Course Title	Transforms and Statistical Methods	Semester	III
Course Code	MVJ22MAS31/MAE31	CIE	50
Total No. of Contact Hours	40 L: T: P: 3: 0: 0	SEE	50
No. of Contact Hours/week	4	Total	100
Credits	3	Exam. Duration	3hrs

This course will enable students to

- Comprehend and use of analytical and numerical methods in different engineering fields.
- Apprehend and apply Fourier Series.
- Realize and use of Fourier transforms.
- Realize and use of Z-Transforms.
- Use of statistical methods in curve fitting applications.

Module-1 L1, L2 & L3 8 Hours	T 1		
	Module-1	L1, L2 & L3	8 Hours

Laplace Transform:

Definition and Laplace transforms of elementary functions. Laplace transforms of Periodic functions and unit-step function and problems.

Inverse Laplace Transform:

Definition and problems, Convolution theorem to find the inverse Laplace transforms and problems.

Applications: Solution of linear differential equations using Laplace transforms.

Web Link and Video Lectures:

https://www.youtube.com/watch?v=8oE1shAX96U

https://www.intmath.com/laplace-transformation/7-inverse-laplace-transform.php			
Module-2	L1, L2 & L3	8 Hours	
Fourier series:			

Recapitulation of Series, Continuous and Discontinuous functions, Periodic functions, Dirichlet's conditions, Fourier series of periodic functions of period 2π and arbitrary period 2l, Half-range

Fourier sin	e and cosine series, Practical Harmonic Analysis and Problem	S.			
Web Link	and Video Lectures:				
https://ww	w.youtube.com/watch?v=Sq2FhCxcyI8				
https://ww	w.youtube.com/watch?v=4N-IwHUCFa0				
Module-3		L1, L2 & L3	8 Hours		
Fourier tr	ansforms:				
Infinite Fo	urier transform, Infinite Fourier sine and cosine transforms, In	verse Fourier tra	nsforms,		
Inverse Fo	urier sine and cosine transforms, Convolution theorem.				
Web Link	and Video Lectures:				
https://ww	w.youtube.com/watch?v=spUNpyF58BY				
https://ww	w.youtube.com/watch?v=6spPyJH6dkQ				
Module-4		L1, L2 & L3	8 Hours		
Z-Transfo	orms:				
Z-transform	m: Difference equations, basic definition, z-transform -defini	tion, Standard z	-transforms,		
damping r	ule, Shifting rule, Initial value and final value theorems (w	ithout proof) and	d problems,		
Inverse Z-	transform.				
Applicatio	ons: Application of Z- transforms to solve difference equations	•			
Web Link	and Video Lectures:				
http://www	v.eas.uccs.edu/~mwickert/ece2610/lecture_notes/ece2610_cha	p7.pdf			
https://elec	ctricalbaba.com/final-value-theorem-and-its-application/				
Module-5		L1, L2& L3	8 Hours		
Curve Fit	ting:				
Curve fitt	ing by the method of least squares. Fitting of the curve	es of the form	y = ax + b,		
$y = ax^2 + b$	$bx + c$ $y = ae^{bx}$				
Statistical	, , . Mathadar				
Introductic	Methous:	of regression on	dproblems		
Introduction, Correlation and coefficient of correlation, Regression, lines of regression and problems.					
wed Link and video Lectures:					
https://mathbits.com/MathBits/TISection/Statistics2/correlation.htm					
<u>https://www.youtube.com/watch?v=xTpHD5WLuoA</u>					
Course ou	itcomes:				
CO201_1	Use Laplace transform and inverse transforms techniques in	solving different	ial		
0201.1	equations.				

CO201.2	Demonstrate Fourier Transform as a tool for solving Integral equations.
CO201.3	Demonstrate Fourier Transform as a tool for solving Integral equations.
CO201.4	Apply Z Transform to solve Difference Equation.Use Method of Least Square for appropriate Curves.
CO201.5	Fit a suitable curve by the method of least squares and determine the lines of regression for a set of statistical data.

Text Boo	ks:
1	Prof G.B.Gururajachar "Engineering Mathematics-III, Academic Excellent series
1	Publications, 2016-17
2	B.S. Grewal, "Higher Engineering Mathematics" Khanna Publishers, 43 rd Edition, 2013
Reference	e Books:
1	Erwin Kreyszig, "Advanced Engineering Mathematics", Wiley-India publishers,
1	10thedition,2014.
2	Ramana B. V., "Higher Engineering Mathematics", Tata McGraw-Hill, 2006.
2	Bali N. P. & Manish Goyal, "A text book of Engineering Mathematics", Laxmi
5	Publications, 8 th Edition.

CIE Assessment:

CIE is based on quizzes, tests, assignments/seminars, and any other form of evaluation. Generally, there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of three tests

- Quizzes/mini tests (10 marks)
- Assignment (10 marks)

SEE Assessment:

- i. Question paper for the SEE consists of two parts i.e., Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.
- ii. Part B also covers the entire syllabus consisting of five questions having choices and may contain sub-divisions, each carrying 16 marks. Students have to answer five full questions.

iii. One question must be set from each unit. The duration of examination is 3 hours.

СО-РО	Mapp	ing										
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	0	3	0	0	0	0	0	0	1	0
CO2	3	3	0	3	0	0	0	0	0	0	0	1
CO3	2	3	0	3	0	0	0	0	0	0	1	0
CO4	3	3	0	3	0	0	0	0	0	0	0	0
CO5	3	3	0	2	0	0	0	0	0	0	0	1

	Semester: III					
ME	MECHANICS OF MATERIALS + MATERIAL TESTING LAB (Theory and					
Prac	ctice)					
Cou	rse Code:	MVJ22AS32/AE32	CIE Marks:50+50			
Tota	l No. of Contact Hours:	50 L: T: P: 3: 0: 2	SEE Marks: 50 +50			
Hou	rs:	40 L+ 26 P	SEE Duration: 03+03			
	Hours					
Cou	rse Learning Objectives: The st	udents will be able to				
1	Comprehend the basic concepts	of strength of materials				
2	Acquire the knowledge of stresse	es due to bending				
3 Understand the different failure in materials						
4	4 Understand the relations among materials and their properties.					
5	5 Acquire the practical knowledge of metallographic testing of engineering materials.					

UNIT-I

Basics of linear elasticity: The concept of stress & strain, state of stress & Strain	10 Hrs
at a point, Equilibrium equations, The state of plane stress and plane strain.	
Compatibility equations, Constitutive Laws (Hooke's Law), Stress strain curves	
for brittle and ductile materials, Allowable stress, Material selection for structural	
performance.	
Simple & Compound Stresses: Extension / Shortening of a bar, bars with cross	
sections varying in steps, bars with continuously varying cross sections.	
Elongation due to self-weight. Volumetric strain, expression for volumetric	
strain, elastic constants, simple shear stress, shear strain, temperature stresses,	
Introduction to Plane stress, stresses on inclined sections, principal stresses &	
strains, Analytical & graphical method (Mohr's Circle) to find principal stresses	
& strains.	
Laboratory Sessions/ Experimental learning: UTM in Material Testing Lab	
Applications: Testing of Mild steel components, Bricks	
Video link / Additional online information (related to module if any):	
Prof.Dr.Suraj Prakash Harsha, Indian Institute of Technology, Roorkee. Lecture	
 12 for Ductile and Brittle Materials 	

UNIT-II			
Bending Moment and Shear Force in Beams: Introduction, Types of beams,	10 Hrs		
loads and reactions, shear forces and bending moments, rate of loading, sign			
conventions, relationship between shear force and bending moments. Shear force			
and bending moment diagrams for different beams subjected to concentrated			
loads, uniformly distributed load, (UDL) uniformly varying load (UVL) and			
couple for different types of beams.			
Euler-Bernoulli beam theory: The Euler-Bernoulli assumptions, Implications			
of the Euler-Bernoulli assumptions, the Euler-Bernoulli Beam theory derivation,			
bending stress equation, Moment carrying capacity of a section. Shearing stresses			
in beams, shear stress across rectangular, circular, symmetrical I and T sections			
(Only Numerical).			
Laboratory Sessions/ Experimental learning: Different load conditions can be			
practiced in Structures Lab			
Applications: Civil Construction with Symmetrical I & T sections			
Video link / Additional online information (related to module if any): Prof: S.			
Bhattacharya, IIT, Kharagpur, Lecture no 24. Bending of Beams- III			
UNIT-III			
Deflection of Beams: Introduction, Differential equation for deflection.	10 Hrs		
Equations for deflection, slope and bending moment. Double integration method			
for cantilever and simply supported beams for point load, UDL, UVL and Couple.			
Macaulay's method.			
Torsion of Circular Shafts and Elastic Stability of Columns: Introduction.			
Pure torsion, assumptions, derivation of torsional equations, polar modulus,			
torsional rigidity / stiffness of shafts. Power transmitted by solid and hollow			
circular shafts.			
Laboratory Sessions/ Experimental learning: Beam Experiment in Structures lab			
and Torsion Test apparatus available in MT Lab.			
Applications: Civil Construction and Automobile Transmission.			
Video link / Additional online information (related to module if any):			
Prof. S. K. Bhattacharyya Indian Institute of Technology, Kharagpur Lecture - 33			
Deflection of Beams – IV			

Prof. S. K. Bhattacharya Dept. of Civil Engineering I.I.T Kharagpur Lecturer#20	
Torsion-III	
UNIT-IV	
Virtual work principles: Introduction, Equilibrium and work fundamentals,	10 Hrs
Principle of virtual work, Principle of virtual work applied to mechanical systems,	
Principle of virtual work applied to truss structures, Principle of virtual work	
applied to beams. Principle of complementary virtual work, internal virtual work	
in beams and solids.	
Energy methods: Conservative forces, Principle of minimum total potential	
energy, Strain energy in springs, Strain energy in beams, Strain energy in solids,	
Applications to trusses, Development of a finite element formulation for trusses,	
Principle of minimum complementary, Energy theorems, Reciprocity theorems,	
Saint-Venant's principle	
Laboratory Sessions/ Experimental learning: Few of the Energy Method	
Theorems can be explained from Structures Lab.	
Applications: Virtual work arises in the application of the principle of least action	
to the study of forces and movement of a mechanical system.	
Video link / Additional online information (related to module if any): Energy	
Methods in Structural Analysis Version 2 CE IIT, Kharagpur	
UNIT-V	
Mechanical Properties of materials:	10 Hrs
Fracture: Type I, Type II and Type III.	
Creep: Description of the phenomenon with examples. Three stages of creep,	
creep properties, stress relaxation.	
Fatigue: Types of fatigue loading with examples, Mechanism of fatigue, fatigue	
properties, fatigue testing and S-N diagram.	
Laboratory Sessions/ Experimental learning: Impact Tests in MT lab for	
Fracture.	
Applications: Boilers, Rotating Machine Elements	
Video link / Additional online information (related to module if any):	
Creep Deformation of Materials Dr.SrikantGollapudi Indian Institute of	
Technology, Bhubaneswar	
Prof.K.Gopinath & Prof.M.M.Mayuram, Machine Design II, Indian Institute of	

Technology Madras	
LABORATORY EXPERIMENTS	
1.Hardness Testing-Brinell and Rockwell Hardness test	
2.Tensile Test	
3.Flexural Test	
4. Torsional Test	
5.Preparation of specimen for metallographic examination of differe	ent
engineering materials	
6.Dye penetration testing	
7.Magnetic particle inspection	
8.Heat treatment: annealing, normalizing, hardening and tempering of sta	eel
9.Impact Test – Izod and Charpy Test	
10.Shear Test	

Course O	utcomes: After completing the course, the students will be able to
CO202.1	Apply the basic concepts of strength of materials.
CO202.2	Compute stress, strain under different loadings.
CO202.3	Acquire the knowledge of deflection of beams
CO202.4	Acquire the knowledge of virtual work principle and energy methods
CO202.5	Identify different failures

Ref	erence Books
1.	T.H.G Megson "Introduction to Aircraft Structural Analysis", Butterworth-Heinemann
	Publications, 2007, ISBN 13: 9781856179324

Beer F.P. and Johnston.R, Mechanics of Materials, McGraw Hill Publishers, 2006,
ISBN13:978-0073380285.
Timoshenko and Young, Elements of Strength of Materials, East-West Press, 1976,
ISBN 10: 8176710199
Maximum four books

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Laboratory- 50 Marks

The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are awarded 10 marks. Total marks for the laboratory is 50.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the entire syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12

CO1	3	3	2	2	1	1	1	1	1	1	1
CO2	3	3	2	2	1	1	1	1	1	1	1
CO3	3	3	2	2	1	1	1	1	1	1	1
CO4	3	3	2	2	1	1	1	1	1	1	1
CO5	3	3	2	2	1	1	1	1	1	1	1

Semester: III										
MECHANICS OF FLUIDS										
Cou	rse Code:	MVJ22AS33/AE33	CIE Marks:50+50							
Cree	dits:	L: T: P: 3: 0: 2	SEE Marks: 50 +50							
Hou	rs:	40 L	SEE Duration: 03+03							
			Hours							
Cou	rse Learning Objectives: The stu	idents will be able to								
1	Understand the basic fluid proper	ties.								
2	To estimate velocity, acceleration, and stream function for an incompressible and									
2	inviscid flow along with governing equations of fluid flow.									
3	Understand the dimensional analysis and apply Bernoulli's and Euler's equation									
5	flow measuring devices									
To calculate boundary layer thickness and drag co-efficient for laminar and										
-	flows									
5	Acquire the knowledge of compr	essible flows and boun	idary Layers							

UNIT-I							
Basic Considerations:	10 Hrs						
Introduction, Dimensions- Modules and physical quantities, Continuum view of							
gases and liquids, Pressure and Temperature scales, Physical properties of fluids.							
Fluid Statics:							
Pressure distribution in a static fluid, Pressure and its measurement, hydrostatic							
forces on plane and curved surfaces, buoyancy, illustration by examples.							
Laboratory Sessions/ Experimental learning: Use of piezometer and manometers							
Applications: For pressure measurements by using different types of manometers.							
Video link / Additional online information (related to module if any):							
https://nptel.ac.in/courses/101/103/101103004/							
UNIT-II							
Fluids in motion:	10 Hrs						
Methods of describing fluid motion, types of fluid flow, continuity equation in 3							
dimensions, velocity potential function and stream function. Types of motion,							
Source sink, doublet, plotting of stream lines and potential lines Numerical							

problems.						
Fluid Kinematics:						
Kinematics of fluid motion and the constitutive equations, Integral (global) form						
of conservation equations (mass, momentum, energy) and applications,						
Differential form of conservation equations (continuity, Navier-Stokes equations,						
energy equation).						
Laboratory Sessions/ Experimental learning: An experimental study of the						
continuity equation and Bernoulli's equation by using Venturimeter, Orificemeter						
and pitot tube.						
Applications: For rotational and irrotational fluid flows, laminar and turbulent						
fluid flows.						
Video link / Additional online information (related to module if any):						
https://nptel.ac.in/courses/101/103/101103004/						
UNIT-III						
Fluid Dynamics:	10 Hrs					
Equations of motion: Euler's and Bernoulli's equation of motion for ideal and						
real fluids. Momentum equation, Fluid flow measurements. Numerical problems.						
Dimensional analysis and similarity:						
Dimensional homogeneity, methods of dimensional analysis, model analysis,						
types of similarity and similitude. Dimensionless numbers. Model laws.						
Numerical problems						
Laboratory Sessions/ Experimental learning: An experimental study of the						
continuity equation and Bernoulli's equation by using Venturimeter, Orificemeter						
and pitot tube.						
Applications: flow measuring devices and model studies.						
Video link / Additional online information (related to module if any):						
https://nptel.ac.in/courses/101/103/101103004/						
UNIT-IV						
Flow past Immersed bodies:	10 Hrs					
Introduction to boundary layer, boundary layer thickness, karman's integral						
momentum theory, drag on a flat plate for laminar and turbulent flow, Drag on						
immersed bodies. Expression for drag and lift. Kutta -joukowsky theorem;						
Fundamentals of airfoil theory Numerical problems.						

Laboratory Sessions/ Experimental learning: Determination of boundary layer	
thickness.	
Applications: Flow over a sloid body, separation point and understanding of lift	
and drag.	
Video link / Additional online information (related to module if any):	
https://nptel.ac.in/courses/101/103/101103004/	
UNIT-V	
Compressible flow and Boundary Layers theory:	10 Hrs
Steady, one-dimensional gas dynamics, Propagation of pressure waves in a	
compressible medium, velocity of sound, Mach number, Mach cone, Stagnation	
properties, Bernoulli's eqn for isentropicflow, normal shock waves . Numerical	
Problem; Laminar and turbulent boundary layers.	
Laboratory Sessions/ Experimental learning: Propagation of disturbance for	
different Mach number	
Applications: Compressible flows through nozzles, diffusers, turbines etc	
V_{i} denoting I_{i} (Additional online information (related to module if any).	
video mik / Additional omme information (related to module if any):	
https://nptel.ac.in/courses/101/103/101103004/	

Course O	utcomes: After completing the course, the students will be able to
CO203.1	Evaluate the effects of fluid properties
CO203.2	Estimate velocity, acceleration and stream function for an incompressible and invisid flow along with governing equations of fluid flow.
CO203.3	Perform dimensional analysis and apply Bernoulli's and Eulers equation for various flow situations involving venturimeter, orificemeter and pitot-tube
CO203.4	Calculate boundary layer thickness and drag co-efficient for laminar and turbulent flows.
CO203.5	Illustrate the basic concepts of compressible flows.

Reference Books

1.	Bansal, R.K, Fluid Mechanics and Hydraulics Machines, Laxmi Publications (P) Ltd.,
	New Delhi 2015, ISBN-13: 978-8131808153
2.	Yunus A. Cengel& John M Cimbala, Fluid Mechanics and Applications, McGraw
	Hill Education; 3 rd edition, 2013, ISBN-13: 978-0073380322.
3.	Rathakrishnan. E, Fluid Mechanics, Prentice-Hall of India Pvt.Ltd, 2010,
	ISBN 13: 9788120331839.
4.	Ramamritham. S, Hydraulic Fluid Mechanics and Fluid Machines,
	Dhanpat Rai& Sons, Delhi, 1988, ISBN 13: 9788187433804

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the self -study are 20 (2 presentations are be held for 10 marks each). The marks obtained in test, quiz and self -studies are added to get marks out of 100 and report CIE for 50 marks.

Laboratory- 50 Marks

The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are awarded 10 marks. Total marks for the laboratory is 50.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the complete syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	1	1	1	1	1	1		1
CO2	3	3	2	2	1	1	1	1	1	1		1
CO3	3	3	2	2	1	1	1	1	1	1		1
CO4	3	3	2	2	1	1	1	1	1	1		1
CO5	3	3	2	2	1	1	1	1	1	1		1

Course Title	ELEMENS OF AEROSPACE TECHNOLOGY	Semester	III
Course Code	MVJ22AS34	CIE	50
Total No. of Contact Hours	40 L: T : P :: 3: 0 : 0	SEE	50
No. of Contact Hours/week	4	Total	100
Credits	3	Exam. Duration	3 Hours

1. Understand basic principles of Aircraft and the history of space vehicles.

2. Acquire the basic principles of flight.

3.Learn the basic principle of Aircraft & Rocket propulsion.

4. Understand the Aircraft Structures and Materials.

5. Acquire the basics of Aircraft Instruments & systems.

	Module-1 R	RBT Level	Hours	
--	------------	-----------	-------	--

Introduction to Aircrafts: History of aviation, International Standard atmosphere, Atmosphere and its properties, Temperature, pressure and altitude relationships, Classification of aircrafts, V/STOL machines.

Introduction to Space Flight: History of Space Flight & spacecraft technologies Difference between space and atmosphere, upper atmosphere, Introduction to basic orbital mechanics, types of Orbits (LEO, MEO, Geosynchronous and Geostationary, Polar orbits), Kepler's Laws of planetary motion.

Laboratory Sessions/ Experimental learning: Ornithopter modelling, Paper plane.

Applications: Environmental conditions

Video link / Additional online information (related to module if any): https://nptel.ac.in/courses/101101079/

Module-2	RBT Level	Hours
Basic principles of flight: Significance of speed of sound, Propagation of	f sound, Mach	number,

subsonic, transonic, supersonic, hypersonic flows, Bernoulli's theorem, Aerodynamic forces and moments on an Airfoil, Lift and drag components, lift curve, drag curve, types of drag, factors affecting lift and drag; Centre of pressure and its significance, Aerodynamic centre, Aspect ratio, Airfoil nomenclature, Basic characteristics of airfoils, NACA nomenclature, Simple problems on lift and drag.

Laboratory Sessions/ Experimental learning: Aerodynamics lab Applications: Aircraft Flow dynamics Video link / Additional online information (related to module if any):

https://nptel.ac.in/courses/101104061/https://nptel.ac.in/courses/101101079/

Module-3	RBT Level	Hours						
Aircraft Propulsion: Introduction, Classification, Piston Engine & its application, Brayton cycle,								
Principle of operation of Turboprop, turbojet and turbofan engines, Introduction to ramjets and								
scramjets; performance characteristics.								
Rocket Propulsion: Principles of operation of rocket, Classification of Ro	ockets, Types o	of rockets and						
typical applications, Introduction to Space Exploration.								
Laboratory Sessions/ Experimental learning: Propulsion lab								
Applications: Aircraft engines								
Video link / Additional online information (related	to module	if any):						
https://nptel.ac.in/courses/101101079/								
Module-4	RBT Level	Hours						
Aircraft and Spacecraft - Structures and Materials:	Aircraft and Spacecraft - Structures and Materials:							
Introduction- General types of construction, Monocoque, Semi-Monocoque	e and Geodes	ic structures.						
Typical wing and fuselage structure; Metallic and non-metallic materials f	for aircraft app	olication. Use						
of aluminum alloy, titanium, stainless steel and composite materials. Mate	erials selection	for						
spacecraft application.								
Laboratory Sessions/ Experimental learning: Structures lab								
Applications: Material & Structural Dynamics of Aircraft								
Video link / Additional online information (related	to module	if any):						
https://nptel.ac.in/courses/101101079/								
Module-5	RBT Level	Hours						
Instrument:								
Instrument Displays, Introduction to Navigation Instruments, Basic Air data systems & Probes,								
Mach meter, Air speed indicator, Vertical speed indicator, Altimeter, Gyro based instruments,								
Introduction to spacecraft instruments. Inertial & GPS based sensors.								
Systems: Introduction to Hydraulic and pneumatic systems, Air Conditioning and Cockpit								
pressurization system, Generation and distribution of Electricity on board	the airplane, A	Aircraft Fuel						
System, Fire Protection, Ice and Rain Protection System								

Laboratory Sessions/ Experimental learning: Instrumentation lab.								
Applications: Aircraft Instruments.								
Video	link / Additional online information (related to module if any):							
https://npt	<u>el.ac.in/courses/101101079/</u>							
Course ou	utcomes:							
CO204.1	Differentiate the different concepts of aircrafts and spacecraft's in flight.							
CO204.2	Describe the Principle of aviation and space flight.							
CO204.3	Explain the Fundamentals of Rocket Propulsion and Aircraft Propulsion.							
CO204.4	Apply the concepts of aircraft materials and structures.							
CO204.5	Appreciate the complexities involved during development of flight vehicles systems.							

Reference	e Books:
1	John D. Anderson, "Introduction to Flight", McGraw-Hill Education, 8 th edition, 2015, ISBN: 978-0078027673.
2	Lalit Gupta and O P Sharma, Fundamentals of Flight Vol-I to Vol-IV, Himalayan Books. 2006, ISBN: 9788170020752
3	Ian Moir, Allan Seabridge, "Aircraft Systems: Mechanical, Electrical and Avionics Subsystems Integration", John Wiley & Sons, 3 rd edition, 2011, ISBN: 9781119965206
4	Sutton G.P., "Rocket Propulsion Elements", John Wiley, New York, 9 th edition,2016, ISBN: 9781118753910

CIE Assessment:

CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation. Generally, there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of three tests

- Quizzes/mini tests (4 marks)
- Mini Project / Case Studies (8 Marks)
- Activities/Experimentations related to courses (8 Marks)

SEE Assessment:

- iv. Question paper for the SEE consists of two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.
- v. Part B also covers the entire syllabus consisting of five questions having choices and may contain sub-divisions, each carrying 16 marks. Students have to answer five full questions.
- vi. One question must be set from each unit. The duration of examination is 3 hours.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	0	0	0	1	3	0	0	0	0	3
CO2	3	3	2	0	0	1	3	0	0	0	0	3
CO3	3	3	2	0	0	1	3	0	0	0	0	3
CO4	3	3	2	0	0	1	3	0	0	0	0	3
CO5	3	0	2	0	0	1	3	0	0	0	0	3

Course Title	MACHINE SHOP	Semester	III
Course Code	MVJ19ASL35/AEL35	CIE	50
Total No. of Contact Hours	L: T: P: 3: 0: 0	SEE	50
No. of Contact Hours/week	03	Total	100
Credits	02	Exam. Duration	3 Hours

- Practice general-purpose machine tools and manufacturing process.
- Operate the special purpose machine tools
- Prepare physical models using different manufacturing processes.

Sl No	Experiment Name	RBT Level	Hours					
	PART A							
1	Introduction to Machining operations & tools (i.e., Lath machine &	L1, L2, L3	03					
	shaper machine etc.)							
2	Machining and machining time estimation for plain turning taper	L1, L2, L3	03					
	turning & step turning							
3	Machining and machining time estimation for thread cutting	L1, L2, L3	03					
4	Machining and machining time estimation for knurling	L1, L2, L3	03					
5	Machining and machining time estimation for knurling operation	L1, L2, L3	03					
6	Machining and machining time estimation for drilling operation	L1, L2, L3	03					
7	Machining and machining time estimation for boring operation	L1, L2, L3	03					
	PART B							
8	Machining and machining time estimation for internal thread cutting	L1, L2, L3	03					
9	Machining and machining time estimation for external thread cutting	L1, L2, L3	03					
10	Machining and machining time estimation for eccentric turning	L1, L2, L3	03					
11	Machining of hexagon in shaping machine	L1, L2, L3	03					
12	Machining of square in shaping machine	L1, L2, L3	03					
13	Cutting of gear teeth using milling machine	L1, L2, L3	03					
14	Grinding operations using grinding machine	L1, L2, L3	03					
Course	outcomes:							
CO1	Demonstrate the operation of general-purpose machine tools and mar	ufacturing pro	cess.					

CO2	Identify the special purpose machine tools for specific requirements
CO3	Develop physical models using different mechanical processes.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	0	0	0	0	0	0	0	0
CO2	3	3	3	2	0	0	0	0	0	0	0	0
CO3	3	3	2	1	0	0	0	0	0	0	0	0

Course Title	AEROSPCE MATERIALS	Semester	III
Course Code	MVJ22AS361/AE361	CIE	50
Total No. of Contact Hours	40 L: T: P: 3: 0: 0	SEE	50
No. of Contact Hours/week	4	Total	100
Credits	3	Exam. Duration	3 Hours

- To impart knowledge on the basics of phase diagrams and their applications.
- To make the students to understand the use of non-ferrous materials in aircraft construction:
- To introduce various ferrous materials for aircraft construction
- To learn about the various applications of Composite materials in an aircraft
- To impart knowledge about Wood, fabric, and other non- metals in Aircraft construction.

Module-1	L1, L2	8Hours

Phase diagrams and Microstructures:

Basic concepts - Gibbs phase rule – Unary phase diagram (iron) - Binary phase diagrams: isomorphous systems (Cu-Ni).

The Fe-Fe3C phase diagram: phases, invariant reactions, development of microstructure in eutectoid, hypoeutectoid and hypereutectoid alloys – influence of other alloying elements in the Fe-C system. Microstructures: pearlite, bainite, spheroidite and martensite.

Video link / Additional online information (related to module if any):

https://nptel.ac.in/courses/101/103/101103004/

https://www.youtube.com/watch?v=woNUlqu8ReE

L1, L2	8Hours
--------	--------

Non-ferrous materials in aircraft construction:

Module-2

Aluminium and its alloys: Types and identification. Properties - Castings - Heat treatment processes - Surface treatments.

Magnesium and its alloys: Cast and Wrought alloys - Aircraft application, features specification, fabrication problems, Special treatments.

Titanium and its alloys: Applications, machining, forming, welding, and heat treatment.

Video link / Additional online information (related to module if any):

https://nptel.ac.in/courses/113/105/113105021/

https://www.intechopen.com/books/aluminium-alloys-recent-trends-in-p	rocessing-chara	acterization-		
mechanical-behavior-and-applications				
Module-3	L1, L2	8Hours		
Ferrous materials in aircraft construction:				
Steels: low, medium and high carbon steels , alloy steels, corrosion resistant steels, structural				
applications.				
Maraging Steels: Properties and Applications.				
Super Alloys: Use - Nickel base - Cobalt base - Iron base - Forging a	nd Casting of S	Super alloys -		
Welding, Heat treatment.				
Video link / Additional online information (related to module if any):				
https://nptel.ac.in/courses/113/105/113105057/				
https://nptel.ac.in/courses/113/104/113104059/				
Module-4	L1, L2	8Hours		
Composites:		<u> </u>		
Definition and comparison of composites with conventional monolithic	materials, class	ification, role		
of matrix and reinforcement -Reinforcing fibers and Matrix materials. Fa	abrication proce	esses involved		
in polymer composites, metal matrix composites, applications in aerospa	ice.			
Introduction to modern ceramic materials, cermets, glass ceramics, C	Carbon/Carbon	composites -		
properties and applications. Introduction to nano composites.				
Video link / Additional online information (related to module if any):				
https://nptel.ac.in/courses/101/104/101104010/				
https://nptel.ac.in/courses/113/107/113107078/				
Module-5	L1, L2	8Hours		
Non-Metals in Aircraft construction:		<u> </u>		
Wood: Types, properties, and applications. Fabric in aircraft construction	n and specific	ations. Glues.		
Glass: Types, properties, and applications.				
Plastics & rubber in aircraft: Types, characteristics, and applications.				
Video link / Additional online information (related to module if any):				
https://www.youtube.com/watch?v=074RceRJphs				
Course outcomes:				
CO206.1.1 Apply the knowledge about the phase diagrams and micro	structure of allo	oys.		
CO206.1.2 Explain the applications of Non-ferrous alloys in Aircraft	and Aerospace	industry.		
CO206.1.3 Gain knowledge about the application of Ferrous alloys in	Aircraft constr	ruction		

CO206.1.4	Explain the applications of Polymer, Metal matrix composites.
CO206.1.5	Get adequate understanding about the application of Non-metals in Aircraft
	construction

Reference I	Books:
1	Titterton G F, Aircraft Material and Processes, English Book Store, New Delhi, 5 th edition, 1998, ISBN-13: 978-8175980136
2	Introduction to Physical Metallurgy by Sydney Ayner, Tata McGraw-Hill Edition
	1997.
3	Hill E T, The Materials of Aircraft Construction, Pitman London.
	C G Krishnadas Nair, Handbook of Aircraft materials, Interline publishers,
	Bangalore, 1993

CIE Assessment:

CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation. Generally, there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of three tests

- Quizzes/mini tests (4 marks)
- Mini Project / Case Studies (8 Marks)
- Activities/Experimentations related to courses (8 Marks)

SEE Assessment:

- vii. Question paper for the SEE consists of two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.
- viii. Part B also covers the entire syllabus consisting of five questions having choices and may contain sub-divisions, each carrying 16 marks. Students have to answer five full questions.
- ix. One question must be set from each unit. The duration of examination is 3 hours.

CO-PO	Mapp	ing										
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	0	0	1	0	0	0	0	1	1

CO2	3	1	1	0	1	2	0	0	0	0	0	1
CO3	3	2	1	2	0	2	1	0	0	0	1	1
CO4	3	1	1	0	0	1	0	0	0	0	0	1
CO5	3	1	1	1	0	2	0	0	0	0	0	1

Course Title	MECHANISM & MACHINE THEORY	Semester	3
Course Code	MVJ22AS362/AE362	CIE	50
Total No. of Contact Hours	40 L: T: P: 3: 1: 0	SEE	50
No. of Contact Hours/week	4	Total	100
Credits	3	Exam. Duration	3 Hours

- Understand the theory of mechanisms including velocity, acceleration, and static force analysis.
- Acquire knowledge of spur gears, gear train, balancing of rotating and reciprocating masses.
- Understand the concept of governors and gyroscope.

Module-1		L1, L2, L3	8Hours

Introduction to Mechanisms:

Types of constrained motion, Link and its types, joints and its types, kinematic pair and its types, degrees of freedom, Grubler's criterion, Types of kinematic chains and inversions: Inversions of Four bar chain: Beam engine, coupling rod of a locomotive, Watt's indicator mechanism. Inversions of Single Slider Crank Chain: Pendulum pump or Bull engine, oscillating cylinder engine, Rotary internal combustion engine, Crank and slotted lever quick return motion mechanism, Whitworth quick return motion mechanism. Inversions of Double Slider Crank Chain: Elliptical trammels, Scotch yoke mechanism, Oldham's coupling. Straight line motion mechanisms: Peaucellier's mechanism and Robert's mechanism. Intermittent Motion mechanisms: Geneva wheel mechanism and Ratchet and Pawl mechanism, Ackerman steering gear mechanism.

Laboratory Sessions/ Experimental learning: Whitworth quick return motion mechanism. (Machine Shop)

Applications: Ackerman steering gear mechanism.

Video link / Additional online information:

https://www.youtube.com/watch?v=g8uqeru2LQw

Module-2	L1, L2, L3	8Hours

Velocity, Acceleration, and static force analysis of Mechanisms (Graphical Methods):

Velocity and acceleration analysis of Four Bar mechanism, slider crank mechanism and Simple Mechanisms by vector polygons. Static force analysis: Introduction: Static equilibrium, Equilibrium

of two and three force members. Members with two forces and torque. Fr	ree body diagra	ams, principle		
of virtual work. Static force analysis of four bar mechanism and slider-crank mechanism with and				
without friction				
Video link / Additional online information:				
https://www.youtube.com/watch?v=CTcdQzH5e04				
Module-3	L1, L2, L3	8Hours		
Spur Gears and Gear Trains				
Spur Gears: Gear terminology, law of gearing, Path of contact, Arc of c	ontact, contact	t ratio of spur		
gear, Interference in involute gears, Methods of avoiding interference.				
Gear Trains: Simple gear trains, Compound gear trains, Reverted gear t	trains, Epicycli	ic gear trains,		
Analysis of epicyclic gear train (Algebraic and tabular methods), torques	in epicyclic tra	uns.		
Applications: Design Of spur Gear				
Video link / Additional online information:				
https://www.youtube.com/watch?v=N0hTFnvIE7A				
Module-4	L1, L2, L3	8Hours		
Balancing of Rotating and Reciprocating Masses Balancing of Rota	ating Masses:	Balancing of		
Several Masses Rotating in the Same Plane, Balancing of Several Masses	Rotating in Di	fferent Planes		
(only Graphical Methods). Balancing of Reciprocating Masses: Primary	and Secondar	y Unbalanced		
Forces of Reciprocating Masses, Partial Balancing of Unbalanced Primary Force in a Reciprocating				
Engine, Balancing of Primary and secondary Forces of Multi-cylinder Ir	n-line Engines,	Balancing of		
Radial Engines (only Graphical Methods)				
Video link / Additional online information:				
https://www.youtube.com/watch?v=N0hTFnvIE7A				
Module-5	L1, L2, L3	8Hours		
Types of governors; force analysis of Porter and Hartnell governors,	Controlling fo	orce, stability,		
sensitiveness, isochronism, effort, and power of Porter and Hartnell gover	mors. Gyrosco	pes: Vectorial		
representation of angular motion, gyroscopic couple, effect of gyroscopic couple on plane disc and				
aeroplane				
Laboratory Sessions/ Experimental learning: Porter and Hartnell governor	rs (Design lab)			
Applications:: Working Of Governors				
Links https://www.youtube.com/watch?v=FydJu1A1oeM				
Course outcomes:				

CO206.2.1	Apply the theory of velocity, acceleration, and static force analysis to design of mechanisms.
CO206.2.2	Analyze static and dynamic force analysis of mechanisms.
CO206.2.3	Design of spur gears & Gear train.
CO206.2.4	Evaluate spur gears, gear train, balancing of rotating and reciprocating masses.
CO206.2.5	Analyse governors and gyroscope

Reference l	Books:
1	Rattan S.S, "Theory of Machines", Tata McGraw-Hill Publishing Company Ltd., New
	Delhi, and 3rd edition -2009, ISBN: 007014477X, 9780070144774.
2	J.J. Uicker, G.R. Pennock, J.E. Shigley. "Theory of Machines & Mechanisms",
	OXFORD 3rd Ed. 2009, ISBN-13: 978-0195371239
3	R. S. Khurmi, J.K. Gupta, "Theory of Machines", Eurasia Publishing House, 2008,
	ISBN 13: 9788121925242.

CIE Assessment:

CIE is based on quizzes, tests, assignments/seminars, and any other form of evaluation. Generally, there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of three tests

- Quizzes/mini tests (4 marks)
- Mini Project / Case Studies (8 Marks)
- Activities/Experimentations related to courses (8 Marks)

SEE Assessment:

- x. Question paper for the SEE consists of two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.
- xi. Part B also covers the entire syllabus consisting of five questions having choices and may contain sub-divisions, each carrying 16 marks. Students have to answer five full questions.
- xii. One question must be set from each unit. The duration of examination is 3 hours.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	1	1	0	0	0	0	0	0	0	0
CO2	3	3	3	3	0	0	0	0	0	0	0	0
CO3	3	3	2	3	0	0	0	0	0	0	0	0
CO4	3	3	3	2	0	0	0	0	0	0	0	0
CO5	3	3	3	1	0	0	0	0	0	0	0	0

Course Title	Introduction to Drone Technologies	Semester	3
Course Code	MVJ22AS363	CIE	50
Total No. of Contact Hours	40 L: T: P: 3: 0: 0	SEE	50
No. of Contact Hours/week	4	Total	100
Credits	3	Exam. Duration	3 Hours

- Comprehend the basic evolution of Drones / UAV systems.
- Acquire the knowledge of basic aerodynamics, performance, stability and control.
- Understand the propulsion, loads and structures.
- Understand Regulations and Certification aspects

Module-1	L1, L2, L3	8Hours							
Basics: Introduction, History, UV types: UGV, UAV, USV, UUWV, Drones in India, Future scope.									
Introduction to nano drones and Swarm Drones									
Principles, Newton's Laws, Degrees of Freedom, Stick Movements, Flight Modes, Basic Manoeuvres,									
Take-off, Pitch, Roll, Yaw, Landing.									
Video link / Additional online information:									
https://onlinecourses.nptel.ac.in/noc22_ae15/preview									
Module-2 L1, L2, L3 8Hou									
Components and Systems: Basic components, Micro controllers, micropro	ocessors, Senso	ors, Pre-Flight							
Checks, Flight Planning, Transmitter, Receiver.									
Introduction to Arduino Sensors, Program Structures, Flight Controllers, T	elemetry, Miss	sion Planning,							
Camera, Binding, etc.									
Video link / Additional online information:									
https://onlinecourses.nptel.ac.in/noc22_ae15/preview_									
Module-3	L1, L2, L3	8Hours							
Air Worthiness: DGCA Rules and Regulations, Pilot Licensing require	ements, NPNT	Compliance.							
Certifications.									
Video link / Additional online information:									
https://onlinecourses.nptel.ac.in/noc22_ae15/preview									

Module-4		L1, L2, L3	8Hours						
Basics of Structures: Configurations, Payload Configurations, Design Considerations.									
Basics of Propulsion: Batteries, Hybrid Propulsions, IC Engines, Mini Turbines, Solar,									
Video link /	Additional online information:								
https://online	courses.nptel.ac.in/noc22_ae16/preview								
Module-5		L1, L2, L3	8Hours						
Tuning, Tes	ting, Manufacturing Constraints, Simulator Training, Applica	ations CASE St	udies:						
Construction	n and testing of a basic drone.								
Video link /	Additional online information:								
https://online	courses.nptel.ac.in/noc22_ae15/preview								
Course out	comes:								
CO206.3.1	Apply the basic concepts of UAV systems.								
CO206.3.2	Explain the basic aerodynamics, performance, stability and control	ol required for U	AV.						
CO206.2.2	Salact the propulsion system and materials for structures								
CO200.5.5	Select the propulsion system and materials for subclures.								
CO206.3.4	Understand Regulatory and Certification aspects								
CO206.3.5	Understand basic flight with experimentation								

Reference Books:								
1	Introduction to UAV Systems Paul Gerin, Fahlstrom, Thomas James Wiley Publication 4th Edition,2012							
2	Unmanned Aerial Vehicles: DOD's Acquisition Efforts Alpha Editions.							
3	Handbook of Unmanned Aerial Vehicles Valavanis, K., Vachtsevano S, George J Springer							

CIE Assessment:

CIE is based on quizzes, tests, assignments/seminars, and any other form of evaluation. Generally, there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of three tests

- Quizzes/mini tests (4 marks)

- Mini Project / Case Studies (8 Marks)
- Activities/Experimentations related to courses (8 Marks)

SEE Assessment:

- xiii. Question paper for the SEE consists of two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.
- xiv. Part B also covers the entire syllabus consisting of five questions having choices and may contain sub-divisions, each carrying 16 marks. Students have to answer five full questions.

xv. One question must be set from each unit. The duration of examination is 3 hours.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	1	1	0	0	0	0	0	0	0	0
CO2	3	3	3	3	0	0	0	0	0	0	0	0
CO3	3	3	2	3	0	0	0	0	0	0	0	0
CO4	3	3	3	2	0	0	0	0	0	0	0	0
CO5	3	3	3	1	0	0	0	0	0	0	0	0

Course Title	AIRCRAFT MATERIALS AND PROCESSES	Semester	IV
Course Code	MVJ22AS364/AE364	CIE	50
Total No. of Contact Hours	40 L: T: P: 3: 0: 0	SEE	50
No. of Contact Hours/week	4	Total	100
Credits	3	Exam. Duration	3 Hours

Course Objectives: This course will enable students to

- 1. Acquire knowledge of different aerospace materials & their properties.
- 2. Understand the Heat Treatment processes of aircraft metals and alloys
- 3. Characteristics and Applications of Aluminium alloys, Ceramics, Composites and Material Testing

Module-1	L1, L2, L3	8Hours

Mechanical Behaviour of Engineering Materials: Introduction to aerospace materials and their classification, Linear and non-linear elastic properties- Stress and Strain Curves-Yielding and strain Hardening, Toughness- Modules of resilience -- Bauchinger's effect- Effect of notches-Testing and flaw detection of materials and components, knowledge of various material testing machines Video link:

https://www.youtube.com/watch?v=hnkFR5J_lfw&list=PLfIFNJ1DPG4nwAQAY8aEi2-1JPwCRj9Gq

https://www.youtube.com/watch?v=2rxbxNem1il&list=PLyqSpQzTE6M_ON8uXt-PP8uX6hMWJeYSJ

Module-2

Non-ferrous materials in aircraft construction: Aluminum and Its Alloys: Types and identification. Properties -Castings-Heat treatment processes —Surface treatments.

L1, L2, L3

8Hours

Magnesium and its alloys: Cast and Wrought alloys-Aircraft application, features specification, fabrication problems, Special treatments.

Titanium and its alloys: Applications, machining, forming, welding and heat treatment, Copper Alloys.Wood and fabric in aircraft construction and specifications- Glues Use of glass, plastics & rubber in aircraft, Introduction to glass & carbon composite

Video link:

https://www.youtube.com/watch?v=pz4w91xiZ6s https://www.youtube.com/watch?v=PY1GtKQO_20 Module-3 L1, L2, L3 8Hours Ferrous materials in aircraft construction: Steels: Plain and low carbon steels, various low alloy steels, aircraft steel specifications, corrosion and heat resistant steels, structural applications. Maraging Steels: Properties and Applications. Super Alloys: Use -Nickel base-Cobalt base-Iron base -Forging and Casting of Super Alloys-Welding, Heat treatment. Video link: https://www.youtube.com/watch?v=LiIuU5MfUOg https://www.youtube.com/watch?v=SN8-gZwNDCs Module-4 L1, L2, L3 8Hours Ceramics and Composites: Introduction, modern ceramic materials, cermets, glass ceramic, production of semi-fabricated forms, Carbon/Carbon composites, Fabrication processes and its aerospace applications involved in metal matrix composites, polymer composites. Video link: https://www.youtube.com/watch?v=LGERbwD5S2g https://www.youtube.com/watch?v=sCE780XZuaE Module-5 L1, L2, L3 8Hours **Material Testing:** Corrosion, its detection and prevention. Protective finishes. Testing: Destructive and non - destructive testing techniques. Crack detection, inspection of parts by hot oil and chalk, dye-penetrant, fluorescent and magnetic particles, X-ray, ultrasonic, eddy current and acoustic emission methods Video link: https://www.youtube.com/watch?v=4fcPga2wjSk https://www.youtube.com/watch?v=5cNWF61Tmj0&list=PLyAZSyX8Qy5AePdV6vbGP4OJQOpbga-

<u>0Q</u>

https://www.youtube.com/watch?v=2rxbxNem1iI&list=PLyqSpQzTE6M_ON8uXt-PP8uX6hMWJeYSJ

Course outcomes:							
CO206.4.1	Apply the knowledge about the mechanical behaviour of different aircraft & aerospace materials.						
CO206.4.2	Explain the applications of Aluminium alloys, Ceramics and Composites Materials.						
CO206.4.3	Evaluate the importance of high temperature materials and their characterization.						

Reference I	Books:
1	Titterton GF, Aircraft Material and Processes, English Book Store, New Delhi, 5 th edition, 1998, ISBN-13: 978-8175980136
2	H Buhl, Advanced Aerospace Materials, Springer, Berlin1992, ISBN-13: 978- 3540558880.

CIE Assessment:

CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation. Generally, there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of three tests

- Quizzes/mini tests (4 marks)
- Mini Project / Case Studies (8 Marks)
- Activities/Experimentations related to courses (8 Marks)

SEE Assessment:

- xvi. Question paper for the SEE consists of two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.
- xvii. Part B also covers the entire syllabus consisting of five questions having choices and may contain sub-divisions, each carrying 16 marks. Students have to answer five full questions.
- xviii. One question must be set from each unit. The duration of examination is 3 hours.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	1	1	0	0	0	0	0	0	0	0
CO2	3	3	3	3	0	0	0	0	0	0	0	0
CO3	3	3	2	3	0	0	0	0	0	0	0	0
CO4	3	3	3	2	0	0	0	0	0	0	0	0
CO5	3	3	3	1	0	0	0	0	0	0	0	0
Course Title	Ability Enhancement Course on Astronomy (Level 1)											
----------------------------	---	----------------	--------------	--	--							
Course Code	MVJ22AEC07	CIE	50Marks									
Total No. of Contact Hours	30 (L: T: P: 1: 0: 2)	SEE	50 Marks									
No. of Contact hours/week	03	Total	100 Marks									
Credits	2	Exam. Duration	2 Hours									

Course objective is to:

- 1) To enhance knowledge on Introduction to Big Bang Theory, Galaxies, Stars, Solar Systems, Electromagnetic Spectrum, Space Communication and Telescopes.
- 2) Make the learner to familiarize with the solar systems, origin, composition, surface and structure of planets.

Module 1. Introduction to Astronomy	RBT Level L1, L2, L3	8 Hrs.
	21, 22, 20	

Basics of Astronomy, Nature of Astronomy, Universe, Introduction to the Big Bang Theory, Galaxies, Stars, Solar Systems, Electromagnetic Spectrum, Space Communication, Astronomical Instruments, Types of telescopes.

Module 2. Solar Systems	RBT Level L1, L2, L3	7 Hrs.
-------------------------	-------------------------	--------

Overview of our planetary system, Composition and structure of planets, origin of the solar system, surface of the planets, Planetary Configurations, Orbit of the earth and visibility of the sun, orbit of the moon.

Module 3. Activities/Project work	RBT Level L1, L2, L3	15 Hrs.
Newton's universal law of gravitation, Kepler's laws of	planetary motion and pr	roof of the laws,

Theoretical Calculation of Earth's Properties.

Course outcomes: After the completion of course, students will be able to

COs	 Understand the fundamentals of Astronomy Adequate knowledge about our planetary system, orbits of the moon and earth and properties of planets.
Refere	nce Books:
1.	Forest Ray Moulton, "An Introduction to Astronomy Hardcover", The Macmillan Company, New and Revised Edition, 2018.
2.	Sally R. Ball, "Astronomy for Beginners: The Introduction Guide to Space, Cosmos, Galaxies and Celestial Bodies", Blue source and Friends, 2020.
3	Johnson B. K "Optics and Optical Instruments", Dover Publications, Inc. New York. 2001.

1	Whitlock LA, Pulliam K. "Laboratory exercises for introductory radio astronomy
7	with a small radio telescope". iUniverse. 2008.

Semester: III							
Diploma Mathematics-I							
Cou	rse Code:	MVJ22MATDIP31	CIE Marks:100				
Credits:		L: T: P: 1: 2: 0	SEE Marks: 100				
Hours:		30L+26T	SEE Duration: 3 Hrs				
Course Learning Objectives: The students will be able to							
	To familiarize the important and basic concepts of Differential calculus and Differential						
1	Equation, ordinary/partial differential equations and Vector calculus and analyse the						
	engineering problems.						

UNIT-I	
Differential calculus: Recapitulations of successive differentiations -n th	8 Hrs
derivative -Leibnitz theorem and Problems, Mean value theorem -Rolle's	
theorem, Lagrange's Mean value theorem , Cauchy's theorem and Taylor's	
theorem for function of one variables.	
Video Link:	
https://users.math.msu.edu/users/gnagy/teaching/ode.pdf	
UNIT-II	
Integral Calculus:	8 Hrs
Review of elementary Integral calculus, Reduction formula	
$\int_0^{\frac{\pi}{2}} \sin^m x dx , \int_0^{\frac{\pi}{2}} \cos^m x dx, \int_0^{\frac{\pi}{2}} \sin^m \cos^n x dx \qquad \text{and problems.}$	
Evaluation of double and triple integrals and Simples Problems.	
Video Link:	
https://www.youtube.com/watch?v=rCWOdfQ3cwQ	
https://nptel.ac.in/courses/111/105/111105122/	
UNIT-III	
Vector Calculus: Derivative of vector valued functions, Velocity, Acceleration	8 Hrs
and related problems, Scalar and Vector point functions, Gradient, Divergence,	
Curl, Solenoidal and Irrotational vector fields. Vector identities - div ($\boldsymbol{\phi}A),$ curl	
(ϕA) , curl (grad ϕ), div (curl A).	
Video Link:	

https://www.whitman.edu/mathematics/calculus_online/chapter16.html	
https://www.math.ust.hk/~machas/vector-calculus-for-engineers.pdf	
UNIT-IV	
Probability:	8 Hrs
Introduction-Conditional Probability, Multiplication theorem, Independent events	
,Baye's theorem and Problems.	
Video Link:	
https://www.khanacademy.org/math/statistics-probability/probability-library	
https://nptel.ac.in/courses/111/105/111105041/	
UNIT-V	
Differential equation: Homogenous differential equation, Linear differential	8 Hrs
equation, Bernoulli's differential equation and Exact differential equation.	
Video Link:	
https://www.mathsisfun.com/calculus/differential-equations.html	

Course	Course Outcomes: After completing the course, the students will be able to							
CO1	Apply the knowledge of Differential calculus in the modeling of various physical							
001	and engineering phenomena							
CO2	Apply the concept of change of order of integration and variables to evaluate							
02	multiple integrals and their usage in computing the area and volumes.							
C02	Study on Vector calculus to understand the various solution to Application to							
005	Engineering problems.							
CO4	Understand the basic Concepts of Probability							
CO5	Solve first order linear differential equation analytically using standard methods.							

Ref	erence Books
1.	B.S. Grewal, "Higher Engineering Mathematics" Khanna Publishers, 43 rd Edition,
	2013.
2.	Ramana B. V., "Higher Engineering Mathematics", Tata Mc Graw-Hill, 2006.
3.	Erwin Kreyszig, "Advanced Engineering Mathematics", Wiley-India publishers, 10th
	edition,2014.

4. G. B. Gururajachar: Calculus and Linear Algebra, Academic Excellent Series Publication, 2018-19

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	2	0	0	0	0	0	0	0	0
CO2	3	3	2	2	0	0	0	0	0	0	0	0
CO3	3	3	3	3	0	0	0	0	0	0	0	0
CO4	3	3	3	3	0	0	0	0	0	0	0	0
CO5	3	3	3	2	0	0	0	0	0	0	0	0

Semester: IV					
COMPLEX VARIABLES & NUMERICAL METHODS					
Course Code:		MVJ22MAS41/MAE41/MME41	CIE Marks:100		
Cre	dits: L: T: P: S	3: 0: 0: 0	SEE Marks: 100		
Hours:		40	SEE Duration: 3		
			Hrs		
Cou	rse Learning Objective	es: The students will be able to			
1	Understand the concepts of Complex variables and transformation for solving Engineering Problems.				
2	Understand the concepts of complex integration, Poles and Residuals in the stability analysis of engineering problems.				
3	Apply the concept to find external of functional.				
4	Solve initial value problems using appropriate numerical methods.				
5 Students learn to obtain solution s of ordinary and partial differential numerically.		al differential equations			

UNIT-I	
Complex variables - 1:	10
Functions of complex variables, Analytic function, Cauchy-Riemann Equations in	Hrs
Cartesian and polar coordinates, Consequences of Cauchy-Riemann Equations,	
Construction of analytic functions (Using Milne-Thomson method).	
Transformations:	
Bilinear Transformation, Conformal transformation, Discussion of the	
transformations $w = z^2$, $w = e^z$ and $w = z + \frac{a}{z}$, $(z \neq 0)$.	
Video Link:	
https://www.youtube.com/watch?v=oiK4gTgncww	
https://www.youtube.com/watch?v=WJOf4PfoHow	
UNIT-II	
Complex variables 2:	10
Complex integration - Cauchy theorem, Cauchy's Integral Theorem-Problems,	Hrs
Taylor & Laurent series- Problems, Singularities, Types of Singularities, Poles,	

Residues-definitions, Cauchy residue theorem - Problems.	
Video Link:	
https://math.mit.edu/~jorloff/18.04/notes/topic4.pdf	
https://math.mit.edu/~jorloff/18.04/notes/topic10.pdf	
UNIT-III	
Numerical methods 1:	10
Numerical solution of Ordinary Differential Equations of first order and first degree,	Hrs
Taylor's series method, Modified Euler's method, Runge-Kutta method of fourth	
order, Milne's and Adam-Bashforth Predictor and Corrector method.	
Video Link:	
https://youtu.be/b5VUnapu-qs	
http://www.nptelvideos.in/	
UNIT-IV	
Numerical methods 2:	10
Numerical solution of Ordinary Differential Equations of second order: Runge-Kutta	Hrs
method of fourth order, Milne's Predictor and Corrector method.	
Calculus of variations:	
Variation of function and Functional, variational problems, Euler's equation,	
Geodesics.	
Applications: Hanging Chain problem.	
Video Link:	
https://www.khanacademy.org/	
http://www.nptelvideos.in/	
UNIT-V	
Numerical methods 3:	10
Numerical solution of Partial Differential Equations: Introduction, Finite difference	Hrs
approximations to derivatives, Numerical Solution of Laplace Equation, Numerical	
solution of one-dimensional heat equation by Bender - Schmidt's method and by	
Crank-Nicholson Method, Numerical solution of one-dimensional wave equation.	
Video Links: <u>https://youtu.be/nNnnBMF0311</u>	

Course O	utcomes: After completing the course, the students will be able to
CO211.1	State and prove Cauchy - Riemann equation with its consequences and
0211.1	demonstrate Con-formal Transformation.
CO211.2	Illustrate Complex Integration using Cauchy's Integral theorem, Cauchy's
	Integral formula, and Cauchy's Residue theorem.
CO211.3	Identify appropriate numerical methods to solve ODE.
CO211.4	Determine the extremals of functionals and solve the simple problems of the
	calculus of variations.
CO211.5	Choose appropriate numerical methods to solve Partial Differential Equations.

Ref	erence Books
1.	Prof G.B.Gururajachar "Engineering Mathematics-III, Academic Excellent series
	Publications, 2016-17
2.	B.S. Grewal, "Higher Engineering Mathematics" Khanna Publishers, 43 rd Edition,
	2013.
3.	B.V.Ramana, "Higher Engineering Mathematics", Tata McGraw-Hill, 2006
4.	N.P. Bali & Manish Goyal, "A text book of Engineering Mathematics", Laxmi
	Publications, 8 th Edition.
5.	H K Dass: "Advanced Engineering Mathematics"- S Chand & Company Ltd.12 th
	edition.

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

СО-РО	Mapp	ing										
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	0	3	0	0	0	0	0	0	1	0
CO2	3	3	0	3	0	0	0	0	0	0	0	1
CO3	2	3	0	3	0	0	0	0	0	0	1	0
CO4	3	3	0	3	0	0	0	0	0	0	0	0
CO5	3	3	0	2	0	0	0	0	0	0	0	1

	Semester: IV					
	INCOMPRESSIBLE AERODYNAMICS + AERODYNAMICS LAB					
Course Code: MVJ22AS42/AE42 CIE Marks:100						
Cree	dits: L: T: P: S	3: 0: 2: 0	SEE Marks: 100			
Hours: 40L40L + 26PSEE Duration: 3 Hrs			SEE Duration: 3 Hrs			
Cou	rse Learning Objectives: The stu	idents will be able to				
1	Understand the basics of fluid mechanics as a prerequisite to Aerodynamics					
2	Acquire knowledge on typical ai	rfoil characteristics an	d two-dimensional flows over			
2	airfoil					
3	Acquire knowledge of incompressible flows over airfoil					
4	Understand the fundamentals of incompressible flow over finite wings					
5	Assimilate the understanding of application of finite wing theory and high lift systems					

UNIT-I

Review of Basic Fluid Mechanics	10	
Continuity, momentum and energy equation, Control volume approach to Continuity,	Hrs	
momentum and energy equation, Types of flow, pathlines, streamlines, and		
streaklines, units and dimensions, inviscid and viscous flows, compressibility, Mach		
number regimes. Vorticity, Angular velocity, Stream function, velocity potential		
function, Circulation, Numericals, Mach cone and Mach angle, Speed of sound.		
Laboratory Sessions/ Experimental learning: Smoke flow visualization studies on a		
two dimensional airfoil at different angles of incidence at low speeds		
Applications: provides a proper understanding of the flow properties and their		
characteristics features which helps in the study of flow over airfoils		
Video link / Additional online information (related to module if any):		
https://nptel.ac.in/courses/101105059/		
UNIT-II		
Airfoil Characteristics	10	
Fundamental aerodynamic variables, Airfoil nomenclature, airfoil characteristics.		
wing planform geometry, aerodynamic forces and moments, centre of pressure,		

pressure coefficient, aerodynamic center, calculation of airfoil lift and drag from

measured surface pressure distributions, typical airfoil aerodynamic characteristics at

low speeds. Types of drag-Definitions.		
Laboratory Sessions/ Experimental learning: Smoke flow visualization studies on a		
two-dimensional circular cylinder at low speeds		
Applications: understand the characteristics and the distribution of pressure over the		
airfoil Video link / Additional online information (related to module if any):		
https://nptel.ac.in/courses/101105059/		
UNIT-III		
Two Dimensional Flows & Incompressible Flow Over Airfoil	10	
Uniform flow, Source flow, Sink flow, Combination of a uniform flow with source	Hrs	
and sink. Doublet flow. Non-lifting flow over a circular cylinder. Vortex flow. Lifting		
flow over a circular cylinder. Kutta-Joukowski theorem and generation of Lift,		
D'Alembert's paradox, Numericals, Incompressible flow over airfoils: Kelvin's		
circulation theorem and the starting vortex, vortex sheet, Kutta condition, Classical		
thin airfoil theory for symmetric and cambered airfoils. KuttaJoukowski theorem. and		
generation of Lift, Numerical.		
Laboratory Sessions/ Experimental learning: Calculation of total drag of a two-		
dimensional circular cylinder at low speeds using pitot-static probe wake survey.		
Applications: study the lifting and non lifting flows over cylinders and arbitrary		
bodies and understanding the theory behind lift generation		
Video link / Additional online information (related to module if any):		
https://nptel.ac.in/courses/101105059/		
UNIT-IV		
Incompressible Flow Over Finite Wings	10	
Biot-Savart law and Helmholtz's theorems, Vortex filament: Infinite and semi-	Hrs	
infinite vortex filament, Induced velocity. Prandtl's classical lifting line theory:		
Downwash and induced drag. Elliptical and modified elliptical lift distribution. Lift		
distribution on wings. Limitations of Prandtl's lifting line theory. Extended lifting		
line theory-lifting surface theory, vortex lattice method for wings. Lift, drag and		
moment characteristics of complete airplane		
Laboratory Sessions/ Experimental learning: Surface pressure distributions on a two-		
dimensional cambered airfoil at different angles of incidence and calculation of lift		
and pressure drag.		
Applications: understanding the theory of lift generation over finite wings and their		

flow patterns Video link / Additional online information (related to module if any):	
http://web.iaa.ncku.edu.tw/~aeromems/Aerodynamics/Ch5.pdf	
UNIT-V	
Applications of Finite Wing Theory & High Lift Systems	10
Simplified horse-shoe vortex model, influence of downwash on tail plane, ground	Hrs
effects. Swept wings: Introduction to sweep effects, swept wings, pressure coefficient,	
and typical aerodynamic characteristics. Introduction to high-lift systems, flaps,	
leading-edge slats and typical high - lift characteristics. Effects of thickness, camber	
and aspect ratio of wings, tip effects. Introduction to	
Source panel & vortex lattice method	
Laboratory Sessions/ Experimental learning: Calculation of aerodynamic coefficients	
forces acting on a model aircraft using force balance at various angles of incidence,	
speed.	
Applications: study the typical aerodynamics characteristics of swept wings and	
different types of high lift devices	
Video link / Additional online information (related to module if any):	
https://nptel.ac.in/courses/101/106/101106035/	

Course O	utcomes: After completing the course, the students will be able to
CO212.1	Describe the fundamental equations of continuity, momentum & energy of fluid
0212.1	flow.
CO212.2	Evaluate typical airfoil characteristics and two-dimensional flows over airfoil
CO212.3	Analyze the incompressible flow over airfoil
CO212.4	Compute and analyze the incompressible flow over finite wings
CO212.5	Apply finite wing theory and analyze high lift systems

Ref	erence Books
1.	Anderson J.D, Fundamental of Aerodynamics, 5th edition, McGraw-Hill International
	Edition, New York (2011), ISBN-13: 978-0073398105.
2.	E. L. Houghton, P.W. Carpenter, Aerodynamics for Engineering Students, 5th edition,
	Elsevier, New York. (2010), ISBN-13: 978-0080966328

3.	Clancy L. J., Aerodynamics, Sterling book house, New Delhi. (2006), ISBN 13:
	9780582988804
4.	Louis M. Milne-Thomson, Theoretical Aerodynamics, Imported Edition, Dover
	Publications, USA (2011), ISBN 9780486619804.

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	0	1	1	0	1	1	0	11
CO2	3	3	2	3	0	1	1	0	1	1	0	1
CO3	3	3	3	3	1	1	1	0	1	1	0	1
CO4	3	3	3	3	1	1	1	0	1	1	0	1

CO5	3	3	3	2	1	1	1	0	1	1	0	1

Course Title	AERODYNAMICS LAB	Semester	IV
Course Code	MVJ22AE42/AS42	CIE	50

Tota	l No. of	40L + 26P	SEE		50	
Cont	tact Hours				30	
No. o	of Contact	3	Total		100	
Hours/week						
Crec	lits		Exam. Duration		3 Hours	
Cou	rse objective is t	to:				
	• Be acc	quainted with basic principles of aerody	namics using wind tunne	1.		
	o Acqui	re the knowledge on flow visualization	techniques.			
	• Under	stand the procedures used for calculating	ng the lift and drag.			
Sl	Exporimont N	0700		RBT	Hours	
No				Level	110015	
1	Calibration of a	a subsonic wind tunnel: test section stat	ic pressure and total	L1,	03	
	head distribution	ons.		L2, L3		
2	Smoke flow vis	sualization studies on a two-dimensiona	al circular cylinder at	L1,	03	
	low speeds.			L2, L3		
3	3 Smokeflowvisualizationstudiesonatwodimensionalairfoilatdifferentanglesofin L1					
	cidenceatlowsp	eeds		L2, L3		
4	Smoke flow vis	sualization studies on a two dimensiona	l wing with flaps and	L1,	03	
	slats at differen	t angles of incidence at low speeds		L2, L3		
5	Tuft flow visua	lization on a wing model at different a	ngles of incidence at low	L1,	03	
	speeds: identify	zones of attached and separated flows		L2, L3		
6	Surface pressur	e distributions on a two-dimensional su	nooth circular cylinder	L1,	03	
	at low speeds a	nd calculation of pressure drag.		L2, L3		
7	Surface pressur	e distributions on a two-dimensional w	ing of symmetric	L1,	03	
	airfoil and estir	nation of Center of pressure and Aerod	ynamic center	L2, L3		
8	Surface pressur	e distributions on a two-dimensional w	ing of cambered airfoil	L1,	03	
	at different ang	les of incidence, and estimation of Cen	ter of pressure and	L2, L3		
	Aerodynamic c	enter.				
9	Calculation of t	total drag of a two-dimensional circular	cylinder at low speeds	L1,	03	
	using pitot-stati	ic probe wake survey.		L2, L3		
10	Calculation of t	total drag of a two-dimensional wing	of cambered airfoil at	L1,	03	
	low speeds at in	ncidence using pitot-static probe wake	survey.	L2, L3		

11	Measurement of a typical boundary layer velocity profile on the tunnel wall	L1,	03
	(at low speeds) using a pitot probe and calculation of boundary layer	L2, L3	
	displacement and momentum thickness.		
12	Calculation of aerodynamic forces and moments acting on a model	L1,	03
	aircraft at various Angle of Attack and speeds using wind tunnel balance With	L2, L3	
	Yaw.		
13	Calculation of aerodynamic coefficients and forces acting on a model aircraft	L1,	03
	at various Angle of Attack and speeds using wind tunnel balance Without	L2, L3	
	Yaw.		
14	Pressure measurements on aerofoil for a case of reverse flow.	L1,	03
		L2, L3	
		<u> </u>	
Co	urse outcomes:		
С	Apply the flow visualization techniques		
0			
1			
С	Estimate the pressure distribution over the bodies		
0			
2			
C	Calculate the forces and moments on models.		
0			
3			

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3	1	1	1	1	1	1	1
CO2	3	3	3	3	3	1	1	1	1	1	1	1
CO3	3	3	3	3	3	1	1	1	1	1	1	1

Semester: IV								
THERMODYNAMICS + (ENERGY CONVERSION LAB+ FLUID MECHANICS LAB)								
Course Code	MVJ22AS43/AE43	CIE	50					
Total No. of Contact Hours	50 L: T : P :: 3 : 2 : 0	SEE	50					

No. of Contact Hours/week	5	Total	100
Credits	4	Exam. Duration	3 Hours

Course objective is to: This course will enable students to

- Understand various concepts and definitions of thermodynamics.
- Comprehend the I-law of thermodynamics.
- Comprehend the II-law of thermodynamics
- Acquire the knowledge of Pure Substances & various types of gas cycles
- Acquire the knowledge of Heat transfer.

Module-1L1, L2, L310 Hours

Fundamental Concepts & Definitions:

Thermodynamics definition and scope, Microscopic and Macroscopic approaches. Some practical applications of engineering thermodynamic Systems, Characteristics of system boundary and control surface, examples. Thermodynamic properties; definition and Modules, intensive and extensive properties. Thermodynamic state, state point, state diagram, path and process, quasi-static process, cyclic and non-cyclic; processes; Thermodynamic equilibrium; definition, mechanical equilibrium; diathermic wall, thermal equilibrium, chemical equilibrium. Zeroth law of thermodynamics, Temperature; concepts, scales, fixed points, and measurements.

Work and Heat:

Mechanics-definition of work and its limitations. Thermodynamic definition of work; examples, sign convention. Displacement work; as a part of a system boundary, as a whole of a system boundary, expressions for displacement work in various processes through p-v diagrams. Shaft work; Electrical work. Other types of work

Laboratory Sessions / Experimental learning:

To determine the unknown area of a given drawing using planimeter

Applications:

1.For temperature measurements

2.To obtain displacement work

Video link / Additional online information (related to module if any):

https://nptel.ac.in/courses/101/104/101104067/

Module-2	L1, L2, L3	10Hours

First Law of Thermodynamics:

Joules experiments, equivalence of heat and work. Statement of the First law of thermodynamics, extension of the First law to non - cyclic processes, energy, energy as a property, modes of energy, pure substance; definition, two-property rule, Specific heat at constant volume, enthalpy, specific heat at constant pressure. Extension of the First law to control volume; steady state-steady flow energy equation, important applications.

Laboratory Sessions/ Experimental learning:

https://www.youtube.com/watch?v=suuTC9uGLrIhttps://www.youtube.com/watch?v=7bJywbP7ZIU Applications:

1. Conservation of energy principle to Heat and Thermodynamic processes

2.Compressors, Blowers, Steam or Gas Turbines, IC engines Video link / Additional

online information (related to module if any):

https://nptel.ac.in/courses/101/104/101104067/

Module-3	L1, L2, L3	10Hours

Second Law of Thermodynamics:

Devices converting heat to work; (a) in a thermodynamic cycle, (b) in a mechanical cycle. Thermal reservoir. Direct heat engine; schematic representation and efficiency. Devices converting work to heat in a thermodynamic cycle; reversed heat engine, schematic representation, coefficients of performance. Kelvin - Planck statement of the Second law of Thermodynamics; PMM I and PMM II, Clausius statement of Second law of Thermodynamics, Equivalence of the two statements; Reversible and Irreversible processes; factors that make a process irreversible, reversible heat engine, Carnot cycle, Carnot principles.

Entropy:

Clausius inequality; Statement, proof, application to a reversible cycle. Entropy: definition, a property, change of entropy, principle of increase in entropy, entropy as a quantitative test for irreversibility, calculation of entropy using Tds relations, entropy as a coordinate.

Laboratory Sessions/ Experimental learning:

https://www.youtube.com/watch?v=7OJG-ZHrbD8https://www.youtube.com/watch?v=7bJywbP7ZIU https://www.youtube.com/watch?v=2vHLJjlinjw

Applications:

- 1. All types of heat engine cycles including Otto, Diesel, etc
- 2. Refrigerators and heat pumps based on the Reversed Carnot Cycle
- 3. Mixing of two fluids, heat transfer through a finite temperature difference Video link / Additional online information (related to module if any):

https://nptel.ac.in/courses/101/104/101104067/						
Module-4	L1, L2, L3	10Hours				
Pure Substances:						
Mixture of ideal gases and real gases, ideal gas equation, compressibility	y factor use of c	harts. P-T and P-V				
diagrams, triple point, and critical points. Sub-cooled liquid, Saturated liquid, mixture of saturated liquid						
and vapour, saturated vapour, and superheated vapour states of pure sub	stance with wate	er as example.				
Enthalpy of change of phase (Latent heat). Dryness fraction (quality), T-	-S and HS diagr	ams, representation				
of various processes on these diagrams.						
Gas Cycles:						
Efficiency of air standard cycles, Carnot, Otto, Diesel cycles, P-V & T-S	5 diagram, calcu	lation of efficiency,				
Numerical						
Laboratory Sessions/ Experimental learning:						
https://www.youtube.com/watch?v=Juz9pVVsmQQ						
https://www.youtube.com/watch?v=L1AHGHRvv9s						
Applications: Working fluids and its properties, in power plants for	r power genera	tions. Video link /				
Additional online information (related to module if any):						
https://nptel.ac.in/courses/101/104/101104067/						
Module-5	L1, L2, L3	10Hours				
Heat Transfer:						
Introduction to heat transfer, Modes of heat transfer, conduction, convection, radiation heat transfer, heat						
exchangers, types of heat exchangers(shell and tube heat exchanger, plate heat exchanger) Application of						
heat transfer in Aeronautical and Aerospace engineering.						
Applications:						
IC anginas Gas turbina anginas ata						

IC engines, Gas turbine engines etc..

Video link / Additional online information (related to module if any):

https://nptel.ac.in/courses/101/104/101104067/

Course ou	itcomes:
CO203.1	Apply the concepts of thermodynamics in various engineering problems.
CO203.2	Differentiate thermodynamic work and heat and apply I law of thermodynamics to different process
CO203.3	Differentiate thermodynamic work and heat and apply II law of thermodynamics to different process

CO203.4	Apply the concepts of Pure Substances & of various gas cycles
CO203.5	Apply the principles heat transfer

Reference	e Books:
1	A Venkatesh, Basic Engineering Thermodynamics, Universities Press, India, 2007, ISBN 13: 9788173715877
2	P K Nag, Basic and Applied Thermodynamics, 2nd Ed., Tata McGraw Hill Pub. 2002, ISBN 13: 9780070151314
3	YunusA.Cenegal and Michael A.Boles, Thermodynamics: An Engineering Approach, TataMcGraw Hill publications, 2002, ISBN 13: 9780071072540
4	J.B.Jones and G.A.Hawkins, Engineering Thermodynamics, Wiley 1986, ISBN 13: 9780471812029

CIE Assessment:

CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation. Generally, there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of three tests

- Quizzes/mini tests (4 marks)
- Mini Project / Case Studies (8 Marks)
- Activities/Experimentations related to courses (8 Marks)

SEE Assessment:

- xix. Question paper for the SEE consists two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.
- xx. Part B also covers the entire syllabus consisting of five questions having choices and may contain sub-divisions, each carrying 16 marks. Students have to answer five full questions.
- xxi. One question must be set from each unit. The duration of examination is 3 hours.

CO-PO Mapping

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	1	1	1	1	1	1		1
CO2	3	3	2	2	1	1	1	1	1	1		1
CO3	3	3	2	2	1	1	1	1	1	1		1
CO4	3	3	2	2	1	1	1	1	1	1		1
CO5	3	3	2	2	1	1	1	1	1	1		1

High-3, Medium-2, Low-1

Course Title	ENERGY CONVERSION & FLUID MECHANICS LAB	Semester	V
Course Code	MVJ22AS43/AE43	CIE	50
Total No. of Contact Hours	40	SEE	50
No. of Contact Hours/week	03	Total	100
Credits	02	Exam. Duration	3 Hours

Course objective is to:

- Familiarize with the flash point, fire point and viscosity of lubricating oils.
- Study IC engine parts, opening and closing of valves to draw the valve-timing diagram.
- Gain the knowledge of various flow meters and the concept of fluid mechanics.
- Understand the Bernoulli's Theorem.

Sl		RBT	
No	Experiment Name	Level	Hours
1	Determination of Flash point and Fire point of lubricating oil using Abel	L1,L2,L3	03
	Pensky and Pensky Martins Apparatus.		
2	Determination of Calorific value of solid, liquid and gaseous fuels.	L1,L2,L3	03
3	Determination of Viscosity of lubricating oil using Torsion viscometers.	L1,L2,L3	03
4	Valve Timing diagram of 4-stroke IC Engine.	L1,L2,L3	03
5	Calculation of work done and heat transfer from PV and TS diagram using	L1,L2,L3	03
	Planimeter.		
6	Performance Teston Four Stroke Petrol Engine and calculations of IP, BP,	L1,L2,L3	03
	Thermal efficiencies, SFC, FP and to draw heat balance sheet.		
7	Performance Test on Four stroke Multi cylinder Engine and calculations of IP,	L1,L2,L3	03
	BP, Thermal efficiencies, SFC, FP and to draw heat balance sheet.		
8	Calibration of Venturi meter.	L1,L2,L3	03
9	Determination of Coefficient of discharge for a small orifice by a constant	L1,L2,L3	03
	nead method.		
10	Verification of Bernoulli's equation.	L1,L2,L3	03
11	Investigate the effect of changes in hot fluid and cold fluid flow on temperature,	L1,L2,L3	03
	efficiency and overall heat transfer coefficient using different working fluids		
12	Determination of Convective heat transfer coefficient for the composite materials	L1,	03
		L2,L3	
Cour	rse outcomes:		
CO1	Operate the instrument and measure the BP, FP, IP and AF ratio.		
CO2	Find the efficiency of the engine and Estimate the calorific value of the give	ven fuel.	
CO3	Verify the Bernoulli's equation.		

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3	1	1	1	1	1	1	1
CO2	3	3	3	3	3	1	1	1	1	1	1	1
CO3	3	3	3	3	3	1	1	1	1	1	1	1
CO4	3	3	3	3	3	1	1	1	1	1	1	1
CO5	3	3	3	3	3	1	1	1	1	1	1	1

	Semester: IV											
COMPUTER AIDED AIRCRAFT DRAWING												
Course Code	MVJ22ASL44/AEL44	CIE	50									
Total No. of Contact	40	SEE	50									
Hours												
No. of Contact	03	Total	100									
Hours/week												
Credits	02	Exam. Duration	3 Hours									
Course objective is to:												
• Understan	nd and interpret drawings of machin	e and aircraft components										
• Prepare a	ssembly drawings either manually o	or by using standard CAD pacl	kages.									
• Familiari:	ze with standard components and th	eir assembly of an aircraft										

Sl No	Experiment Name	L1, L2, L3, L4 20Hours											
	PART A												
	Sections of Solids: Sections of Pyramids, Prisms, Cubes, Tetrahedro	ons, Cones and Cylind	ers resting only										
	on their bases (No problems on axis inclinations, spheres and hollow	w solids). True shape o	of sections.										
	Orthographic Views: Conversion of pictorial views into orthograph	ic projections of simpl	e machine parts										
	with or without section. (Bureau of Indian Standards conventions are to be followed for the drawings)												
	Hidden line conventions. Precedence of lines.												
	Laboratory Sessions/ Experimental learning: CAAD Lab												
	Applications: Helps to understand Engineering Drawing.												
	Video link / Additional online information (rel	lated to module	e if any):										
	https://www.youtube.com/watch?v=f1Hdtf_iAWk												
	PART B	L1, L2, L3, L4	10Hours										
	Thread Forms: Thread terminology, sectional views of threads. IS	O Metric (Internal &	External) BSW										
	(Internal & External) square and Acme. Sellers thread, American St	andard thread.											
	Fasteners: Hexagonal headed bolt and nut with washer (assembly), square headed bolt and nut with												
	washer (assembly) simple assembly using stud bolts with nut and lo	ck nut. Flanged nut, s	lotted nut, taper										
	and split pin for locking, counter sunk head screw, grub screw, Alle	en screw.											
	Keys & Joints: Parallel key, Taper key, Feather key, Gibhead key a	and Woodruff key.											
	Riveted Joints: Single and double riveted lap joints, butt joints with	h single/double cover	strap.										
	Couplings: Split Muff coupling, protected type flanged coupling	g, pin (bush) type fle	xible coupling,										
	Oldham's coupling and universal coupling (Hooks' Joint)												
	Laboratory Sessions/ Experimental learning: CAAD Lab												
	Applications: For Manufacturing Aerospace Components.												
	Video link / Additional online information (related to module if any	<i>y</i>):											
	https://www.youtube.com/watch?v=70hESLwUhMEhttps://www.yo	outube.com/watch?v=	Gdvtw0pTAOs										
	PART C	L1, L2, L3, L4	20Hours										
1	Modelling of propeller and hub assembly												
2	Modelling of wing assembly												
3	Modelling of fuselage assembly												
4	Modelling of Engine Mounts												
5	Modelling of main rotor blade assembly of helicopter												
6	Modelling of UAV assembly												
7	Modelling of Landing Gear Assembly												

	Laboratory Sessions/ Experimental learning: CAAD Lab Applications: To Design an Aircraft Model. Video link / Additional online information (related to module if any): <u>https://www.youtube.com/watch?v=rmlUXhvJHt0</u> <u>https://www.autodesk.com/autodesk-university/class/Fusion-360-and-SketchBook-Teammates-</u>
	2016#chapterhttps://www.autodesk.in/solutions/cad-cam
Course	e outcomes:
CO1	Distinguish drawings of machine and aircraft components
CO2	Identify assembly drawings either manually or by using standard CAD packages.
CO3	Practice with standard components and their assembly of an aircraft.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	3	2	1	0	2	0	0	2
CO2	3	3	2	2	3	2	1	0	2	0	0	2
CO3	3	3	2	3	3	2	2	1	3	0	0	3

CIE Assessment:

CIE is based on quizzes, tests, assignments/seminars, and any other form of evaluation. Generally, there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of three tests

- Quizzes/mini tests (4 marks)
- Mini Project / Case Studies (8 Marks)
- Activities/Experimentations related to courses (8 Marks)

SEE Assessment:

xxii. Question paper for the SEE consists of two parts i.e., Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.

xxiii. Part B also covers the entire syllabus consisting of five questions having choices and may contain sub-divisions, each carrying 16 marks. Students have to answer five full questions.

xxiv. One question must be set from each unit. The duration of examination is 3 hours.

	CO, PO Mapping													
CO/P	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO
0	1	2	3	4	5	6	7	8	9	0	1	2	1	2
CO1	3	3	1	1	2	1	1	1	2	2	1	2	1	1
CO2	3	3	2	2	2	1	1	1	2	2	1	2	1	1
CO3	3	3	2	2	2	1	1	1	2	2	1	2	1	1
CO4	3	3	3	2	2	1	1	1	2	2	1	2	1	1
CO5	3	3	2	2	2	1	1	1	2	2	1	2	1	1

High,3, Medium,2, Low,1

Semester: IV								
AIRCRAFT SYSTEMS & INSTRUMENTATION								
Course Code	MVJ20AS451	CIE	50					
Total No. of Contact Hours	50 L: T : P :: 3 : 2: 0	SEE	50					
No. of Contact Hours/week	5	Total	100					
Credits	4	Exam. Duration	3 Hrs.					

Course objective is to:

- 1. Gain knowledge of the aircraft control systems.
- 2. Understand the applications of hydraulics and pneumatics in aircraft systems.
- 3. Acquire knowledge regarding aircraft engine systems.
- 4. Comprehend the aircraft auxiliary systems
- 5. Acquire the knowledge of aircraft instruments.

Module 1	L1,L2,L3	10 Hrs.

Airplane Control Systems: Conventional Systems, fully powered flight controls, Power actuated systems, Modern control systems, Digital fly by wire systems, Auto pilot system active control

Technology.

LaboratorySessions/ Experimental learning:

How it works, flight controls PID controls.

Applications:

Pilot training, UAV design and piloting, RC aircraft design and piloting.

Video link / Additional online information (related to module if any):

- 1. <u>https://nptel.ac.in/courses/101/104/101104066</u>
- 2. https://onlinecourses.nptel.ac.in/noc21_ae05/preview
- 3. <u>https://digitalcommons.calpoly.edu/cgi/viewcontent.cgi?article=1067&context=aerosp</u>

Module 2	L1,L2,L3,	10 Hrs.					
Aircraft Systems: Hydraulic systems, Study of typical workable system, components, Pneumatic							
systems, Advantages, Working principles, Typical Air pressure system, Brake system, Typical							
Pneumatic power system, Components, Landing Gear systems, Classification.							
Laboratory Sessions/ Experimental learning:							
Calculation on force required for hydraulic system and pneumatic system in aircraft applications.							
Applications:							
Hydraulic lifts, pneumatic door openings and closing, landing gears, breaks,							

Video link / Additional online information (related to module if any):

1. https://nptel.ac.in/courses/112/105/112105047/										
2. https://nptel.ac.in/courses/112/103/112103249/										
3. https://sciencing.com/make-simple-hydraulic-system-7380816.h	<u>ntml</u>									
Module 3	L1,L2,L3	10 Hrs.								
Engine Systems: Fuel systems for Piston and jet engines, Components of multi engines.										
lubricating systems for piston and jet engines - Starting and Ignition systems	stems - Typical	examples								
for piston and jet engines.										
Laboratory Sessions/ Experimental learning:										
Engine Fuel and Fuel Metering Systems (Lab session IIT Kanpur, Virtual	lab)									
https://www.youtube.com/watch?v=xEssM_sYtd8										
Applications:										
Range and Endurance calculation, actions to take in case of engine failu	ures.									
Video link / Additional online information (related to module if any)	:									
1. <u>https://nptel.ac.in/courses/101/101/101002/</u>										
2. https://spocathon.page/video/lecture-06-lubrication-system										
Module 4 L1,L2,L3 10 Hrs.										
Auxiliary System: Basic Air cycle systems, Vapour Cycle systems, Evapo	orative vapour	cycle								
systems, Evaporative air cycle systems, Fire protection systems, Deicing	and anti-icing	systems.								
Laboratory Sessions/ Experimental learning:										
Response time and operations of firefighting systems in case of engine	failure.									
Applications:										
Firefighting, precautions, how to fight different classes of fire.										
Video link / Additional online information (related to module if any)	:									
1. https://nptel.ac.in/content/storage2/courses/101106035/001_Cha	apter%201_L1_	(01-10-								
2013)										
2. https://nptel.ac.in/courses/103/107/103107156/										
3. https://www.draeger.com/en_seeur/ Products/Aircraft-fire-training-systems.										
Module 5 L1,L2 10 Hrs.										
Aircraft Instruments: Flight Instruments and Navigation Instruments, Gyroscope,										
Accelerometers, Air speed Indicators, TAS, EAS, Mach Meters, Altimeters, Principles and										
operation, Study of various types of engine instruments, Tachometers, Temperature gauges,										
Pressure gauges, Operation and Principles.										
Laboratory Sessions/ Experimental learning:										
Gyroscope working and applications, Avionics lab instruments working.										
Applications:										

Understanding readings of the flight instruments, prediction of failure or trouble before actual encounter and taking necessary precautions.

Video link / Additional online information (related to module if any):

- 1. https://nptel.ac.in/courses/101/108/101108056/
- 2. https://onlinecourses.nptel.ac.in/noc20_ae01/preview
- 3. https://www.wingbug.com/wingbug-for-experimental-aircraft/

Course outcomes:

Upon completion of the course, students will be able to:

CO315.1.1	Distinguish the conventional and modern control systems.
CO315.1.2	Analyse the aircraft systems.
CO315.1.3	Analyse the working of Aircraft engine systems.
CO315.1.4	Describe aircraft Auxiliary systems
CO315.1.5	Applydifferent aircraft instruments.

Reference	Books:
1.	Ian MoirandAllanSeabridge, Aircraft Systems: Mechanical, Electrical and Avionics-
	Subsystem Integration, Wiley India Pvt Ltd, 3 rd edition, 2012.
2.	Lalit Gupta and OP. Sharma, Aircraft Systems (Fundamentals of Flight Vol. IV),
	Himalayan Books, 2006.
3.	William A Neese, Aircraft Hydraulic Systems, Himalayan Books, 2007
4.	SR. Majumdar, Pneumatic Systems, Tata McGraw Hill Publishing Co, 1st Edition, 2001

CIE Assessment:

CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation. Generally, there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA

marks to be awarded will be the average of three tests

- Quizzes/mini tests (4 marks)
- Mini Project / Case Studies (8 Marks)
- Activities/Experimentations related to courses (8 Marks)

SEE Assessment:

- Question paper for the SEE consists two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.
- Part B also covers the entire syllabus consisting of five questions having choices and may contain sub-divisions, each carrying 16 marks. Students have to answer five full questions.
- One question must be set from each unit. The duration of examination is 3 hours.

	CO, PO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	0	0	0	0	0	0	0	0	1	1	0
CO2	3	2	1	0	0	0	0	0	0	0	0	1	1	0
CO3	3	2	1	0	0	1	1	0	0	0	0	1	1	0
CO4	3	2	1	0	0	1	1	0	0	0	0	1	1	0
CO5	3	2	1	Ô	0	0	0	Ó	Ô	0	0	1	1	0

Semester: V								
FINITE ELEMENT METHODS								
Course Code	MVJ22AE452/AS452	CIE	50					
Total No. of Contact Hours	50 L: T: P: 3: 2: 0	SEE	50					
No. of Contact Hours/week	5	Total	100					
Credits	4	Exam. Duration	3 Hrs.					

The course objective is to:

- 1. Understand the importance of discretization of domain using different finite elements.
- 2. Acquire the knowledge of different loading and boundary conditions.
- 3. Understand the governing methods of finite element analysis.
- 4. Comprehend the higher order discretization.
- 5. Gain the knowledge offield problems.

|--|

Introduction: Basic Concepts, Background Review: Introduction, Stresses and Equilibrium, Plane stress, Plane strain, Boundary Conditions, Strain-Displacement Relations, simple elements for the FEM, Potential Energy and Equilibrium, The Rayleigh-Ritz Method, Galerkin's Method, Saint Venant's Principle, Von Mises Stress,

Finite Element Modeling, node, element, Coordinates and Shape Functions, Element Stiffness Matrix and assembly, Properties of K, Use of local and natural coordinates, compatibility and convergence requirements of shape functions.

Laboratory Sessions/ Experimental learning:2D plane stress analysis using ANSYS

Applications:

- 1. Solving practical technical problems using scientific and mathematical tools,
- 2. Calculating the global stiffness matrix in the finite element method

Video link / Additional online information

- 4. https://nptel.ac.in/courses/112/104/112104193/
- 5. <u>https://nptel.ac.in/courses/112/104/112104116/</u>
- 6. https://ocw.mit.edu/courses/mechanical-engineering/2-092-finite-element-analysis-of-solidsand-fluids-i-fall-2009/study-materials/

Module 2	L1,L2,L3,	10 Hrs.
Analysis of bars trues frames and heams.		

Construction of shape functions for bar element and beam element, Plane trusses, Three-Dimensional trusses, Three-dimensional Frames

Construction of shape functions for bar element and beam element, Bar elements, uniform bar elements, uniform section, mechanical and thermal loading, varying section, truss analysis, Frame element, Beam element, problems for various loadings and boundary

Laboratory Sessions/ Experimental learning: To determine maximum deflection and bending stress for given cantilever beam using ANSYS

Applications:

- 1. 2D and 3 D elements to apply boundary conditions,
- 2. The direct stiffness method to compute degrees of freedom at the element nodes.
- 3. To determine the value of state variable at any point of element based on values of state variable.

Video link / Additional online information

- 1. https://nptel.ac.in/courses/112/104/112104193/
- 2. https://nptel.ac.in/courses/112/104/112104116/
- 3. <u>https://ocw.mit.edu/courses/mechanical-engineering/2-092-finite-element-analysis-of-solids-and-fluids-i-fall-2009/study-materials/</u>

Module	e 3							L	.1,L2	2,L3	10 H	Hrs.

Analysis of Two- and Three-dimensional Elements: Shape functions of Triangular, Rectangular and Quadrilateral elements, different types of higher order elements, constant and linear strain triangular elements, stiffness matrix Four-Noded Tetrahedral Element (TET 4), Eight-Noded Hexahedral Element (HEXA 8), Tetrahedral elements, Hexahedral elements: Serendipity family, Hexahedral elements: Lagrange family. Numerical

Laboratory Sessions/ Experimental learning: Analysis of CST Element by using ANSYS

Applications:

To approximate the *shape* of the object and to compute the displacement of points inside the boundary of the object

Video link / Additional online information:

- 3. https://nptel.ac.in/courses/112/104/112104193/
- 4. https://nptel.ac.in/courses/112/104/112104116/
- 5. <u>https://ocw.mit.edu/courses/mechanical-engineering/2-092-finite-element-analysis-of-solids-and-fluids-i-fall-2009/study-materials/</u>

Module 4

L1,L2,L3 10 Hrs.

Theory of Isoparametric Elements and Axisymmetric: Isoparametric, sub parametric and superparametric elements, characteristics of Isoparametric quadrilateral elements, structure of computer program for FEM analysis, description of different modules, pre and post processing, Axisymmetric formulation finite element modeling of triangular and quadrilateral element. Numerical

Laboratory Sessions/ Experimental learning: Analysis of Long Cylinder (Axiymmetric Problem) using Quadrilateral Elements in ANSYS

Applications:

- 1. To create shape functions that would ensure the compatibility of the displacement between neighboring elements while maintaining the requirements for shape functions
- 2. Higher-order approximation of the unknown function over a bounding surface described by non-planar elements.

Video link / Additional online information:

- 4. https://nptel.ac.in/courses/112/104/112104193/
- 5. https://nptel.ac.in/courses/112/104/112104116/
- 6. <u>https://ocw.mit.edu/courses/mechanical-engineering/2-092-finite-element-analysis-of-solids-and-fluids-i-fall-2009/study-materials/</u>

Module 5	L1, L2, L3	10 Hrs.

Field Problems: Heat transfer problems, Steady state fin problems, 1D heat conduction governing equation, Derivation of element matrices for two dimensional problems, Dynamic consideration-Formulation-Hamilton's principle, Element mass matrices. Numerical

Laboratory Sessions/ Experimental learning: Performing Heat Transfer Analysis Using ANSYS Applications:

- 1. Problem involving heat flow
- 2. Structural dynamics

Video link / Additional online information:

- 4. https://nptel.ac.in/courses/112/104/112104193/
- 5. https://nptel.ac.in/courses/112/104/112104116/
- 6. <u>https://ocw.mit.edu/courses/mechanical-engineering/2-092-finite-element-analysis-of-solids-and-fluids-i-fall-2009/study-materials/</u>

Course outcomes:

Upon completion of the course, students will be able to:

CO315.2.1	Apply discretization technique for domain using different finite elements

CO315.2.2	Evaluate the effects of different loading and boundary conditions
CO315.2.3	Analyze the governing equations of finite element analysis
CO315.2.4	Formulating mathematical model using higher order element type
CO315.2.5	Analyze heat flow problem by considering dynamic consideration

Reference Books:		
1.	Chandru Patla T. R, PHI Finite Elements in engineering, , 3rd edition, 2002	
2.	BhaviKatti, Finite element Analysis, New Age International, 3rd edition, 2015	
3.	Zienkiewicz. O.C, The Finite Element Method, Elsevier, 7th edition,2013	
4.	C.S. Krishnamurthy, Finite Element analysis - Theory and Programming, Tata McGraw	
	Hill Co. Ltd, New Delhi, 2nd edition,2011	
5.	Rao S. S, Elsevier, Finite Elements Method in Engineering, 5th edition, 2008	

CIE Assessment:

CIE is based on quizzes, tests, assignments/seminars, and any other form of evaluation. Generally, there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of three tests

- Quizzes/mini tests (4 marks)
- Mini Project / Case Studies (8 Marks)
- Activities/Experimentations related to courses (8 Marks)

SEE Assessment:

- xxv. Question paper for the SEE consists of two parts i.e., Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.
- xxvi. Part B also covers the entire syllabus consisting of five questions having choices and may contain sub-divisions, each carrying 16 marks. Students have to answer five full questions.
- xxvii. One question must be set from each unit. The duration of examination is 3 hours.
| | CO, PO Mapping | | | | | | | | | | | | | |
|------|----------------|----|----|----|----|----|----|----|----|-----|-----|-----|-----|-----|
| CO/P | PO | PO | PO | PO | PO | PO | PO | PO | PO | PO1 | PO1 | PO1 | PSO | PSO |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0 | 1 | 2 | 1 | 2 |
| CO1 | 3 | 3 | 1 | 1 | 2 | 1 | 1 | 1 | 2 | 2 | 1 | 2 | 1 | 1 |
| CO2 | 3 | 3 | 2 | 2 | 2 | 1 | 1 | 1 | 2 | 2 | 1 | 2 | 1 | 1 |
| CO3 | 3 | 3 | 2 | 2 | 2 | 1 | 1 | 1 | 2 | 2 | 1 | 2 | 1 | 1 |
| CO4 | 3 | 3 | 3 | 2 | 2 | 1 | 1 | 1 | 2 | 2 | 1 | 2 | 1 | 1 |
| CO5 | 3 | 3 | 2 | 2 | 2 | 1 | 1 | 1 | 2 | 2 | 1 | 2 | 1 | 1 |

High,3, Medium,2, Low,1

Semester: IV

INTRODUCTION TO SPACE TECHNOLOGY

Course Code	MVJ22AS453/AE453	CIE	50
Total No. of Contact Hours	3 L: T: P: 3: 0: 0	SEE	50
No. of Contact Hours/week	4	Total	100
Credits	3	Exam. Duration	3 Hrs.

The course objective is to:

- 1. Understand the fundamentals of aerospace propulsion.
- 2. Understand the orbit mechanics and orbit maneuvers.
- 3. Acquire the knowledge of satellite attitude dynamics and space mission operations.

Module 1 L1,	L2, L3	10 Hrs.

Fundamentals of Aerospace Propulsion: Space Mission, Types, Space Environment, Launch Vehicle Selection. Introduction to rocket propulsion-fundamentals of solid propellant rockets, Fundamentals of liquid propellant rockets, Rocket equation, Tsiolkovsky rocket equation, Concepts of Specific Impulse.

Two-dimensional trajectories of rockets and missiles, multi-stage

rockets-Vehicle sizing, two stage Multi-stage Rockets, Trade-off Ratios-Single Stage to Orbit, Sounding Rocket, Aerospace Plane, Gravity Turn Trajectories, Impact point calculation, injection conditions-Flight dispersions, Burnout velocity.

Video link / Additional online information:

https://www.youtube.com/watch?v=Hlj2eVt1Vbk&list=PLbMVogVj5nJQt5nsksLn4qcsBrDL_JKkd https://www.youtube.com/watch?v=Hlj2eVt1Vbk

Module 2	L1, L2, L3,	10 Hrs.
Atmospheric Reentry: Introduction-Steep Ballistic Reentry, Ballistic Orb	ital Reentry, Sk	ip Reentry,
"Double-Dip" Reentry, Aero-braking, Lifting Body Reentry.		
Video link / Additional online information:		

Niouule 5	11, 12, 13	10 1115.
Fundamentals of Orbit Mechanics, Orbit Maneuvers: Two-body n	notion, Circula	r, elliptic,
hyperbolic, and parabolic orbits-Basic Orbital Elements, Ground trac	e In-Plane Orb	it changes,
Hohmann Transfer, Bielliptical Transfer, Plane Changes, Combined M	Aneuvers, Proj	pulsion for
Maneuvers.		

I1 I2 I3 10 Hrs

Video link / Additional online information:

Module 3

Module 4		L1, L2, L3	10 Hrs.			
Satellite Attitude Dynamics: Torque free Axi-symmetric rigid body, Attitude Control for Spinning						
Spacecraft,	Attitude Control for Non-spinning Spacecraft, The Yo-Yo	Mechanism,	Gravity —			
Gradient Sa	tellite, Dual Spin Spacecraft, Attitude Determination.					
Video link	Additional online information:					
Module 5		L1, L2, L3	10 Hrs.			
Space Mis	sion Operations: Supporting Ground Systems Architecture					
and Team	interfaces Mission phases and Core operations. Team	Responsibilitie	es Mission			
Diversity S	tandard Operations Practices	Responsionitie				
Video link / Additional online information.						
Course out	comes.					
Upon comp	lation of the course, students will be able to:					
Upon completion of the course, students will be able to:						
CO315.3.1	Distinguish the types of aerospace propulsion.					
CO315.3.2	Determine the attitude of the satellites.					
CO315.3.3	Support the space mission operations					

Reference B	Books:
1.	W.E. Wiesel," Spaceflight Dynamics", McGraw Hi11,2 nd edition, 2014, ISBN-13: 978-
	9332901650
2	J.W. Cornelisse, "Rocket Propulsion and Space Dynamics", J.W. Freeman & Co., Ltd.,
۷.	London, 1982.

CIE Assessment:

CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation. Generally, there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of three tests

- Quizzes/mini tests (4 marks)

- Mini Project / Case Studies (8 Marks)

- Activities/Experimentations related to courses (8 Marks)

SEE Assessment:

xxviii. Question paper for the SEE consists of two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.

xxix. Part B also covers the entire syllabus consisting of five questions having choices and may contain sub-divisions, each carrying 16 marks. Students have to answer five full questions.

xxx. One question must be set from each unit. The duration of examination is 3 hours.

CO, PO Mapping														
CO/P	PO	PO1	PO1	PO1	PSO	PSO								
0	1	2	3	4	5	6	7	8	9	0	1	2	1	2
CO1	3	3	1	1	2	1	1	1	2	2	1	2	1	1
CO2	3	3	2	2	2	1	1	1	2	2	1	2	1	1
CO3	3	3	2	2	2	1	1	1	2	2	1	2	1	1
CO4	3	3	3	2	2	1	1	1	2	2	1	2	1	1
CO5	3	3	2	2	2	1	1	1	2	2	1	2	1	1

High,3, Medium,2, Low,1

Course Title	TURBOMCHINES	Semester	IV
Course Code	MVJ20AE454/AS454	CIE	50
Total No. of Contact Hours	40 L: T : P :: 3 : 0 : 0	SEE	50
No. of Contact Hours/week	4	Total	100
Credits	3	Exam. Duration	3 Hours

Course objective is to:

- Understand the basics of turbomachines
- Understanding the concept of energy transfer taking place in turbomachines
- Acquire the knowledge on design of centrifugal and axial compressors
- Acquire the knowledge on design of centrifugal and axial turbines
- Assimilate the understanding of hydraulic pumps and turbines

Module-1	L1,L2	8Hours

Introduction to turbomachines:

Classification and parts of a turbo machines; comparison with positive displacement machines; dimensionless parameters and their physical significance; specific speed; illustrative examples on dimensional analysis and model studies.

Energy transfer in turbomachines:

Basic Euler turbine equation and its alternate form; components of energy transfer; general expression for degree of reaction; construction of velocity triangles for different values of degree of reaction.

Laboratory Sessions/ Experimental learning: Aircraft propulsion lab for acquiring knowledge of Gas turbine engine.

Applications: Study of Turbomachines, components of gas turbine engines.

Video link / Additional online information:

https://nptel.ac.in/courses/112/106/112106200/

Module-2 L1,L2,L3 8Hours	Module-2	L1,L2,L3	8Hours
--------------------------	----------	----------	--------

General analysis of Turbomachines

Axial flow machines-general analysis, degree of reaction, velocity triangles, diagram efficiency, maximum utilization factor for different R values, Numerical Problems

Radial flow machines –general analysis, Expression for degree of reaction, velocity triangles, Effect of blade discharge angle on energy transfer and degree of reaction, Effect of blade discharge angle

on performance.

Laboratory Sessions/ Experimental learning: Aircraft Propulsion lab and Fluid Mechanics lab for compressor and turbines.

Applications: Compressors and Turbines in Aircraft engines.

Video link / Additional online information: <u>https://nptel.ac.in/courses/101/101/10101058/</u> https://www.youtube.com/watch?v=oitC03G-QYE

Module-3	L1,L2,L3	8Hours

Compression process:

Overall isentropic efficiency of compression; stage efficiency; comparison and relation between overall efficiency and stage efficiency; polytropic efficiency; preheat factor.

Expansion process:

Overall isentropic efficiency for a turbine; stage efficiency for a turbine; comparison and relation between stage efficiency and overall efficiency, polytropic efficiency; reheat factor for expansion process.

Laboratory Sessions/ Experimental learning: Fluid Mechanics lab for compressor and turbines and Aircraft propulsion lab: Study of gas turbine turbojet engine

Applications: Turbojet, turbofan, turbo shaft engines.

Video link / Additional online information:

https://youtu.be/8y5KX4kzt0A

Module-4		L1,L2,L3	8Hours

DesignandperformanceanalysisofCentrifugal compressors: Types, design parameters, flow analysis in impeller blades, volutes and diffusers, losses, slip factor, characteristic curves, surging, choking. Construction details.

Designandperformanceanalysisofaxial fans and compressors: Stage velocity diagrams, enthalpyentropy diagrams, stage losses and efficiency, work done, simple stage design problems,

performance characteristics, instability in axial compressors. Construction details.

Laboratory Sessions/ Experimental learning: Aircraft propulsion lab: Study of gas turbine turbojet engine

Applications: Turbojet, turbofan, turbo shaft engines.

Video link / Additional online information:

http://www.infocobuild.com/education/audio-video-courses/aeronautics-and-

astronautics/TurbomachineryAerodynamics-IIT-Bombay/lecture-31.html

https://www.youtube.com/watch?v=3bhoVSI6VoI

https://www.youtube.com/watch?v=b1dyUVA19kQ						
Module-5 L1,L2 8Hours						
Design and performance analysis of axial flow turbines:						
Turbine stage, work done, degree of reaction, losses and efficiency, flow	passage; subsor	nic, transonic				
and supersonic turbines, multi-staging of turbine; exit flow conditions; t	urbine cooling					
Designandperformanceanalysisofradialturbines:						
Thermodynamics and aerodynamics of radial turbines; radial turbine chara	cteristics; losse	s and				
efficiency; design ofradial turbine.						
Laboratory Sessions/ Experimental learning: Aircraft propulsion lab	and Fluid mech	anics lab.				
Applications: Turbojet, turbofan, turbo shaft engines.						
Video link / Additional online information:						
http://www.infocobuild.com/education/audio-video-courses/aeronautics	-and-					
astronautics/TurbomachineryAerodynamics-IIT-Bombay/lecture-22.htm	<u>11</u>					
https://www.youtube.com/watch?v=h4LYyUOtQow						
Course outcomes:						
CO315.4.1 Compute the energy transfer and energy transformation in	CO315.4.1 Compute the energy transfer and energy transformation in turbomachines.					
CO315.4.2 Analyse the design of turbomachine blades.						
CO315.4.3 Apply hydraulic pumps and turbines for specific requirements						
CO315.4.4 Apply dimensionless parameters for turbomachines						
O315.4.5 Analyse Compression and Expansion process						

Reference l	Books:
1	S.M.Yahya,Turbines,Compressors&Fans,Tata-McGrawHillCo.,2 nd Edition(2002),ISBN 13: 9780070707023.
2	D.G.Shephered,PrinciplesofTurboMachinery,TheMacmillanCompany(1964),ISBN-13: 978-0024096609.
3	V. Kadambi and Manohar Prasad, An introductionto Energyconversion, VolumeIII, Turbo machinery,WileyEastern Ltd, 1977, ISBN: 9780852264539

CIE Assessment:

CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation. Generally, there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of three tests

- Quizzes/mini tests (4 marks)
- Mini Project / Case Studies (8 Marks)
- Activities/Experimentations related to courses (8 Marks)

SEE Assessment:

xxxi. Question paper for the SEE consists of two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.

xxxii. Part B also covers the entire syllabus consisting of five questions having choices and may contain sub-divisions, each carrying 16 marks. Students have to answer five full questions.

xxxiii. One question must be set from each unit. The duration of examination is 3 hours.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	1	0	0	0	0	0	0	0	0	0
CO2	3	3	3	3	0	0	0	0	0	0	0	0
CO3	3	3	3	2	0	0	0	0	0	0	0	0
CO4	3	3	2	1	0	0	0	0	0	0	0	0
CO5	3	3	2	0	0	0	0	0	0	0	0	0

High-3, Medium-2, Low-1

Semester: IV							
Ability En	Ability Enhancement Course on Astronomy (Level 2)						
Course Code	MVJ22AEC07	CIE	50 Marks				
Total No. of Contact Hours	30 (L: T: P: 1: 0: 2)	SEE	50 Marks				
No. of Contact hours/week	02	Total	100 Marks				
Credits	2	Exam. Duration	2 Hours				

Course objective is to:

- 3) Understand the Planets of the solar system, Planetary properties, Planetary orbits, Planetary atmospheres.
- 4) Familiarize with the Evolution of Stars, birth and death of stars, Star Formation, The properties of the stars.

Module 1. The Planets	RBT Level L1, L2, L3	8 Hrs.			
Planetary properties, Planetary orbits, Planetary atmospheres, Planets of the solar system – Mercury, Venus,					

Earth, Moon, Mars, Jupiter, Saturn, Uranus, Neptune, Pluto and other minor planets.

Module 2. The Stars	RBT Level L1, L2, L3	7 Hrs.

The birth of stars, Star Formation, The properties of the stars, Planets beyond the solar system, Star Clusters, Evolution of Stars, Death of Stars, Variable Stars, Compact Stars.

Modu	le 3. Activities/Project work	RBT Level L1, L2, L3	15 Hrs.				
Interpl	lanetary Hohmann Transfer						
Course	e outcomes: After the completion of course, st	udents will be able to					
COs	 COs Understand the Planets of the solar system, Planetary properties, Planetary orbits, Planetary atmospheres. Understand the Evolution of Stars, birth and death of stars, Star Formation, The properties of the stars 						
Reference Books:							
1.	1. Johnson B. K "Optics and Optical Instruments", Dover Publications, Inc. New York. 2001.						
2.	Whitlock LA, Pulliam K. "Laboratory exercises for introductory radio astronomy with a small radio telescope". iUniverse. 2008.						
3.	Forest Ray Moulton, "An Introduction to Astronomy Hardcover", The Macmillan Company, New and Revised Edition, 2018.						
4.	Sally R. Ball, "Astronomy for Beginners: The Introduction Guide to Space, Cosmos, Galaxies and Celestial Bodies", Blue source and Friends, 2020.						

Semester: IV						
Diploma Mathematics-II						
Course Code	MVJ22MATDIP-II	CIE	50			
Total No. of Contact Hours	40	SEE	50			
No. of Contact Hours/week	4	Total	100			
Credits	-	Exam. Duration	3 Hours			

Course objective is to: This course viz., aims to prepare the students:

• To familiarize the important and basic concepts of Differential calculus and Differential Equation, ordinary/partial differential equations and Vector calculus and analysethe engineering problems.

|--|

Linear Algebra:

Introduction, Rank of a matrix-echelon form. Solution of system of linear equations – consistency.

Gauss-elimination method and problems. Eigen values and Eigen vectors of square matrix and Problems.

Video Link:

https://www.math.ust.hk/~machas/matrix-algebra-for-engineers.pdf https://nptel.ac.in/content/storage2/courses/122104018/node18.html

Module-2	L1, L2	8 Hrs.

Differential calculus:

Tangent and normal, sub tangent and subnormal both Cartesian and polar forms. Increasing and decreasing functions, Maxima and Minima for a function of one variable. Point of inflections and Problems

Beta and Gamma functions:

Beta functions, Properties of Beta function and Gamma function, Relation Between beta and Gamma function-simple problems.

Video Link:

https://www.youtube.com/watch?v=6RwOoPN2zqE

https://www.youtube.com/watch?v=s6F5yjY6jWk&list=PLMLsjhQWWlUqBoTCQDtYlloI-o-							
<u>9hxp11</u>							
http://tutorial.math.lamar.edu/Classes/DE/IntroPDE.aspx							
Module-3 L1, L2 8Hrs.							
Analytical solid geometry:							
Introduction –Directional cosine and Directional ratio of a line, Equation	of line in spac	e- different					
forms, Angle between two-line, shortest distance between two line, plane	e and equation	of plane in					
different forms and problems.							
Video Link:							
https://www.toppr.com/guides/maths/three-dimensional-geometry/							
https://www.toppr.com/guides/maths/three-dimensional-geometry/distan	ce-between-sk	ew-lines/					
Module-4	L1, L2, L3	8 Hrs.					
Probability:							
Random variable, Discrete probability distribution, Mean and variance o	f Random Vari	able,					
Theoretical Distribution-Binomial distribution, Mean and variance Binomial	nial distributio	n -Problems.					
Poisson distribution as a limiting case of Binomial distribution, Mean and	d variance of P	oisson					
distribution. Normal Distribution-Basic properties of Normal distribution	n –standard for	m of normal					
distribution and Problems.							
Video Link:							
https://nptel.ac.in/courses/111/105/111105041/							
https://www.mathsisfun.com/data/probability.html							
Module-5	L1, L2, L3	8 Hrs.					
Partial differential equation: Formation of PDE's by elimination of arbitrary constants and							
functions.							
Solution of non-homogeneous PDE by direct integration. Homogeneous PDEs involving derivative							
with respect to one independent variable only.							
Video Link:							
http://tutorial.math.lamar.edu/Classes/DE/IntroPDE.aspx							
https://www.studyyaar.com/index.php/module-video/watch/233-cauchys-legendres-de-a-method-							
of- variation-of-parameters							

Course outcomes:	
CO1	Apply the knowledge of Matrices to solve the system of linear equations and to understand
	the concepts of Eigen value and Eigen vectors for engineering problems.
CO2	Demonstrate various physical models, find Maxima and Minima for a function of one
	variable., Point of inflections and Problems. Understand Beta and Gamma function
CO3	Understand the 3-Dimentional geometry basic, Equation of line in space- different forms,
	Angle between two line and studying the shortest distance.
CO4	Concepts OF Probability related to engineering applications.
CO5	Construct a variety of partial differential equations and solution by exact methods.

Text Books:		
1	B.S. Grewal, "Higher Engineering Mathematics" Khanna Publishers, 43 rd Edition, 2013.	
2	Ramana B. V., "Higher Engineering Mathematics", Tata Mc Graw-Hill, 2006.	
Reference Books:		
1	Erwin Kreyszig, "Advanced Engineering Mathematics", Wiley-India publishers,	
1	10thedition,2014.	
2	G. B. Gururajachar: Calculus and Linear Algebra, Academic Excellent Series Publication,	
	2018-19	

CIE Assessment:

CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation. Generally, there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of three tests

- Quizzes/mini tests (8 marks)

SEE Assessment:

- xxxiv. Question paper for the SEE consists of two parts i.e., Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.
- xxxv. Part B also covers the entire syllabus consisting of five questions having choices and may contain sub-divisions, each carrying 16 marks. Students have to answer five full questions.
- xxxvi. One question must be set from each unit. The duration of examination is 3 hours.