	Semester: III					
	TRASNFORMS &	STATISTICAL M	IETHODS			
Cou	rse Code:	MVJ21MAE31/	CIE Marks:100			
		MAS31/MME31				
Cree	Credits: L:T:P:S: 3:2:0:0 SEE Marks: 100					
Hou	rs: 40L+26T		SEE Duration: 3 Hrs			
Cou	rse Learning Objectives: The stud	lents will be able to				
1	Comprehend and use of analytical and numerical methods in different engineering					
1	fields.					
2	Apprehend and apply Fourier Serie	es.				
3	Realize and use of Fourier transfor	ms.				
4	Realize and use of Z-Transforms.					
5	Use of statistical methods in curve	fitting applications.				

UNIT-I

Laplace Transform:	10
Definition and Lonloca transforms of elementary functions, Lonloca transforms	Hrs
Definition and Laplace transforms of elementary functions. Laplace transforms	
of Periodic functions and unit-step function and problems.	
Inverse Laplace Transform:	
Definition and problems, Convolution theorem to find the inverse Laplace	
transforms and problems.	
Applications: Solution of linear differential equations using Laplace transforms.	
Web Link and Video Lectures:	
https://www.youtube.com/watch?v=8oE1shAX96U	
https://www.intmath.com/laplace-transformation/7-inverse-laplace-transform.php	
UNIT-II	
Fourier series:	10
Recapitulation of Series, Continuous and Discontinuous functions, Periodic	Hrs
functions, Dirichlet's conditions, Fourier series of periodic functions of period	

2π and arbitrary period $2l$, Half-range Fourier sine and cosine series, Practical	
Harmonic Analysis and Problems.	
Web Link and Video Lectures:	
https://www.youtube.com/watch?v=Sq2FhCxcyI8	
https://www.youtube.com/watch?v=4N-IwHUCFa0	
UNIT-III	
Fourier transforms:	10
Infinite Fourier transform, Infinite Fourier sine and cosine transforms, Inverse	Hrs
Fourier transforms, Inverse Fourier sine and cosine transforms, Convolution	
theorem.	
Web Link and Video Lectures:	
https://www.youtube.com/watch?v=spUNpyF58BY	
https://www.youtube.com/watch?v=6spPyJH6dkQ	
UNIT-IV	
Z-Transforms:	10
Z-transform: Difference equations, basic definition, z-transform -definition,	Hrs
Standard z-transforms, Damping rule, Shifting rule, Initial value and final value	
theorems (without proof) and problems, Inverse Z-transform.	
Applications: Application of Z- transforms to solve difference equations.	
Web Link and Video Lectures:	
http://www.eas.uccs.edu/~mwickert/ece2610/lecture_notes/ece2610_chap7.pdf	
https://electricalbaba.com/final-value-theorem-and-its-application/	
UNIT-V	
Curve Fitting:	10
Curve fitting by the method of least squares. Fitting of the curves of the form	Hrs
$y = ax + b$, $y = ax^{2} + bx + c$, $y = ae^{bx}$.	
Statistical Methods:	
Introduction, Correlation and coefficient of correlation, Regression, lines of	
regression and problems.	
Web Link and Video Lectures:	
https://mathbits.com/MathBits/TISection/Statistics2/correlation.htm	
https://www.youtube.com/watch?v=xTpHD5WLuoA	

Cours	se Outcomes: After completing the course, the students will be able to
CO1	Use Laplace transform and inverse transforms techniques in solving differential
	equations.
CO2	Demonstrate Fourier Transform as a tool for solving Integral equations.
CO3	Demonstrate Fourier Transform as a tool for solving Integral equations.
CO4	Apply Z Transform to solve Difference Equation.Use Method of Least Square for
	appropriate Curves.
CO5	Fit a suitable curve by the method of least squares and determine the lines of
	regression for a set of statistical data.

Ref	erence Books
1.	Prof G.B.Gururajachar "Engineering Mathematics-III, Academic Excellent series
	Publications, 2016-17
2.	B.S. Grewal, "Higher Engineering Mathematics" Khanna Publishers, 43 rd Edition, 2013
3.	Erwin Kreyszig, "Advanced Engineering Mathematics", Wiley-India publishers,
	10thedition,2014.
4.	Ramana B. V., "Higher Engineering Mathematics", Tata McGraw-Hill, 2006.
5.	Bali N. P. & Manish Goyal, "A text book of Engineering Mathematics", Laxmi
	Publications, 8 th Edition.

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

СО-РО	Mapp	ing										
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	0	3	0	0	0	0	0	0	1	0
CO2	3	3	0	3	0	0	0	0	0	0	0	1
CO3	2	3	0	3	0	0	0	0	0	0	1	0
CO4	3	3	0	3	0	0	0	0	0	0	0	0
CO5	3	3	0	2	0	0	0	0	0	0	0	1

	Semester: III				
	THE	RMODYNAMICS			
Course Code:		MVJ21AE32/	CIE Marks:100		
		MVJ21AS32			
Credits: L:T:P:S: 3:2:0:0			SEE Marks: 100		
Hours: 40L+26T			SEE Duration: 3 Hrs		
Cou	rse Learning Objectives: The st	udents will be able to	0		
1	Understand various concepts and definitions of thermodynamics.				
2	Comprehend the I-law of thermodynamics.				

3	Comprehend the II-law of thermodynamics
4	Acquire the knowledge of Pure Substances & Ideal Gases
5	Acquire the knowledge of various types of gas cycles.

UNIT-I

Fundamental Concepts & Definitions:

Thermodynamics definition and scope, Microscopic and Macroscopic approaches.10Some practical applications of engineering thermodynamic Systems, CharacteristicsHrof system boundary and control surface, examples. Thermodynamic properties;sdefinition and Modules, intensive and extensive properties. Thermodynamic state,sstate point, state diagram, path and process, quasi-static process, cyclic and non-cyclic; processes; Thermodynamic equilibrium; definition, mechanical equilibrium;diathermic wall, thermal equilibrium, chemical equilibrium. Zeroth law ofthermodynamics, Temperature; concepts, scales, fixed points and measurements.

Work and Heat:

Mechanics-definition of work and its limitations. Thermodynamic definition of work; examples, sign convention. Displacement work; as a part of a system boundary, as a whole of a system boundary, expressions for displacement work in various processes through p-v diagrams. Shaft work; Electrical work. Other types of work

Laboratory Sessions / Experimental learning:

To determine the unknown area of a given drawing using planimeter

Applications:

1.For temperature measurements

2.To obtain displacement work

Video link / Additional online information (related to module if any):

https://nptel.ac.in/courses/101/104/101104067/

UNIT-II

10

First Law of Thermodynamics:

Joules experiments, equivalence of heat and work. Statement of the First law of
thermodynamics, extension of the First law to non - cyclic processes, energy, energy
as a property, modes of energy, pure substance; definition, two-property rule, Specific
heat at constant volume, enthalpy, specific heat at constant pressure. Extension of the
First law to control volume; steady state-steady flow energy equation, importantHr

applications, analysis of unsteady processes such as film and evacuation of vessels with and without heat transfer

Laboratory Sessions/ Experimental learning:

https://www.youtube.com/watch?v=suuTC9uGLrIhttps://www.youtube.com/watch?v =7bJywbP7ZIU

Applications:

Conservation of energy principle to Heat and Thermodynamic

processes

Compressors, Blowers, Steam or Gas Turbines, IC engines Video link

/ Additional online information (related to module if any):

https://nptel.ac.in/courses/101/104/101104067/

UNIT-III

Second Law of Thermodynamics:

Devices converting heat to work; (a) in a thermodynamic cycle, (b) in a mechanical cycle. Thermal reservoir. Direct heat engine; schematic representation and efficiency.
Hr
Devices converting work to heat in a thermodynamic cycle; reversed heat engine, schematic representation, coefficients of performance. Kelvin - Planck statement of the Second law of Thermodynamics; PMM I and PMM II, Clausius statement of Second law of Thermodynamics, Equivalence of the two statements; Reversible and Irreversible processes; factors that make a process irreversible, reversible heat engines, Carnot cycle, Carnot principles.

Entropy:

Clasius inequality; Statement, proof, application to a reversible cycle. Entropy; definition, a property, change of entropy, principle of increase in entropy, entropy as a quantitative test for irreversibility, calculation of entropy using Tds relations, entropy as a coordinate. Available and unavailable energy.

Laboratory Sessions/ Experimental learning:

https://www.youtube.com/watch?v=7OJG-

ZHrbD8https://www.youtube.com/watch?v=7bJywbP7ZIUhttps://www.youtube.co m/watch?v=2vHLJjlinjw

Applications:

- 1. All types of heat engine cycles including Otto, Diesel, etc
- 2. Refrigerators and heat pumps based on the Reversed Carnot Cycle

3. Mixing of two fluids, heat transfer through a finite temperature	
difference	
Video link / Additional online information (related to module if any):	
https://nptel.ac.in/courses/101/104/101104067/	
UNIT-IV	
Pure Substances & Ideal Gases:	10
Mixture of ideal gases and real gases, ideal gas equation, compressibility factor use of	Hr
charts. P-T and P-V diagrams, triple point and critical points. Sub-cooled liquid,	s
Saturated liquid, mixture of saturated liquid and vapour, saturated vapour and	
superheated vapour states of pure substance with water as example. Enthalpy of	
change of phase (Latent heat). Dryness fraction (quality), T-S and HS diagrams,	
representation of various processes on these diagrams.	
Thermodynamic relations:	
Maxwell's equations, Tds relations, ratio of heat capacities, evaluation of	
thermodynamic properties from an equation of state	
Laboratory Sessions/ Experimental learning:	
https://www.youtube.com/watch?v=Juz9pVVsmQQhttps://www.youtube.com/watch?	
v=L1AHGHRvv9s	
Applications: Working fluids and its properties, in power plants for power generations.	
Video link / Additional online information (related to module if any):	
https://nptel.ac.in/courses/101/104/101104067/	
UNIT-V	
Gas Cycles:	10
Efficiency of air standard cycles, Carnot, Otto, Diesel cycles, P-V & T-S diagram,	Hr
calculation of efficiency, Numerical	s
vapour power cycle:	
Carnot vapour power cycle, simple Rankine cycle, Analysis and performance of	
Rankine Cycle, Ideal and practical regenerative Rankine cycles - Reheat and	
Regenerative Cycles, Binary vapour cycle.	
Laboratory Sessions/ Experimental learning:	
To determine the unknown area of a given drawing using planimeter to calculate the	
thermal efficiency of Petrol cycle. To calculate the thermal efficiency of Diesel cycle.	
Applications:	

IC engines, Gas turbine engines etc..

Video link / Additional online information (related to module if any):

https://nptel.ac.in/courses/101/104/101104067/

Cours	se Outcomes: After completing the course, the students will be able to
CO1	Apply the concepts of thermodynamics in various engineering problems.
CO2	Differentiate thermodynamic work and heat and apply I law of thermodynamics to
	different process
CO3	Differentiate thermodynamic work and heat and apply II law of thermodynamics to
	different process
CO4	Apply the concepts of Pure Substances & Ideal Gases
CO5	Apply the principles of various gas cycles

Ref	erence Books
1.	A Venkatesh, Basic Engineering Thermodynamics, Universities Press, India, 2007, ISBN 13:
	9788173715877
2.	P K Nag, Basic and Applied Thermodynamics, 2nd Ed., Tata McGraw Hill Pub. 2002, ISBN
	13: 9780070151314
3.	YunusA.Cenegal and Michael A.Boles, Thermodynamics: An Engineering Approach,
	TataMcGraw Hill publications, 2002, ISBN 13: 9780071072540
4.	J.B.Jones and G.A.Hawkins, Engineering Thermodynamics, Wiley 1986, ISBN 13:
	9780471812029

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The

three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO	Mappiı	ng										
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	1	1	1	1	1	1		1
CO2	3	3	2	2	1	1	1	1	1	1		1
CO3	3	3	2	2	1	1	1	1	1	1		1
CO4	3	3	2	2	1	1	1	1	1	1		1
CO5	3	3	2	2	1	1	1	1	1	1		1

	S	emester: III	
	ELEMENTS	S OF AERONAU	FICS
Cou	rse Code:	MVJ21AE33	CIE Marks:100
Cree	dits: L:T:P:S: 3:0:0:0		SEE Marks: 100
Hou	rs: 40L		SEE Duration: 3 Hrs
Cou	rse Learning Objectives: The stud	ents will be able t	0
1	To know the history and basic prin-	ciple of aviation	
2	To understand the foundation of fli	ght, aircraft structu	ares, material aircraft propulsion
3	To develop an understanding stabil	ity of an aircraft al	ong with its different systems

UNIT-I

Introduction to Aircrafts	8 Hrs
History of aviation; Atmosphere and its properties; Classification of aircrafts;	
Basic components of an aircraft; structural members; aircraft axis system; aircraft	
motions; control surfaces and high lift devices; classification of aircraft;	
conventional design configurations; principle of operation of each major part;	
Helicopters, their parts and functions.	
Aircraft Structures and Materials:	
Introduction; general types of construction; monocoque, semi-monocoque and	
geodesic structures; typical wing and fuselage structure; metallic and non-	
metallic materials for aircraft application.	
Laboratory Sessions/ Experimental learning: Visualization of structural members	
of a wing in Structural Lab	
Applications: Identify and describe various components of an aircraft.	
Video link	
1. https://nptel.ac.in/courses/101/101/101101079/	
UNIT-II	
Basic principles of flight – significance of speed of sound; airspeed and	8 Hrs
groundspeed; standard atmosphere; Bernoulli's theorem and its application for	
generation of lift and measurement of airspeed; forces over wing section,	
aerofoil nomenclature, pressure distribution over a wing section. Lift and drag	
components – generation of lift and drag; lift curve, drag curve, types of drag,	
factors affecting lift and drag; centre of pressure and its significance;	

aerodynamic centre, aspect ratio, Mach number and supersonic flight effects;	
simple problems on lift and drag.	
Laboratory Sessions/ Experimental learning: Visualization of airfoil cross-	
section in Aerodynamics Lab	
Applications: Understand and explain lift production theories for 2-D and their	
extension to 3-D Video link: https://nptel.ac.in/courses/101/101/101101079/	
https://nptel.ac.in/courses/101/101/101101079/	
UNIT-III	
Aircraft Propulsion:	8 Hrs
Aircraft power plants, classification based on power plant and location and	
principle of operation. Turboprop, turbojet and turbofan engines; ramjets and	
scramjets; performance characteristics. Aircraft power plants - basic principles	
of piston, turboprop and jet engines; Brayton cycle and its application to gas	
turbine engines; use of propellers and jets for production of thrust; comparative	
merits and limitations of different types of propulsion engines; principle of thrust	
augmentation.	
Laboratory Sessions/ Experimental learning: Visualization of engines in	
Propulsion Lab	
Applications: Understand various configurations layouts, power-plant options	
available.	
Video link:	
https://nptel.ac.in/courses/101/101/101101079/	
https://nptel.ac.in/courses/101/101/101101079/	
UNIT-IV	
Aircraft Stability :	8 Hrs
Forces on an aircraft in flight; static and dynamic stability; longitudinal, lateral	
and roll stability; necessary conditions for longitudinal stability; basics of	
aircraft control systems. Effect of flaps and stats on lift, control tabs, stalling,	
gliding, landing, turning, aircraft maneuvers; stalling, gliding, turning. Simple	
problems on these. Performance of aircraft – power curves, maximum and	
minimum speeds for horizontal flight at a given altitude; effect of changes in	
engine power and altitude on performance; correct and incorrect angles of bank;	
aerobatics, inverted manoeuvre, manoeuvrability. Simple problems.	

Laboratory Sessions/ Experimental learning: Creating paper planes to have hands	
on experience of understanding the concepts	
Applications: Identify the required performance characteristics of different class	
of aircraft	
Video link: https://nptel.ac.in/courses/101/101/101101079/	
https://nptel.ac.in/courses/101/101/101101079/	
UNIT-V	
Aircraft Systems:	8 Hrs
Mechanical systems and their components; hydraulic and pneumatic systems;	
oxygen System; environmental Control System; fuel system. Electrical systems,	
flight deck and cockpit systems; navigation system, communication system.	
Aircraft systems (Mechanical) – hydraulic and pneumatic systems and their	
applications; environment control system; fuel system, oxygen system.	
Aircraft systems (Electrical) – flight control system, cockpit instrumentation	
and displays; communication systems; navigation systems; power generation	
systems – engine driven alternators, auxiliary power Module, ram air turbine;	
power conversion, distribution and management.	
Applications: Identify the main components, subsystems of aircraft and their	
functionality and various flight control systems, fuel and hydraulic control	
systems	
Video link:	
https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-885j-	
aircraftsystems-engineering-fall-2005/video-lectures/lecture-7/	

Cours	se Outcomes: After completing the course, the students will be able to
CO1	Appreciate and apply the basic principle of aviation.
CO2	Apply the concepts of fundamentals of flight, basics of aircraft structures.
CO3	Aircraft propulsion and aircraft materials during the development of an aircraft.
CO4	Understand the basic concepts of aircraft stability and control
	Understand and Comprehend the complexities involved during development of
CO5	flight vehicles

Ref	erence Books
1.	John D. Anderson, Introduction to Flight, McGraw-Hill Education, 2011. ISBN
	9780071086059.
2.	Lalit Gupta and O P Sharma, Fundamentals of Flight Vol-I to Vol-IV, Himalayan
	Books, 2006, ISBN: 706.
3.	A.C. Kermode, Flight without formulae, Pearson Education India, 1989. ISBN:
	9788131713891.
4.	Nelson R.C., Flight stability and automatic control, McGraw-Hill International
	Editions, 1998. ISBN 9780071158381

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	2	0	0	0	0	0	0	0	0
CO2	3	3	2	2	0	0	0	0	0	0	0	0
CO3	3	3	3	3	0	0	0	0	0	0	0	0
CO4	3	3	3	3	0	0	0	0	0	0	0	0
CO5	3	3	3	2	0	0	0	0	0	0	0	0

	S	emester: III	
ME	CHANICS OF MATERIALS + M	ATERIAL TESTI	NG LAB (Theory and
Pra	ctice)		
Cou	rse Code:	MVJ21AE34/	CIE Marks:50+50
		MVJ21AS34	
Cre	dits: L:T:P: 3:0:2		SEE Marks: 50 +50
Hou	rs:40 L+ 26 P		SEE Duration: 03+03
			Hours
Cou	rse Learning Objectives: The stud	lents will be able to	
1	Comprehend the basic concepts of	strength of material	S.
2	Acquire the knowledge of stresses	due to bending	
3	Understand the different failure in	materials	
4	Understand the relations among ma	aterials and their pro	operties.
5	Acquire the practical knowledge of	f metallographic test	ting of engineering materials.

UNIT-I	
Basics of linear elasticity: The concept of stress & strain, state of stress &	10 Hrs
Strain at a point, Equilibrium equations, The state of plane stress and plane	
strain. Compatibility equations, Constitutive Laws (Hooke's Law), Stressstrain	

curves for brittle and ductile materials, Allowable stress, Material selection for	
structural performance.	
Simple & Compound Stresses: Extension / Shortening of a bar, bars with cross	
sections varying in steps, bars with continuously varying cross sections.	
Elongation due to self-weight. Volumetric strain, expression for volumetric	
strain, elastic constants, simple shear stress, shear strain, temperature stresses,	
Introduction to Plane stress, stresses on inclined sections, principal stresses &	
strains, Analytical & graphical method (Mohr's Circle) to find principal stresses	
& strains.	
Laboratory Sessions/ Experimental learning: UTM in Material Testing Lab	
Applications: Testing of Mild steel components, Bricks	
Video link / Additional online information (related to module if any):	
Prof.Dr.Suraj Prakash Harsha,Indian Institute of Technology, Roorkee. Lecture –	
12 for Ductile and Brittle Materials	
UNIT-II	
Bending Moment and Shear Force in Beams: Introduction, Types of beams,	10 Hrs
loads and reactions, shear forces and bending moments, rate of loading, sign	
conventions, relationship between shear force and bending moments. Shear	
force and bending moment diagrams for different beams subjected to	
concentrated loads, uniformly distributed load, (UDL) uniformly varying load	
(UVL) and couple for different types of beams.	
Euler-Bernoulli beam theory: The Euler-Bernoulli assumptions, Implications	
of the Euler-Bernoulli assumptions, the Euler-Bernoulli Beam theory derivation,	
Bending stress equation, Moment carrying capacity of a section. Shearing	
stresses in beams, shear stress across rectangular, circular, symmetrical I and T	
sections (Only Numerical).	
Laboratory Sessions/ Experimental learning: Different load conditions can be	
practiced in Structures Lab	
Applications: Civil Construction with Symmetrical I & T sections	
Video link / Additional online information (related to module if any): Prof: S	
.K.Bhattacharya, IIT, Kharagpur, Lecture no 24. Bending of Beams- III	
UNIT-III	

Deflection of Beams: Introduction, Differential equation for deflection.	10 Hrs
Equations for deflection, slope and bending moment. Double integration method	
for cantilever and simply supported beams for point load, UDL, UVL and Couple.	
Macaulay's method.	
Torsion of Circular Shafts and Elastic Stability of Columns: Introduction.	
Pure torsion, assumptions, derivation of torsional equations, polar modulus,	
torsional rigidity / stiffness of shafts. Power transmitted by solid and hollow	
circular shafts.	
Laboratory Sessions/ Experimental learning: Beam Expt in Structures lab and	
Torsion Test apparatus available in MT Lab.	
Applications: Civil Construction and Automobile Transmission.	
Video link / Additional online information (related to module if any):	
Prof. S. K. Bhattacharyya Indian Institute of Technology, Kharagpur Lecture - 33	
Deflection of Beams – IV	
Prof. S. K. Bhattacharya Dept. of Civil Engineering I.I.T Kharagpur Lecturer#20	
Torsion-III	
UNIT-IV	
Virtual work principles: Introduction, Equilibrium and work fundamentals,	10 Hrs
Virtual work principles: Introduction, Equilibrium and work fundamentals, Principle of virtual work, Principle of virtual work applied to mechanical systems,	10 Hrs
Virtual work principles: Introduction, Equilibrium and work fundamentals, Principle of virtual work, Principle of virtual work applied to mechanical systems, Principle of virtual work applied to truss structures, Principle of virtual work	10 Hrs
Virtual work principles: Introduction, Equilibrium and work fundamentals, Principle of virtual work, Principle of virtual work applied to mechanical systems, Principle of virtual work applied to truss structures, Principle of virtual work applied to beams. Principle of complementary virtual work, internal virtual work	10 Hrs
Virtual work principles: Introduction, Equilibrium and work fundamentals, Principle of virtual work, Principle of virtual work applied to mechanical systems, Principle of virtual work applied to truss structures, Principle of virtual work applied to beams. Principle of complementary virtual work, internal virtual work in beams and solids.	10 Hrs
Virtual work principles: Introduction, Equilibrium and work fundamentals, Principle of virtual work, Principle of virtual work applied to mechanical systems, Principle of virtual work applied to truss structures, Principle of virtual work applied to beams. Principle of complementary virtual work, internal virtual work in beams and solids. Energy methods: Conservative forces, Principle of minimum total potential	10 Hrs
Virtual work principles: Introduction, Equilibrium and work fundamentals, Principle of virtual work, Principle of virtual work applied to mechanical systems, Principle of virtual work applied to truss structures, Principle of virtual work applied to beams. Principle of complementary virtual work, internal virtual work in beams and solids. Energy methods: Conservative forces, Principle of minimum total potential energy, Strain energy in springs, Strain energy in beams, Strain energy in solids,	10 Hrs
 Virtual work principles: Introduction, Equilibrium and work fundamentals, Principle of virtual work, Principle of virtual work applied to mechanical systems, Principle of virtual work applied to truss structures, Principle of virtual work applied to beams. Principle of complementary virtual work, internal virtual work in beams and solids. Energy methods: Conservative forces, Principle of minimum total potential energy, Strain energy in springs, Strain energy in beams, Strain energy in solids, Applications to trusses, Development of a finite element formulation for trusses, 	10 Hrs
Virtual work principles: Introduction, Equilibrium and work fundamentals, Principle of virtual work, Principle of virtual work applied to mechanical systems, Principle of virtual work applied to truss structures, Principle of virtual work applied to beams. Principle of complementary virtual work, internal virtual work in beams and solids. Energy methods: Conservative forces, Principle of minimum total potential energy, Strain energy in springs, Strain energy in beams, Strain energy in solids, Applications to trusses, Development of a finite element formulation for trusses, Principle of minimum complementary, Energy theorems, Reciprocity theorems,	10 Hrs
 Virtual work principles: Introduction, Equilibrium and work fundamentals, Principle of virtual work, Principle of virtual work applied to mechanical systems, Principle of virtual work applied to truss structures, Principle of virtual work applied to beams. Principle of complementary virtual work, internal virtual work in beams and solids. Energy methods: Conservative forces, Principle of minimum total potential energy, Strain energy in springs, Strain energy in beams, Strain energy in solids, Applications to trusses, Development of a finite element formulation for trusses, Principle of minimum complementary, Energy theorems, Reciprocity theorems, Saint-Venant's principle 	10 Hrs
Virtual work principles: Introduction, Equilibrium and work fundamentals, Principle of virtual work, Principle of virtual work applied to mechanical systems, Principle of virtual work applied to truss structures, Principle of virtual work applied to beams. Principle of complementary virtual work, internal virtual work in beams and solids. Energy methods: Conservative forces, Principle of minimum total potential energy, Strain energy in springs, Strain energy in beams, Strain energy in solids, Applications to trusses, Development of a finite element formulation for trusses, Principle of minimum complementary, Energy theorems, Reciprocity theorems, Saint-Venant's principle Laboratory Sessions/ Experimental learning: Few of the Energy Method	10 Hrs
Virtual work principles: Introduction, Equilibrium and work fundamentals, Principle of virtual work, Principle of virtual work applied to mechanical systems, Principle of virtual work applied to truss structures, Principle of virtual work applied to beams. Principle of complementary virtual work, internal virtual work in beams and solids. Energy methods: Conservative forces, Principle of minimum total potential energy, Strain energy in springs, Strain energy in beams, Strain energy in solids, Applications to trusses, Development of a finite element formulation for trusses, Principle of minimum complementary, Energy theorems, Reciprocity theorems, Saint-Venant's principle Laboratory Sessions/ Experimental learning: Few of the Energy Method Theorems can be explained from Structures Lab.	10 Hrs
Virtual work principles: Introduction, Equilibrium and work fundamentals, Principle of virtual work, Principle of virtual work applied to mechanical systems, Principle of virtual work applied to truss structures, Principle of virtual work applied to beams. Principle of complementary virtual work, internal virtual work in beams and solids. Energy methods: Conservative forces, Principle of minimum total potential energy, Strain energy in springs, Strain energy in beams, Strain energy in solids, Applications to trusses, Development of a finite element formulation for trusses, Principle of minimum complementary, Energy theorems, Reciprocity theorems, Saint-Venant's principle Laboratory Sessions/ Experimental learning: Few of the Energy Method Theorems can be explained from Structures Lab. Applications: Virtual work arises in the application of the principle of least action	10 Hrs
Virtual work principles: Introduction, Equilibrium and work fundamentals, Principle of virtual work, Principle of virtual work applied to mechanical systems, Principle of virtual work applied to truss structures, Principle of virtual work applied to beams. Principle of complementary virtual work, internal virtual work in beams and solids. Energy methods: Conservative forces, Principle of minimum total potential energy, Strain energy in springs, Strain energy in beams, Strain energy in solids, Applications to trusses, Development of a finite element formulation for trusses, Principle of minimum complementary, Energy theorems, Reciprocity theorems, Saint-Venant's principle Laboratory Sessions/ Experimental learning: Few of the Energy Method Theorems can be explained from Structures Lab. Applications: Virtual work arises in the application of the principle of least action to the study of forces and movement of a mechanical system.	10 Hrs
Virtual work principles: Introduction, Equilibrium and work fundamentals, Principle of virtual work, Principle of virtual work applied to mechanical systems, Principle of virtual work applied to truss structures, Principle of virtual work applied to beams. Principle of complementary virtual work, internal virtual work in beams and solids. Energy methods: Conservative forces, Principle of minimum total potential energy, Strain energy in springs, Strain energy in beams, Strain energy in solids, Applications to trusses, Development of a finite element formulation for trusses, Principle of minimum complementary, Energy theorems, Reciprocity theorems, Saint-Venant's principle Laboratory Sessions/ Experimental learning: Few of the Energy Method Theorems can be explained from Structures Lab. Applications: Virtual work arises in the application of the principle of least action to the study of forces and movement of a mechanical system. Video link / Additional online information (related to module if any): Energy	10 Hrs
 Virtual work principles: Introduction, Equilibrium and work fundamentals, Principle of virtual work, Principle of virtual work applied to mechanical systems, Principle of virtual work applied to truss structures, Principle of virtual work applied to beams. Principle of complementary virtual work, internal virtual work in beams and solids. Energy methods: Conservative forces, Principle of minimum total potential energy, Strain energy in springs, Strain energy in beams, Strain energy in solids, Applications to trusses, Development of a finite element formulation for trusses, Principle of minimum complementary, Energy theorems, Reciprocity theorems, Saint-Venant's principle Laboratory Sessions/ Experimental learning: Few of the Energy Method Theorems can be explained from Structures Lab. Applications: Virtual work arises in the application of the principle of least action to the study of forces and movement of a mechanical system. Video link / Additional online information (related to module if any): Energy 	10 Hrs

UNIT-V						
Mechanical Properties of materials:	10 Hrs					
Fracture: Type I, Type II and Type III.						
Creep : Description of the phenomenon with examples. Three stages of creep,						
creep properties, stress relaxation.						
Fatigue: Types of fatigue loading with examples, Mechanism of fatigue, fatigue						
properties, fatigue testing and S-N diagram.						
Laboratory Sessions/ Experimental learning: Impact Tests in MT lab for						
Fracture.						
Applications: Boilers, Rotating Machine Elements						
Video link / Additional online information (related to module if any):						
Creep Deformation of Materials Dr.SrikantGollapudi Indian Institute of						
Technology, Bhubaneswar						
Prof.K.Gopinath&Prof.M.M.Mayuram, Machine Design II, Indian Institute of						
Technology Madras						
LABORATORY EXPERIMENTS						
1.Hardness Testing-Brinell and Kockwell Hardness test						
2.Tensile Test						
3.Flexural Test						
4.Torsional Test						
	4					
5.Preparation of specimen for metallographic examination of difference	ent					
engineering materials						
6.Dye penetration testing						
/.Magnetic particle inspection						
8.Heat treatment: annealing, normalizing, hardening and tempering of st	eel					
9.Impact Test – Izod and Charpy Test						
10 Shear Test						

Course	Outcomes: After completing the course, the students will be able to
CO1	Apply the basic concepts of strength of materials.
CO2	Compute stress, strain under different loadings.
CO3	Acquire the knowledge of deflection of beams
CO4	Acquire the knowledge of virtual work principle and energy methods
CO5	Identify different failures
CO6	Examine the relations among materials properties.
CO7	Apply the knowledge of metallographic testing in aircraft materials.

Ref	erence Books
1.	T.H.G Megson "Introduction to Aircraft Structural Analysis", Butterworth-Heinemann
	Publications, 2007, ISBN 13: 9781856179324
2.	Beer F.P. and Johnston.R, Mechanics of Materials, McGraw Hill Publishers, 2006,
	ISBN13:978-0073380285.
3.	Timoshenko and Young, Elements of Strength of Materials, East-West Press, 1976,
	ISBN 10: 8176710199
4.	Maximum four books

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50.

The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Laboratory- 50 Marks

The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are awarded 10 marks. Total marks for the laboratory is 50.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the entire syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	1	1	1	1	1	1		1
CO2	3	3	2	2	1	1	1	1	1	1		1
CO3	3	3	2	2	1	1	1	1	1	1		1
CO4	3	3	2	2	1	1	1	1	1	1		1
CO5	3	3	2	2	1	1	1	1	1	1		1

	Semester: III								
N	MECHANICS OF FLUIDS + FLUID MECHANICS LAB (Theory and Practice)								
Cou	rse Code:	MVJ21AE35/	CIE Marks:50+50						
		MVJ21AS35							
Cree	dits: L:T:P: 3:0:2		SEE Marks: 50 +50						
Hou	rs:40 L+ 26 P		SEE Duration: 03+03						
Hours									
Cou	Course Learning Objectives: The students will be able to								
1	Understand the basic fluid properties.								
2	To estimate velocity, acceleration and stream function for an incompressible and								
2	inviscid flow along with governing equations of fluid flow.								
3	Understand the dimensional analy	sis and apply Berne	oulli's and Euler's equation for						
5	flow measuring devices								
Δ	To calculate boundary layer thickness and drag co-efficient for laminar and turbulent								
т	flows								
5	Acquire the knowledge of compres	ssible flows and bou	Indary Layers						

UNIT-I	
Basic Considerations:	10 Hrs
Introduction, Dimensions- Modules and physical quantities, Continuum view of	
gases and liquids, Pressure and Temperature scales, Physical properties of	
fluids.	
Fluid Statics:	
Pressure distribution in a static fluid, Pressure and its measurement, hydrostatic	
forces on plane and curved surfaces, buoyancy, illustration by examples.	
Laboratory Sessions/ Experimental learning: Use of piezometer and manometers	

Applications: For pressure measurements by using different types of manometers.	
Video link / Additional online information (related to module if any):	
https://nptel.ac.in/courses/101/103/101103004/	
UNIT-II	
Fluids in motion:	10 Hrs
Methods of describing fluid motion, types of fluid flow, continuity equation in 3	
dimensions, velocity potential function and stream function. Types of motion,	
Source sink, doublet, plotting of stream lines and potential lines Numerical	
problems.	
Fluid Kinematics:	
Kinematics of fluid motion and the constitutive equations, Integral (global) form	
of conservation equations (mass, momentum, energy) and applications,	
Differential form of conservation equations (continuity, Navier-Stokes equations,	
energy equation).	
Laboratory Sessions/ Experimental learning: An experimental study of the	
continuity equation and Bernoulli's equation by using Venturimeter, Orificemeter	
and pitot tube.	
Applications: For rotational and irrotational fluid flows, laminar and turbulent	
fluid flows.	
Video link / Additional online information (related to module if any):	
https://nptel.ac.in/courses/101/103/101103004/	
UNIT-III	
Fluid Dynamics:	10 Hrs
Equations of motion: Euler's and Bernoulli's equation of motion for ideal and	
real fluids. Momentum equation, Fluid flow measurements. Numerical problems.	
Dimensional analysis and similarity:	
Dimensional homogeneity, methods of dimensional analysis, model analysis,	
types of similarity and similitude. Dimensionless numbers. Model laws.	
Numerical problems	
Laboratory Sessions/ Experimental learning: An experimental study of the	
continuity equation and Bernoulli's equation by using Venturimeter, Orificemeter	
and pitot tube.	
Applications: flow measuring devices and model studies.	

Video link / Additional online information (related to module if any):	
https://nptel.ac.in/courses/101/103/101103004/	
UNIT-IV	
Flow past Immersed bodies:	10 Hrs
Introduction to boundary layer, boundary layer thickness, karman's integral	
momentum theory, drag on a flat plate for laminar and turbulent flow, Drag on	
immersed bodies. Expression for drag and lift. Kutta –joukowsky theorem;	
Fundamentals of airfoil theory Numerical problems.	
Laboratory Sessions/ Experimental learning: Determination of boundary layer	
thickness.	
Applications: Flow over a sloid body, separation point and Understanding of lift	
and drag. Video link / Additional online information (related to module if any):	
https://nptel.ac.in/courses/101/103/101103004/	
UNIT-V	10 Шис
Compressible now and Boundary Layers theory:	10 Hrs
Steady, one-dimensional gas dynamics, Propagation of pressure waves in a	
compressible medium, velocity of sound, Mach number, Mach cone, Stagnation	
properties, Bernoulli's eqn for isentropicflow, normal shock waves. Numerical	
Problem; Laminar and turbulent boundary layers.	
Laboratory Sessions/ Experimental learning: Propagation of disturbance for	
different Mach number	
Applications: Compressible flows through nozzles, diffusers, turbines etc	
Video link / Additional online information (related to module if any):	
https://nptel.ac.in/courses/101/103/101103004/	
LABORATORY EXPERIMENTS	
1.Calibration of Venturimeter.	
2.Determination of Coefficient of discharge for a small orifice by a constant he	ead
method.	
3.Determination of coefficient of friction of flow in a pipe	
4.Calibration of contracted Rectangular Notch.	

5. Verification of Bernoulli's equation.

6.Pipe friction apparatus with loss of head on pipe fittings.

7.Estimate performance of hydraulic Pumps -Single stage centrifugal pumps

8.Estimate performance of hydraulic Pumps –Multi- stage centrifugal pumps

9.Calibration of contracted V-Notch.

10.Determination of Coefficient of loss of head in a sudden contraction and friction factor.

C							
Cours	se Outcomes: After completing the course, the students will be able to						
CO1	Evaluate the effects of fluid properties						
CO2	Estimate velocity, acceleration and stream function for an incompressible and invisid flow along with governing equations of fluid flow.						
CO3	Perform dimensional analysis and apply Bernoulli's and Eulers equation for various flow situations involving venturimeter, orificemeter and pitot-tube						
CO4	Calculate boundary layer thickness and drag co-efficient for laminar and turbulent flows.						
CO5	Illustrate the basic concepts of compressible flows.						

Ref	erence Books
3.	Bansal, R.K, Fluid Mechanics and Hydraulics Machines, Laxmi Publications (P) Ltd.,
	New Delhi 2015,ISBN-13: 978-8131808153
4.	Yunus A. Cengel& John M Cimbala, Fluid Mechanics and Applications, McGraw
	Hill Education; 3 rd edition, 2013, ISBN-13: 978-0073380322.
3.	Rathakrishnan. E, Fluid Mechanics, Prentice-Hall of India Pvt.Ltd, 2010,
	ISBN 13: 9788120331839.

4. Ramamritham. S, Hydraulic Fluid Mechanics and Fluid Machines, Dhanpat Rai& Sons, Delhi, 1988, ISBN 13: 9788187433804

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the self -study are 20 (2 presentations are be held for 10 marks each). The marks obtained in test, quiz and self -studies are added to get marks out of 100 and report CIE for 50 marks.

Laboratory- 50 Marks

The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are awarded 10 marks. Total marks for the laboratory is 50.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the complete syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	1	1	1	1	1	1		1
CO2	3	3	2	2	1	1	1	1	1	1		1
CO3	3	3	2	2	1	1	1	1	1	1		1
CO4	3	3	2	2	1	1	1	1	1	1		1
CO5	3	3	2	2	1	1	1	1	1	1		1

	Semester: III								
	Balike Kannada								
Cou	rse Code:	MVJ21BK36	CIE Marks:50						
Credits: L:T:P:S: 1:0:0:0 SEE Marks: 50									
Hours: 20L SEE Duration: 3 Hrs									
Course Learning Objectives: This course will enable students to understand Kannada and communicate in Kannada language									
1	Vyavharika Kannada – Parichaya (Introduction to Vyavharikakannada)								
2	Kannada Aksharamaalehaaguuchcharane(Kannada Alphabets and Pronounciation.								
3	Sambhashanegaagi Kannada Padagalu (Kannada Vocubulary for Communication).								
4	Kannada Grammer in Conversations(Sambhasaneyalli Kannada Vyakarana)								
5	Activities in Kannada								

UNIT-I						
Vyayharika Kannada –Parichaya (Introduction to Vyayharikakannada)						
UNII-II						
Kannada Aksharamaalehaaguuchcharane(Kannada Alphabets and	8 Hrs					
Pronounciation						
UNIT-III						
Sambhashanegaagi Kannada Padagalu (Kannada Vocubulary for						
Communication)						
UNIT-IV						
Kannada Grammer in Conversations(Sambhasaneyalli Kannada Vyakarana)						
UNIT-V						
Activities in Kannada	8 Hrs					

Detail		Mark
S		S
Average of three Internal Assessment (IA) Tests of 30 Marks each i.e.		30
Σ (Marks Obtained in each test) / 3		
	CIE(5	
	0)	
ASSIGNMENT		20
Semester End Examination	SEE	50
	(50)	
	Total	100

Semester: III							
SAMSKRUTHIKA KANNADA							
Cou	Course Code: MVJ21SK36 CIE Marks:50						
Cree	redits: L:T:P:S: 1:0:0:0 SEE Marks: 50						
Hou	ours: 20L SEE Duration: 3 Hrs						
Cou	rse Learning Objectives: This cour	rse will enable s	students to understand Kannada and				
com	municate in Kannada language						
1	Samskruthika Kannada – Parichaya (Introduction to Adalitha kannada)						
2	Kannada Kavyagala parichaya (Kannada D Ra Bendre, Siddalingaiha)						
Adalithdalli Kannada Padagalu (Kannada Kagunitha Balake, Patr							
5	Prabhandha)						
4	Kannada Computer Gnyana (Kan	nnada Shabdha	Sangraha, Computer Paribashika				
	padagalu)						
5	Activities in Kannada.						

UNIT-I					
PÀ£ÀßqÀ ¨sÁµÉ-,ÀAQë¥ÀÛ «ªÀgÀuÉ.	8 Hrs				
UNIT-II					
¨sÁμÁ ¥ÀæAiÉÆÃUÀ [¯] ÁèUÀĪÀ ¯ÉÆÃ¥ÀzÉÆÃμÀUÀ¼ÀÄ ªÀÄvÀÄÛ	8 Hrs				
CªÀÅUÀ¼À ¤ªÁgÀuÉ.					
UNIT-III					
ÉÃR£À aºÉßUÀ¼ÀÄ ªÀÄvÀÄÛ CªÀÅUÀ¼À G¥ÀAiÉÆÃU.À	8 Hrs				
UNIT-IV					
¥ÀvÀæ ªÀåªÀºÁgÀ.	8 Hrs				
UNIT-V					
DqÀ½vÀ ¥ÀvÀæUÀ¼ÀÄ.	8 Hrs				
UNIT-VI					
,ÀPÁðgÀzÀ DzÉñÀ ¥ÀvÀæUÀ¼ÀÄ	8 Hrs				
UNIT-VII					
,ÀAQÃ¥ÀÛ ¥Àæ§AzsÀ gÀZÀ£É, ¥Àæ§AzsÀ ªÀÄvÀÄÛ ¨sÁµÁAvÀgÀ	8 Hrs				
UNIT-VIII					
PÀ£ÀβqÀ ±À§Ý,ÀAUÀæºÀ	8 Hrs				

UNIT-IX								
PÀA¥ÀÆålgï °ÁUÀÆ ªÀiÁ»w vÀAvÀæeÁÕ£À								
UNIT-X								
¥Áj¨sÁ¶PÀ DqÀ½vÀ PÀ£ÀßqÀ ¥ÀzÀUÀ¼ÀÄ ªÀÄvÀÄÛ								
vÁAwæPÀ/PÀA¥ÀÆålgï ¥Áj¨sÁ¶PÀ ¥ÀzÀUÀ¼ÀÄ.								

Scheme of Evaluation:		
D		Mark
et		S
ai		
ls		
Average of three Internal Assessment (IA) Tests of 30 Marks each i.e.		30
Σ (Marks Obtained in each test) / 3	CIE(50)	
ASSIGNMENT		20
Semester End Examination	SEE (50)	50
	Total	100

Semester: III								
CONSTITUTION OF INDIA, PROFESSIONAL ETHICS AND CYBER LAW								
Cou	Course Code: MVJ21CPH36/46 CIE Marks:50							
Cree	Credits: L:T:P:S: 1:0:0:0 SEE Marks: 50							
Hours: 20L SEE Duration: 3 Hrs								
Course Learning Objectives: The students will be able to								
	To know the fundamental political codes, structure, procedures, powers, and duties of							
1	Indian constitution, Indian government institutions, fundamental rights, directive							
	principles and the duties of the citizens.							
2	To provide overall legal literacy to the young technograts to manage complex societal							
² issues in the present scenario.								
To understand engineering ethics & their responsibilities, identify their indi								
5	and ethical responsibilities toward	s society.						

UNIT-I

Introduction to Indian Constitution	8 Hrs
The Necessity of the Constitution, The Societies before and after the Constitution	
adoption. Introduction to the Indian Constitution, The Making of the Constitution,	
The role of the Constituent Assembly - Preamble and Salient features of the	
Constitution of India. Fundamental Rights and its Restriction and Limitations in	
different Complex Situations. Directive Principles of State Policy (DPSP) and its	
present relevance in our society with examples. Fundamental Duties and its Scope	
and Significance in Nation Building.	
UNIT-II	
Union Executive and State Executive	8 Hrs
Parliamentary System, Federal System, Centre-State Relations. Union Executive	

President, Prime Minister, Union Cabinet, Parliament - LS and RS,
 Parliamentary Committees, Important Parliamentary Terminologies. Supreme
 Court of India, Judicial Reviews and Judicial Activism. State Executives –

Governor, Chief Minister, State Cabinet, State Legislature, High Court and					
Subordinate Courts, Special Provisions (Article 370, 371, 371J) for some States.					
UNIT-III					
Elections, Amendments and Emergency Provisions	8 Hrs				
Elections, Electoral Process, and Election Commission of India, Election Laws.					
Amendments - Methods in Constitutional Amendments (How and Why) and					
Important Constitutional Amendments. Amendments –					
7,9,10,12,42,44,61,73,74,75,86, and 91,94,95,100,101,118 and some important					
Case Studies. Recent Amendments with explanation. Important Judgements with					
Explanation and its impact on society (from the list of Supreme Court					
Judgements).					
Emergency Provisions, types of Emergencies and it's consequences.					
Constitutional Special Provisions:					
Special Constitutional Provisions for SC & ST, OBC, Special Provision for					
Women, Children & Backward Classes.					
UNIT-IV					
Professional / Engineering Ethics	8 Hrs				
Professional / Engineering Ethics Scope & Aims of Engineering & Professional Ethics - Business Ethics, Corporate	8 Hrs				
 Professional / Engineering Ethics Scope & Aims of Engineering & Professional Ethics - Business Ethics, Corporate Ethics, Personal Ethics. Engineering and Professionalism, Positive and Negative 	8 Hrs				
 Professional / Engineering Ethics Scope & Aims of Engineering & Professional Ethics - Business Ethics, Corporate Ethics, Personal Ethics. Engineering and Professionalism, Positive and Negative Faces of Engineering Ethics, Code of Ethics as defined in the website of 	8 Hrs				
 Professional / Engineering Ethics Scope & Aims of Engineering & Professional Ethics - Business Ethics, Corporate Ethics, Personal Ethics. Engineering and Professionalism, Positive and Negative Faces of Engineering Ethics, Code of Ethics as defined in the website of Institution of Engineers (India) : Profession, Professionalism, Professional 	8 Hrs				
Professional / Engineering Ethics Scope & Aims of Engineering & Professional Ethics - Business Ethics, Corporate Ethics, Personal Ethics. Engineering and Professionalism, Positive and Negative Faces of Engineering Ethics, Code of Ethics as defined in the website of Institution of Engineers (India) : Profession, Professionalism, Professional Responsibility. Clash of Ethics, Conflicts of Interest. Responsibilities in	8 Hrs				
 Professional / Engineering Ethics Scope & Aims of Engineering & Professional Ethics - Business Ethics, Corporate Ethics, Personal Ethics. Engineering and Professionalism, Positive and Negative Faces of Engineering Ethics, Code of Ethics as defined in the website of Institution of Engineers (India) : Profession, Professionalism, Professional Responsibility. Clash of Ethics, Conflicts of Interest. Responsibilities in Engineering - Responsibilities in Engineering and Engineering Standards, the 	8 Hrs				
Professional / Engineering Ethics Scope & Aims of Engineering & Professional Ethics - Business Ethics, Corporate Ethics, Personal Ethics. Engineering and Professionalism, Positive and Negative Faces of Engineering Ethics, Code of Ethics as defined in the website of Institution of Engineers (India) : Profession, Professionalism, Professional Responsibility. Clash of Ethics, Conflicts of Interest. Responsibilities in Engineering - Responsibilities in Engineering and Engineering Standards, the impediments to Responsibility.Trust and Reliability in Engineering, IPRs	8 Hrs				
 Professional / Engineering Ethics Scope & Aims of Engineering & Professional Ethics - Business Ethics, Corporate Ethics, Personal Ethics. Engineering and Professionalism, Positive and Negative Faces of Engineering Ethics, Code of Ethics as defined in the website of Institution of Engineers (India) : Profession, Professionalism, Professional Responsibility. Clash of Ethics, Conflicts of Interest. Responsibilities in Engineering - Responsibilities in Engineering and Engineering Standards, the impediments to Responsibility.Trust and Reliability in Engineering, IPRs (Intellectual Property Rights), Risks, Safety and liability in Engineering. 	8 Hrs				
Professional / Engineering Ethics Scope & Aims of Engineering & Professional Ethics - Business Ethics, Corporate Ethics, Personal Ethics. Engineering and Professionalism, Positive and Negative Faces of Engineering Ethics, Code of Ethics as defined in the website of Institution of Engineers (India) : Profession, Professionalism, Professional Responsibility. Clash of Ethics, Conflicts of Interest. Responsibilities in Engineering - Responsibilities in Engineering and Engineering Standards, the impediments to Responsibility.Trust and Reliability in Engineering, IPRs (Intellectual Property Rights), Risks, Safety and liability in Engineering. UNIT-V	8 Hrs				
Professional / Engineering Ethics Scope & Aims of Engineering & Professional Ethics - Business Ethics, Corporate Ethics, Personal Ethics. Engineering and Professionalism, Positive and Negative Faces of Engineering Ethics, Code of Ethics as defined in the website of Institution of Engineers (India) : Profession, Professionalism, Professional Responsibility. Clash of Ethics, Conflicts of Interest. Responsibilities in Engineering - Responsibilities in Engineering and Engineering Standards, the impediments to Responsibility.Trust and Reliability in Engineering, IPRs (Intellectual Property Rights), Risks, Safety and liability in Engineering. UNIT-V Internet Laws, Cyber Crimes and Cyber Laws:	8 Hrs 8 Hrs				
Professional / Engineering Ethics Scope & Aims of Engineering & Professional Ethics - Business Ethics, Corporate Ethics, Personal Ethics. Engineering and Professionalism, Positive and Negative Faces of Engineering Ethics, Code of Ethics as defined in the website of Institution of Engineers (India) : Profession, Professionalism, Professional Responsibility. Clash of Ethics, Conflicts of Interest. Responsibilities in Engineering - Responsibilities in Engineering and Engineering Standards, the impediments to Responsibility.Trust and Reliability in Engineering, IPRs (Intellectual Property Rights), Risks, Safety and liability in Engineering. UNIT-V Internet Laws, Cyber Crimes and Cyber Laws: Internet and Need for Cyber Laws, Modes of Regulation of Internet, Types of	8 Hrs 8 Hrs				
Professional / Engineering Ethics Scope & Aims of Engineering & Professional Ethics - Business Ethics, Corporate Ethics, Personal Ethics. Engineering and Professionalism, Positive and Negative Faces of Engineering Ethics, Code of Ethics as defined in the website of Institution of Engineers (India) : Profession, Professionalism, Professional Responsibility. Clash of Ethics, Conflicts of Interest. Responsibilities in Engineering - Responsibilities in Engineering and Engineering Standards, the impediments to Responsibility.Trust and Reliability in Engineering, IPRs (Intellectual Property Rights), Risks, Safety and liability in Engineering. UNIT-V Internet Laws, Cyber Crimes and Cyber Laws: Internet and Need for Cyber Laws, Modes of Regulation of Internet, Types of cyber terror capability, Net neutrality, Types of Cyber Crimes, India and cyber	8 Hrs 8 Hrs				
Professional / Engineering Ethics Scope & Aims of Engineering & Professional Ethics - Business Ethics, Corporate Ethics, Personal Ethics. Engineering and Professionalism, Positive and Negative Faces of Engineering Ethics, Code of Ethics as defined in the website of Institution of Engineers (India) : Profession, Professionalism, Professional Responsibility. Clash of Ethics, Conflicts of Interest. Responsibilities in Engineering - Responsibilities in Engineering and Engineering Standards, the impediments to Responsibility.Trust and Reliability in Engineering, IPRs (Intellectual Property Rights), Risks, Safety and liability in Engineering. UNIT-V Internet Laws, Cyber Crimes and Cyber Laws: Internet and Need for Cyber Laws, Modes of Regulation of Internet, Types of cyber terror capability, Net neutrality, Types of Cyber Crimes, India and cyber law, Cyber Crimes and the information Technology Act 2000, Internet	8 Hrs 8 Hrs				

Course	Course Outcomes: After completing the course, the students will be able to						
CO1	Have constitutional knowledge and legal literacy						
CO2	Understand Engineering and Professional ethics and responsibilities of Engineers.						
CO3	Understand the cyber crimes and cyber laws for cyber safety measure.						

Ref	erence Books
1.	Constitution of India and Professional Ethics, T.S. Anupama, Sunstar Publisher
2.	Durga Das Basu (DD Basu): "Introduction to the Constitution on India", (Students
	Edition.)
	Prentice –Hall EEE, 19th/20th Edn., (Latest Edition) or 2008.
3.	Shubham Singles, Charles E. Haries, and Et al : "Constitution of India and Professional
	Ethics" by Cengage Learning India Private Limited, Latest Edition – 2018.
4.	M.Govindarajan, S.Natarajan, V.S.Senthilkumar, "Engineering Ethics", Prentice -Hall
	of India Pvt. Ltd. New Delhi, 2004.
5.	M.V.Pylee, "An Introduction to Constitution of India", Vikas Publishing, 2002.
6.	Latest Publications of NHRC - Indian Institute of Human Rights, New Delhi
	Latest rubications of NARC - indian institute of Auman Rights, New Defill.

CIE Assessment:

CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation. Generally, there will be: Three Internal Assessment (IA) tests during the semester (40 marks each), the final IA marks to be awarded will be the average of three tests

- Assignment (10 marks)

SEE Assessment:

- i. Question paper for the SEE consists one part. It is compulsory and consists of objective type 1 mark each for total of 50 marks covering the whole syllabus.
- ii. Ten questions must be set from each unit. The duration of examination is 3 hours.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	1	1	1	2	2	1	1	1	1	2

CO2	1	2	2	1	1	2	1	1	1	1	1	2
CO3	2	1	2	1	1	1	1	1	1	1	1	2
CO4	2	2	1	1	1	1	1	1	1	1	1	2
CO5	2	2	1	1	1	2	1	1	1	1	1	2

	Semester: III					
	AEROSAPCE MATERIALS					
Cou	Course Code: MVJ21AE37/AS37 CIE Marks:100					
Credits: L:T:P:S: 2:0:0:0			SEE Marks: 100			
Hours: 22L			SEE Duration: 3 Hrs			
Cou	rse Learning Objectives: The stu	idents will be able to				
1	1 To impart knowledge on the basics of phase diagrams and their applications.					
2	2 To make the students to understand the use of non-ferrous materials in aircraft construction:					
3	To introduce various ferrous mate	erials for aircraft constr	ruction			

UNIT-I	
Phase diagrams and Microstructures:	8 Hrs
Basic concepts - Gibbs phase rule – Unary phase diagram (iron) - Binary phase	
diagrams: isomorphous systems (Cu-Ni).	
The Fe-Fe3C phase diagram: phases, invariant reactions, development of	
microstructure in eutectoid, hypoeutectoid and hypereutectoid alloys - influence	
of other alloying elements in the Fe-C system. Microstructures: pearlite, bainite,	
spheroidite and martensite.	
Video link / Additional online information (related to module if any):	
https://nptel.ac.in/courses/101/103/101103004/	

https://www.youtube.com/watch?v=woNUlqu8ReE				
UNIT-II	I			
Non-ferrous materials in aircraft construction:	7 Hrs			
Aluminium and its alloys: Types and identification. Properties - Castings -				
Heat treatment processes - Surface treatments.				
Magnesium and its alloys: Cast and Wrought alloys - Aircraft application,				
features specification, fabrication problems, Special treatments.				
Titanium and its alloys: Applications, machining, forming, welding and heat				
treatment.				
Video link / Additional online information (related to module if any):				
https://nptel.ac.in/courses/113/105/113105021/				
https://www.intechopen.com/books/aluminium-alloys-recent-trends-in-				
processing-characterization-mechanical-behavior-and-applications				
UNIT-III				
Ferrous materials in aircraft construction:	7 Hrs			
Steels : low, medium and high carbon steels , alloy steels, corrosion resistant				
steels, structural applications.				
Maraging Steels: Properties and Applications.				
Super Alloys: Use - Nickel base - Cobalt base - Iron base - Forging and Casting				
of Super alloys - Welding, Heat treatment.				
Video link / Additional online information (related to module if any):				
https://nptel.ac.in/courses/113/105/113105057/				
https://nptel.ac.in/courses/113/104/113104059/				

Cours	Course Outcomes: After completing the course, the students will be able to			
CO1	Apply the knowledge about the phase diagrams and microstructure of alloys.			
CO2	Explain the applications of Non-ferrous alloys in Aircraft and Aerospace industry.			
CO3	Gain knowledge about the application of Ferrous alloys in Aircraft construction			

Reference Books					
1.	Titterton G F, Aircraft Material and Processes, English Book Store, New Delhi, 5 th				
	edition, 1998, ISBN-13: 978-8175980136				

2.	Introduction to Physical Metallurgy by Sydney Avner, Tata McGraw-Hill Edition 1997.
3.	Hill E T, The Materials of Aircraft Construction, Pitman London.
4.	C G Krishnadas Nair, Handbook of Aircraft materials, Interline publishers, Bangalore,
	1993

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

СО-РО	Mapp	ing										
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	0	0	1	0	0	0	0	1	1
CO2	3	1	1	0	1	2	0	0	0	0	0	1
CO3	3	2	1	2	0	2	1	0	0	0	1	1

	Semester: III				
	Diplo	ma Mathematics-I			
Cou	rse Code:	MVJ21MATDIP31	CIE Marks:100		
Credits: L:T:P:S: 1:2:0:0			SEE Marks: 100		
Hours: 30L+26T			SEE Duration: 3 Hrs		
Course Learning Objectives: The students will be able to					
1	To familiarize the important a Differential Equation, ordinary/partial difference engineering problems.	and basic concepts of ential equations and Ve	of Differential calculus and ector calculus and analyse the		

UNIT-I	
Differential calculus: Recapitulations of successive differentiations -n th	8 Hrs
derivative -Leibnitz theorem and Problems, Mean value theorem -Rolle's	
theorem, Lagrange's Mean value theorem , Cauchy's theorem and Taylor's	
theorem for function of one variables.	
Video Link:	
https://users.math.msu.edu/users/gnagy/teaching/ode.pdf	
UNIT-II	
Integral Calculus:	8 Hrs
Review of elementary Integral calculus, Reduction formula	
$\int_0^{\frac{\pi}{2}} \sin^m x dx , \int_0^{\frac{\pi}{2}} \cos^m x dx, \int_0^{\frac{\pi}{2}} \sin^m \cos^n x dx \qquad \text{and problems.}$	
Evaluation of double and triple integrals and Simples Problems.	
Video Link:	
https://www.youtube.com/watch?v=rCWOdfQ3cwQ	

https://nptel.ac.in/courses/111/105/111105122/	
UNIT-III	
Vector Calculus: Derivative of vector valued functions, Velocity, Acceleration	8 Hrs
and related problems, Scalar and Vector point functions, Gradient, Divergence,	
Curl, Solenoidal and Irrotational vector fields. Vector identities - div (ϕA), curl	
(ϕA) , curl (grad ϕ), div (curl A).	
Video Link:	
https://www.whitman.edu/mathematics/calculus_online/chapter16.html	
https://www.math.ust.hk/~machas/vector-calculus-for-engineers.pdf	
UNIT-IV	
Probability:	8 Hrs
Introduction-Conditional Probability, Multiplication theorem ,Independent events	
,Baye's theorem and Problems.	
Video Link:	
https://www.khanacademy.org/math/statistics-probability/probability-library	
https://nptel.ac.in/courses/111/105/111105041/	
UNIT-V	
Differential equation: Homogenous differential equation, Linear differential	8 Hrs
equation, Bernoulli's differential equation and Exact differential equation.	
Video Link:	
https://www.mathsisfun.com/calculus/differential-equations.html	

Course	Course Outcomes: After completing the course, the students will be able to			
CO1	Apply the knowledge of Differential calculus in the modeling of various physical			
	and engineering phenomena			
CO2	Apply the concept of change of order of integration and variables to evaluate			
	multiple integrals and their usage in computing the area and volumes.			
CO3	Study on Vector calculus to understand the various solution to Application to			
	Engineering problems.			
CO4	Understand the basic Concepts of Probability			
CO5	Solve first order linear differential equation analytically using standard methods.			
-----	---			

Ref	erence Books
1.	B.S. Grewal, "Higher Engineering Mathematics" Khanna Publishers, 43 rd Edition,
	2013.
2.	Ramana B. V., "Higher Engineering Mathematics", Tata Mc Graw-Hill, 2006.
3.	Erwin Kreyszig, "Advanced Engineering Mathematics", Wiley-India publishers, 10th
	edition,2014.
4.	G. B. Gururajachar: Calculus and Linear Algebra, Academic Excellent Series
	Publication, 2018-19

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	2	0	0	0	0	0	0	0	0
CO2	3	3	2	2	0	0	0	0	0	0	0	0
CO3	3	3	3	3	0	0	0	0	0	0	0	0
CO4	3	3	3	3	0	0	0	0	0	0	0	0
CO5	3	3	3	2	0	0	0	0	0	0	0	0

Semester: IV								
	COMPLEX	VARIABLES & NUMERICAL MET	ГНОDS					
Course Code:		MVJ21MAE41/MAS41/MME41	CIE Marks:100					
Cree	dits: L:T:P:S: 2:2:0:0		SEE Marks: 100					
Hou	rs: 30L+26T		SEE Duration: 3					
			Hrs					
Cou	rse Learning Objective	es: The students will be able to						
1	Understand the concepts of Complex variables and transformation for solving Engineering Problems.							
2	Understand the concepts of complex integration, Poles and Residuals in the stability analysis of engineering problems.							
3	Apply the concept to fi	nd external of functional.						
4	Solve initial value prob	blems using appropriate numerical meth	ods.					
5	Students learn to obta numerically.	ain solution s of ordinary and partia	l differential equations					

UNIT-I	
Complex variables - 1:	10
Functions of complex variables, Analytic function, Cauchy-Riemann Equations in	Hrs
Cartesian and polar coordinates, Consequences of Cauchy-Riemann Equations,	
Construction of analytic functions (Using Milne-Thomson method).	
Transformations:	
Bilinear Transformation, Conformal transformation, Discussion of the	
transformations $w = z^2$, $w = e^z$ and $w = z + \frac{a}{z}$, $(z \neq 0)$.	
Video Link:	
https://www.youtube.com/watch?v=oiK4gTgncww	
https://www.youtube.com/watch?v=WJOf4PfoHow	
UNIT-II	
Complex variables-2:	10
Complex integration - Cauchy theorem, Cauchy's Integral Theorem-Problems,	Hrs
Taylor & Laurent series- Problems, Singularities, Types of Singularities, Poles,	

Residues-definitions, Cauchy residue theorem - Problems.	
Video Link:	
https://math.mit.edu/~jorloff/18.04/notes/topic4.pdf	
https://math.mit.edu/~jorloff/18.04/notes/topic10.pdf	
UNIT-III	
Numerical methods-1:	10
Numerical solution of Ordinary Differential Equations of first order and first degree,	Hrs
Taylor's series method, Modified Euler's method, Runge-Kutta method of fourth	
order, Milne's and Adam-Bashforth Predictor and Corrector method.	
Video Link:	
https://youtu.be/b5VUnapu-qs	
http://www.nptelvideos.in/	
UNIT-IV	
Numerical methods-2:	10
Numerical solution of Ordinary Differential Equations of second order: Runge-	Hrs
Kutta method of fourth order, Milne's Predictor and Corrector method.	
Calculus of variations:	
Variation of function and Functional, variational problems, Euler's equation,	
Geodesics.	
Applications : Hanging Chain problem.	
Video Link:	
https://www.khanacademy.org/	
http://www.nptelvideos.in/	
UNIT-V	
Numerical methods-3:	10
Numerical solution of Partial Differential Equations: Introduction, Finite difference	Hrs
approximations to derivatives, Numerical Solution of Laplace Equation, Numerical	
solution of one-dimensional heat equation by Bender - Schmidt's method and by	
Crank-Nicholson Method, Numerical solution of one-dimensional wave equation.	
Video Links: <u>https://youtu.be/nNnnBMF03II</u>	

Course	Course Outcomes: After completing the course, the students will be able to							
CO1	State and prove Cauchy - Riemann equation with its consequences and							
	demonstrate Con-formal Transformation.							
CO2	Illustrate Complex Integration using Cauchy's Integral theorem, Cauchy's							
	Integral formula and Cauchy's Residue theorem.							
CO3	Identify appropriate numerical methods to solve ODE.							
CO4	Determine the extremals of functionals and solve the simple problems of the							
	calculus of variations.							
C05	Choose appropriate numerical methods to solve Partial Differential Equations.							
005								

Ref	erence Books
1.	Prof G.B.Gururajachar "Engineering Mathematics-III, Academic Excellent series
	Publications, 2016-17
2.	B.S. Grewal, "Higher Engineering Mathematics" Khanna Publishers, 43 rd Edition,
	2013.
3.	B.V.Ramana, "Higher Engineering Mathematics", Tata McGraw-Hill, 2006
4.	N.P. Bali & Manish Goyal, "A text book of Engineering Mathematics", Laxmi
	Publications, 8 th Edition.
5.	H K Dass: "Advanced Engineering Mathematics"- S Chand & Company Ltd.12 th
	edition.

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	0	3	0	0	0	0	0	0	1	0
CO2	3	3	0	3	0	0	0	0	0	0	0	1
CO3	2	3	0	3	0	0	0	0	0	0	1	0
CO4	3	3	0	3	0	0	0	0	0	0	0	0
CO5	3	3	0	2	0	0	0	0	0	0	0	1

	Semester: IV								
	INCOMPRESSIBLE AERODYNAMICS								
Cou	rse Code:	MVJ21AE42/AS42	CIE Marks:100						
Cree	lits: L:T:P:S: 3:0:0:0		SEE Marks: 100						
Hou	SEE Duration: 3 Hrs								
Course Learning Objectives: The students will be able to									
1	Understand the basics of fluid mechanics as a prerequisite to Aerodynamics								

2	Acquire knowledge on typical airfoil characteristics and two-dimensional flows over airfoil
3	Acquire knowledge of incompressible flows over airfoil
4	Understand the fundamentals of incompressible flow over finite wings
5	Assimilate the understanding of application of finite wing theory and high lift systems

UNIT-I				
Review of Basic Fluid Mechanics	10			
Continuity, momentum and energy equation, Control volume approach to Continuity,	Hrs			
momentum and energy equation, Types of flow, pathlines, streamlines, and				
streaklines, units and dimensions, inviscid and viscous flows, compressibility, Mach				
number regimes. Vorticity, Angular velocity, Stream function, velocity potential				
function, Circulation, Numericals, Mach cone and Mach angle, Speed of sound.				
Laboratory Sessions/ Experimental learning: Smoke flow visualization studies on a				
two dimensional airfoil at different angles of incidence at low speeds				
Applications: provides a proper understanding of the flow properties and their				
characteristics features which helps in the study of flow over airfoils				
Video link / Additional online information (related to module if any):				
https://nptel.ac.in/courses/101105059/				
UNIT-II				
Airfoil Characteristics	10			
Fundamental aerodynamic variables, Airfoil nomenclature, airfoil characteristics.	Hrs			
wing planform geometry, aerodynamic forces and moments, centre of pressure,				
pressure coefficient, aerodynamic center, calculation of airfoil lift and drag from				

measured surface pressure distributions, typical airfoil aerodynamic characteristics at low speeds. Types of drag-Definitions.

Laboratory Sessions/ Experimental learning: Smoke flow visualization studies on a two-dimensional circular cylinder at low speeds

Applications: understand the characteristics and the distribution of pressure over the airfoil Video link / Additional online information (related to module if any): https://nptel.ac.in/courses/101105059/

UNIT-III

Two Dimensional Flows & Incompressible Flow Over Airfoil	10
Uniform flow, Source flow, Sink flow, Combination of a uniform flow with source	Hrs
and sink. Doublet flow. Non-lifting flow over a circular cylinder. Vortex flow. Lifting	I
flow over a circular cylinder. Kutta-Joukowski theorem and generation of Lift,	I
D'Alembert's paradox, Numericals, Incompressible flow over airfoils: Kelvin's	I
circulation theorem and the starting vortex, vortex sheet, Kutta condition, Classical	I
thin airfoil theory for symmetric and cambered airfoils. KuttaJoukowski theorem. and	I
generation of Lift, Numerical.	I
Laboratory Sessions/ Experimental learning: Calculation of total drag of a two-	I
dimensional circular cylinder at low speeds using pitot-static probe wake survey.	I
Applications: study the lifting and non lifting flows over cylinders and arbitrary	I
bodies and understanding the theory behind lift generation	I
Video link / Additional online information (related to module if any):	
https://nptel.ac.in/courses/101105059/	
UNIT-IV	
IncompressibleFlowOverFiniteWings	10
Biot-Savart law and Helmholtz's theorems, Vortex filament: Infinite and semi-	Hrs
infinite vortex filament, Induced velocity. Prandtl's classical lifting line	
theory:Downwash and induced drag. Elliptical and modified elliptical lift	
distribution.Lift distribution on wings. Limitations of Prandtl's lifting line theory.	
Extended lifting line theory-lifting surface theory, vortex lattice method for wings.	
Lift, drag and moment characteristics of complete airplane	
Laboratory Sessions/ Experimental learning: Surface pressure distributions on a two-	
dimensional cambered airfoil at different angles of incidence and calculation of lift	
and pressure drag.	
Applications: understanding the theory of lift generation over finite wings and their	
flow patterns Video link / Additional online information (related to module if any):	
http://web.iaa.ncku.edu.tw/~aeromems/Aerodynamics/Ch5.pdf	
UNIT-V	
Applications of Finite Wing Theory & High Lift Systems	10
Simplified horse-shoe vortex model, influence of downwash on tail plane, ground	Hrs
effects. Swept wings: Introduction to sweep effects, swept wings, pressure coefficient,	
and typical aerodynamic characteristics. Introduction to high-lift systems, flaps	

leading-edge slats and typical high – lift characteristics. Effects of thickness, camber and aspect ratio of wings, tip effects. Introduction to

Source panel & vortex lattice method

Laboratory Sessions/ Experimental learning: Calculation of aerodynamic coefficients forces acting on a model aircraft using force balance at various angles of incidence, speed.

Applications: study the typical aerodynamics characteristics of swept wings and different types of high lift devices

Video link / Additional online information (related to module if any):

https://nptel.ac.in/courses/101/106/101106035/

Course	Course Outcomes: After completing the course, the students will be able to						
CO1	Describe the fundamental equations of continuity, momentum & energy of fluid						
	flow.						
CO2	Evaluate typical airfoil characteristics and two-dimensional flows over airfoil						
CO3	Analyze the incompressible flow over airfoil						
CO4	Compute and analyze the incompressible flow over finite wings						
CO5	Apply finite wing theory and analyze high lift systems						

Ref	erence Books
1.	Anderson J.D, Fundamental of Aerodynamics, 5th edition, McGraw-Hill International
	Edition, New York (2011), ISBN-13: 978-0073398105.
2.	E. L. Houghton, P.W. Carpenter, Aerodynamics for Engineering Students, 5th edition,
	Elsevier, New York. (2010), ISBN-13: 978-0080966328
3.	Clancy L. J., Aerodynamics, Sterling book house, New Delhi. (2006), ISBN 13:
	9780582988804
4.	Louis M. Milne-Thomson, Theoretical Aerodynamics, Imported Edition, Dover
	Publications, USA (2011), ISBN 9780486619804.

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	0	1	1	0	1	1	0	11
CO2	3	3	2	3	0	1	1	0	1	1	0	1
CO3	3	3	3	3	1	1	1	0	1	1	0	1
CO4	3	3	3	3	1	1	1	0	1	1	0	1
CO5	3	3	3	2	1	1	1	0	1	1	0	1

	Semester: IV					
	FINITE E	LEMENT METHOD	PS			
Course Code:		MVJ21AE53/AS43	CIE Marks:100			
Cree	Credits: L:T:P:S: 2:2:0:0 SEE Marks: 100					
Hou	rs: 30L+26T		SEE Duration: 3 Hrs			
Cou	rse Learning Objectives: The stu	idents will be able to				
1	Understand the importance of dis	cretization of domain u	using different finite elements.			
2	Acquire the knowledge of different loading and boundary conditions.					
3	Understand the governing methods of finite element analysis.					
4	Comprehend the higher order discretization.					
5	Gain the knowledge offield probl	ems.				

UNIT-I

Introduction: Basic Concepts, Background Review: Introduction,Stresses and
Equilibrium, Plane stress, Plane strain, Boundary Conditions, Strain-Displacement
Relations, simple elements for the FEM, Potential Energy and Equilibrium, The
Rayleigh-Ritz Method, Galerkin's Method, Saint Venant's Principle, Von Mises
Stress,10

Finite Element Modeling, node, element, Coordinates and Shape Functions, Element Stiffness Matrix and assembly, Properties of K, Use of local and natural coordinates, compatibility, and convergence requirements of shape functions.

Laboratory Sessions/ Experimental learning:2D plane stress analysis using ANSYS

Applications:

- 1. Solving practical technical problems using scientific and mathematical tools,
- 2. Calculating the global stiffness matrix in the finite element method

Video link / Additional online information

- 1. https://nptel.ac.in/courses/112/104/112104193/
- 2. https://nptel.ac.in/courses/112/104/112104116/

https://ocw.mit.edu/courses/mechanical-engineering/2-092-finite-element-analysis-	
of-solids-and-fluids-i-fall-2009/study-materials/	
UNIT-II	<u> </u>
Analysis of bars, truss, frames, and beams:	10
Construction of shape functions for bar element and beam element, Plane trusses,	Hrs
Three-Dimensional trusses, Three-dimensional Frames	
Construction of shape functions for bar element and beam element, Bar elements,	
uniform bar elements, uniform section, mechanical and thermal loading, varying	
section, truss analysis, Frame element, Beam element, problems for various loadings	
and boundary	
Laboratory Sessions/ Experimental learning: To determine maximum deflection	
and bending stress for given cantilever beam using ANSYS	
Applications:	
1. 2D and 3 D elements to apply boundary conditions,	
2. The direct stiffness method to compute degrees of freedom at the element	
nodes.	
3. To determine the value of state variable at any point of element based on values	
of state variable.	
Video link / Additional online information	
1. <u>https://nptel.ac.in/courses/112/104/112104193/</u>	
2. <u>https://nptel.ac.in/courses/112/104/112104116/</u>	
https://ocw.mit.edu/courses/mechanical-engineering/2-092-finite-element-analysis-	
of-solids-and-fluids-i-fall-2009/study-materials/	
UNIT-III	
Analysis of Two- and Three-dimensional Elements: Shape functions of Triangular,	10
Rectangular and Quadrilateral elements, different types of higher order elements,	Hrs
constant and linear strain triangular elements, stiffness matrix Four-Noded Tetrahedral	
Element (TET 4), Eight-Noded Hexahedral Element (HEXA 8), Tetrahedral elements,	
Hexahedral elements: Serendipity family, Hexahedral elements: Lagrange family.	
Numerical	
Laboratory Sessions/ Experimental learning: Analysis of CST Element by using	
ANSYS	
Applications:	

To approximate the *shape* of the object and to compute the displacement of points inside the boundary of the object

Video link / Additional online information:

- 1. https://nptel.ac.in/courses/112/104/112104193/
- 2. <u>https://nptel.ac.in/courses/112/104/112104116/</u>

https://ocw.mit.edu/courses/mechanical-engineering/2-092-finite-element-analysisof-solids-and-fluids-i-fall-2009/study-materials/

UNIT-IV

Theory of Isoparametric Elements and Axisymmetric: Isoparametric, sub10parametric and super-parametric elements, characteristics of IsoparametricHrsquadrilateral elements, structure of computer program for FEM analysis, descriptionof different modules, pre and post processing, Axisymmetric formulation finiteelement modeling of triangular and quadrilateral element. NumericalHuman Axisymmetric

Laboratory Sessions/ Experimental learning: Analysis of Long Cylinder (Axiymmetric Problem) using Quadrilateral Elements in ANSYS

Applications:

- 1. To create shape functions that would ensure the compatibility of the displacement between neighbouring elements while maintaining the requirements for shape functions
- 2. Higher-order approximation of the unknown function over a bounding surface described by non-planar elements.

Video link / Additional online information:

- 1. https://nptel.ac.in/courses/112/104/112104193/
- 2. https://nptel.ac.in/courses/112/104/112104116/
- 3. <u>https://ocw.mit.edu/courses/mechanical-engineering/2-092-finite-element-analysis-of-solids-and-fluids-i-fall-2009/study-materials/</u>

UNIT-V

Field Problems: Heat transfer problems, Steady state fin problems, 1D heat10conduction governing equation, Derivation of element matrices for two dimensionalHrsproblems, Dynamic consideration- Formulation-Hamilton's principle, Element massmatrices. Numerical

 Laboratory Sessions/ Experimental learning:Performing Heat Transfer Analysis

 Using ANSYS

 Applications:

 1. Problem involving heat flow

 2. Structural dynamics

 Video link / Additional online information:

 1. https://nptel.ac.in/courses/112/104/112104193/

 2. https://nptel.ac.in/courses/112/104/112104116/

 https://ocw.mit.edu/courses/mechanical-engineering/2-092-finite-element-analysis

 of-solids-and-fluids-i-fall-2009/study-materials/

Course O	Course Outcomes: After completing the course, the students will be able to						
CO202.1	Apply discretization technique for domain using different finite elements						
CO202.2	Evaluate the effects of different loading and boundary conditions						
CO202.3	Analyse the governing equations of finite element analysis						
CO202.4	Formulating mathematical model using higher order element type						
CO202.5	Analyse heat flow problem by considering dynamic consideration						

Ref	erence Books
1.	ChandruPatla T. R, PHI Finite Elements in engineering, 3rd edition, 2002
2.	BhaviKatti, Finite element Analysis, New Age International, 3rd edition, 2015
3.	Zienkiewicz. O.C, The Finite Element Method, Elsevier, 7th edition, 2013
4.	C.S. Krishnamurthy, Finite Element analysis - Theory and Programming, Tata McGraw
	Hill Co. Ltd, New Delhi, 2nd edition,2011
	Rao S. S, Elsevier, Finite Elements Method in Engineering, 5th edition, 2008

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The

number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	1	1	2	1	1	1	2	2	1	2
CO2	3	3	2	2	2	1	1	1	2	2	1	2
CO3	3	3	2	2	2	1	1	1	2	2	1	2

MECHANISM AND MACHINE THEORY + MACHINE SHOP AND MMM LAB						
(Theory and Practice)						
Course Code:	MVJ21AE44/MVJ21AS44	CIE Marks:50+50				
Credits: L:T:P: 3:0:1		SEE Marks: 50 +50				
Hours:40 L+ 26 P		SEE Duration: 03+03 Hours				
Course Learning Objectives: The students will be able to						

1	Understand the theory of mechanisms including velocity, acceleration and static force analysis.
2	Acquire knowledge of spur gears, gear train, balancing of rotating and reciprocating masses.
3	Understand the concept of governors and gyroscope.
4	Learn the concepts of mechanical measurements and metrology
5	Acquire the knowledge of basic metrological instruments

UNIT-I

Introduction to Mechanisms:	10 Hrs
Types of constrained motion, Link and its types, joints and its types, kinematic	
pair and its types, degrees of freedom, Grubler's criterion, Types of kinematic	
chains and inversions: Inversions of Four bar chain: Beam engine, coupling rod	
of a locomotive, Watt's indicator mechanism. Inversions of Single Slider Crank	
Chain: Pendulum pump or Bull engine, Oscillating cylinder engine, Rotary	
internal combustion engine, Crank and slotted lever quick return motion	
mechanism, Whitworth quick return motion mechanism. Inversions of Double	
Slider Crank Chain: Elliptical trammels, Scotch yoke mechanism, Oldham's	
coupling. Straight line motion mechanisms: Peaucellier's mechanism and	
Robert's mechanism. Intermittent Motion mechanisms: Geneva wheel	
mechanism and Ratchet and Pawl mechanism, Ackerman steering gear	
mechanism.	
Laboratory Sessions/ Experimental learning: Whitworth quick return motion	
mechanism. (Machine Shop)	
Applications: Ackerman steering gear mechanism.	
Video link / Additional online information:	
https://www.youtube.com/watch?v=g8uqeru2LQw	
UNIT-II	
Velocity, Acceleration and static force analysis of Mechanisms (Graphical	10 Hrs
Methods):	
Velocity and acceleration analysis of Four Bar mechanism, slider crank	
mechanism and Simple Mechanisms by vector polygons. Static force analysis:	

Introduction: Static equilibrium, Equilibrium of two and three force members.	
Members with two forces and torque. Free body diagrams, principle of virtual	
work. Static force analysis of four bar mechanism and slider-crank mechanism	
with and without friction	
Video link / Additional online information:	
https://www.youtube.com/watch?v=CTcdQzH5e04	
UNIT-III	
Spur Gears and Gear Trains	10 Hrs
Spur Gears: Gear terminology, law of gearing, Path of contact, Arc of contact,	
Contact ratio of spur gear, Interference in involute gears, Methods of avoiding	
interference.	
Gear Trains: Simple gear trains, Compound gear trains, Reverted gear trains,	
Epicyclic gear trains, Analysis of epicyclic gear train (Algebraic and tabular	
methods), torques in epicyclic trains.	
Applications: Design Of spur Gear	
Video link / Additional online information:	
https://www.youtube.com/watch?v=N0hTFnvIE7A	
UNIT-IV	
UNIT-IV Balancing of Rotating and Reciprocating Masses Balancing of Rotating	10 Hrs
UNIT-IV Balancing of Rotating and Reciprocating Masses Balancing of Rotating Masses: Balancing of Several Masses Rotating in the Same Plane, Balancing of	10 Hrs
UNIT-IV Balancing of Rotating and Reciprocating Masses Balancing of Rotating Masses: Balancing of Several Masses Rotating in the Same Plane, Balancing of Several Masses Rotating in Different Planes (only Graphical Methods).	10 Hrs
UNIT-IV Balancing of Rotating and Reciprocating Masses Balancing of Rotating Masses: Balancing of Several Masses Rotating in the Same Plane, Balancing of Several Masses Rotating in Different Planes (only Graphical Methods). Balancing of Reciprocating Masses: Primary and Secondary Unbalanced Forces	10 Hrs
UNIT-IV Balancing of Rotating and Reciprocating Masses Balancing of Rotating Masses: Balancing of Several Masses Rotating in the Same Plane, Balancing of Several Masses Rotating in Different Planes (only Graphical Methods). Balancing of Reciprocating Masses: Primary and Secondary Unbalanced Forces of Reciprocating Masses, Partial Balancing of Unbalanced Primary Force in a	10 Hrs
UNIT-IV Balancing of Rotating and Reciprocating Masses Balancing of Rotating Masses: Balancing of Several Masses Rotating in the Same Plane, Balancing of Several Masses Rotating in Different Planes (only Graphical Methods). Balancing of Reciprocating Masses: Primary and Secondary Unbalanced Forces of Reciprocating Masses, Partial Balancing of Unbalanced Primary Force in a Reciprocating Engine, Balancing of Primary and secondary Forces of Multi-	10 Hrs
UNIT-IV Balancing of Rotating and Reciprocating Masses Balancing of Rotating Masses: Balancing of Several Masses Rotating in the Same Plane, Balancing of Several Masses Rotating in Different Planes (only Graphical Methods). Balancing of Reciprocating Masses: Primary and Secondary Unbalanced Forces of Reciprocating Masses, Partial Balancing of Unbalanced Primary Force in a Reciprocating Engine, Balancing of Primary and secondary Forces of Multi- cylinder In-line Engines, Balancing of Radial Engines (only Graphical Methods)	10 Hrs
UNIT-IV Balancing of Rotating and Reciprocating Masses Balancing of Rotating Masses: Balancing of Several Masses Rotating in the Same Plane, Balancing of Several Masses Rotating in Different Planes (only Graphical Methods). Balancing of Reciprocating Masses: Primary and Secondary Unbalanced Forces of Reciprocating Masses, Partial Balancing of Unbalanced Primary Force in a Reciprocating Engine, Balancing of Primary and secondary Forces of Multi- cylinder In-line Engines, Balancing of Radial Engines (only Graphical Methods) Video link / Additional online information:	10 Hrs
UNIT-IV Balancing of Rotating and Reciprocating Masses Balancing of Rotating Masses: Balancing of Several Masses Rotating in the Same Plane, Balancing of Several Masses Rotating in Different Planes (only Graphical Methods). Balancing of Reciprocating Masses: Primary and Secondary Unbalanced Forces of Reciprocating Masses, Partial Balancing of Unbalanced Primary Force in a Reciprocating Engine, Balancing of Primary and secondary Forces of Multi- cylinder In-line Engines, Balancing of Radial Engines (only Graphical Methods) Video link / Additional online information: https://www.youtube.com/watch?v=N0hTFnvIE7A	10 Hrs
UNIT-IV Balancing of Rotating and Reciprocating Masses Balancing of Rotating Masses: Balancing of Several Masses Rotating in the Same Plane, Balancing of Several Masses Rotating in Different Planes (only Graphical Methods). Balancing of Reciprocating Masses: Primary and Secondary Unbalanced Forces of Reciprocating Masses, Partial Balancing of Unbalanced Primary Force in a Reciprocating Engine, Balancing of Primary and secondary Forces of Multi- cylinder In-line Engines, Balancing of Radial Engines (only Graphical Methods) Video link / Additional online information: https://www.youtube.com/watch?v=N0hTFnvIE7A	10 Hrs
UNIT-IV Balancing of Rotating and Reciprocating Masses Balancing of Rotating Masses: Balancing of Several Masses Rotating in the Same Plane, Balancing of Several Masses Rotating in Different Planes (only Graphical Methods). Balancing of Reciprocating Masses: Primary and Secondary Unbalanced Forces of Reciprocating Masses, Partial Balancing of Unbalanced Primary Force in a Reciprocating Engine, Balancing of Primary and secondary Forces of Multi- cylinder In-line Engines, Balancing of Radial Engines (only Graphical Methods) Video link / Additional online information: https://www.youtube.com/watch?v=N0hTFnvIE7A UNIT-V	10 Hrs
UNIT-IV Balancing of Rotating and Reciprocating Masses Balancing of Rotating Masses: Balancing of Several Masses Rotating in the Same Plane, Balancing of Several Masses Rotating in Different Planes (only Graphical Methods). Balancing of Reciprocating Masses: Primary and Secondary Unbalanced Forces of Reciprocating Masses, Partial Balancing of Unbalanced Primary Force in a Reciprocating Engine, Balancing of Primary and secondary Forces of Multi- cylinder In-line Engines, Balancing of Radial Engines (only Graphical Methods) Video link / Additional online information: https://www.youtube.com/watch?v=N0hTFnvIE7A UNIT-V Types of governors; force analysis of Porter and Hartnell governors, Controlling force, etability, consisting ages incohraption of Parter and	10 Hrs 10 Hrs
UNIT-IV Balancing of Rotating and Reciprocating Masses Balancing of Rotating Masses: Balancing of Several Masses Rotating in the Same Plane, Balancing of Several Masses Rotating in Different Planes (only Graphical Methods). Balancing of Reciprocating Masses: Primary and Secondary Unbalanced Forces of Reciprocating Masses, Partial Balancing of Unbalanced Primary Force in a Reciprocating Engine, Balancing of Primary and secondary Forces of Multi- cylinder In-line Engines, Balancing of Radial Engines (only Graphical Methods) Video link / Additional online information: https://www.youtube.com/watch?v=N0hTFnvIE7A UNIT-V Types of governors; force analysis of Porter and Hartnell governors, Controlling force, stability, sensitiveness, isochronism, effort and power of Porter and Hartnell governors	10 Hrs 10 Hrs
UNIT-IV Balancing of Rotating and Reciprocating Masses Balancing of Rotating Masses: Balancing of Several Masses Rotating in the Same Plane, Balancing of Several Masses Rotating in Different Planes (only Graphical Methods). Balancing of Reciprocating Masses: Primary and Secondary Unbalanced Forces of Reciprocating Masses, Partial Balancing of Unbalanced Primary Force in a Reciprocating Engine, Balancing of Primary and secondary Forces of Multi- cylinder In-line Engines, Balancing of Radial Engines (only Graphical Methods) Video link / Additional online information: https://www.youtube.com/watch?v=N0hTFnvIE7A UNIT-V Types of governors; force analysis of Porter and Hartnell governors, Controlling force, stability, sensitiveness, isochronism, effort and power of Porter and Hartnell governors. Gyroscopes: Vectorial representation of angular motion,	10 Hrs 10 Hrs
UNIT-IV Balancing of Rotating and Reciprocating Masses Balancing of Rotating Masses: Balancing of Several Masses Rotating in the Same Plane, Balancing of Several Masses Rotating in Different Planes (only Graphical Methods). Balancing of Reciprocating Masses: Primary and Secondary Unbalanced Forces of Reciprocating Masses, Partial Balancing of Unbalanced Primary Force in a Reciprocating Engine, Balancing of Primary and secondary Forces of Multi- cylinder In-line Engines, Balancing of Radial Engines (only Graphical Methods) Video link / Additional online information: https://www.youtube.com/watch?v=N0hTFnvIE7A UNIT-V Types of governors; force analysis of Porter and Hartnell governors, Controlling force, stability, sensitiveness, isochronism, effort and power of Porter and Hartnell governors. Gyroscopes: Vectorial representation of angular motion, gyroscopic couple, effect of gyroscopic couple on plane disc and aeroplane	10 Hrs 10 Hrs

(Design lab)

Applications:: Working Of Governors

Links https://www.youtube.com/watch?v=FydJu1A1oeM

LABORATORY EXPERIMENTS

1.Machining and machining time estimation for plain turning and step turning & taper turning.

2. Machining and machining time estimation for drilling, boring and knurling operation

3. Machining and machining time estimation for thread cutting

4.Cutting of gear teeth using milling machine

5. Calibration of Pressure Gauge and Thermocouple

6.Calibration of Load Cell and LVDT

7. Calibration of micrometer using slip gauges.

8.Measurements of angle using:

- a. Sine Centre
- b. Sine Bar
- c. Bevel protractor

9. Machining of hexagon in shaping machine

10.Measurements of alignment using Autocollimator

Cours	se Outcomes: After completing the course, the students will be able to
CO1	Apply the theory of velocity, acceleration and static force analysis to design of
	mechanisms.
CO2	Analyze static and dynamic force analysis of mechanisms.
CO3	Design of spur gears & Gear train.

CO4	Evaluate spur gears, gear train, balancing of rotating and reciprocating masses.
CO5	Analyse governors and gyroscope
CO6	Use different measuring tools related to experiments
CO7	Conduct, Analyse, interpret, and present measurement data from measurements
	Identify, define, and explain accuracy, precision, and some additional terminology

Ref	erence Books
1.	Rattan S.S, "Theory of Machines", Tata McGraw-Hill Publishing Company Ltd., New
	Delhi, and 3rd edition -2009, ISBN: 007014477X, 9780070144774.
2.	J.J. Uicker, G.R. Pennock, J.E. Shigley. "Theory of Machines & Mechanisms",
	OXFORD 3rd Ed. 2009, ISBN-13: 978-0195371239
3.	R. S. Khurmi, J.K. Gupta, "Theory of Machines", Eurasia Publishing House, 2008,
	ISBN 13: 9788121925242.

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the self -study are 20 (2 presentations are be held for 10 marks each). The marks obtained in test, quiz and self -studies are added to get marks out of 100 and report CIE for 50 marks.

Laboratory- 50 Marks

The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The

students are encouraged to implement additional innovative experiments in the lab and are awarded 10 marks. Total marks for the laboratory is 50.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the complete syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	1	1	0	0	0	0	0	0	0	0
CO2	3	3	3	3	0	0	0	0	0	0	0	0
CO3	3	3	2	3	0	0	0	0	0	0	0	0
CO4	3	3	3	2	0	0	0	0	0	0	0	0
CO5	3	3	3	1	0	0	0	0	0	0	0	0

	Semester: IV										
F	FUNDAMENTALS OF AIRCRAFT STRUCTURES + CAAD LAB (Theory and										
	Practice)										
Cou	rse Code:	MVJ21AE45	CIE Marks:50+50								
Cree	dits: L:T:P: 3:0:2		SEE Marks: 50 +50								
Hou	rs:40 L+ 26 P		SEE Duration: 03+03								
			Hours								
Cou	rse Learning Objectives: The stud	lents will be able to)								
1	Comprehend the basic concepts o	f stress strain and u	understand the different failure								
1	theories and to learn the concept of	f static strength									
2	Illustrate the methods to design a s	tructure against imp	act and fatigue loads.								
3	Acquire the knowledge of types of	loads on aerospace	vehicles.								
4	Understand the theory of elasticity										
_	Apply different Energy methods in	calculations related	l to structural components and								
5	to understand the different method	s to analyse column	S								

UNIT-I

Design for Static Strength: Introduction: Normal, shear, biaxial and tri-axial stresses,
Stress tensor, Principal Stresses, Stress Analysis, Design considerations, Codes and
Standards. Static Strength: Static loads and factor of safety, Theories of failure: H
Maximum normal stress theory, Maximum shear stress theory, Maximum strain theory,
Strain energy theory, and Distortion energy theory, failure of brittle and ductile
materials, Stress concentration, and Determination of Stress concentration factor.
Laboratory Sessions/ Experimental learning:

1. Determination of Stress concentration factor for static load.

2. Determine the strain in x-y-z directions using strain gauge for a given beam

Applications: Stress Analysis, Theory of failures

Video link / Additional online information (related to module if any):	
https://www.youtube.com/watch?v=NnvImUMfYyc	
UNIT-II	
Design for Impact and Fatigue Strength: Impact Strength: Introduction, Impact	
stresses due to axial, bending and torsional loads, effect of inertia. Fatigue Strength:	10
Introduction, S-N Diagram, Low cycle fatigue, High cycle fatigue, Endurance limit,	Η
modifying factors: size effect, surface effect, Stress concentration effects, Fluctuating	rs
stresses, Goodman and Soderberg relationship, stresses due to combined loading,	
cumulative fatigue damage.	
Laboratory Sessions/ Experimental learning:	
1. Determine the notch sensitivity and impact toughness of engineering materials.	
2. Demonstrate how fatigue tests are conducted and how to interpret results	
Applications: Fatigue Testing, Combined Loading	
Video link / Additional online information (related to module if any):	
https://www.youtube.com/watch?v=ZsIwEp574ho	
https://www.youtube.com/watch?v=XqUQ3xaTA	
UNIT-III	
Loads on Aircraft and Spacecrafts: Structural nomenclature, Types of loads, load	
factor, Aerodynamic loads, Symmetric manoeuvre loads, Velocity diagram, Function	10
of structural components.	Η
Spacecraft Structures: StaticallyDeterminate and Indeterminate structures, Analysis	rs
of plane truss, Method of joints, 3D Truss, Plane frames, Composite beam,	
Clapeyron's Three Moment Equation.	
Laboratory Sessions/ Experimental learning:	
1. Determination of Deflection in a beam by applying point load and	
combined loading	
combined toading.	
 Determine the deflection of composite beam 	
2. Determine the deflection of composite beam Applications: Analysis of Loads, Determinate and Indeterminate structures.	
 2. Determine the deflection of composite beam Applications: Analysis of Loads, Determinate and Indeterminate structures. Video link / Additional online information (related to module if any): 	
 2. Determine the deflection of composite beam Applications: Analysis of Loads, Determinate and Indeterminate structures. Video link / Additional online information (related to module if any): https://nptel.ac.in/courses/105105166/https://www.youtube.com/watch?v=q0_piF4- 	
 2. Determine the deflection of composite beam Applications: Analysis of Loads, Determinate and Indeterminate structures. Video link / Additional online information (related to module if any): https://nptel.ac.in/courses/105105166/https://www.youtube.com/watch?v=q0_piF4- eNc 	

Theory of Elasticity: Theory of Elasticity: Concept of stress and strain, derivation of
Equilibrium equations, strain displacement relation, compatibility conditions and10boundary conditions. Plane stress and Plane strain problems in 2D elasticity. PrincipleHStresses and Orientation of Principle Directions. Columns: Columns with various end
conditions, Euler's Column curve, Rankine's formula, Column with initial curvature,
Eccentric loading, southwell plot, Beam-column.rs

Laboratory Sessions/ Experimental learning:

- 1. Determine the Spring Stiffness for the given spring.
- 2. Buckling load of slender Eccentric Columns and Construction of Southwell Plot

Applications: Stress and Strain displacement, Columns

Video link / Additional online information (related to module if any):

http://www.digimat.in/nptel/courses/video/112101095/L02.htmlhttps://www.digimat.i n/nptel/courses/video/105105177/L01.html

UNIT-V

Energy Methods: Strain Energy due to axial, bending and Torsional loads.							
Castigliano's theorem, Maxwell's Reciprocal theorem.	10						
Introduction to Shear Flow: Symmetrical and Unsymmetrical bendingConcept of							
shear flow – The shear centre and its determination – Shear flow distribution in	rs						
symmetrical and unsymmetrical thin-walled sections.							
Laboratory Sessions/ Experimental learning:							
1. Verify Maxwell's Reciprocal theorem							
2. Determining of Shear centre location for open sections-unsymmetrical bending							
Applications: Maxwell's Theorem, Shear Flow and Shear Center							
Video link / Additional online information (related to module if any):							
https://www.youtube.com/watch?v=149j7Ys0F58http://www.nptelvideos.com/video.p							
<u>hp?id=1637</u>							
LABORATORY EXPERIMENTS							

Part A- Sections of Solids: Sections of Pyramids, Prisms, Cubes, Tetrahedrons, Cones and Cylinders resting only on their bases (No problems on axis inclinations, spheres and hollow solids). True shape of sections.

Orthographic Views: Conversion of pictorial views into orthographic projections of simple machine parts with or without section. (Bureau of Indian Standards conventions are to be followed for the drawings) Hidden line conventions. Precedence of lines.

Laboratory Sessions/ Experimental learning: CAAD Lab

Applications: Helps to understand Engineering Drawing.

Video link / Additional online information (related to module if any):

https://www.youtube.com/watch?v=f1Hdtf_iAWk

Part B-Thread Forms: Thread terminology, sectional views of threads. ISO Metric (Internal & External) BSW (Internal & External) square and Acme. Sellers thread, American Standard thread.

Fasteners: Hexagonal headed bolt and nut with washer (assembly), square headed bolt and nut with washer (assembly) simple assembly using stud bolts with nut and lock nut. Flanged nut, slotted nut, taper and split pin for locking, counter sunk head screw, grub screw, Allen screw.

Riveted Joints: Single and double riveted lap joints, butt joints with single/double cover strap.

https://www.youtube.com/watch?v=70hESLwUhME https://www.youtube.com/watch?v=Gdvtw0pTAOs

Part C - Assembly Drawings

- 1. Modeling of propeller and hub assembly
- 2. Modeling of wing assembly
- 3. Modeling of fuselage assembly
- 4. Modeling of Engine Mounts
- 5. Modeling of Landing Gear Assembly

Laboratory Sessions/ Experimental learning: CAAD Lab Applications: To Design an Aircraft Model.

Video link / Additional online information (related to module if any):

https://www.youtube.com/watch?v=rmlUXhvJHt0

Course Outcomes: After completing the course, the students will be able to

CO1	Apply the different failure theories to understand the concept of static strength.
CO2	Design a structure against fatigue loads and to design a material for impact load.
CO3	Analyze various loads experienced by an aircraft in flight and to understand the usage
	of different materials.
CO4	Assess compatibility conditions and boundary conditions to find the stress and strain
	of an elastic material.
CO5	Formulate different Energy methods in calculations related to structural components
	and to understand the different methods to analyse columns.
CO6	Distinguish drawings of machine and aircraft components
CO7	Identify assembly drawings either manually or by using standard CAD packages.

Ref	erence Books
1.	Megson, T.H.G., "Aircraft Structures for Engineering Students", Edward Arnold, 6th
	Edition 2017, Elsevier Aerospace Engineering series, ISBN-13: 978-0081009147,
	ISBN10: 9780081009147
2.	Bruhn E.F., "Analysis and Design of Flight Vehicles Structures", Tri-State offset
	Co.USA.1985
3.	Bruce K Donaldson, "Analysis of Aircraft structures", Cambridge Aerospace Series,
	reprint 2012_ISBN- 9780511801631
4.	Peery, D.J., and Azar, J.J., "Aircraft Structures", McGraw, Hill, N.Y, 2nd edition, 1993
3.	Co.USA,1985 Bruce K Donaldson, "Analysis of Aircraft structures", Cambridge Aerospace Series reprint 2012, ISBN- 9780511801631 Peery, D.J., and Azar, J.J., "Aircraft Structures", McGraw, Hill, N.Y, 2nd edition, 1993

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The

three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the self -study are 20 (2 presentations are be held for 10 marks each). The marks obtained in test, quiz and self -studies are added to get marks out of 100 and report CIE for 50 marks.

Laboratory- 50 Marks

The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are awarded 10 marks. Total marks for the laboratory is 50.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the complete syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12

CO1	3	2	2	1	1	1	1	0	1	1	0	1
CO2	3	2	2	1	1	1	1	1	1	1	0	1
CO3	3	2	2	1	1	1	1	0	1	1	0	1
CO4	3	2	2	1	1	1	1	0	1	1	0	1
CO5	3	2	2	1	1	1	1	1	1	1	0	1

	Semester: III				
Balike Kannada					
Cou	Course Code:MVJ21BK36CIE Marks:50				
Credits: L:T:P:S: 1:0:0:0			SEE Marks: 50		
Hou	Hours: 20L SEE Duration: 3 Hrs				
Course Learning Objectives: This course will enable students to understand Kannada and communicate in Kannada language					
1	Vyavharika Kannada –Parichaya (l	Introduction to Vya	wharikakannada)		
2	Kannada Aksharamaalehaaguuchcharane(Kannada Alphabets and Pronounciation.				
3	Sambhashanegaagi Kannada Padagalu (Kannada Vocubulary for Communication).				
4	Kannada Grammer in Conversations(Sambhasaneyalli Kannada Vyakarana)				
5	Activities in Kannada				

UNIT-I					
Vyavharika Kannada – Parichaya (Introduction to Vyavharikakannada)					8 Hrs
UNIT-II					
Kannada Aksharamaalehaaguuchcharane(Kannada Alphabets and			8 Hrs		
Pronounciation					
UNIT-III					
Sambhashanegaagi Kannada	Padagalu	(Kannada	Vocubulary	for	8 Hrs
Communication)					

UNIT-IV		
Kannada Grammer in Conversations(Sambhasaneyalli Kannada Vyakarana)	8 Hrs	
UNIT-V		
Activities in Kannada	8 Hrs	

Details		Marks
Average of three Internal Assessment (IA) Tests of 30 Marks each i.e.		30
Σ (Marks Obtained in each test) / 3		
	CIE(5	
	0)	
ASSIGNMENT		20
Semester End Examination	SEE	50
	(50)	
	Total	100

Semester: III				
SAMSKRUTHIKA KANNADA				
Cou	Course Code:MVJ21SK36CIE Marks:50			
Credits: L:T:P:S: 1:0:0:0			SEE Marks: 50	
Hours: 20L			SEE Duration: 3 Hrs	
Course Learning Objectives: This course will enable students to understand Kannada and				
communicate in Kannada language				
1	Samskruthika Kannada – Parichaya (Introduction to Adalitha kannada)			
2	2 Kannada Kavyagala parichaya (Kannada D Ra Bendre, Siddalingaiha)			

3	Adalithdalli Kannada Padagalu (Kannada Kagunitha Balake, Patra Lekhana,
	Prabhandha)
4	Kannada Computer Gnyana (Kannada Shabdha Sangraha, Computer Paribashika
	padagalu)
5	Activities in Kannada.

UNIT-I			
PÀ£ÀßqÀ ¨sÁµÉ-,ÀAQë¥ÀÛ «ªÀgÀuÉ.	8 Hrs		
UNIT-II			
¨sÁµÁ ¥ÀæAiÉÆÃUÀ [¯] ÁèUÀĪÀ [¯] ÉÆÃ¥ÀzÉÆÃµÀUÀ¼ÀÄ ªÀÄvÀÄÛ	8 Hrs		
CªÀÅUÀ¼À ¤ªÁgÀuÉ.			
UNIT-III			
ÉÃR£À aºÉßUÀ¼ÀÄ ªÀÄvÀÄÛ CªÀÅUÀ¼À G¥ÀAiÉÆÃU.À	8 Hrs		
UNIT-IV			
¥ÀvÀæ ªÀåªÀ°ÁgÀ.	8 Hrs		
UNIT-V			
DqÀ½vÀ ¥ÀvÀæUÀ¼ÀÄ.	8 Hrs		
UNIT-VI			
,ÀPÁðgÀzÀ DzÉñÀ ¥ÀvÀæUÀ¼ÀÄ	8 Hrs		
UNIT-VII			
,ÀAQÃ¥ÀÛ ¥Àæ§AzsÀ gÀZÀ£É, ¥Àæ§AzsÀ ªÀÄvÀÄÛ ¨sÁµÁAvÀgÀ	8 Hrs		
UNIT-VIII			
PÀ£ÀßqÀ ±À§Ý,ÀAUÀæ°À	8 Hrs		
UNIT-IX			
PÀA¥ÀÆålgï °ÁUÀÆ ªÀiÁ»w vÀAvÀæeÁÕ£À	8 Hrs		
UNIT-X			
¥Áj¨sÁ¶PÀ DqÀ½vÀ PÀ£ÀßqÀ ¥ÀzÀUÀ¼ÀÄ ªÀÄvÀÄÛ	8 Hrs		
vÁAwæPÀ/PÀA¥ÀÆålgï ¥Áj¨sÁ¶PÀ ¥ÀzÀUÀ¼ÀÄ.			

Scheme of Evaluation:	
Details	Marks

Average of three Internal Assessment (IA) Tests of 30 Marks each		30
i.e.		
Σ (Marks Obtained in each test) / 3	CIE(50)	
ASSIGNMENT		20
Semester End Examination	SEE (50)	50
	Total	100

Semester: IV				
(CONSTITUTION OF INDIA, PR	OFESSIONAL ETH	HCS AND CYBER LAW	
Cou	Course Code:MVJ21CPH36/46CIE Marks:50			
Cree	dits: L:T:P:S: 1:0:0:0		SEE Marks: 50	
Hou	Hours: 20LSEE Duration: 3 Hrs			
Cou	rse Learning Objectives: The stue	dents will be able to		
	To know the fundamental political codes, structure, procedures, powers, and duties of			
1	Indian constitution, Indian government institutions, fundamental rights, directive			
	principles and the duties of the citizens.			
2	To provide overall legal literacy to the young technograts to manage complex societal			
	issues in the present scenario.			
	To understand engineering ethics & their responsibilities, identify their individual roles			
	and ethical responsibilities towards society.			

UNIT-I	
Introduction to Indian Constitution	8 Hrs
The Necessity of the Constitution, The Societies before and after the Constitution	
adoption. Introduction to the Indian Constitution, The Making of the Constitution,	
The role of the Constituent Assembly - Preamble and Salient features of the	

Constitution of India. Fundamental Rights and its Restriction and Limitations in	
different Complex Situations. Directive Principles of State Policy (DPSP) and its	l
present relevance in our society with examples. Fundamental Duties and its Scope	l
and Significance in Nation Building.	l
UNIT-II	
Union Executive and State Executive	8 Hrs
Parliamentary System, Federal System, Centre-State Relations. Union Executive	l
- President, Prime Minister, Union Cabinet, Parliament - LS and RS,	l
Parliamentary Committees, Important Parliamentary Terminologies. Supreme	
Court of India, Judicial Reviews and Judicial Activism. State Executives -	l
Governor, Chief Minister, State Cabinet, State Legislature, High Court and	l
Subordinate Courts, Special Provisions (Article 370, 371, 371J) for some States.	
UNIT-III	
Elections, Amendments and Emergency Provisions	8 Hrs
Elections, Electoral Process, and Election Commission of India, Election Laws.	l
Amendments - Methods in Constitutional Amendments (How and Why) and	l
Important Constitutional Amendments. Amendments –	l
7,9,10,12,42,44,61,73,74,75,86, and 91,94,95,100,101,118 and some important	
Case Studies. Recent Amendments with explanation. Important Judgements with	l
Explanation and its impact on society (from the list of Supreme Court	l
Judgements).	l
Emergency Provisions, types of Emergencies and it's consequences.	l
Constitutional Special Provisions:	l
Special Constitutional Provisions for SC & ST, OBC, Special Provision for	l
Women, Children & Backward Classes.	
UNIT-IV	
Professional / Engineering Ethics	8 Hrs
Scope & Aims of Engineering & Professional Ethics - Business Ethics, Corporate	l
Ethics, Personal Ethics. Engineering and Professionalism, Positive and Negative	l
Faces of Engineering Ethics, Code of Ethics as defined in the website of	l
Institution of Engineers (India) : Profession, Professionalism, Professional	l
Responsibility. Clash of Ethics, Conflicts of Interest. Responsibilities in	l
Engineering - Responsibilities in Engineering and Engineering Standards, the	1

impediments to Responsibility.Trust and Reliability in Engineering, IPRs					
(Intellectual Property Rights), Risks, Safety and liability in Engineering.					
UNIT-V					
Internet Laws, Cyber Crimes and Cyber Laws:	8 Hrs				
Internet and Need for Cyber Laws, Modes of Regulation of Internet, Types of					
cyber terror capability, Net neutrality, Types of Cyber Crimes, India and cyber					
law, Cyber Crimes and the information Technology Act 2000, Internet					
Censorship, Cybercrimes and enforcement agencies.					

Course Outcomes: After completing the course, the students will be able to						
CO1	Have constitutional knowledge and legal literacy					
CO2	Understand Engineering and Professional ethics and responsibilities of Engineers.					
CO3	Understand the cyber crimes and cyber laws for cyber safety measure.					

Ref	erence Books
1.	Constitution of India and Professional Ethics, T.S. Anupama, Sunstar Publisher
2.	Durga Das Basu (DD Basu): "Introduction to the Constitution on India", (Students
	Edition.)
	Prentice –Hall EEE, 19th/20th Edn., (Latest Edition) or 2008.
3.	Shubham Singles, Charles E. Haries, and Et al : "Constitution of India and Professional
	Ethics" by Cengage Learning India Private Limited, Latest Edition – 2018.
4.	M.Govindarajan, S.Natarajan, V.S.Senthilkumar, "Engineering Ethics", Prentice -Hall
	of India Pvt. Ltd. New Delhi, 2004.
5.	M.V.Pylee, "An Introduction to Constitution of India", Vikas Publishing, 2002.
6.	Latest Publications of NHRC - Indian Institute of Human Rights, New Delhi.

CIE Assessment:

CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation. Generally, there will be: Three Internal Assessment (IA) tests during the semester (40 marks each), the final IA marks to be awarded will be the average of three tests

- Assignment (10 marks)

SEE Assessment:

- i. Question paper for the SEE consists one part. It is compulsory and consists of objective type 1 mark each for total of 50 marks covering the whole syllabus.
- ii. Ten questions must be set from each unit. The duration of examination is 3 hours.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	1	1	1	2	2	1	1	1	1	2
CO2	1	2	2	1	1	2	1	1	1	1	1	2
CO3	2	1	2	1	1	1	1	1	1	1	1	2
CO4	2	2	1	1	1	1	1	1	1	1	1	2
CO5	2	2	1	1	1	2	1	1	1	1	1	2

Semester: IV							
TURBOMACHINES							
Cou	Course Code:MVJ21AEC47CIE Marks:100						
Credits: L:T:P:S: 2:0:0:0 SEE Marks: 100							
Hou	SEE Duration: 3 Hrs						
Cou	Course Learning Objectives: The students will be able to						
1	Understand the basics of turbomachines, classification and energy transfer in turbomachines.						
2	Acquire the knowledge on analysis of centrifugal and axial compressors.						
3	Acquire the knowledge on analysis of centrifugal and axial turbines.						

UNIT-I	
Introduction and Energy transfer in turbomachines:	8 Hrs

Classification and parts of a turbo machines, comparison with positive					
displacement machines. Euler turbine equation and its alternate form; components					
of energy transfer; general expression for degree of reaction; construction of					
velocity triangles for different values of degree of reaction.					
Laboratory Sessions/ Experimental learning: Aircraft propulsion lab for					
acquiring knowledge of Gas turbine engine.					
Applications: Study of Turbomachines, components of gas turbine engines.					
Video link / Additional online information:					
https://nptel.ac.in/courses/112/106/112106200/					
UNIT-II					
Analysis of centrifugal and axial flow compressors	7 Hrs				
Centrifugal compressors: Parts of centrifugal compressor, principle operation,					
energy transfer, h-s diagram, blade shapes and velocity triangles, analysis of flow					
through the compressor, performance parameter and characteristics, and					
illustrative examples					
Axial compressors: Geometry and working principle, stage velocity triangles, h-					
s diagram, work input, work done factor, performance coefficients degree of					
reaction (low, fifty percent and high), and illustrative examples.					
Laboratory Sessions/ Experimental learning: Aircraft Propulsion lab and Fluid					
Mechanics lab for compressor and turbines.					
Applications: Compressors and Turbines in Aircraft engines.					
Video link / Additional online information:					
https://nptel.ac.in/courses/101/101/10101058/					
https://www.youtube.com/watch?v=oitC03G-QYE					
UNIT-III					
Analysis of centrifugal and axial flow turbines	7 Hrs				
Radial flow turbines: Elements of radial turbine stage, stage velocity triangles,					
energy transfer, h-s diagram, degree of reaction, performance characteristics,					
outward flow radial stages, and illustrative examples.					

Cours	Course Outcomes: After completing the course, the students will be able to							
CO1	Illustrate the classification of turbomachines and compute the energy transfer in							
	turbomachines.							
CO2	Illustrate the knowledge on centrifugal and axial flow compressors.							
CO3	Illustrate the knowledge on radial and axial flow turbines.							

Reference H	Books
--------------------	-------

S.M. Yahya, Turbines, Compressors & Fans, Tata-McGraw Hill, 2nd Edition, ISBN 13: 9780070707023.

2. V Ganesan, Gas Turbines, Tata-McGraw Hill, 3rd Edition, ISBN 13: 9780070681927

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	1	1	1	1	1	0	1	0	0	1
CO2	3	3	3	2	1	1	1	0	1	0	0	1
CO3	3	3	3	2	1	1	1	0	1	0	0	1

	Semester: IV						
	Diploma Mathematics-II						
Cou	rse Code:	MVJ21MATDIP41	CIE Marks:100				
Credits: L:T:P:S: 1:2:0:0			SEE Marks: 100				
Hou	rs: 30L+26T		SEE Duration: 3 Hrs				
Course Learning Objectives: The students will be able to							
1	To familiarize the important a Differential	and basic concepts of	of Differential calculus and				
Equation, ordinary/partial differential equations and Vector calculus and analyse the engineering problems.

UNIT-I	
Linear Algebra:	8
Introduction, Rank of a matrix-echelon form. Solution of system of linear equations	Hr
– consistency. Gauss-elimination method and problems. Eigen values and Eigen	s
vectors of square matrix and Problems.	-
Video Link:	
https://www.math.ust.hk/~machas/matrix-algebra-for-engineers.pdf	
https://nptel.ac.in/content/storage2/courses/122104018/node18.html	
https://hptci.ac.in/content/storage2/courses/12210-010/noucro.htm	
UNIT_II	
	6
The gent and normal sub tangent and subnormal both Cartasian and notae former	0
Tangent and normal, sub tangent and subnormal both Cartesian and polar forms.	Hr
Increasing and decreasing functions, Maxima and Minima for a function of one	S
variable. Point of inflections and Problems	
Beta and Gamma functions:	
Beta functions, Properties of Beta function and Gamma function ,Relation	
Between beta and Gamma function-simple problems.	
Video Link:	
https://www.youtube.com/watch?v=6RwOoPN2zqE	
https://www.youtube.com/watch?v=s6F5yjY6jWk&list=PLMLsjhQWWlUqBoT	
CQDtYlloI-o-9hxp11	
http://tutorial.math.lamar.edu/Classes/DE/IntroPDE.aspx	
UNIT-III	
Analytical solid geometry :	8
Introduction –Directional cosine and Directional ratio of a line, Equation of line in	Hr
space- different forms, Angle between two line, shortest distance between two line,	s
plane and equation of plane in different forms and problems.	
Video Link:	
https://www.toppr.com/guides/maths/three-dimensional-geometry/	

https://www.toppr.com/guides/maths/three-dimensional-geometry/distance-betweenskew-lines/

UNIT-IV

8

Hr

S

Probability: Random variable, Discrete probability distribution, Mean and variance of Random Variable, Theoretical distribution-Binomial distribution, Mean and variance Binomial distribution -Problems. Poisson distribution as a limiting case of Binomial distribution, Mean and variance of Poisson distribution. Normal Distribution-Basic properties of Normal distribution –standard form of normal distribution and Problems.

Video Link:

https://nptel.ac.in/courses/111/105/111105041/

https://www.mathsisfun.com/data/probability.html

UNIT-V

Partial differential equation: Formation of PDE's by elimination of arbitrary	8
constants and functions.	Hr
Solution of non-homogeneous PDE by direct integration. Homogeneous PDEs	s
involving derivative with respect to one independent variable only.	
Video Link:	
http://tutorial.math.lamar.edu/Classes/DE/IntroPDE.aspx	
https://www.studyyaar.com/index.php/module-video/watch/233-cauchys-legendres-	
de-a-method-	
of- variation-of-parameters	

Course Outcomes: After completing the course, the students will be able to								
	Apply the knowledge of Matrices to solve the system of linear equations and to							
CO1	understand the concepts of Eigen value and Eigen vectors for engineering							
	problems.							

CO2	Demonstrate various physical models, find Maxima and Minima for a function of one variable., Point of inflections and Problems. Understand Beta and Gamma function
CO3	Understand the 3-Dimentional geometry basic, Equation of line in space- different forms, Angle between two line and studying the shortest distance.
CO4	Concepts OF Probability related to engineering applications.
CO5	Construct a variety of partial differential equations and solution by exact methods.

Ref	erence Books
1.	B.S. Grewal, "Higher Engineering Mathematics" Khanna Publishers, 43 rd Edition,
	2013.
2.	Ramana B. V., "Higher Engineering Mathematics", Tata Mc Graw-Hill, 2006.
3.	Erwin Kreyszig, "Advanced Engineering Mathematics", Wiley-India publishers,
	10thedition,2014.
4.	G. B. Gururajachar: Calculus and Linear Algebra, Academic Excellent Series
	Publication, 2018-19

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	2	0	0	0	0	0	0	0	0
CO2	3	3	2	2	0	0	0	0	0	0	0	0
CO3	3	3	3	3	0	0	0	0	0	0	0	0
CO4	3	3	3	3	0	0	0	0	0	0	0	0
CO5	3	3	3	2	0	0	0	0	0	0	0	0

High-3, Medium-2, Low-1

MVJ College of Engineering, Whitefield, Bangalore 560067

An Autonomous Institution, Affiliated to VTU, Belagavi

Scheme of Teaching and Examination

Outcome Based Education (OBE) and Choice Based Credit System (CBCS)

Effective from the academic year 2021-22

Department of Aeronautical Engineering

Semester V

Sl.		Course	Course Title	BoS		Teaching h	nrs./week		Examination			Credit	
No.	Туре	Code			Lecture	Tutorial	Practica	Self-	Duration	CIE	SEE	Total	S
					L	Т	1	Study	Hrs.	Marks	Marks	Marks	
							Р	S					
1	HSMC	MVJ21AE51/	Aviation Management	AE	3	-	-	-	3	50	50	100	3
		MVJ21AS51											
2	РСС	MVJ21AE52	Aircraft Performance	AE	3	-	-	-	3	50	50	100	3
3	IPCC	MVJ21AE53/	Compressible Aerodynamics	AE	3	-	2	-	3	100	100	200	4
		MVJ21AS53	(+Aerodynamic Lab)										
4	IPCC	MVJ21AE54	Aircraft Propulsion	AE	3	-	2	-	3	100	100	200	4
			(+Aircraft Propulsion Lab)										
5	PEC	MVJ21AE55X	PEC 1	AE	3	-	-	-	3	50	50	100	3
6	HSMC	MVJ21XX56	Environmental Studies	CV	1	-	-	-	2	50	50	100	1
7	AEC	MVJ21XX57	Research Methodology & IPR/Life	AE	1	2	-		2	50	50	100	2
			Science AEC5										
8	UHV	MVJ21UHVI58	Universal Human Values	AE	2	-			3	50	50	100	2
			Total		19	2	4			500	500	1000	22

Course Code	Professional Elective-I
MVJ21AE551	Aircraft Systems and Instrumentation
MVJ21AE552/	Theory of Vibration
MVJ21AS552	
MVJ21AE553	Gas Turbine Technology
MVJ21AE554/	Optimisation Techniques and Probability Theory
MVJ21AS554	

Course Title	Aviation Management	Semester	V
	MVJ21AE51/	CIE	
Course Code	MVJ21AS51		50
Total No. of Contact Hours	40L: T: P::3: 1 :0	SEE	50
No. of Contact Hours/week	4	Total	100
Credits	3	Exam. Duration	3 Hours

Course objective is to: This course will enable students to

- Introduce the field of management, task of the manager, importance of planning and types of planning, staff recruitment and selection process.
- Explain need of coordination between the manager and staff, the social responsibility of business and leadership.
- Comprehend the fundamentals of maintenance and certification.
- Understand the Aircraft Management Maintenance.
- Acquire knowledge of maintenance safety and trouble shooting in Airlines.

Module-1	L1., L2	8Hours
Management: Definition, Importance - Nature and Characteristics of Man	agement, Manag	gement

Functions, Roles of Manager, Levels of Management, Managerial Skills, Management & Administration, Management as a Science, Art & Profession.

Planning: Nature, Importance and Purpose Of Planning, Types of Plans, Steps in Planning, Limitations of Planning, Decision Making – Meaning, Types of Decisions- Steps in Decision Making.

Laboratory Sessions/ Experimental learning: Case study on decision making process in a corporate.

Applications: Planning in engineering field.

Web Link and Video Lectures

https://nptel.ac.in/courses/110/105/110105146/

https://nptel.ac.in/courses/122/108/122108038/

Module-2	L1., L2	8Hours		
Organizing and Staffing: Meaning, Nature and Characteristics of Organiza	tion – Process o	of		
Organization, Principles of Organization, Departmentalization, Committees – meaning, Types of				
Committees, Centralization Vs Decentralization of Authority and Responsibility, Span of Control,				
Nature and Importance of Staffing, Process of Selection and Recruitment.				

Directing and Controlling: Meaning and Nature of Directing-Leadersh	ip Styles, Moti	vation Theories,			
Communication - Meaning and Importance, Coordination- Meaning	and Importan	ce, Techniques of			
Coordination. Controlling – Meaning, Steps in Controlling.					
Laboratory Sessions/ Experimental learning					
Case study of steel plant departmentalization.					
Applications: Effective communication in a corporate.					
Web Link and Video Lectures					
https://nptel.ac.in/content/storage2/courses/122106031/slides/3_2s	.pdf				
https://www.slideshare.net/100005130728571/27-nature-of-directin	g				
Module-3	L1., L2	8Hours			
Fundamentals of Maintenance & Certification:					
Types of maintenance, Redesign, Failure rate pattern, Other maintenance	enance consid	erations. Aviation			
industry certification requirements, Type certificate (FAA form 8110.9)), Airworthine	ss certificate (FAA			
form 8100-2), Aviation maintenance certifications, General, Airframe, P	ower plant, Av	ionics courses.			
Laboratory Sessions/ Experimental learning: A demo on maintenance	e procedure ir	n wind tunnel lab.			
Applications: Apply the certification process in Aircraft industry.					
Video link / Additional online information (related to module if an	y):				
1. <u>https://www.youtube.com/watch?v=KEF2szWaEgg</u> – Introduct	tion about Airo	craft Maintenance-			
NPTEL-IITK					
2. <u>https://www.youtube.com/watch?v=CoLWYZP9BkY&list=PLEx</u>	<u>lUJZK1IOnUv</u>	<u> 3IeOXLk njBYhc-</u>			
Xh6V –Aircraft Maintenance-NPTEL-IITK					
3. <u>https://www.youtube.com/watch?v=H45vSzyiXH4</u> – Airplane M	laintenance				
Module-4	L1., L2	8Hours			
Aircraft Management Maintenance	I				
Structure, Role of aviation management, Line supervisory management,	Management	areas of concern in			
airlines Manager of overhaul shops. Line maintenance control center f	light line (pref	light& post flight),			
annies, Manager of overhau shops, Line mantenance control center h	Aircraft Logbook, Maintenance crew skill requirements.				
Aircraft Logbook, Maintenance crew skill requirements.					
Aircraft Logbook, Maintenance crew skill requirements.					
Aircraft Logbook, Maintenance crew skill requirements. Laboratory Sessions/ Experimental learning: A demo on aircraft log	book.				
Aircraft Logbook, Maintenance crew skill requirements. Laboratory Sessions/ Experimental learning: A demo on aircraft log Applications: Implement the aviation management in airlines.	book.				
Aircraft Logbook, Maintenance crew skill requirements. Laboratory Sessions/ Experimental learning: A demo on aircraft log Applications: Implement the aviation management in airlines. Video link / Additional online information (related to module if an	book. y):				
 Aircraft Logbook, Maintenance crew skill requirements. Laboratory Sessions/ Experimental learning: A demo on aircraft log Applications: Implement the aviation management in airlines. Video link / Additional online information (related to module if an 1. https://www.youtube.com/watch?v=f6F_ecq1njc – Aviation management management management management management management in airlines. 	book. y): nagement				
 Aircraft Logbook, Maintenance crew skill requirements. Laboratory Sessions/ Experimental learning: A demo on aircraft log Applications: Implement the aviation management in airlines. Video link / Additional online information (related to module if an 1. https://www.youtube.com/watch?v=f6F_ecq1njc – Aviation management line main 	book. y): nagement tenance check	example			

Maintenance Safety & Trouble shooting

Safety regulations, occupational safety and health standards maintenance safety program, Airlines safety management, General safety rules, Accident & injury reporting, Hazardous materials storage and handling aircraft furnishing practices trouble shooting, Knowledge of malfunctions.

Laboratory Sessions/ Experimental learning: A demo on safety system in wind tunnel lab.

Applications: Apply the safety regulations, OSHA safety programs and troubleshooting systems in aircraft.

Video link / Additional online information (related to module if any):

1. <u>https://www.youtube.com/watch?v=aRA7QR2Mr w</u> – Airlines safety management system

2. <u>https://www.youtube.com/watch?v=5bc1qBtkRWA</u> –How do Airline store aircraft?

<u>https://www.youtube.com/watch?v=89IWlG0Uhz0</u> – trouble shooting procedure for the aircraft systems

Course outcomes:

course	outcomes.
C01	Understand the concept of Management
CO2	Understand the staffing process
CO3	Apply the certification procedure for aircraft maintenance.
CO4	Apply the management system in aircraft maintenance.
C05	Examine the quality control and calibration on Aircraft.

Refere	nce Books:
1	StephenP.Robbins&MaryCoulter,Management ,PrenticeHall(India)Pvt.Ltd.,10 th Edition, 2009
2	Harry A Kinnison, Tariq Siddiqui, Aviation Maintenance Management, Mc Graw Hill education (India) Private Ltd, 2013.
3	Kroes, Watkins, Delp, Aircraft maintenance and repair, Mc Graw Hill,2013.
4	Larry Reithmaier, Aircraft Repair Manual, Palmar Books, Marquette,1992.

CIE Assessment:

CIE is based on quizzes, tests, assignments/seminars, and any other form of evaluation. Generally, there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of three tests.

- Quizzes/mini tests (4 marks)

- Mini Project / Case Studies (8 Marks)
- Activities/Experimentations related to courses (8 Marks)

SEE Assessment:

- i. Question paper for the SEE consists of two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.
- ii. Part B also covers the entire syllabus consisting of five questions having choices and may contain subdivisions, each carrying 16 marks. Students have to answer five full questions.
- iii. One question must be set from each unit. The duration of examination is 3 hours.

CO-PO Mapping												
CO/PO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
C01	2	3	3	2				1	1		1	1
CO2	2	2	1	2	2			1	1	1	1	1
CO3	2	2	1	2	2		1	1	1		1	1
CO4	2	2	1	1							1	1
C05	3	3	2	2	2			1	1	1	1	1

High:3, Medium:2, Low:1

Course Title	AIRCRAFT PERFORMANCE	Semester	V
Course Code	MVJ21AE52	CIE	50
Total No. of Contact Hours	40 L:T:P::3:0:0	SEE	50
No. of Contact Hours/week	4	Total	100
Credits	3	Exam. Duration	3 Hrs.

The course objective is to:

- 1. Understand Steady Unaccelerated Flight
- 2. Comprehend Steady Performance Level Flight, Climb & Glide
- **3.** Gain knowledge of Airplane Performance Parameters like Range and Endurance etc.
- 4. UnderstandAircraft Performance in Accelerated Flight

5. Acquire knowledge of Maneuver Performance of an Aircraft					
Module 1	L1,L2	10 Hrs.			
The Equations of Motion in Steady Unaccelerated Flight					
Introduction and four forces of flight, General equations of motion, Power available and power					
required curves, Thrust available and thrust required curves, Conditions	for power requ	ired and			
Thrust required minimum, Thrust available and maximum velocity, Power	available and m	aximum			
velocity, Altitude effects on power available and power required, Thru	st available and	l Thrust			
required					
Laboratory Sessions/ Experimental learning:					
Estimation of Thrust and Power of an engine – Aircraft Propulsion Lab					
Applications: Introduction to Steady Unaccelerated Flight					
Video link / Additional online information (related to module if any):					
https://www.youtube.com/watch?v=tEWuP1NVdgE&list=PLtUPB3SC	ffXP43al7ILIR5	qaZF_5fE			
<u>DXm</u>					
Module 2	L1,L2	10 Hrs.			
Steady Performance – Level Flight, Climb & Glide					
Performance: Equations of motion for Rate of climb- graphical and analy	tical approach, A	Absolute			
ceiling, Service ceiling, Time to climb – graphical and analytical approach, C	limb performan	ce graph			
(hodograph diagram), Maximum climb angle and rate of climb, Gliding fli	ght, Range duri	ng glide,			
Minimum rate of sink and shallowest angle of glide					
Laboratory Sessions/ Experimental learning:					
Calculation of Absolute ceiling and Service ceiling and their importance					
Applications: To understand Steady Performance of an Aircraft – Level Flip	ght, Climb & Glio	le			
Video link / Additional online information (related to module if any):					
https://www.youtube.com/watch?v=QXpO3WIxJx8					
Module 3	L1,L2	10 Hrs.			
Fundamental Airplane Performance Parameters					
The fundamental parameters: Thrust-to-Weight ratio, Wing loading, Dr	ag polar and Lif	ft-to-Drag			
ratio, Minimum velocity, Aerodynamic relations associated with lift-to-drag ratio					
Range and Endurance:					
Propellerdriven Airplane: Physical considerations, Quantitative formulation, Breguet equation for					
Range and Endurance, Conditions for maximum range and endurance					
Jet Airplane: Physical considerations, Quantitative formulation, Equations	for Range and Ei	ndurance,			
Conditions for maximum range and endurance, Effect of Head wind and Tai	il wind				
Laboratory Sessions/ Experimental learning:					

Determination of Range and Endurance for Propeller driven and Jet airplane					
Applications	Calculation of Range and Endurance of an Aircraft				
Video link / Additional online information (related to module if any):					
https://www	v.youtube.com/watch?v=YOTdaEeA8tM				
Module 4		L1,L2,L3	10 Hrs.		
Aircraft Per	formance in Accelerated Flight				
Take-off Per	formance: Calculation of Ground roll, Calculation of distance	while airborne t	o clear an		
obstacle, Bala	anced field length				
Landing Per	formance and Accelerated Climb: Calculation of approach d	istance, Calculat	ion of flare		
distance, Calo	culation of ground roll, Ground effects, Acceleration in climb				
Laboratory	Sessions/ Experimental learning:				
Assessment of	of Ground roll and Distance while airborne to estimate Total T	ake-off distance			
Applications	: Understanding Take-off Performance, Landing Performance	and Accelerated	d Climb		
Video link /	Additional online information (related to module if any):				
https://www	<u>v.youtube.com/watch?v=lzbg9t-6-gA</u>				
Module 5		L1,L2,L3	10 Hrs.		
Maneuver P	erformance				
Turning per	formance: Level turn, Load factor, Constraints on load factor,	Minimum turn	radius,		
Maximum tu	rn rate				
Pull-up and	Pull-down maneuvers: Turning rate, turn radius, Limiting c	ase for large loa	id factor,		
V-n diagram,	Limitations of pull up and push over				
Laboratory	Sessions/ Experimental learning:				
Study of Velo	city-Load factor (V-n) Diagram for an aircraft				
Applications	: To understand Maneuver Performance of an Aircraft				
Video link /	Additional online information (related to module if any):				
https://www	<u>v.youtube.com/watch?v=KNPxD7bbMP8</u>				
Course Outc	omes:				
Upon comple	tion of the course, students will be able to:				
CO402.1	Analyse Steady Unaccelerated Flight				
CO402.2	Evaluate Steady Performance of an Aircraft – Level Flight, Climb &	Glide			
CO402.3 Analyze Range and Endurance of an Aircraft					
CO402.4 Illustrate Take-off Performance, Landing Performance and Accelerated Climb					
CO402.5 Compute Maneuver Performance of an Aircraft					

Reference Boo	oks:
1.	John D. Anderson, Jr,Introduction to Flightby;McGraw-Hill International, Aerospace Science/Technology Editions, 2000
2.	John D. Anderson, Jr;Aircraft Performance and Design by McGraw-Hill International, Aerospace Science/Technology Editions, 1999
3.	Perkins, C.D. and Hage, R.E.;Airplane Performance, Stability and Control by John Wiley Sons Inc, New York, 1988
4.	Barnes W. McCormick;Aerodynamics, Aeronautics and Flight Mechanics by John Wiley Sons Inc, New York, 1995

CIE Assessment:

CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation. Generally, there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of three tests

- Quizzes/mini tests (4 marks)
- Mini Project / Case Studies (8 Marks)
- Activities/Experimentations related to courses (8 Marks)

SEE Assessment:

iv. Question paper for the SEE consists two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.

- v. Part B also covers the entire syllabus consisting of five questions having choices and may contain subdivisions, each carrying 16 marks. Students have to answer five full questions.
- vi. One question must be set from each unit. The duration of examination is 3 hours.

CO DO Manning														
					C0,1	0 Maj	philg							
CO/P	PO	PO	PO	PO	PO	PO	PO	PO	PO	P01	P01	P01	PSO	PSO
0	1	2	3	4	5	6	7	8	9	0	1	2	1	2
C01	3	2	0	1	2	0	1	2	2	1	2	3	1	1
CO2	3	2	0	1	2	0	1	2	2	1	2	3	1	1
CO3	3	2	0	1	2	0	1	2	2	1	2	3	1	1
C04	3	2	0	1	2	0	1	2	2	1	2	3	1	1
C05	3	2	0	1	2	0	1	2	2	1	2	3	1	1

High:3, Medium:2, Low:1

Course Title	Compressible Aerodynamics (+Aerodynamic Lab)	Semester	V
Course Code	MVJ21AE53/ MVJ21AS53	CIE	50
Total No. of Contact Hours	50 L: T: P: 3:0:2	SEE	50
No. of Contact Hours/week	5	Total	100
Credits	4	Exam. Duration	3 Hrs.

The course objective is to:

- 1. Understand the concepts of compressible flow
- 2. Acquire knowledge of normal shock waves
- 3. Comprehend the phenomenon of oblique shocks and expansion waves
- 4.Understand the concepts of Differential Equations of Motion for Steady Compressible Flows
- 5. Gain knowledge of flow measurement techniques

Module 1	L1,L2	10 Hrs.

One Dimensional Compressible Flow: Energy, Momentum, continuity and state equations, velocity of sound, Adiabatic steady state flow equations, Flow through converging, diverging passages, Performance under various back pressures. Numerical

Laboratory Sessions/ Experimental learning: Visualization of Flow analysis in Ansys Lab

Applications: Understanding the close coupling of thermodynamics and fluid dynamics

and analyse typical aircraft systems like nozzles, diffusers, intakes

Video link / Additional online information (related to module if any):

- 4. <u>https://www.youtube.com/watch?v=mS3ZVuOn lU&list=PLwdnzlV3ogoWb iTQza6Z8dYHR-</u> _<u>1qhh0&index=2</u>
- 5. <u>https://youtu.be/mS3ZVuOn lU?list=PLwdnzlV3ogoWb iTQza6Z8dYHR- 1qhh0</u>
- 6. https://youtu.be/HfZ5gfybJK4?list=PLwdnzlV3ogoWb_iTQza6Z8dYHR-_1qhh0

Module 2	L1,L2,	10 Hrs.		
Normal Shock: Prandtl Meyer equation and Rankine – Hugonoit relatio	n, Normal shock equ	ations: Property		
ratios in terms of upstream Mach number, Numericals, Moving Normal Shock wave. Shock tube.				
Laboratory Sessions/ Experimental learning: Visualization of airfoil cross-section in Aerodynamics Lab				

Applications: Analyzing the supersonic flow problems involving normal shock waves to design and analyze aircraft systems like nozzles, diffusers, intakes, shock tubes, wind tunnels, pipe flows.

Video link / Additional online information (related to module if any):						
1. <u>https://nptel.ac.in/courses/112/106/112106166/</u>							
2. <u>https://nptel.ac.in/courses/101/108/101108086/#</u>							
Module 3	L1,L2	10 Hrs.					
Oblique shocks and Expansion waves: Prandtl equation and Rankin	e – Hugonoit relatio	on, Normal shock					
equations, Pitot static tube, corrections for subsonic and supersonic flow	vs, Oblique shocks ar	nd corresponding					
equations, Hodograph and pressure turning angle, shock polars, flow pas	t wedges and concav	e corners, strong,					
weak and detached shocks, Flow past convex corners, Prandtl -Meye	r expansion function	n, Reflection and					
interaction of shocks and expansion waves.							
Laboratory Sessions/ Experimental learning: Visualization of airfoil cr	oss-section in Aeroc	lynamics Lab					
Applications: Analyzing the supersonic flow problems involving obliqu	e shock waves to de	esign and analyze					
aircraft systems like nozzles, diffusers, intakes, shock tubes, wind tunnels	, pipe flows						
Video link / Additional online information (related to module if any):						
2. <u>https://nptel.ac.in/courses/112/106/112106056/</u>							
3. <u>https://nptel.ac.in/courses/112/106/112106056/</u>							
4. <u>https://nptel.ac.in/courses/112/106/112106056/</u>							
Module 4	L1,L2	10 Hrs.					
Differential Equations of Motion for Steady Compressible Flows: Basi	c potential equations	for compressible					
flow. Linearisation of potential equation-small perturbation theory. Meth	ods for solution of no	onlinear potential					
equation –Introduction, Method of characteristics, Boundary conditions,	Pressure coefficient	expression, small					
perturbation equation for compressible flow - Prandtl, Glauret and Geoth	ert's rules - Ackert's	supersonic airfoil					
theory, Von-Karman rule for transonic flow, Lift, drag pitching moment	and center of press	ure of supersonic					
profiles							
Laboratory Sessions/ Experimental learning: Flow Problems using Ans	Laboratory Sessions/ Experimental learning: Flow Problems using Ansys Lab						
Applications: Analyze and interpret the flow behavior							
Video link / Additional online information (related to module if any):							
1. <u>https://nptel.ac.in/courses/101/106/101106044/</u>							
2. <u>https://nptel.ac.in/courses/112/106/112106056/</u>							
Module 5	L1,L2	10Hrs.					
Measurements in High-speed Flow: Types of subsonic wind tun	nels Balances and	measurements -					
	1 1 1						

Interference effects transonic, Supersonic and hypersonic wind tunnels and characteristic features, their operation and performance – Shock tubes and shock tunnels - Free flight testing - Measurements of pressure, velocity and Mach number -Flow visualization methods of subsonic and supersonic flows.

Laboratory Sessions/ Experimental learning: Wind Tunnel model force measurements

Applications: Understand the significance of wind tunnels in Aeronautics/Aerospace and perform experiments on appropriate model's wind tunnel

Video link / Additional online information (related to module if any):

- 1. <u>https://nptel.ac.in/courses/101/106/101106040/</u>
- 2. <u>https://nptel.ac.in/courses/101/106/101106044/</u>

Course outcomes:

Upon completion of the course, students will be able to:

CO302.1	Apply the basic concepts of compressible flow
CO302.2	Evaluate the concepts of normal shock phenomenon
CO302.3	Apply the concepts of oblique shock and expansion wave formation.
CO302.4	Utilize the concepts of Differential Equations of Motion for Steady Compressible Flows
CO302.5	Investigate the parameters of high-speed flow.

Reference Books	:
1.	John D Anderson, Modern Compressible Flow, McGraw Hill,3rd edition,2012,ISBN-13: 978- 1259027420.
2.	Radhakrishnan, E., Gas Dynamics, Prentice Hall of India,5th edition,2014,ISBN-13: 978-8120348394
3.	Ascher.H. Saphiro, Dynamics and Thermodynamics of Compressible fluid flow, John Wiley& Sons,1st edition,1977, ISBN-13: 978-0471066910.
4.	Yahya, S.M., Fundamentals of Compressible flow, NEW AGE, 2009, ISBN-13: 978- 8122426687.
5.	H.W. Liepmann and A. Roshko, Elements of Gas Dynamics, Dover Publications Inc,2003,ISBN-13: 978-0486419633.

CIE Assessment:

CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation. Generally, there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of three tests

- Quizzes/mini tests (4 marks)
- Mini Project / Case Studies (8 Marks)
- Activities/Experimentations related to courses (8 Marks)

SEE Assessment:

vii. Question paper for the SEE consists two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.

viii.Part B also covers the entire syllabus consisting of five questions having choices and may contain subdivisions, each carrying 16 marks. Students have to answer five full questions.

ix. One question must be set from each unit. The duration of examination is 3 hours.

	CO,PO Mapping													
CO/P	РО	PO	P01	P01	P01	PSO	PSO							
0	1	2	3	4	5	6	7	8	9	0	1	2	1	2
C01	3	3	0	0	0	0	0	0	0	0	0	0	3	1
CO2	3	3	2	2	0	0	0	0	0	0	0	0	3	1
CO3	3	3	0	2	0	0	0	0	0	0	0	0	3	1
CO4	3	3	3	2	0	0	0	0	0	0	0	0	3	1
C05	3	3	2	2	0	0	0	0	0	0	0	0	2	1

High,3, Medium,2, Low,1

Cou	ourse TitleAERODYNAMICS LABSemester									
Cou	Course objective is to: Be acquainted with basic principles of aerodynamics using wind tunnel. 									
	 Acquire the knowledge on flow visualization techniques. Understand the procedures used for calculating the lift and drag. 									
Sl No	Experiment Name									
1	Calibration of a subsonic wind tunnel: test section static pressure and total head distributions.									
2	Smoke flow visualization studies on a two-dimensional circular cylinder at low speeds.									
3	Smokeflowvisualizationstudiesonatwodimensionalairfoilatdifferentanglesofincidenceatlowspeeds									
4	Smoke flow visualization	studies on a two-dimensional wing	with flaps and slats	at different	L1,L2,L3	03				
	angles of incidence at low	speeds								

5	Tuft flow visualization on a wing model at different angles of incidence at low speeds: identify	L1,L2,L3	03						
	zones of attached and separated flows.								
6	Surface pressure distributions on a two-dimensional smooth circular cylinder at low speeds and	L1,L2,L3	03						
	calculation of pressure drag.								
7	Surface pressure distributions on a two-dimensional wing of symmetric airfoil and estimation	L1,L2,L3	03						
	of Center of pressure and Aerodynamic center								
8	L1,L2,L3	03							
	of incidence, and estimation of Center of pressure and Aerodynamic center.								
9	L1,L2,L3	03							
	probe wake survey.								
10	Calculation of total drag of a two-dimensional wing of cambered airfoil at low speeds at	L1,L2,L3	03						
	incidence using pitot-static probe wake survey.								
11	L1,L2,L3	03							
a pitot probe and calculation of boundary layer displacement and momentum thickness.									
12	L1,L2,L3	03							
	of Attack and speeds using wind tunnel balance With Yaw.								
13	Calculation of aerodynamic coefficients and forces acting on a model aircraft at various Angle of	L1,L2,L3	03						
	Attack and speeds using wind tunnel balance Without Yaw.								
14	Pressure measurements on aero foil for a case of reverse flow.	L1,L2,L3	03						
Cou	rse outcomes:								
C01	Apply the flow visualization techniques								
000	Estimate the pressure distribution over the bodies								
CO2									
C03	Calculate the forces and moments on models.								

CO-PO Mapping												
CO/PO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
C01	3	3	3	3	3	1	1	1	1	1	1	1
CO2	3	3	3	3	3	1	1	1	1	1	1	1
CO3	3	3	3	3	3	1	1	1	1	1	1	1

High-3, Medium-2, Low-1

Course Title	Aircraft Propulsion (+Aircraft Propulsion Lab)	Semester	v
Course Code	MVJ21AE54	CIE	50
Total No. of Contact Hours	50 L: T: P: 3 : 0 : 2	SEE	50
No. of Contact Hours/week	50	Total	100
Credits	4	Exam. Duration	3 Hours

Course objective is to:

- Understand the basic principle and working of Air breathing and Non Air breathing engines
- Acquire knowledge on the significance of Supersonic Inlets
- Acquire knowledge on the design and working of combustion chambers and nozzles
- Understand the fundamentals of rocket propulsion
- Acquire knowledge on Rocket Testing and materials used in Rockets

Module-1	L1,L2	8Hours

Introduction: Review of thermodynamic principles, Principles of aircraft propulsion, Types of power plants, Working principles of internal combustion engine, Two-stroke and four-stroke piston engines, Gas turbine engines, Cycle analysis of reciprocating engines and jet engines , advantages and disadvantages, Non Air-breathing engines- introduction, numerical problems

Laboratory Sessions/ Experimental learning:

1. Identify and demonstrate the various components of Guiberson T-1020 (9 cylinder radial engine) andTumansky R-25-300 R-26(Jet engine)

Applications: Automobile industries , Gas turbine industries and Power plants

Video link / Additional online information (related to module if any):

1. <u>https://nptel.ac.in/courses/101/101/101101001/</u>

2. <u>https://youtu.be/XKcRf2R5h4o</u>3. <u>https://youtu.be/fTAUq6G9apg</u>

Module-2 L1,L2 8Hours			
	Module-2	L1,L2	8Hours

Jet propulsion and Supersonic Inlets

Jet Propulsion: Illustration of working of gas turbine engine–The thrust equation–Factors affecting thrust–Effect of pressure, velocity and temperature changes of air entering compressor– Methods of thrust augmentation–Characteristics of turboprop, turbofan and turbojet– Performance characteristics. Supersonic inlets: Supersonic inlets, starting problem in supersonic inlets, Shock swallowing by area variation, External deceleration. Modes of inlet operation.

Laboratory Sessions/ Experimental learning:

Study of an aircraft jet engine (Includes study of assembly of sub systems, variouscomponents, their functions and operating principles)

Performance studies on a scaled jet engine

Applications: Gas turbine and aircraft engine design industries

Video link / Additional online information (related to module if any):

https://nptel.ac.in/courses/101/101/101101001/

https://nptel.ac.in/courses/101/101/101101002/

https://youtu.be/KjiUUJdPGX0

Module-3

L1,L2

8Hours

Combustion chamber and Nozzles

Combustion chamber: Classification of combustion chambers, important factors affecting combustion chamber design, Combustion process, Combustion chamber performance Effect of operating variables on performance, Flame tube cooling, Flame stabilization Use of flame holders Nozzles: Theory of flow in isentropic nozzles, Convergent nozzles and nozzle choking, Nozzle throat conditions. Nozzle efficiency, Losses in nozzles. Over-expanded and under-expanded nozzles, Ejector and variable area nozzles, Thrust reversal Laboratory Sessions/ Experimental learning: Measurement of nozzle flow. Make a model and explain thrust reversal technique Applications: Gas turbine industries Video link / Additional online information (related to module if any): https://nptel.ac.in/courses/101/101/101101002/ https://www.youtube.com/watch?v=3u7d-IlvRgs&feature=youtu.be https://www.voutube.com/watch?v=nvDoiHQXXIk&feature=voutu.be **Module-4** L1.L2 8Hours **Rocket Propulsion Fundamentals** Classification of rockets-principle of rocket propulsion-analysis of ideal chemical rocket, The chemical rocket, solid propellant rockets- grain configuration, liquid propellant rockets, hybrid rockets,

cryogenic rockets nuclear propulsion, electro dynamic propulsion, photon propulsion, propulsive efficiency

Laboratory Sessions/ Experimental learning:

Make Sugar rocket by using potassium nitrate (small size)

Applications: Rockets and missile manufacturing industries

Video link / Additional online information (related to module if any):

https://nptel.ac.in/courses/101/104/101104078/							
https://nptel.ac.in/courses/101/104/101104019/							
https://nptel.ac.in/courses/101106033/							
Module-5	L1,L2	8Hours					
Rocket testing and Rocket materials	1						
Rocket Testing: Ground Testing and Flight Testing, Types of Tests facilitie	es and safegua	ards,monitoring					
and control of toxic materials, instrumentation and data management. Gro	und Testing, I	Flight Testing,					
Trajectory monitoring, post -accident procedures. Description of a typical	space launch	vehicle-launch					
procedure.							
Materials: Criteria for selection of materials for rockets and missiles, requ	irements for	choice of					
materials for propellant tanks, liners, insulators, inhibitors, at cryogenic temperatures, requirements of							
materials at extremely high temperatures, requirements of materials for thermal protection and for							
pressure vessels.							
Laboratory Sessions/ Experimental learning:							
Find the specific impulse of the sugar rocket							
Applications: Testing and material manufacturing facilities							
Video link / Additional online information (related to module if any):							
https://nptel.ac.in/courses/101/104/101104078/							
https://nptel.ac.in/courses/101/104/101104019/							
Course outcomes:							
CO213.1 Apply the basic thermodynamic principles and theories in aircr	aft propulsio	n.					
CO213.2 Evaluate Thrust and performance of Supersonic Inlets							
CO213.3 Analyze the performance of Combustion chambers and Nozzles	;						
CO213.4 Apply the basic principles of rocket propulsion.							
CO213.5 Analyze Rocket testing and materials used in rockets							

Reference Books:									
1	Bhaskar Roy, Aircraft propulsion, Elsevier (2011),ISBN-13: 9788131214213								
2	V. Ganesan, Gas Turbines, Tata McGraw-Hill,2010, New Delhi, India, ISBN: 0070681929								
3	Hill, Philip G., and Carl R. Peterson. "Mechanics and Thermodynamics of Propulsion, 0201146592." (2010).								
4	Cohen,H.Rogers,G.F.C.andSaravanamuttoo,H.I.H.,GasTurbineTheory,Longman,1989, ISBN 13: 9780582236325								

CIE Assessment:

CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation. Generally, there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of three tests

- Quizzes/mini tests (4 marks)
- Mini Project / Case Studies (8 Marks)
- Activities/Experimentations related to courses (8 Marks)

SEE Assessment:

- x. Question paper for the SEE consists two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.
- xi. Part B also covers the entire syllabus consisting of five questions having choices and may contain subdivisions, each carrying 16 marks. Students have to answer five full questions.
- xii. One question must be set from each unit. The duration of examination is 3 hours.

CO-PO Mapping												
CO/PO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
C01	3	3	1	2	1	1	1	0	1	1	-	1
CO2	3	2	1	1	1	1	1	0	1	1	-	1
CO3	3	2	1	1	1	1	1	0	1	1	-	1
CO4	3	1	1	-	-	1	1	0	1	1	-	1
CO5	3	1	1	-	-	1	1	0	1	1	-	1

High-3, Medium-2, Low-1

Course	Title	AIRCRAFT PROPULSION LAB	Semester	· V	Ι		
Course	Course objective is to:						
• 1	Understand how to do the	heat transfer					
• Comprehend the cascade testing of axial compressor and axial turbine blade row.							
Learn Pressure measurements using Axial Flow Fan setup							
Sl No	Experiment Name			RBT Level	Hours		

1	Study of an Aircraft Piston Engine.(Includes Study of Assembly	L1,L2,L3	03
	of Sub Systems, Various Components, their Functions and		
	Operating Principles)		
2	Study of an Airgraft lat Engine (Includes Study of Accombly	111212	02
2	Study of an Aircraft Jet Engine (includes Study of Assembly	ե1,ե2,ե3	03
	of Sub Systems, Various Components, their Functions and		
	Operating Principles)		
3	Study of Forced Convective Heat Transfer Over a Flat Plate	L1,L2,L3	03
4	Cascade Testing of a Model of Axial Compressor Blade Row	L1,L2,L3	03
5	Cascade Testing of a Model of Axial Turbine Blade Row	L1,L2,L3	03
6	Study of Performance of a Propeller	L1,L2,L3	03
7	Determination of Heat of Combustion of Aviation Fuel	L1,L2,L3	03
8	Study of Free and Wall Jet	L1,L2,L3	03
9	Measurement of Burning Velocity of a Premixed Flame.	L1,L2,L3	03
10	Study of the Flame Lift Up and Fall Back Phenomenon for Varied	L1,L2,L3	03
	Air/Fuel Ratio		
11	Measurement of Nozzle Flow	L1,L2,L3	03
12	Pressure Measurements Using Axial Flow Fan Setup	L1.L2.L3	03
		, , -	
13	Investigation of Pressure Distribution and Relationship Between Inlet	L1,L2,L3	03
	Pressure/Outlet Pressure and Mass Flow Rate in a Convergent-		
	Divergent Nozzle When Working Over a Variety of Overall Pressure		
	Ratios Including Under-Expanding and Over-Expanding Conditions		
14	Investigation of Pressure Distribution and Relationship Between Inlet	L1,L2,L3	03
	Pressure/Outlet Pressure and Mass Flow Rate in a Convergent-		
	Divergent Nozzie under Choked Conditions		
Course	outcomes:		
CO1	Analyse heat transfer		
CO2	Evaluate testing of axial compressor and axial turbine blade row.		

CO-PO Mapping												
CO/P	PO	P02	P03	P04	P05	P06	P07	P08	P09	P01	P01	P01
0	1									0	1	2
C01	3	3	3	3	3	1	1	1	1	1	1	1
CO2	3	3	3	3	3	1	1	1	1	1	1	1
CO3	3	3	3	3	3	1	1	1	1	1	1	1

High-3, Medium-2, Low-1

Course Title	Aircraft Systems and Instrumentation	Semester	V
Course Code	MVJ21AE551	CIE	50
Total No. of Contact Hours	40 L:T:P::3:0:0	SEE	50
No. of Contact Hours/week	4	Total	100
Credits	3	Exam. Duration	3 Hrs.

Course objective is to:

- 1. Gain knowledge of the aircraft control systems.
- 2. Understand the applications of hydraulics and pneumatics in aircraft systems.
- 3. Acquire knowledge regarding aircraft engine systems.
- 4. Comprehend the aircraft auxiliary systems
- 5. Acquire the knowledge of aircraft instruments.

Module 1	L1,L2,L3	10 Hrs.

Airplane Control Systems: Conventional Systems, fully powered flight controls, Power actuated

systems, Modern control systems, Digital fly by wire systems, Auto pilot system active control Technology.

LaboratorySessions/ Experimental learning:

How it works, flight controls PID controls.

Applications:

Pilot training, UAV design and piloting, RC aircraft design and piloting.

Video link / Additional online information (related to module if any):

7. <u>https://nptel.ac.in/courses/101/104/101104066</u>

8. <u>https://onlinecourses.nptel.ac.in/noc21_ae05/preview</u>					
9. https://digitalcommons.calpoly.edu/cgi/viewcontent.cgi?article=1067&context=aerosp					
Module 2	L1,L2,L3,	10 Hrs.			
Aircraft Systems: Hydraulic systems, Study of typical workable system, com	ponents, Pneum	natic			
systems, Advantages, Working principles, Typical Air pressure system, Brake	e system, Typica	1			
Pneumatic power system, Components, Landing Gear systems, Classification					
Laboratory Sessions/ Experimental learning:					
Calculation on force required for hydraulic system and pneumatic system in	aircraft applicat	ions.			
Applications:					
Hydraulic lifts, pneumatic door openings and closing, landing gears, breaks.					
Video link / Additional online information (related to module if any):					
1. <u>https://nptel.ac.in/courses/112/105/112105047/</u>					
2. <u>https://nptel.ac.in/courses/112/103/112103249/</u>					
3. <u>https://sciencing.com/make-simple-hydraulic-system-7380816.htm</u>	1				
Module 3	L1,L2,L3	10 Hrs.			
Engine Systems: Fuel systems for Piston and jet engines, Components of mu	lti engines. lubr	icating			
systems for piston and jet engines - Starting and Ignition systems - Typical ex	kamples for pist	on and jet			
engines.					
Laboratory Sessions/ Experimental learning:					
Engine Fuel and Fuel Metering Systems (Lab session IIT Kanpur, Virtual lab)					
https://www.youtube.com/watch?v=xEssM_sYtd8					
Applications:					
Range and Endurance calculation, actions to take in case of engine failures.					
Video link / Additional online information (related to module if any):					
5. <u>https://nptel.ac.in/courses/101/101/101101002/</u>					
6. <u>https://spocathon.page/video/lecture-06-lubrication-system</u>					
Module 4	L1,L2,L3	10 Hrs.			
Auxiliary System: Basic Air cycle systems, Vapour Cycle systems, Evaporative vapour cycle systems,					
Evaporative air cycle systems, Fire protection systems, Deicing and anti-icing systems.					
Laboratory Sessions/ Experimental learning:					
Response time and operations of firefighting systems in case of engine failure.					
Applications:					
Firefighting, precautions, how to fight different classes of fire.					
Video link / Additional online information (related to module if any):					

1.	https://nptel.ac.in/content/storage2/courses/101106035/001 Chapter%201 L1 (01-10-
	2013)

- 2. https://nptel.ac.in/courses/103/107/103107156/
- 3. https://www.draeger.com/en_seeur/ Products/Aircraft-fire-training-systems.

5. nep5	, , , www.araeger.com/en_secur/ rroduces/interare inc training	, systems.		
Module 5		L1,L2	10 Hrs.	
Aircraft Inst	ruments: Flight Instruments and Navigation Instruments, Gyro	scope, Acceleror	neters, Air	
speed Indica	tors, TAS, EAS, Mach Meters, Altimeters, Principles and operatio	n, Study of vario	us types of	
engine instru	iments, Tachometers, Temperature gauges, Pressure gauges, Op	eration and Prin	ciples.	
Laboratory	Sessions/ Experimental learning:			
Gyroscope w	orking and applications, Avionics lab instruments working.			
Application	S:			
Understandi	ng readings of the flight instruments, prediction of failure or trou	ble before actua	l encounter	
and taking n	ecessary precautions.			
Video link /	Additional online information (related to module if any):			
3. <u>https</u>	://nptel.ac.in/courses/101/108/101108056/			
4. <u>https</u>	://onlinecourses.nptel.ac.in/noc20_ae01/preview			
5. <u>https</u>	://www.wingbug.com/wingbug-for-experimental-aircraft/			
Course outc	omes:			
Upon comple	etion of the course, students will be able to:			
CO302.1	Distinguish the conventional and modern control systems.			
CO302.2	Analyse the aircraft systems.			
CO302.3	CO302.3 Analyse the working of Aircraft engine systems.			
CO303.4	Describe aircraft Auxiliary systems			
CO303.5	Applydifferent aircraft instruments.			

Reference I	Books:
1	Ian MoirandAllanSeabridge,Aircraft Systems: Mechanical, Electrical and Avionics-
1.	Subsystem Integration, Wiley India Pvt Ltd, 3 rd edition, 2012.
2	Lalit Gupta and OP. Sharma, Aircraft Systems (Fundamentals of Flight Vol. IV), Himalayan
۷.	Books, 2006.
3.	William A Neese, Aircraft Hydraulic Systems, Himalayan Books, 2007
4.	SR. Majumdar, Pneumatic Systems, Tata McGraw Hill Publishing Co, 1 st Edition, 2001

CIE Assessment: CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation. Generally, there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of three tests - Quizzes/mini tests (4 marks) - Mini Project / Case Studies (8 Marks) - Activities/Experimentations related to courses (8 Marks) SEE Assessment: Question paper for the SEE consists two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus. Part B also covers the entire syllabus consisting of five questions having choices and may contain sub-divisions, each carrying 16 marks. Students have to answer five full questions. One question must be set from each unit. The duration of examination is 3 hours. -CO, PO Mapping CO/PO P01 P02 P03 P04 P05 P06 P07 P08 P09 P010 P011 P012 PSO1 PSO2 C01 CO2 CO3 C04 C05

Course Title	Theory of Vibration	Semester	V	
Course Code	MVJ21AE552/ CIE		50	
	MVJ21AS552		50	
Total No. of Contact Hours	40 L:T:P::3:0:0	SEE	50	

No. of Contact Hours/week	4	Total	100
Credits	3	Exam. Duration	3 Hrs.

Course objective is to:							
1.Understand the basic concepts of vibrations							
2.Gain the knowledge of the undamped free vibration and damped free vibrations							
3. Learn the vibration measuring instrumentation	3. Learn the vibration measuring instrumentation						
4. Acquire knowledge of two degrees of freedom systems							
5. Understand numerical methods for Multi-Degree Freedom Sys	tems						
Module 1	L1,L2,L3	10 Hrs.					
Types of vibrations, S.H.M, principle of super position applied to Simple	ole Harmonic Motion	ns.Beats, Fourier					
theorem and simple problems.							
Laboratory Sessions/ Experimental learning:							
Simple pendulum experiment to understand concept of wave motion							
Applications: Various types of vibrations and its real time application	ns						
Concept of wave and its characteristics.							
Video link / Additional online information (related to module if a	any): (NPTEL,IIT R	OORKEE)					
https://www.youtube.com/watch?v=9r630K5HmJc&list=PLSGws_74	K01_pG3R7rgtDtrD	<u>ZBjcTgPdR</u>					
Module 2	L1,L2,L3	10 Hrs.					
Undamped Free Vibrations: Single degree of freedom systems.	Undamped free vi	bration, natural					
frequency of free vibration, Spring and Mass elements, effect of mass	of spring, Compound	d Pendulum.					
Damped Free Vibrations: Single degree of freedom systems, diffe	erent types of dam	ping, concept of					
critical damping and its importance, study of response of viscous of	damped systems for	cases of under					
damping, criticaland over damping, Logarithmic decrement							
Laboratory Sessions/ Experimental learning:							
Identifying Damping ration experiment allows students to understand	l behavior of vicious	damper. [Design					
lab]							
Applications: Various types of dampers and its real time applications.							
Video link / Additional online information (related to module if any) (NPTEL,IIT MADRAS)							
https://www.youtube.com/watch?v=tJNaPt5aPmg							
Module 3	L1,L2.L3	10 Hrs.					
Forced Vibration: Single degree of freedom systems, steady state solution with viscous damping due							
toharmonic force. Solution by Complex algebra, reciprocating and rotating unbalance, vibration							
isolation,transmissibility ratio due to harmonic excitation and support motion.							

Vibration Measuring Instruments & Whirling of Shafts: Vibration	of elastic hodies – Vik	pration of strings		
-Longitudinal lateral and torsional Vibrations				
Laboratory Sessions/ Experimental learning:				
Whirling of shaft experiment [Design Lab]				
Applications:				
Isolators and its Application.				
Video link / Additional online information (related to module if	any): (NPTEL,IIT K	ANPUR)		
https://www.youtube.com/watch?v=XGQr1uEX-Dc		-		
Module 4	L1,L2,L3	10 Hrs.		
Systems with Two Degrees of Freedom: Introduction, principle mo	des and Normal mo	des of vibration,		
coordinatecoupling, generalized and principal co-ordinates, Free vib	oration in terms of in	nitial conditions.		
Gearedsystems. Forced Oscillations-Harmonic excitation. Applicat	ions: Vehicle suspe	ension, Dynamic		
vibrationabsorber and Dynamics of reciprocating Engines.				
Continuous Systems: Introduction, vibration of string, longitudinal	vibration of rods, To	rsional vibration		
ofrods, Euler's equation for beams.				
Laboratory Sessions/ Experimental learning: Determination of tw	vo natural frequenci	es, or modes, for		
the system				
Applications: Dynamic vibration absorber and its application in reciprocating engine.				
Applications: Dynamic vibration absorber and its application in	reciprocating engi	ne.		
Applications: Dynamic vibration absorber and its application in Video link / Additional online information (related to module if	reciprocating engin any): (NPTEL,IIT M	ne. ADRAS)		
Applications: Dynamic vibration absorber and its application in Video link / Additional online information (related to module if https://www.youtube.com/watch?v=V Lj4Pun WM	reciprocating engin any): (NPTEL,IIT M	ne. ADRAS)		
Applications: Dynamic vibration absorber and its application in Video link / Additional online information (related to module if https://www.youtube.com/watch?v=V Lj4Pun WM Module 5	reciprocating engin any): (NPTEL,IIT M L1,L2	ne. ADRAS) 10Hrs.		
Applications: Dynamic vibration absorber and its application in Video link / Additional online information (related to module if https://www.youtube.com/watch?v=V Lj4Pun WM Module 5 Numerical Methods for Multi-Degree Freedom Systems:	reciprocating engin any): (NPTEL,IIT M L1,L2	ne. ADRAS) 10Hrs.		
Applications: Dynamic vibration absorber and its application inVideo link / Additional online information (related to module ifhttps://www.youtube.com/watch?v=V Lj4Pun WMModule 5Numerical Methods for Multi-Degree Freedom Systems:Introduction, Influence coefficients, Maxwell reciprocal	reciprocating engin any): (NPTEL,IIT M L1,L2 theorem, Dunkerl	ne. ADRAS) 10Hrs. ey's equation.		
Applications: Dynamic vibration absorber and its application in Video link / Additional online information (related to module if https://www.youtube.com/watch?v=V Lj4Pun WMModule 5Numerical Methods for Multi-Degree Freedom Systems: Introduction, Influence coefficients, Maxwell reciprocal Orthogonalityofprincipal modes, Method of matrix iteration-Method	reciprocating engin any): (NPTEL,IIT M L1,L2 theorem, Dunkerl d of determination c	ne. ADRAS) 10Hrs. ey's equation. of all the natural		
Applications: Dynamic vibration absorber and its application in Video link / Additional online information (related to module if https://www.youtube.com/watch?v=V Lj4Pun WMModule 5Numerical Methods for Multi-Degree Freedom Systems: Introduction, Influence coefficients, Maxwell reciprocal Orthogonalityofprincipal modes, Method of matrix iteration-Method frequencies usingsweeping matrix and Orthogonality principle. Holze	reciprocating engin any): (NPTEL,IIT M L1,L2 theorem, Dunkerl d of determination c er's method, Stodola	ne. ADRAS) 10Hrs. ey's equation. of all the natural method.		
Applications: Dynamic vibration absorber and its application in Video link / Additional online information (related to module if https://www.youtube.com/watch?v=V Lj4Pun WMModule 5Numerical Methods for Multi-Degree Freedom Systems: Introduction, Influence coefficients, Maxwell reciprocal Orthogonalityofprincipal modes, Method of matrix iteration-Method frequencies usingsweeping matrix and Orthogonality principle. Holze Non-Linear Vibration : (Advance theory of vibration by ssrao)	reciprocating engin any): (NPTEL,IIT M L1,L2 theorem, Dunkerl d of determination o er's method, Stodola	ne. ADRAS) 10Hrs. ey's equation. of all the natural method.		
Applications: Dynamic vibration absorber and its application in Video link / Additional online information (related to module if https://www.youtube.com/watch?v=V Lj4Pun WMModule 5Numerical Methods for Multi-Degree Freedom Systems: Introduction, Influence coefficients, Maxwell reciprocal Orthogonalityofprincipal modes, Method of matrix iteration-Method frequencies usingsweeping matrix and Orthogonality principle. Holze Non-Linear Vibration : (Advance theory of vibration by ssrao) Laboratory Sessions/ Experimental learning:	reciprocating engin any): (NPTEL,IIT M L1,L2 theorem, Dunkerl d of determination o er's method, Stodola	ne. ADRAS) 10Hrs. ey's equation. of all the natural method.		
Applications: Dynamic vibration absorber and its application in Video link / Additional online information (related to module if https://www.youtube.com/watch?v=V Lj4Pun WMModule 5Mumerical Methods for Multi-Degree Freedom Systems: Introduction, Influence coefficients, Maxwell reciprocal Orthogonalityofprincipal modes, Method of matrix iteration-Method frequencies usingsweeping matrix and Orthogonality principle. Holze Non-Linear Vibration : (Advance theory of vibration by ssrao)Laboratory Sessions/ Experimental learning: Plotting displacement curve using Analytical Approach.	reciprocating engin any): (NPTEL,IIT M L1,L2 theorem, Dunkerl d of determination o er's method, Stodola	ne. ADRAS) 10Hrs. ey's equation. of all the natural method.		
Applications: Dynamic vibration absorber and its application in Video link / Additional online information (related to module if https://www.youtube.com/watch?v=V Lj4Pun WMModule 5Numerical Methods for Multi-Degree Freedom Systems: Introduction, Influence coefficients, Maxwell reciprocal Orthogonalityofprincipal modes, Method of matrix iteration-Method frequencies usingsweeping matrix and Orthogonality principle. Holze Non-Linear Vibration : (Advance theory of vibration by ssrao) Laboratory Sessions/ Experimental learning: Plotting displacement curve using Analytical Approach. Applications:	reciprocating engin any): (NPTEL,IIT M L1,L2 theorem, Dunkerl d of determination o er's method, Stodola	ne. ADRAS) 10Hrs. ey's equation. of all the natural method.		
Applications: Dynamic vibration absorber and its application in Video link / Additional online information (related to module if https://www.youtube.com/watch?v=V Lj4Pun WMModule 5Mumerical Methods for Multi-Degree Freedom Systems: Introduction, Influence coefficients, Maxwell reciprocal Orthogonalityofprincipal modes, Method of matrix iteration-Method frequencies usingsweeping matrix and Orthogonality principle. Holze Non-Linear Vibration : (Advance theory of vibration by ssrao) Laboratory Sessions/ Experimental learning: Plotting displacement curve using Analytical Approach. Applications: Understanding non linear behavior of waves or vibration.	reciprocating engin any): (NPTEL,IIT M L1,L2 theorem, Dunkerl d of determination c er's method, Stodola	ne. ADRAS) 10Hrs. ey's equation. of all the natural method.		
Applications: Dynamic vibration absorber and its application in Video link / Additional online information (related to module if https://www.youtube.com/watch?v=V Lj4Pun WMModule 5Mumerical Methods for Multi-Degree Freedom Systems: Introduction, Influence coefficients, Maxwell reciprocal Orthogonalityofprincipal modes, Method of matrix iteration-Method frequencies usingsweeping matrix and Orthogonality principle. Holze Non-Linear Vibration : (Advance theory of vibration by ssrao)Laboratory Sessions/ Experimental learning: Plotting displacement curve using Analytical Approach.Applications: Understanding non linear behavior of waves or vibration.Video link / Additional online information (related to module if or formation (related to module if or for formation	reciprocating engin any): (NPTEL,IIT M L1,L2 theorem, Dunkerl d of determination o er's method, Stodola any): (NPTEL,IIT M	ADRAS) 10Hrs. ey's equation. of all the natural method.		
Applications: Dynamic vibration absorber and its application inVideo link / Additional online information (related to module ifhttps://www.youtube.com/watch?v=V Lj4Pun WMModule 5Numerical Methods for Multi-Degree Freedom Systems:Introduction, Influence coefficients, Maxwell reciprocalOrthogonalityofprincipal modes, Method of matrix iteration-Methodfrequencies usingsweeping matrix and Orthogonality principle. HolzeNon-Linear Vibration : (Advance theory of vibration by ssrao)Laboratory Sessions/ Experimental learning:Plotting displacement curve using Analytical Approach.Applications:Understanding non linear behavior of waves or vibration.Video link / Additional online information (related to module ifhttps://www.youtube.com/watch?v=V Lj4Pun WM	reciprocating engin any): (NPTEL,IIT M L1,L2 theorem, Dunkerl d of determination of er's method, Stodola any): (NPTEL,IIT M	ne. ADRAS) 10Hrs. ey's equation. of all the natural method. ADRAS)		
Applications: Dynamic vibration absorber and its application in Video link / Additional online information (related to module if https://www.youtube.com/watch?v=V Lj4Pun WM Module 5 Numerical Methods for Multi-Degree Freedom Systems: Introduction, Influence coefficients, Maxwell reciprocal Orthogonalityofprincipal modes, Method of matrix iteration-Method frequencies usingsweeping matrix and Orthogonality principle. Holze Non-Linear Vibration : (Advance theory of vibration by ssrao) Laboratory Sessions/ Experimental learning: Plotting displacement curve using Analytical Approach. Applications: Understanding non linear behavior of waves or vibration. Video link / Additional online information (related to module if https://www.youtube.com/watch?v=V Lj4Pun WM	reciprocating engin any): (NPTEL,IIT M L1,L2 theorem, Dunkerl d of determination of er's method, Stodola any): (NPTEL,IIT M	ne. ADRAS) 10Hrs. ey's equation. of all the natural method. ADRAS)		
Applications: Dynamic vibration absorber and its application in Video link / Additional online information (related to module if https://www.youtube.com/watch?v=V Lj4Pun WMModule 5Numerical Methods for Multi-Degree Freedom Systems: Introduction, Influence coefficients, Maxwell reciprocal Orthogonalityofprincipal modes, Method of matrix iteration-Method frequencies usingsweeping matrix and Orthogonality principle. Holze Non-Linear Vibration : (Advance theory of vibration by ssrao) Laboratory Sessions/ Experimental learning: Plotting displacement curve using Analytical Approach. Applications: Understanding non linear behavior of waves or vibration.Video link / Additional online information (related to module if https://www.youtube.com/watch?v=V Lj4Pun WMCourse outcomes:	reciprocating engin any): (NPTEL,IIT M L1,L2 theorem, Dunkerl d of determination of er's method, Stodola any): (NPTEL,IIT M	ne. ADRAS) 10Hrs. ey's equation. of all the natural method. ADRAS)		

CO304.1	Apply the principle of super position to Simple Harmonic Motions.
CO304.2	Analyse undamped free and damped free vibration
CO304.3	Perform measurements of vibrations
CO304.4	Evaluate the equations of twodegrees of freedom systems.
CO304.5	Evaluate themulti degree of freedom system.

Reference Books:				
	W.T. Thomson and MarieDillonDahleh, Theory of Vibration with Applications, Pearson			
1.	Education, 2008			
2.	V.P. Singh, Mechanical Vibrations, DhanpatRai& Company Pvt. Ltd, 2016			
3.	S.S. Rao, Mechanical Vibrations, Pearson Education Inc, 2003			
4.	S. Graham Kelly, Mechanical Vibrations, Tata McGraw Hill, 2007			

CIE Assessment:

CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation. Generally, there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of three tests

- Quizzes/mini tests (4 marks)
- Mini Project / Case Studies (8 Marks)
- Activities/Experimentations related to courses (8 Marks)

SEE Assessment:

xiii. Question paper for the SEE consists two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.

xiv. Part B also covers the entire syllabus consisting of five questions having choices and may contain subdivisions, each carrying 16 marks. Students have to answer five full questions.

xv. One question must be set from each unit. The duration of examination is 3 hours.

					CO,P	O Ma	pping							
CO/P	PO	PO	PO	PO	PO	PO	PO	PO	PO	P01	P01	P01	PSO	PSO
0	1	2	3	4	5	6	7	8	9	0	1	2	1	2
C01	2	3	3	1	1	1	1	1	1	0	2	3	1	1

CO2	3	3	1	3	1	1	0	1	1	0	1	3	1	1
CO3	3	3	2	3	2	1	0	0	1	0	1	3	1	1
CO4	3	3	2	3	3	2	0	0	1	0	01	3	1	1
C05	2	2	2	2	1	1	0	1	1	0	0	3	1	1

High,3, Medium,2, Low,1

Course Title	GAS TURBINE TECHNOLOGY	Semester	V
Course Code	MVJ21AE553	CIE	50
Total No. of Contact Hours	40 L:T:P::3:0:0	SEE	50
No. of Contact Hours/week	4	Total	100
Credits	3	Exam. Duration	3 Hrs.

The course objective is to:

- 1. Comprehend the types of engines and its applications.
- 2. Acquire the knowledge of engine parts.
- 3. Acquire the knowledge of engine performance.
- 4. Acquire the knowledge of fuels and various systems.
- 5. Gainknowledge of engine Testing.

Module 1	L1,L2	10Hrs.

Types, Variation & Applications: Types of engines showing arrangement of parts. Operating parameters. Energy distribution of turbojet, turboprop and turbofan engines. Comparison of thrust and specific fuel consumption. Thrust, pressure and velocity diagrams.

Engine Parts: Compressor assembly, types of burners: advantages and disadvantages. Influence of design factors on burner performance. Effect of operating variables on burner performance. Performance requirements of combustion chambers. Construction of nozzles. Impulse turbine and reaction turbine. Exhaust system, sound suppression. Thrust reversal: types, design & systems. Methods of thrust augmentation, after burner system.

Laboratory Sessions/ Experimental learning:

Demo in Propulsion laboratory

10. Comprehend the cascade testing of axial compressor and axial turbine blade row.

11. Study the performance of propeller and jet engines.

12. Study of an aircraft piston engine. (Includes study of assembly of sub systems, various components, their functions and operating principles.

Applications: To understand the different types of Engines and Working.

Video link / Additional online information (related to module if any):

1. Gas Dynamics and Propulsion by Prof. V. Babu, Department of Mechanical Engineering, IIT Madras. <u>https://youtu.be/30-FdRgygI0</u>

https://youtu.be/iKLRgAgfjKE

Aircraft Propulsion Course URL: <u>https://swayam.gov.in/nd1_noc19_me76/...</u> Prof. Vinayak N. Kulkarni Dept. of Mechanical Engineering IIT Guwahati

https://youtu.be/7WFBBE2sKHE

Module 2	L1,L2,L3,	10Hrs.

Compressor: Compressor MAP. Surge margin, Inlet distortions. Testing and Performance Evaluation. **Combustor:** Combustor MAP, Pressure loss, combustion light up test. Testing and Performance Evaluation. **Turbines:** Turbine MAP. Turbine Testing and Performance Evaluation. **Inlet duct &nozzles:** Ram pressure recovery of inlet duct. Propelling nozzles, after burner, maximum mass flow conditions. Testing and Performance Evaluation

Laboratory Sessions/ Experimental learning:

- 1. Study the performance of propeller and jet engines.
- 2. Measurement of nozzle flow.
- 3. Study of the flame lift up and fall back phenomenon for varied Air/Fuel ratio

Applications: To understand the performance characteristics of gas turbine engines.

Video link / Additional online information (related to module if any):

Jet Aircraft Propulsion by Prof. Bhaskar Roy and Prof. A. M. Pradeep, Department of Aerospace Engineering, IIT Bombay.

https://youtu.be/A0mo98peh6I

Module 3	L1,L2,L3	10Hrs.

Engine Performance: Design & off-design Performance. Surge margin requirements, surge margin stack up. Transient performance. Qualitative characteristics quantities. Transient working lines. Starting process & Wind milling of Engines. Thrust engine start envelope. Starting torque and speed requirements Calculations for design and off-design performance from given test data– (case study for a single shaft Jet Engine). Engine performance monitoring.

Laboratory Sessions/ Experimental learning:

- 1. Study of performance of a propeller.
- 2. Performance studies on a scaled jet engine
- 3. Study of Fuel injection characteristics

Applications: To understand the performance characteristics of gas turbine engines.

Video link / Additional online information (related to module if any):

Jet Aircraft Propulsion by Prof. Bhaskar Roy and Prof. A. M. Pradeep, Department of Aerospace Engineering, IIT Bombay.

https://youtu.be/A0mo98peh6I

Module 4	L1,L2,L3	10Hrs.

Fuels: Combustion Properties of Fuels, Calorific Value, Enthalpy, Spontaneous-Ignition temperature, Limits of Flammability, Smoke Point, Luminometer Number, Smoke Volatility Index, Pressure and Temperature Effects, Sub atmospheric Pressure, Low Temperature, High Temperature.

Systems: Fuel systems and components. Sensors and Controls. FADEC interface with engine. Typical fuel system. Oil system components. Typical oil system. Starting systems. Typical starting characteristics. Various gas turbine starters.

Laboratory Sessions/ Experimental learning:

Demo in Propulsion laboratory

1. Study of Fuel injection characteristics

Applications:

1.To understand the properties of fuels used in gas turbines

2. To understand the various fuel, oil and starting systems

Video link / Additional online information (related to module if any):

7. Gas Dynamics and Propulsion by Prof. V. Babu,Department of Mechanical Engineering,IIT Madras. https://youtu.be/v7UJBqmsNWw

Module 5	L1,L2	10Hrs.

Engine Testing: Proof of Concepts: Design Evaluation tests. Structural Integrity. Environmental Ingestion Capability. Preliminary Flight Rating Test, Qualification Test, Acceptance Test. Reliability figure of merit. Durability and Life Assessment Tests, Reliability Tests. Engine testing with simulated inlet distortions and, surge test. Estimating engine - operating limits. Methods of displacing equilibrium lines. **Types of engine testing's:** Normally Aspirated Testing, Open Air Test Bed, Ram Air Testing, Altitude Testing, Altitude test facility, Flying Test Bed, Ground Testing of Engine Installed in Aircraft, Flight testing. Jet thrust measurements in flight. Measurements and Instrumentation. Data Acquisition system, Measurement of Shaft speed, Torque, Thrust, Pressure, Temperature, Vibration, Stress, Temperature of

turbine blading etc. Engine performance trends: Mass and CUSUM plots. Accuracy and Uncertainty in Measurements. Uncertainty analysis. Performance Reduction Methodology.

Laboratory Sessions/ Experimental learning:

- 1. Study the performance of propeller and jet engines.
- 2. Performance studies on a scaled jet engine
- 3. Measurement of nozzle flow.
- 4. Study of the flame lift up and fall back phenomenon for varied Air/Fuel ratio

Applications: To understand the standardflight testing procedures.

Video link / Additional online information (related to module if any):

Introduction to Various Aircraft engines, Engine Performance parameters Aircraft Propulsion Course

URL: <u>https://swayam.gov.in/nd1_noc19_me76/...</u>Prof. Vinayak N. Kulkarni Dept. of Mechanical

Engineering IIT Guwahati

https://youtu.be/BT9oq73VxC4

Course outcomes:

Upon completion of the course, students will be able to:

CO313.3.1	Analyse engines for applications
CO313.3.2	Apply the knowledge of engine parts
CO313.3.3	Evaluate engine performance
CO313.3.4	Evaluate various engine systems.
CO313.3.5	Evaluate Engine Testing with different test methods

Reference Boo	yks:						
1	Irwin E. Treager, Gas Turbine Engine Technology, McGraw Hill Education						
1.	3rd edition,2013						
2.	2. P. P Walshand P. Peletcher , Gas Turbine Performance, Blackwell Science Science 1998						
3.	A. W. Morley Jean Fabri Pergamon , Advanced Aero-Engine Testing, 1959						
4.	JP Holman, Experimental methods for Engineers, Tata Mc Graw Hill 7th edition,2007						
5	Michael J. Kores, and Thomas W. Wild ,Aircraft Power Plant Tata Mc Graw Hill						
5.	Publishing Co. Ltd7thEdition,2002						

CIE Assessment:

CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation. Generally, there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of three tests

- Quizzes/mini tests (4 marks)
- Mini Project / Case Studies (8 Marks)
- Activities/Experimentations related to courses (8 Marks)

SEE Assessment:

- Question paper for the SEE consists two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.
- Part B also covers the entire syllabus consisting of five questions having choices and may contain subdivisions, each carrying 16 marks. Students have to answer five full questions.
- One question must be set from each unit. The duration of examination is 3 hours.

Course Title	Optimization techniques and probability theory	Semester	VI
Course Code	MVJ21AE554/ MVJ21AS554	CIE	50
Total No. of Contact Hours	40 L:T:P::3:0:0	SEE	50
No. of Contact Hours/week	4	Total	100
Credits	3	Exam. Duration	3hrs

CO,PO Mapping														
CO/PO	P01	PO2	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2
C01	3	2	2	1	1	2	1	-	-	-	1	1	1	1
C02	3	2	2	1	1	1	1	-	-	-	1	1	1	1
CO3	3	2	2	1	1	1	1	-	-	-	1	1	1	1
C04	3	2	2	1	1	1	1	-	-	-	1	1	1	1
C05	3	2	2	1	1	1	1	-	-	-	1	1	1	1

High,3, Medium,2, Low,1

Course objective is to:

Ability to apply the theory of optimization methods and algorithms to develop and for solving various types of optimization problems

Ability to go in research by applying optimization techniques in problems of Engineering and Technology

Understand and apply probability distribution, sampling theory and joint probability distributions.

Module-1	L1, L2 & L3	8Hrs.				
Linear Programming: Introduction to Linear Programming Problem (LPP): Prototype example, Assumptions of LPP, Formulation of LPP and Graphical method various examples. The simplex method, Two phase method and dual simplex method.						
Self study topic: Big-M method						
Application: Graphical solution procedure and algorithms to solve p	roblems.					
Web Link and Video Lectures:						
 <u>https://www.youtube.com/watch?v=Hdd TCIJS3Q&t=322s</u> <u>https://www.youtube.com/watch?v=jn9PmuUvUws&t=673s</u> <u>https://www.digimat.in/nptel/courses/video/111105100/L21.html</u> 						
Module-2	L2, L3 & L4	8Hrs.				
 Unconstrained optimization Techniques: Introduction, Direct search method-Random Search method, Univariate method, Decent methods-Gradient of a function, conjugate gradient method (Fletcher-Reeves method), Quasi-Newton methods. Self study topic: Secant method Applications: Design of aerospace vehicles and aircraft vehicles. Web Link and Video Lectures: https://www.youtube.com/watch?v=RcXzyT8lk-w https://www.youtube.com/watch?v=8kPUI5HoVxg https://www.youtube.com/watch?v=dPQKltPBLfc 						
Module-3	L2, L3 & L4	8Hrs.				
Local maxima and minima for single and multi variables, Karush-Kuhn-Tucker conditions, Applications of the FONC, SONC, and SOSC conditions. Self study topic: Lagrange multiplier method Applications: Design of aerospace vehicles and aircraft vehicles.						

Web Link and Video Lectures:

1. <u>https://www.digimat.in/nptel/courses/video/111105100/L48.html</u>							
	Module-4	L1, L2 & L3	8Hrs.				
 Probability Distributions: Random variables (discrete and continuous), probability mass/density functions. Binomial distribution, Poisson distribution. Exponential and normal distributions-problems. Joint probability distribution: Joint Probability distribution for two discrete random variables, expectation, covariance, correlation coefficient. 							
Self s	tudy topic: Joint Probability distribution for two continuous rai	ndom variables					
Appli	cation: Finding correlation between random variables.						
Web	Link and Video Lectures:						
1. <u>htt</u> 2. <u>htt</u> 3. <u>htt</u>	o://nptel.ac.in/courses.php?disciplineID=111 o://www.class-central.com/subject/math(MOOCs) o://academicearth.org/						
	Module-5	L1, L2& L3	8Hrs.				
Sampling Theory : Sampling, Sampling distributions, standard error, test of hypothesis for means and proportions, confidence limits for means, student's t-distribution and Chi-square distribution.							
Self s	tudy topic: confidence limits for probabilities.						
Appli samp	cation: Testing the level of significance and the goodness of the level of significance and the goodness of the level of	fit for large sampl	e and small				
Web	Link and Video Lectures:						
1. <u>http://nptel.ac.in/courses.php?disciplineID=111</u> 2. <u>http://www.class-central.com/subject/math(MOOCs)</u> 3. <u>http://academicearth.org/</u>							
Cours	se outcomes:						
C01	Solve the mathematical formulation of linear programming pro	oblem.					
CO2	Able to analyze external problems and functions and to establish mathematical models						
CO3	Be able to model engineering minima/maxima problems as optimization problems						
CO4	Develop probability distribution of discrete, continuous random variables and joint probability distribution occurring in digital signal processing, information theory and design engineering.						
C05	Demonstrate testing of hypothesis of sampling distributions.						
·							
Text	pooks:						
1.	B.S. Grewal, "Higher Engineering Mathematics" Khanna Publish	hers, 43 rd Edition, 2	2013.				

S. S. Rao John Wiley & Sons, "Engineering Optimization Theory and Practice", Fourth

2.
	Edition, 2009.
Refer	rence Books:
4	A. D. Belegundu and T.R. Chanrupatla, "Optimisation Concepts and Applications in
1.	Engineering", Cambridge University Press 2011.
	Joaquim R. R. A. Martins, Andrew Ning, "Engineering Design Optimization ", Cambridge
2.	University Press.

	CO-PO Mapping											
CO/P	PO	P02	P03	P04	P05	P06	P07	P08	P09	P01	P01	P01
0	1									0	1	2
C01	3	3	3	3	0	0	0	0	0	0	1	0
CO2	3	3	3	3	0	0	0	0	0	0	1	1
CO3	2	3	3	3	0	0	0	0	0	0	1	0
CO4	3	3	1	3	0	0	0	0	0	0	0	0
C05	3	3	0	2	0	0	0	0	0	0	0	1

High-3, Medium-2, Low-1

Course Title	ENVIRONMENTAL	Semester	V
	STUDIES		
Course Code	MVJ21XX56	CIE	50
Total No. of Contact Hours	40 L:T:P::3:0:0	SEE	50
No. of Contact Hours/week	1	Total	100
Credits	1	Exam. Duration	3
			Hrs.

Course objective is to:

- Relatetointerdisciplinaryapproachtocomplexenvironmentalproblemsusingbasictoolsofthenatural and social sciences including geo-systems, biology, chemistry, economics, political science and international processes; Study drinking water quality standards and to illustrate qualitative analysis of water.
- Critically evaluate the science and policy ramifications of diverse energy portfolios on air and water quality, climate, weapons proliferation and societal stability..

Module 1	L1,L2,	04 Hrs.		
Introduction to environmental studies, Multidisciplinary nature of environmental studies;				

Scope and importance; Concept of sustainability and sustainable development.					
Ecosystems (Structure and Function): Forest, Desert, Rivers, Ocean					
Biodiversity: Types, Hot spots; Threats and Conservation of biodiversity, Deforestation.					
Video link:					
https://nptel.ac.in/courses/127/106/127106004/					
Module 2	L1,L2,L3,	10 Hrs.			
Advances in Energy Systems (Merits, Demerits, Global Status ar	d Applications): Hyd	rogen, Solar,			
OTEC, Tidal and Wind.					
Natural Resource Management (Concept and case-study): Disast	ter Management, Susta	inable			
Mining, Cloud Seeding, and Carbon Trading.					
Video link:					
https://nptel.ac.in/courses/121/106/121106014/					
Module 3	L1,L2,L3	10 Hrs.			
Environmental Pollution (Sources, Impacts, Corrective and	l Preventive measu	res, Relevant			
Environmental Acts, Case-studies):SurfaceandGroundWaterPolle	ution;Noisepollution;Se	oilPollutionand			
Air Pollution.					
Waste Management & Public Health Aspects: Bio-medical Wast	te; Solid waste; Hazaro	dous waste; E-			
waste.					
Video link:					
 https://nptel.ac.in/courses/122/106/122106030/ 					
• https://nptel.ac.in/courses/105/103/105103205/					
Module 4	L1,L2,L3	10 Hrs.			
. Global Environmental Concerns (Concept, policies, and case-st	udies): Global Warmir	ıg			
Climate Change; Acid Rain; Ozone Depletion; Fluoride problem In d	rinking water.				
Video link:					
 https://nptel.ac.in/courses/122/106/122106030/ 					
 https://nptel.ac.in/courses/120108004/ 					
Module 5	L1,L2	10 Hrs.			
Latest Developments in Environmental Pollution Mitigation To	ols (Concept and App	lications):			
G.I.S. & Remote Sensing, Environment Impact Assessment, Environmental Management Systems, ISO					
14001.					
Video link:					
• https://nptel.ac.in/courses/105/102/105102015/					
https://nptel.ac.in/courses/120/108/120108004/					
Course outcomes:					

Upon completion	on of the course, students will be able to:
C01	Describe the principles of ecology and environmental issues that apply to air, land, and
	water issueson a global scale.
CO2	Develop critical thinking and/or observation skills, and apply them to the analysis of a
	problem orquestion related to the environment.
CO3	Demonstrate ecology knowledge of a complex relationship between biotic and
	Abioticcomponents.
CO4	Apply their ecological knowledge to illustrate and graph a problem and describe the
	realities thatmanagers face when dealing with complex issues.

Reference Boo	ks:
	Principals of Environmental Science and Engineering, Raman Siva kumar, Cengage
1.	learning, Singapur, 2 nd Edition, 2005
	Environmental Science – working with the Earth G.Tyler Miller Jr. Thomson Brooks
2.	/Cole,11 th Edition, 2006
	Textbook of Environmental and Ecology, Pratiba Singh, Anoop Singh&PiyushMalaviya
3.	,ACME Learning Pvt. Ltd. New Delhi, 1 st Edition.

CO/PO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
C01	3	3	3	1	-	2	2	1	1	-	2	1
C02	3	3	2	1	-	1	2	-	1	1	2	1
CO3	3	3	2	1	-	2	2	-	1	1	2	1
CO4	3	3	2	2	-	2	2	-	1	1	2	1

High,3, Medium,2, Low,1

Course Title	RESEARCH METHODOLOGY AND IPR	Semester	V
Course Code	MVJ21AE57/AS57	CIE	50
Total No. of Contact Hours	30 L: T: P: 1:2:0	SEE	50

No. of Contact Hours/week	1	Total	100
Credits	2	Exam. Duration	2Hrs.

The course objective is to:

To give an overview of the research methodology and explain the technique of defining a research problem

• To explain the functions of the literature review in research.

• To explain carrying out a literature search, its review, developing theoretical and conceptual frameworks

and writing a review.

• To explain various research designs and their characteristics.

• To explain the details of sampling designs, measurement and scaling techniques and also different methods of data collections.

• To explain several parametric tests of hypotheses and Chi-square test.

• To explain the art of interpretation and the art of writing research reports.

• To explain various forms of the intellectual property, its relevance and business impact in the changing

global business environment.

• To discuss leading International Instruments concerning Intellectual Property Rights.

Module 1	L1,L2	10 Hrs.

Module-1

Research Methodology: Introduction, Meaning of Research, Objectives of Research, Types of Research, Research Approaches, Significance of Research, Research Methods versus Methodology, Research and Scientific Method, Research Process, Criteria of Good Research.

Defining the Research Problem: Research Problem, Selecting the Problem, Necessity of Defining the Problem, Technique Involved in Defining a Problem,

Reviewing the literature: Place of the literature review in research, Review of the literature, searching the existing literature, reviewing the selected literature, developing a theoretical framework, Developing a conceptual framework, Writing about the literature reviewed.

Module 2	L1,L2,	10 Hrs.

Research Design: Meaning of Research Design, Need for Research Design, Features of a Good Design, Important Concepts Relating to Research Design, Different Research Designs, Basic Principles of Experimental Designs.

Design of Sample Surveys: Design of Sampling: Introduction, Sample Design, Sampling and Non-sampling Errors, Sample Survey versus Census Survey, Types of Sampling Designs.

Measurement and Scaling: Qualitative and Quantitative Data, Classifications of Measurement Scales, Goodness of Measurement Scales, Sources of Error in Measurement, Techniques of Developing

Measurement Tools, Scaling, Scale Classification Bases, Scaling Technics, Multidimensional Scaling, Deciding the Scale.

Data Collection: Introduction, Experimental and Surveys, Collection of Primary Data, Collection of Secondary Data, Selection of Appropriate Method for Data Collection,

Module 3	L1,L2	10 Hrs.			
Intellectual Property: The Concept, Intellectual Property System in India, Development of TRIPS					
Complied Regime in India, Patents Act, 1970, Trade Mark Act,	1999,The Designs	Act, 2000, The			

Complied Regime in India, Patents Act, 1970, Trade Mark Act, 1999, The Designs Act, 2000, The Geographical Indications of Goods (Registration and Protection) Act1999, Copyright Act,1957, The Protection of Plant Varieties and Farmers' Rights Act, 2001, The Semi-Conductor Integrated Circuits Layout Design Act, 2000, Trade Secrets, Utility Models, IPR and Biodiversity, The Convention on Biological Diversity (CBD) 1992, World Intellectual Property Organisation (WIPO), WIPO and WTO, Paris Convention for the Protection of Industrial Property, National Treatment, Right of Priority, Common Rules, Patents, Marks, Industrial Designs, Trade Names, Indications of Source, Unfair Competition, Patent Cooperation Treaty (PCT), Berne Convention for the Protection of Literary and Artistic Works, Basic Principles, Duration of Protection, Trade Related Aspects of Intellectual Property Rights(TRIPS) Agreement, Covered under TRIPS Agreement, Features of the Agreement, Protection of Intellectual Property under TRIPS, Copyright and Related Rights, Trademarks, Geographical indications, Industrial Designs, Patentable Subject Matter, Rights Conferred, Exceptions, Term of protection, Conditions on Patent Applicants, Process Patents, Other Use without Authorization of the Right Holder, Layout-Designs of Integrated Circuits,

Course outcomes:

Upon completion of the course, students will be able to:

CO302.1	To explain the functions of the literature review in research.
CO302.2	• To explain carrying out a literature search, its review, developing theoretical and conceptual frameworks
CO302.3	and writing a review.
CO302.4	• To explain various research designs and their characteristics.
CO302.5	To explain the functions of the literature review in research.

Reference Books	:
1	Research Methodology: Methods and Techniques C.R. Kothari, Gaurav Garg New Age
1.	International 4th Edition, 2018
2	Research Methodology a step-by step guide for beginners. (For the topic Reviewing the
۷.	literature under module 2) Ranjit Kumar SAGE Publications Ltd 3rd Edition, 2011
	Study Material (For the topic Intellectual Property under module 5) Professional Program
3.	Intellectual Property Rights, Law and Practice, The Institute of Company Secretaries of India,
	Statutory Body Under an Act of Parliament, September 2013
CIE Assessment:	

CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation. Generally, there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of three tests

- Quizzes/mini tests (4 marks)
- Mini Project / Case Studies (8 Marks)
- Activities/Experimentations related to courses (8 Marks)

SEE Assessment:

xvi. Question paper for the SEE consists two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.

xvii. Part B also covers the entire syllabus consisting of five questions having choices and may contain subdivisions, each carrying 16 marks. Students have to answer five full questions.

xviii. One question must be set from each unit. The duration of examination is 3 hours.

-														
						CO ,	PO Ma	appin	g					
CO/P	PO	PO	PO	PO	PO	PO	PO	PO	PO	P01	P01	P01	PSO	PSO
0	1	2	3	4	5	6	7	8	9	0	1	2	1	2
C01	3	3	0	0	0	0	0	0	0	0	0	0	3	1
CO2	3	3	2	2	0	0	0	0	0	0	0	0	3	1
CO3	3	3	0	2	0	0	0	0	0	0	0	0	3	1
CO4	3	3	3	2	0	0	0	0	0	0	0	0	3	1
C05	3	3	2	2	0	0	0	0	0	0	0	0	2	1

High,3, Medium,2, Low,1

MVJ College of Engineering, Whitefield, Bangalore 560067

An Autonomous Institution, Affiliated to VTU, Belagavi

Scheme of Teaching and Examination Outcome Based Education (OBE) and Choice Based Credit System (CBCS) Effective from the academic year 2021-22 Department of Aeronautical Engineering

Semester VI

Sl.		Course	Course Title	BoS		Teaching h	rs./week		Examination				Credit
No.	Туре	Code			Lecture	Tutorial	Practica	Self-	Duration	CIE	SEE	Total	S
					L	Т	1	Study	Hrs.	Marks	Marks	Marks	
							Р	S					
1	HSMC	MVJ21AE61	Computational Fluid Dynamics	AE	2	2	-	-	3	50	50	100	3
2	IPCC	MVJ21AE62	Aircraft Structural Analysis	AE	3	-	2	-	3	100	100	200	4
			(+Aircraft Structures lab)										
3	IPCC	MVJ21AE63	Aircraft Stability and Control	AE	3	-	2	-	3	100	100	200	4
			(+ Flight Simulation Lab)										
4	OEC	MVJ21AE64X	OEC I	AE	3	-	-	-	3	50	50	100	3
5	OEC	MVJ21AE65	MOOC Courser (OEC 2)	AE	3	-	-	-	3	50	50	100	3
6	AEC	MVJ21AE66	Aircraft Maintenance Repair and	AE	2	-	-	-	2	50	50	100	1
			Overhaul										
7	PRJ	MVJ21XXPRJ67	Mini project	AE	-	-	4	-	3	50	50	100	2
8	INT	MVJ21INT68I	Summer Internship II	AE	-	-	-		3	50	50	100	2
			Total		16	2	8			500	500	1000	22

Research /IndustrialInternship- shall be carried out during VI and VII-semester for 24 weeks duration. The **Research /IndustrialInternship** shall be on Industrial/Govt./NGO/MSME/Rural Internship/Innovation/Entrepreneurship. **Research Internship** must be taken up at Centers of Excellence (CoE)/ Study Centers established in the institute/ at the reputed research organizations. The viva-voce examinations for **Research /IndustrialInternship** shall be carried out during VIII semester.

Under open elective ,departments shall offer only one course. Student will have option to select one course from any of the departments.

Course Code	Open Elective-I
MVJ21AE641	General Introduction to Aeronautics
MVJ21AE642	Introduction to Helicopters
MVJ21AE643	Introduction to Composite Structures

Course Title	Computational Fluid Dynamics	Semester	VI
Course Code	MVJ21AE61	CIE	50
Total No. of Contact Hours	40 L:T:P::3:1:0	SEE	50
No. of Contact Hours/week	4	Total	100
Credits	3	Exam. Duration	3hrs

The Course objective is to:

- 1. Gain knowledge of CFDideas, and Flow Equations
- 2. Learn the Mathematical behaviour of PDEs vis a visnature of flow
- 3. Know the discretisation techniques in finite difference
- 4. Understand grid generation and adaptive grids
- 5. Acquire knowledge to solve CFD problems through finite volume technique

Module-1	L2.L3	10Hrs.
	, -	
Introduction: CFD ideas to understand, CFD Application, Need for high speed	Parallel Con	nputing,
Substantial derivative, Divergence of velocity. Flow models, Continuity Equation, M	Aomentum E	quation,
and Energy Equations in various forms. Physical Boundary conditions. Co	onservative	& Non-
conservative forms of equations, Integral vrs Differential Forms of Equations.	Form of Ec	uations

Laboratory Sessions/ Experimental learning: Ansys Lab

particularly suitable for CFD work. Shock capturing, Shock fitting.

Applications: Flow Analysis

Nptel Video: CFD by Prof. S Chakraborty IIT Kharagpur

Module-2	L3,L4	10Hrs.

Mathematical Behaviour of Partial Differential Equations: Classification of partial differential equations – Cramer Rule, Eigenvalue method. Hyperbolic, parabolic, and elliptic form of equations. Mixed type of equations. Classification of governing equations for one-dimensional compressible inviscid flow.

Impact of classification on physical and computational fluid dynamics. Case studies-steady inviscid supersonic flow, unsteady inviscid flow, steady boundary layer flow, unsteady thermal conduction, and steady subsonic inviscid flow.

Laboratory Sessions/ Experimental learning: Ansys Lab

Applications: Flow analysis

Nptel Video: CFD by Prof. S Chakraborty IIT Kharagpur

Module-3	L3,L4	10Hrs.		
DiscretisationTechniquesDiscretization: Essence of discretization- Finite diffe	rence metho	d, and		
difference equations. Explicit and Implicit approach. Errors and stability analysis.	Time marchi	ng and		
Space marching. Reflection Boundary condition. Relaxation technique; successi	ve over relax	ation/		
successive under relaxation. Alternating Direction Implicit (ADI) Method. Upwind	and Mid-poi	nt leap		
frog schemes.Numerical and artificial viscosity.				
Laboratory Sessions/ Experimental learning: Ansys Lab				
Applications: Finite Difference Techniques for flow analysis				
Video link / Additional online information (related to module if any):				
Nptel Video: CFD by Prof. S Chakraborty IIT Kharagpur				

Module-4	L3,L4	10Hrs.

Grid generation &Adaptive Grid Methods: Need for grid generation and Body-fitted coordinate system. Structured grids-essential feature. Structured grids generation techniques-algebraic and numerical methods. Unstructured grid generation Techniques-Delaunay-Voronoi diagram, advancing front method, multi-block grid generation, Grid quality, adaptive grids.

Adaptive Structured Grid Generation, Unstructured adaptive grid Methods.

Transformation: Matrices &Jacobian of transformation. Transformation of Equation from physical plane into computational Plane-examples.

Laboratory Sessions/ Experimental learning: Ansys Lab

Applications: Grid formulation and transformation of planes

Video link / Additional online information (related to module if any):

Nptel Video: CFD by Prof. S Chakraborty IIT Kharagpur

	Module-5	L3,L4	10Hrs.	
Finite Volu	me Techniques and some Applications: Spatial discretisation:-Cel	Centred Forn	nulation	
and Cell w	ertex Formulation (overlanning control volume duel control	volume) Te	emporal	
discroticatio	n. Explicit time stopping and Implicit time stopping time stop cal	volution	Inporar	
			¥7 .	
Application	s: Aspects of numerical dissipation & dispersion. Approximate fact	orization, Flux	Vector	
splitting. Di	ffusion problem. Heat through conduction and radiation. Up win	ding techniqu	e. Post-	
processing a	nd visualization, contour plots, vector plots etc.			
Laboratory	Sessions/ Experimental learning: Ansys Lab			
Application Video link / Nptel Video	Applications: Flow analysis through Finite Volume Technique Video link / Additional online information (related to module if any): Nptel Video: CFD by Prof. S Chakraborty IIT Kharagpur			
Course outo	comes:			
CO403.1.1	Apply knowledge of CFD ideas, and Flow Equations			
CO403.1.2	Assimilate Mathematical behaviour of PDEs vis a vis nature of flow	·		
CO403.1.3	Utilisefinite difference techniques.			

CO403.1.4	Generate &Utilise grids
CO403.1.5	Apply finite volume techniques

Referen	ace Books:
1.	F. Wendt (Editor), Computational Fluid Dynamics - An Introduction, Springer – Verlag, Berlin; 1992.
2.	Charles Hirsch, Numerical Computation of Internal and External Flows, Vols. I and II. John Wiley & Sons, New York; 1988.
3	Fletcher, C.A.J, Computational Techniques for Fluid Dynamics, Springer, Berlin,2nd edition, 2002,ISBN-13: 978-3540543046
4	Tapan K. Sengupta, Fundamentals of CFD, Universities Press, 2004.
CIE Ass	sessment:
CIE is b	ased on quizzes, tests, assignments/seminars and any other form of evaluation. Generally, there
will be:	Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to
be awa	rded will be the average of three tests
- Q	uizzes/mini tests (4 marks)
- N	/ini Project / Case Studies (8 Marks)
- A	ctivities/Experimentations related to courses (8 Marks)
SEE As	sessment:
xix.	Question paper for the SEE consists two parts i.e. Part A and Part B. Part A is compulsory and
con	sists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks
COV	ering the whole syllabus.
xx. Par	t B also covers the entire syllabus consisting of five questions having choices and may contain sub-

divisions, each carrying 16 marks. Students have to answer five full questions.

xxi. One question must be set from each unit. The duration of examination is 3 hours.

					CO-PO	-PSO M	apping							
CO/PO	P01	PO2	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO	PSO
,													1	2
C01	3	3	2	2	1	-	-	1	1	1	1	1	-	1

C02	3	3	2	2	1	-	-	1	1	1	1	1	-	1
C03	3	3	2	2	1	-	-	1	1	1	1	1	-	1
C04	3	3	2	2	1	-	-	1	1	1	1	1	-	1
C05	3	3	2	2	1	-	-	1	1	1	1	1	3	3

High-3, Medium-2, Low-1

Course Title	Aircraft Structural Analysis (+Aircraft Structures lab	Semester	VI
Course Code	MVJ21AE62	CIE	50
Total No. of Contact Hours	50 L : T : P :: 3:2:0	SEE	50
No. of Contact Hours/week	5	Total	100
Credits	4	Exam. Duration	3 Hrs.

The courseobjective is to:

- 1. Understand symmetrical and unsymmetrical sections.
- 2. Acquire the knowledge of Structural Idealization on open section tubes.
- 3. Acquire the knowledge of Structural Idealization on closed section tubes.
- 4. Gain knowledge of the failure modes in structures
- 5. Comprehend the stress analysis on Spar box beams and fuselage frames.

Module 1	L1,L2,L3	10 Hrs.
Introduction, Flomentary theory of hending	Introduction to comi Monocoque etr	usturos Strossos in

Introduction: Elementary theory of bending – Introduction to semi-Monocoque structures - Stresses in beams of symmetrical and unsymmetrical sections -Box beams – General formula for bending stresses-principal axes method – Neutral axis method.

Laboratory Sessions/ Experimental learning: Stress analysis on a flat plate using Ansys.

Applications: To differentiate and analyze the components of aircraft components.

Video link / Additional online information (related to module if any):

13. <u>https://swayam.gov.in/nd1_noc19_ae05/previewhttps://youtu.be/bQQMIy7Dlt0</u>

14. https://nptel.ac.in/courses/101/101/101101079/

15. https:52/2013/AAE%20352%20Course%20Text%20Weisshaar%202011.pdf

Module 2	L1,L2,L3,	10Hrs.
Shear Flow: Shear stresses in beams – Shear flow in	n stiffened panels - Shear flow in thi	in-walled open tubes
-Shear center - Shear flow in open sections with stif	ffeners.	

Laboratory Sessions/ Experimental learning: Shear center and angle of twist in Aircraft Structures laboratory

Applications: To analyze shear flow in aircraft/spacecraft skin panels.

Video link / Additional online information (related to module if any):

- 8. <u>https://cosmolearning.org/courses/introduction-aerospace-structures/video-lectures/</u>
- 9. https://ocw.tudelft.nl/course-lectures/shear-flow-thin-walled-section-2/
- 10. https://www.ae.msstate.edu/tupas/SA2/chA14.7 text.html

	Module 3 L1,L2,L3 10Hrs.
--	--------------------------

Shear Flow Analyses: Shear flow in closed sections with stiffeners– Angle of twist - Shear flow in two flange and three flange box beams – Shear center - Shear flow in thin-walled closed tubes - Bredt-Batho theory -Torsional shear flow in multi cell tubes - Flexural shear flow in multi cell stiffened structures.

Laboratory Sessions/ Experimental learning: Shear flow analyses for closed section in Ansys workbench. **Applications**: To analyze the shear flow in closed thin-walled section of the aircraft.

Video link / Additional online information (related to module if any):

1. https://swayam.gov.in/nd1_noc19_ae05/previewhttps://youtu.be/bQQMIy7Dlt0

2. https://www.popsci.com/story/technology/best-aerospace-innovations-2019/

3. https://nptel.ac.in/courses/101/101/101101079/

Module 4	L1,L2,L3	10 Hrs.		
Failure concepts: Stability problems of thin-wall	ed structures- Buckling of sheets	under compression,		
shear, bending and combined loads - Crippling stres	ses by Needham's and Gerard's met	thods-Sheet stiffener		
panels- Effective width, Inter rivet and sheet wrinkli	ing failures-Tension field web beam	ıs (Wagner's).		
Laboratory Sessions/ Experimental learning: Fat	igue analysis can be analyzed using	g Ansys workbench.		
Applications : Used to predict the product life cycle	management of aircraft component	zs.		
Video link / Additional online information (relat	ted to module if any):			
4. https://www.youtube.com/watch?v=3HE3A	vUZnw			
5. <u>https://www.youtube.com/watch?v=aivDhi</u>	<u>Lwu8E</u>			
6. <u>https://www.youtube.com/results?search_query=unsw+aerospace+structures</u>				
Module 5	L1,L2	10Hrs.		
Stress Analysis in Wing Spars and Box beams:		•		
Tapered wing spar, open and closed section beams,	beams having variable stringer area	as, three- boom shell,		
torsion and shear, tapered wings, cut-outs in wings.				
Stress Analysis in Fuselage Frames:				

Bending, shear, torsion, cut-outs in fuselages, principles of stiffeners construction, fuselage frames, shear flowdistribution.

Laboratory Sessions/ Experimental learning: Fuselage Pressure Vessel experiment can be conducted using Ansys Workbench.

Applications:Helps to analyze the stress in Aircraft components.

Video link / Additional online information (related to module if any):

- 6. <u>https://youtu.be/bQQMIy7Dlt0</u>
- 7. https://nptel.ac.in/courses/101/101/101101079/

Course outcomes:

CO311.1	Analyse symmetrical and unsymmetrical sections
CO311.2	Perform structural idealization and analysis on open section tubes.
CO311.3	Perform structural idealization and analysis on closed section tubes.
CO311.4	Analyse failure of structures
CO311.5	Estimatethe stress analysis in wing spar and box beams.

Reference B	ooks:
1.	Megson, T.H.G., Aircraft Structures for Engineering Students, Edward Arnold,1995
2.	Perry D J & Azar J J , Aircraft Structures, 2nd edition, McGraw Hill N.Y.,1993
3.	BruhnE.F., Analysis and Design of Flight Vehicles Structures, Tri-Stateoffset Co.USA,1985
4.	T.H.G Megson, Introduction to Aircraft Structural Analysis, Elsevier,2nd Edition,2014

CIE Assessment:
CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation.
Generally, there will be: Three Internal Assessment (IA) tests during the semester (30 marks
each), the final IA marks to be awarded will be the average of three tests
- Quizzes/mini tests (4 marks)
- Mini Project / Case Studies (8 Marks)
- Activities/Experimentations related to courses (8 Marks)
SEE Assessment:
- Question paper for the SEE consists two parts i.e. Part A and Part B. Part A is compulsory
and consists of abjective time on short answer time questions of 1 or 2 marks each for

and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.

- Part B also covers the entire syllabus consisting of five questions having choices and may contain sub-divisions, each carrying 16 marks. Students have to answer five full questions.
- One question must be set from each unit. The duration of examination is 3 hours.

CO, PO Mapping														
CO/P	PO	PO	PO	PO	PO	PO	PO	PO	PO	P01	P01	P01	PSO	PSO
0	1	2	3	4	5	6	7	8	9	0	1	2	1	2
C01	3	2.6	2.2	1.6	2.4	1	0	0	0.6	1.4	0.2	3	1	1
CO2	3	2.6	2.2	1.6	2.4	1	0	0	0.6	1.4	0.2	3	1	1
CO3	3	2.6	2.2	1.6	2.4	1	0	0	0.6	1.4	0.2	3	1	1
C04	3	2.6	2.2	1.6	2.4	1	0	0	0.6	1.4	0.2	3	1	1
C05	3	2.6	2.2	1.6	2.4	1	0	0	0.6	1.4	0.2	3	1	1

High,3, Medium,2, Low,1

Course	Title	AIRCRAFT STRUCTURES LAB	Semester		VI								
Course	objective is to:												
•]	Learn about the simply supported beam, cantilever beam.												
• 1	Understand the Maxwell's	heorem an d Poisson ratio.											
• .	Acquire the knowledge abo	out buckling load, shear failure and s	shear centr	e									
Sl No	Experiment Name			RBT Leve	el Hours								
1	Deflection of a Simply Su	oported Beam		L1,L2,L3	03								
2		D		141212	0.2								
2	Deflection of a Cantilever	Beam		ե1,ե2,ե3	03								
3	Beam with Combined Loa	ding by using Superposition Theore	em	L1,L2,L3	03								
4	Verification of Maxwell's	Reciprocal Theorem for Beam with		L1,L2,L3	03								
	a) Constant cross se	ction											
	b) Varying Cross sec	tion											
5	Determination of Young's	Modulus and Poisson Ratio using S	train	L1,L2,L3	03								
	Gages.												
6	Buckling Load of Slender	Eccentric Columns and Construction	n of South	L1,L2,L3	03								

	Well Plot		
7	Shear Failure of Bolted and Riveted Joint	L1,L2,L3	03
8	Bending Modulus of Sandwich Beam	L1,L2,L3	03
9	Determine the Index Factor `K` in a Tensile Field of Wagner Beam	L1,L2,L3	03
10	Tensile, Compressive and Flexural Testing of a Composite Material Plate	L1,L2,L3	03
11	 Determination of Natural Frequency and Mode Shapes of a Cantilever Beam for the FollowingCases a) Constant cross section b) Varying cross section 	L1,L2,L3	03
12	 Determination of Shear Centre for Following Cases Through Deflection a) Close section–Symmetrical bending b) Open section–Unsymmetrical bending 	L1,L2,L3	03
13	Determination of Shear flow for Following Cases a) Close section–Symmetrical bending b) Open section–Unsymmetrical bending	L1,L2,L3	03
14	Determining of Shear Centre Through Shear Flow Measurement for Following Cases a) Close section–Symmetrical bending b) Open section–Unsymmetrical bending	L1,L2,L3	03
Course	outcomes:		
C01	Compute the deflection of simply supported beam and cantilever beam.		
CO2	Verify the Maxwell's theorem.		
CO3	Determine the buckling load ,shear failure and shear centre.		

CO-PO Mapping												
CO/PO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012

C01	3	3	3	3	3	1	1	1	1	1	1	1
CO2	3	3	3	3	3	1	1	1	1	1	1	1
CO3	3	3	3	3	3	1	1	1	1	1	1	1

High-3, Medium-2, Low-1

Course Title	Aircraft Stability and Control (+ Flight Simulation Lab)	Semester	VI
Course Code	MVJ21AE63	CIE	50
Total No. of Contact Hours	50 L : T : P :: 3 :2: 0	SEE	50
No. of Contact Hours/week	5	Total	100
Credits	4	Exam Duration	3 Hrs.

The course objective is to:

- 1. Understand the Static Longitudinal stability with Stick fixed condition
- 2. Gain knowledge of the Static Longitudinal stability with Control stick free conditions
- 3. Acquire knowledge of Lateral and Directional stability & control
- 4. Understand concepts of equations of motions and Stability derivatives.
- 5. Learn the Dynamic Stability of Aircraft.

Module 1

L1,L2

10 Hrs.

Static Longitudinal Stability and Control-Stick Fixed

Definition, stability criteria, Contribution of airframe components: Wing contribution, Tail contribution, Fuselage contribution, Power effects- Propeller airplane and Jet airplane Introduction, Trim condition. Static

Margin. Stick fixed neutral points. Longitudinal control, Elevator power, Elevator angle versus equilibrium lift coefficient, Elevator required for landing, Restriction on forward C.G. range.

Laboratory Sessions/ Experimental learning:

Effect of Static margin on Longitudinal Stability of Aircraft- Flight Simulation Lab

Applications:

Determine the Longitudinal stability of Aircraft with Stick fixed

Video link / Additional online information (related to module if any):

16. NPTEL- Aircraft Stability & Control

https://nptel.ac.in/courses/101/104/101104062/

2. MIT open course ware- Aircraft Stability & Control

https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-333-aircraft-stability-and-control-fall-

2004/											
Module 2	L1,L2,L3,	10 Hrs.									
Static Longitudinal Stability and Control-Stick free											
Introduction, Hinge moment parameters, Control surface floating characteristics	cteristics and a	erodynamic									
balance, Estimation of hinge moment parameters, The trim tabs, Stick-free Neutral point, Stick force											
gradient in unaccelerated flight, Restriction on aft C.G.											
Laboratory Sessions/ Experimental learning:	Laboratory Sessions/ Experimental learning:										
Calculate the variation of Trim Tabs during Stick free Neutral point condition	n										
Applications:											
Determine the Longitudinal stability of Aircraft with controls free											
Video link / Additional online information (related to module if any):											
1. NPTEL- Aircraft Stability & Control											
https://nptel.ac.in/courses/101/104/101104062/											
2. MIT open course ware- Aircraft Stability & Control											
https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-333-aircraft	t-stability-and-co	ontrol-fall-									
2004/											
Module 3	L1,L2	10 Hrs.									
Static Directional and Lateral Stability and Control											
Static directional stability- rudder fixed, Contribution of airframe compo	onents, Direction	nal control.									
Rudder power, Stick-free directional stability, Requirements for directional	control, Rudder l	ock, Dorsal									
fin. One engine inoperative condition. Weather cocking effect.											
Static Lateral stability. Estimation of dihedral effect. Effect of wing sweep	o, flaps, and pov	ver. Lateral									
control, Estimation of lateral control power, Aileron control forces, Bala	ncing the aileron	n. Coupling									
between rolling and yawing moments. Adverse yaw effects. Aileron reversal											
Laboratory Sessions/ Experimental learning:											
Effect of aileron input in lateral and directional motion of Aircraft											
Applications:											
Effect of Directional and Lateral stability on Aircraft											
Video link / Additional online information (related to module if any):											
1. NPTEL- Aircraft Stability & Control											
https://nptel.ac.in/courses/101/104/101104062/											
2. MIT open course ware- Aircraft Stability & Control											
https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-333-	aircraft-stability	-and-									
control-fall-2004/											
Module 4	L1,L2,L3	10 Hrs.									

Equations of Motions

Derivation of rigid body equations of motion, Orientation and position of the airplane, gravitational and thrust Forces, Small disturbance theory. Aerodynamic force and moment representation, Derivatives due to change in forward speed, Derivatives due to the pitching velocity, Derivatives due to the time rate of change of angle of attack, Derivatives due to rolling rate, Derivatives due to yawing rate.

Laboratory Sessions/ Experimental learning:

Estimate the effect of stability derivatives on aircraft due to changes in forward speed, change in angle of attack, change in roll rate and yaw rate

Applications:

Stability derivative estimation for a stable aircraft

Video link / Additional online information (related to module if any):

1. NPTEL- Aircraft Stability & Control

https://nptel.ac.in/courses/101/104/101104062/

2. MIT open course ware- Aircraft Stability & Control

https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-333-aircraft-stability-and-control-fall-2004/

Module 5 L1,1	L2,L3	10 Hrs.

Dynamic Stability

Dynamic longitudinal stability. Types of modes of motion: phugoid motion, short period motion. Routh's stability criteria. Factors affecting period and damping of oscillations. Flying qualities in pitch. Cooper-Harper Scale. Dynamic lateral and directional stability. Response to aileron step-function, side-slip excursion. Dutch roll and Spiral instability. Auto- rotation and spin. Stability derivatives for lateral and directional dynamics.

Laboratory Sessions/ Experimental learning:

Determine short period and phugoid oscillations for a given Quartic equation

Applications:

Determine relative stability of an Aircraft

Video link / Additional online information (related to module if any):

1. NPTEL- Aircraft Stability & Control

https://nptel.ac.in/courses/101/104/101104062/

2. MIT open course ware- Aircraft Stability & Control

https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-333-aircraft-stability-and-control-fall-2004/

Course outcomes:

Upon completion of the course, students will be able to:

CO401.1	Analyse Longitudinal stability for Stick fixed conditions.
CO401.2	Evaluate Longitudinal stability for Stick free conditions
CO401.3	Analyse Static Lateral and Directional static stability
CO401.4	Evaluation of various flying modes.
CO401.5	Analyse the dynamic stability of Aircraft

Reference B	ooks:
1.	Nelson, R.C. Flight Stability and Automatic Control, McGraw-Hill Book Co., 2007.
2	Perkins, C.D., and Hage, R.E., Airplane Performance stability and Control, John Wiley Son
2.	Inc, New York, 1988
2	BernardEtkin, Dynamics of Flight Stability and Control, John Wiley & Sons, Second Edition,
э.	1982
4	Bandu N. Pamadi, Performance, Stability, Dynamics and Control of Airplanes, AIAA 2nd
4.	Edition Series, 2004

CIE Assessment:

CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation. Generally, there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of three tests

- Quizzes/mini tests (4 marks)
- Mini Project / Case Studies (8 Marks)
- Activities/Experimentations related to courses (8 Marks)

SEE Assessment:

xxii. Question paper for the SEE consists two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.

xxiii. Part B also covers the entire syllabus consisting of five questions having choices and may contain sub-divisions, each carrying 16 marks. Students have to answer five full questions.

xxiv. One question must be set from each unit. The duration of examination is 3 hours.

	CO-PO-PSO Mapping													
CO/PO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO	PSO
00/10	101												1	2

C01	3	3	2	2	1	-	-	1	1	1	1	1	-	1
C02	3	3	2	2	1	-	-	1	1	1	1	1	-	1
C03	3	3	2	2	1	-	-	1	1	1	1	1	-	1
C04	3	3	2	2	1	-	-	1	1	1	1	1	-	1
C05	3	3	2	2	1	-	-	1	1	1	1	1	3	3

High 3, Medium 2, Low 1

Course	e Title	FLIGHT SIMULATION LAB	Semester		VI		
Course	Course objective is to:						
•	Understand the root locus and bode plot.						
•	Understand the spring mass da	mper system and the servo mechanism	system with	feedback.			
•	Acquire the knowledge to use c	omputational tools to model aeronauti	cal vehicle dy	vnamics			
SI No	Experiment Name			RBT	Hours		
51 10	Lxperment Name			Level	nours		
1	Draw Pole-Zero map of dynan	nic system model with plot customization	on option	L1,L2,L 3	03		
2	Plot root locus for adynamic system though MATLAB				03		
3	Draw Bode plot from a transfe	er function in MATLAB and explain the	gain and	L1,L2,L	03		
	phase margins			3			
4	Simulate spring-mass-damper system with and without a forcing function				03		
	though SIMULINK			3			
5	Simulate a simple servo-mech	anism motion with feedback-in the tim	e domain,	L1,L2,L	03		
	and in `s` domain			3			
6	Simulate a bomb drop from an	n aircraft on a moving tank in pure purs	uit motion	L1,L2,L	03		
				3			
7	Develop a straight and level fl	ight simulation program using MATLA	3	L1,L2,L	03		
				3			
8	Simulate aircraft Take-off and	Landing with trajectory tracing		L1,L2,L	03		
				3			

9	Simulate stall of aircraft	L1,L2,L	03
	and show the effect of variation instatic marginon stalling characteristics	3	
10	Design of proportional navigation trajectory for missile	L1,L2,L 3	03
11	Simulateaircraftlongitudinalmotionanddemonstratetheeffectofstaticmarginvaria tionforapulseinput in pitch that is intended to bleed the airspeed.	L1,L2,L 3	03
12	Simulateaircraftlongitudinalmotionanddemonstratetheeffectofstaticmarginvaria tionforadoubletinputinpitch.	L1,L2,L 3	03
13	Given a Quadratic characteristic equation, determine two quadratics that shall result in poles of short-period oscillations and poles of Phugoid. Vary the coefficients of polynomial to study the movement of poles.	L1,L2,L 3	03
14	Given a Quartic characteristics equitation, determinePolesandTimeconstantsforRollmode,Spiralmotion,andDutchroll.Varyt he coefficients of polynomial to study the movement of poles.	L1,L2,L 3	03
Cours	e outcomes:		
C01	Evaluate the root locus and bode plot		
CO2	Analyse the dynamics response of aircraft.		
CO3	Use computational tools to model aircraft trajectory.		

CO-PO	Маррі	ng										
CO/P	PO	P02	P03	P04	P05	P06	P07	P08	P09	P01	P01	P01
0	1									0	1	2
CO1	3	3	3	3	3	1	1	1	1	1	1	1
CO2	3	3	3	3	3	1	1	1	1	1	1	1
CO3	3	3	3	3	3	1	1	1	1	1	1	1

High-3, Medium-2, Low-1

Course Title	GENERAL INTRODUCTION TO AERONAUTICS	Semester	VI
Course Code	MVJ21AE641	CIE	50
Total No. of Contact Hours	40 L:T:P::3:0:0	SEE	50
No. of Contact Hours/week	4	Total	100
Credits	3	Exam. Duration	3 Hrs.

The course objective is to:

- 6. Gain knowledge of the History of Aviation
- 7. Understand the basic Aircraft configurations
- 8. Understand the aircraft structures and materials.
- 9. Acquire knowledge of aircraft and rocket power units
- 10. Learn aircraft stability aspects

Module 1L1,L2	10Hrs.

Introduction

Early Developments – Ornithopters, Balloon Flight, Gliders, Wilbur and Orville Wright – Inventors of First Practical Airplane, Aeronautical Triangle – Langley, Wrights and Glenn Curtiss, Problem of Propulsion, Faster and Higher, biplanes and monoplanes, Developments in aerodynamics, materials, structures and propulsion over the years.

Laboratory Sessions/ Experimental learning:

Demo in Aerodynamics laboratory

1. Understand the basics of air flow over airfoil and various other models in the wind tunnel in Aerodynamics Lab

Applications:

1. Understanding the basics concepts of flying

Video link / Additional online information (related to module if any):

 Introduction to Aerospace Propulsion by Prof. Bhaskar Roy and Prof. A. M. Pradeep, Department of Aerospace Engineering, IIT Bombay For more details on NPTEL visit<u>http://nptel.iitm.ac.in</u> <u>https://youtu.be/ohmyMEwfp5g</u>

Module 2	L1,L2	10Hrs.

Aircraft Configurations:

Different types of flight vehicles, classifications. Components of an airplane and their functions.

Conventional control, Powered control, Basic instruments for flying - Typical systems for control actuation.

Laboratory Sessions/ Experimental learning:

Demo in Propulsion laboratory

1. Study of an aircraft piston engine. (Includes study of assembly of sub systems, various components, their functions and operating principles)

Applications:

1. Understand the aircraft structures and materials.

Video link / Additional online information (related to module if any):

General Introduction: Airplane Performance Characteristics (NPTEL)

https://youtu.be/tEWuP1NVdgE

Module 3	L1,L2	10Hrs.
Ainalana Chun atama and Mataniala		

Airplane Structures and Materials:

General types of construction, Monocoque, semi-monocoque and geodesic constructions, Typical wing and fuselage structure. Metallic and non-metallic materials, Use of aluminium alloy, titanium, stainless steel and composite materials. Stresses and strains – Hooke's law – Stress - strain diagrams - elastic constants.

Laboratory Sessions/ Experimental learning:

Demo in Aircraft Structures Lab

1. Study of an aircraft jet engine (Includes study of assembly of sub systems, various components, their functions, and operating principles)

Applications:

1. Understand the aircraft structures and materials.

Video link / Additional online information (related to module if any):

Jet Aircraft Propulsion by Prof. Bhaskar Roy and Prof. A. M. Pradeep, Department of Aerospace Engineering, IIT Bombay.

https://youtu.be/A0mo98peh6I

Module 4	L1,L2	10Hrs.
Power Plants:		

Basic ideas about piston, turboprop and jet engines - Use of propeller and jets for thrust production -

Comparative merits, Principles of operation of rocket, types of rockets and typical applications,

Exploration into space.

Laboratory Sessions/ Experimental learning:

Demo in Propulsion laboratory

- 5. Study the performance of propeller and jet engines.
- 6. Performance studies on a scaled jet engine
- 7. Measurement of nozzle flow.
- 8. Study of the flame lift up and fall back phenomenon for varied Air/Fuel ratio

Applications:

1. To understand principles of operation of aircraft power plants.

Video link / Additional online information (related to module if any):

Jet Aircraft Propulsion by Prof. Bhaskar Roy and Prof. A. M. Pradeep, Department of Aerospace

Engineering, IIT Bombay. For more details on NPTEL visit <u>http://nptel.iitm.ac.in</u>

https://youtu.be/69Lyna4jcc8

Module 5

L1,L2 10Hrs.

Aircraft Stability:

Forces on an aircraft in flight; static and dynamic stability; longitudinal, lateral and roll stability; necessary conditions for longitudinal stability; basics of aircraft control systems. Effect of flaps and stats on lift, control tabs, stalling, gliding, landing, turning, aircraft manoeuvres; stalling, gliding, turning. Simple problems on these.

Laboratory Sessions/ Experimental learning:Creating paper planes to have hands on experience of understanding the concepts

Applications: Identify the required performance characteristics of different class of aircraft Video link: https://nptel.ac.in/courses/101/101/101101079/ https://nptel.ac.in/courses/101/101/101101079/

Course outco	Course outcomes:			
Upon complet	Upon completion of the course, students will be able to:			
CO314.1.1 Review the historical aspects of Aviation				
CO314.1.2	Outline the basic Aircraft configuration and details			
CO314.1.3	Summarize the aircraft structures and materials.			
CO314.1.4	Illustrate the power units in Aircrafts and Rockets.			

CO314.1.5	Explain stability aspects of aeroplanes

Reference Books:				
1.	J.D Anderson, Introduction to Flight, McGraw Hill, 1995			
2.	Stephen A Brandt, Introduction to Aeronautics-A design perspective, AIAA Education series, 2004			
3.	Kermode.A.C, Mechanics of Flight, Himalayan Book, 1997			
4.	Kermode.A.C, Flight without Formulae, Pearson, 2009			

- Part B also covers the entire syllabus consisting of five questions having choices and may contain subdivisions, each carrying 16 marks. Students have to answer five full questions.
- One question must be set from each unit. The duration of examination is 3 hours.

					CO	.PO Mai	oping							
CO/PO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2
C01	3	2	1	1	1	1	1	1	1	1	1	1	1	1
C02	3	2	1	1	1	1	1	1	1	1	1	1	1	1
CO3	3	2	1	1	1	1	1	1	1	1	1	1	1	1
CO4	3	2	1	1	1	1	1	1	1	1	1	1	1	1
C05	3	2	1	1	1	1	1	1	1	1	1	1	1	1

High,3, Medium,2, Low,1

Course Title	Introduction to Helicopters	Semester	VI
Course Code	MVJ21AE642	CIE	50
Total No. of Contact Hours	40 L : T : P :: 3 :0 : 0	SEE	50
No. of Contact Hours/week	4	Total	100
Credits	3	Exam. Duration	3 Hours

1. Understand the basic elements, kinematics of helicopter. 2. Remember the equations of motions for helicopter. 3. Gain knowledge on aerodynamics of propeller. Module-1 L1, L2, L3 10 Hours
2. Remember the equations of motions for helicopter. 3. Gain knowledge on aerodynamics of propeller. Module-1 L1, L2, L3 10 Hours
3. Gain knowledge on aerodynamics of propeller. Module-1 L1, L2, L3 10 Hours
Module-1 L1, L2, L3 10 Hours
Introduction, Elements of a helicopter, Performance, Components, Vectors and Vector Resolutions.
Module-2L1, L2, L310Hours
Axis Systems, Kinematics and Flight Dynamics, Quaternions, Mass Properties, Equations of Motion.
Module-3L1, L2, L310Hours
Applied forces and moments, Longitudinal Equations of Motion, Atmosphere, Bernoulli's Equation,
Compressibility and Wing lift, Wing Drag.
Module-4L1, L2, L310Hours
Aerodynamic Velocity, Inertial Velocity, Wash Velocity, and Gusts, Aerodynamics of Airfoils, Wings, and Fins
Module-5L1, L2, L310Hours
Aerodynamics of Propellers, Propeller Analysis, Introduction to Aeroelastic Rotor Models, Rotor Downw
Modelling, Aerodynamic Interference, Engines Drive Trains, Controls, Landing Gear, Trimming.
Course outcomes:
CO1 1. Apply the basic elements, kinematics of helicopter.
CO2 2. Analyse the equations of motions for helicopter.
CO3 3. Implement aerodynamics of propeller.

Reference Books:

г

1	Introduction to Helicopter Aerodynamics by Wieslaw Zenon Stepniewski.
2	Fundamentals of Helicopter Dynamics by C. Venkatesan.
3	Basic Helicopter Aerodynamics by J Seddon

CO-PO M	lappin	g										
CO/PO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
C01	-	1	-	-	-	2	2	3	2	1	2	1
CO2	-	1	-	-	-	2	2	3	2	1	2	1
CO3	-	1	-	-	-	2	2	3	2	1	2	1
CO4	-	1	-	-	-	2	2	3	2	1	2	1
CO5	-	1	-	-	-	2	2	3	2	1	2	1

High-3, Medium-2, Low-1

Course Title	Introduction to Composite Structures	Semester	VI
Course Code	MVJ21AE643	CIE	50
Total No. of Contact Hours	40 L : T : P :: 30 :0 : 0	SEE	50
No. of Contact Hours/week	4	Total	100
Credits	3	Exam. Duration	3 Hrs.

Course objective is to:

This course will enable students to

1. Understand the properties and advantages of composite materials compared to conventional materials.

2. Evaluate the properties of polymer matrix composites with fiber reinforcements and to learn the fabrication methods used in composites

3. Gain the knowledge about Micro and macro mechanical properties of composite lamina and laminates

4. Understand the applications and future of composites

5. Learn the NDT and DT methods of Composites with applications.

Module 1	L1,L2,L3	8 Hrs.
Introduction to Composite Materials Definition, classification of composite materials, classification of rein short fibers, whiskers, long fibers composites. matrix materials – me (including thermoplastics and thermosets), Carbon-Carbon Composite Metal Matrix Composites: MMC with particulate and short fiber reinforcement, liquid and solid s stir casting, squeeze casting. Properties of MMCs, Applications of Al, M Laboratory Sessions/ Experimental learning:	nforcement - p etals, ceramics es tate processing g, Ti based MM	particulate, , polymers g of MMC – C
1.Determination of various composite materials by different	t types of fil	pers with
application		
Applications: Aircraft structural Parts, Automobile Sector and Many H	Engineering fiel	ds
Video link / Additional online information (related to module if a	ny):	
17. https://youtu.be/0kB0G6WKhKE?list=PLSGws 74K01-bdEEUI	ElQ9-obrujIKGI	Ehg – IIT
Kanpur		
Module 2	L1,L2,L3,	8 Hrs.
 Vacuum Bagging Process, Post Curing Process, Filament winding, Repultrusion, Pulforming, Autoclave Process Processing of Polymer Matrix Composites: Thermoplastic Polyminjection Moulding Process, Thermo-forming process. Post Processing of Composites – Adhesive bonding, drilling, cutting processing of Composites – Adhesive bonding, drilling, cutting process. Laboratory Sessions/ Experimental learning: Preparation of Composite laminates by Hand layup method Applications: Thermosets and Thermoplastics are used in Aircraft environment, Common applications include fans, grating, tanks, ducts, hood 	esin Transfer and the second s	Moulding, n process, corrosive binets.
Video link / Additional online information (related to module if a	ny):	
4. <u>Inteps.//youtu.be/trojexo/bzi</u> -ini koorkee	111212	0 Urc
Migra Machanical Debayian of a Lamina	ե1,Ե2,Ե3	0 1115.
 Micro-Mechanical Behavior of a Lamina Determination of elastic constants-Rule of mixtures, transformation of coordinates, micro-mechanics based analysis and experimental determination of material constants. Ultimate Strengths of a Unidirectional Lamina Macro-Mechanical Behavior of a Lamina: Hooke's law for different types of materials, Number of elastic constants, Two - dimensional relationship of compliance and stiffness matrix, Stress-Strain relations for lamina of arbitrary orientation, Numerical problems. 		

Laboratory Sessions/ Experimental learning:

1.Determination of Young's Modulus of a Composite beam

Applications: Basics of macro level elastic properties, Scales of analysis of composites. Unidirectional and Woven fibers

Video link / Additional online information (related to module if any):

11. <u>https://youtu.be/loyeZN5UQT8</u> - IIT Madras

Module 4	L1,L2,L3	8 Hrs.
Amplications and Estrum of Commonitor		

Applications and Future of Composites

Application developments – Aircrafts, missiles, space hardware, automobile, electrical and electronics, marine, recreational and sports equipment-future potential of composites.

Future of Composites:- General introduction and theory of nanocomposites- History of nanocomposites; Size and shape dependent properties and their uniqueness. Flexible Composites, High Temperature materials.

Laboratory Sessions/ Experimental learning:

1. Evaluate the mechanical properties of a lamina and a laminate

Applications: Specific Aircraft Structural components.

Video link / Additional online information (related to module if any):

7. https://www.youtube.com/embed/PzdCymgyZ6c - IIT Kanpur

Module 5	L1,L2	8 Hrs.

Composite Testing, Inspection & Quality Control: Determination of Mechanical properties of composite materials, Testing of composites – Interlaminar Shear testing, Fracture testing, Delamination, Raw material testing. Destructive & Non-Destructive Testing, Tensile, Compression, Flexural, Shear, Hardness; ultrasonic testing – A-B-C scan

Laboratory Sessions/ Experimental learning:

1. Determination of Defects in a composite by NDT Methods

Applications: NDT- DT Methods, Composites in Aerospace sector

Video link / Additional online information (related to module if any):

8. <u>https://youtu.be/ZMJ704vs-Q8</u> - IIT Kanpur

Course outcomes:

Upon completion of the course, students will be able to:

CO211.1	Compare the properties and select a material for the given application.
CO211.2	Analyse the properties of polymer matrix composites and Fabrication of Composite materials
CO211.3	Apply constitutive equations of <i>composite</i> materials and understand mechanical behavior at <i>micro and macro</i> levels.

CO211.4	Apply the composite materials for a specific application
CO211.5	Carry out various inspection in accordance with the established procedures and Differentiate various defect types and select the appropriate NDT methods for better evaluation

Reference	e Books:
1.	K.K Chawla , Composite Materials- Science and Engineering, IV edition, Springer International Publishing, 2019: ISBN: 978-3-030-28983-6
2.	Autar Kaw , Mechanics of Composites, II edition, Taylor & Francis Group CRC Press. 2006, ISBN:978-0-8493-1343-1
3.	R M Jones, – Mechanics of Composite Materials, 2 nd Edition, Taylor & Francis, 2015; ISBN:978-1560327127
4.	Ajay Kapadia , Non-Destructive Testing of Composite Materials, National Composites Network, Best Practices Guide, TWI Publications, 2006.

CIE Assessment:

CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation. Generally, there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of three tests

- Quizzes/mini tests (4 marks)
- Mini Project / Case Studies (8 Marks)
- Activities/Experimentations related to courses (8 Marks)

SEE Assessment:

- Question paper for the SEE consists two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.
- Part B also covers the entire syllabus consisting of five questions having choices and may contain subdivisions, each carrying 16 marks. Students have to answer five full questions.
- One question must be set from each unit. The duration of examination is 3 hours.

CO,PO Mapping														
CO/PO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2
C01	3	2	1	1	1	1	1	1	1	1	1	1	1	1
C02	3	2	1	1	1	1	1	1	1	1	1	1	1	1
CO3	3	2	1	1	1	1	1	1	1	1	1	1	1	1

CO4	3	2	1	1	1	1	1	1	1	1	1	1	1	1
C05	3	2	1	1	1	1	1	1	1	1	1	1	1	1

High,3, Medium,2, Low,1

Course Title	Aircraft Maintenance Repair and Overhaul	Semester	VI
Course Code	MVJ21AE66	CIE	50
Total No. of Contact Hours	20 L : T : P :: 1 :0 : 0	SEE	50
No. of Contact Hours/week	2	Total	100
Credits	1	Exam. Duration	3 Hrs.

The course objective is to:

- 1. Comprehend the fundamentals of maintenance and certification.
- 2. Acquire knowledge of documentation for maintenance.
- 3. Understand the AircraftManagement Maintenance.
- 4. Gain knowledge of Hanger maintenance on Aircraft and material support.
- 5. Acquire knowledge of maintenance safety and trouble shooting in Airlines.

Module 1

Fundamentals of Maintenance & Certification:

Types of maintenance, Redesign, Failure rate pattern, Other maintenance considerations. Aviation industry certification requirements, Type certificate (FAA form 8110.9), Airworthiness certificate (FAA form 8100-2), Aviation maintenance certifications, General, Airframe, Power plant, Avionics courses.

L1,L2

10Hrs.

Laboratory Sessions/ Experimental learning: A demo on maintenance procedure in wind tunnel lab. **Applications:** Apply the certification process in Aircraft industry.

Video link / Additional online information (related to module if any):

- 18. <u>https://www.youtube.com/watch?v=KEF2szWaEgg</u> Introduction about Aircraft Maintenance-NPTEL-IITK
- 19. <u>https://www.youtube.com/watch?v=CoLWYZP9BkY&list=PLExlUJZK1IOnUv8IeOXLk_njBYhc-Xh6V</u> –Aircraft Maintenance-NPTEL-IITK

20. <u>https://www.youtube.com/watch?v=H45vSzyiXH4</u> – Airplane Maintenance

Module 2	L1,L2	10Hrs.
Documentation for Maintenance		

Manufacturer's documentation, Airplane maintenance manual, Fault insulation manual, Illustrated parts									
catalogue, structural repair manual, wiring diagram manual, Master minimum equipment, Federal									
Aviation regulation (FAR), Advisory circulars, Airworthiness direction ATA document standards,									
Technical policies and procedure manuals (TPPM).									
Laboratory Sessions/ Experimental learning: A demo on Airplane	e maintenan	ce manual							
documentation procedure.									
Applications: Apply the documentation standard procedures for maintenance	in aircraft.								
Video link / Additional online information (related to module if any):									
5. <u>https://www.youtube.com/watch?v=z6607nep8iU-Aircraft</u> - Air worth	iness require	d Inspection							
&Documentation									
6. <u>https://www.youtube.com/watch?v=QxdhMa25MGw</u> – Aircraft structu	ire repair ma	nual							
7. <u>https://www.youtube.com/watch?v=WTk3bT01M7c</u> –Aircraft Mainten	ance guidelin	nes							
Module 3	L1,L2	10Hrs.							
· · · ·		•							
Aircraft Management Maintenance									
Structure, Role of aviation management, Line supervisory management, Manage	ement areas c	f concern in							
airlines, Manager of overhaul shops, Line maintenance control centre flight line	e (preflight&	post flight),							
Aircraft Logbook, Maintenance crew skill requirements.									
Laboratory Sessions/ Experimental learning: A demo on aircraft logbook.									
Applications: Implement the aviation management in airlines.									
Video link / Additional online information (related to module if any):									
12. <u>https://www.youtube.com/watch?v=f6F_ecq1njc</u> – Aviation management	nt								
13. <u>https://www.youtube.com/watch?v=P7GfDmd7Nqw</u> -Aircraft line main	tenance chec	k example							
Module 4	L1,L2	10Hrs.							
Hanger Maintenance on Aircraft & Material Support		I							
Introduction, organization of hanger maintenance, Non- routine item, parts ava	ailability, can	nibalization,							
Types of shops- sheet metal shop, Aircraft interior shop, Engine shop, Avioni	cs shop, grou	and support							
equipment, outsourcing of shop maintenance work, operation of overhaul shops, Material support,									
Material management inventory control, Support functions of material, Parts	ordering, Sto	orage, Issue,							
control and handling, Parts receiving quality control, calibration program, stock	k level adjust	ments, shelf							
life, exchanges, warranty & modifications of parts.									
Laboratory Sessions/ Experimental learning: A demo on maintenance on pro	opulsion lab.								
Applications: Apply the maintenance system in hanger maintenance, engine sho	op, avionics s	nop etc., and							
perform the materials management and inventory control in aircraft industry.									

Video link / Additional online information (related to module if any):

- 8. <u>https://www.youtube.com/watch?v=-zCTFfn-Fyk</u> Inside an Aircraft Maintenance hanger
- 9. <u>https://www.youtube.com/watch?v=TCThd0Vr0cQ</u> –Aircraft Maintenance work
- 10. <u>https://www.youtube.com/watch?v=U44RQAzf4NI</u> Introduction to Inventory and materials management

10Hrs.

Module 5 L1,L2

Maintenance Safety & Trouble shooting

Safety regulations, occupational safety and health standards maintenance safety program, Airlines safety management, General safety rules, Accident & injury reporting, Hazardous materials storage and handling aircraft furnishing practices trouble shooting, Knowledge of malfunctions.

Laboratory Sessions/ Experimental learning: A demo on safety system in wind tunnel lab.

Applications: Apply the safety regulations, OSHA safety programs and troubleshooting systems in aircraft.

Video link / Additional online information (related to module if any):

- 9. <u>https://www.youtube.com/watch?v=aRA7QR2Mr_w</u> Airlines safety management system
- 10. <u>https://www.youtube.com/watch?v=5bc1qBtkRWA</u> -How do Airline store aircraft?
- 11. <u>https://www.youtube.com/watch?v=89IWlG0Uhz0</u> trouble shooting procedure for the aircraft systems

Course outcomes:

Upon completion of the course, students will be able to:

CO313.1.1	Apply the certification procedure for aircraft maintenance.
CO313.1.2	Classify the aircraft maintenance manual and logbook.
CO313.1.3	Apply the management system in aircraft maintenance.
CO313.1.4	Examine the quality control and calibration on Aircraft.
CO313.1.5	Investigate the safety regulations and rules in Aircraft.

Reference Books:1.Harry A Kinnison, Tariq Siddiqui, Aviation Maintenance Management, Mc Graw Hill
education (India) Private Ltd, 2013.2.Kroes, Watkins, Delp, Aircraft maintenance and repair, Mc Graw Hill,2013.3.Larry Reithmaier, Aircraft Repair Manual, Palmar Books, Marquette,1992.4.Brimm. DJ,Bogges, HE,AircraftMaintenance,Pitman publishing corp,London,1952.

CIE Assessment	:
----------------	---

CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation. Generally, there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of three tests

- Quizzes/mini tests (4 marks)
- Mini Project / Case Studies (8 Marks)
- Activities/Experimentations related to courses (8 Marks)

SEE Assessment:

- Question paper for the SEE consists two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.
- Part B also covers the entire syllabus consisting of five questions having choices and may contain subdivisions, each carrying 16 marks. Students have to answer five full questions.
- One question must be set from each unit. The duration of examination is 3 hours.

C0/	РО	PO	P01	P01	P01	PSO	PSO							
PO	1	2	3	4	5	6	7	8	9	0	1	2	1	2
C01	3	2	2	2	1	1	-	-	1	1	1	1	1	2
CO2	3	2	2	1	1	1	-	-	1	1	1	1	-	-
CO3	3	2	2	2	1	1	-	-	1	1	1	1	1	1
CO4	3	2	2	2	1	1	-	-	1	1	2	1	-	-
CO5	3	2	2	2	1	1	-	-	1	1	1	1	1	1

High,3, Medium,2, Low,1
MVJ College of Engineering, Whitefield, Bangalore 560067

An Autonomous Institution, Affiliated to VTU, Belagavi

Scheme of Teaching and Examination Outcome Based Education (OBE) and Choice Based Credit System (CBCS) Effective from the academic year 2021-22 Department of Aeronautical Engineering

Semester VII

Sl.		Course	Course Title	BoS	Teaching hrs./week Examination			Credit					
No.	Туре	Code			Lecture	Tutorial	Practica	Self-	Duration	CIE	SEE	Total	S
					L	Т	1	Study	Hrs.	Marks	Marks	Marks	
							Р	S					
1	IPCC	MVJ21AE71	Aircraft Design (+Design		3	-	2	-	3	100	100	200	4
			Modelling and Analysis Lab)										
2	PEC	MVJ21AE72X	Professional Elective-II		3	-	-	-	3	50	50	100	3
3	PEC	MVJ21AE73X	Professional Elective-III		3	-	-	-	3	50	50	100	3
4	OEC	MVJ21AE74X	OEC 3		3	-	-	-	3	50	50	100	3
5	PRJ	MVJ21AEPR76	Project Phase I		-	-	4		3	50	50	100	2
6	AEC	MVJ21AE77	AEC (online minimum of 4 weeks		1	-	-	-	2	50	50	100	1
			duration)										
Total			13	-	6			350	350	700	16		

Course Code	Professional Elective-II	Course Code	Professional Elective-III
MVJ21AE721	Helicopter	MVJ21AE731	Flight Testing
	Aerodynamics		
MVJ21AE722/	Composite Structures	MVJ21AE732	Fatigue and Fracture Mechanics

MVJ21AS722			
MVJ21AE723	Rocket and Missiles	MVJ21AE733/ MVJ21AS733	Artificial Intelligence and Robotics
MVJ21AE724	Experimental Stress Analysis	MVJ21AE734	Unmanned Aerial Vehicles
MVJ21AE725/	Control Engineering	MVJ21AE735/	Guidance Navigation and Control
MVJ21AS725		MVJ21AS735	

Course Code	Open Elective-III
MVJ21AE741	Aircraft Propulsion
MVJ21AE742	Aircraft Transport
	System
MVJ21AE743	Rocket and Missiles
MVJ21AE744	Aircraft Systems and
	Instrumentation
MVJ21AE745	Unmanned Aerial
	Vehicles

Course Title	Aircraft Design (+Design Modelling and Analysis Lab)	Semester	VII
Course Code	MVJ21AE71	CIE	50
Total No. of Contact Hours	50 L:T:P::3:1:0	SEE	50
No. of Contact Hours/week	5	Total	100
Credits	4	Exam. Duration	3 Hrs.

The course objective is to:

- 1. Understand the overview of Aircraft design process
- 2.Acquire knowledge of configuration layout and design of structural components
- 3.Gain knowledge of engine selection.
- 4.Comprehend the stability and control and sizing of control surfaces.
- 5.Understand the design aspects of subsystems

Module 1	L1,L2	10 Hrs.

Overview of Design Process

Introduction, Requirements, Phases of design, Conceptual Design Process, Initial Sizing, Take-off weight build up, Empty weight estimation, Fuel fraction estimation, Take- off weight calculation, Thrust to Weight Ratio & Wing Loading: Thrust to Weight Definitions, Statistical Estimate of T/W. Thrust matching, spread sheet in design, Wing Loading and its effect on Stall speed, Take-off Distance, Catapult take-off, and Landing Distance. Wing Loading for Cruise, Loiter, Endurance, Instantaneous Turn rate, Sustained Turn rate, Climb, & Glide, Maximum ceiling.

Laboratory Sessions/ Experimental learning:Design and modelling of the aircraft components based on the requirements chosen in CAAd lab

Applications: Apply the design requirements for an aircraft in response to requirements based on fundamental principles and statistical data in the initial phase of design.

Video link / Additional online information (related to module if any):

- 1. https://nptel.ac.in/courses/101/106/101106035/
- 2. https://nptel.ac.in/courses/101/106/101106035/

Module 2	L1,L2,	10 Hrs.

Configuration Layout & loft

Conic Lofting, Conic Fuselage Development, Conic Shape Parameter, Wing-Tail Layout & Loft. Aerofoil Linear Interpolation. Aerofoil Flat-wrap Interpolation. Wing aerofoil layout-flap wrap. Wetted area determination. Special considerations in Configuration Layout: Aerodynamic, Structural, Delectability. Crew station, Passenger, and Payload arrangements. Design of Structural Components: Fuselage, Wing, Horizontal & Vertical Tail. Spreadsheet for fuselage design. Tail arrangements, Horizontal & Vertical Tail Sizing. Tail Placement. Loads on Structure. V-n Diagram, Gust Envelope. Loads distribution, Shear and Bending Moment analysis.

Laboratory Sessions/ Experimental learning:Structural analysis and Aerodynamic analysis in Ansys lab

Applications: Analyse the various constraints coming from specifications and choose key parameters (total weight, wing plan form, thrust/power required etc.)

Video link / Additional online information (related to module if any):

1.https://nptel.ac.in/courses/101/106/101106035/ 2.https://nptel.ac.in/courses/101/106/101106035/

3.https://nptel.ac.in/courses/101/106/101106035/#

L1,L2 10 Hrs.

Engine Selection & Flight Vehicle Performance

Turbojet Engine Sizing, Installed Thrust Correction, Spread Sheet for Turbojet Engine Sizing. Propeller Propulsive System. Propeller design for cruise. Take-off, Landing & Enhanced Lift Devices: - Ground Roll, Rotation, Transition, Climb, Balanced Field Length, Landing Approach, Braking. Enhanced lift design -Passive & Active

Laboratory Sessions/ Experimental learning: Modelling of engine selected in CAAD lab

Applications:Compare different engine configurations and choose the design which meets the requirements.

Video link / Additional online information (related to module if any):

1. https://nptel.ac.in/courses/101101002/

Static Stability & Control: Longitudinal Static Stability, Pitch Trim Equation. Effect of Airframe components on Static Stability. Lateral stability- Contribution of Airframe components. Directional Static stability. Contribution of Airframe components. Aileron Sizing, Rudder Sizing. Flying qualities. Cooper Harper Scale. Environmental constraints, Aerodynamic requirements.

Laboratory Sessions/ Experimental learning: Performance analysis in Matlab

Applications: Calculate and compare performance and stability characteristics against design goals and generate a layout

Video link / Additional online information (related to module if any):

3. https://nptel.ac.in/courses/101104062/

4. https://nptel.ac.in/courses/101104062/#

|--|

Design Aspects of Subsystems: Flight Control system, Landing Gear and subsystem, Propulsion and Fuel System Integration, Air Pressurization and Air Conditioning System, Electrical & Avionic Systems, Structural loads, Safety constraints, Material selection criteria. Applications:Calculate and compare performance and stability characteristics against design goals and generate a layout

Laboratory Sessions/ Experimental learning: Assemble the CAD models of the components and verify performance using CFD tool in Ansys lab.

Applications: Analyse design issues for aerodynamics, propulsion, structure, weights, stability, cost, and performance and generate a layout.

Video link / Additional online information (related to module if any):

https://nptel.ac.in/content/storage2/nptel_data3/html/mhrd/ict/text/101108047/lec29.pdf

Lourse outcomes:					
Upon completi	Upon completion of the course, students will be able to:				
CO404.2.1	Define a configuration for given specifications.				
CO404.2.2	Evaluate configuration layout & airframe components sizing				
CO404.2.3.	Determine Engine selection and flight performance				
CO404.2.4	Evaluate the stability and control and sizing of control surfaces.				
CO404.2.5	Analyse the design aspects of subsystems				

Reference Books:				
1.	Daniel P. Raymer, Aircraft Design -A Conceptual Approach, AIAA, education Series, IVth Edition, 2006			
2.	Thomas C Corke , Design of Aircraft, Pearson Edition. Inc, 2003			
3.	J Roskam , Airplane Design -VOL 1 to 9			
4.	John Fielding , Introduction to Aircraft Design, Cambridge University Press, 2009			
CIE Assessment:				

CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation. Generally, there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of three tests

- Quizzes/mini tests (4 marks)
- Mini Project / Case Studies (8 Marks)
- Activities/Experimentations related to courses (8 Marks)

SEE Assessment:

- xxv. Question paper for the SEE consists two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.
- xxvi. Part B also covers the entire syllabus consisting of five questions having choices and may contain sub-divisions, each carrying 16 marks. Students have to answer five full questions.

xxvii. One question must be set from each unit. The duration of examination is 3 hours.

	CO,PO Mapping													
CO/P	PO	PO	PO	PO	PO	PO	PO	PO	PO	P01	P01	P01	PSO	PSO
0	1	2	3	4	5	6	7	8	9	0	1	2	1	2
C01	3	2	2	2	0	0	0	0	0	0	0	0	3	1
CO2	3	3	2	2	0	0	0	0	0	0	0	0	3	1
CO3	3	3	3	3	0	0	0	0	0	0	0	0	3	1
CO4	3	3	3	3	0	0	0	0	0	0	0	0	3	1
C05	3	3	3	2	0	0	0	0	0	0	0	0	3	1

High,3, Medium,2, Low,1

Course Title		Aircraft Design (+Design Modelling and Analysis Lab)	Semester	VII							
•	Course objective is to:										
•	Understand the procedure to draw the geometric models of symmetric, cambered aerofoil,										
	nozzle, wingand other structures.										
•	Acquire the knowledge of types of meshing.										
•	Understand the basics of flo	ow and stress analysis.									
Sl No	Experiment Name		RBT Leve	el Hours							

1	Modeling of Symmetrical/Cambered Aerofoil Geometry , and	L1,L2,L3	03
	Generation of Body Fitting AdaptiveMesh.		
2	Modeling of 2-D Incompressible and Invisicd Flow over	L1,L2,L3	03
	Symmetrical/Cambered Aerofoil, and Plottingof Pressure distribution		
	and Velocity vectors for Subsonic/Supersonic Mach numbers.		
3	Modeling of 2-D Compressible and Viscid Flow over	L1,L2,L3	03
	Symmetrical/Cambered Aerofoil, and Plotting ofPressure distribution		
	and Velocity vectors for Subsonic Mach numbers.		
4	Isentropic Flow Analysis in a 2-D Subsonic Diffuser and a Subsonic	L1,L2,L3	03
	Nozzle.		
5	Isentropic Flow Analysis in a 2-D Supersonic Diffuser and a	L1,L2,L3	03
	Supersonic Nozzle.		
6	Geometric Modeling and Mesh Generation of a 2-D Convergent-	L1,L2,L3	03
	Divergent Nozzle and Analyses of flow for Adiabatic Conditions		
	(Fanno Flow).		
7	Geometric Modeling and Mesh Generation of a 2-D Pipe and	L1,L2,L3	03
	Modeling of Steady/Unsteady Heat Convection and Conduction		
	(Rayleigh Flow).		
8	Structural Modeling of Sandwich Beam of Rectangular Cross-	L1.L2.L3	03
	section and Analyses for Stress for Unsymmetrical bending case		
9	Structural Modeling and Stress Analysis of a Torsion Box of a Wing.	L1,L2,L3	03
10	Structural Modeling and Stress Analysis of a Fuselage Frame	L1 L2 L3	03
		11,12,100	00
11	Structural Modeling and Stress Analysis of a Tapered I-Section Spar.	L1,L2,L3	03
12	Determine the Natural frequency and Mode shapes of a Cantilever	L1 L2 L3	03
12	been under IIDI	11,12,115	05
13	A Plate fixed at one end has a hole in centre and has varying	L1,L2,L3	03
	thickness, Determine stresses developeddue to applied static loads in		
	vertical direction.		

14	A Tapered Plate fixed at one end has a hole in centre and has varying thickness, determine stressesdeveloped due to applied static loads in vertical direction.	L1,L2,L3	03					
Course	outcomes:							
C01	Draw the geometric models of symmetric, cambered aerofoil, nozzle, wing and other structures.							
CO2	Apply different types of meshing.							
CO3	Perform the flow and stress analysis.							

CO-PO Mapping												
CO/PO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
C01	3	3	3	3	3	1	1	1	1	1	1	1
CO2	3	3	3	3	3	1	1	1	1	1	1	1
CO3	3	3	3	3	3	1	1	1	1	1	1	1

High-3, Medium-2, Low-1

`Course Title	HELICOPTER AERODYNAMICS	Semester	VII
Course Code	MVJ21AE721	CIE	50
Total No. of Contact Hours	40 L : T : P :: 3 :0 : 0	SEE	50
No. of Contact Hours/week	4	Total	100
Credits	3	Exam. Duration	3 Hrs.

The course objective is to:

- 1. Comprehend the basic concepts of helicopter dynamics.
- 2. Acquire knowledge of helicopter performance and rotor bearing system.

- 3. Understand the Aerodynamics of Rotor Airfoil and rotor wake phenomenon
- 4. Gain knowledge on the stability and control of Helicopter and its flight test requirements
- 5. Comprehend the design of Helicopter and its standards and specifications

Module 1 L1, L2 10Hrs.

Introduction: History of helicopter flight. Fundamentals of Rotor Aerodynamics; Momentum theory analysis in hovering flight. Disk loading, power loading, thrust and power coefficients. Figure of merit, rotor solidity and blade loading coefficient. Power required in flight. Axial climb, descent, and autorotation.

Blade Element Analysis: Blade element analysis in hovering and forward flight. Rotating blade motion. Types of rotors. Concept of blade flapping, lagging and coning angle. Equilibrium about the flapping hinge, lead/lag hinge, and drag hinge.

Laboratory Sessions/ Experimental learning:

Study of Performance of Propeller

Applications:

Understand the fundamentals of Helicopters dynamics

Video link / Additional online information (related to module if any):

21. NPTEL- Introduction to Helicopter Aerodynamics & Dynamics

https://nptel.ac.in/courses/101/104/101104017/

Module 2	L1, L2	10Hrs.

Basic Helicopter Performance: Forces acting on helicopters in forward flight. Methods of achieving translatoryflight. Controlling cyclic pitch: Swash-plate system. Lateral tilt with and without conning. Lateral and longitudinal asymmetry of lift in forward flight. Forward flight performance- total power required effects of gross weight, effect of density altitude. Speed for minimum power, and speed for maximum range. Factors affecting forward speed, and ground effects.

Laboratory Sessions/ Experimental learning:

Study of the Surface pressure distribution on a 2-D cambered airfoil

Applications:

Study the performance of helicopter and the mechanism of swash plate assembly

Video link / Additional online information (related to module if any):

1. NPTEL- Introduction to Helicopter Aerodynamics & Dynamics

https://nptel.ac.in/courses/101/104/101104017/

Module 3	L1, L2	10Hrs.								
Rotor Airfoil Aerodynamics: Rotor airfoil requirements, effects of Reynolds number and Mach number.										
Airfoil shape definition, Airfoil pressure distribution. Pitching moment	ıt. Maximum	lift and stall								
characteristics, high angle of attack range.										

Rotor Wakes and Blade Tip Vortices: Flow visualization techniques, Characteristics of rotor wake in hover, and forward flight. Other characteristics of rotor wake. Laboratory Sessions/ Experimental learning: Smoke Flow visualization studies on 2-D airfoil and Circular cylinder Tuft Flow visualization studies on 2-D airfoil **Applications:** Learn the aerodynamics of helicopter rotor Video link / Additional online information (related to module if any): 1. NPTEL- Introduction to Helicopter Aerodynamics & Dynamics https://nptel.ac.in/courses/101/104/101104017/ Module 4 10Hrs. L1,L2 Helicopter Stability and Control. Introductory concepts of stability.Forward speed disturbance, vertical speed disturbance, pitching angular velocity disturbance, side-slip disturbance, yawing disturbance. Static stability of helicopters: longitudinal, lateral-directional and directional. Dynamic stability aspects. Main rotor and tail rotor control. Flight and Ground Handling Qualities-General requirements and definitions. Control characteristics, Levels of handling qualities. Flight Testing- General handing flight test requirements and, basis of limitations. Laboratory Sessions/ Experimental learning: Calculation of aerodynamic coefficients forces acting on a model aircraft using force balance at various angles of incidence **Applications**: Understand the stability & control aspects of helicopter and flight test requirements Video link / Additional online information (related to module if any): 1. NPTEL- Introduction to Helicopter Aerodynamics & Dynamics https://nptel.ac.in/courses/101/104/101104017/ Module 5 L1. L2 10Hrs. Standards and Specifications: Scope of requirements. General and operational requirements. Military derivatives of civil rotorcraft. Structural strength and design for operation on specified surfaces. Rotorcraft vibration classification. **Conceptual Design of Helicopters:** Overall design requirements. Design of main rotors-rotor diameter, tip speed, rotor solidity, blade twist and aerofoil selection, Fuselage design, Empennage design, Design of tail rotors, High speed rotorcraft. Laboratory Sessions/ Experimental learning:

Measurement of typical boundary layer velocity profile on the airfoil from leading edge to trailing edge **Applications**:

Learn the design requirements of helicopter and its standards & specifications

Video link / Additional online information (related to module if any):

1. NPTEL- Introduction to Helicopter Aerodynamics & Dynamics

https://nptel.ac.in/courses/101/104/101104017/

Course outcomes:

Upon completion of the course, students will be able to:

CO312.1.1	Apply the basic concepts of helicopter dynamics.
CO312.1.2	Evaluate the helicopter performance.
CO312.1.3	Outline the Aerodynamics of rotor Airfoil and rotor wake
CO312.1.4	Generalize the helicopter stability and control and its test requirements
CO312.1.5	Illustrate the design of a helicopter and its standards and specifications

Reference Boo	bks:
1.	J. Gordon Leishman, Principles of Helicopter Aerodynamics, Cambridge University Press,
	2002.
2.	George H. Saunders, Dynamics of Helicopter Flight, John Wiley & Sons, Inc, NY,1975.
3	W Z Stepniewski and C N Keys, Rotary Wing Aerodynamics, Dover Publications,
5.	Inc, New York, 1984.
4	ARS Bramwell, George Done, and David Balmford, Helicopter Dynamics, 2nd Edition,
4.	Butterworth-Heinemann Publication, 2001.

CIE Assessment:							
CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation. Generally,							
there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA							
marks to be awarded will be the average of three tests							
- Quizzes/mini tests (4 marks)							
- Mini Project / Case Studies (8 Marks)							
- Activities/Experimentations related to courses (8 Marks)							
SEE Assessment:							
- Question paper for the SEE consists two parts i.e. Part A and Part B. Part A is compulsory and							

consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.

- Part B also covers the entire syllabus consisting of five questions having choices and may contain sub-divisions, each carrying 16 marks. Students have to answer five full questions.
- One question must be set from each unit. The duration of examination is 3 hours.

CO-PO-PSO Mapping														
CO/P	PO1	P02	P03	P04	P05	P06	P07	P08	PO	P01	P01	P01	PSO	PSO
0	101								9	0	1	2	1	2
C01	3	2	2	1	-	-	-	1	1	1	1	1	-	-
CO2	3	2	2	1	-	-	-	1	1	1	1	1	-	-
CO3	3	2	2	1	-	-	-	1	1	1	1	1	-	-
C04	3	2	2	1	-	-	-	1	1	1	1	1	-	-
C05	3	2	2	1	-	-	-	1	1	1	1	1	3	3

High,3, Medium,2, Low,1

Course Title	COMPOSITE STRUCTURES	Semester	VII
Course Code	MVJ21AE722/ MVJ21AS722	CIE	50
Total No. of Contact Hours	40 L:T:P::3:0:0	SEE	50
No. of Contact Hours/week	4	Total	100
Credits	3	Exam. Duration	3 Hrs.

The course objective is to:

1. Understand the properties and advantages of composite materials compared to conventional materials.

2.Comprehend the properties of polymer matrix composites with fibre reinforcements and to learn the fabrication methods used in composites

3. Gain knowledge about the Micro and macro mechanical properties of composite lamina and laminates

4.Understand the failure theories for predicting the failure of a composite lamina

5. Learn the NDT and DT methods of Composites with Composite applications

Module 1	L1,L2,L3	10Hrs.
Introduction to Composite Materials		
Definition, classification of composite materials, classification of reinforcement	nt - particulate, s	short fibers,
whiskers, long fibers composites. matrix materials – metals, ceran	nics, polymers	(including
thermoplastics and thermosets), Carbon-Carbon Composites		
Metal Matrix Composites:		
MMC with particulate and short fiber reinforcement, liquid and solid state	e processing of	MMC – stir
casting, squeeze casting. Properties of MMCs, Applications of Al, Mg, Ti based	ММС	
Laboratory Sessions/ Experimental learning:		
Determination of various composite materials by different types of fibe	rs with applica	tion
Applications: Aircraft structural Parts, Automobile Sector and Many Engine	ering fields	
Video link / Additional online information (related to module if any):		
22. https://youtu.be/0kB0G6WKhKE?list=PLSGws 74K01-bdEEUElQ9-c	<u>brujIKGEhg</u> – II	T Kanpur
Module 2	L1,L2,L3,	10Hrs.
Processing of Polymer Matrix Composites: Thermoset Polymers, Hand lay	ıp Process, Vacu	um Bagging
Process, Post Curing Process, Filament winding, Resin Transfer Moulding	1g , Pultrusion,	Pulforming,
Autoclave Process		
Processing of Polymer Matrix Composites: Thermoplastic Polymers, E	xtrusion proces	s, Injection
Moulding Process, Thermo-forming process.		
Post Processing of Composites – Adhesive bonding, drilling, cutting proces	ses.	
Laboratory Sessions/ Experimental learning:		
Preparation of Composite laminates by Hand layup method		
Applications: Thermosets and Thermoplastics are used in Aircraft Construct	ion, corrosive er	ivironment,
Common applications include fans, grating, tanks, ducts, hoods, pumps and ca	abinets.	
Video link / Additional online information (related to module if any):		
https://youtu.be/tP8JCX87DzI - IIT Roorkee		
Module 3	L1,L2,L3	10Hrs.
Micro-Mechanical Behavior of a Lamina		
Determination of elastic constants-Rule of mixtures, transformation of coo	ordinates, micro	-mechanics
based analysis and experimental determination of material constants.	Ultimate Stre	ngths of a
Unidirectional Lamina		
Macro-Mechanical Behavior of a Lamina:		

Hooke's law for different types of materials, Number of elastic constants, Two - dimensional relationship of compliance and stiffness matrix. Global and local axis for angle lamina, Stress-Strain relations for lamina of arbitrary orientation, Numerical problems.

Laboratory S	essions/ Experimental learning:					
Determination	Determination of Young's Modulus of a Composite beam					
Applications	Applications: Basics of macro level elastic properties, Scales of analysis of composites. Unidirectional and					
Woven fibers						
Video link / A	dditional online information (related to module if any):					
https://youtu	<u>be/loyeZN5UQT8</u> - IIT Madras					
Module 4		L1,L2,L3	10Hrs.			
Failure Theo	ry					
Different Str	engths of Composite Lamina,Failure of Composite, Tsai-Hi	ll, Tsai-Wu, Max	Stress and			
Max Strain the	eories					
Classical plate	theory- Stress and strain variation in a laminate- Resultant for	rces and momer	nts- A B & D			
matrices- Stre	ngth analysis of a laminate.					
Laboratory S	essions/ Experimental learning:					
Evaluate the	mechanical properties of a lamina and a laminate					
Applications	Prediction of failure of composite, load analysis methodology.					
Video link / A	Additional online information (related to module if any):					
https://youtu	be/6CLEWA2WNqM - IIT Madras					
Module 5 L1,L2 10Hrs.						
Inspection &	Quality Control: Destructive & Non-Destructive Testing, Ten	sile, Compressic	on, Flexural,			
Shear, Hardne	Shear, Hardness; ultrasonic testing – A-B-C scan					
Applications	of Composites Materials					
Automobile, A	ircrafts, missiles, Space hardware, Electrical and electronics	, marine, recre	ational and			
Sports equipment, future potential of composites.						
Laboratory Sessions/ Experimental learning:						
Determination	n of Defects in a composite by NDT Methods					
Applications	NDT- DT Methods, Composites in Aerospace sector					
Video link / A	dditional online information (related to module if any):					
https://youtu	<u>be/ZMJ704vs-Q8</u> - IIT Kanpur					
Course outco	mes:					
Upon complet	ion of the course, students will be able to:					
CO305.2.1	Compare the properties and select material for the given appl	ication.				
CO305.2.2	Analyse the properties of polymer matrix composites and	Fabrication of	Composite			
	materials					
CO305.2.3	Apply constitutive equations of <i>composite</i> materials and	lunderstand	mechanical			
	behaviour at micro and macro levels.					

CO305.2.4	Design and failure analysis for manufacturing composite materials and Determine
	stresses and strains relation in composites materials.
CO305.2.5	Carry out various inspectionsin accordance with the established procedures and
	differentiate various defect types and select the appropriate NDT methods for better
	evaluation

Reference Boo	bks:
1.	K.K Chawla, Composite Materials- Science and Engineering, IV edition, Springer
	International Publishing, 2019: ISBN: 978-3-030-28983-6
2	Autar Kaw, Mechanics of Composites, II edition, Taylor & Francis Group CRC Press. 2006,
2.	ISBN:978-0-8493-1343-1
3	R M Jones, Mechanics of Composite Materials, 2 nd Edition, Taylor & Francis, 2015;
5.	ISBN:978-1560327127
4	Ajay Kapadia, Non-Destructive Testing of Composite Materials, National Composites
4.	Network, Best Practices Guide, TWI Publications, 2006.

CIE Assessment:

CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation. Generally, there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of three tests

- Quizzes/mini tests (4 marks)
- Mini Project / Case Studies (8 Marks)
- Activities/Experimentations related to courses (8 Marks)

SEE Assessment:

- Question paper for the SEE consists two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.
- Part B also covers the entire syllabus consisting of five questions having choices and may contain sub-divisions, each carrying 16 marks. Students have to answer five full questions.
- One question must be set from each unit. The duration of examination is 3 hours.

					CO,F	PO Ma	pping							
CO/P	PO	PO	PO	PO	PO	PO	PO	PO	PO	P01	P01	P01	PSO	PSO
0	1	2	3	4	5	6	7	8	9	0	1	2	1	2

C01	3	1	2	1	2	2	1	2	2	2	2	2	1	1
CO2	3	1	3	2	2	2	2	2	2	2	2	2	1	1
CO3	3	3	3	3	2	2	1	2	2	2	1	1	1	1
C04	3	3	3	3	2	2	1	2	2	2	1	1	1	1
C05	3	1	3	2	2	2	2	2	2	2	2	1	1	1

High,3, Medium,2, Low,1

Sem	ester: VII						
	ROCKETS AND MISSILES						
Cou	rse Code:	MVJ21AE723	CIE Marks:100				
Crea	lits:3 L:T:P:S:	3:0:0:0	SEE Marks: 100				
Hou	rs:	40 Hours	SEE Duration: 3 Hrs				
Cou	rse Learning Objectives: The stu	idents will be able	e to				
1	Basics of Rockets and Missiles	is an elective co	ourse offered in 5 th semester				
Aeronautical Engineering curriculum.							
2	This subject covers extensively	regarding design	and analysis of rockets and				
2	missiles.						
2	The different types of Airframe co	omponents, types o	of propulsion system, and types				
3	of guidance systems are also cove	ered in this subject.					
	This subject will make student to	o understand advar	nced problems facing in launch				
4	vehicles and missiles.						
5							

UNIT-I INTRODUCTION

Space launch Vehicles and military missiles, function, types, role, mission, mission profile, thrust profile, propulsion system, payload, staging, control and guidance requirements, performance measures, design, construction, operation, similarities and differences. Some famous space launch vehicles and strategic missiles.

8

Applications:

Web Link and Video Lectures:

https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-512-rocketpropulsion-fall-2005/

https://www.isro.gov.in/launchers

UNIT-II

Solid Propellant Rocket Motor Systems:Solid Propellant rocket motors, principal8features, applications.Solid propellants, types, composition, properties, performance.Hrs

Propellant grain, desirable properties, grain configuration, preparation, loading, structural design of grain. Liners, insulators and inhibitors, function, requirements, materials. Rocket motor casing – materials. Nozzles, types, design, construction, thermal protection. Igniters, types, construction. Description of modern solid boosters I) Space Shuttle SRB, II) the Arienne SRB

Liquid Propellant Rocket Motor Systems: Liquid propellants, types, composition, properties, performance. Propellant tanks, feed systems, pressurization, turbo-pumps, valves and feed lines, injectors, starting and ignition. Engine cooling, support structure. Control of engine Starting and thrust build up, system calibration, integration and optimisation – safety and environmental concerns. Description of the space shuttle main engine. Propellant slosh, propellant hammer, geysering effect in cryogenic rocket engines.

Applications:

Web Link and Video Lectures:

https://www.esa.int/Our Activities/Space Transportation/Launch vehicles/Ariane 5

https://www.nasa.gov/centers/glenn/about/history/lvpo.html

UNIT-III

AERODYNAMICS OF ROCKETS AND MISSILES

Classification of missiles. Airframe components of rockets and missiles, Forces acting on a missile while passing through atmosphere, method of describing aerodynamic forces and moments, lift and drag forces, drag estimation, body upwash and downwash in missiles. Rocket dispersion, re-entry body design considerations.

8

Applications:

Web Link and Video Lectures:

https://www.nasa.gov/connect/ebooks/aeronautics ebooks archive 1.html

UNIT-IV

LAUNCH VEHICLE DYNAMICS & ATTITUDE CONTROL OF ROCKETS	8
Launch Vehicle Dynamics: Tsiolskovsky's rocket equation, range in the absence of	Hrs
gravity, vertical motion in the earth's gravitational field, inclined motion, flight path at	
constant pitch angle, motion in the atmosphere, the gravity turn – the culmination	
altitude, multi staging. Earth launch trajectories – vertical segment, the gravity turn,	
constant pitch trajectory, orbital injection. Actual launch vehicle trajectories, types.	
Examples, the Mu 3-S-II, Ariane, Pegasus launchers. Reusable launch vehicles, future	
launchers, launch assist technologies.Λ	
Attitude Control Of Rockets And Missiles: Rocket Thrust Vector Control – Methods of Thrusts Vector Control for solid and liquid propulsion systems, thrust magnitude control, thrust termination; stage separation dynamics, separation techniques Applications Web Link and Video Lectures: http://nptel.ac.in/courses/101104019/	

UNIT-V

ROCKET TESTING AND MATERIALS	8
Rocket Testing: Ground Testing and Flight Testing, Types of Tests facilities and safeguards, monitoring and control of toxic materials, instrumentation and data management. Ground Testing, Flight Testing, Trajectory monitoring, post -accident procedures. Description of atypical space launch vehicle launch procedure.	Hrs
Materials: Criteria for selection of materials for rockets and missiles, requirements for choice of materials for propellant tanks, liners, insulators, inhibitors, at cryogenic temperatures, requirements of materials at extremely high temperatures, requirements of materials for Thermal protection and for pressure vessels. Applications :	
Web Link and Video Lectures:	
http://nptel.ac.in/courses/101105030/33	

Cour	se Outcomes: After completing the course, the students will be able to
C01	Identify the types of space launch vehicles and missiles.
CO2	Distinguish the solid and liquid propellant motors.
CO3	Classify different types of missiles, understand missile aerodynamics.
C04	Acquire the knowledge on launch vehicle dynamics, Attitude control
C05	Identify different types of materials used in rockets, missiles and acquire knowledge on rocket testing

Ref	erence Books
1.	George P Sutton and Oscar Biblarz,' Rocket Propulsion Element', John Wiley and
	Sons Inc,7th
	edition,2010,ISBN-13: 978-8126525775
2.	Jack N Neilson, 'Missile Aerodynamics', AIAA, 1st edition, 1988, ISBN-13: 978-
	0962062902
3.	SS Chin, 'Missile Configuration Design'.
4.	Cornelisse, J.W., Schoyer H.F.R. and Wakker, K.F., Rocket Propulsion and Space-
	Flight
	Dynamics, Pitman, 1979, ISBN-13: 978-0273011415
5.	Turner, M.J.L., Rocket and Spacecraft propulsion, Springer, 3rd edition, 2010, ISBN-
	13: 978-3642088698.

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Total marks: 50+50=100

CO-PO Mapping												
CO/P	PO	P02	P03	P04	P05	P06	P07	P08	P09	P01	P01	P01
0	1									0	1	2
C01												
CO2												
CO3												
CO4												
CO5												

High-3, Medium-2, Low-1

Course Title	EXPERIMENTAL STRESS ANALYSIS	Semester	VII
Course Code	MVJ21724	CIE	50
Total No. of Contact Hours	40 L : T : P :: 3 :0 : 0	SEE	50
No. of Contact Hours/week	4	Total	100
Credits	3	Exam. Duration	3 Hrs.

The course objective is to:

1. Understand electrical strain gauges and their characteristics

2.Comprehend the stress strainof mechanical systems using electrical resistance strain gauges.

3. Gain knowledge of the photo elastic method to study and characterize the elastic behaviour of solid bodies.

4. Acquire knowledge of stress strain behaviour of solid bodies using methods of coating.

5. Gain knowledge of the Moire's methods and analysis

Module 1	L1,L2	10 Hrs.
Introduction: Definition of terms, Calibration, Standards, Dimensio	n and units	generalized
measurement system. Basic concepts in dynamic measurements, system resp	onse, distortion	, impedance
matching, Analysis of experimental data, cause and types of experimental er	rors. General co	nsideration
in data analysis.		
Electrical Resistance: Strain Gages: Strain sensitivity in metallic alloys, Ga	age construction	, Adhesives
and mounting techniques, Gage sensitivity and gage factor, Performance' Cha	aracteristics, Env	vironmental
effects, Strain Gage circuits. Potentiometer, Wheatstone's bridges, Constant o	current circuits.	
Laboratory Sessions/ Experimental learning:		
Strain sensitivity in metallic alloys, Wheatstone's bridges		
Applications:		
Usage of Strain gage, Identifying Errors during calibration		
Video link / Additional online information (related to module if any):		
23. <u>https://www.youtube.com/watch?v=tk0GqG1Wj8g</u>		
Module 2	L1,L2,L3,	10 Hrs.
Strain Analysis Methods: Two element, three element rectangular and de	elta rosettes, Co	rrection for
transverse strain effects, Stress gage, Plane shear gage, Stress intensity facto	r gage.	
Force, Torque and strain measurements: Mass balance measurement	, Elastic elemei	nt for force
measurements, torque measurement.		
Laboratory Sessions/ Experimental learning:		
Force measurements, torque measurement.		
Applications: Methods to find measuring parameters		
Video link / Additional online information (related to module if any):		
8. <u>https://www.youtube.com/watch?v=ydyVsVk96z8</u>		
Module 3	L1,L2,L3	10 Hrs.
Two Dimensional Photoelasticity: Nature of light, Wave theory of light -	optical interfer	ence, Stress
optic law –effect of stressed model in plane and circular polariscopes, Isocli	inics&Isochroma	atics, Fringe
order determination Fringe multiplication techniques, Calibration photo elas	stic model mater	rials
Separation methods: Shear difference method, Analytical separation me	thods, Model to	o prototype
scaling, Materials for 2D photoelasticity.		
Three Dimensional Photo elasticity: Stress freezing method, Scattered light	ht photoelasticit	y, Scattered
light as an interior analyzer and polarizer, Scattered light polariscope and st	ress data Analys	es.
Digital Photoelasticity: Introduction, Full field Displacement, Strain displace	ement data, Adva	anced Video
Extensometer, Dic application and advantages.		

Laboratory Sessions/ Experimental learning:

optical interference Applications: Understanding stress variation under loading Video link / Additional online information (related to module if any): 14. https://www.youtube.com/watch?v=5tKPLfZ9JVQ Module 4 L1,L2,L3 10 Hrs. Photo elastic (Birefringent) Coatings: Birefringence coating stresses, Effects of coating thickness: Reinforcing effects, Poission's, Stress separation techniques: Oblique incidence, Strip coatings Laboratory Sessions/ Experimental learning: Scattered light polariscope and stress data Analyses. **Applications:** Identifying Stress Video link / Additional online information (related to module if any): 11. <u>https://www.youtube.com/watch?v=bkYqqJa5P8w</u> Module 5 L1,L2 10 Hrs. Brittle Coatings: Coatings stresses, Crack patterns, Refrigeration techniques, Load relaxation techniques, Crack detection methods, Types of brittle coatings, Calibration of coating. Advantages and brittle coating applications. Moire Methods: Moire fringes produced by mechanical interference. Geometrical approach, (Shearing interferometry, Digital image correlation ,Specal Method, correction factor, calibration tecniques) Displacement field approach to Moire fringe analysis, Out of plane displacement measurements, out of plane slope measurements. Applications and advantages Laboratory Sessions/ Experimental learning: Moire fringe analysis **Applications:** Understanding holographic technique Video link / Additional online information (related to module if any): 12. https://www.youtube.com/watch?v=UW5bcsax78I 13. https://www.youtube.com/watch?v=jHb-PM5qH7s&list=PL16JJHgYPkvMyabXO3RVs0YoqwSdMo4YT (NPTEL course) **Course outcomes:** Upon completion of the course, students will be able to: CO312.2.1 Analyse electrical strain gauges and their characteristics. CO312.2.2 Evaluate stress strain of mechanical systems using electrical resistance strain gauges. CO312.2.3 Analyse the elastic behavior of solid bodies using photo elastic methods CO312.2.4 Illustrate tress strain measurements using method of coatings.

CO312.2.5	Analyse moire methods and their applications

Reference Bool	ks:
1.	Srinath L.S Experimental stress Analysis, tata Mc Graw Hill, 1 st edition 1971
2.	Sadhu Singh,Experimental Stress Analysis., Khanna publisher. 1st edition 1981
3.	Dally and Riley,Experimental Stress Analysis, McGraw Hill. 1st edition 1991
4	Holman, Experimental Methods for Engineers, Tata McGraw-Hill Companies, 7th
	Edition, New York, 2007.

CIE Assessment:

CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation. Generally, there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of three tests

- Quizzes/mini tests (4 marks)
- Mini Project / Case Studies (8 Marks)
- Activities/Experimentations related to courses (8 Marks)

SEE Assessment:

- Question paper for the SEE consists two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.
- Part B also covers the entire syllabus consisting of five questions having choices and may contain sub-divisions, each carrying 16 marks. Students have to answer five full questions.
- One question must be set from each unit. The duration of examination is 3 hours.

CO,PO Mapping														
CO/P	PO	P01	P01	P01	PSO	PSO								
0	1	2	3	4	5	6	7	8	9	0	1	2	1	2
C01	3	2	1	2	1	0	0	0	0	2	2	2	1	1
CO2	3	3	2	3	3	2	0	0	0	1	2	2	1	1
CO3	3	3	2	3	3	1	0	0	0	1	2	2	1	1
C04	3	3	2	3	3	2	0	0	0	2	1	2	1	1
C05	3	3	2	2	3	1	0	0	0	2	2	2	1	1

Course Title	CONTROL ENGINEERING	Semester	VII
Course Code	MVJ21AE725/ MVJ21AS725	CIE	50
Total No. of Contact Hours	40 L:T:P::3:0:0	SEE	50
No. of Contact Hours/week	4	Total	100
Credits	3	Exam. Duration	3 Hrs.

The course objective is to:

- 1. Understand the basic concepts of control systems and mathematical models.
- 2. Acquire knowledgeof block diagrams and signal flow graphs.
- 3. Gain knowledge of stability analysis in Laplace domain through various techniques
- 4. Apprehend the frequency response specifications and polar plots
- 5. Understand the requirement for controller and compensation gain.

Module 1	L1,L2,L3	10Hrs.

Introduction to Control Systems and Mathematical Models Introduction: Concept of controls, Open loop and closed loop systems with examples, Concepts of feedback and basic structure of feedback control system, requirements of an ideal control system.

Mathematical Models: Transfer function models of mechanical systems, electrical circuits, DC and AC motors in control systems, Analogous systems: Force voltage and Force current analogy.

Laboratory Sessions/ Experimental learning:

1. Draw pole zero plot for open and closed loop system for a given transfer function

Applications:

1. Aircraft Controls

Video link / Additional online information (related to module if any):

- 24. <u>https://in.mathworks.com/videos/understanding-control-systems-part-1-open-loop-control-systems-123419.html</u>
- 25. <u>https://in.mathworks.com/videos/understanding-control-systems-part-2-feedback-control-systems-123501.html</u>
- 26. <u>https://nptel.ac.in/courses/108/102/108102043/</u>

Module 2	L1,L2,L3,	10Hrs.
		1

Block Diagrams and Signal Flow Graphs: Transfer functions definition and its properties, block representation of control systems and terminologies, block diagram algebra and reduction of block diagrams, Signal flow graph method, Mason's gain formula and its applications.

Transient and Steady State Response Analysis: Introduction, type and order of systems, time response specifications, first order and second order system response to step, ramp and impulse inputs, concepts of time constant and its importance.

Laboratory Sessions/ Experimental learning:

1. Study the behaviour of second order system with impulse, step and ramp input

Applications:

1. simplifies complex control system

2. Analyse the steady and transient behaviour of a system

Video link / Additional online information (related to module if any):

9. https://nptel.ac.in/courses/108/102/108102043/

10. <u>https://in.mathworks.com/videos/simscape-multibody-overview-117986.html?s tid=srchtitle</u>

Module 3	L1,L2,L3	10Hrs.

System stability analysis using Routh's – Hurwitz Criterion Root Locus Plots Definition of root loci, General rules for constructing root loci, Analysis using root locus plots, Determination of desired gain, limit gain, gain margin and conditional stability.

Frequency Response Analysis Using Bode Plots: Bode attenuation diagrams for first and second order systems, Simplified Bode diagrams, Stability analysis using Bode plots and determination of phase margin and gain margin and gain

Laboratory Sessions/ Experimental learning:

- 1. Analyse the stability using root locus plot for a dynamic system
- 2. Analyse the stability using bode plot for transfer function

Applications:

- 1. Stability Analysis of a SISO system
- 2. Effect of gain in stability of a system
- 3. Effect of frequency in stability of a system

Video link / Additional online information (related to module if any):

- 15. <u>https://in.mathworks.com/videos/control-system-design-with-control-system-tuning-app-68749.html?s_tid=srchtitle</u>
- 16. <u>https://nptel.ac.in/courses/108/102/108102043/</u>

Module 4	L1,L2,L3	10Hrs.		
Frequency Response Specification and Analysis using Polar plots: Specification: Frequency response				
definition, frequency response specifications and its relationship with time response specifications.				

Analysis: Polar plots, Nyquist stability criterion, Stability analysis, Relative stability concepts, Gain margin and phase margin, M&N circles.

Laboratory Sessions/ Experimental learning:

- 1. Plot Polar plot for a transfer function
- 2. Determine gain and phase margin from nyquist plot

Applications:

1. Determine stability of an aircraft

Video link / Additional online information (related to module if any):

12. <u>https://in.mathworks.com/videos/control-systems-in-practice-part-10-nichols-chart-nyquist-diagram-and-bode-plot-1607596350472.html?s_tid=srchtitle</u>

13. <u>https://nptel.ac.in/courses/108/102/108102043/</u>

Module 5	L1,L2	10Hrs.
----------	-------	--------

Feedback control systems: Types of controllers – Proportional, Integral, Derivative controllers, Proportional – Integral, Proportional – Integral – Derivative controllers; Compensation methods – Series and feedback compensation, Lead, Lag and Lead-Lag Compensators.

State Variable Characteristics of Linear Systems: Introduction to concepts of states and state variable representation of linear systems, Advantages and Disadvantages over conventional transfer function representation, state equations of linear continuous data system. Matrix representation of state equations, Solution of state equation, State transition matrix and its properties, controllability and observability, Kalman and Gilberts test.

Laboratory Sessions/ Experimental learning:

1. Design PID controller for non linear system

Applications:

1. Autopilot design for lateral directional motion

2. Provide suitable controller for non linear or complex system.

Video link / Additional online information (related to module if any):

14. <u>https://in.mathworks.com/videos/pid-control-made-easy-81646.html?s tid=srchtitle</u>

15. <u>https://nptel.ac.in/courses/108/102/108102043/</u>

Course outcomes:

Upon completion of the course, students will be able to:

_

CO403.3.4	Evaluate the frequency response specifications and Nyquist criteria
CO403.3.5	Determine controller and compensation gain for feedback control system

Reference Boo	yks:
1.	U.A. Bakshi and V.U. Bakshi, "Control Engineering", Technical Publications
2.	A. NagoorKani, "Control Systems Engineering", RBA Publications, 2014
3.	Katsuhiko Ogatta, "Modern Control Engineering", Pearson Education, 2004
4.	N.S. Nise, "Control Systems Engineering", Wiley, 6th Edition,2012

CIE Assessment:

CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation. Generally, there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of three tests

- Quizzes/mini tests (4 marks)
- Mini Project / Case Studies (8 Marks)
- Activities/Experimentations related to courses (8 Marks)

SEE Assessment:

xxviii. Question paper for the SEE consists two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.

xxix. Part B also covers the entire syllabus consisting of five questions having choices and may contain sub-divisions, each carrying 16 marks. Students have to answer five full questions.

xxx. One question must be set from each unit. The duration of examination is 3 hours.

CO,PO Mapping														
CO/P	PO	P01	P01	P01	PSO	PSO								
0	1	2	3	4	5	6	7	8	9	0	1	2	1	2
C01	3	2	3	0	0	0	0	0	0	0	2	3	1	1
CO2	3	3	2	1	1	0	0	0	0	0	1	1	1	1
CO3	3	3	2	1	3	0	0	0	0	0	2	2	1	1
CO4	3	2	3	3	3	0	0	0	0	0	2	3	1	1
CO5	3	3	2	2	3	0	0	0	0	0	1	1	1	1

High,3, Medium,2, Low 1

Course Title	FLIGHT TESTING	Semester	VII
Course Code	MVJ21AE731	CIE	50
Total No. of Contact Hours	40 L:T:P::3:0:0	SEE	50
No. of Contact Hours/week	4	Total	100
Credits	3	Exam. Duration	3 Hrs.

The course objective is to:

- Comprehend the basic concepts of flight test instrumentation.
- Acquire the knowledge of performance flight testing and stability control.
- Understand the flying qualities.

Module 1			L1,L2	1.	rs.

Introduction: Sequence, Planning and governing regulations of flight testing. Aircraft weight and center of gravity, flight testing tolerances. Method of reducing data uncertainty in flight test data - sources and magnitudes of error, avoiding and minimizing errors.

Flight test instrumentation: Planning flight test instrumentation, Measurement of flight parameters. Onboard and ground based data acquisition system. Radio telemetry.

Module 2	L1, L2	10 Hrs.
Destance of the traction of th		1.1

Performance flight testing - range, endurance and climb: Airspeed – in flight calibration. Level flight performance for propeller driven aircraft and for Jet aircraft - Techniques and data reduction. Estimation of range, endurance and climb performance.

Performance flight testing -take-off, landing, turning flight: Maneuvering performance estimation. Take-offand landing -methods, procedures and data reduction.

Module 3	L1, L2	10Hrs.	

Stability and control - longitudinal and maneuvering

Static & dynamic longitudinal stability: - methods of flight testing and data reduction techniques. Stick free stability methods. Maneuvering stability methods & data reduction.

Module 4	L1, L2	10 Hrs.
Chalifither and a sectoral lateral and dimensional		

Stability and control - lateral and directional

Lateral and directional static & dynamic stability: - Coupling between rolling and yawing moments. Steadyheading slide slip. Definition of Roll stability. Adverse yaw effects. Aileron reversal. Regulations, test techniques and method of data reduction.

Module 5							L1,	L2	10 Hrs.	
Flying qualities:	MIL	and	FAR	regulations.	Cooper-Harper	scale.	Pilot	Rating.	Flight t	est

Flying qualities: MIL and FAR regulations. Cooper-Harper scale. Pilot Rating. Flight test procedures. **Hazardous flight testing:** Stall and spin- regulations, test and recovery techniques. Test

techniques for flutter, vibration and buffeting.						
Course outcor	nes:					
Upon completi	on of the course, students will be able to:					
CO403.2.1	Measure the flight parameters.					
CO403.2.2	Estimate the performance of flight.					
CO403.2.3	Apply the FAR regulations					

Reference Boo	ks:	
1	Flight Testing of Fixed Wing Aircraft Ralph D Kimberlin	AIAA educational Series
1.	2003	
2	Flight Testing- Conventional and Jet-Propelled Airplanes,	Benson HamlinMac
Δ.	Millan1946	
3.	Flight Test Manual AGARD	
CIE Accocomo	· •	

CIE Assessment:

CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation. Generally, there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of three tests

- Quizzes/mini tests (4 marks)
- Mini Project / Case Studies (8 Marks)
- Activities/Experimentations related to courses (8 Marks)

SEE Assessment:

xxxi. Question paper for the SEE consists two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.

xxxii. Part B also covers the entire syllabus consisting of five questions having choices and may contain sub-divisions, each carrying 16 marks. Students have to answer five full questions.

xxxiii. One question must be set from each unit. The duration of examination is 3 hours.

	CO,PO Mapping													
CO/P	PO	PO	PO	PO	PO	PO	PO	PO	PO	P01	P01	P01	PSO	PSO
0	1	2	3	4	5	6	7	8	9	0	1	2	1	2
C01	3	3	3	3	2	2	1	1	1	1	1	1	1	1
CO2	3	3	3	3	2	2	1	1	1	1	1	1	1	1

CO3	3	3	3	3	2	2	1	1	1	1	1	1	1	1
C04	3	3	3	3	2	2	1	1	1	1	1	1	1	1
C05	3	3	3	3	2	2	1	1	1	1	1	1	1	1

High,3, Medium,2, Low

Course Title	FATIGUE AND FRACTURE MECHANICS	Semester	VII
Course Code	MVJ21AE732	CIE	50
Total No. of Contact Hours	40 L:T:P::3:0:0	SEE	50
No. of Contact Hours/week	4	Total	100
Credits	3	Exam. Duration	3 Hrs.

The course objective is to:

- 1. Understand the basics of fatigue of structures.
- 2. Understand the Statistical Aspects of Fatigue Behaviour
- 3. Acquire knowledge of Physical Aspects of Fatigue
- 4. Understand concepts of equations of Fracture Mechanics
- 5. Comprehend the various Fatigue Design and Testing Procedures.

Module 1		L1,L2	10 Hrs.
Estimus of Characteria of C.M. and			

Fatigue of Structures:S.N. curves, Endurance limit, Effect of mean stress, Goodman, Gerber and Soderberg relations and diagrams, Notches and stress concentrations, Neuber's stress concentration factors, plastic stress concentration factors – Notched S-N curves.Plane stress and plane strain concepts, Dugdale approach

Laboratory Sessions/ Experimental learning:

Effect of Stress concentration factors and SNcurves plot in strength of materials lab

Applications:

Determine the Endurance limit and Stress concentration factors

Video link / Additional online information (related to module if any):

NPTEL-

- 1. <u>https://nptel.ac.in/courses/112/106/112106065/</u>
- 2. <u>https://www.youtube.com/watch?v=o-6V_JoRX1g</u>

Module	2
--------	---

L1, L2 10 Hrs.

Statistical Aspects of Fatigue Behaviour: Low cycle and high cycle fatigue,	Coffin-Manson	n's relation,			
Transition life, Cyclic Strain hardening and softening, Analysis of load histories, Cycle counting					
techniques, Cumulative damage, Miner's theory,Fatigueloading,Various stages of crack propagation					
Laboratory Sessions/ Experimental learning:					
Experimental verification of the components can be done for Low cycle and hi	gh cycle fatigu	e			
Applications:					
Determine the cumulative damage of the material					
Video link / Additional online information (related to module if any):					
1.NPTEL- https://nptel.ac.in/courses/112/106/112106065/					
Module 3	L1, L2	10Hrs.			
Physical Aspects of Fatigue: Phase in fatigue life, Crack initiation, Crack	k growth, Fin	al fracture,			
Dislocations, Fatigue fracture surfaces.Crack opening displacement,crack tip op	pening displac	ement.			
Laboratory Sessions/ Experimental learning:					
To determine the crack initiation and crack growth of the given material using	g equipment se	etup.			
Applications:					
To determine the COD and CTOD values of the given material					
Video link / Additional online information (related to module if any):					
1.NPTEL- <u>https://nptel.ac.in/courses/112/106/112106065/</u>					
Module 4	L1, L2	10 Hrs.			
Fracture Mechanics: Strength of cracked bodies, potential energy and surface	e energy, Griffi	th's theory,			
Irwin – Orwin extension of Griffith'stheory to ductile materials, Stress analysis of cracked bodies. Effect					
i will of will extension of driften scheory to ductice materials, set ess analysis	of thickness on fracture toughness, Stress intensity factors for typical geometries, Linear elastic fracture				
of thickness on fracture toughness, Stress intensity factors for typical geometr	ies, Linear elas	stic fracture			
of thickness on fracture toughness, Stress intensity factors for typical geometr mechanics.	ies, Linear elas	stic fracture			
of thickness on fracture toughness, Stress intensity factors for typical geometr mechanics. Laboratory Sessions/ Experimental learning:	ies, Linear elas	tic fracture			
of thickness on fracture toughness, Stress intensity factors for typical geometr mechanics. Laboratory Sessions/ Experimental learning: Estimate the effect of stress intensity factors and effect of thickness on fracture	ies, Linear elas e toughness.	tic fracture			
of thickness on fracture toughness, Stress intensity factors for typical geometr mechanics. Laboratory Sessions/ Experimental learning: Estimate the effect of stress intensity factors and effect of thickness on fracture Applications:	ies, Linear elas e toughness.	tic fracture			
of thickness on fracture toughness, Stress intensity factors for typical geometr mechanics. Laboratory Sessions/ Experimental learning: Estimate the effect of stress intensity factors and effect of thickness on fracture Applications: To find out the stress analysis of the cracked bodies	ies, Linear elas e toughness.	tic fracture			
of thickness on fracture toughness, Stress intensity factors for typical geometr mechanics. Laboratory Sessions/ Experimental learning: Estimate the effect of stress intensity factors and effect of thickness on fracture Applications: To find out the stress analysis of the cracked bodies Video link / Additional online information (related to module if any):	ies, Linear elas e toughness.	tic fracture			
of thickness on fracture toughness, Stress intensity factors for typical geometr mechanics. Laboratory Sessions/ Experimental learning: Estimate the effect of stress intensity factors and effect of thickness on fracture Applications: To find out the stress analysis of the cracked bodies Video link / Additional online information (related to module if any): 1.NPTEL- https://nptel.ac.in/courses/112/106/112106065/	ies, Linear elas e toughness.	tic fracture			
of thickness on fracture toughness, Stress intensity factors for typical geometr mechanics. Laboratory Sessions/ Experimental learning: Estimate the effect of stress intensity factors and effect of thickness on fracture Applications: To find out the stress analysis of the cracked bodies Video link / Additional online information (related to module if any): 1.NPTEL- https://nptel.ac.in/courses/112/106/112106065/ Module 5	ies, Linear elas e toughness. L1, L2	stic fracture			
of thickness on fracture toughness, Stress intensity factors for typical geometr mechanics. Laboratory Sessions/ Experimental learning: Estimate the effect of stress intensity factors and effect of thickness on fracture Applications: To find out the stress analysis of the cracked bodies Video link / Additional online information (related to module if any): 1.NPTEL- https://nptel.ac.in/courses/112/106/112106065/ Module 5 Fatigue Design and Testing: Safe life and fail safe design philosophies	ies, Linear elas e toughness. L1, L2 s,Importance	tic fracture 10 Hrs. of Fracture			
of thickness on fracture toughness, Stress intensity factors for typical geometr mechanics. Laboratory Sessions/ Experimental learning: Estimate the effect of stress intensity factors and effect of thickness on fracture Applications: To find out the stress analysis of the cracked bodies Video link / Additional online information (related to module if any): 1.NPTEL- https://nptel.ac.in/courses/112/106/112106065/ Module 5 Fatigue Design and Testing: Safe life and fail safe design philosophies Mechanics in aerospace structure, Application composite materials and structure	ies, Linear elas e toughness. L1, L2 s,Importance o ures.	10 Hrs.			
in win Corvin extension of drimin stateory to ductic indection, or ess analysis of thickness on fracture toughness, Stress intensity factors for typical geometrimechanics. Laboratory Sessions/ Experimental learning: Estimate the effect of stress intensity factors and effect of thickness on fracture Applications: To find out the stress analysis of the cracked bodies Video link / Additional online information (related to module if any): 1.NPTEL- https://nptel.ac.in/courses/112/106/112106065/ Module 5 Fatigue Design and Testing: Safe life and fail safe design philosophies Mechanics in aerospace structure, Application composite materials and structure Laboratory Sessions/ Experimental learning:	ies, Linear elas e toughness. L1, L2 s,Importance oures.	tic fracture 10 Hrs. of Fracture			
of thickness on fracture toughness, Stress intensity factors for typical geometr mechanics. Laboratory Sessions/ Experimental learning: Estimate the effect of stress intensity factors and effect of thickness on fracture Applications: To find out the stress analysis of the cracked bodies Video link / Additional online information (related to module if any): 1.NPTEL- https://nptel.ac.in/courses/112/106/112106065/ Module 5 Fatigue Design and Testing: Safe life and fail safe design philosophies Mechanics in aerospace structure, Application composite materials and structure Laboratory Sessions/ Experimental learning: Determine short period and phugoid oscillations for a given Quadratic equation	ies, Linear elas e toughness. L1, L2 s,Importance oures. n	10 Hrs. of Fracture			

Determine the relative stability of an Aircraft

Video link / Additional online information (related to module if any):

1.NPTEL- https://nptel.ac.in/courses/112/106/112106065/

Course outcomes:

Upon completion of the course, students will be able to:

CO403.2.1	Apply the concept of Fatigue analysis of the structures
CO403.2.2	Compare the low cycle fatigue and high cycle fatigue and strain hardening and softening
CO403.2.3	Investigate the reasons for crack initiation, growth, and fracture and for COD and CTOD
CO403.2.4	Evaluate Fracture Toughness
CO403.2.5	Analyse Design for Fatigue

Reference Book	KS:
1.	D. Brock, Elementary Engineering Fracture Mechanics,Noordhoff International Publishing Co.,London, 1994
2.	J.F. Knott, Fundamentals of Fracture Mechanics, Butterworth & Co., Publishers Ltd., London,1983.
3.	W. Barrois and L. Ripley, Fatigue of Aircraft Structures, Pergamon Press, Oxford, 1983
4.	C.G.Sih, Mechanics of Fracture, Vol.1 Sijthoff and Noordhoff International Publishing Co., Netherland, 1989.

CIE Assessment:

CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation. Generally, there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of three tests

- Quizzes/mini tests (4 marks)
- Mini Project / Case Studies (8 Marks)
- Activities/Experimentations related to courses (8 Marks)

SEE Assessment:

xxxiv. Question paper for the SEE consists two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.

xxxv. Part B also covers the entire syllabus consisting of five questions having choices and may contain sub-divisions, each carrying 16 marks. Students have to answer five full questions.

xxxvi. One question must be set from each unit. The duration of examination is 3 hours.

CO,PO Mapping														
CO/P	PO	PO	PO	PO	PO	РО	РО	PO	PO	P01	P01	P01	PSO	PSO
0	1	2	3	4	5	6	7	8	9	0	1	2	1	2
C01	3	3	3	3	2	2	1	1	1	1	1	1	1	1
CO2	3	3	3	3	2	2	1	1	1	1	1	1	1	1
CO3	3	3	3	3	2	2	1	1	1	1	1	1	1	1
CO4	3	3	3	3	2	2	1	1	1	1	1	1	1	1
C05	3	3	3	3	2	2	1	1	1	1	1	1	1	1

High,3, Medium,2, Low

Course Title	ARTIFICIAL INTELLIGENCE AND ROBOTICS	Semester	VII
Course Code	MVJ21AE733/ MVJ21AS733	CIE	50
Total No. of Contact Hours	40 L : T : P :: 3 :0 : 0	SEE	50
No. of Contact Hours/week	4	Total	100
Credits	3	Exam. Duration	3 Hrs.

The course objective is to:

- 1. Understand the basic techniques of artificial intelligence
- 2. Understand Non-monotonic reasoning and statistical reasoning
- 3. Introduce the electronics and software aspects in the design of robots
- 4. Introduce the latest state of the art robots
- 5. Understand the usage of AI in Robots

Module 1Introduction to AI	L1,L2,L3	10 Hrs.
Computerized reasoning - Artificial Intelligence (AI) - characteristi	cs of an AI	problem -
Problem representation in AI - State space representation - problem r	eduction-Concep	ot of small
talkprogramming		

Laboratory Sessions/ Experimental learning:Compare the theoretical solution to the forward kinematics problem with a physical implementation on the robot. Applications: Design, Supply chain management, Prediction of in-service damages Video link / Additional online information (related to module if any): 27. https://nptel.ac.in/courses/106/102/106102220/ Module 2Search Process&Knowledge Representation L1, L2, L3, 10 Hrs. Search Process: AI and search process - Brute force search techniques - Depth first - Breadth first searchtechniques - Hill climbing - Best first search - AND/OR graphs - A* algorithm - Constraint satisfaction. Knowledge Representation: Logic, Propositional logic - Tautology - Contradiction - Normal forms -Predicate logic - Rules of inference - Resolution - Unification algorithm -Production rules - Semantic networks - Frames - Scripts - Conceptual dependency. Laboratory Sessions/ Experimental learning:Derive and implement a solution to the inversekinematics problem for the robot **Applications:** Predictive Maintenance, Flight performanceOptimization, Reverse Engineering Video link / Additional online information (related to module if any): **11.** https://nptel.ac.in/courses/106/102/106102220/ **Module 3 Introduction to Robotics** L1, L2, L3 10 Hrs. Scope of Robots: The scope of industrial Robots - Definition of an industrial robot - Need for industrial robots. Robot Components: Fundamentals of Robot Technology - Automation and Robotics - Robot anatomy -Work volume- Precision of movement - End effectors - Sensors Laboratory Sessions/ Experimental learning: Controlling the robots using the programming language Applications: Quality control, Smart Factory Building, Repetitive work management Video link / Additional online information (related to module if any): 17. https://nptel.ac.in/courses/112/105/112105249/ **Module 4Future Trends in Robots** L1, L2, L3 10 Hrs. Telepresence robot - Autonomous mobile robots - Walker Robots - Solarball Robot - Underwaterbots -Aerobots - Advanced robotics in Space - Specific features of space robotics systems - longterm technical developments - Next generation robots. Laboratory Sessions/ Experimental learning: Integrate computer vision and control of the robot **Applications:** Training, Smart Repairs Management Video link / Additional online information (related to module if any): 14. https://nptel.ac.in/courses/112/105/112105249/ Module 5AI in Robotics L1, L2 10 Hrs.

Robotic perception, localization – mapping- configuring space - planning uncertain movements - dynamics and control of movement, Ethics and risks of artificial intelligence in robotics.

Laboratory Sessions/ Experimental learning: Integrate forward and inverse kinematics and computer vision to control the robot

Applications: AI Autopilot in commercial flights, Knowledge-Based Engineering

Video link / Additional online information (related to module if any):

16. https://nptel.ac.in/courses/106/102/106102220/

Course outcomes:

Upon completion of the course, students will be able to:

CO313.2.1	Apply the basic techniques of artificial intelligence
CO313.2.2	Compare and contrast Non-monotonic reasoning and statistical reasoning
CO313.2.3	Design and develop robotic based systems
CO313.2.4	Develop automatic solution for replacing humans in life threatening area
CO313.2.5	Interpret basic AI algorithms in Robotics

Reference Book	S:					
1.	Elaine Rich And Kevin Knight, Artificial Intelligence, Tata Mcgraw-Hill, 3 rd edition, 2008.					
2.	Barry Leatham - Jones, Elements of industrial Robotics, Pitman Publishing, 1987					
3.	J. M. Selig, Introductory Robotics, Prentice Hall, 1992					
4.	David Jefferis, Artificial Intelligence: Robotics and Machine Evolution, Crabtree					
	Publishing Company, 1992					

CIE Assessment:

CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation. Generally, there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be

awarded will be the average of three tests

- Quizzes/mini tests (4 marks)
- Mini Project / Case Studies (8 Marks)
- Activities/Experimentations related to courses (8 Marks)

SEE Assessment:

- Question paper for the SEE consists two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.
- Part B also covers the entire syllabus consisting of five questions having choices and may contain subdivisions, each carrying 16 marks. Students have to answer five full questions.
- One question must be set from each unit. The duration of examination is 3 hours.

CO.PO Mapping														
so, o hupping														
CO/P	PO	P01	P01	P01	PSO	PSO								
0	1	2	3	4	5	6	7	8	9	0	1	2	1	2
C01	2	2	-	-	-	-	-	-	-	-	-	-	1	1
CO2	3	3	-	-	3	-	-	-	-	-	-	-	1	1
CO3	-	-	-	-	-	3	-	-	-	-	-	-	1	1
CO4	-	-	3	-	-	2	3	-	-	-	-	3	1	1
C05	3	3	3	-	3	-	2	-	-	-	-	3	1	1

High,3, Medium,2, Low,1

Course Title	UNMANNED AERIAL VEHICLES	Semester	VII
Course Code	MVJ21AE734	CIE	50
Total No. of Contact Hours	40 L:T:P::3:0:0	SEE	50
No. of Contact Hours/week	4	Total	100
Credits	3	Exam. Duration	3 Hrs.

The course objective is to:

- 1. Comprehend the basic aviation history and UAV systems
- 2. Understand the air vehicle basic aerodynamics and performance
- 3. Acquire knowledge of Stability and Control
- 4. Understand concepts of Propulsion, Loads and Structures
- 5. Comprehend the various Mission Planning and Control

Module 1	L1,L2,L3	10Hrs.			
Introduction to Aviation, Overview of UAV systems, Classes and Missions of UAVs, Definitions and					
Terminology UAVs, UAV fundamentals, Examples of UAV systems-very small, Small UAV, Medium UAV,					
Large UAV, UAV applications.					

Laboratory Sessions/ Experimental learning:

Design and development of Unmanned Aerial vehicle for real world applicati	ons.						
Applications:							
Usage of UAV systems for Aerial monitoring, surveillance systems							
Video link / Additional online information (related to module if any):							
1.NPTEL- https://nptel.ac.in/courses/101/104/101104073/							
2. NPTEL- https://nptel.ac.in/courses/101/104/101104083/							
Module 2	L1,L2,L3,	10Hrs.					
Introduction: The Air Vehicle Basic Aerodynamics, Basic Aerodynamics equ	ations, Aircraft j	polar, The					
real wing and Airplane, Induced drag, The boundary layer, Flapping wings, T	otal Air-Vehicle	Drag,					
Performance: Overview,Climbing flight, Range for propeller driven aircraft,R	ange- a jet-drive	en aircraft,					
Endurance-for propeller driven aircraft, Guiding Flight.							
Laboratory Sessions/ Experimental learning:							
Conduct the various experiments using the Aerodyanamics lab and its equation	ons.						
Applications:							
Determine the endurance limit for propeller driven shaft.							
Video link / Additional online information (related to module if any):							
1. NPTEL- <u>https://nptel.ac.in/courses/101/104/101104073/</u>							
2. NPTEL- <u>https://nptel.ac.in/courses/101/104/101104083/</u>							
Module 3	L1,L2,L3	10Hrs.					
Stability & Control: Stability, Longitudinal, lateral, Dynamic stability, Aero	dynamics contro	ol, Pitch					
control, lateral control, Autopilots, sensor, Controller, actuator, Airframe con	trol, Inner and o	outer loops,					
Flight-Control Classification, Overall Modes of Operation, Sensors Supporting the Autopilot.							
Laboratory Sessions/ Experimental learning:							
Determine the longitudinal, lateral and dynamic stability using the Aerodynamics control.							
Applications:							
Various sensors used for the Autopilot system and control systems.							
Video link / Additional online information (related to module if any):							
1.NPTEL- https://nptel.ac.in/courses/101/104/101104073/							
2.NPTEL- https://nptel.ac.in/courses/101/104/101104083/							
Module 4	L1,L2,L3	10Hrs.					
Propulsion Overview: Thrust Generation, Powered Lift, Sources of Power, The Two-Cycle Engine, The Rotary Engine, The Gas Turbine, Electric Motors, Sources of Electrical Power.

Structures: Loads, Dynamic Loads, Materials, Sandwich Construction, Skin or Reinforcing Materials Resin Materials, CoreMaterials& Construction Techniques.

Laboratory Sessions/ Experimental learning:

Determine the efficiency of the various types engines used in the Unmanned Aerial Vehicle

Applications:

Usage of various applications of the resin material and skin reinforcing materials for the aircraft constructions.

Video link / Additional online information (related to module if any):

1.NPTEL- <u>https://nptel.ac.in/courses/101/104/101104073/</u>

2.NPTEL- https://nptel.ac.in/courses/101/104/101104083/

Module 5	L1,L2	10Hrs.
Mission Planning and Control, Air Vehicle and Payload Control, Reconnaissan	nce/Surveillance	Payloads,

Weapon Payloads, Other Payloads, Data-Link Functions and Attributes, Data-Link Margin, Data-Rate Reduction, Launch Systems, Recovery Systems, Launch, Recovery Trade-offs.

Laboratory Sessions/ Experimental learning:

Determine the various payloads used for the various operations of flight

Applications:

Usage of launch and recovery systems used in the Unmanned Aerial Vehicle

Video link / Additional online information (related to module if any):

1.NPTEL- https://nptel.ac.in/courses/101/104/101104073/

2.NPTEL- https://nptel.ac.in/courses/101/104/101104083/

Course outcomes:

Upon completion of the course, students will be able to:

CO312.3.1	Apply the basic concepts of UAV systems
CO312.3.2	Utilise the knowledge of air vehicle basic aerodynamics and performance
CO312.3.3	Apply the knowledge of Stability and Control
CO312.3.4	Evaluate the Propulsion systems, Loads and Structures
CO312.3.5	Apply the mission, planning and control

Reference Books:

1	Paul GerinFahlstrom , Thomas James Gleason, INTRODUCTION TO UAV SYSTEMS, 4th
1.	Edition, Wiley Publication, 2012 John Wiley & Sons, Ltd
2.	Landen Rosen, Unmanned Aerial Vehicle, Publisher: Alpha Editions, ISBN 13 :
	9789385505034.
3.	Unmanned Aerial Vehicles: DOD"s Acquisition Efforts, Publisher : Alpha Editions, ISBN13 :
	9781297017544

CIE Assessment:
CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation. Generally, there
will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to
be awarded will be the average of three tests

- Quizzes/mini tests (4 marks)
- Mini Project / Case Studies (8 Marks)
- Activities/Experimentations related to courses (8 Marks)

SEE Assessment:

- Question paper for the SEE consists two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.
- Part B also covers the entire syllabus consisting of five questions having choices and may contain sub-divisions, each carrying 16 marks. Students have to answer five full questions.
- One question must be set from each unit. The duration of examination is 3 hours.

-														
CO,PO Mapping														
CO/P	PO	P01	P01	P01	PSO	PSO								
0	1	2	3	4	5	6	7	8	9	0	1	2	1	2
C01	3	3	3	3	2	2	1	1	1	1	1	1	1	1
CO2	3	3	3	3	2	2	1	1	1	1	1	1	1	1
CO3	3	3	3	3	2	2	1	1	1	1	1	1	1	1
CO4	3	3	3	3	2	2	1	1	1	1	1	1	1	1
C05	3	3	3	3	2	2	1	1	1	1	1	1	1	1

Course Title	GUIDANCE NAVIGATION & CONTROL	Semester	VII
Course Code	MVJ21AE735/ MVJ21AS735	CIE	50
Total No. of Contact Hours	40 L:T:P::3:0:0	SEE	50
No. of Contact Hours/week	4	Total	100
Credits	3	Exam. Duration	3 Hrs.

The course objective is to:

1. Understand the basics of Guidance and Navigation.

2. Gain knowledge of the various types of guidance and control systems

3. Comprehend the control system for missiles

4.Acquire knowledge of the missile guidance performance

5. Understand the requirement for integrating flight and fire control system.

Module 1	L1,L2,L3	10Hrs.				
Guidance, Navigation and ControlIntroduction:Concepts of navigation	on, guidance a	nd control.				
Introduction to basic principles. Air data information.						
Radar Systems: Principle of working of radar. MTI and Pulse Dopp	oler radar. Mov	ving target				
detector.Limitation of MTI performance. MTI from a moving platform (AMTI).					
Laboratory Sessions/ Experimental learning:						
1. Analyse the flight instruments of aircraft for given flight condition using M	ATLAB					
Applications: Guidance system for aircraft, Target detection						
Video link / Additional online information:						
https://nptel.ac.in/courses/101/104/101104062/ - IIT Kanpur						
Module 2	L1,L2,L3,	10Hrs.				
Farget Detection and Tracking with Radar: Mono pulse tracking. Conical s	can and sequent	tial lobbing.				
utomatic tracking with surveillance radar (ADT). Detection avoidance technic	ques.					
Other Guidance Systems: Gyros and stabilised platforms. Inertial guidance and Laser based guidance.						
Components of Inertial Navigation System. Imaging Infrared guidance. GPS, SA	Tcom.					

Laboratory Sessions/ Experimental learning:

1. Calculate the position and velocity of an target for given doppler shift using MATLAB.

Applications: Target detection and tracking

Module 3

Video link / Additional online information:

https://nptel.ac.in/courses/101/104/101104062/ -IIT Kanpur

L1,L2,L3	10Hrs.

Transfer Functions: Input-output Transfer function. Basic altitude reference. Concepts of Open loop and Close Loop, Root Locus plot.

Missile Control System: Guided missile concept. Roll stabilisation. Control of aerodynamic missile. Missile parameters for dynamic analysis. Missile autopilot schematics. Acceleration command and root locus.

Laboratory Sessions/ Experimental learning:

1. Determine stability of a system using Root locus plot.

Applications: Stability of a system, Missile autopilot design

Video link / Additional online information:

https://nptel.ac.in/courses/101/104/101104062/ - IIT Kanpur

Module 4	L1,L2,L3	10Hrs.

Missile Guidance: Proportional navigation guidance; command guidance. Comparison of guidance system performance. Bank to turn missile guidance.

Laboratory Sessions/ Experimental learning:

1. Draw a missile trajectory to hit a slow moving target using Proportional guidance

Applications: Guidance system for missiles

Video link / Additional online information:

https://nptel.ac.in/courses/101/104/101104062/- IIT Kanpur

Integrated Flight/Fire Control System: Principal of missile launch from aircraft, Director fire control system. Tracking control laws. Longitudinal flight control system. Lateral flight control system. Rate of change of Euler angle , Auto Pilot.

Laboratory Sessions/ Experimental learning:

1. Draw a missile trajectory to hit a combat aircraft using Command guidance.

Applications: Simulation of dynamic modes and performance parameters for Aircraft design

Video link / Additional online information:

https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-885j-aircraft-systems-engineering-fall-2005/video-lectures/lecture-16/ - MIT

Course outcomes:

Upon completion of the course, students will be able to:				
CO404.3.1	Apply the concept of guidance and navigation to design guidance system for aircraft.			
CO404.3.2	Apply knowledge of the various types of guidance and control systems			
CO404.3.3	Evaluate control of missile			
CO404.3.4	Analyse missile guidance performance			
CO404.3.5	Analyse integrated flight and fire control system			

Reference Bo	oks:
1.	P.T. Kabamba and A.R. Girard, Fundamentals of Aerospace Navigation and Guidance,
	Cambridge Aerospace Series, 2014
2	John H Blakelock, Automatic control of Aircraft & Missiles`, Wile – Inter Science Publication,
2.	2nd edition, May 1990.
3.	Merrilh I. Skolnik, Introduction to Radar Systems`, 3rd edition, Tata Mc Graw Hill, 2001.
4.	George M. Siouris, Missile Guidance and Control Systems, Springer, 2004

CIE Assessment:

CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation. Generally, there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of three tests

- Quizzes/mini tests (4 marks)
- Mini Project / Case Studies (8 Marks)
- Activities/Experimentations related to courses (8 Marks)

SEE Assessment:

xxxvii. Question paper for the SEE consists two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.

xxxviii. Part B also covers the entire syllabus consisting of five questions having choices and may contain

sub-divisions, each carrying 16 marks. Students have to answer five full questions.

xxxix. One question must be set from each unit. The duration of examination is 3 hours.

CO,PO Mapping														
CO /D	DO	DO1	DO1	DO1	DCO	DCO								
CO/P	PO	P01	P01	P01	PS0	PS0								
0	1	2	2	1	5	6	7	0	0	0	1	2	1	2
0	1	2	5	4	5	0		0	9	0	1	2	1	2
C01	3	2	3	0	0	0	0	0	0	0	2	3	1	1
	Ũ	_	Ũ	Ŭ	Ũ	Ũ	Ŭ	Ũ	Ũ	Ũ	_	0	-	-
CO2	3	3	2	1	1	0	0	0	0	0	1	1	1	1

CO3	3	3	2	1	3	0	0	0	0	0	2	2	1	1
C04	3	2	3	3	3	0	0	0	0	0	2	3	1	1
C05	3	3	2	2	3	0	0	0	0	0	1	1	1	1

Semester: VII								
AIRCRAFT PROPULSION								
Cou	rse Code:	MVJ21AE741	CIE Marks:100					
Credits: L:T:P:S: 3:1:0:0 SEE Marks: 100								
Hou	Hours: 40 Hours SEE Duration: 3 Hrs							
Cou	rse Learning Objectives: The stu	udents will be able	e to					
1	Understand and apply the basic t	hermodynamic pri	nciples in aircraft propulsion.					
2	Understand and solve the proble	ms on turboprop, t	urbojet and turbofan engines.					
3	Acquire knowledge on subsonic and supersonic inlets.							
4	4 Describe the working of combustion chambers and nozzles.							
5	Understand the fundamentals of	rocket propulsion.						

UNIT-I

Introduction: Review of thermodynamic principles, Principles of aircraft propulsion, Types of power plants, Working principles of internal combustion engine, Two stroke and four stroke piston engines, Gas, turbine engines, Cycle analysis of reciprocating engines and jet engines, advantages and disadvantages, numerical problems Laboratory Sessions/ Experimental learning: 1. Identify and demonstrate the various components of Guiberson T-1020 (9-cylinder radial engine) and Tumansky R-25-300 R-26(Jet engine) Applications : Automobile industries, Gas turbine industries and Power plants Web Link and Video Lectures: • <u>https://youtu.be/XKcRf2R5h4o</u> • <u>https://youtu.be/fTAUq6G9apg</u> • <u>https://ocw.mit.edu/courses/mechanical-engineering/2-61-</u>	8 Hrs			
 https://youtu.be/ITA0q069apg https://ocw.mit.edu/courses/mechanical-engineering/2-61- internal-combustion-enginesspring-2017/lecture- notes/MIT2_61S17_lec1.pdf https://nptel.ac.in/courses/101106033/ 				
UNIT-II				
Propeller Theories & Jet propulsion Propeller Theories & Jet propulsion : Types of propeller, Propeller thrust: momentum theory, Blade element theories, propeller blade design, and propeller selection.	8 Hrs			

Jet Propulsion: Illustration of working of gas turbine engine, the thrust							
equation, Factors affectingthrust, Effect of pressure, velocity and							
temperature changes of air entering compressor Methods of thrust							
augmentation, Characteristics of turboprop, turbofan and turbojet,							
Performance characteristics. Ramjet and Scramjet Engines.							
Laboratory Sessions/ Experimental learning:							
1. Analyze the performance of a 2 blade fixed pick propeller and plot the							
performance.							
Applications: Gas turbine and aircraft engine design industries							
Web Link and Video Lectures:							
1. <u>https://youtu.be/0bP2MH3LqvI</u>							
2. <u>https://youtu.be/KjiUUJdPGX0</u>							
3. <u>https://youtu.be/vq54Tn9djsY</u>							
UNIT-III							
Inlets	8 Hrs						
Subsonic Inlets							
Internal flow and Stall in Subsonic inlets, Boundary layer separation. Major							
features of external flow near a subsonic inlet. Relation between minimum							
area ratio and external deceleration ratio.							
Diffuser performance.							
Supersonic inlets: Supersonic inlets, starting problem in supersonic inlets,							
Shock swallowing by area variation, External deceleration. Modes of inlet							
operation.							
Laboratory Sessions/ Experimental learning:							
Visualize the external and internal deceleration (pre compression and							
diffusion) over inlet using wind tunnel							
Learn NASA's Engine Sim Applet Version 1.8a (latest edition) by using							
Beginner's Guide to Propulsionhttps://www.grc.nasa.gov/WWW/K-							
<u>12/airpiane/ngnsim.ntmi</u>							
Laiculate and draw the performance curves using Enginesim Applet Version							
1.8a Applications, cas turking anging design industries							
Applications: gas turbine engine design industries							
Web Link and Video Lectures:							
https://youtu.be/ZoObIZfLa94							
https://youtu.be/hFO n44Uv Y							
UNIT-IV							
Combustion chambers & Nozzles							
Combustion chambers							
Classification of combustion chambers, important factors affecting							
combustion chamber design, Combustion process, Combustion chamber							
performance Effect of operating variables on performance, Flame tube							
cooling, Flame stabilization , Use of flame holders							
Nozzies: I neory of flow in isentropic nozzles, Convergent nozzles and nozzle							
cnoking, Nozzie throat conditions. Nozzie efficiency, Losses in nozzles. Over							
expanded and under, expanded nozzles, Ejector and variable area nozzles,							
Inrust reversal.							
Laburatury Sessions/ Experimental learning:							

Make a model and explain thrust reversal technique	
Learn NASA's Range Games Version 1.3 (latest edition) by using <u>Beginner's</u>	
Guide to Propulsionhttps://www.grc.nasa.gov/WWW/K-	
12/airplane/ngnsimr.html	
Calculate and understand the aircraft motion and performance using Range	
Games Version	
Applications: Gas turbine industries	
Web Link and Video Lectures:	
https://youtu.be/3u7d-IlvRqs	
https://youtu.be/LPXLFY-WR-4	
https://youtu.be/E4wFJCHEwW4	
UNIT-V	
Rocket Propulsion	8 Hrs
Classification of rockets, Principle of rocket propulsion, Analysis of ideal	
chemical rocket, The chemical rocket, Solid propellant rockets, Liquid	
propellant rockets, Hybrid rockets, Cryogenic rockets nuclear propulsion,	
propellant rockets, Hybrid rockets, Cryogenic rockets nuclear propulsion, Electrodynamic propulsion, Photon propulsion, Propulsive efficiency.	
propellant rockets, Hybrid rockets, Cryogenic rockets nuclear propulsion, Electrodynamic propulsion, Photon propulsion, Propulsive efficiency. Laboratory Sessions/ Experimental learning:	
propellant rockets, Hybrid rockets, Cryogenic rockets nuclear propulsion, Electrodynamic propulsion, Photon propulsion, Propulsive efficiency. Laboratory Sessions/ Experimental learning: Make Sugar rocket by using potassium nitrate (small size)	
propellant rockets, Hybrid rockets, Cryogenic rockets nuclear propulsion, Electrodynamic propulsion, Photon propulsion, Propulsive efficiency. Laboratory Sessions/ Experimental learning: Make Sugar rocket by using potassium nitrate (small size) Find the specific impulse of the sugar rocket	
propellant rockets, Hybrid rockets, Cryogenic rockets nuclear propulsion, Electrodynamic propulsion, Photon propulsion, Propulsive efficiency. Laboratory Sessions/ Experimental learning: Make Sugar rocket by using potassium nitrate (small size) Find the specific impulse of the sugar rocket Applications: Rockets and missile manufacturing industries	
propellant rockets, Hybrid rockets, Cryogenic rockets nuclear propulsion, Electrodynamic propulsion, Photon propulsion, Propulsive efficiency. Laboratory Sessions/ Experimental learning: Make Sugar rocket by using potassium nitrate (small size) Find the specific impulse of the sugar rocket Applications: Rockets and missile manufacturing industries	
propellant rockets, Hybrid rockets, Cryogenic rockets nuclear propulsion, Electrodynamic propulsion, Photon propulsion, Propulsive efficiency. Laboratory Sessions/ Experimental learning: Make Sugar rocket by using potassium nitrate (small size) Find the specific impulse of the sugar rocket Applications: Rockets and missile manufacturing industries Web Link and Video Lectures:	
propellant rockets, Hybrid rockets, Cryogenic rockets nuclear propulsion, Electrodynamic propulsion, Photon propulsion, Propulsive efficiency. Laboratory Sessions/ Experimental learning: Make Sugar rocket by using potassium nitrate (small size) Find the specific impulse of the sugar rocket Applications: Rockets and missile manufacturing industries Web Link and Video Lectures: https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-50-	
propellant rockets, Hybrid rockets, Cryogenic rockets nuclear propulsion, Electrodynamic propulsion, Photon propulsion, Propulsive efficiency. Laboratory Sessions/ Experimental learning: Make Sugar rocket by using potassium nitrate (small size) Find the specific impulse of the sugar rocket Applications: Rockets and missile manufacturing industries Web Link and Video Lectures: https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-50- introduction-to-propulsionsystems-spring-2012/lecture-	
propellant rockets, Hybrid rockets, Cryogenic rockets nuclear propulsion, Electrodynamic propulsion, Photon propulsion, Propulsive efficiency. Laboratory Sessions/ Experimental learning: Make Sugar rocket by using potassium nitrate (small size) Find the specific impulse of the sugar rocket Applications: Rockets and missile manufacturing industries Web Link and Video Lectures: https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-50- introduction-to-propulsionsystems-spring-2012/lecture- notes/MIT16 50S12 lec9.pdf	
propellant rockets, Hybrid rockets, Cryogenic rockets nuclear propulsion, Electrodynamic propulsion, Photon propulsion, Propulsive efficiency. Laboratory Sessions/ Experimental learning: Make Sugar rocket by using potassium nitrate (small size) Find the specific impulse of the sugar rocket Applications: Rockets and missile manufacturing industries Web Link and Video Lectures: https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-50- introduction-to-propulsionsystems-spring-2012/lecture- notes/MIT16 50S12 lec9.pdf	
propellant rockets, Hybrid rockets, Cryogenic rockets nuclear propulsion, Electrodynamic propulsion, Photon propulsion, Propulsive efficiency. Laboratory Sessions/ Experimental learning: Make Sugar rocket by using potassium nitrate (small size) Find the specific impulse of the sugar rocket Applications: Rockets and missile manufacturing industries Web Link and Video Lectures: https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-50- introduction-to-propulsionsystems-spring-2012/lecture- notes/MIT16 50S12 lec9.pdf https://nptel.ac.in/courses/101106033/	

Cours	Course Outcomes: After completing the course, the students will be able to							
C01	Apply the basic thermodynamic principles and theories in aircraft propulsion.							
CO2	Understand the thrust generation and performance of turbojets, turbofans and turboprops.							
CO3	Analyze the performance of inlet for subsonic and supersonic applications							
CO4	Demonstrate the principle of combustion and distinguish between different types of combustion chambers							
C05	Explain the basic principles of rocket propulsion.							

Ref	Reference Books									
3.	Bhaskar Roy, Aircraft propulsion, Elsevier (2011), ISBN,13: 9788131214213									
4.	V. Ganesan, Gas Turbines, Tata McGraw,Hill, 2010, New Delhi, India, ISBN:									
	0070681929.									
3.	Hill, Philip G., and Carl R. Peterson. "Mechanics and Thermodynamics of									
	Propulsion, 0201146592." (2010).									
4.	Cohen, H. Rogers, G.F.C. and Saravanamuttoo, H.I.H., Gas Turbine Theory,									

	Longman, 1989, ISBN 13: 9780582236325.
5.	

Continuous Internal Evaluation (CIE): Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Total marks:	50+50=100
---------------------	-----------

CO-PO Mapping												
CO/P	PO	P02	P03	P04	P05	P06	P07	P08	P09	P01	P01	P01
0	1									0	1	2
C01												
CO2												
CO3												
CO4												
CO5												

High-3, Medium-2, Low-1

Course Title	AIRCRAFT TRANSPORT SYSTEMS	Semester	VI
Course Code	MVJ21AE742	CIE	50
Total No. of Contact Hours	40 L:T:P::3:0:0	SEE	50
No. of Contact Hours/week	4	Total	100
Credits	3	Exam. Duration	3 Hrs.

Course objective is to:

- 1. Understand the air transport systems.
- 2. Acquire the knowledge of aircraft characteristics and manufacturers
- 3. Acquire the knowledge of airlines, airport, and infrastructure
- 4. Understand the navigation and environmental systems.
- 5. Acquire the knowledge of managerial aspects of airlines

Air Transport Systems –Introduction

Environment, transport, and mobility. Systematic description and current challenges. Development of aircraft design driver-speed and range. Development of Airport, Airlines, ICAO, Regulatory Framework and Market Aspects.

Laboratory Sessions/ Experimental learning: how control surfaces behave with change in Cg in lateral, longitudinal and transvers direction.

Applications: Development of aircraft design, Airport and Airlines

Video link / Additional online information

- 1. https://nptel.ac.in/courses/101/104/101104075/
- 2. https://www.youtube.com/watch?v=WUq3uN4MDms
- 3. https://nptel.ac.in/courses/101/104/101104071/

Module 2

Aircraft Characteristics and Manufacturers

Classification of flight vehicles, cabin design, basics of flight physics- structures, mass, and balance. Flight performance and mission. Aircraft manufacturers, development process, production process, supply chain.

L1, L2, L3,

10 Hrs.

Laboratory Sessions/ Experimental learning:

Applications: Aircraft manufacture ring and development process

Video link / Additional online information

1. https://www.youtube.com/watch?v=bn2_NZkYQAo

2. https://nptel.ac.in/courses/101/104/101104075/

Module 3					L1, L2, L3	10 Hrs.	
	1.7.6	-	-				

Airlines, Airport, and Infrastructure

Airline types, Network management. Flight strategy and aircraft selection, flight operations, MRO. Role of Airport, Regulatory Issues, Airport operation and services. Airport planning - infrastructure. **Laboratory Sessions/ Experimental learning:**Basic simulation concepts for airport planning and design

Applications: Airport operation and planning

Video link / Additional online information:

- 1. https://youtu.be/BhvYofNQUQE?list=PL05C6EFB31D920568
- 2. https://youtu.be/dzlHwwmca4c?list=PL05C6EFB31D920568
- 3. https://www.nap.edu/read/25573/chapter/4

Module 4

L1, L2, L3 10 Hrs.

Air Navigation System & Environmental Systems

Principle of operation- Role of Air Navigation services. Air space structures, Airspace and Airport capacity, Aircraft separation. Flight guidance system. runway layout and runway lighting, Communication system. Integrated air traffic management and working system. Air traffic controlEnvironmental aspects-emission, noise, and sound.

Laboratory Sessions/ Experimental learning: Basic simulation on Flight guidance system.

Applications: Air Navigation services and Environmental considerations

Video link / Additional online information:

- 1. https://youtu.be/Th2N_rDfkDw
- 2. https://youtu.be/shHvE6yV4IM

Module 5	L1. L2. L3	10 Hrs.
	,,	

Managerial Aspects of Airlines

Airline passenger marketing, forecasting methods, pricing, and demand. Air cargo-market for air

freight. Principles of airline scheduling. Fleet planning.

Laboratory Sessions/ Experimental learning:

Applications: Airline passenger marketing and Air cargo-market

Video link / Additional online information:

- 1. https://nptel.ac.in/courses/101/104/101104075/
- **2.** https://nptel.ac.in/courses/101/104/101104071/

Course outcomes:

Upon completion of the course, students will be able to:

Describe the sir transport systems
Describe the an transport systems.

CO314.2.2	Discuss aircraft characteristics and manufacturers
CO314.2.3	Describe airlines, airport, and infrastructure
CO314.2.4	Summariesairnavigation and environmental systems
CO314.2.5	Apply the knowledge of managerial aspects of airlines

Reference Boo	bks:
1.	Air Transport System, Dieter Schmitt, and ValkerGollnick, Springer, 2016
2.	Air Transportation-A Management Prospective, Jhon G Wensveen, Ashgate Publishing Ltd, 2011
3.	The Air Transportation System, Mike Hirst, Woodhead Publishing Ltd, England, 2008
4.	Transport Category Aircraft Systems, Thomas W. Wild, IAP, Inc, Year: 1990

	CIE Assessment:													
CIE is	based o	on quiz	zes, te	sts, ass	ignme	nts/sei	minars	and ar	ny othe	r form o	of evalua	ition. Ge	nerally, t	there
will be:	Three l	Interna	al Asses	ssment	: (IA) te	ests du	ring th	e seme	ster (3	0 marks	s each), t	the final	IA mark	s to be
				av	varded	will be	e the av	verage	of thre	e tests				
- Qı	uizzes/	mini te	ests (4	marks))									
- M	lini Pro	ject / (Case St	udies (8 Marl	ks)								
- Ac	tivities	s/Expe	riment	ations	related	d to cou	urses (8 Mark	s)					
						SEI	E Asses	sment	:					
- (Questic	on pap	er for	the SE	E cons	sists tw	o part	ts i.e. F	Part A	and Par	t B. Par	t A is co	ompulso	ry and
	consist	s of ob	jective	type o	r short	answe	er type	questi	ons of	1 or 2 m	arks ea	ch for to	tal of 20	marks
	coverin	ng the v	whole s	syllabu	s.			-						
-]	Part B	also co	overs tl	he enti	re svlla	abus co	onsistir	ng of fi	ve que	stions h	aving ch	noices ar	nd mav c	ontain
	sub-div	visions	. each c	carrvin	g 16 m	arks. S	tudent	s have	to answ	wer five	full que	stions.	5	
-	- One question must be set from each unit. The duration of examination is 3 hours													
	1					CO	. PO M	apping						
CO/PO	P01	P02	P03	P04	P05	P06	P07	P08	, P09	P010	P011	P012	PS01	PSO2
CO1	2	2	2	101	105	1	107	1	105	2	1	2	2	1 1
01	<u></u> э	2	2	1	1	1	1	1	1	2	1	2	2	1
02	3	2	3	1	1	2	1	1	1	2		2	1	2
CO3	3	2	2	1	1	2	1	1	1	2	1	2	2	2
CO4	3	2	3	1	1	2	3	1	1	2	1	2	1	2

C05	3	2	2	1	1	2	1	1	1	2	1	2	1	1
-----	---	---	---	---	---	---	---	---	---	---	---	---	---	---

Sem	ester: VII								
	ROCKETS AND MISSILES								
Cou	rse Code:	MVJ21AE743	CIE Marks:100						
Crea	lits: 3 L:T:P:S: 3:0:0:0		SEE Marks: 100						
Hou	rs: 40 Hours		SEE Duration: 3 Hrs						
Cou	rse Learning Objectives: The stu	idents will be able	e to						
1	Basics of Rockets and Missiles is an elective course offered in 5 th semester Aeronautical Engineering curriculum.								
2	This subject covers extensively regarding design and analysis of rockets and missiles.								
3	The different types of Airframe types of guidance systems are als	components, type so covered in this s	es of propulsion system, and ubject.						
4	This subject will make student to vehicles and missiles.	understand advan	ced problems facing in launch						
5									

UNIT-I
INTRODUCTION

Space launch Vehicles and military missiles, function, types, role, mission, mission profile, thrust profile, propulsion system, payload, staging, control and guidance requirements, performance measures, design, construction, operation, similarities and differences. Some famous space launch vehicles and strategic missiles.

8

8

Applications:

Web Link and Video Lectures:

https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-512-rocketpropulsion-fall-2005/

https://www.isro.gov.in/launchers

UNIT-II

SOLID AND LIQUID ROCKET MOTOR SYSTEMS

Solid Propellant Rocket Motor Systems: Solid Propellant rocket motors, principal features, applications. Solid propellants, types, composition, properties, performance. Propellant grain, desirable properties, grain configuration, preparation, loading, structural design of grain. Liners, insulators and inhibitors, function, requirements, materials. Rocket motor casing – materials. Nozzles, types, design, construction,

thermal protection. Igniters, types, construction. Description of modern solid boosters I) Space Shuttle SRB, II) the Arienne SRB	
Applications:	
Web Link and Video Lectures: https://www.esa.int/Our Activities/Space Transportation/Launch vehicles/Ariane 5	
https://www.nasa.gov/centers/glenn/about/history/lvpo.html	
UNIT-III	
MODULE 3: AERODYNAMICS OF ROCKETS AND MISSILES	8
Liquid Propellant Rocket Motor Systems: Liquid propellants, types, composition, properties, performance. Propellant tanks, feed systems, pressurization, turbo-pumps, and valves and feed lines, injectors, starting and ignition. Engine cooling, support structure. Control of engine Starting and thrust build up, system calibration, integration and optimisation – safety and environmental concerns. Description of the space shuttle main engine. Propellant slosh, propellant hammer, geysering effect in cryogenic rocket engines	Hrs
Applications:	
WebLinkandVideoLectures:https://www.nasa.gov/connect/ebooks/aeronauticsebooksarchive1.html	
UNIT-IV	
LAUNCH VEHICLE DYNAMICS & ATTITUDE CONTROL OF ROCKETS Launch Vehicle Dynamics: Tsiolskovsky's rocket equation, range in the absence of gravity, vertical motion in the earth's gravitational field, inclined motion, flight path at constant pitch angle, motion in the atmosphere, the gravity turn – the culmination altitude, multi staging. Earth launch trajectories – vertical segment, the gravity turn, constant pitch trajectory, orbital injection. Actual launch vehicle trajectories, types. Examples, the Mu 3-S-II, Ariane, Pegasus launchers. Reusable launch vehicles, future launchers, launch assist technologies.Λ	8 Hrs
Attitude Control Of Rockets And Missiles: Rocket Thrust Vector Control – Methods of Thrusts Vector Control for solid and liquid propulsion systems, thrust magnitude control, thrust termination; stage separation dynamics, separation techniques	
Applications Web Link and Video Lectures: <u>http://nptel.ac.in/courses/101104019/</u>	
UNIT-V	·
ROCKET TESTING AND MATERIALS	8
Rocket Testing: Ground Testing and Flight Testing, Types of Tests facilities and	Hrs

management. Ground Testing, Flight Testing, Trajectory monitoring, post -accident procedures. Description of atypical space launch vehicle launch procedure.

Materials: Criteria for selection of materials for rockets and missiles, requirements for choice of materials for propellant tanks, liners, insulators, inhibitors, at cryogenic temperatures, requirements of materials at extremely high temperatures, requirements of materials for Thermal protection and for pressure vessels. **Applications**:

Web Link and Video Lectures: <u>http://nptel.ac.in/courses/101105030/33</u>

Cours	se Outcomes: After completing the course, the students will be able to
C01	Identify the types of space launch vehicles and missiles.
CO2	Distinguish the solid and liquid propellant motors.
CO3	Classify different types of missiles, understand missile aerodynamics.
C04	Acquire the knowledge on launch vehicle dynamics, Attitude control
C05	Identify different types of materials used in rockets, missiles and acquire knowledge on rocket testing

Ref	erence Books
1.	George P Sutton and Oscar Biblarz,' Rocket Propulsion Element', John Wiley and
	Sons Inc,7 th edition,2010,ISBN-13: 978-8126525775
2	Jack N Noilson 'Missila Agradynamics' AIAA 1st adition 1988 ISBN-13, 978-
2.	Jack N Nelisoli, Missile Aerouynamics, AIAA, 1st eulioli, 1900, Isbiv-15. 970-
	0962062902.
3.	SS Chin, 'Missile Configuration Design'.
4.	Cornelisse, J.W., Schoyer H.F.R. and Wakker, K.F., Rocket Propulsion and Space-
	Flight
	<i>Dynamics</i> , Pitman, 1979,ISBN-13: 978-0273011415
5.	Turner, M.J.L., Rocket and Spacecraft propulsion, Springer, 3rd edition, 2010, ISBN-
	13: 978-3642088698.

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Total marks: 50+50=100

CO-PO	Маррі	ng										
CO/P	PO	P02	P03	P04	P05	P06	P07	P08	P09	P01	P01	P01
0	1									0	1	2
C01												
CO2												
CO3												
CO4												
C05												

High-3, Medium-2, Low-1

Course Title	AIRCRAFT SYSTEMS & INSTRUMENTATION	Semester	VII
Course Code	MVJ21AE744	CIE	50
Total No. of Contact Hours	40 L:T:P::3:0:0	SEE	50
No. of Contact Hours/week	4	Total	100
Credits	3	Exam. Duration	3 Hrs.

Course objective is to:

- 6. Gain knowledge of the aircraft control systems.
- 7. Understand the applications of hydraulics and pneumatics in aircraft systems.
- 8. Acquire knowledge regarding aircraft engine systems.
- 9. Comprehend the aircraft auxiliary systems
- 10. Acquire the knowledge of aircraft instruments.

Module 1	L1,L2,L3	10 Hrs.

Airplana Control Systems: Conventional Systems fully newared flight cont	role Dower actu	atad
An plane control systems: conventional systems, runy powered light control		
Ta share le me	em active contro)]
Technology.		
LaboratorySessions/ Experimental learning:		
How it works, flight controls PID controls.		
Pilot training, UAV design and piloting, RC aircraft design and piloting.		
Video link / Additional online information (related to module if any):		
28. <u>https://nptel.ac.in/courses/101/104/101104066</u>		
29. <u>https://onlinecourses.nptel.ac.in/noc21_ae05/preview</u>		
30. <u>https://digitalcommons.calpoly.edu/cgi/viewcontent.cgi?article=106</u>	<u>57&context=aer</u>	<u>osp</u>
Module 2	L1,L2,L3,	10 Hrs.
Aircraft Systems: Hydraulic systems, Study of typical workable system, com	ponents, Pneun	natic
systems, Advantages, Working principles, Typical Air pressure system, Brake	e system, Typica	1
Pneumatic power system, Components, Landing Gear systems, Classification.		
Laboratory Sessions/ Experimental learning:		
Calculation on force required for hydraulic system and pneumatic system in	aircraft applicat	ions.
Applications:		
Hydraulic lifts, pneumatic door openings and closing, landing gears, breaks.		
Video link / Additional online information (related to module if any):		
12. <u>https://nptel.ac.in/courses/112/105/112105047/</u>		
13. <u>https://nptel.ac.in/courses/112/103/112103249/</u>		
14. https://sciencing.com/make-simple-hydraulic-system-7380816.htm	<u>l</u>	
Module 3	L1,L2,L3	10 Hrs.
Engine Systems: Fuel systems for Piston and jet engines, Components of mu	lti engines. lubr	icating
systems for piston and jet engines - Starting and Ignition systems - Typical ex	amples for pist	on and jet
engines.		
Laboratory Sessions/ Experimental learning:		
Engine Fuel and Fuel Metering Systems (Lab session IIT Kanpur, Virtual lab)		
https://www.youtube.com/watch?v=xEssM_sYtd8		
Applications:		
Range and Endurance calculation, actions to take in case of engine failures.		
Range and Endurance calculation, actions to take in case of engine failures. Video link / Additional online information (related to module if any):		
 Range and Endurance calculation, actions to take in case of engine failures. Video link / Additional online information (related to module if any): 18. <u>https://nptel.ac.in/courses/101/101/101002/</u> 		

Module 4	L1,L2,L3	10 Hrs.			
Auxiliary System: Basic Air cycle systems, Vapour Cycle systems, Evaporative vapour cycle systems,					
Evaporative air cycle systems, Fire protection systems, Deicing and anti-icir	ig systems.				
Laboratory Sessions/ Experimental learning:					
Response time and operations of firefighting systems in case of engine failu	re.				
Applications:					
Firefighting, precautions, how to fight different classes of fire.					
Video link / Additional online information (related to module if any):					
15. https://nptel.ac.in/content/storage2/courses/101106035/001_Cha	apter%201_L1_(<u>)1-10-</u>			
<u>2013)</u>					
16. <u>https://nptel.ac.in/courses/103/107/103107156/</u>					
17. https://www.draeger.com/en_seeur/ Products/Aircraft-fire-trainin	g-systems.				
Module 5	L1,L2	10 Hrs.			
Aircraft Instruments: Flight Instruments and Navigation Instruments, Gyr	oscope, Accelero	meters, Air			
speed Indicators, TAS, EAS, Mach Meters, Altimeters, Principles and operation	on, Study of vario	ous types of			
engine instruments, Tachometers, Temperature gauges, Pressure gauges, O	peration and Prin	nciples.			
Laboratory Sessions/ Experimental learning:					
Gyroscope working and applications, Avionics lab instruments working.					
Applications:					
Understanding readings of the flight instruments, prediction of failure or tro	uble before actua	l encounter			
and taking necessary precautions.					
Video link / Additional online information (related to module if any):					
17. https://nptel.ac.in/courses/101/108/101108056/					
18. <u>https://onlinecourses.nptel.ac.in/noc20_ae01/preview</u>					
19. <u>https://www.wingbug.com/wingbug-for-experimental-aircraft/</u>					
Course outcomes:					
Upon completion of the course, students will be able to:					
CO314.1.1 Distinguish the conventional and modern control systems.					
CO314.1.2 Analyse the aircraft systems.					
CO314.1.3 Analyse the working of Aircraft engine systems.					
CO314.1.4 Describe aircraft Auxiliary systems					
CO314.1.5 Applydifferent aircraft instruments.					

Reference Books:				
1	Ian Moirand Allan Seabridge, Aircraft Systems: Mechanical, Electrical and Avionics-			
1.	Subsystem Integration, Wiley India Pvt Ltd, 3 rd edition, 2012.			
2	Lalit Gupta and OP. Sharma, Aircraft Systems (Fundamentals of Flight Vol. IV),			
۷.	Himalayan Books, 2006.			
3.	William A Neese, Aircraft Hydraulic Systems, Himalayan Books, 2007			
4.	SR. Majumdar, Pneumatic Systems, Tata McGraw Hill Publishing Co, 1 st Edition, 2001			

	CIE Assessment:													
CIE is b	CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation. Generally, there will													
be: T	'hree Ir	nternal	Assess	ment (IA) tes	ts durir	ng the s	emeste	er (30 r	narks ea	ch), the	final IA ı	marks to	be
				av	warded	will be	e the av	verage o	of three	e tests				
- Qu	izzes/r	nini tes	sts (4 m	arks)										
- M	ini Proj	ect / C	ase Stu	dies (8	Marks)								
- Act	tivities	/Exper	imenta	tions r	elated t	co cours	ses (8 I	Marks)						
						SEI	E Asses	sment:						
- (Juestio	n pape	r for th	e SEE o	consist	s two p	arts i.e	. Part A	and P	art B. Pa	rt A is c	ompulse	orv and c	onsists
	of object	tive tvr	ne or sh	nort an	swer tv	me dije	stions	of 1 or	2 mark	s each fo	nr total o	f 20 mar	·ks cover	ring the
	whole	uve typ		101 t an.	swer ty	pc que	500115		2 mai K	s cacil it		1 20 111	KS COVCI	ing the
V	vnole s	yiiabus -	•							_		_		_
- F	Part B a	lso cov	ers the	e entire	syllab	us cons	sisting	of five o	questio	ns havir	ig choice	es and m	ay conta	in sub-
d	livision	s, each	carryi	ng 16 n	narks. S	Student	s have	to ansv	ver five	e full que	estions.			
- ()ne que	estion n	nust be	e set fro	om each	n unit. T	The dur	ation o	of exam	ination i	s 3 hour	'S.		
						CO	, PO Ma	apping						
CO/PO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2
C01	3	2	1	0	0	0	0	0	0	0	0	1	1	0
CO2	3	2	1	0	0	0	0	0	0	0	0	1	1	0
CO3	3	2	1	0	0	1	1	0	0	0	0	1	1	0
C04	3	2	1	0	0	1	1	0	0	0	0	1	1	0
C05	3	2	1	0	0	0	0	0	0	0	0	1	1	0

Course Title	UNMANNED AERIAL VEHICLES	Semester	VII
Course Code	MVJ21AE745	CIE	50
Total No. of Contact Hours	40 L: T: P:: 3 :1 :0	SEE	50
No. of Contact Hours/week	4	Total	100
Credits	3	Exam. Duration	3 Hrs.

The course objective is to:

- 6. Comprehend the basic aviation history and UAV systems
- 7. Understand the air vehicle basic aerodynamics and performance.
- 8. Acquire knowledge of Stability and Control
- 9. Understand concepts of Propulsion, Loads and Structures
- 10. Comprehend the various Mission Planning and Control

Module 1	L1,L2,L3	10Hrs.	
Introduction to Aviation, Overview of UAV systems, Classes and Missions of UAVs, Definitions and			
Terminology UAVs, UAV fundamentals, MAVs, and Drones. Examples of UAV	systems-very sn	nall, Small	
UAV, Medium UAV, Large UAV, UAV applications.			
Laboratory Sessions/ Experimental learning:			
Design and development of Unmanned Aerial vehicle for real world application	ions.		
Applications:			
Usage of UAV systems for Aerial monitoring, surveillance systems			
Video link / Additional online information (related to module if any):			
1.NPTEL- https://nptel.ac.in/courses/101/104/101104073/			
2. NPTEL- https://nptel.ac.in/courses/101/104/101104083/			
Module 2	L1,L2,L3,	10Hrs.	
Introduction: The Air Vehicle Basic Aerodynamics, Basic Aerodynamics equa	tions, Aircraft p	olar, The	
real wing and Airplane, Induced drag, The boundary layer, Flapping wings, Total Air-Vehicle Drag,			
Performance: Overview, Climbing flight, Range for propeller driven aircraft, R	lange- a jet-drive	en aircraft,	

Endurance-for propeller driven aircraft, Guiding Flight.

Laboratory Sessions/ Experimental learning:

Conduct the various experiments using the Aerodyanamics lab and its equations.

Applications:

Determine the endurance limit for propeller driven shaft.				
Video link / Additional online information (related to module if any):				
1. NPTEL- <u>https://nptel.ac.in/courses/101/104/101104073/</u>				
2. NPTEL- <u>https://nptel.ac.in/courses/101/104/101104083/</u>				
Module 3	L1,L2,L3	10Hrs.		
Overview, Stability, Longitudinal, lateral, Dynamic stability, Aerodynamics co	ontrol, Itch contr	ol, lateral		
control, Autopilots, sensor, Controller, actuator, Airframe control, Inner and	outer loops, Flig	ht-Control		
Classification, Overall Modes of Operation, Sensors Supporting the Autopilot.				
Laboratory Sessions/ Experimental learning:				
Determine the longitudinal, lateral and dynamic stability using the Aerodyna	mics control.			
Applications:				
Various sensors used for the Autopilot system and control systems.				
Video link / Additional online information (related to module if any):				
1.NPTEL- https://nptel.ac.in/courses/101/104/101104073/				
2.NPTEL- https://nptel.ac.in/courses/101/104/101104083/				
Module 4	111212	1011		
mouule +	ե1,ե2,ե3	IUHIS.		
Propulsion: Overview, Thrust Generation, Powered Lift, Sources of Power, 7	The Two-Cycle F	IOHIS. Engine, The		
Propulsion: Overview, Thrust Generation, Powered Lift, Sources of Power, Rotary Engine, The Gas Turbine,Electric Motors, Sources of Electrical Power,	The Two-Cycle E Loads and Strue	Congine, The ctures,		
Propulsion: Overview, Thrust Generation, Powered Lift, Sources of Power, Rotary Engine, The Gas Turbine,Electric Motors, Sources of Electrical Power, Loads, Dynamic Loads, Materials, Sandwich Construction, Skin or Reinforcin	The Two-Cycle E Loads and Strue g Materials Resi	TOHTS. Engine, The ctures, n		
Propulsion: Overview, Thrust Generation, Powered Lift, Sources of Power, Rotary Engine, The Gas Turbine,Electric Motors, Sources of Electrical Power, Loads, Dynamic Loads, Materials, Sandwich Construction, Skin or Reinforcin Materials, CoreMaterials& Construction Techniques.	The Two-Cycle E Loads and Strue g Materials Resi	TOHTS. Engine, The ctures, n		
Propulsion: Overview, Thrust Generation, Powered Lift, Sources of Power, Rotary Engine, The Gas Turbine,Electric Motors, Sources of Electrical Power, Loads, Dynamic Loads, Materials, Sandwich Construction, Skin or Reinforcin Materials, CoreMaterials& Construction Techniques. Laboratory Sessions/ Experimental learning:	The Two-Cycle E Loads and Strue	furrs. Engine, The ctures, n		
 Propulsion: Overview, Thrust Generation, Powered Lift, Sources of Power, 'Rotary Engine, The Gas Turbine,Electric Motors, Sources of Electrical Power, Loads, Dynamic Loads, Materials, Sandwich Construction, Skin or Reinforcin Materials, CoreMaterials& Construction Techniques. Laboratory Sessions/ Experimental learning: Determine the efficiency of the various types engines used in the Unmanned 	The Two-Cycle E Loads and Strue og Materials Resi	furrs. Engine, The ctures, n		
 Propulsion: Overview, Thrust Generation, Powered Lift, Sources of Power, 'Rotary Engine, The Gas Turbine,Electric Motors, Sources of Electrical Power, Loads, Dynamic Loads, Materials, Sandwich Construction, Skin or Reinforcin Materials, CoreMaterials& Construction Techniques. Laboratory Sessions/ Experimental learning: Determine the efficiency of the various types engines used in the Unmanned Applications: 	LI,L2,L3 The Two-Cycle E Loads and Strue og Materials Resi Aerial Vehicle	TOHTS. Engine, The ctures, n		
 Propulsion: Overview, Thrust Generation, Powered Lift, Sources of Power, 'Rotary Engine, The Gas Turbine,Electric Motors, Sources of Electrical Power, Loads, Dynamic Loads, Materials, Sandwich Construction, Skin or Reinforcin Materials, CoreMaterials& Construction Techniques. Laboratory Sessions/ Experimental learning: Determine the efficiency of the various types engines used in the Unmanned Applications: Usage of various applications of the resin material and skin reinforcing 	The Two-Cycle E Loads and Strue og Materials Resi Aerial Vehicle	furrs. Engine, The ctures, n		
 Propulsion: Overview, Thrust Generation, Powered Lift, Sources of Power, 'Rotary Engine, The Gas Turbine,Electric Motors, Sources of Electrical Power, Loads, Dynamic Loads, Materials, Sandwich Construction, Skin or Reinforcin Materials, CoreMaterials& Construction Techniques. Laboratory Sessions/ Experimental learning: Determine the efficiency of the various types engines used in the Unmanned Applications: Usage of various applications of the resin material and skin reinforcing constructions. 	The Two-Cycle E Loads and Strue og Materials Resi Aerial Vehicle	forms. Engine, The ctures, n		
 Propulsion: Overview, Thrust Generation, Powered Lift, Sources of Power, ' Rotary Engine, The Gas Turbine,Electric Motors, Sources of Electrical Power, Loads, Dynamic Loads, Materials, Sandwich Construction, Skin or Reinforcin Materials, CoreMaterials& Construction Techniques. Laboratory Sessions/ Experimental learning: Determine the efficiency of the various types engines used in the Unmanned Applications: Usage of various applications of the resin material and skin reinforcing constructions. Video link / Additional online information (related to module if any): 	The Two-Cycle E Loads and Strue og Materials Resi Aerial Vehicle	forms. Engine, The ctures, n		
 Propulsion: Overview, Thrust Generation, Powered Lift, Sources of Power, ' Rotary Engine, The Gas Turbine,Electric Motors, Sources of Electrical Power, Loads, Dynamic Loads, Materials, Sandwich Construction, Skin or Reinforcin Materials, CoreMaterials& Construction Techniques. Laboratory Sessions/ Experimental learning: Determine the efficiency of the various types engines used in the Unmanned Applications: Usage of various applications of the resin material and skin reinforcing constructions. Video link / Additional online information (related to module if any): 1.NPTEL- https://nptel.ac.in/courses/101/104/101104073/ 	The Two-Cycle E Loads and Strue og Materials Resi Aerial Vehicle	forms. Engine, The ctures, n		
 Propulsion: Overview, Thrust Generation, Powered Lift, Sources of Power, ' Rotary Engine, The Gas Turbine,Electric Motors, Sources of Electrical Power, Loads, Dynamic Loads, Materials, Sandwich Construction, Skin or Reinforcin Materials, CoreMaterials& Construction Techniques. Laboratory Sessions/ Experimental learning: Determine the efficiency of the various types engines used in the Unmanned Applications: Usage of various applications of the resin material and skin reinforcing constructions. Video link / Additional online information (related to module if any): 1.NPTEL- https://nptel.ac.in/courses/101/104/101104073/ 2.NPTEL- https://nptel.ac.in/courses/101/104/101104083/ 	The Two-Cycle E Loads and Strue og Materials Resi	forms. Engine, The ctures, n		
 Propulsion: Overview, Thrust Generation, Powered Lift, Sources of Power, 'Rotary Engine, The Gas Turbine,Electric Motors, Sources of Electrical Power, Loads, Dynamic Loads, Materials, Sandwich Construction, Skin or Reinforcine Materials, CoreMaterials& Construction Techniques. Laboratory Sessions/ Experimental learning: Determine the efficiency of the various types engines used in the Unmanned Applications: Usage of various applications of the resin material and skin reinforcing constructions. Video link / Additional online information (related to module if any): 1.NPTEL- https://nptel.ac.in/courses/101/104/101104073/ 2.NPTEL- https://nptel.ac.in/courses/101/104/101104083/ 	L1,L2,L3 The Two-Cycle E Loads and Strue og Materials Resi Aerial Vehicle materials for L1,L2	TOHTS. Engine, The ctures, n the aircraft 10Hrs.		
 Propulsion: Overview, Thrust Generation, Powered Lift, Sources of Power, 'Rotary Engine, The Gas Turbine,Electric Motors, Sources of Electrical Power, Loads, Dynamic Loads, Materials, Sandwich Construction, Skin or Reinforcin Materials, CoreMaterials& Construction Techniques. Laboratory Sessions/ Experimental learning: Determine the efficiency of the various types engines used in the Unmanned Applications: Usage of various applications of the resin material and skin reinforcing constructions. Video link / Additional online information (related to module if any): 1.NPTEL- https://nptel.ac.in/courses/101/104/101104073/ 2.NPTEL- https://nptel.ac.in/courses/101/104/101104083/ Module 5 Mission Planning and Control, Air Vehicle and Payload Control, Reconnaissar 	L1,L2,L3 The Two-Cycle E Loads and Strue og Materials Resi Aerial Vehicle materials for L1,L2	10Hrs. Engine, The ctures, n the aircraft 10Hrs. Payloads,		
 Propulsion: Overview, Thrust Generation, Powered Lift, Sources of Power, ' Rotary Engine, The Gas Turbine,Electric Motors, Sources of Electrical Power, Loads, Dynamic Loads, Materials, Sandwich Construction, Skin or Reinforcin Materials, CoreMaterials& Construction Techniques. Laboratory Sessions/ Experimental learning: Determine the efficiency of the various types engines used in the Unmanned Applications: Usage of various applications of the resin material and skin reinforcing constructions. Video link / Additional online information (related to module if any): 1.NPTEL- https://nptel.ac.in/courses/101/104/101104073/ 2.NPTEL- https://nptel.ac.in/courses/101/104/101104083/ Module 5 Mission Planning and Control, Air Vehicle and Payload Control, Reconnaissar Weapon Payloads, Other Payloads, Data-Link Functions and Attributes, Data- 	L1,L2,L3 The Two-Cycle E Loads and Strue og Materials Resi Aerial Vehicle materials for L1,L2 nce/Surveillance -Link Margin, Da	10Hrs. Engine, The ctures, n the aircraft 10Hrs. Payloads, ita-Rate		

Laboratory Sessions/ Experimental learning:

Determine the various payloads used for the various operations of flight

Applications:

Usage of launch and recovery systems used in the Unmanned Aerial Vehicle

Video link / Additional online information (related to module if any):

1.NPTEL- https://nptel.ac.in/courses/101/104/101104073/

2.NPTEL- https://nptel.ac.in/courses/101/104/101104083/

Course outcomes:

Upon completion of the course, students will be able to:

CO401.1	Apply the basic concepts of UAV systems
CO401.2	Utilise the knowledge of air vehicle basic aerodynamics and performance
CO401.3	Apply the knowledge of Stability and Control
CO401.4	Evaluate the Propulsion systems, Loads and Structures
CO401.5	Apply the mission, planning and control

Reference B	ooks:											
1.	Paul Gerin Fahlstrom , Thomas James Gleason, INTRODUCTION TO UAV SYSTEMS, 4th Edition, Wiley Publication, 2012 John Wiley & Sons, Ltd											
2.	Landen Rosen, Unmanned Aerial Vehicle, Publisher: Alpha Editions, ISBN 13 : 9789385505034.											
3.	Unmanned Aerial Vehicles: DOD"s Acquisition Efforts, Publisher : Alpha Editions, ISBN13 : 9781297017544											

CIE Assessment:

CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation. Generally, there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of three tests

- Quizzes/mini tests (4 marks)
- Mini Project / Case Studies (8 Marks)
- Activities/Experimentations related to courses (8 Marks)

SEE Assessment:

- Question paper for the SEE consists two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.
 - Part B also covers the entire syllabus consisting of five questions having choices and may contain sub-divisions, each carrying 16 marks. Students have to answer five full questions.
- One question must be set from each unit. The duration of examination is 3 hours.

CO,PO Mapping														
CO/PO	D/PO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12										PSO1	PSO2		
C01	3	3	3	3	2	2	1	1	1	1	1	1	1	1
C02	3	3	3	3	2	2	1	1	1	1	1	1	1	1
CO3	3	3	3	3	2	2	1	1	1	1	1	1	1	1
C04	3	3	3	3	2	2	1	1	1	1	1	1	1	1
C05	3	3	3	3	2	2	1	1	1	1	1	1	1	1

MVJ College of Engineering, Whitefield, Bangalore 560067

An Autonomous Institution, Affiliated to VTU, Belagavi

Scheme of Teaching and Examination Outcome Based Education (OBE) and Choice Based Credit System (CBCS) Effective from the academic year 2021-22 Department of Aeronautical Engineering

Semester VIII

Sl.	Course		Course Title	BoS		Teaching h	rs./week			Credit			
No.													
	Туре	Code			Lecture	Tutorial	Practica	Self-	Duration	CIE	SEE	Total	
					L	Т	1	Study	Hrs.	Marks	Marks	Marks	
							Р	S					
1	PRJ	MVJ21XXP81	Project Phase II	AE	-	-	-	-	3	50	50	100	10
2	INT	MVJ21XXINT82	Research / Industrial Internship	AE	-	-	-	-	3	50	50	100	05
3	Seminar	MVJ21XXS83	Seminar	AE	-	-	-	-	3	50	50	100	01
			Total		-	-		-		150	150	300	16