					

C313.2.5 Implement the DAQ systems with different sensors for real time applications

Tex	tbooks/ Reference Books
1	"Measurement Systems - Applications and Design", Ernest O Doebelin, Tata
	McGraw-Hill, 2009.
2	"A Course in Mechanical Measurements and Instrumentation and Control", Sawney A
	K and Puneet Sawney, 12th edition, Dhanpat Rai & Co, New Delhi, 2013.
3	"Sensors and Transducers", Patranabis D, 2nd Edition, PHI, New Delhi, 2010.
4	"Instrumentation for Engineers and Scientists", John Turner and Martyn Hill, Oxford
	Science
	Publications, 1999.

Continuous Internal Evaluation (CIE): Theory for 50 Marks CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

SEE for 50 marks executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO	CO-PO Mapping								PSO					
CO/P	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO
0	1	2	3	4	5	6	7	8	9	0	1	2	1	2
C313.2 .1	3	2	2	2	2	1	1	-	1	2	-	2	-	-
C313.2 .2	3	3	3	2	3	2	2	-	2	3	2	3	-	-
C313.2 .3	3	3	3	2	3	2	2	-	2	3	2	3	-	-
C313.2 .4	3	3	3	2	3	2	2	-	2	3	2	3	-	-
C313.2 .5	3	3	3	3	3	3	3	-	3	3	3	3	-	-

	Semester: VI							
	Aircraft Power System							
	(Theory)							
Cou	rse Code:	MVJ22EE643	CIE Marks:50					
Credits:		L:T:P: 3:0:0	SEE Marks: 50					
Hours:		40L	SEE Duration: 3 Hrs					
Cou	Course Learning Objectives: The students will be able to							
1	1 Understand the electrical and electronics components of aircraft system.							
2	Explain electrical machines and power units in aircraft system.							
3	3 Explain power distribution in aircraft systems.							
4	Explain different controls, transducers and lighting used in aircraft system.							
5	Explain the	e fuel management and engine system in airc	craft.					

UNIT-I	
Electrical and Electronic fundamentals for aircraft systems: Electrostatics	
and Capacitors, Direct Current, Current, Voltage and Resistance, Power and	
Energy, Electromagnetism, and Inductors, Alternating Current and Transformers,	
Safety, Semiconductor Theory, Diodes, Transistors, Integrated Circuits.	
Digital fundamentals for aircraft systems: Logic Gates, Combinational Logic	
Systems, Monostable and Bistable Devices, Encoders and Decoders,	
Multiplexers, Bus Systems and Computers	QUra
	01115
Applications: Concepts can be used to understand basics of power components	
of any aircraft system.	
Web Link and Video Lectures:	
1 https://www.usutuba.com/watab?w.D-DhUKLOO?h	
1. <u>Intps://www.youtube.com/watch?v=d5aVmNplOHw</u>	
UNIT-II Conceptors and motors Working Dringinla AC Conceptors 2 Dhase	
Generators and motors: working Principle, AC Generators, 5 Phase Generation and Distribution AC Motors, Practical Aircraft Constanting Systems	
Generation and Distribution, AC Motors, Flactical Alicraft Generating Systems.	
Power supplies: Regulators External Power Inverters Transformer Rectifier	
Units Auxiliary Power Unit Emergency Power	
Applications : Concepts can be used to understand the different power sources	8Hrs
available for aircraft system.	
Web Link and Video Lectures:	
1. <u>https://www.youtube.com/watch?v=b0qaO_1mmOw</u>	
https://www.youtube.com/watch?v=ObHw148t6ss	

UNIT-III					
Wiring and	d Circuit Protection: Overview, Construction and Materials,				
Specification	s, Shielding/ Screening, Circuit Protection.				
Distribution	of Power Supplies: Single Engine/General Aviation, Twin Engine				
General Avia	ation Aircraft, Large Aircraft Systems, Split Bus System, Parallel				
Bus System, Battery Charging, Control and Protection, Load Shedding					
Laboratory	Laboratory Sessions/ Experimental learning: Wiring of aircraft model.				
Applications	s: Power Distribution in Aircraft.				
Web Link a	nd Video Lectures:				
1. https://	//www.youtube.com/watch?y=DTe8mrw7pko				
https://www.	voutube.com/watch?v=5uaebpWwz0A				
	UNIT-IV				
Lights: Light	nting Technologies, Flight Compartment Lights, Passenger Cabin				
Lights, Exter	ior Lights.				
6 /					
Controls a	nd Transducers: Switches, Relays and Contactors, Variable				
Resistors, L	inear Displacement Transducers, Fluid Pressure Transducers,				
Temperature	Transducers, Strain Transducers, Rotary Position Transducers,				
electronic flight instrument system					
		8 Hrs			
Application	s: Concept can be used to design lighting				
Web Link a	nd Video Lectures:				
1. <u>https:</u>	//www.youtube.com/watch?v=3WxhYtkADKs				
2. <u>https:</u>	://www.youtube.com/watch?v=WhQ8Ai4fa_Q				
https://www.youtube.com/watch?v=FS18iIpeHEk					
	UNIT-V				
Engine syst	em: Starting and Ignition, Indicating Systems Overview, Primary				
Indicating S	Systems, Secondary Indicating Systems, Electronic Indicating				
Systems.					
Fuel Manag	ement: introduction, storage overview, Fuel Quantity Measurement				
and Indicatio	on, Fuel Feed and Distribution, Fuel Transfer.				
Web Link a	nd Video Lectures:				
1. <u>https://www.youtube.com/watch?v=gIdXLMVP6VU</u>					
https://www.youtube.com/watch?v=R0_Hn3WeOCI					
Course Out	comes: After completing the course, the students will be able to				
C313.3.1 U	Inderstand the electrical and electronic components of the aircraft syste	em.			
C313.3.2 U	Inderstand the electrical and electronic components of the aircraft syste	em.			
C313.3.3 D	Describe power distribution in aircraft systems.				

C313.3.4	Explain different controls, transducers, and lighting used in aircraft systems.
C313.3.5	Explain the fuel management and engine system in aircraft.

Tex	tbooks/ Reference Books
1	Aircraft electrical and Electronics systems, Mike Tooley and David Wyatt, Elsevier
	Book Aid International
2	Aircraft Electrical System by EHJ Pallett, 3 rd edition Pearson
3	Aircraft Electricity and Electronics by Thomas K Eismin, Sixth edition MC. Graw Hill

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

SEE for 50 marks executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping									PSO					
CO/P	PO	PO1	PO1	PO1	PSO	PSO								
0	1	2	3	4	5	6	7	8	9	0	1	2	1	2
C313.3 .1	3	1	-	-	-	1	-	-	-	-	2	2	-	-
C313.3 .2	3	1	-	-	-	1	-	-	-	-	2	2	-	-
C313.3 .3	3	2	-	-	-	1	-	-	-	-	2	2	-	-
C313.3 .4	3	2	-	-	-	1	-	-	-	-	2	2	-	-
C313.3 .5	3	2	-	-	-	1	-	-	-	-	2	2	-	-

	Semester: VI									
	Industrial ServoControl Systems									
		(Theory)								
Cou	rse Code:	MVJ22EE644	CIE Marks:50							
Cree	dits:	L:T:P: 3:0:0	SEE Marks: 50							
Hours: 40L SEE Duration: 3 Hrs										
Cou	Course Learning Objectives: The students will be able to									
Explain the evolution and classification of servos,			criptions of servo drive actuators,							
1	amplifiers, f	amplifiers, feedback transducers, performance, and troubleshooting techniques								
2	Discuss system analogs, vectors and transfer functions of differential equations.									
2	Represent servo drive components by their transfer function, to combine the servo drive									
3	⁵ building blocks into system block diagrams.									
4	Determine the frequency response techniques for proper servo compensation.									
~	Explain pe	rform indices and performance criteria for	servo systems and discuss the							
5	mechanical	mechanical considerations of servo systems.								

UNIT-I				
Servos				
Introduction, Benefits of Servo Systems, Types of Servos - Evolution of Servo Drives,				
Classification of Drives, Components of Servos - Hydraulic/Electric Circuit Equations,				
Actuators- Electric, Actuators-Hydraulic, Amplifiers-Electric, Amplifiers-				
Hydraulic, Transducers (Feedback).	8Hrs			
	UIII 5			
Laboratory Sessions/ Experimental learning: Identification of components for				
Electric/Hydraulic actuators				
Applications: servo motors are used to control speed in automobiles				
Video link: https://youtu.be/Sv3YYwfWR60?si=ka-mQMOAv6viPBYC				
UNIT-II				
Machine Servo Drives				
Types of Drives, Feed Drive Performance.				
Application of Industrial Servo Drives				
Introduction, Physical System Analogs, Quantities and Vectors, Differential Equations				
for Physical Systems, Electric Servo Motor Transfer Functions and Time Constants,				
Transport Lag Transfer Function, Hydraulic Servo Motor Characteristics, General	8Hrs			
Transfer Characteristics.				
Laboratory Sessions/ Experimental learning: Using MATLAB simulate the hydraulic				
servo system and find its characteristics				
Applications: Application in mobile hydraulics				
Video link: https://youtu.be/6DctdwlDKhc?si=jFhiZBK-4LdV2co-				
UNIT-III				
Generalized Control Theory				
Servo Block Diagrams, Frequency-Response Characteristics and Construction of	8Hrs			
Approximate (Bode) Frequency Charts, Nichols Charts, Servo Analysis Techniques,	01115			
Servo Compensation.				

Indexes of Performance				
Definition of Indexes of Performance for Servo Drives, Indexes of Performance for				
Electric and Hydraulic Drives.				
Laboratory Sessions/ Experimental learning: Frequency analysis of servo systems				
using MATLAB.				
Application: Used to find the performance of the servo drives.				
Web Link and Video Lectures: <u>https://youtu.be/1AT1yuQ9awM?si=hSwoXx5-</u>				
UNIT-IV				
Performance Criteria:				
Percent Regulation, Servo System Responses.				
Servo Plant Compensation Techniques				
Dead-Zone Nonlinearity, Change-in-Gain Nonlinearity, Structural Resonances,				
Frequency Selective Feedback, Feed forward Control.				
Machine Considerations				
Machine feed drive Considerations, Ball Screw Mechanical Resonances and Reflected	8Hrs			
Inertias for Machine Drives.				
Laboratory Sessions/ Experimental learning: Connect the servo motor with ball				
screw arrangement for position control using PLC				
Application: Implementation of servo systems for ball screw arrangement				
Web Link and Video Lectures: <u>https://youtu.be/agjdqWZOen8?si=9tA7loVzDJAs7Ukf</u>				
UNIT-V				
Machine Considerations				
Drive Stiffness, Drive Resolution, Drive Acceleration, Drive Speed Considerations,				
Drive Ratio Considerations, Drive Thrust/Torque And Friction Considerations, Drive				
Duty Cycles.				
Applications: Appropriate selection of servo system based on the machine				
considerations				
Video link: <u>https://youtu.be/agjdqWZOen8?si=w/V8ER_IgWIjtzNb</u>				
Course Outcomes: After completing the course, the students will be able to				
C313.4.1 Explain the evolution and classification of servos, with descriptions of s	ervo drive			
actuators, performance, and troubleshooting techniques				
C313.4.2 Analyze the transfer functions of servo systems				
C313.4.3 Understand servo drive components by their transfer function.				
C313.4.4 Analyze the frequency response of servo compensation.				

Textbooks/ Reference Books											
1	George W. Younkin Marcel Dekker, "Industrial Servo Control Systems Fundamentals and										
	Applications",1 st Edition, 2003.										

2	RiazollahFiroozian, "Servo Motors and Industrial Control Theory", Springer 2 nd Edition,
	2014.
3	Stephen M. Tobin, "DC SERVOS Application and Design with MATLAB", CRC", 1st
	Edition, 2011.

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

SEE for 50 marks executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

СО-РО	CO-PO Mapping													PSO	
CO/P O	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	
C313.4 .1	2	2	-	-	2	2	3	-	2	2	-	3	2	2	
C313.4 .2	2	3	-	-	1	2	3	-	2	2	-	3	2	3	
C313.4 .3	2	3	-	-	1	2	3	-	2	2	-	3	2	3	
C313.4 .4	2	3	2	3	2	2	3	-	2	2	-	3	2	3	
C313.4 .5	2	2	3	3	2	2	3	-	2	2	-	3	2	2	

Semester: VI										
Disater Management										
(Theory)										
Cou	rse Code:	MVJ22EE645	CIE Marks:50							
Cree	dits:	its: L:T:P: 3:0:0 SEE Marks: 50								
Hou	rs:	40L	SEE Duration: 3 Hrs							
Cou	rse Learnir	ng Objectives: The students will be able to								
1	Discuss di	Discuss disaster management, its planning, occurrence of cyclones and their hazard								
1	potential.									
2	Discuss the role of IMD, cyclone warning system in India and cyclone disaster									
2	management plan.									
3	Discuss the role of different institutions, defence, and other services in natural									
5	disaster management.									
1	Discuss the role of Central Water Commission in river water sharing, Draught, it									
4	assessmen	t, and drought management plan.								
5	Discuss re	asons for the occurrence of earthquake, Tsur	namis, and thunderstorms.							

UNIT-I				
Disaster Management Plan (DMP): - General introduction.				
Cyclones and their Hazard Potential: Classification of Low-Pressure Systems, Movement of Cyclones in Indian Seas, Storm Surges. Hazard Potential of Cyclonic Storms, Cyclone Prediction and Dissemination of Warnings, Dissemination of Cyclone Warnings.	8Hrs			
Case study: A study on Hazard Risks and Vulnerabilities in Regions Requiring Special Attention.	oms			
Applications: Reduce vulnerability to hazards & cope with disaster.				
Web Link and Video Lectures:				
https://www.youtube.com/watch?v=TB97oX7ANGo				
https://nptel.ac.in/courses/105104183				
UNIT-II	1			
India Meteorological Department and Cyclone Warnings in India: Cyclone				
Warnings through INSAT, Port Warnings with Day and Night hoisting Signals.				
Cyclones Disaster Management – Plan: Hazard Potentials Associated with Cyclones, Vulnerability Reduction, Early Warning.				
Action Plan for Cyclone Disaster Management.				
Case study: A study on cyclones and its impact on India.				
Applications: helps removing people and property from a threatened location by facilitating timely and effective rescue, relief, and rehabilitation.				
Web Link and Video Lectures:				
 <u>https://nptel.ac.in/courses/105104183</u> 				
https://archive.nptel.ac.in/courses/105/104/105104183/				

UNIT-III	
Role of Different Institutions in Natural Disaster Management: Role of Zilla Parishad, Role of PRA Groups in Disaster Management, Role of NGOs, Self Help Groups in Disaster Management, Role of Red Cross in Disaster Management.	
The Role of Defence and other Services in Disaster Management: Role of Air Force in DisasterManagement, Role of Medical and Health Department in Cyclone disaster management, National Disaster Response Force (NDRF), Role of Remote Sensing in Disaster Management, Role of Broadcast, Educational Media in disaster management.	8Hrs
Case study: Role of NGOs during Covid 19 pandemic. Applications: helps to provide effective rescue, relief, and rehabilitation. Web Link and Video Lectures:	
• <u>https://www.youtube.com/watch?v=F6expVc06PI</u>	
https://egyankosh.ac.in/bitstream/123456789/25512/1/Unit-3.pdf	
 Floods: Definition of Flood, Role of Central Water Commission, Flood Warning Signals and Precautionary Actions, Water Purification Technologies in Flood Affected Areas. Drought: Drought Management Plan, Drought Assessment, Drought Parameters, Role of Banking, Insurance, Microfinance in drought mitigation, Drought Monitoring, Drought Research Unit (IMD), Rainwater harvesting. Case study: A study on impact of floods and drought on India. Applications: helps to provide effective rescue, relief, and rehabilitation. Web Link and Video Lectures: 	8Hrs
• <u>nups://nptel.ac.in/courses/105/104185</u> https://archive.nptel.ac.in/courses/105/104/105104183/	
UNIT-V	
Earthquakes: Plate Tectonics, Seismicity of India, Earthquake Forecast and disaster management, Tsunamis, Landslides and Avalanches, Volcanoes.	
Hazards associated with Convective Clouds: Lightning, Some Effects of Electric Shock, Favours and Frowning's of Thunderstorms, Hailstorms, Tornadoes, Waterspouts, Dust-Devils, Nowcasting, Summer Thunderstorms over India, Cold Waves and Heat Waves in India.	
Case study: Case study on Gorkha Earthquake Applications: helps removing people and property from a threatened location by facilitating timely and effective rescue, relief, and rehabilitation.	
Web Link and Video Lectures:	
• <u>https://archive.nptel.ac.in/courses/105/104/105104183/</u>	
• <u>https://nptel.ac.in/courses/105104183</u> https://nptel.ac.in/courses/105104183	
nups://nptet.ac.nl/courses/105104185	
Course Outcomes: After completing the course, the students will be able to	

C313.5.1	Discuss disaster management plan, cyclones, and their hazard potential.
C313.5.2	Understand the role of IMD and cyclone prediction and cyclone warning system
	in India.
C313.5.3	Understand the role of different institutions defense and other services in natural
	disaster management.
C313.5.4	Understand the role of Central Water Commission in river water sharing,
	Draught, its assessment, and draught management plan.
C313.5.5	Understand occurrence of earthquake, Tsunamis, and thunderstorms.

Textbooks/ Reference Books

1	"Earth and Atmospheric Disaster Management Natural and Man-made" Navale
	Pandharinath, C. K. Rajan, BS Publications 2009
2	"National Disaster Management Plan" by National Disaster Management Authority
	Revised Edition - November, 2019

Continuous Internal Evaluation (CIE): Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

SEE for 50 marks executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO	CO-PO Mapping													PSO	
CO/P O	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	
C313.5 .1	3	3	1	1	1	-	-	-	1	-	-	2	-	-	
C313.5 .2	3	3	1	2	1	-	-	-	1	-	-	2	-	-	
C313.5 .3	3	3	1	2	1	-	-	-	1	-	-	2	-	-	
C313.5 .4	3	3	1	2	1	-	-	-	1	-	-	2	-	-	
C312.5 .5	3	2	1	2	1	-	-	-	1	-	-	2	-	-	

Semester: VII											
	PROJECT PHASE – I										
Cou	rse Code:	MVJ22EEP65	CIE Marks: 50								
Cree	dits:	L:T:P: 0:0:4	SEE Marks: 50								
Hou	rs:		SEE Duration:								
Cou	rse Learning Ob	jectives: The students will be able to									
1	Develop interact	ive, communication, organization, time	management, and presentation								
1	skills.										
2	Impart flexibility and adaptability.										
3	Inspire independ	ent and team working.									
4	Expand intellect	ual capacity, credibility, judgment, intui	tion.								
5	Adhere to punct	ality, setting and meeting deadlines.									
6	Instill responsibi	lities to oneself and others.									
	Train students to	Train students to present the topic of project work in a seminar without any fear, face									
7	audience confid	ently, enhance communication skill, i	nvolve in group discussion to								
	present and exchange ideas.										

Project Work Phase - I: Each student of the project batch shall involve in carrying out the project work jointly in constant consultation with internal guide, co-guide, and external guide and prepare theproject report as per the norms avoiding plagiarism.

Cours	Course Outcomes: After completing the course, the students will be able to								
314.1	Describe the project and be able to defend it. Develop critical thinking and problem- solving skills.								
314.2	Learn to use modern tools and techniques. Communicate effectively and to present ideas clearly and coherently both in written and oral forms.								
314.3	Develop skills to work in a team to achieve common goal. Develop skills of project management and finance.								
314.4	Develop skills of self-learning, evaluate their learning and take appropriate actions to improve it.								
314.5	Prepare them for life-long learning to face the challenges and support the technological changes to meet the societal needs.								

Scheme of Evaluation:

Continuous Internal Evaluation: The CIE (50 marks) evaluation shall be based on Phase wise completion of the project work, Project report, Presentation and Demonstration of the actual/model/prototype of the project.

Semester End Examination: SEE marks for the project (50 marks) shall be based on Project report, Presentation and Demonstration of the actual/model/prototype of the project, as per the norms by the examiners appointed.

CO-PO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
314.1	2	2	2	3	3	2	1	1	2	1	1	2	
314.2	2	2	2	3	3	2	1	1	2	1	2	2	
314.3	2	2	2	3	3	2	1	1	2	1	2	2	
314.4	2	2	2	3	3	2	1	1	2	1	2	2	
314.5	2	2	2	3	3	2	1	1	2	1	2	2	

Semester: VI							
	Control System Laboratory						
(Practical)							
Course Code:		MVJ22EEL66	CIE Marks:50				
Credits:		L:T:P: 3:0:0	SEE Marks: 50				
Hours:		40L	SEE Duration: 3 Hrs				
Course Learning Objectives: The students will be able to							
	Understand the performance characteristics of ac and DC servomotors and synchro-						
1	transmitter receiver pair.						
2	Design and analyze Lead, Lag and Lag – Lead compensators for given specifications.						
	Determine the time and frequency domain responses of a given second order system using						
3	software package or discrete components.						
4	Study the DC position and feedback control system and the effect of P, PI, PD and PID						
	controller on the step response of the system.						
5	Determine effect of addition of poles and zeros and pole location on stability of a system.						

List of Experiments

- 1. Speed torque characteristics of (i) AC servo motor (ii) DC servo motor.
- 2. Synchro pair characteristics
- 3. Determine frequency response of a second order system.
- 4. Frequency response of a passive RC lead compensating network for the given specifications.
- 5. Frequency response of a passive RC lag compensating network for the given specifications.
- 6. Frequency response characteristics of the lag lead compensating network for the given specifications.
- 7. (a) Simulate a typical second order system and determine step response and evaluate time response specifications.

(b)Evaluate the effect of adding poles and zeros on time response of second ordersystem.

8. Study a second order system and verify the effect of (a) P, (b) PI, (c) PD and (d) PID controller on the step response.

Along with mandatory experiments students are advised to complete two open ended experiments. The following are some suggestions for open ended experiments.

- 9. Determine the stability of system using root locus plot in MATLAB.
- 10. Determination of specific cake and medium resistance using Plate and frame filter press.
- 11. Simulate a D.C. Position control system and obtain its step response.
- 12. Simulate a DC Servomotor and study its stability

Course Outcomes: After completing the course, the students will be able to							
315.1	Determine the performance characteristics of AC and DC servomotors and synchro-						
	transmitter receiver pair used in control systems.						
315.2	Design, analyse and simulate Lead, Lag and Lag - Lead compensators for given						

specifications.
Utilize software package and discrete components in assessing the time and frequency
domain response of a given second order system.
Simulate the DC position and feedback control system and study the effect of P, PI, PD
and PID controller on the step response of the system.
Determine effect of addition of poles and zeros and pole location on stability of a system.

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

SEE for 50 marks executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping									PSO					
CO/P	PO	PO1	PO1	PO1	PSO	PSO								
0	1	2	3	4	5	6	7	8	9	0	1	2	1	2
315.1	2	1	2	2	2	-	-	-	-	-	-	3	-	-
315.2	2	2	2	2	2	-	-	-	-	-	-	3	-	-
315.3	2	2	2	1	2	-	-	-	-	-	-	3	-	-
315.4	3	3	2	2	2	-	-	-	-	-	-	3	-	-
315.5	2	3	2	1	2	-	-	-	-	-	-	3	-	-

Semester: VII								
Switchgear and Protection								
	(Theory)							
Course Code:		MVJ22EE71	CIE Marks:50+50					
Credits:		L:T:P: 3:0:2	SEE Marks: 50+50					
Hours:		40L	SEE Duration: 3 Hrs					
Cou	rse Learnin	ng Objectives: The students will be able to						
1	Discuss performance of protective relays, components of protection scheme and relay							
1	terminolog	terminology.						
2	Explain Overcurrent protection using electromagnetic relays and Overcurrent							
2	protective schemes.							
3	Explain construction, operating principles of various distance relays for distance							
	protection.							
4	Discuss construction, operating principles of static and numerical relays for							
	Numerical protection.							
5	Explain the	e principle of circuit interruption and differe	nt types of circuit breakers					

UNIT-I							
 Protective Relays: Introduction, Need for power system protection, evolution of protective relays, zones of protection, primary and backup protection, essential qualities of protection, classification of protective relays and schemes, basic relay terminology. Operating Principles and Relay Construction: Electromagnetic relays, thermal relays, static relays. Laboratory Sessions/ Experimental learning: Field visit to show placing and operation of relays in substation. Applications: Selection of relays for protection of system components. Web Link and Video Lectures: https://nptel.ac.in/courses/108/101/108101039/ https://youtu.be/NEXWcOgqZOI 	8Hrs						
UNIT-II							
 Over-Current Protection: Time-current characteristics, current setting, over current protective schemes, directional relay,Protection of parallel feeders, protection of ring mains, Phase fault and earth fault protection, Combined earth fault and phase fault protective scheme. Distance Protection: Impedance relay, reactance relay, MHO relay, Effect of arc resistance, Effect of power swings, effect of line length and source impedance on the performance of distance relays, selection of distance relays. Laboratory Sessions/ Experimental learning: Design of protection system for distribution system. Applications: Protection of transmission line and selection of distance relays. Web Link and Video Lectures: https://nptel.ac.in/courses/108/101/108101039/ 	8Hrs						
2. <u>https://youtu.be/XdE149Hk_h0</u>							
--	-----------	--	--	--	--	--	--
UNIT-III							
Differential protection-Introduction, differential relays, differential protection							
scheme, Wire Pilot protection (Transley scheme), Carrier current protection.							
AC Machines and Bus Zone Protection: Protection of Generators, Protection							
of transformers, Protection of induction motors, Protection of Bus zone							
protection							
Laboratory Sessions/ Experimental learning: Study the gas actuated	8Hrs						
Buchholz relay for oil filled transformer (virtual lab).							
Application: Protection of machines from internal and external faults.							
Web Link and Video Lectures:							
1. <u>https://nptel.ac.in/courses/108/101/108101039/</u>							
2. <u>https://youtu.be/ZXyq-xxRLnQ</u>							
UNIT-IV	Τ						
Numerical Protection Static Relays: Amplitude and Phase comparators, Static							
amplitude comparator, static over current relays, static directional relay, and							
static distance relays.							
Microprocessor Based Relays: Over current relays, directional relays, distance							
relays.	011						
Laboratory Sessions/ Experimental learning: Industrial visit	onrs						
Application: Numerical protection is used in smart grid.							
Web Link and Video Lectures:							
1. <u>https://nptel.ac.in/courses/108/101/108101039/</u>							
https://youtu.be/NEXWcOgqZOI							
UNIT-V							
FUSES: Introduction, fuse characteristics, types of fuses, application of HRC							
fuses, discrimination							
Circuit Breakers: Introduction, arcing in circuit breakers, arc interruption							
theories, re-striking and recovery voltage, resistance switching, current							
chopping, interruption of capacitive current, oil circuit breaker, air blast Circuit							
breakers, SF6 circuit breaker, operating mechanism, selection of circuit							
breakers, ratings of circuit breakers, testing of circuit breakers.	8Hrs						
Laboratory Sessions/ Experimental learning:							
1. Circuit Breaker Status Indication from field input(virtual lab)							
2. Substation Visit							
Application: MCB & Fuses are used for protection of all electrical machines.							
Web Link and Video Lectures:							
1. <u>https://nptel.ac.in/courses/108/101/108101039/</u>							
https://youtu.be/JRv2RVyYMtM							
Practice (Laboratory) Part							
SlNo Experiments							
(to be carried out using discrete components)	. •						
1 12. IDMT non-directional characteristics and calculation of error in	operating						
time for Over current Relay (Electro mechanical type).	1.4.4						
I Along with mondatory experiments students are advised to com	niete two						

	open ended experiments. The following are some suggestions for open ended							
	experiments.							
2	Operating characteristics of Over voltage & Under voltage Relay (Electro mechanical type)							
3	Operating characteristics of Microprocessor – based (numeric) Over / Under voltage Relay.							
4	Operating Characteristics of Microprocessor Based (Numeric) Over Current Relay.							
5	Motor protection scheme Studies.							
6	Spark over characteristics of air insulation subjected to High Voltage AC – with							
	Spark over voltage corrected to STP.							
7	Breakdown strength of transformer oil using oil test kit.							
8	Generator Protection Scheme							
Along w	ith mandatory experiments students are advised to complete two open ended							
experim	ents. The following are some suggestions for open ended experiments.							
9	Field mapping using electrolytic tank for capacitor model							
10	Generation of standard lightning impulse voltage.							
	Spark over characteristics of air insulation subjected to High Voltage DC.							

Course	Course Outcomes: After completing the course, the students will be able to									
C401.1	Compare and contrast electromagnetic, static and microprocessor-based relays									
C401.2	Select relay settings of over current and distance relays.									
C401.3	Analyze different protective schemes for bus-bars, generators, induction motors and transformers									
C401.4	Apply technology to protect power system components.									
C401.5	Analyze quenching mechanisms used in air, oil and vacuum circuit breakers									

Tex	tbooks/ Reference Books
7.	Power System Protection and Switchgear, Badriram and D.N. Vishwakarma, 2 ND
	Edition, TMH 2011.
8.	Fundamentals of Switchgear and Protection, J B Gupta, Technical Publications, 1st
	Edition, 2001.
3.	Fundamentals of Power system protection, Y.G.Paithankar and S.R.Bhide,2 nd Edition,
	PHI private limited, New Delhi, 2010
4.	Switch Gear and Protection, Sunil S Rao, Khanna Publication, 1999

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three

tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

SEE for 50 marks executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												PSO		
CO/P	PO	PO1	PO1	PO1	PSO	PSO								
0	1	2	3	4	5	6	7	8	9	0	1	2	1	2
C401.1	3	3	2	2	3	1	2	1	2	3	1	2	-	-
C401.2	3	3	2	2	3	1	2	1	2	3	1	2	-	-
C401.3	3	3	2	2	3	1	2	1	2	3	1	2	-	-
C401.4	3	3	2	2	3	1	2	1	2	3	1	2	-	-
C401.5	3	3	2	2	3	1	2	1	2	3	1	2	-	-

	Semester: VII										
	Industrial Drives and Applications										
	(Theory)										
Cou	rse Code:	MVJ22EE72	CIE Marks:50								
Cree	Credits: L:T:P: 4:0:0 SEE Marks: 50										
Hou	Hours: 40L SEE Duration: 3 Hrs										
Cou	rse Learnin	g Objectives: The students will	be able to								
1	Understand the electric drive										
2	Explain dynamics and modes of operation of electric drives.										
3	Explain selection of motor power ratings and control of dc motor using rectifiers.										
4	Analyze the performance of induction motor drives under different conditions										
5	Explain the c	control of induction motor, synchronous	motor and stepper motor drives.								

UNIT-I						
Electrical Drives: Electrical Drives, Advantages of Electrical Drives. Parts of Electrical						
Drives, Choice of Electrical Drives, Status of dc and ac Drives.						
Dynamics of Electrical Drives: Fundamental Torque Equations, Speed TorqueConventions						
andMultiquadrant Operation. Equivalent Values of DriveParameters, Components of Load						
Torques, Nature and Classification of LoadTorques, Calculation of Time and Energy Loss in						
TransientOperations, SteadyState Stability, Load Equalization.						
Control of Electrical Drives: Modes of Operation, Speed Control and Drive Classifications.	8Hrs					
Laboratory Sessions/ Experimental learning: MATLAB Simulation of closed loop control						
of drives.						
Applications: AC Drives on hotel air conditioning fans						
Web Link and Video Lectures:						
1. <u>https://www.electrical4u.com/classification-of-electrical-drives/</u>						
https://www.watelectrical.com/electric-drive-working-and-its-applications/						
UNIT-II						
Selection of Motor Power Ratings: Thermal Model of Motor for Heating and Cooling,						
Classes of Motor Duty, Determination of Motor Rating.						
Direct Current Motor Drives:Controlled Rectifier Fed dc Drives, Single Phase Fully						
ControlledRectifier Control of dc Separately Excited Motor, SinglePhase Half Controlled						
Rectifier Control of dcSeparately Excited Motor, Three Phase Fully Controlled Rectifier	8Hrs					
Control of dc Separately Excited motor.						
Four Quadrant Operations of DC Drives Introduction to Four quadrant operation -						

Motoring operations, Electric Braking - Plugging, Dynamic, and Regenerative Braking

operations. Closed-loop operation of DC motor (Block Diagram Only)							
Laboratory Sessions/ Experimental learning: Demonstration of the operation of							
controlled rectifier fed dc drives.							
Applications: Hybrid electric vehicles							
Web Link and Video Lectures:							
1.https://nptel.ac.in/content/storage2/courses/108105066/PDF/L-							
10(DK)(PE)%20((EE)NPTEL).pdf							
2.https://nptel.ac.in/content/storage2/courses/108105066/PDF/L13(DK)(PE)%20((EE)NPTEL)%20.pdf	<u> </u>						
UNIT-III Induction Motor Drives: Analysis and Performance of Three Phase Induction Motors							
Operation with Unbalanced Source Voltage and Single Phasing Operation with Unbalanced							
Rotor Impedances Analysis of induction motor fed from the non-sinusoidal voltage supply							
Starting, star-delta starter Auto-transformer starter Rotor resistance starter Braking.							
Regenerative braking Plugging AC dynamic braking							
Speed Control Techniques-Stator Voltage Control by semiconductor voltage controller							
Variable Frequency Control of Induction Motor, Voltage Source Inverter (VSI) Control							
Cycloconverter Control Closed Loop Speed Control and Converter Pating for VSL and							
Cycloconverter Control, Closed Loop Speed Control and Converter Rating for VSI and							
Cycloconverter induction information Drives, variable Frequency Control nonia Current Source,							
Laboratory Sessions/Experimental learning: MATLAD simulation of induction meter field							
Laboratory Sessions/ Experimental learning: MATLAB simulation of induction motor fed							
trom the non-sinusoidal voltage supply							
Application: Conveyors, pumps, winders							
web Link and video Lectures:							
1. <u>https://www.electrical4u.com/squirrel-cage-induction-motor/</u>							
https://instrumentationtools.com/squirrel-cage-induction-motor-vs-slip-ring-induction-motor/							
Synchronous Motor DrivesOperation from fixed frequency supply-starting, synchronous							
motor, Self-controlled synchronous motor drive employing loadcommutated thruster inverter,							
Starting Large Synchronous Machines, Permanent Magnet ac (PMAC)Motor Drives,							
Sinusoidal PMAC Motor Drives, Brushless dc Motor Drives.	QUrc						
Laboratory Sessions/ Experimental learning: Simulation of Synchronous Motor Drives	01115						
using MATLAB simulation							
Application: Robot actuators							
Web Link and Video Lectures: https://nptel.ac.in/content/storage2/courses/108103009/download/M7.pdf							

UNIT-V								
Stepper Motor Drives: Variable Reluctance, Permanent Magnet, Important Features of								
StepperMotors, Torque Versus Stepping rate Characteristics, Drive Circuits for Stepper								
Motor.								
Industrial Drives: Textile Mills, Steel Rolling Mills, Cranes and Hoists, Machine Tools.								
Laboratory Sessions/ Experimental learning: Simulation of stepper motor drives using								
MATLABsimulation	01115							
Application:CNC milling machines.								
Web Link and Video Lectures:								
1. <u>https://nptel.ac.in/courses/112/106/112106153/</u>								
https://nptel.ac.in/courses/108/102/108102156/								

Course	Course Outcomes: After completing the course, the students will be able to									
C402.1	Explain the electric drives and its advantages									
C402.2	Understand the multi-quadrant operation of dc Separately Excited Motor									
C403.3	Explain the various speed control techniques									
C404.4	Interpret the self-controlled synchronous motor drive									
C405.5	Understand the applications of drives in various industries									

Tex	tbooks/ Reference Books
1.	Gopal K Dubey, Fundamentals of electrical drives, Narosa publishing house, 2014.
2.	Nagrath .I.J. and Kothari .D.P, Electrical Machines, Tata McGraw-Hill, 2006
3.	Vedam Subrahmaniam, Electric Drives (Concepts and Applications), Tata McGraw-Hill, 2010
4.	Pillai.S.K, A First Course on Electric Drives, Wiley Eastern Limited, 2012

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

SEE for 50 marks executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from

each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												PSO		
CO/P O	P 0 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
C402.1	-	2	-	1	-	-		3	3	3	3	3	-	-
C402.2	-	1	-	3	-	-		3	3	3	3	3	-	-
C403.3	-	2	-	2	-	3		3	3	2	3	3	-	-
C404.4	-	2	-	2	-	2		3	3	3	3	3	-	-
C405.5	-	2	-	2	-	2		3	3	3	3	3	-	-

	Semester: VII										
	Power System Analysis II										
		(Theory)									
Cou	rse Code:	MVJ22EE73	CIE Marks:50+50								
Credits:		L:T:P: 3:0:2	SEE Marks: 50+50								
Hours:		40L +10P	SEE Duration: 3 Hrs								
Cou	rse Learnin	ng Objectives: The students will be able to									
1	1 Understand per unit quantities, network models and bus admittance matrix										
2	Compute s	teady state load flow analysis with numerica	l iterative techniques								
3	3 Compute short circuit faults occurring in power systems										
4	Explain nu	merical solution of swing equation for multi	-machine stability								
5	Illustrate p	roblems of unit commitment and economic l	oad dispatch								

UNIT-I					
Per Unit Representation and Topology: Per-Unit representation of Power					
system elements - Per-Unit equivalent reactance network of a three phase Power					
System Graph Theory: Definitions Formation of element node incidence and					
Bus Incidence Matrices V bus formation by Direct and Singular Transformation					
Matheda Numarical Droblems	011 mg				
Laboratory Society Freedom for a	оптя				
Laboratory Sessions/ Experimental learning: Preparation of graph for a					
simple power system. Applications: Analysis of power system by reducing the					
complexity.					
Video link: <u>https://www.youtube.com/watch?v=dmNIW2q-tbl</u>					
UNIT-II					
Power flow analysis: Bus classification, Formulation of Power Flow problems,					
Power flow solution using Gauss Seidel method, Handling of Voltage controlled					
buses, Power Flow Solution by Newton Raphson method, Fast Decoupled					
Power Flow Solution.	011				
Laboratory Sessions/ Experimental learning: Write a MATLAB program to	8Hrs				
solve any simple equation using iterative methods					
Applications: Power system planning and operation					
Video link: https://www.youtube.com/watch?y=rEyE3NxK8yE					
Short Circuit Analyzia Symmetrical short circuit on Synchronous Machina					
Due Impedence matrix building electricht Symmetrical fault enelweis through					
bus impedance matrix bunding algorithm, Symmetrical fault analysis through					
bus impedance matrix, Symmetrical components, Sequence impedance,					
Sequence networks, Analysis of unsymmetrical fault at generator terminals, use					
of bus impedance matrix for analyzing unsymmetrical fault occurring at any					
point in a power system.	8Hrs				
Laboratory Sessions/ Experimental learning: Evaluation of sequence					
components of phase currents and voltages for a LG fault in simple 4 bus					
system using MATLAB programming.					
Applications: Selection of appropriate protective devices					
Video link: https://www.youtube.com/watch?v=HcMh7ahJxfo					
UNIT-IV					

Power System Stability: Introduction, Dynamic and Transient Stabilities.								
Derivation of Swing Equation, Power Angle Curve and Determination of Steady								
State Stability. Determination of Transient Stability by Equal Area Criterion and								
its application, Critical Clearing Angle Calculation. Methods to improve								
Stability - Application of Auto Reclosing and Fast Operating Circuit Breakers								
Laboratory Sessions/ Experimental learning: Determination of Power Angle	8Hrs							
curves using MATLAB.								
Applications: To determine nature of the relaying system needed, critical								
clearing time of circuit breakers, voltage level of and transfer capability								
between systems								
Video link: https://www.youtube.com/watch?v=-NkoZx8gdqM								
UNIT-V								
Economic Operation of Power System: Introduction and Performance curves,								
Economic load dispatch of hydro-thermal scheduling neglecting losses and								
generator limits Economic generation scheduling including generator limits and								
neglecting losses Economic dispatch including transmission losses Derivation of								
transmission loss formula.								
Unit Commitment: Introduction, Constraints and unit commitment solution by								
prior list method andDynamic forward DP approach (Flow chart and Algorithm								
only).								
Laboratory Sessions/ Experimental learning: Optimal generation scheduling								
for thermal power plants using Mi-power.								
Applications: To minimize the total cost of system production, yet maintain all								
the requirements such as loads, operating restrictions								
Video link: https://nptel.ac.in/courses/108/104/108104052/								

Course	Outcomes: After completing the course, the students will be able to							
C402 1	Prepare per unit reactance diagram and formulate network matrices and models							
C405.1	for solving load flow problems.							
C403.2	Perform steady state power flow analysis of power systems using numerical							
	iterative techniques							
C403.3	Analyze short circuit faults in power system.							
C403.4	Analyse steady state and transient stability in power systems.							
C403.5	Solve economic load dispatch and unit commitment problems.							

Tex	tbooks/ Reference Books
1.	D. P. Kothari, "Modern Power System "McGraw Hill, 4th Edition, 2011.
2.	John.J.Grainger, William D. Stevenson, "Power System Analysis", Tata Mc Graw Hill
	Publishing company, New Delhi, 2003.
3.	J.Duncan Glover et al, "Power System Analysis and Design", Cengage, 4th Edition,
	2008
4.	Hadi Sadat, "Power System Analysis", McGraw Hill, 1st Edition, 2002

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

SEE for 50 marks executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping													PSO	
CO/P O	P 0 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
C403.1	3	2	2	1	-	-	3	-	-	-	-	2	-	-
C403.2	3	2	2	1	-	-	3	-	-	-	-	2	-	-
C403.3	3	2	2	1	-	-	3	-	-	-	-	2	-	-
C403.4	3	2	2	1	-	-	3	-	-	-	-	2	-	-
C403.5	3	2	2	1	-	-	3	-	-	-	-	2	-	-

	Semester: VII										
	DC Microgrid and Control System										
		(Theory)									
Cou	rse Code:	MVJ22EE741	CIE Marks:50								
Cree	lits:	L:T:P: 3:0:0	SEE Marks: 50								
Hou	rs:	40L	SEE Duration: 3 Hrs								
Cou	rse Learnin	ng Objectives: The students will be ab	le to								
1	Understanding the basics of AC and DC microgrid										
2	Analyze the different modelling of microgrid Power system.										
3	3 Understand various controlling techniques of Microgrid										
4	Understand	various operation modes and architecture									
5	Analyze sta	ability systems in DC Micro-grids									

UNIT-I						
INTRODUCTION : Conventional power generation: advantages and disadvantages,						
Energy crises, Non- conventional energy (NCE) resources: review of Solar PV, Wind						
Energy systems, Fuel Cells, micro-turbines, biomass, and tidal sources.						
BASICS OF A MICROGRID: Concept and definition of microgrid, microgrid drivers and						
benefits, review of sources of microgrids, typical structure and configuration of a						
microgrid, AC and DC microgrids, Power Electronics interfaces in DC and AC microgrids						
Laboratory Sessions/ Experimental learning: NA						
Web Link and Video Lectures:						
1. https://online.vtu.ac.in/course-details/dc-microgrid-and-control-systems						
UNIT-II						
Modelling of microgrid Power system: DC-AC converter, AC-DC converter, DC-DC						
converter, Modelling of Renewable energy source: Wind energy, Photovoltaic energy,						
Energy storage system.						
Laboratory Sessions/ Experimental learning: NA	8Hrs					
Web Link and Video Lectures:						
1. https://online.vtu.ac.in/course-details/dc-microgrid-and-control-systems						
UNIT-III						
CONTROL AND OPERATION OF MICROGRID: Modes of operation and						
control of microgrid: grid connected and islanded mode, Active and reactive power						
control, protection issues, anti-islanding schemes: passive, active and						
communicationbased techniques, microgrid communication infrastructure, Power	8Hrs					
quality issues in microgrids, regulatory standards, Microgrid economics, Introduction	01115					
to smart microgrids.						
Laboratory Sessions/ Experimental learning: NA						
Applications:						

Web Link and Video Lectures:					
https://online.vtu.ac.in/course-details/dc-microgrid-and-control-systems					
UNIT-IV					
Operation Modes and Architecture: Microgrid dynamic and modelling, operation					
modes and standards, microgrid control architecture. DC microgrid system architecture					
and AC interface					
Laboratory Sessions/ Experimental learning: NA					
Web Link and Video Lectures:					
1. <u>https://online.vtu.ac.in/course-details/dc-microgrid-and-control-systems</u>					
UNIT-V					
Stability in Microgrid: Introduction, Stability analysis of DC microgrid, DC					
Stabilization strategies (passive damping method), Non linear techniques					
Laboratory Sessions/ Experimental learning:NA	8Hrs				
Web Link and Video Lectures:					
https://online.vtu.ac.in/course-details/dc-microgrid-and-control-systems					

Course O	Course Outcomes: After completing the course, the students will be able to									
C404.1.1	Understand the basic concepts of Microgrid and types of it									
C404.1.2	Design the various models for different converters.									
C404.1.3	Analyze different control methods for Microgrid									
C404.1.4	Design the architecture for Microgrid									
C404.1.5	Understand the Stability analysis of Microgrid									

Tex	tbooks/ Reference Books
1.	AmirnaserYezdani, and Reza Iravani, "Voltage Source Converters in Power Systems:
	Modeling, Control and Applications", IEEE John Wiley Publications, 2010
2.	DorinNeacsu, "Power Switching Converters: Medium and High Power", CRC Press, Taylor &
	Francis, 2006
3.	F. Katiraei, M.R. Iravani, "Transients of a Micro-Grid System with Multiple Distributed Energy
	Resources" International Conference on Power Systems Transients (IPST-05) in Montreal,
	Canada on June 19-23, 2005.
4.	Z.Ye R. Walling, N.Miller, P.Du.K.Nelson, "FacilityMicrogrids, General Electric Global Research
	Center, Niskayuna, New York, Subcontract report, May 2005.

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The

marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

SEE for 50 marks executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO	CO-PO Mapping													PSO	
CO/P	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO	
0	1	2	3	4	5	6	7	8	9	0	1	2	1	2	
C404.1 .1	3	-	-	-	-	-	-	-	-	-	-	1	3	-	
C404.1 .2	2	-	3	-	1	-	-	-	-	-	-	-	2	-	
C404.1 .3	2	-	3	-	3	1	-	-	-	-	2	1	2	-	
C404.1 .4	2	-	3	-	3	1	-	-	-	-	2	1	2	-	
C404.1 .5	2	-	3	-	3	1	-	-	-	-	2	1	2	-	

	Semester: VII						
	High Power Multilevel Converters						
		(Theory)					
Cou	rse Code:	MVJ22EE742	CIE Marks:50				
Credits:		L:T:P: 3:0:0	SEE Marks: 50				
Hou	rs:	40L	SEE Duration: 3 Hrs				
Cou	rse Learnin	ng Objectives: The students will be able	to				
1	To understand multilevel, symmetrical and unsymmetrical topologies.						
2	To understand the operation of Diode clamped multilevel inverter						
3	3 To analyze the function of Flying capacitor multilevel converter						
4	4 To characterize the Cascade asymmetric multilevel converter						
5	To impart knowledge of analyzing Modular multilevel converter						

UNIT-I

Γ

UNIT-I			
Converters: Introduction, medium voltage power converters, multilevel converters,			
Applications.			
Multilevel Topologies: Introduction, generalized topologies with common DC bus, converters			
derived from the generalized topology, symmetric topologies without common DC link,			
summary of symmetric topologies, Asymmetric topologies.			
Laboratory Sessions/ Experimental learning: Simulation the multilevel converter in	8Hrs		
MATLAB.			
Applications: inverter circuit, industrial, switch mode power supply, traction motor control.			
Web Link and Video Lectures:			
1. <u>https://archive.nptel.ac.in/courses/108/102/108102157/</u>			
https://www.elprocus.com/multilevel-inverter-types-advantages/			
UNIT-II			
Diode clamped multilevel inverter			
Introduction-structure and functional description, modulation of multilevel converter, voltage			
balance control, effectiveness, boundary of voltage balancing, Applications.			
Laboratory Sessions/ Experimental learning: Realize the DCMLI circuit using MATLAB			
Applications: Effective speed control of induction motors.			
Web Link and Video Lectures:			
1.https://archive.nptel.ac.in/courses/108/102/108102157/			
2. <u>https://www.youtube.com/watch?v=IYPArniBlzc</u>			
UNIT-III			
Flying capacitor multilevel converter			
Introduction, flying capacitor topology, modulation scheme for the flying capacitor multilevel			
converter, dynamic voltage balance of the flying capacitor multilevel converter.			
Cascade asymmetric multilevel converter:			
Introduction, general characteristics of CAMC, comparison of five level topologies	8Hrs		
Laboratory Sessions/ Experimental learning: MATLAB simulation of FCMC.			
Application: electrified aircraft			
Web Link and Video Lectures:			

1.http://acl.digimat.in/nptel/courses/video/108102157/lec42.pdf	
2.https://www.slideshare.net/slideshow/flying-capacitor-multi-level-inverter-	
190707471/190707471	
3.https://web.iitd.ac.in/~anandarup/nptel_high_power_conv/15_other_converter_topologies.pdf	
UNIT-IV	
Modular multilevel converter	
Basic principle-topology and operation, arm and cell voltage rating, arm current, Different	
circuit topology, PWM technique and capacitor voltage balancing, fault tolerant operation.	
Laboratory Sessions/ Experimental learning: Simulation of single phase and three phase	
modular multilevel converter	
Application: High voltage DC transmission, STATCOM.	011
Web Link and Video Lectures:	onrs
1. <u>https://encyclopedia.pub/entry/5863</u>	
2. https://assets.new.siemens.com/siemens/assets/api/uuid:852447ab-debe-4199-843b-	
4e256a22ddf7/%20GH150M2CWhitePaper.pdf	
3. https://archive.nptel.ac.in/courses/108/102/108102157/	
UNIT-V	
DSTATCOM build with Cascade asymmetric multilevel converter:	
Introduction, compensation principles, CAM model, reactive power and harmonics	
compensation.	
Laboratory Sessions/ Experimental learning: Design CAMC using MATLAB	
Application: eliminate the bulky transformer required in case of conventional multi phase	
inverters. Power system Transmission and control.	8Hrs
Web Link and Video Lectures:	UIII 5
Web Link and Wide Dectares.	
1 https://pptel.ac.in/courses/108102157	
$\frac{1}{2} = \frac{1}{2} $	
$2 \frac{11}{1000000000000000000000000000000000$	

Course Outcomes: After completing the course, the students will be able to					
C404.2.1	Understand the concept of multilevel, symmetrical and unsymmetrical topologies				
C404.2.2	Understand the operation of Diode clamped multilevel inverter				
C404.2.3	Analyze the function of Flying capacitor multilevel converter				
C404.2.4	Characterize the Cascade asymmetric multilevel converter				
C404.2.5	Design and analyzing Modular multilevel converter				

Tex	Textbooks/ Reference Books				
1.	"Multilevel converters for industrial applications", Sergio Alberta Gonzalez CRC press,2014				
2.	"Power Electronics Converters and Regulators", Branko L. Doki and Branko Blanu, Springer				
	(International Publishing, Switzerland), 3 rd Edition, 2015				

3. "Power Electronics Converters, Applications, and Design", Ned Mohan at el, Wiley, 3 rd Edition,2014

Continuous Internal Evaluation (CIE): Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

SEE for 50 marks executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping							PSO							
CO/P	PO	PO	PO	PO1	PO1	PO1	PSO	PSO						
0	1	2	3	4	5	6	7	8	9	0	1	2	1	2
C404.2 .1	2	2	-	1	-	-	-	1	1	1	1	1	2	2
C404.2 .2	2	1	-	1	-	-	-	-		-	-	-	2	1
C404.2 .3	2	1	-		-	1	-	-	1	-	-	-	2	1
C404.2 .4	2	2	-	1	-	-	-	1	-	1	1	-	2	2
C404.2 .5	2	2	-		-	-	-	1	-	-	-	1	2	2

	Semester: VII						
	CMOS Digital VLSI Design						
		(Theory)					
Cou	rse Code:	MVJ22EE743	CIE Marks:50				
Cree	dits:	L:T:P: 3:0:0	SEE Marks: 50				
Hours:		40L	SEE Duration: 3 Hrs				
Cou	rse Learnin	ng Objectives: The students will be able to					
1	Understand the characteristics of CMOS circuit construction.						
2	Introduce the concepts and techniques of modern integrated circuit design and testing (CMOS VLSI).						
3	3 Design CMOS combinational and sequential logic at the transistor level, with mask layout.						
4	4 Design for higher performance or lower area using alternative circuit families						
5	Testing and Verification of VLSI Design						

UNIT-I		
Introduction: A Brief History, MOS Transistors, MOS Transistor Switches,		
CMOS Logic, Circuit and System Representations, MOS Transistor Theory,		
Ideal I-V Characteristics, Non-ideal I-V Effects, DC Transfer Characteristics,		
Review of MOS electrical properties, Expression for threshold voltage and drain		
current, Secondary effects of MOSFET, review of CMOS and bipolar		
technologies.	8Hrs	
Laboratory Sessions/ Experimental learning: Design and demonstrate the		
MOS transistor connected as a diode using any CAD tool.		
Applications: integrated circuit (IC) chips, including microprocessors,		
microcontrollers, memory chips.		
Video link: https://nptel.ac.in/courses/117/101/117101058/		
UNIT-II		
MOS and Bi-CMOS Circuit Design Processes: MOS Layers, Stick Diagrams,		
Design Rules and Layout.Bi-CMOS processes, Integration and Isolation		
considerations, Integrated Analog/Digital CMOS Process.		
Basic inverter - Inverter Device sizing, Enhancement load and Depletion load		
inverters, CMOS inverter, CMOS inverter logic levels, Inverter device sizing,		
combinational logic implementation using NMOS and CMOS inverters.		
Laboratory Sessions/ Experimental learning: Draw layout of inverter using		
Cadence Tool.		
Applications : Design of CMOS inverter circuit with different scaling functions.		
Video link: 1. <u>https://nptel.ac.in/courses/117106093/</u>		
2. <u>https://nptel.ac.in/courses/117106092/</u>		
UNIT-III		
Scaling of MOS Circuits: Scaling Models & Scaling Factors for Device		
Parameters.	8Hrs	
Subsystem Design Processes: Some General considerations, An illustration of		

Design Processes, Illustration of the Design Processes- Regularity, Design of an ALU Subsystem, The Manchester Carry-chain and Adder Enhancement Techniques, Semiconductor memories, memory chip organization, RAM Cells,				
dynamic memory cell.				
Laboratory Sessions/ Experimental learning: Simulation of CMOS Inverter				
characteristics with different values of Inverter Ratio (Kr) using LTspice/Pspice				
software.				
Applications: Design of nMOS and CMOS inverter circuit.				
Video link: 1. https://www.youtube.com/watch?v=eqnMAaYU4OY				
2. https://www.youtube.com/watch?v=zNqmohJHDwc				
UNIT-IV				
Subsystem Design: Some Architectural Issues, Switch Logic, Gate(restoring)				
Logic, Parity Generators, Multiplexers, The Programmable Logic Array (PLA),				
CMOS Logic Gate Design, Basic Physical Design of Simple Gate, CMOS Logic				
Structures, Clocking Strategies, I/O Structures, Low Power Design.	QUng			
Laboratory Sessions/ Experimental learning: Design Manchester Carry-chain	оптя			
using CMOS transistors using any CAD tool.				
Applications: Designing of PLA and PLD				
Video link: https://nptel.ac.in/courses/117106093/				
UNIT-V				
Memory, Registers and Aspects of system Timing-System Timing				
Considerations, Some commonly used Storage/Memory elements.				
Testing and Verification: Introduction, Logic Verification, Logic Verification				
Principles, Manufacturing Test Principles, Design for testability, Chip Level				
Test Techniques, System Level Test Techniques, Layout Design for Improved				
Testability.				
Laboratory Sessions/ Experimental learning: Perform a survey on Prime-				
Time CAD tool from Synopsis for timing Analysis.				
Applications: Testing of Imperfections in chip fabrication.				
Video link:				
3. <u>https://youtu.be/V-GL-oQSa14</u> (Fault design & Testability)				
4. https://youtu.be/P7AQJn7K8Os (Combinational Circuit Test Pattern				
Generation-ATPG)				

Course O	Course Outcomes: After completing the course, the students will be able to						
C404 3 1	Demonstrate understanding of MOS transistor theory, CMOS fabrication flow						
C404.3.1	and technology scaling.						
C404.3.2	Draw the basic gates using the stick and layout diagrams with the knowledge						
	ofphysical design aspects						
C404.3.3	Demonstrate ability to design Combinational, sequential and dynamic logic						
	circuits as per the requirements						
C404.3.4	Interpret Memory elements along with timing considerations						
C404.3.5	Interpret testing and testshility issues in VI SI Design						
	Interpret testing and testaonity issues in vLSI Design						

Tex	tbooks/ Reference Books
1.	"CMOS Digital Integrated Circuits: Analysis and Design" - Sung Mo Kang & Yosuf
	Leblebici, Third Edition, Tata McGraw-Hill.
2.	"CMOS VLSI Design- A Circuits and Systems Perspective"- Neil H. E. Weste, and
	David Money Harris4th Edition, Pearson Education.
3.	Adel Sedra and K. C. Smith, "Microelectronics Circuits Theory and Applications", 6th
	or 7th Edition, Oxford University Press, International Version, 2009.
4.	Douglas A Pucknell & Kamran Eshragian, "Basic VLSI Design", PHI 3rd Edition,
	(original Edition – 1994).

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

SEE for 50 marks executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO	Mapp	oing											PSO	
CO/P O	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
C404.3 .1	2	1	2	2	2	-	-	-	-	-	-	3	-	-
C404.3 .2	2	2	2	2	2	-	-	_	-	-	-	3	-	-
C404.3 .3	2	2	2	1	2	-	-	-	-	-	-	3	-	-
C404.3 .4	3	3	2	2	2	-	-	-	-	-	-	3	-	-
C404.3 .5	2	3	2	1	2	-	-	-	-	-	-	3	-	-

	Semester: VII						
	Energy Storage and Management System						
	(Theory)						
Course Code:		MVJ22EE744	CIE Marks:50				
Credits:		L:T:P: 3:0:0	SEE Marks: 50				
Hours:		40L	SEE Duration: 3 Hrs				
Cou	rse Learnin	g Objectives: The students wil	l be able to				
1	1 Understand the needs for energy storage.						
2	Understand the types of electrical energy storage Systems.						
3	3 Understand the various technologies availableand their applications.						
4	Explain varie	ous devices used for the energy storage	systems.				

UNIT-I	
Needs for Electrical Energy Storage: Emerging needs for EES, Smart Grid uses, The	
roles of electrical energy storage technologies, The roles from the viewpoint of a utility,	
consumers and generators of renewable energy, Classification of EES systems.	
Laboratory Sessions/ Experimental learning: Case study on the need of energy	8Hrs
storage.	
Applications: Uninterrupted power supply.	
Web Link and Video Lectures: <u>https://www.youtube.com/watch?v=EakRe6ICM-Q</u>	
UNIT-II	
Mechanical Energy Storage Systems: Mechanical storage systems, Pumped hydro	
storage (PHS), Compressed air energy storage (CAES), Flywheel energy storage (FES).	
ElectricalEnergy Storage Systems: Electrical Energy storage-super-capacitors,	
Magnetic EnergyStorage-Superconducting systems,	8Hrc
Laboratory Sessions/ Experimental learning: Demonstration of energy storage	01115
using capacitor.	
Applications: Power grids	
Web Link and Video Lectures: https://nptel.ac.in/courses/108/106/108106182/	
UNIT-III	
Chemical Energy Storage Systems: Chemical-Hydrogen production and storage,	
Principle of direct energy conversion using fuel cells, thermodynamics of fuel cells,	
Types of fuel cells, AFC, PEMFC, MCFC, SOFC, Microbial fuel cell, Fuel	077
cellperformance,	8Hrs
Laboratory Sessions/ Experimental learning: Demonstration of Fuel cell	
Application: Domestic, commercial and transport	

Web Link and Video Lectures: <u>https://nptel.ac.in/courses/108/106/108106182/</u>	
UNIT-IV	
Electrochemical Energy Storage: Battery, primary, secondary and flow batteries.	
Thermal Energy Storage systems: Thermal Energy storage, sensible and latent heat,	
phase change materials, Energyand energy analysis of thermal energy storage.	
Laboratory Sessions/ Experimental learning: Demonstration of Battery.	8Hrs
Application: Electrical vehicles and RES	
Web Link and Video	
Lectures: https://www.youtube.com/watch?v=HUlQ09x6Tmo	Ĺ
UNIT-V	
Design and Applications of Energy Storage: Renewable energy storage-Battery	
sizing and stand-aloneapplications, stationary (Power Grid application), Small scale	
application-Portable storage systems and medical devices, Mobile storage Applications-	
Electric vehicles (EVs), types of EVs, batteries and fuel cells, future technologies,	
hybrid systems for energy storage.	8Hrs
Laboratory Sessions/ Experimental learning: Battery energy management in electric	
vehicles	
Application:RES, Smart grid.	
Web Link and Video Lectures: https://nptel.ac.in/courses/108/106/108106182/	

Course O	Course Outcomes: After completing the course, the students will be able to					
C404.4.1	Explain needs for Electrical Energy Storage.					
C404.4.2	Analyse the characteristics of energy from various sources.					
C404.4.3	Classify various types of energy storage systems and various devices used for the					
	purpose					
C404.4.4	Understand the types of electrical energy storage Systems.					
C404.4.5	Identify various real time applications.					

Tex	tbooks/ Reference Books
1.	"James M. Eyer, Joseph J. Iannucci and Garth P. Corey", "Energy Storage Benefits and Market Analysis", Sandia National Laboratories, 2004
2.	"Jim Eyer, Garth Corey", Energy Storage for the Electricity Grid: Benefits and Market Potential Assessment Guide, Report, Sandia National Laboratories, Feb 2010.
3.	Pillai.S.K A First Course on Electric Drives, Wiley Eastern Limited, 2012
4.	Singh. M.D., K.B.Khanchandani, Power Electronics, Tata McGraw-Hill, 2006.

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

SEE for 50 marks executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO	Mapp	oing											PSO	
CO/P O	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
C404.4 .1	1	1	1	-	2	2	2	-	3	1	1	3	1	1
C404.4 .2	1	1	1	-	2	2	2	-	2	2	1	3	1	1
C404.4 .3	1	1	1	-	2	2	1	-	3	1	1	1	1	1
C404.4 .4	1	1	1	-	1	2	2	-	2	1	1	2	1	1
C404.4 .5	1	1	1	-	3	2	1	-	2	1	1	2	1	1

	Semester: VII					
	Industrial Automation and Control					
		(Theory)				
Cou	rse Code:	MVJ22EE745	CIE Marks:50			
Credits:		L:T:P: 3:0:0	SEE Marks: 50			
Hours:		40L	SEE Duration: 3 Hrs			
Cou	Course Learning Objectives: The students will be able to					
	Discuss arc	hitecture of industrial automation system and	draw block diagram of industrial			
1	automation & control system.					
2	Describe the basic and application of PLC for automation.					
3	3 Discuss the fundamentals of PLC Wiring Diagram and Ladder Logic Program.					
4	Discuss different program control instruction in PLC					
5	Discuss the f	undamentals of SCADA and HMI.				

UNIT-I				
Introduction to automation: Automation overview, Requirement of automation				
systems, Architecture of Industrial Automation system, different automation				
components, Introduction of PLC and supervisory control and data acquisition				
(SCADA).				
Industrial bus systems: modbus & profibus				
Laboratory Sessions/ Experimental learning: Study hardware and software used in				
PLC				
Applications: Industrial and commercial applications.				
Web Link and Video Lectures: https://nptel.ac.in/courses/108/105/108105088/				
UNIT-II				
Programmable logic controllers: Programmable controllers, Programmable logic				
controllers, Analog digital input and output modules, PLC programming, Ladder				
diagram, Sequential flow chart, PLC Communication and networking, PLC selection,				
PLC Installation, Advantage of using PLC for Industrial automation, Application of				
PLC to process control industries.	8Hrs			
Laboratory Sessions/ Experimental learning: Implementation Logic Gates and				
verification of truth table in virtual lab or Logix Pro 500.				
Applications: Industrial and commercial applications				
Web Link and Video Lectures: http://www.digimat.in/nptel/courses/video/108105088/L31.html				
UNIT-III				

Developing Fundamental PLC Wiring Diagrams and Ladder Logic Programs:	
converting Relay Schematics into PLC LadderPrograms, writing a Ladder Logic	
Program TimerInstructions, On/offDelay Timer Instruction, Retentive Timer,	
Cascading TimersProgramming Counter Instructions, Up-Counter, Down-Counter,	
CascadingCounters, Incremental Encoder, Combining Counter and Timer Functions for	
different applications.	8Hrs
Laboratory Sessions/ Experimental learning: Implementation of On-Delay Timer	
and Off-Delay Timer in Virtual lab.	
Application: Counter and timer applications	
Web Link and Video Lectures: <u>https://www.youtube.com/watch?v=qD1WGwe0AQ0</u>	
UNIT-IV	
Program Control Instructions: Master Control Reset Instruction, Jump Instruction,	
Subroutine Functions, Immediate Input and Immediate Output Instructions, Forcing	
External I/O Addresses, Safety Circuitry, Selectable Timed Interrupt, Fault Routine,	
Temporary End Instruction, Suspend Instruction.	
Laboratory Sessions/ Experimental learning:Implementation of arithmetic	8Hrs
instruction using Virtual lab	
Application: Conveyor belt control in industries.	
Web Link and Video Lectures: <u>https://www.youtube.com/watch?v=grr-3XhBSuY</u>	
UNIT-V	
SCADA Fundamentals: Introduction, Open system: Need and advantages, building	
blocks of SCADA systems, Remote terminal unit (RTU): Evolution of RTUs,	
Components of RTU, Communication subsystem, Logic subsystem, Termination	
Components of RTU, Communication subsystem, Logic subsystem, Termination subsystem, Testing and human-machine interface (HMI) subsystem, Power supplies,	
Components of RTU, Communication subsystem, Logic subsystem, Termination subsystem, Testing and human-machine interface (HMI) subsystem, Power supplies, Advanced RTU functionalities, Intelligent electronic devices (IEDs), Data	8Hrs
Components of RTU, Communication subsystem, Logic subsystem, Termination subsystem, Testing and human-machine interface (HMI) subsystem, Power supplies, Advanced RTU functionalities, Intelligent electronic devices (IEDs), Data concentrators and merging units, SCADA communication systems.	8Hrs
Components of RTU, Communication subsystem, Logic subsystem, Termination subsystem, Testing and human-machine interface (HMI) subsystem, Power supplies, Advanced RTU functionalities, Intelligent electronic devices (IEDs), Data concentrators and merging units, SCADA communication systems. Laboratory Sessions/ Experimental learning: Study of key concepts within SCADA	8Hrs
Components of RTU, Communication subsystem, Logic subsystem, Termination subsystem, Testing and human-machine interface (HMI) subsystem, Power supplies, Advanced RTU functionalities, Intelligent electronic devices (IEDs), Data concentrators and merging units, SCADA communication systems. Laboratory Sessions/ Experimental learning: Study of key concepts within SCADA systems	8Hrs
Components of RTU, Communication subsystem, Logic subsystem, Termination subsystem, Testing and human-machine interface (HMI) subsystem, Power supplies, Advanced RTU functionalities, Intelligent electronic devices (IEDs), Data concentrators and merging units, SCADA communication systems. Laboratory Sessions/ Experimental learning: Study of key concepts within SCADA systems Application: Temperature control using PLC and SCADA	8Hrs

Course Outcomes: After completing the course, the students will be able to					
C404 5 1	Explain the architecture of industrial automation system and draw a block diagram of				
C404.5.1	industrial automation & control system				
C404.5.2	Explain basic concepts and Application of PLC to process control industries.				

C404.5.3	Develop the fundamental PLC Wiring Diagrams and Ladder Logic Programsfor different
	applications.
C404.5.4	Develop the ladder diagram using different program control instructions.
C404.5.5	Explain the fundamentals of SCADA and HMI.

Tex	Textbooks/ Reference Books						
1.	Industrial Instrumentation, Control and Automation, S. Mukhopadhyay, S.Sen and A.K. Deb,						
	Jaico Publishing House, 2013						
2.	Programmable Logic controllers, Frank D Petruzella, The McGraw Hill, 4 th edition.						
3.	Process Control Instrumentation Technology By. C.D. Johnson, PHI						
4.	Industrial Instrumentation and Control By. S.K. Singh The McGraw Hill Companies						

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

SEE for 50 marks executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping										PSO				
CO/P	PO	PO1	PO1	PO1	PSO	PSO								
0	1	2	3	4	5	6	7	8	9	0	1	2	1	2
C404.5 .1	3	2		2		-	-	-	-	-	-	3	3	2
C404.5 .2	3	2	2	2	2	-	-	-	-	-	-	3	3	2
C404.5 .3	3	3	3	2	2	-	-	-	-	-	-	3	3	3

C404.5 .4	3	2	2	2	1	-	-	-	-	-	-	2	3	2
C404.5 .5	3	2		2		-	-	-	-	-	-	2	3	2

Semester: VII								
	Fundamentals of Electric Vehicle							
		(Theory)						
Course Code:		MVJ22EE751	CIE Marks:50					
Credits:		L:T:P: 3:0:0	SEE Marks: 50					
Hou	rs:	40L	SEE Duration: 3 Hrs					
Cou	rse Learnin	ng Objectives: The students will be able to						
1	Understand	d fundamental laws and vehicle mechanics.						
2	Understand	d upcoming technology of hybrid electric ve	hicles.					
3	Ability to	develop the electric propulsion unit for EVs						
4	Understand	d about drives and control of EVs.						
5	Ability to a	analyze different power converter topologies	s used for EVs application					

UNIT-I

0111-1					
Vehicle Mechanics: Roadway Fundamentals, Laws of Motion, Vehicle					
Kinetics, Dynamics of VehicleMotion, Propulsion Power, Force-Velocity					
Characteristics, Maximum Gradeability, Velocity and Acceleration, Constant					
FTR, Level Road, Velocity Profile, Distance Traversed, Tractive Power, Energy					
Required, Non-constantFTR, General Acceleration, Propulsion System Design.					
Laboratory Sessions/ Experimental learning: Simulation of a vehicle to	8Hrs				
understand the different forces acting on vehicle.					
Applications: Stability check and mechanical design of EVs.					
Video link:					
1. <u>https://youtu.be/wypbLRe9xUg</u>					
https://nptel.ac.in/courses/108/102/108102121/					
UNIT-II					
Introduction to Electric Vehicles: Introduction, conventional vehicles, and					
Electric vehicles, vehicle fundamentals, Types, performanceand configuration					
of EVs, Traction motor characteristics.					
Hybrid Electric Vehicles: Energy consumption concept of Hybrid Electric					
Drive Trains, Architecture of Hybrid Electric Drive Trains, Series Hybrid	8Hrs				
Electric Drive Trains, Parallel Hybrid Electric Drive Trains.					
Laboratory Sessions/ Experimental learning: Case study on different EVs					
Applications: Electric vehicles					
Video link: <u>https://youtu.be/T5P9b0_Fv6w</u>					
UNIT-III					
Electric Propulsion System: Electric propulsion unit, EV consideration,					
Configuration and speed control: DC motor drives, Induction motor drives,					
Permanent Magnet Motor Drives, Switch Reluctance Motor Drive for Electric					
Vehicles, Sizing of Electric Machine for EVs and HEVs, Drive System					
Efficiency	01115				
Laboratory Sessions/ Experimental learning: Analysis of Speed control of					
different types of motor in EVs using Simulink					
Applications: Electric vehicles					

Video link: https://nptel.ac.in/courses/108/102/108102121/					
UNIT-IV					
Design of Electric and Hybrid Electric Vehicles:					
Series Hybrid Electric Drive Train Design: Operatingpatterns, control					
strategies, Sizing of major components, power rating of traction motor, power					
rating ofengine/generator, design of PPS					
Parallel Hybrid Electric Drive Train Design: Control strategies of parallel					
hybriddrive train, design of engine power capacity, design of electric motor	8Hrs				
drive capacity, transmission design, energystorage design.					
Laboratory Sessions/ Experimental learning: Case study on different energy					
management strategies.					
Applications: Electric vehicles					
Video link: https://nptel.ac.in/courses/108/102/108102121/					
UNIT-V					
Power Electronic Converter for Battery Charging: Charging methods for					
battery, Termination methods, charging from grid, The Z-converter, Isolated					
bidirectional DC-DC converter, High-frequency transformer basedisolated					
charger topology, Transformer less topology.					
E-mobility Indian Roadmap Perspective. Policy: EVs in infrastructure system,					
integration of EVs in smart grid, social dimensions of EVs.					
Laboratory Sessions/ Experimental learning: Modeling of Electric Vehicles					
using MATLAB & Simulink.					
Applications: Electric vehicles					
Video link: <u>https://youtu.be/yCjtiCFTFbk</u>					

Course O	Course Outcomes: After completing the course, the students will be able to						
C405.1.1	Explain roadway fundamental, laws of motion and vehicle mechanics						
C405.1.2	Acquire fundamental concepts and principles of hybrid electric vehicles (HEV)						
C405.1.3	Develop the electric propulsion unit for application of EVs.						
C405.1.4	Analyze and apply electric drives in vehicles / traction						
C405.1.5	Design converters for battery charging and explain transformer less topologies.						

Tex	tbooks/ Reference Books
1.	Modern Electric, Hybrid Electric, andFuel Cell Vehicles: Fundamentals, Theory, an
	Design, M. Ehsani, Y. Gao, S.Gay and Ali Emadi, CRC Press, 2005
2.	Modern Electric Vehicle Technology C.C. Chan and K.T.Chau, OxfordUniversity, 2001
3.	Husain, I. "Electric and Hybrid Vehicles" Boca Raton, CRC Press, 2010
4.	Larminie, James, and John Lowry, "Electric Vehicle Technology Explained" John
	Wiley and Sons, 2012

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for

10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

SEE for 50 marks executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping										PSO				
CO/P O	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
C405.1 .1	2	3	1	1	-	-	-	-	-	-	-	-	-	-
C405.1 .2	2	3	1	2	-	-	-	-	-	-	-	-	-	-
C405.1 .3	2	3	1	2	-	-	-	-	-	-	-	-	-	-
C405.1 .4	2	3	1	2	-	-	-	-	-	-	-	-	-	-
C405.1 .5	2	3	1	3	-	-	-	-	-	-	-	-	-	-

	Semester: VII								
	PLC and SCADA								
		(Theory)							
Cou	rse Code:	MVJ22EE752	CIE Marks:50						
Credits:		L:T:P: 3:0:0	SEE Marks: 50						
Hou	irs:	40L	SEE Duration: 3 Hrs						
Cou	rse Learnin	g Objectives: The students will be able to							
1	Discuss an	chitecture of industrial automation system and draw block diagram							
1	industrial a	industrial automation & control system.							
2	Describe th	he basic and application of PLC for automati	ion.						
3	Discuss the	e fundamentals of PLC Wiring Diagram and	Ladder Logic Program.						
4	Discuss dif	fferent program control instruction in PLC							
5	Discuss the	e fundamentals of SCADA and HMI.							

UNIT-I						
Programmable Logic Controllers: Introduction, Parts of a PLC, Principles of						
Operation, Modifying the Operation, PLCs versus Computers, PLC Size and						
Application.						
PLC Hardware Components: The I/O Section, Discrete I/O Modules, Analog						
I/O Modules, Special I/O Modules, I/O Specifications, The Central Processing						
Unit (CPU), Memory Design, Memory Types.						
Basics of PLC Programming: Processor Memory Organization, Program Scan,	8Urc					
PLC Programming Languages, Relay-Type Instructions, Instruction Addressing,	01115					
Branch Instructions, Internal Relay Instructions, Programming Examine If						
Closed and Examine If Open Instructions, Modes of Operation.						
Laboratory Sessions/ Experimental learning: Study hardware and software						
used in PLC						
Applications: Industrial and commercial applications.						
Video Link: <u>https://nptel.ac.in/courses/108/105/108105088/</u>						
UNIT-II						
Developing Fundamental PLC Wiring Diagrams and Ladder Logic						
Programs: Electromagnetic ControlRelays, Contactors, Motor Starters,						
Manually Operated Switches, Mechanically Operated Switches,						
Sensors, Output Control Devices, Seal-In Circuits, Latching Relays, Converting						
Relay Schematics into PLC LadderPrograms, Writinga						
LadderLogicProgramDirectlyfroma Narrative Description.	8Hrs					
Laboratory Sessions/ Experimental learning: Implementation Logic Gates						
and verification of truth table in virtual lab or Logix Pro 500.						
Applications: Industrial and commercial applications						
Video Link: <u>http://www.digimat.in/nptel/courses/video/108105088/L31.html</u>						
UNIT-III						

Programming Timers and counters: Timer Instructions, On/offDelay TimerInstruction, Retentive Timer, Cascading Timers, Programming CounterInstructions, Up-Counter, Down-Counter, Cascading Counters, Incremental

Encoder Combining Counter and Timer Functions for different applications					
Laboratory Combining Councel and Timer Functions for different applications.					
Laboratory Sessions/ Experimental learning: Implementation of On-Delay					
Timer and Off-Delay Timer in Virtual lab.					
Application: Counter and timer applications					
Video Link: <u>https://www.youtube.com/watch?v=qD1WGwe0AQ0</u>					
UNIT-IV					
Program Control Instructions: Master Control Reset Instruction, Jump					
Instruction, Subroutine Functions, Immediate Input and Immediate Output					
Instructions, Forcing External I/O Addresses, Safety Circuitry, Selectable Timed					
Interrupt, Fault Routine, Temporary End Instruction, Suspend Instruction.	Inc				
Laboratory Sessions/ Experimental learning: Implementation of arithmetic	115				
instruction using Virtual lab					
Application: Conveyor belt control in industries.					
Video Link: https://www.youtube.com/watch?v=grr-3XhBSuY					
UNIT-V					
SCADA Fundamentals: Introduction, Open system: Need and advantages,					
building blocks of SCADA systems, Remote terminal unit (RTU), Evolution of					
RTUs, Components of RTU, and human-machine interface (HMI) subsystem,					
Power supplies, Advanced RTU functionalities, Intelligent electronic devices					
(IEDs), SCADA communication systems. 8H	Hrs				
Laboratory Sessions/ Experimental learning: Study of key concepts within					
SCADA systems					
Application: Temperature control using PLC and SCADA					
Video Link: https://youtu.be/X0U8-4ZPcro					

Course O	Course Outcomes: After completing the course, the students will be able to						
C405.2.1	Explain the architecture of industrial automation system and draw a block						
	diagram of industrial automation & control system						
C405.2.2	Explain basic concepts and Application of PLC to process control industries.						
0405.0.0	Develop the fundamental PLC Wiring Diagrams and Ladder Logic Programsfor						
C403.2.3	different applications.						
C405.2.4	Develop the ladder diagram using different program control instructions.						
C405.2.5	Explain the fundamentals of SCADA and HMI.						

Tex	tbooks/ Reference Books
1.	Programmable Logic controllers, Frank D Petruzella, The McGraw Hill ,4 th edition.
2.	Introduction Programmable Logic Controllers, Gary Dunning, Cengage 3rd Edition,
	2006.
3.	Process Control Instrumentation Technology By. C.D. Johnson, PHI
4.	Industrial Instrumentation and Control By. S.K. Singh the McGraw Hill Companies

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

SEE for 50 marks executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping											PSO			
CO/P	PO	PO1	PO1	PO1	PSO	PSO								
0	1	2	3	4	5	6	7	8	9	0	1	2	1	2
C405.2	3	2	-	2	-	-	-	-	-	-	-	3	-	-
.1														
C405.2	3	2	2	2	2	-	-	-	-	-	-	3	_	_
.2														
C405.2	3	3	3	2	2	-	-	-	-	-	-	3	_	_
.3													_	
C405.2	3	2	2	2	1	-	-	-	-	-	-	2		
.4													-	-
C405.2	3	2	-	2	-	-	-	-	-	-	-	2		
.5													-	-

	Semester: VII								
	Smart System Automation								
		(Theory)							
Cou	rse Code:	MVJ22EE753	CIE Marks:50						
Cree	dits:	L:T:P: 3:0:0	SEE Marks: 50						
Hou	rs:	40L	SEE Duration: 3 Hrs						
Cou	rse Learnin	g Objectives: The students will be able to							
1	1 Understand the conceptual approach of various smart sensors								
2	Explain different operations of sensors with microcontrollers								
3	3 Understandconcept of IoT for remote monitoring								
4	4 Understand concepts of cloud computing based data monitoring								
5	Gain knowl	edege about different applications of Automatio	n						

UNIT-I

Г

Basics of Smart Sensors: Introduction- Sensor Vs Transducer, Various sensing				
technologies-capacitive, Inductive, piezo electric, Hall effect, Digital output				
sensors.Smart Sensors, Components of Smart Sensors, General Architecture of Smart				
Sensors, Smart temperature sensor, Smart wind sensor and Smart Hall sensor,				
Calibration of smart sensors.	8Hrs			
Laboratory Sessions/ Experimental learning: Voltage and Current Detection				
Circuitry				
Applications: Pressure control of Boilers				
Video link: https://archive.nptel.ac.in/courses/108/108/108108147/				
UNIT-II				
Sensor Interfacing with Microcontroller: MCU Control, MCUs for Sensor Interface,				
Techniques and Systems Considerations- Sensor Integration.				
Laboratory Sessions/ Experimental learning: Control of Water flow and				
Level detection Circuitry.				
Applications: Microcontroller based Temperature control of furnaces.				
Video link: 1. https://nptel.ac.in/courses/112104251				
2. https://archive.nptel.ac.in/courses/112/107/112107298/				
UNIT-III	1			
Implementation systems for IIoT: Sensors and Actuators for Industrial Processes,				
Sensor networks, Process automation and Data Acquisitions on IoT Platform,				
Microcontrollers and Embedded PC roles in IIoT, Wireless Sensor nodes with				
Bluetooth, WiFi, and LoRa Protocols and IoT Hub systems.				
Laboratory Sessions/ Experimental learning: Measurement of Industrial parameters				
using microcontroller				

Applications: Automatic water bottling plant					
Video link: https://archive.nptel.ac.in/courses/106/105/106105166/					
UNIT-IV					
HoT Data Monitoring & Control: IoT Gate way, IoT Edge Systems and It's					
Programming, Cloud computing, Real Time Dashboard for Data Monitoring, Data					
Analytics and Predictive Maintenance with IIoT technology.					
Laboratory Sessions/ Experimental learning: Collect data from different	8Hrs				
sensors/devices and transfer it to cloud					
Applications: Remote Health monitoring					
Video link: https://onlinecourses.nptel.ac.in/noc19_cs65/preview					
UNIT-V					
Smart Applications and Fundamental concepts in Robotics: Automated consumer					
products- Smart Car, Smart Home, Smart Domestic Appliances, Smart Toys.					
Robots and Controllers components - Embedded processor based: pick and place robot-					
Mobile Robot Design- UAV.					
Laboratory Sessions/ Experimental learning: Smart home					
Applications: Smart Dustbin					
Video link: https://nptel.ac.in/courses/107106090					

Course Outcomes: After completing the course, the students will be able to						
C405.3.1	Explain the working of different sensors.					
C405.3.2	Understand interfacing smart sensors with microcontrollers					
C405.3.3	Gain knowledge of theory and practice related to Industrial IoT Systems.					
C405.3.4	Identify, formulate and solve engineering problems by using Industrial IoT					
C405.3.5	Gain knowledge on real word problems and their solutions through automation					

Tex	tbooks/ Reference Books
1.	"Sensors and Transducers", Patranabis D, 2nd Edition, PHI, New Delhi, 2010.
2.	"Instrumentation for Engineers and Scientists", John Turner and Martyn Hill, Oxford Science
	Publications, 1999.
3.	Gerard Meijer, Michiel Pertijs, Kofi Makinwa,"Smart Sensor SystemsEmerging Technologies
	and Applications", Wiley (2014)
4.	Embedded System: Architecture, Programming and Design by Rajkamal, TMH3.

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for

10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

SEE for 50 marks executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping										PSO				
CO/P	PO	PO1	PO1	PO1	PSO	PSO								
0	1	2	3	4	5	6	7	8	9	0	1	2	1	2
C405.3 .1	-	2	-	1	-	-		3	3	3	3	3	-	-
C405.3 .2	-	1	-	3	-	-		3	3	3	3	3	-	-
C405.3 .3	-	2	-	2	-	3		3	3	2	3	3	-	-
C405.3 .4	-	2	-	2	-	2		3	3	3	3	3	-	-
C405.3 .5	-	2	-	2	-	2		3	3	3	3	3	-	-

	Semester: VII									
	Energy Conservation and Audit									
		(Theory)							
Cou	rse Code:	MVJ22EE754	CIE Marks:50							
Cree	lits:	L:T:P: 3:0:0	SEE Marks: 50							
Hou	rs:	40L	SEE Duration: 3 Hrs							
Cou	rse Learnin	g Objectives: The students will	be able to							
1	Understand	d the current energy scenario and i	mportance of energy conservation.							
2	Understand	nd the methods of improving energy efficiency in different electrical								
2	systems.									
3	Realize en	ergy auditing methods for energy	saving.							
Explain about various pillars of electricity market design and design of g										
4										
5	Explain th	e scope of demand side manag	ement, its concept and implementation							
5	issues and	issues and strategies								

UNIT-I					
Energy Scenario: Commercial and Non-commercial energy, primary energy resources, commercial energy production, final energy consumption, energy needs of growing economy, long term energy scenario, energy pricing, energy sector reforms, energy and environment, energy security, energy conservation and its importance restructuring of the energy supply sector	8Hrs				
Laboratory Sessions/ Experimental learning:Modeling & Simulation of Home Energy Management System Using Matlab Simulink. Applications: World energy Scenario. Video link: https://youtu.be/IMGudx8i104					
UNIT-II					
Energy Efficiency in Electrical Systems: Electricity billing- Electrical load management and maximum demand Control-Maximum demand controllers; Energy Efficient Motors, Factors Affecting Efficiency, Constructional Details, Characteristics - Variable Speed- Variable Duty Cycle Systems, RMS Hp- Voltage Variation-Voltage Unbalance- Over Motoring- Motor Energy Audit. Power Factor – Methods of Improvement. Laboratory Sessions/ Experimental learning:Modelling of energy efficient motor using MATLAB. Applications: Integrated energy management - The Future of Smart Buildings. Video link: <u>https://youtu.be/2zWt-pBCU2I</u> <u>https://youtu.be/EFUzw_nNvKg</u>	8Hrs				
UNIT-III					
Energy auditing: Introduction, Elements of energy audits, different types of audits, energy use profiles, measurements in energy audits, presentation of energy audit results. Laboratory Sessions/ Experimental learning: Basics of BCI Experimentation: Signal Acquisition using MATLAB.	8Hrs				
Video link: <u>https://youtu.be/yyr2x3KbiKg</u>					
--	------				
UNIT-IV Electricity and Other Commedities Distinguishing features of electricity as a					
Electricity and Other Commodities: Distinguishing features of electricity as a					
Commodity, Four plinars of market design: Imbalance, Scheduling and Dispatch.					
Lighting and Energy Instruments for Audit: Good Lighting System Design and					
Practice, Lighting Control, Lighting Energy Audit -Energy Instruments- Watt					
Meter, Data Loggers, Thermocouples, Pyrometers, Lux Meters, Tong Testers.	8Hrs				
Laboratory Sessions/ Experimental learning: practicing lighting methods for					
smart building to save energy.					
Applications: Economic Dispatch and Load Scheduling.					
Video link: <u>https://youtu.be/7wAvBzMc7QI</u>					
https://youtu.be/PSbbsZnxWEQ					
UNIT-V					
Demand side Management: Introduction to DSM, Concept of DSM, Benefits					
of DSM, Different Techniques of DSM –Time of Day Pricing, Multi-Utility					
Power Exchange Model, Time of Day Models for Planning. Load Management,					
Load Priority Technique, Peak Clipping, Peak Shifting, Valley Filling, Strategic					
Conservation, Energy Efficient Equipment. Management and					
Organization of Energy Conservation Awareness Programs.	8Hrs				
Laboratory Sessions/ Experimental learning: Design of DSM programs using					
MATLAB/SIMULINK.					
Applications: Demand-side management in Grid-Connected Energy Storage					
System.					
Video link: https://youtu.be/vs3H-IPQCsE					

Course O	Course Outcomes: After completing the course, the students will be able to					
C405.4.1	Analyse about energy scenario nationwide and worldwide, also outline Energy					
	Conservation Act and its features.					
C405.4.2	Discuss load management techniques and energy efficient motors.					
C405.4.3	Understand the need of energy audit and energy audit methodology.					
C405.4.4	Understand various pillars of electricity market design and lighting system					
	design.					
C405.4.5	Conduct energy audit of electrical systems, buildings, understanding of demand					
	side management and energy conservation.					

Tex	tbooks/ Reference Books
1.	Energy Management Handbook, W.C. Turner, Third Edition, 1942, John Wiley and
	Sons, ISBN 0-88173-361-x.
2.	Energy Management, W. R. Murphy, G. Mckay, Second Edition, 2009, Butterworth-
	Heinemann Ltd, Gurgaon Haryana, ISBN- 978-81-312-0738-3.
3.	Energy Conservation, Dr. Parag Diwan & Dr. Prasoom Dwivedi (Eds.)Pra, Second
	Edition, 2009, Pentagon Press, ISBN- 9788182743502.

4. Energy Efficient Electric Motors and Applications, H.E. Jordan, Second Edition, 2013, Plenum Pub. Corp, ISBN-13- 9781489914675.

Continuous Internal Evaluation (CIE): Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

SEE for 50 marks executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping								PSO						
CO/P	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
C405.4 .1	3	3	3	1	1	2	2	1	1	2	2	2	-	-
C405.4 .2	3	3	3	2	1	2	2	1	1	2	2	2	-	-
C405.4 .3	3	3	3	2	1	2	2	1	1	2	2	2	-	-
C405.4 .4	3	3	3	2	1	2	2	1	1	2	2	2	-	-
C405.4 .5	3	2	3	2	1	2	2	1	1	2	2	2	-	-

Total marks: 50+50=100

	Semester: VII							
		Utilization of Ele	ctric Power					
		(Theory	<i>r</i>)					
Cou	rse Code:	MVJ22EE755	CIE Marks:50					
Credits:		L:T:P: 3:0:0	SEE Marks: 50					
Hou	rs:	40L	SEE Duration: 3 Hrs					
Cou	Course Learning Objectives: The students will be able to							
1	Discuss ele	ectric heating, air-conditioning an	d electric welding.					
2	Explain the	e terminology of illumination, law	vs of illumination, construction and					
working of electric lamps.								
Discuss systems of electric traction, speed time curves and mechanics of train		ime curves and mechanics of train						
movement.								
4	Discuss br	raking of electric motors, traction	on systems and power supply and other					
4	traction systems.							

UNIT-I Heating and welding: Electric Heating, Resistance ovens, Radiant Heating, Induction Heating, Highfrequency Eddy Current Heating, Dielectric Heating, The Arc Furnace, Heating of Buildings, Air-Conditioning, Electric Welding and Modern Welding Techniques. Electrolytic Process: Ionization, Faraday's Laws of Electrolysis, Definitions, Extraction 8Hr of Metals, Refining of Metals, Electro Deposition. S Laboratory Sessions/ Experimental learning: Demonstration of welding Applications: Impure metal refining. Web Link and Video Lectures: 1.https://nptel.ac.in/content/storage2/courses/113104058/mme_pdf/Lecture38.pdf 2. https://nptel.ac.in/content/storage2/courses/103103027/module9/lec3/2.html **UNIT-II** Illumination: Introduction, Radiant Energy, Definitions, Laws of Illumination, Polar Curves, Photometry, Measurement of Mean Spherical Candle Power by Integrating Sphere, IlluminationPhotometer, Energy Radiation and luminous Efficiency, electric Lamps, Cold Cathode Lamp, Lighting Fittings, Illumination for Different Purposes, Requirements of Good Lighting. 8Hr Laboratory Sessions/ Experimental learning: Measurement of candle power of a lamp S **Applications:** Street lighting Web Link and Video Lectures: 1.https://nptel.ac.in/content/storage2/courses/108105061/Illumination%20%20Engineerin g/Lesson-06/pdf/L-6(NKK)(IE)%20((EE)NPTEL).pdf 2. https://nptel.ac.in/courses/108/105/108105060/ UNIT-III Electric Traction: Introduction, Systems of Traction, Systems of electric Traction, Speed - Time Curves for TrainMovement, Mechanics of Train Movement, Train Resistance, 8Hr Adhesive Weight, Coefficient of Adhesion. S Motors for Electric traction:Introduction, Series and Shunt Motors for Traction

Services, Two SimilarMotors (Series Type) are used to drive a Motor Car, Tractive Effort

and Horse Power, AC Series Motor, Three Phase Induction Motor.	
Laboratory Sessions/ Experimental learning: Demonstration on speed control of Three	
Phase Motors.	
Application: Locomotive control	
Web Link and Video Lectures:	
1.https://nptel.ac.in/courses/108/104/108104140/	
2. https://nptel.ac.in/content/syllabus_pdf/108104140.pdf	
UNIT-IV	
Braking: Introduction, Regenerative Braking with Three Phase Induction Motors,	
Braking with	
Single Phase Series Motors, Mechanical braking, Magnetic Track Brake, Electro –	
Mechanical DrumBrakes.	
Electric Traction Systems and Power Supply: System of Electric Traction, AC	
Electrification,	
Transmission Lines to Sub - Stations, Sub – Stations, Feeding and Distribution System of	8Hr
AC Traction, Feeding and Distribution System for DC Tramways, Electrolysis by Currents	S
through Earth, Negative Booster, System of Current Collection, Trolley Wires.	
Laboratory Sessions/ Experimental learning: Demonstration of regenerative braking	
Application: Braking of a electric vehicle.	
Web Link and Video Lectures:	
1. <u>https://nptel.ac.in/content/storage2/courses/112105125/pdf/mod12les2.pdf</u>	
2. <u>https://nptel.ac.in/courses/108/105/108105153/</u>	
UNIT-V	-
Electric Vehicles: Configurations of Electric Vehicles, Performance of Electric Vehicles,	
Tractive	
Effort in Normal Driving, Energy Consumption, Battery charging management in EV.	
Hybrid Electric Vehicles: Concept of Hybrid Electric Drive Trains, Architectures of	
Hybrid ElectricDrive Trains.	8Hr
Laboratory Sessions/ Experimental learning: Performance analysis of electric vehicles	onn c
using simulation.	3
Application: Electric transport.	
Web Link and Video Lectures:	
1. <u>https://nptel.ac.in/courses/108/103/108103009/</u>	
2. https://nptel.ac.in/courses/108/102/108102121/	

Course O	Course Outcomes: After completing the course, the students will be able to					
C405.5.1	Explain the different methods of electric heating & welding					
C405.5.2	Explain the laws of electrolysis, extraction, refining of metals and electro					
	deposition process					
C405.5.3	Explain the laws of illumination, different types of lamps, lighting schemes and					
	design of					
	lighting systems					
C405.5.4	Explain the systems of electric traction, speed time curves and mechanics of train					
	movement					
C405.5.5	Interpret the motors used for electric traction, their control & braking and power					

supply
system used for electric traction

Tex	tbooks/ Reference Books
1.	A Textbook on Power System Engineering, A. Chakrabarti et al, DhanpatRai and Co,
	2nd Edition, 2010.
2.	Utilization, Generation and Conservation of Electrical Energy, Sunil S Rao, Khanna
	Publishers, 1stEdition, 2011.
3.	Utilization of Electric Power and Electric Traction, G.C. Garg, Khanna Publishers,
	9 th Edition, 2014.
4.	R.K.Rajput, Utilisation of Electric Power, Laxmi publications Private Limited.,2007.

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

SEE for 50 marks executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Total marks: 50+50=100

CO-PO Mapping								PSO						
CO/P	PO	PO	PO1	PO1	PO1	PSO	PSO							
0	1	2	3	4	5	6	7	8	9	0	1	2	1	2
C405.5 .1	2	2	2	1	3	-	-	-	2	2	2	1	-	-
C405.5 .2	2	2	2	1	3	-	-	-	2	2	2	1	-	-
C405.5 .3	1	1	1	1	-	-	-	2	2	2	2	2	-	-
C405.5 .4	2	2	2	1	-	-	-	2	2	2	2	2	-	-
C405.5 .5	2	2	2	1	-	-	-	2	2	2	2	2	-	-

		Semester: VII					
	MAJOR PROJECT PHASE – II						
Cou	rse Code:	MVJ22EEP76	CIE Marks: 50				
Cree	dits:	L:T:P: 0:0:12	SEE Marks: 50				
Hou	rs:		SEE Duration:				
Cou	rse Learning Ob	jectives: The students will be able to					
	Develop interact	ive, communication, organization, time	management, and presentation				
1	skills.						
2	Impart flexibility and adaptability.						
3	Inspire independent and team working.						
4	Expand intellectual capacity, credibility, judgment, intuition.						
5	5 Adhere to punctuality, setting and meeting deadlines.						
6	5 Instill responsibilities to oneself and others.						
	Train students to present the topic of project work in a seminar without any fear, face						
7	audience confidently, enhance communication skill, involve in group discussion to						
	present and exchange ideas.						

Project Work Phase - II: Each student of the project batch shall involve in carrying out the project work jointly in constant consultation with internal guide, co-guide, and external guide and prepare theproject report as per the norms avoiding plagiarism.

Cours	e Outcomes: After completing the course, the students will be able to
406.1	Describe the project and be able to defend it. Develop critical thinking and problem- solving skills.
406.2	Learn to use modern tools and techniques. Communicate effectively and to present ideas clearly and coherently both in written and oral forms.
406.3	Develop skills to work in a team to achieve common goal. Develop skills of project management and finance.
406.4	Develop skills of self-learning, evaluate their learning and take appropriate actions to improve it.
406.5	Prepare them for life-long learning to face the challenges and support the technological changes to meet the societal needs.

Scheme of Evaluation:

Continuous Internal Evaluation: The CIE (50 marks) evaluation shall be based on Phase wise completion of the project work, Project report, Presentation and Demonstration of the actual/model/prototype of the project.

Semester End Examination: SEE marks for the project (50 marks) shall be based on Project report, Presentation and Demonstration of the actual/model/prototype of the project, as per the norms by the examiners appointed.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
406.1	2	2	2	3	3	2	1	1	2	1	1	2
406.2	2	2	2	3	3	2	1	1	2	1	2	2
406.3	2	2	2	3	3	2	1	1	2	1	2	2
406.4	2	2	2	3	3	2	1	1	2	1	2	2
406.5	2	2	2	3	3	2	1	1	2	1	2	2

High-3, Medium-2, Low-1