	Semester: III	
Transform	ns and Statistical	Methods
	(Theory)	
Course Code	MVJ21MA31A	CIE Marks: 50
Credits	L:T:P:: 3:2:0	SEE Marks: 50
Hours	30L+20T	SEE Duration: 3 Hrs.
Course Learn will be able to	ing Objectives: Th	e students

1	Comprehend and use of analytical and numerical methods in different engineering fields.
2	Apprehend and apply Fourier Series.

3 Realize and use of Fourier transforms.

4 Realize and use of **Z**-Transforms.

5 Use of statistical methods in curve fitting applications.

UNIT-I

Laplace Transform: Definition and	
-	
Laplace transforms of elementary	
functions. Laplace transforms of	
Periodic functions and unit-step	
function and problems.	
Inverse Laplace Transform: Definition	
and problems, Convolution theorem to	
find the inverse Laplace transforms	10
and problems.	Hrs
Applications: Solution of linear	
differential equations using Laplace	
differential equations using Laplace	
differential equations using Laplace transforms.	

Web Link and Video Lectures:	
https://nptel.ac.in/courses/111106139	
UNIT-II	1
Fourier series: Recapitulation of Series, Continuous and Discontinuous functions, Periodic functions, Dirichlet's condition, Fourier series of periodic functions of period 2π and arbitrary period $2l$, Half-range Fourier sine and cosine series, Practical Harmonic Analysis and Problems.	10 Hrs
Web Link and Video Lectures:	
https://nptel.ac.in/courses/111106111/	
UNIT-III	
Fourier transforms: Infinite Fourier transform, Infinite Fourier sine and cosine transforms, Inverse Fourier transforms, Inverse Fourier sine and cosine transforms, Convolution theorem.	
Web Link and Video Lectures: https://nptel.ac.in/courses/111105123	
UNIT-IY	
Z-Transforms: Difference equations, basic definition, Z-transform - definition, Properties of Z-transforms, Standard Z-transforms, damping rule, Shifting rule, Initial value and final value theorems - problems, Inverse Z- transform.	
Applications: Application of Z -	
transforms to solve difference equations.	10 Hrs
Self study topic: Proof of Initial value	
and final value theorems.	
Web Link and Video Lectures:	
https://nptel.ac.in/courses/108104100	
UNIT-Y	
Curve Fitting: Curve fitting by the method of least squares. Fitting of the	10 Hrs

curves of the	form $y = a$	x+b, $y=ax$	$x^2 + bx + c , y = c$	ae^{bx} •
Statistical	Method	s: In	troduct	ion,
Correlation	and	coeff	icient	of
correlation,	Regres	ssion,	lines	of
regression a	nd proble	ms.		
Self study to	pic: Fitti	ng of tl	he curve	s of
the form $y = ax$	<i>b</i>			
Web Link an	d Video I	Lecture	es:	
https://nptel	.ac.in/co	urses/1	111050	42

Cour	se Outcomes: A fter completing the
cours	se, the students will be able to
CO1	Use Laplace transform and inverse transforms techniques in solving differential equations.
CO 2	Communications, Know the use of periodic signals and Fourier series to analyze circuits and system.
СОЗ	Demonstrate Fourier Transform as a tool for solving Integral equations.
CO4	Apply Z Transform to solve Difference Equation.Use Method of Least Square for appropriate Curves.
CO 5	Fit a suitable curve by the method of least squares and determine the lines of regression for a set of statistical data.

Reference Books

1.	B.S. Grewal, "Higher Engineering Mathematics" Khanna Publishers, 43 rd Edition, 2013.
2.	Erwin Kreyszig, "Advanced Engineering Mathematics", Wiley-India publishers, 10th edition,2014.
З.	Ramana B. V., "Higher Engineering Mathematics", Tata Mc Graw-Hill, 2006.
4.	Bali N. P. & Manish Goyal, "A text book of Engineering Mathematics", Laxmi

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

				CO)-P(app	oing				
CO	P	P	P	P	P	P	P	P	P	P	P	P
/P	Ο	Ο	Ο	Ο	Ο	Ο	Ο	Ο	Ο	01	Ο	01
Ο	1	2	3	4	5	6	7	8	9	Ο	11	2
CO 1	З	3	0	3	0	0	0	0	0	0	1	0
CO 2	3	3	0	3	0	0	0	0	0	0	0	1
CO 3	2	3	0	3	0	0	0	0	0	0	1	0
C0 4	3	3	0	3	0	0	0	0	0	0	0	0
CO 5	3	3	0	2	0	0	0	0	0	0	0	1

High-3, Medium-2, Low-1

	Semester: III						
	OBJECT ORIENTED PROGRAMMING						
	T)	heory)					
C	ourse Code:	CIE					
M	VJ21CG32	Marks:100					
C	redits: L:T:P:S:	SEE Marks:					
3:	0:0:0	100					
H	ours: 40L	SEE					
		Duration: 3					
		Hrs					
C	ourse Learning Ob	jectives: The students					
W.	ill be able to						
	Identify the nee	ed for Java - an object					
	opiopted language Set up Java IDK						
1	oriented language. Set up Java JDK						
	environment to create, debug and run						
	simple Java programs.						
2	Illustrate the	use of classes and					

	distinguish the usage of different types of
	Inheritance and constructors in real
	world.
	Demonstrate the use of exceptions and to
3	create multi-threaded programs.
	Illustrate the use of Collections with
4	elements in Java program.
5	Develop Java Application using JDBC
	connectivity.

UNIT-I	
Prerequisites : Basic Knowledge about	8
C or C ++	Hrs
Introduction to Object Oriented	
Concepts and Java: Java's Magic: the	
Byte code; Java Development Kit	
(JDK); The Java Buzz words, Object	
Oriented Programming - Two	
Paradigms, Abstraction, The Three	
OOP Principles and its advantages,	
Simple Java programs. Data types,	
variables and arrays, Operators,	
Control Statements.	
Video link / Additional online	
information (related to module if any):	

 Differences between JVM vs JRE vs JDK in Java:

https://www.youtube.com/watch?v=5B p6GLU6HKE

UNIT-II						
Classes,						
Interface	s: Classes	fundamer	ntals;	Hrs		

Declaring objects; Assigning object reference variables; Introducing Methods, Constructors, this keyword, **Inheritance**: Finalize Method. Inheritance basics, using super, creating multi-level hierarchy ,when constructors are called, method overriding, using abstract classes. Packages, **Protection**, Access **Importing Packages, Interfaces.** Video link / Additional online information (related to module if any): Types of **Inheritance**: https://www.youtube.com/watch?v=ZP 27c7i57ns

	UNI			-
Exception	Handlin	ıg and	Multi-	
Threaded	Program	ning :E	xception	Hrs
Handling	fundame	ntals, E	xception	
Types, Unc	aught Exc	eptions, 1	Using try	
catch, Mult	iple catch c	lauses, N	lested try	
statements	throw,	throws,	finally,	
Java's	built-in	ех	ceptions,	
Programm	ing Examp	ples.		
Multi-Thre	aded Pro	grammi	ng: The	
java threa	ad model	, Main	thread,	
Creating 7	Chread, C	reating	multiple	
threads,	Using	isAlive() and	
join(),Thre	ad	P	priorities,	
Synchroniz	zation;	Int	erThread	
Communic	ation -	Boundod	buffon	

problem.	
- Video link / Additional online	
information (related to module if any):	
Multithreading:	
https://www.youtube.com/watch?v=O_	
<u>Ojfq-OIpM</u>	
UNIT-IY	
	8
Framework: Collections Overview,	Hrs
Recent Changes to Collections, The	
Collection Interfaces, The Collection	
Classes, Accessing a collection Via an	
Iterator, Storing User Defined Classes	
in Collections.	
Java Lambda expressions: Java	
Lambda expressions, Using Java	
Lambda expressions, Lambda	
expression vs method in java, Lambda	
expression in the array list.	
Video link / Additional online	
information (related to module if any):	
https://www.youtube.com/watch?v=Q_	
<u>9vV3H-dt4</u>	
UNIT-Y	
	8
Driver Types; JDBC Packages; A Brief	Hrs
Overview of the JDBC process;	
Database Connection; Associating the	
JDBC/ODBC Bridge with the	
Database; Statement Objects;	
ResultSet ; Transaction Processing ;	
Metadata, Data types; Exceptions.	

link	/	Additional	online
ation (r	elat	ted to module i	if any):
: <u>https:/</u>	/ <u> </u>	w.youtube.co	m/watc
WBIJ×	rLI	<u>3Q</u>	
	ation (r <u>https://</u>	ation (relat	link / Additional ation (related to module i <u>https://www.youtube.co</u> <u>WBIJxrLBQ</u>

Cour	Course Outcomes: After completing the		
cours	se, the students will be able to		
CO1	Illustrate the Object Oriented		
	Programming concepts and basic		
	characteristics of Java.		
CO2	Demonstrate the principles of classes,		
	inheritance, packages and interfaces.		
CO3	Experiment with exception handling		
	Mechanisms and Create multi-		
	threaded programs.		
CO4	Interpret the need for advanced Java		
	concepts like collections in developing		
	modular and efficient programs.		
CO5	Develop an application with Database		
	using JDBC connectivity.		

Re	Reference Books				
З.	Mahesh Bhave and Sunil Patekar,				
	"Programming with Java", First Edition,				
	Pearson Education,2008,				
	ISBN:9788131720806				
4.	Herbert Schildt, Java The Complete				
	Reference, 7 /9th Edition, Tata McGraw				
	Hill, 2007.				
З.	Jim Keogh: J2EE-The Complete				
	Reference, McGraw Hill, 2007.				
4.	Effective Java, Third Edition, Joshua				
	Bloch, Addison-Wesley				
	Professional,2017				

CIE is executed by way of quizzes (**Q**), tests (**T**) and assignments. A minimum of three

quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

			CO-PO Mapping					
CO/PO	PO1	PO2	PO3	PO4	PO5	P06	P07	POS
CO1	3	3	1	-	-	-	-	-
CO2	3	3	1	-	-	-	-	-
CO3	3	3	1	2	-	-	-	-
CO4	3	3	3	3	-	-	-	2
C05	3	3	3	3	-	-	2	2

High-3, Medium-2, Low-1

Semester: III
OPERATING SYSTEMS
(Theory)

Course Code: CIE				
MVJ21CG33 Marks:100				
C	Credits: L:T:P:S: SEE Marks:			
3:	0:0:0	100		
H	Hours: 40L SEE			
		Duration: 3		
		Hrs		
	ourse Learning Objecti ill be able to	ves: The students		
1	Introduce concepts and terminology used in OS.			
2	Explain threading and multithreaded systems.			
3	Illustrate process synchronization and concept of Deadlock.			
4	Introduce Memory and Virtual memory management, File system and storage techniques.			

UNIT-I	
Introduction: What operating systems	8
do; Computer System organization;	Hrs
Computer System architecture;	
O perating System operations;	
Distributed system; Special-purpose	
systems; Computing environments.	
Operating System Services; User -	
Operating System interface; System	
calls; Types of system calls; System	
programs; Operating system design and	
implementation; Operating System	
structure; Virtual machines; System	
boot.	
Process Management: Process concept;	
Process scheduling; Operations on	
processes;Inter process	

communication.	
UNIT-II	
Multi-threaded Programming:	
Overview; Multithreading models;	Hrs
Thread Libraries; Threading issues.	
Process Scheduling: Basic concepts;	
Scheduling Criteria; Scheduling	
Algorithms; Multiple-processor	
scheduling; Thread scheduling.	
Process Synchronization:	
Synchronization: The critical section	
problem; Peterson's solution;	
Synchronization hardware;	
Semaphores; Classical problems of	
synchronization; Monitors.	
UNIT-III	<u> </u>
	0
Deadlocks : Deadlocks; System model;	
Deadlock characterization; Methods	Hrs
for handling deadlocks; Deadlock	
prevention; Deadlock avoidance;	
Deadlock detection and recovery from	
deadlock.	
Memory Management: Memory	
management strategies: Background;	
Swapping; Contiguous memory	
allocation; Paging; Structure of page	
table; Segmentation	
UNIT-IV	1
Virtual Memory Management:	8
Background; Demand paging; Copy-on-	Hrs
write; Page replacement; Allocation of	
frames; Thrashing.	
File System, Implementation of File	
System: File system: File concept;	
Access methods; Directory structure;	
File system mounting; File sharing;	

Implementing File system: File system	
structure; File system implementation;	
Directory implementation; Allocation	
methods; Free space management.	
UNIT-Y	
Mass Storage Structure-Disk Structure	8
- Disk Attachment-Disk Scheduling-	Hrs
Disk Management- Swap-Space	
Management.	
Protection: Domain of protection,	
Access matrix, Implementation of	
access matrix, Access control,	
Revocation of access rights, Capability-	
Based systems.	
Case Studies: Windows, Unix, Linux, Android.	

	Course Outcomes: After completing the course, the students will be able to		
CO1	Illustrate the fundamental concepts of operating systems.		
CO2	Compare and illustrate various process scheduling algorithms.		
CO3	Ability to recognize and resolveDeadlockproblems,MemoryManagement techniques.		
CO4	Apply appropriate memory and file management schemes.		
CO 5	Appreciate the need of access control and protection in Operating System and illustrate various disk scheduling algorithms.		

Re	Reference Books					
1.	Abraham	Silber	schatz,	Peter	Baer	
	Galvin, Gr	eg Gag	ne, Ope	rating S	bystem	
	Concepts 7th edition, Wiley-India, 2006					
2.	D.M Dhamdhere, Operating Systems: A					
	Concept 1	Based	Approa	ch 3rd	l Ed,	

	McGraw-Hill, 2013.		
З.	Tanenbaum, A., "Modern Operating		
	Systems", Prentice-Hall of India. 2004		
4.	P.C.P. Bhatt, An Introduction to		
	O perating Systems: Concepts and		
	Practice 4th Edition,2013		

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-F	PO Ma	pping	3
CO/PO	P01	PO2	PO3	PO4	P05	P06	P07	POE
CO1	2	2	2	-	-	-	-	-
CO2	2	2	3	-	-	-	-	-
CO3	3	2	3	-	-	-	-	-
CO4	3	2	3	-	-	-	-	-
CO 5	3	2	3	-	-	-	-	-

High-3, Medium-2, Low-1

Semester: III				
ľ	DATA STRUCTURES & LA (Theory and	В		
Course Code:CIEMVJ21CS34Marks:50+50Credits: L:T:P:SEE Marks:				
3:0:1 Hours:40 L+26 P		50+50 SEE Duration: 03+03 Hours		
	ourse Learning Objecti ill be able to			
1	I dentify the importance of data structures & memory allocation.			

2	Perform operations on stacks and queues
	and its applications
З	Apply the operations of linked list, Trees &
3	Apply the operations of linked list, Trees & Graphs in various applications
	Apply searching and sorting operations in
4	Apply searching and sorting operations in real time applications.

UNIT-I				
Introduction: Data Structures,	8			
Classifications (Primitive & Non	Hrs			
Primitive), Data structure Operations,				
Review of Arrays, Structures, Self-				
Referential Structures. Pointers and				
Dynamic Memory Allocation				
Functions. Representation of Linear				
Arrays in Memory, Dynamically				
allocated arrays.				
Abstract Data Type, Array Operations:				
Traversing, inserting, deleting,				
searching, and sorting,				
Array ADT : Multidimensional Arrays,				
Polynomials and Sparse Matrices.				
Strings: Basic Terminology, Storing, Operations and Pattern Matching				
algorithms. Programming Examples.				
UNIT-II				
Stacks: D efinition, Stack Operations,	8			
Stack ADT, Array Representation of	Hrs			
Stacks, Stacks using Dynamic Arrays,				
Stack Applications: Polish notation,				
Infix to postfix conversion,				
evaluation of postfix expression.				
Recursion - GCD , Tower of Hanoi.				
Queues: Definition, Array				
Representation, Queue Operations,				

Queue	ADT,	Circular	Queues,	
Circula	r queues	using	Dynamic	
arrays,	Dequeues ,	, Priority	Queues.	
Programming Examples.				

UNIT-III

Linked Lists: **Definition**, 8 Hrs **Representation of linked** lists in Memory, Memory allocation; Garbage **Collection.** Linked list operations: Traversing, Searching, Insertion, and Doubly Linked **Deletion**. lists, Circular linked lists, and header linked lists. Linked Stacks and **Queues. Applications of Linked lists -Polynomials**. Programming Examples

UNIT-IV

Trees: Terminology, Binary Trees,					
Properties of Binary trees, Array and	Hrs				
linked Representation of Binary					
Trees, Binary Tree Traversals -					
Inorder, postorder, preorder;					
Additional Binary tree operations.					
Threaded binary trees, Binary Search					
Trees – Definition, Insertion, Deletion,					
Traversal, Searching, Application of					
Trees-Evaluation of Expression, AVL					
Trees, Splay Trees, B-Tree,					
Programming Examples					
UNIT-Y	<u> </u>				
Graphs: Definitions, Terminologies,	8				

Adjacency

Matrix

and

Hrs

List

RepresentationofGraphs,ElementaryGraphoperations,Traversalmethods:BreadthSearchandDepthFirstSearch,Topological Sort.

Sorting and Searching: Quick sort, Insertion Sort, Radix sort, Merge Sort, Address Calculation Sort.

LABORATORY EXPERIMENTS

1.A courier company has number of items to b lelivered to its intended customers through it alesman.

The salesman visits the following cities t leliver the respective items. Write a C program,

S.No	Cities	Number
		of items
1	Agra	25
2	Chennai	50
З	Kolkata	59
4	Mumbai	72
5	Delhi	12

*To display name of cities where salesman ha elivered maximum and minimum number o ems

*To search the number of items to be delivere f a user supplied city.

2. Implement Knuth-Morris- Pratt pattern matching algorithm using C program.

3. Design, Develop and Implement a menu driven Program in C with the listed operations for the data structure which follows Last In First Out (LIFO) order. (Use Array Implementation of specified DS with maximum size MAX).

a **Push an Element**

b. Pop an Element

c. Demonstrate how it can be used to check Palindrome

d. Demonstrate Overflow and Underflow situations

e. Display the status

f. Exit

Support the program with appropriate functions for each of the above operations

4.Design, Develop and Implement a Program in C for converting an Infix Expression to Postfix Expression. Program should support for both parenthesized and free parenthesized expressions with the operators: +, -, *, /, % (Remainder), ^ (Power) and alphanumeric operands.

5. Design, Develop and Implement a menu driven Program in C for the following operations on Ring Buffer of Integers (Use Array Implementation)

a Insert an Element on to Ring Buffer

b. Delete an Element from Ring Buffer

a Demonstrate Overflow and Underflow situations on Ring Buffer

d Display the status of Ring Buffer

e. **Exit**

Support the program with appropriate functions for each of the above operations

6. Design, Develop and Implement a menu

driven Program in C for the following operations on Singly Linked List (SLL) of Student Data with the fields: USN, Name, Programme, Sem, PhNo

a Create a SLL of N Students Data by using front insertion

b. Display the status of SLL and count the number of nodes in it

c Perform Insertion / Deletion at End of SLL d. Perform Insertion / Deletion at Front of SLL

e. Exit

7. Design, Develop and Implement a menu driven Program in C for the following operations on Doubly Linked List (DLL) of Employee Data with the fields: SSN, Name, Dept, Designation, Sal, PhNo.

a Create a DLL of N Employees Data by using end insertion.

b. Display the status of DLL and count the number of nodes in it.

C Perform Insertion and Deletion at End of DLL.

d Perform Insertion and Deletion at Front of DLL.

e Demonstrate how this DLL can be used as Double Ended Queue.

f. **Exit**

8. Design, Develop and Implement a menu driven C Program for the following operations on Binary Search Tree (BST) of Integers.

- a) **Create a BST of N Integers: 6, 9, 5, 2, 8, 15, 24, 14, 7, 8, 5, 2.**
- b) Traverse the BST recursively in inorder, preorder & postorder

Search the BST for a given element (KEY) and report the appropriate message

9. Design, Develop and Implement a Program in C for the following operations on Graph(G) of Cities

a. Create a Graph of N cities using Adjacency Matrix.

b. Print all the nodes reachable from a given starting node in a digraph using DFS/BFS method

10. Develop a C program to sort a given set of n integer elements using Quick Sort method. Run the program for varied values of n and show the results of each iteration.

11. Given a File of N employee records with a K of Keys(4-digit) which uniquely set determine the records in file F. Assume that file F is maintained in memory by a Hash Table(HT) of m memory locations with L as the set of memory addresses (2- digit) of locations in HT. Let the keys in K and addresses in L are Integers. Design and develop a Program in C that uses Hash function H: K →L as H(K)=K mod m (remainder method), and implement hashing technique to map a given key K to the address space L. Resolve the collision (if any) using linear probing.

Any 10 experiments to be conducted

Course Outcomes: After completing the course, the students will be able to CO1 Analyze and Compare various linear

	data structures.		
CO2	Code, debug and demonstrate the working nature of different types of data structures and their applications		
CO3	Implement, analyse and evaluate the searching and sorting algorithms.		
CO4	Choose the appropriate data structure for solving real world problems.		

Re	Reference Books				
1.	A M Tenenbaum, Data Structures using C, PHI, 1989				
2.	Robert Kruse, Data Structures and Program Design in C, 2nd Ed, PHI, 1996.				
З.	Choose the appropriate data structure for solving real world problems.				

CIE is executed by way of quizzes(Q), tests(T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Laboratory- 50 Marks

The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are awarded 10 marks. Total marks for the laboratory is 50.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level

Semester:III		
ANALOG AND DIGITAL ELECTRONICS		
& LAB		
(Theory and Practice)		
Course Code: CIE		

M	VJ21CG35	Marks:50+50	
C	Credits: L:T:P: SEE Marks:		
3:	0:1	50+50	
H	ours:40 L+26 P	SEE	
		Duration :	
		03+03 Hours	
	ourse Learning Objec ill be able to		
1	Analyze the working of oscillators and use of regulators.		
2	Make use of simplifying techniques in the design of combinational circuits.		
з	Illustrate combinat digital circuits.	ional and sequential	
4	Demonstrate the u design registers and	use of flipflops and counters.	
5	Design and test A Digital-to-Analog cor	Analog-to-Digital and nversion techniques.	

UNIT-I	
Prerequisites : Basic analog Circuits	8
Metal Oxide Semiconductor Field	Hrs
Effect transistor(MOSFET): Structure	
and I-V characteristics, MOSFET as a	
switch, MOSFET as an amplifier,	
CMOS and its applications.	
Oscillators: Basic working and	
applications of RC Phase shift	
oscillator, Wien Bridge oscillator, LC	
oscillator, Colpitt oscillator, Crystal	
Oscillator.	
Linear Power Supplies: Constituents of a Linear Power Supply, Designing	
Mains Transformer, Linear IC voltage	
regulators, Regulated Power Supply Parameters.	
UNIT-II	1

Digital Electronic **Prerequisites**: 8 Hrs **Fundamentals** Karnaugh maps: Minimum forms of switching functions, two and three variable Karnaugh maps, four variable **Quine-McClusky** karnaugh maps, **Method**: determination of prime implicants, The prime implicant chart, method, simplification petricks of specified incompletely functions, simplification using map-entered variables

UNIT-III

Combinational Circuits: Multiplexer, S Decoders, Adders, Subtractors, BCD arithmetic, carry look ahead adder, serial adder, ALU-Design and popular MSI chips, digital comparator, parity checker/generator, code converters, priority encoders, decoders/drivers for display devices.

UNIT-IV

Flip-Flops and Registers:	8
Flip Flops: S-R,J-K,D and T flip	Hrs
flops,Edge-triggered JK FLIP-FLOPs	
Registers: Types of Registers, Serial In	
- Serial Out, Serial In - Parallel out,	
Parallel In - Serial Out, Parallel In -	
Parallel Out, Universal Shift Register,	
Applications of Shift Registers.	
Counters: Asynchronous Counters,	
Decoding Gates, Synchronous	

UNIT-YUNIT-YD/A Conversion and A/D Conversion:SDigital to analog converters: weighted resistor/converter, R-2R Ladder D/ASConverter, specifications for D/AD/Aconverters, examples of D/A converter ICs, sample and hold circuit.AAnalog to digital converters: quantization and encoding, parallel comparator A/D converter, successive approximation A/D converter, counting A/D converter using voltage to frequency and voltage to time conversion, specifications of A/D	Counters, Changing the Counter	
UNIT-VUNIT-VD/A Conversion and A/D Conversion:SDigital to analog converters: weightedFresistor/converter, R-2R Ladder D/AConverter, specifications for D/Aconverter, specifications for D/AConverters, examples of D/A converterICs, sample and hold circuit.Analog to digital converters:quantization and encoding, parallelcomparator A/D converter, successiveapproximation A/D converter,counting A/D converter using voltageto frequency and voltage to timeconverters, example of A/D Converter	Modulus, Decade Counters,	
D/A Conversion and A/D Conversion:SDigital to analog converters: weightedHrsresistor/converter, R-2R Ladder D/Aconverter, specifications for D/Aconverter, specifications for D/Aconverters, examples of D/A converterICs, sample and hold circuit.Analog to digital converters:quantization and encoding, parallelconverter, successiveapproximation A/D converter, dual slope A/Dconverter, A/D converter using voltageto frequency and voltage to timeconverters, example of A/D Converter	Applications of Counters.	
Digital to analog converters: weightedHrsresistor/converter, R-2R Ladder D/Aconverter, specifications for D/Aconverters, examples of D/A converterICs, sample and hold circuit.Analog to digital converters:quantization and encoding, parallelcomparator A/D converter, successiveapproximation A/D converter,converter, A/D converter using voltageto frequency and voltage to timeconversion, specifications of A/Dconverters, example of A/D Converter	UNIT-V	
Digital to analog converters: weighted resistor/converter, R-2R Ladder D/A converter, specifications for D/A converters, examples of D/A converter ICs, sample and hold circuit. Analog to digital converters: quantization and encoding, parallel comparator A/D converter, successive approximation A/D converter, counting A/D converter, dual slope A/D converter, A/D converter using voltage to frequency and voltage to time conversion, specifications of A/D converters, example of A/D Converter	D/A Conversion and A/D Conversion:	
converter, specifications for D/A converters, examples of D/A converter ICs, sample and hold circuit. Analog to digital converters: quantization and encoding, parallel comparator A/D converter, successive approximation A/D converter, counting A/D converter, dual slope A/D converter, A/D converter using voltage to frequency and voltage to time conversion, specifications of A/D converters, example of A/D Converter	Digital to analog converters: weighted	Hrs
converters, examples of D/A converter ICs, sample and hold circuit. Analog to digital converters: quantization and encoding, parallel comparator A/D converter, successive approximation A/D converter, counting A/D converter, dual slope A/D converter, A/D converter using voltage to frequency and voltage to time conversion, specifications of A/D converters, example of A/D Converter	resistor/converter, R-2R Ladder D/A	
ICs, sample and hold circuit. Analog to digital converters: quantization and encoding, parallel comparator A/D converter, successive approximation A/D converter, counting A/D converter, dual slope A/D converter, A/D converter using voltage to frequency and voltage to time conversion, specifications of A/D converters, example of A/D Converter	converter, specifications for D/A	
Analog to digital converters: quantization and encoding, parallel comparator A/D converter, successive approximation A/D converter, counting A/D converter, dual slope A/D converter, A/D converter using voltage to frequency and voltage to time conversion, specifications of A/D converters, example of A/D Converter	converters, examples of \mathbf{D}/\mathbf{A} converter	
quantization and encoding, parallel comparator A/D converter, successive approximation A/D converter, counting A/D converter, dual slope A/D converter, A/D converter using voltage to frequency and voltage to time conversion, specifications of A/D converters, example of A/D Converter	ICs, sample and hold circuit.	
comparator A/D converter, successive approximation A/D converter, counting A/D converter, dual slope A/D converter, A/D converter using voltage to frequency and voltage to time conversion, specifications of A/D converters, example of A/D Converter	Analog to digital converters:	
approximation A/D converter, counting A/D converter, dual slope A/D converter, A/D converter using voltage to frequency and voltage to time conversion, specifications of A/D converters, example of A/D Converter	quantization and encoding, parallel	
counting A/D converter, dual slope A/D converter, A/D converter using voltage to frequency and voltage to time conversion, specifications of A/D converters, example of A/D Converter	comparator A/D converter, successive	
converter, A/D converter using voltage to frequency and voltage to time conversion, specifications of A/D converters, example of A/D Converter	approximation A/D converter,	
to frequency and voltage to time conversion, specifications of A/D converters, example of A/D Converter	counting A/D converter, dual slope A/D	
conversion, specifications of A/D converters, example of A/D Converter	converter, A/D converter using voltage	
converters, example of A/D Converter	to frequency and voltage to time	
	conversion, specifications of A/D	
ICs	converters, example of A/D Converter	
	ICs	

LABORATORY EXPERIMENTS

1. Study of transistor phase shift oscillator and observe the effect of variation in **R & C** on oscillator frequency and compare with theoretical value.

2. Design and test IC 723 voltage regulator

3. Given a 4-variable logic expression, simplify it using Entered Variable Map and realize the simplified logic expression using **8:1** multiplexer IC.

4. Design and implement a faster way3 to add binary numbers using carry look ahead adders.

5. a) Realization and implementation of 2-bit

comparator using logic gates.

b) Implementation of 4-bit magnitude

comparator using IC 7485.

6. To design and construct basic flip-flops R-S ,J-K,J-K Master slave flip-flops using gates and verify their truth table

7. Implementation of SISO, SIPO, PISO and PIPO shift registers using Flip-flops

8. Design and implementation of 3-bit synchronous up/down counter

9. Design and implement a ring counter and Johnson counter using 4-bit shift register and demonstrate its working.

10. Design and implement a mod-n (n<8) synchronous up counter using J-K Flip-Flop ICs and demonstrate its working.

11. Design and implement an asynchronous counter using decade counter IC to count up from **0** to n (n**=9**) and demonstrate on 7-segment display (using IC-7447).

12. Design 4 bit r-2r ladder DAC using opamp.

Any 12 experiments to be conducted

	Course Outcomes: After completing the course, the students will be able to			
CO1	Design and analyze analog circuits using transistors,power supply, MOSFETS, regulator IC and opamp			
CO2	Simplify digital circuits using Karnaugh Map , POS and Quine- McClusky Methods			
CO3	Explain construction and working of data processing circuits			
CO4	Understanding the various types of latches and flip flops and building the registers and counters using flip flops.			
CO 5	Explain the basic principles of A/D and D/A conversion circuits and develop the same.			

Reference Books					
1.	Anil	K	Maini,	Varsha	Agarwal,
	Electr	onic	Devices	and Circu	uits, Wiley,

	2012.
2.	Charles H Roth and Larry L Kinney,
	Fundamentals of Logic design, Cengage
	Learning,2019.
З.	Donald P Leach, Albert Paul Malvino &
	Goutam Saha, Digital Principles and
	Applications, 8th Edition, Tata McGraw
	Hill, 2015.
4.	M. Morris Mani, Digital Design, 4th
	Edition, Pearson Prentice Hall, 2008.

CIE is executed by way of quizzes (Q), tests (T)and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The for the self -study are 20 marks (2 presentations are be held for 10 marks each). The marks obtained in test, quiz and self studies are added to get marks out of 100 and report CIE for 50 marks.

Laboratory- 50 Marks

The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are awarded 10 marks. Total marks for the laboratory is 50.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

CO-PO Mapping								
CO/PO	P01	PO2	PO3	P04	P05	P06	P07	POS
CO1	3	3	2	2	-	-	-	-
CO2	3	3	2	2	-	-	-	-
CO3	3	3	3	2	-	-	-	-
CO4	3	3	2	2	-	-	-	-
CO 5	3	3	3	2	-	-	-	-

High-3, Medium-2, Low-1

		Semester: III			
	А	dditional Mathema	atics-I		
	(Common to all bran	ches)		
C	ourse	MVJ21MATDIP			
C	ode:		Marks:50		
C	redits:	L:T:P:S: 4:0:0:0	SEE Marks: 50		
H	ours:	40L	SEE		
			Duration: 3 Hrs		
	ourse Lea ill be able	rning Objectives: 7 to	The students		
	To far	niliarize the ir	nportant and		
1	introductory concepts of Differential calculus				
2	Aims to provide essential concepts integral calculus				
З	3 To gain knowledge of vector differentiation				
4	To learn basic study of probability		ability		
5	Ordinary differential equations of firs order and analyze the engineering problems.				

UNIT-I

Differential calculus: Recapitulation 8 -nth Hrs of successive differentiation derivative -Leibnitz theorem (without proof) and Problems, Polar curves angle between the radius vector and tangent, angle between two curves, pedal equation, Taylor's and Maclaurin's series expansions-Illustrative examples. Video Link: 1. http://nptel.ac.in/courses.php?discipli

neID=111 UNIT-II	
Integral Calculus: Statement of reduction formulae for the integrals of $\sin^n(x)$, $\cos^n(x)$, $\sin^n(x)\cos^n(n)$ and evaluation of these integrals with standard limits-problems. Double and triple integrals-Simple examples.	
Video Link: 1. <u>http://nptel.ac.in/courses.php?discipli</u> ne ID=111	
UNIT-III	
Vector Differentiation: Scalar and Vector point functions, Gradient, Divergence, Curl, Solenoidal and Irrotational vector fields.	8Hrs
Yector identities - $div(\phi \vec{A})$, $curl(\phi \vec{A})$, $curl(grad(\phi))$, $div(curl \vec{A})$. Yideo Link: 1 .	
http://nptel.ac.in/courses.php?discipli	
<u>neID=111</u>	
UNIT-IV	
Probability: Basic terminology, Sample space and events. Axioms of probability. Conditional probability – illustrative examples. Bayes theorem- examples. Video Link: 1.	8Hrs
http://nptel.ac.in/courses.php?discipli neID=111	
UNIT-Y	
Ordinary Differential Equations of First Order: Introduction – Formation of differential equation, solutions of first order and first degree differential equations: variable separable form, homogeneous, exact, linear differential equations. Video Link:	SHrs

http://nptel.ac.in/courses.php?disci plineID=111

	se Outcomes: After completing the se, the students will be able to
CO1	
CO2	Apply the concept of integration and variables to evaluate multiple integrals and their usage in computing the area and volumes.
CO3	Illustrate the applications of multivariate calculus to understand the solenoidal and irrotational vectors and also exhibit the inter dependence of line, surface and volume integrals.
CO4	Understand the basic Concepts of Probability
CO 5	Recognize and solve first-order ordinary differential equations occurring in different branches of engineering.

Reference Books

1.	B.S. Grewal, Higher Engineering
	Mathematics, Khanna Publishers, 43 rd
	Edition, 2013, .
2.	G. B. Gururajachar, Calculus and Linear
	Algebra, Academic Excellent Series
	Publication, 2018-19
З.	Chandrashekar K. S, Engineering
	Mathematics-I, Sudha Publications, 2010.

Continuous Internal Evaluation (CIE): Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes

1.

effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-F	PO Ma	pping	
CO/PO	P01	PO2	PO3	P04		P06		
CO1	3	3	Ο	2	Ο	Ο	Ο	0
CO2	З	3	Ο	2	Ο	Ο	Ο	0
CO3	З	3	Ο	3	Ο	Ο	Ο	0
CO4	2	2	Ο	3	Ο	Ο	Ο	0
C05	2	2	Ο	2	Ο	Ο	Ο	0

High-3, Medium-2, Low-1

		Semester: IV	
С	omplex Var	iables and Numer (Theory)	ical Methods
C	ourse Code	MVJ21MA41A	CIE Marks: 50
C	redits	L:T:P:: 2:2:0	SEE Marks: 50
H	ours	20L+20T	SEE Duration: 3 Hrs.
	ourse Learni ill be able to	ng Objectives: Th	e students
1		l the concepts nd transformatio	-

	Engineering Problems.	
2	Understand the concepts of com- integration, Poles and Residuals in stability analysis of engined problems.	the
3	Apply the concept to find extrema functionals.	al of
4	Solve initial value problems u appropriate numerical methods.	
5	Students learn to obtain solution ordinary and partial differe equations numerically.	
	UNIT-I	
Co Ca Ca Co Eo fu	omplex variables - I:Functions ofmplex variables, Analytic function,auchy-RiemannEquationsartesianandpolarcoordinates,onsequencesofCauchy-Riemannquations,Constructionofanalyticnctions(UsingMilne-Thomsonethod).	
	ransformations: Bilinear	•
	ransformation, Conformal	8 Hrs
	ansformation, Discussion of the ansformations $w = z^2$, $w = e^z$ and $w = z + \frac{a}{2}$, $(z \neq 0)$.	
ura	ansion intervals $w = z$, $w = e$ and $w = z + -, (z \neq 0)$.	
	If Study topic : H armonic function Id its properties	
W	eb Link and Video Lectures:	
ht	tps://nptel.ac.in/courses/111103070	
C	UNIT-IIomplexvariables-II:Complex	
	-	
	tegration - Cauchy theorem, Cauchy's	
	tegral Theorem-Problems, Taylor &	6
La	aurent series- Problems,	8 Hrs
Si	ngularities, Types of Singularities,	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Po	oles, Residues-definitions, Cauchy	
re	sidue theorem - Problems.	

Self Study topic: Consequences of	
Cauchy's theorem, Cauchy residue	
theorem.	
Web Link and Video Lectures:	
https://nptel.ac.in/courses/111103070	
UNIT-III	
Numerical methods-I:	
Numerical solution of Ordinary	
Differential Equations of first order	
and first degree, Taylor's series	
method, Modified Euler's method,	8
Runge-Kutta method of fourth order,	Hrs
Milne's and Adam-Bashforth Predictor	
and Corrector method.	
Web Link and Video Lectures:	
https://nptel.ac.in/courses/127106019	
UNIT-IY	
Numerical methods-II: Numerical	
solution of Ordinary Differential	
Equations of second order: Runge-	
Equations of second order: Runge-	
Equations of second order: Runge- Kutta method of fourth order, Milne's	
Equations of second order: Runge- Kutta method of fourth order, Milne's Predictor and Corrector method.	8
Equations of second order: Runge- Kutta method of fourth order, Milne's Predictor and Corrector method. Calculus of variations: Variation of	8 Hrs
Equations of second order: Runge- Kutta method of fourth order, Milne's Predictor and Corrector method. Calculus of variations: Variation of function and Functional, variational	_
Equations of second order: Runge- Kutta method of fourth order, Milne's Predictor and Corrector method. Calculus of variations: Variation of function and Functional, variational problems, Euler's equation, Geodesics.	_
Equations of second order: Runge- Kutta method of fourth order, Milne's Predictor and Corrector method. Calculus of variations: Variation of function and Functional, variational problems, Euler's equation, Geodesics. Applications : Hanging Chain problem.	_
Equations of second order: Runge- Kutta method of fourth order, Milne's Predictor and Corrector method. Calculus of variations: Variation of function and Functional, variational problems, Euler's equation, Geodesics. Applications : Hanging Chain problem. Self Study topic : Adam-Bashforth	_
Equations of second order: Runge- Kutta method of fourth order, Milne's Predictor and Corrector method. Calculus of variations: Variation of function and Functional, variational problems, Euler's equation, Geodesics. Applications : Hanging Chain problem. Self Study topic : Adam-Bashforth Predictor and Corrector method. Web Link and Video Lectures: https://nptel.ac.in/courses/127106019	_
Equations of second order: Runge- Kutta method of fourth order, Milne's Predictor and Corrector method. Calculus of variations: Variation of function and Functional, variational problems, Euler's equation, Geodesics. Applications : Hanging Chain problem. Self Study topic : Adam-Bashforth Predictor and Corrector method. Web Link and Video Lectures: https://nptel.ac.in/courses/127106019 https://nptel.ac.in/courses/111107103	_
Equations of second order: Runge- Kutta method of fourth order, Milne's Predictor and Corrector method. Calculus of variations: Variation of function and Functional, variational problems, Euler's equation, Geodesics. Applications : Hanging Chain problem. Self Study topic : Adam-Bashforth Predictor and Corrector method. Web Link and Video Lectures: https://nptel.ac.in/courses/127106019	_

solution of Partial Differential	Hrs
Equations: Introduction, Finite	
difference approximations to	
derivatives, Explicit methods-	
Numerical Solution of Laplace	
Equation, Numerical solution of one-	
dimensional heat equation by Bender -	
Schmidt's method and by Crank-	
Nicholson Method, Implicit method-	
Numerical solution of one-dimensional	
wave equation.	
Self Study topic: Classification of	
Partial differential equations,	
Parabolic, Elliptic and Hyperbolic	
equations.	

Web Link and Video Lectures:

https://nptel.ac.in/courses/111107063

Course Outcomes: After completing the course, the students will be able to

CO1	State and prove Cauchy - Riemann equation with its consequences and
	demonstrate Con-formal Transformation.
CO2	Illustrate Complex Integration using Cauchy's Integral theorem, Cauchy's
	Integral formula and Cauchy's Residue theorem.
CO3	Identify appropriate numerical methods to solve ODE.
CO4	Determine the extremals of functionals and solve the simple problems of the calculus of variations.
CO 5	Choose appropriate numerical methods to solve Partial Differential Equations.

Re	eference Books
1.	B.S. Grewal, "Higher Engineering Mathematics" Khanna Publishers, 43 rd Edition, 2013.
2.	Erwin Kreyszig, "Advanced Engineering Mathematics", Wiley-India publishers, 10th edition,2014.
З.	Ramana B. V., "Higher Engineering Mathematics", Tata Mc Graw-Hill, 2006.
4.	Bali N. P. & Manish Goyal, "A text book ofEngineeringMathematics",LaxmiPublications, Sth Edition.

CIE is executed by way of quizzes (Q), tests (T) assignments. A minimum of three and quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to **SO** marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of **CO**s and **B**loom's taxonomy level.

				CO)-P(app	ing				
CO	P	P	P	P	P	P	P	P	P	P	P	P
/P	Ο	Ο	Ο	Ο	Ο	Ο	Ο	Ο	Ο	01	Ο	01
Ο	1	2	З	4	5	6	7	8	9	Ο	11	2
СО	З	З	Ο	З	0	0	0	0	Ο	0	1	1
1	3											
СО	-	З	Ο	З	0	0	0	0	0	0	1	Ο
2	3											
CO		2	Ο	2	0	Ο	0	0	Ο	Ο	Ο	Ο
З	3											
CO		3	Ο	З	0	Ο	0	Ο	Ο	Ο	Ο	1
4	3											
СО		З	Ο	З	Ο	Ο	Ο	Ο	Ο	0	1	Ο
5	3											

	Sem	ester: IV
M		LER AND EMBEDDED STEMS
		(Theory)
C	ourse Code:	CIE
M	VJ21CG42	Marks:100
	redits: L:T:P:S:	SEE Marks:
3:	0:0:0	100
H	ours: 40L+26T	SEE
		Duration: 3
		Hrs
	ourse Learning Ob ill be able to	jectives: The students
1	system, basic	amentals of ARM based hardware components, s and attributes of an
2	Program ARM various instruction	controller using the ons.
3	Explain the fund Interrupt Han	lamentals of Exception, dling and Memory

	Management Unit of ARM Controller.								
4	Identify the Embedded System Design applications.								
5	Explain the real time operating system for the embedded system design.								

UNIT-I	
Microprocessors versus	8
Microcontrollers, ARM Embedded	Hrs
Systems: The RISC design philosophy,	
The ARM Design Philosophy,	
Embedded System Hardware,	
Embedded System Software.	
ARM Processor Fundamentals:	
Registers, Current Program Status	
Register, Pipeline, Exceptions,	
Interrupts, and the Vector Table, Core	
Extensions	
UNIT-II	
Introduction to the ARM Instruction	8
	Hrs
Set : Data Processing Instructions ,	
Programme Instructions, Software	
Interrupt Instructions, Program	
Status Register Instructions,	
Coprocessor Instructions, Loading	
Constants	
ARM programming using Assembly	
language: Writing Assembly code,	
Profiling and cycle counting,	
instruction scheduling	
UNIT-III	1
Exception, Interrupt Handling :	8
Exception handling, Interrupts,	Hrs
Interrupt handling Schemes	
Memory Management Unit : The	
Memory Hierarchy and Cache	
Memory, Cache Architecture, Cache	
Policy, Moving from MPU to an MMU,	

UNIT-IV	
Embedded System Components:	8
Embedded Vs General computing	Hr
system, History of embedded systems,	
Classification of Embedded systems,	
Major applications areas of embedded	
systems, purpose of embedded systems	
Core of an Embedded System including all types of processor/controller,	
Memory, Sensors, Actuators, LED, 7	
segment LED display, stepper motor,	
Keyboard, Push button switch,	
Communication Interface (on board	
and external types), Embedded	
firmware, Other system components.	
UNIT-Y	L
Real Time Operating System (RTOS)	8
based Embedded System Design:	Ħr
Operating System basics, Types of	
operating systems, Task, process and	
threads (Only POSIX Threads with an	
example program), Thread pre-	
emption, Multiprocessing and	
Multitasking, Task Communication	
(without any program), Task	
synchronization issues – Racing and Deadlock, Concept of Binary and	
counting semaphores (Mutex example	
without any program), How to choose	
an RTOS	

	se Outcomes: After completing the se, the students will be able to
CO1	Describe the architectural features and instructions of ARM microcontroller
CO2	Develop Assembly Programs in ARM for Embedded applications.
CO3	Describe the fundamentals of

	Exception, Interrupt Handling and Memory Management Unit of ARM Controller
CO4	Interface external devices and I/O with ARM microcontroller.
C05	Demonstrate the need of real time operating system for embedded system applications

Reference Books

1.	Andrew N Sloss, Dominic Symes and Chris Wright, ARM system developer's guide, Elsevier, Morgan Kaufman publishers, 2008.
2.	Shibu K V, "Introduction to Embedded Systems", Tata McGraw Hill Education, Private Limited, 2nd Edition.
3.	Raghunandan.G.H,Microcontroller(ARM) and Embedded System, Cengagelearning Publication, 2019
4.	The Insider's Guide to the ARM7 Based Microcontrollers, Hitex Ltd., 1st edition, 2005.

Continuous Internal Evaluation (CIE): Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T)and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional guizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mappir											
CO/PO	P01	PO2	PO3	PO4	PO5	P06	P07	POS			
CO1	3	1	2	1	-	-	-	-			
CO2	3	2	1	3	3	2	-	-			
CO3	3	2	1	3	-	2	-	-			
CO4	3	3	2	3	3	2	-	-			
CO5	3	2	3	3	3	2	-	-			

	Semes	ter: IV			
	COMPUTER ORG				
	ARCHITI				
-	(The				
	ourse Code: VJ21CG43	CIE Marks:100			
	redits: L:T:P:S:	SEE Marks:			
	0:0:0	100			
	ours: 40L	SEE			
		Duration: 3			
		Hrs			
	ourse Learning Objec ill be able to	tives: The students			
	Learn the basic str	ucture and operations			
1	of a computer.				
2	Learn the arithmetic	c and logic unit.			
	Learn the dif	fferent ways of			
	communication w	ith I/O devices &			
3	memories, memory hierarchies, cache				
	memories and virtual memories.				
	Understand & in	nplement arithmetic			
4	process.				
	Understand the pro	cessor and pipelining			
5	concepts.				
	Understand paralle	elism and multi-core			
6	processors.				

UNIT-I

Basic Structure of Computers: Basic S Operational Concepts, Bus Structures, Performance –Processor Clock, Basic Performance Equation, Clock Rate, Performance Measurement.

Machine Instructions and Programs: Location and Addresses. Memory **Memory Operations, Instructions and** Instruction Sequencing, Addressing Modes, Assembly Language, Basic Input and Output Operations, Stacks and Additional Queues. Subroutines, Instructions. Encoding of Machine Instructions.

Arithmetic: Numbers, Arithmetic **Operations and Characters, Addition and** Subtraction of Signed Numbers, Design Adders. Multiplication of Fast of Positive Numbers, Signed Operand **Multiplication**, Multiplication, Fast **Integer Division.**

Video

link

:

https://nptel.ac.in/courses/106105163/ UNIT-II

Input/output **Organization:** Accessing 8 H **I/O** Interrupts Devices, — Interrupt rs Direct Hardware. Memory Access, **Buses, Interface Circuits, Standard I/O** Interfaces – PCI Bus, SCSI Bus, USB Videolink:https://www.youtube.com/wa tch?v=RkAE4zE4uSE&list=PL13FD5F **00C21BBC0B&index=11** UNIT-III

Memory: Basic Concepts, Semiconductor	8
RAM Memories, Read Only Memories,	H rs
Speed, Size, and Cost, Cache Memories -	TB
Types of cache ,Cache miss management	
Mapping Functions, Replacement	
Algorithms, Performance	
Considerations,(ARM Cache and	
Pentium cache).	
Videolink:https://nptel.ac.in/courses/106105163/	
UNIT-IY Processor : A Basic MIPS	8
implementation – Building a Data path –	H
Control Implementation Scheme -	rs
Pipelining – Pipelined data path and	
control – Handling Data Hazards &	
Control Hazards - Exceptions.	
Video link:	
https://nptel.ac.in/courses/106106166/	
UNIT-Y	
Parallelism: Parallel processing	8
challenges -Flynn's classification -	H rs
SISD, MIMD, SIMD, SPMD, and Vector	
Architectures - Hardware	
multithreading – Multi-core processors	
and other Shared Memory	
Multiprocessors - Introduction to	
Graphics Processing Units, Clusters,	
Warehouse Scale Computers and other	
Message-Passing Multiprocessors.	
Video link: https://nptel.ac.in/courses/106102114/	

	Course Outcomes: After completing the course, the students will be able to					
CO1	Explain the basic organization of a computer system.					
CO2	Demonstrate functioning of different sub systems, such as processor, Input/output, and memory.					
CO3	Design and analyses simple arithmetic and logical units.					
CO4	Illustrate hardwired control and micro programmed control, pipelining, embedded and other Computing systems.					
CO5	Design and analyses of simple Parallelism and Multithread.					

1.	Carl	Hamacher,	Zvonko	Vranesic,				
	Safwa	atZaky, Compu	ater Organi	zation, 5th				
	Edition, Tata McGraw Hill, 2002. (Listed							
	topics only from Chapters 1, 2, 4, 5, and							
	6).							

- 2. David А. Patterson and John L. Hennessy, Computer Organization and The **Design**: Hardware/Software Fifth Interface. Edition, Morgan Kaufmann / Elsevier, 2014.(Listed topics only from Chapters 4and 6).
- **3.** John P. Hayes, Computer Architecture and Organization, Third Edition, Tata McGraw Hill, 2012.
- 4. John L. Hennessey and David A. Patterson, Computer Architecture – A Quantitative Approach, Morgan Kaufmann / Elsevier Publishers, Fifth Edition, 2012.

CIE is executed by way of quizzes (**Q**), tests (**T**) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for **50** marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping							
CO/PO	P01	PO2	PO3	PO4	P05	P06	P07	POS
CO1	1	2	1	1	1	-	-	-
CO2	2	2	1	1	1	-	-	-
CO3	1	2	2	1	1	-	-	-
CO4	2	2	2	1	2	-	-	-
C05	1	2	2	1	2	-	-	-

	Seme	ter: IV		
		AMMING AND LAB		
		d Practice)		
C	ourse Code:	CIE		
M	VJ21CG44	Marks:50+50		
Credits: L:T:P:		SEE Marks:		
3:	0:1	50+50		
H	ours:40 L+26 P	SEE		
		Duration:		
		03+03 Hours		
	ourse Learning Objection ill be able to	ctives: The students		
	Familiarize the	students with the		
1 fundamentals and programming bas Python Language				

UNIT-I

Introduction to Python: Features of	
python, Applications of python, Syntax,	Hrs
Comments, Indentations, Number	
types, Variables and Data Types,	
O perators, conditional statement,	
Loops in Python.	
Python List: Create Python List, Access Python List, Slicing a Python List, slicing and dicing, Reassigning a Python List (Mutable), Reassigning the whole Python list, Deleting list and elements, Multidimensional Lists, List Operations, Built-in List Functions.	
UNIT-II	

Python Tuple: Create a Python Tuple,	
Tuples Packing, Tuples Unpacking,	Hrs
Creating a tuple with a single item,	
Access Python Tuple, Slicing a Tuple,	
Deleting a Python Tuple, Reassigning	
Tuples, Tuple Functions Tuple	
Operations.	
Python Dictionary: Create a Dictionary, Dictionaries with mixed keys, Access a Python Dictionary, Delete Python Dictionary, In-Built Functions on a Python Dictionary, In- Built Methods on a Python Dictionary, Dictionary Operations.	
UNIT-III	
PythonFunction:User-DefinedFunctions in Python, Python Built-inFunctions,PythonLambda	8 Hrs
Expressions, Recursion Function, Range function.	
PythonMethod:IntroductiontoMethod,_init_(),SelfParameter,Functions vs Method,Magic MethodsUNIT-IV	
	0
Python Class: Introduction to Python Class, Defining a Python Class, Accessing Python Class Members Python Object Attributes Belonging to Python Class, Delete Python Class, Attribute, Inheritance, Multiple inheritance.	8 Hrs
UNIT-Y	
File Handling In Python: Read and	8
Write File, Open File, Close File, File	Hrs
Methods, Data Base connections.	
LABORATORY EXPERIMENTS	1

- 1. Write a Python program to encrypt the text using Caesar Cipher technique. Display the encrypted text. Prompt the user for input and the shift pattern.
- 2. Devise a Python program to implement the Rock-Paper-Scissor game.
- 3. Write a Python program to perform Jump Search for a given key and report success or failure. Prompt the user to enter the key and a list of numbers.
- 4. The celebrity problem is the problem of finding the celebrity among n people. A celebrity is someone who does not know anyone (including themselves) but is known by everyone. Write a Python program to solve the celebrity problem.
- 5. Write a Python program to construct a linked list. Prompt the user for input. Remove any duplicate numbers from the linked list.

6. Perform the following file operations

using Python

a) Traverse a path and display all the files and subdirectories in each level till the deepest level for a given path. Also, display the total number of files and subdirectories.

b) Read a file content and copy only the contents at odd lines into a new file.

7. Create a menu drive Python program with a dictionary for words and their meanings. Write functions to add a new entry (word: meaning), search for a particular word and retrieve meaning, given meaning find words with the same meaning, remove an entry, display all words sorted alphabetically.

8. Using Regular Expressions, develop a Python program to

a) Identify a word with a sequence of one upper case letter followed by lower case letters. b) Find all the patterns of "1(O+)1" in a given string.
c) Match a word containing 'z' followed by one or more o's.

Prompt the user for input.

9. Devise a Python program to implement the Hangman Game.

10. Write a Python program to print all the Disarium numbers between 1 and 100

Any 10 experiments to be conducted

Cour	Course Outcomes: After completing the					
cour	course, the students will be able to					
CO1	Understand data types (like character strings, integers, and real numbers) and the Operations that can be Applied to each data type.					
CO 2	Write programs that get input, perform calculations, and provide output (using Conditional logic, loops, Functions).					
CO3	Write well designed and well documented programs that are easily maintainable					
CO4	Analyze String Formatting Options.					
CO 5	Enjoy the art and science of computer files using python.					

Reference Books

5.	Michael T. Goodrich, Roberto Tamassia, Michael H. Goldwasser Data Structures and Algorithms in PythonJohn Wiley & Sons, Incorporated.				
6.	Frank Kane (2017)Hands-On Data Science and Python Machine Learning 1st Edition, Kindle Edition				
З.	Mark Smart,(2018), Introduction to Data Science with Python: Basics of Numpy and Pandas.				
4.	VK Jain, Data Science & Analytics, Khanna Book Publishing; edition (2018)				

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional guizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Laboratory- 50 Marks

The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are awarded 10 marks. Total marks for the laboratory is 50.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-PO Mapping				
CO/PO	P01	PO2	PO3	PO4	P05	P06	P07	POS	
CO1	3	3	2	2	-	-	-	-	
CO2	3	3	2	2	-	-	-	-	
CO3	3	3	3	2		-	-	-	
CO4	3	3	2	2	-	-	-	-	
CO5	3	3	3	2	-	-	-	-	
Lich-3	_	_							

	Semest	er:IV
	DESIGN AND A ALGORITH (Theory and	MS &LAB
	ourse Code: VJ21CG45	CIE Marks:50+50
	redits: L:T:P: 0:1	SEE Marks: 50+50
H	ours:40 L+26 P	SEE Duration: 03+03 Hours
	ourse Learning Object ill be able to	ives: The students
1	Identify the important interval asymptotic notation.	rtance of different
2	Determine the complexity of recursive and non-recursive algorithms.	
3	Compare the efficient techniques like backtracking etc.	cy of various design greedy method,
4	Apply appropriate mo problem.	ethod to solve a given

UNIT-I				
Basic	Concept	of	Algorithms:	
Introduc	ction-What	is an	Algorithm,	Hrs
Algorith	m Specif	<i>fication</i>	, Analysis	

Framework, Performance Analysis: Space complexity, Time complexity. **Asymptotic Notations: Big-Oh notation** (O), Omega notation (Ω), Theta notation **(Θ)**, and Little-oh notation **(0)**. Mathematical analysis of Non-**Recursive and recursive Algorithms** with Examples . Important Problem **Types. Fundamental Data Structures.**

UNIT-IISimple Design Techniques – BruteSforce :Selection sort, Bubble sort,HrsSequential Search and Brute-ForceString Matching , Exhaustive search –Traveling Salesman problem,Knapsack problem , AssignmentProblem.Distribute of Constant

Divide and Conquer: General method, Binary search, Recurrence equation for divide and conquer, Finding the maximum and minimum, Merge sort, Quick sort , Strassen's matrix multiplication , Advantages and Disadvantages of divide and conquer.

UNIT-III	
Decrease and Conquer approach:	8
Topological Sort, Decrease-by-a-	Hrs
Constant-Factor Algorithms: Josephus	
Problem.	
Greedy Method: General method, Coin	
Change Problem, Knapsack Problem,	
Job sequencing with deadlines.	

Minimum cost spanning trees: Prim's Algorithm, Kruskal's Algorithm. Single source shortest paths: Dijkstra's Algorithm. Huffman Trees and Codes.

UNIT-IV

Programming: General 8 Dynamic Hrs method with **Examples**, **Multistage** Graphs. Transitive Closure: Warshall's **Algorithm, All Pairs Shortest Paths:** Floyd's Algorithm, Optimal **Binary** Search Knapsack problem, Trees, **Bellman-Ford Algorithm**, Travelling Sales Person problem , Reliability design.

UNIT-V

Backtracking: General method, N-8 Hrs problem, Sum of subsets Queens problem, Graph coloring, Hamiltonian cycles **Programme** and **Bound: Assignment Problem, Travelling Sales** problem, O/1Person Knapsack problem.

LC Programme and Bound solution : FIFO Programme and Bound solution. NP-Complete and NP-Hard problems: Basic concepts, non-deterministic algorithms, P, NP, NP-Complete, and NP-Hard classes.

LABORATORY EXPERIMENTS

1.Create a Java class called Student with the following details as variables within it. (i) USN (ii) Name (iii) Branch (iv) Phone Write a Java program to create nStudent objects and print the USN, Name, Branch, and Phoneof these objects with suitable headings.

2.Write a Java program to read two integers a andb. Compute a/b and print, when b is not zero. Raise an exception when b is equal to zero.

3.Write a Java program that implements a multi-thread application that has three threads. First thread generates a random integer for every 1 second; second thread computes the square of the number and prints; third thread will print the value of cube of the number.

4.Sort a given set of n integer elements using Quick Sort method and compute its time complexity. Run the program for varied values of n> 5000 and record the time taken to sort. Plot a graph of the time taken versus non graph sheet. The elements can be read from a file or can be generated using the generator. Demonstrate random number using Java how the divide-and-conquer method works along with its time complexity analysis: worst case, average case and best case.

5.Sort a given set of n integer elements using Merge Sort method and compute its time complexity. Run the program for varied values of n> 5000, and record the time taken to sort. Plot a graph of the time taken versus non graph sheet. The elements can be read from a file or can be generated using the random number generator. Demonstrate using Java how the divide-and-conquer method works along with its time complexity analysis: worst case, average case and best case.

6. Implement in Java, the O/1 Knapsack

problem using (a) Dynamic Programming

method (b) Greedy method.

7. From a given vertex in a weighted connected graph, find shortest paths to other

vertices using Dijkstra's algorithm. Write

the program in Java.

8. Find Minimum Cost Spanning Tree of a given connected undirected graph using

Kruskal's algorithm. Use Union-Find algorithms in your program.

9.Find Minimum Cost Spanning Tree of a given connected undirected graph using Prim's algorithm.

10. Write Java programs to (a) Implement All-Pairs Shortest Paths problem using Floyd's algorithm. (b) Implement Travelling Sales Person problem using Dynamic programming.

11. Design and implement in Java to find all Hamiltonian Cycles in a connected undirected Graph G of n vertices using backtracking principle.

12. Design and implement in Java to find a subset of a given set S = {S1, S2,....,Sn}

of n positive integers whose SUM is equal to

a given positive integer d.

For example, if **S** ={1, 2, 5, 6, **S**} and d= 9, there are two solutions {1,2,6}and

 $\{1,8\}$. Display a suitable message, if the given

problem instance doesn't have a solution.

Any 10 experiments to be conducted

	se Outcomes: After completing the se, the students will be able to	
CO1	Describe the need of algorithm and the notations used in design analysis.	
CO 2	Compare the efficiency of brute force, divide and conquer techniques for problem solving.	

CO3	Ability to apply greedy algorithms, hashing and string matching algorithms.		
CO4	Ability to design efficient algorithms using various design techniques.		
CO 5	Ability to apply the knowledge of complexity classes P , NP , and NP Complete and prove certain problems are NP-C omplete.		

Reference Books

	nany Levitin:, 2rd	
Introduction to Alg Cormen, Charles E.	orithms, Thomas H. Leiserson, Ronal L.	
Design and Analys Sridhar, Oxford (Hi		
Ĩ	nj Sahni and	
	of Algorithms, An Edition, 2009. Pears Introduction to Algo Cormen, Charles E. Rivest, Clifford Stein Design and Analys Sridhar, Oxford (Hig Computer Algor Horowitz, Satra Rajasekaran, 2nd	

Continuous Internal Evaluation (CIE): Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional guizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Laboratory- 50 Marks

The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are awarded 10 marks. Total marks for the laboratory is 50.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

		Semester: IV		
	Ad	ditional Mathematic	cs-II	
	(C c	ommon to all branch	nes)	
Co	ourse	MYJ21MATDIP2	CIE	
	ode:		Marks:50	
Credits:		L:T:P:S: 4:0:0:0	SEE Marks: 50	
H	ours:	40L	SEE	
			Duration: 3	
			Hrs	
	ill be able t			
1	To familiarize the important concepts of linear algebra.			
2		provide essenti al calculus, beta	-	
З	Introductoryconceptsofthree-dimensionalgeometryalongwithmethods to solve them.			
4	Linear di	fferential equations	5	
5	Formatio	n of partial	differential	
	equations			

UNIT-I	
Linear Algebra: Introduction - Rank of matrix by elementary row operations - Echelon form. Consistency of system of linear equations - Gauss elimination method. Eigen values and eigen vectors of a square matrix. Diagonalization of a	
square matrix of order two. Self study: Application of Cayley- Hamilton theorem (without proof) to compute the inverse of a matrix- Examples.	
Video Link: 1. <u>http://nptel.ac.in/courses.php?discipli</u> neID=111	
UNIT-II	
Differential calculus: Indeterminate forms: L-Hospital rule (without proof), Total derivatives, and	SHrs

Composite functions. Maxima and	
minima for a function of two	
variables.	
Beta and Gamma functions: Beta and	
Gamma functions, Relation between	
Beta and Gamma function-simple	
problems.	
Self study:	
Curve tracing.	
Video Link:	
1.	
http://nptel.ac.in/courses.php?discipli	
<u>neID=111</u>	
UNIT-III	
Analytical solid geometry :	
Introduction –Directional cosine and	SHrs
Directional ratio of a line, Equation of	
line in space- different forms, Angle	
between two line, shortest distance	
between two line, plane and equation	
of plane in different forms and	
problems.	
Self study:	
Volume	
tetrahedron.	
Video Link:	
1.	
http://nptel.ac.in/courses.php?discipli	
<u>neID=111</u>	
UNIT-IV	
Differential Equations of higher	8
order: Linear differential equations	Hrs
of second and higher order equations	
with constant coefficients. Inverse	
Differential operator, Operators methods for finding particular	
integrals , and Euler –Cauchy	
equation.	l I
equation. Self study: M ethod of variation of parameters	
equation. Self study: Method of variation of	

http://nptel.ac.in/courses.php?discipli	
<u>neID=111</u>	
UNIT-V	
Partial differential equation:	8
Introduction- Classification of partial	Hrs
differential equations, formation of	
partial differential equations. Method	
of elimination of arbitrary constants	
and functions. Solutions of non-	
homogeneous partial differential	
equations by direct integration.	
Solution of Lagrange's linear PDE.	
Self study: One dimensional heat and	
wave equations and solutions by the	
method of separable of variable	
Video Link:	
1.	
http://nptel.ac.in/courses.php?discipli	
neID=111	

	Course Outcomes: After completing the course, the students will be able to	
CO1	Make use of matrix theory for solving system of linear equations and compute eigenvalues and eigen vectors required for matrix diagonalization process.	
CO2	Learn the notion of partial differentiation to calculate rates of change of multivariate functions and solve problems related to composite functions and Jacobians.	
CO3	Understand the Three-Dimensional geometry basic, Equation of line in space-different forms, Angle between two line and studying the shortest distance .	
CO4	Demonstrate various physical models through higher order differential equations and solve such linear ordinary differential equations.	
CO 5	Construct a variety of partial differential equations and solution by	

exact methods.

Re	eference Books
1.	B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 43 rd Edition, 2013, .
2.	G. B. Gururajachar, Calculus and Linea Algebra, Academic Excellent Series Publication, 2018-19
3.	Chandrashekar K. S, Engineering Mathematics-I, Sudha Publications, 2010.

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional guizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-F	PO Ma	pping	
CO/PO	PO1	PO2	PO3	PO4	P05	P06	P07	POS
CO1	3	3	Ο	2	Ο	Ο	Ο	Ο
CO2	3	3	0	2	0	0	0	0
CO3	3	3	0	3	0	0	0	0
CO4	2	2	0	3	0	0	0	0
C05	2	2	Ο	2	Ο	Ο	Ο	Ο

Semest	ter: V
Software en	GINEERING
MANAGI	
(Theo	ory)
Course Code:	CIE
MVJ21SPM51	Marks:100
Credits: L:T:P:S:	SEE Marks:
3:0:0:0	100
Hours: 40L	SEE
	Duration: 3
	Hrs
Course Learning Object	tives: The students
will be able to	

	Describe the importance of management
1	and functions of a manager.
	Explain the process of planning and
2	organizing
	Understand principles, concept, methods
	and techniques of the software
З	engineering approach to producing quality
	software (particularly for large, complex
	systems).
	Impart skills in the design and
4	implementation of efficient software
	across disciplines.
5	Gather knowledge on various maintenance methods.
	manuenance methous.

UNIT-I						
Management: importance of	8					
management, definition, management	Hr s					
functions, roles of a manager, levels of						
management, managerial skills,						
management and administration,						
management –a science or art,						
management – a profession,						
professional management v/s family						
management. Development of						
management thought; Early classical						
approaches, Neo classical approaches,						
modern approaches.						
Yideo						
Link: <u>https://www.youtube.com/watch?</u>						
<u>v=mub7Z8Fl3ZU</u>						
UNIT-II						
Planning: Nature, Importance of	8 Hr					

planning, forms, types of plans, steps in s limitations of planning, planning, making planning effective, planning skills, strategic planning in Indian industry. Organizing: Organization Meaning, process of organizing, span of management principles of organizing, **D**epartmentation, organization structure, committees, teams. Video Link:<u>https://www.youtube.com/watch?</u> v-pCUs3UKwYpc UNIT-III FUNDAMENTALS OF SOFTWARE 8 Hr ENGINEERING AND 8 ENGINEERING: REQUIREMENTS Software Engineering Fundamentals; Software processes: Software life-cycle models; Software requirements and specifications: Requirements elicitation; Requirements analysis modelingtechniques; Functional and non-functional requirements; User requirements, System requirements, requirement validation and software requirement specification document. **Prototyping - Basic concepts of formal** specification techniques. Video link / Additional online information: https://nptel.ac.in/courses/106105182 /

UNIT-IV	
SOFTWARE DESIGN: Fundamental	
design concepts and principles; Design	Hr s
characteristics; System Models -	
Context, Behavioral, Data and, Object	
models, Architectural design- System	
structuring, Control models; Structured	
design; Object-oriented analysis and	
design; User interface design; Design	
for reuse; Design patterns;	
Video link / Additional online	
information:	
https://www.coursera.org/lecture/clie	
<u>nt-needs-and-software-requirements/3-</u> <u>2-4-use-cases-bZNCr</u>	
UNIT-Y	
SOFTWARE VALIDATION AND	8
MAINTENANCE:	Hr s
Software validation: Validation	
planning; Testing fundamentals,	
including test plan creation and test case	
generation; Black-box and white-box	
testing techniques; Unit, integration,	
validation, and system testing; Object-	
validation, and system testing; Object-	
validation, and system testing; Object- oriented testing; Inspections.	
validation, and system testing; Object- oriented testing; Inspections. Software evolution: S oftware	
validation, and system testing; Object- oriented testing; Inspections. Software evolution: Software maintenance; Characteristics of	
 validation, and system testing; Object- oriented testing; Inspections. Software evolution: Software maintenance; Characteristics of maintainable software; Reengineering; Legacy systems; Software reuse. Video link / Additional online 	
validation, and system testing; Object- oriented testing; Inspections. Software evolution: Software maintenance; Characteristics of maintainable software; Reengineering; Legacy systems; Software reuse.	

	se Outcomes: After completing the se, the students will be able to
CO1	Describetheimportanceofmanagementandfunctionsofamanager. </th
CO 2	Explain the process of planning and principles of organizing
CO3	Comprehend software development life cycle and Prepare SRS document for a project
CO4	Apply software design and development techniques
CO 5	Identify verification and validation methods in a software engineering project.

Re	eference Books
1.	Management and Entrepreneurship , N V R Naidu ,T Krishna Rao 4th reprint.
2.	Law relating to Intellectual Property rights , B. L. Wadhera, 5th edition,Universal Law Publishing, 2011
3.	IanSommerville,"SoftwareEngineering",9thEdition,Addison-Wesley, 2011111010
4.	R. S. Pressman, Software Engineering, a practitioner's approach, McGraw Hill,7th Edition, 2010

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2) assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-I	PO Ma	pping	5
CO/PO	PO1	PO2	PO3	PO4	PO5	P06	P07	POS
CO1	2	-	-	-	-	2	2	-
CO2	2	-	-	-	-	2	2	-
CO3	2	-	-	-	-	2	2	-
CO4	2	-	-		-	2	-	-
CO5	2	-	-	-	-	2	-	2
TT:				· · · · · · · · · · · · · · · · · · ·				

Semester: Y							
THEORY OF COMPUTATION							
(The	(Theory)						
Course Code:	Course Code: CIE						
MVJ21CG52	Marks:100						
Credits: L:T:P:S:	SEE Marks:						
3:0:0:0	100						

H	ours: 40L	SEE
		Duration: 3
		Hrs
	ourse Learning Ob ill be able to	jectives: The students
1	To have a knowle and context free l	dge of regular languages anguages.
2	To have an under and pushdown au	standing of finite state tomata.
З	To make a stud	ly of the programming ring machines.

UNIT-I	
Finite Automata: Mathematical	8
preliminaries and notations – Central	Hr s
concepts of automata theory – Finite	
automata -Deterministic Finite	
Automata - Nondeterministic Finite	
Automata – Equivalence of DFA and	
NFA –Finite Automata with Epsilon	
transitions - Application of FA	
Video link / Additional online	
information (related to module if any):	
https://nptel.ac.in/courses/106/105/10 6105196/	
UNIT-II	
Regular Expressions: Regular	8
languages: Regular Expressions – Finite	Hr s
Automata and Regular Expressions –	
Applications of Regular Expressions -	
Regular Grammars.	
Video link / Additional online	
information (related to module if any):	
https://www.youtube.com/watch? v=OA SEY3HKZoc	
UNIT-III	

	-
Regular Languages: Properties of	8
regular languages: Pumping lemma for	Hr s
regular languages – Closure properties	
of regular languages –Equivalence and	
Minimization of Finite Automata. C	
Video link / Additional online	
information (related to module if any):	
https://www.youtube.com/watch?v=gan Hwe4DU7A	
UNIT-IV	
	_
Context Free Grammar: Context Free	8 Hr
languages: Context Free Grammars –	s
Parse Trees - Ambiguity in Grammars	
and languages– Applications of Context	
Free Grammars – Pushdown automata	
(PDA) – Languages of a PDA -	
Equivalence of PDA's and CFG's	
Video link / Additional online	
information (related to module if any):	
• https://www.youtube.com/watch?v=F	
GrU7vczyg	
https://www.youtube.com/watch?y=b30	
Pl5wS4AQ	
UNIT-V	
Context Free Languages: Properties of	8
Context Free Languages: Normal Forms	Hr s
(CNF, GNF) for Context Free	~
Grammars - Pumping lemma for CFL's -	
Closure properties of CFL	
Turing Machines: Turing Machines-	
Programming Techniques for Turing	
Machines – Multitape Turing Machines.	
Video link / Additional online	

information (related to module if any):

https://www.youtube.com/watch?v=Ihy EGNn-7Uo

Course Outcomes: After completing the course, the students will be able to				
CO1	Design Finite automata for different Problems			
CO2	Understand about Regular Expressions			
CO3	Apply pumping lemma to Regular languages and Context Free languages			
CO4	Design Push down automata and write CFG for different problems			
CO 5	Analyze the properties of Context free languages and Turing Machine			

1.	J.E.Hopcroft, R.Motwani and J.D Ullman," Introduction to Automata Theory, Languages and Computations", 3rd Edition, Pearson Education, 2011
2.	J.Martin, "Introduction to Languages and the Theory of Computation", 3rd Edition, TMH, 2007.
3.	H.R.Lewis and C.H.Papadimitriou, "Elements of the theory of Computation", 2nd Edition, Pearson Education/PHI, 2003
4.	Micheal Sipser, -Theory and Computatio,7thEdition,ThomsonCourseTechnology, 2008

Continuous Internal Evaluation (CIE): Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping				•				
CO/PO	P01	PO2	PO3	PO4	P05	P06	P07	POS
CO1	3	3	1	-	-	1	-	-
CO2	3	3	1	-	-	1	-	-
CO3	3	3	1	-	-	1	-	-
CO4	3	3	1	-	-	1	-	-
CO 5	З	З	1	-	-	1	-	-

High-3, Medium-2, Low-1

	Semest	ter:V			
L	DATABASE MANAGEMENT SYSTEMS & LAB				
	(Theory and	Practice)			
C	ourse Code:	CIE			
М	VJ21CG53	Marks:50+50			
	redits: L:T:P:	SEE Marks:			
	0:1	50+50			
H	ours:40 L+26 P	SEE			
		Duration:			
		03+03 Hours			
Course Learning Objectives: The students will be able to					
W	ill be able to				
W	ill be able to Provide a strong four				
w 1		ndation in database			
	Provide a strong four	ndation in database and practice.			
	Provide a strong four concepts, technology,	ndation in database and practice. mming through a			
1	Provide a strong four concepts, technology, Practice SQL program	ndation in database and practice. mming through a roblems.			
1	Provide a strong four concepts, technology, Practice SQL program variety of database pr	ndation in database and practice. mming through a roblems. of concurrency and			

UNIT-I

Introduction to Databases: Introduction;SAn example; characteristics of theHdatabase approach; actors on the scene;rsworkers behind the scene; advantages ofusing the DBMS approach; A briefhistory of database Applications; whenNot to use a DBMS.

Overview of Database Languages and Architectures: Data Models, Schemas, and Instances. Three schema architecture and data independence, database languages, and interfaces, The **Database System environment**.

ModellingusingEntitiesandRelationships:Entity types, Entity sets,attributes,roles,andstructuralconstraints,Weakentitytypes,ERdiagrams, examples.

Video link / **Additional** online information (related to module if any):

- <u>https://nptel.ac.in/courses/1061060</u> <u>93/</u>
- <u>https://nptel.ac.in/courses/10610517</u>
 <u>5/</u>

https://www.youtube.com/watch?v=WS NqcYqByFk

	UN				
Relational	Model:	Relatio	nal	Model	8
Concepts, Re	elational	Model (Cons	traints	H
and relationa	al databa	se schen	ias.	Undate	rs
		se senen	10059	Opdate	
operations,	dealing	with	con	straint	
violations.					

Relational Algebra:Unary and Binaryrelationaloperations,additionalrelationaloperations(aggregate,grouping, etc.)Examples of Queries inrelational algebra.

Mapping Conceptual Design into a Logical Design: Relational Database Design using ER-to-Relational mapping.

SQL: SQL data definition and data types, specifying constraints in SQL, retrieval queries in SQL, INSERT, DELETE, and UPDATE statements in SQL.

Videolink/Additionalonlineinformation (related to module if any):

- <u>https://nptel.ac.in/courses/1061060</u>
 <u>93/</u>
- <u>https://nptel.ac.in/courses/10610517</u>
 <u>5/</u>
- <u>https://www.youtube.com/watch?v-g</u>
 <u>GGHjYbQMvw</u>
- <u>https://www.youtube.com/watch?v=n</u>
 <u>clyivHlYac</u>

https://www.youtube.com/watch?v=64sz TfLNu30

UNIT-III

SQL: Advances Queries: More complexSSQLretrievalqueries,SpecifyingHconstraintsas assertionsand actionHtriggers, Views in SQL, Schema changestatements in SQL.IDatabaseApplicationI

Development: Accessing databases from

applications, An introduction to JDBC, JDBC classes and interfaces, SQLJ, Stored procedures, Embedded SQL. Video link / Additional online information (related to module if any):

- https://www.youtube.com/watch?v=6
 4szTfLNu3o
- https://www.digimat.in/nptel/course
 s/video/106105175/L11.html

https://www.youtube.com/watch?v=sjzlr 0EsZL4

UNIT-IV	
8	8
Theory – Introduction to Normalization	e E
using Functional and Multivalued	
Dependencies: Informal design	
guidelines for relation schema,	
Functional Dependencies, Normal	
Forms based on Primary Keys, Second	
and Third Normal Forms, Boyce-Codd	
Normal Form, Multivalued Dependency	
and Fourth Normal Form, Join	
Dependencies and Fifth Normal Form.	
Dependency theory - functional	
dependencies, Armstrong's axioms for	
FD's, closure of a set of FD's, minimal	
covers.	

Videolink/Additionalonlineinformation (related to module if any):

• <u>https://nptel.ac.in/courses/1061060</u>

93/

• <u>https://nptel.ac.in/courses/10610517</u> 5/

UNIT-V

8

Transaction Processing: Introduction to H **Transaction Processing, Transaction and** rs System concepts, Desirable properties of Transactions, Characterizing schedules based on recoverability, Characterizing schedules based on Serializability, Transaction support in SQL.

Concurrency Control in **Databases: Two-phase** locking techniques for Concurrency control, Concurrency

control based on Timestamp ordering.

Introduction to Database Recovery **Protocols**: **Recovery** Concepts, NO-UNDO/REDO based recovery on Deferred update, Recovery techniques based on immediate update, Shadow paging,

File Organizations and Indexes: Introduction, Hashing techniques, Indexing, Structures for Files.

Video link Additional online information (related to module if any):

- https://nptel.ac.in/courses/1061060 **93**/
- <u>https://nptel.ac.in/courses/10610517</u> 5/

 queries to retrieve information from the database. 2. Performing Insertion, Deletion, Modifying, Altering, Updating and Viewing records based on conditions. 3. Creation of Views, Synonyms, Sequence, Indexes, Save point. 4. Creating an Employee database to set various constraints. 5. Creating relationship between the databases. 6. Study of PL/SQL block. 7. Write a PL/SQL block to satisfy some conditions by accepting input from the user. 8. Write a PL/SQL block that handles all types of exceptions. 9. Creation of Procedures. 10. Creation of Aatabase triggers and functions 11. Miniproject(ApplicatioDevelopment using Oracle/Mysql) a)InventoryControlSystem. b)MaterialRequirementProcessing. c)HospitalManagementSystem. e)PersonalInformationSystem. f)WebBasedUserIdentificationSystem. g)TimetableManagementSystem. 	LABORATORY EXPERIMENTS
database.2.Performing Insertion, Deletion,Modifying, Altering, Updating and Viewingrecords based on conditions.3.Creation of Views, Synonyms, Sequence,Indexes, Save point.4.Creating an Employee database to setvarious constraints.5.Creating relationship between thedatabases.6.Study of PL/SQL block.7.Write a PL/SQL block to satisfy someconditions by accepting input from the user.8.Write a PL/SQL block that handles alltypes of exceptions.9.Creation of Procedures.10.Creation of Procedures.11.Miniproject(ApplicatioDevelopmentusingOracle/Mysql)a)InventoryControlSystem.b)MaterialRequirementProcessing.c.)HospitalManagementSystem.e)PersonalInformationSystem.f)WebBasedUserIdentificationSystem.g)TimetableManagementSystem.	1. Creation of a database and writing SQL
 Performing Insertion, Deletion, Modifying, Altering, Updating and Viewing records based on conditions. Creation of Views, Synonyms, Sequence, Indexes, Save point. Creating an Employee database to set various constraints. Creating relationship between the databases. Study of PL/SQL block. Write a PL/SQL block to satisfy some conditions by accepting input from the user. Write a PL/SQL block that handles all types of exceptions. Creation of Procedures. Creation of Procedures. Creation of database triggers and functions Miniproject(ApplicatioDevelopment using Oracle/Mysql) a)InventoryControlSystem. MaterialRequirementProcessing. HospitalManagementSystem. PersonalInformationSystem. WebBasedUserIdentificationSystem. WebBasedUserIdentificationSystem. 	queries to retrieve information from the
 Modifying, Altering, Updating and Viewing records based on conditions. 3. Creation of Views, Synonyms, Sequence, Indexes, Save point. 4. Creating an Employee database to set various constraints. 5. Creating relationship between the databases. 6. Study of PL/SQL block. 7. Write a PL/SQL block to satisfy some conditions by accepting input from the user. 8. Write a PL/SQL block that handles all types of exceptions. 9. Creation of Procedures. 10. Creation of Procedures. 11. Miniproject(ApplicatioDevelopment using Oracle/Mysql) a)InventoryControlSystem. b)MaterialRequirementProcessing. c)HospitalManagementSystem. e)PersonalInformationSystem. f)WebBasedUserIdentificationSystem. g)TimetableManagementSystem. 	database.
records based on conditions. 3. Creation of Views, Synonyms, Sequence, Indexes, Save point. 4. Creating an Employee database to set various constraints. 5. Creating relationship between the databases. 6. Study of PL/SQL block. 7. Write a PL/SQL block to satisfy some conditions by accepting input from the user. 8. Write a PL/SQL block that handles all types of exceptions. 9. Creation of Procedures. 10. Creation of database triggers and functions 11. Miniproject(ApplicatioDevelopment using Oracle/Mysql) a)InventoryControlSystem. b)MaterialRequirementProcessing. c)HospitalManagementSystem. d)RailwayReservationSystem. f)WebBasedUserIdentificationSystem. g)TimetableManagementSystem.	2. Performing Insertion, Deletion,
 Creation of Views, Synonyms, Sequence, Indexes, Save point. Creating an Employee database to set various constraints. Creating relationship between the databases. Study of PL/SQL block. Write a PL/SQL block to satisfy some conditions by accepting input from the user. Write a PL/SQL block that handles all types of exceptions. Creation of Procedures. Creation of database triggers and functions Miniproject(ApplicatioDevelopment using Oracle/Mysql) a)InventoryControlSystem. MaterialRequirementProcessing. c)HospitalManagementSystem. e)PersonalInformationSystem. f)WebBasedUserIdentificationSystem. g)TimetableManagementSystem. 	Modifying, Altering, Updating and Viewing
 Indexes, Save point. 4. Creating an Employee database to set various constraints. 5. Creating relationship between the databases. 6. Study of PL/SQL block. 7. Write a PL/SQL block to satisfy some conditions by accepting input from the user. 8. Write a PL/SQL block that handles all types of exceptions. 9. Creation of Procedures. 10. Creation of Procedures. 10. Creation of database triggers and functions 11. Miniproject(ApplicatioDevelopment using Oracle/Mysql) a)InventoryControlSystem. b)MaterialRequirementProcessing. c)HospitalManagementSystem. e)PersonalInformationSystem. f)WebBasedUserIdentificationSystem. g)TimetableManagementSystem. 	records based on conditions.
 Indexes, Save point. 4. Creating an Employee database to set various constraints. 5. Creating relationship between the databases. 6. Study of PL/SQL block. 7. Write a PL/SQL block to satisfy some conditions by accepting input from the user. 8. Write a PL/SQL block that handles all types of exceptions. 9. Creation of Procedures. 10. Creation of Procedures. 10. Creation of database triggers and functions 11. Miniproject(ApplicatioDevelopment using Oracle/Mysql) a)InventoryControlSystem. b)MaterialRequirementProcessing. c)HospitalManagementSystem. e)PersonalInformationSystem. f)WebBasedUserIdentificationSystem. g)TimetableManagementSystem. 	3. Creation of Views, Synonyms, Sequence,
 various constraints. 5. Creating relationship between the databases. 6. Study of PL/SQL block. 7. Write a PL/SQL block to satisfy some conditions by accepting input from the user. 8. Write a PL/SQL block that handles all types of exceptions. 9. Creation of Procedures. 10. Creation of database triggers and functions 11. Miniproject(ApplicatioDevelopment using Oracle/Mysql) a)InventoryControlSystem. b)MaterialRequirementProcessing. c)HospitalManagementSystem. e)PersonalInformationSystem. f)WebBasedUserIdentificationSystem. g)TimetableManagementSystem. 	Indexes, Save point.
 5. Creating relationship between the databases. 6. Study of PL/SQL block. 7. Write a PL/SQL block to satisfy some conditions by accepting input from the user. 8. Write a PL/SQL block that handles all types of exceptions. 9. Creation of Procedures. 10. Creation of database triggers and functions 11. Miniproject(ApplicatioDevelopment using Oracle/Mysql) a)InventoryControlSystem. b)MaterialRequirementProcessing. c)HospitalManagementSystem. e)PersonalInformationSystem. f)WebBasedUserIdentificationSystem. g)TimetableManagementSystem. 	4. Creating an Employee database to set
databases. 6. Study of PL/SQL block. 7. Write a PL/SQL block to satisfy some conditions by accepting input from the user. 8. Write a PL/SQL block that handles all types of exceptions. 9. Creation of Procedures. 10. Creation of database triggers and functions 11. Miniproject(ApplicatioDevelopment using Oracle/Mysql) a)InventoryControlSystem. b)MaterialRequirementProcessing. c)HospitalManagementSystem. d)RailwayReservationSystem. e)PersonalInformationSystem. f)WebBasedUserIdentificationSystem. g)TimetableManagementSystem.	various constraints.
 6. Study of PL/SQL block. 7. Write a PL/SQL block to satisfy some conditions by accepting input from the user. 8. Write a PL/SQL block that handles all types of exceptions. 9. Creation of Procedures. 10. Creation of database triggers and functions 11. Miniproject(ApplicatioDevelopment using Oracle/Mysql) a)InventoryControlSystem. b)MaterialRequirementProcessing. c)HospitalManagementSystem. e)PersonalInformationSystem. f)WebBasedUserIdentificationSystem. g)TimetableManagementSystem. 	5. Creating relationship between the
 7. Write a PL/SQL block to satisfy some conditions by accepting input from the user. 8. Write a PL/SQL block that handles all types of exceptions. 9. Creation of Procedures. 10. Creation of database triggers and functions 11. Miniproject(ApplicatioDevelopment using Oracle/Mysql) a)InventoryControlSystem. b)MaterialRequirementProcessing. c)HospitalManagementSystem. d)RailwayReservationSystem. f)WebBasedUserIdentificationSystem. g)TimetableManagementSystem. 	databases.
 conditions by accepting input from the user. 8. Write a PL/SQL block that handles all types of exceptions. 9. Creation of Procedures. 10. Creation of database triggers and functions 11. Miniproject(ApplicatioDevelopment using Oracle/Mysql) a)InventoryControlSystem. b)MaterialRequirementProcessing. c)HospitalManagementSystem. d)RailwayReservationSystem. e)PersonalInformationSystem. f)WebBasedUserIdentificationSystem. g)TimetableManagementSystem. 	6. Study of PL/SQL block.
 8. Write a PL/SQL block that handles all types of exceptions. 9. Creation of Procedures. 10. Creation of database triggers and functions 11. Miniproject(ApplicatioDevelopment using Oracle/Mysql) a)InventoryControlSystem. b)MaterialRequirementProcessing. c)HospitalManagementSystem. d)RailwayReservationSystem. e)PersonalInformationSystem. f)WebBasedUserIdentificationSystem. g)TimetableManagementSystem. 	7. Write a PL/SQL block to satisfy some
 types of exceptions. 9. Creation of Procedures. 10. Creation of database triggers and functions 11. Miniproject(ApplicatioDevelopment using Oracle/Mysql) a)InventoryControlSystem. b)MaterialRequirementProcessing. c)HospitalManagementSystem. d)RailwayReservationSystem. e)PersonalInformationSystem. f)WebBasedUserIdentificationSystem. g)TimetableManagementSystem. 	conditions by accepting input from the user.
 9. Creation of Procedures. 10. Creation of database triggers and functions 11. Miniproject(ApplicatioDevelopment using Oracle/Mysql) a)InventoryControlSystem. b)MaterialRequirementProcessing. c)HospitalManagementSystem. d)RailwayReservationSystem. e)PersonalInformationSystem. f)WebBasedUserIdentificationSystem. g)TimetableManagementSystem. 	8. Write a PL/SQL block that handles all
 10. Creation of database triggers and functions 11. Miniproject(ApplicatioDevelopment using Oracle/Mysql) a)InventoryControlSystem. b)MaterialRequirementProcessing. c)HospitalManagementSystem. d)RailwayReservationSystem. e)PersonalInformationSystem. f)WebBasedUserIdentificationSystem. g)TimetableManagementSystem. 	types of exceptions.
functions 11. Miniproject(ApplicatioDevelopment using Oracle/Mysql) a)InventoryControlSystem. b)MaterialRequirementProcessing. c)HospitalManagementSystem. d)RailwayReservationSystem. e)PersonalInformationSystem. f)WebBasedUserIdentificationSystem. g)TimetableManagementSystem.	9. Creation of Procedures.
11. Miniproject(ApplicatioDevelopment using Oracle/Mysql) a)InventoryControlSystem. b)MaterialRequirementProcessing. c)HospitalManagementSystem. d)RailwayReservationSystem. e)PersonalInformationSystem. f)WebBasedUserIdentificationSystem. g)TimetableManagementSystem.	10. Creation of database triggers and
using Oracle/Mysql) a)InventoryControlSystem. b)MaterialRequirementProcessing. c)HospitalManagementSystem. d)RailwayReservationSystem. e)PersonalInformationSystem. f)WebBasedUserIdentificationSystem. g)TimetableManagementSystem.	functions
a)InventoryControlSystem. b)MaterialRequirementProcessing. c)HospitalManagementSystem. d)RailwayReservationSystem. e)PersonalInformationSystem. f)WebBasedUserIdentificationSystem. g)TimetableManagementSystem.	11. Miniproject(ApplicatioDevelopment
b)MaterialRequirementProcessing. c)HospitalManagementSystem. d)RailwayReservationSystem. e)PersonalInformationSystem. f)WebBasedUserIdentificationSystem. g)TimetableManagementSystem.	using Oracle/Mysql)
c)HospitalManagementSystem. d)RailwayReservationSystem. e)PersonalInformationSystem. f)WebBasedUserIdentificationSystem. g)TimetableManagementSystem.	
d)RailwayReservationSystem. e)PersonalInformationSystem. f)WebBasedUserIdentificationSystem. g)TimetableManagementSystem.	b)MaterialRequirementProcessing.
e)PersonalInformationSystem. f)WebBasedUserIdentificationSystem. g)TimetableManagementSystem.	c)HospitalManagementSystem.
f)WebBasedUserIdentificationSystem. g)TimetableManagementSystem.	d)RailwayReservationSystem.
g)TimetableManagementSystem.	-
	f)WebBasedUserIdentificationSystem.
h) Hotol Monogomont System	
n <i>)</i> noter management System	h) Hotel Management System
Any 10 experiments to be conducted	Any 10 experiments to be conducted

	se Outcomes: After completing the se, the students will be able to
CO1	Identify, analyse and define database objects, enforce integrity constraints on a database using RDBMS .
CO2	Use Structured Query Language (SQL) for database manipulation.
CO3	Design and build simple database systems.
CO4	Apply the concepts of Normalization and design database which possess no

	anomalies.
CO 5	Develop application to interact with
	databases.

Re	ference Books
1.	Fundamentals of Database Systems, Ramez Elmasri and Shamkant B. Navathe, 7th Edition, 2017, Pearson
2.	Database management systems, Ramakrishnan, and Gehrke, 3rd Edition, 2014, McGraw Hill
3.	Silberschatz Korth and Sudharsha Database System Concepts, 6th Editio McGrawHill, 2013.
4.	Database Principles Fundamentals Design, Implementation and Management Cengage Learning 2012

Continuous Internal Evaluation (CIE): Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional guizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Laboratory- 50 Marks

The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are awarded 10 marks. Total marks for the laboratory is 50.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	Seme	ester:V
I	NETWOR	TION & COMPUTER RKS & LAB nd Practice)
	ourse Code: VJ21CG54	CIE Marks:50+50
Credits: L:T:P: SEE Marks		SEE Marks: 50+50
H	ours:40 L+26 P	SEE Duration: 03+03 Hours
	ourse Learning Obje ill be able to	ctives: The students
1	Introduce the func types of computer r	lamental concepts and etworks.
2	Demonstrate the To with merits and dep	CP/IP and OSI models merits.
3	Understand the d communication pro	lifference between all ptocols.

UNIT-I	
Data Communications: Components –	8
Direction of Data flow – Networks –	Hr s
Components and Categories – Types of	
Connections – Topologies –Protocols and	

Standards – ISO / OSI model, Example Networks such as ATM, Frame Relay, ISDN Physical layer: Transmission modes, Multiplexing, Transmission Media, Switching, Circuit Switched Networks, Datagram Networks, Virtual Circuit Networks.

Video link / Additional online information (related to module if any):

http://www.nptelvideos.in/2012/11/co mputer-networks.html UNIT-II

Data link layer: Introduction, Framing, and Error – Detection and Correction – Parity – LRC – CRC Hamming code, Flow and Error Control, Noiseless Channels, Noisy Channels, HDLC, Point to Point Protocols. 111 Medium Access sub layer: ALOHA, CSMA/CD, LAN – Ethernet IEEE 802.3, IEEE 802.5 – IEEE 802.11, Random access, Controlled access, Channelization.

Video link / Additional online information (related to module if any):

http://www.nptelvideos.in/2012/11/co mputer-networks.html

UNIT-III

Network la	yer: Logica	al Address	ing, S
Internetworl	king, Tunn	eling, Addı	ress <mark>Hr</mark> s
mapping, IC	MP, IGMF	P, Forward	ing,
Uni-Cast Ro	uting Proto	cols, Multi	cast
Routing Prot	cocols.		

Video link / Additional online

1. Learn to use commands like tcpdump, netstat, ifconfig, nslookup and traceroute. Capture ping and traceroute PDUs using a network protocol analyzer and examine.Screen effectiveness studies

2. Write a program for error detecting code using CRC-CCITT (16- bits).

3. Write a program to find the shortest path between vertices using bellman-ford algorithm.

4. Applications using TCP and UDP sockets like:

a)Chat

b) File Transfer

5. Simulation of DNS using UDP sockets.

6. Write a code for simulating ARP /RARP protocols.

7. Implementation of Stop and Wait Protocol and Sliding Window Protocol.

8. Write a program for congestion control

using leaky bucket algorithm.

9. Implement three nodes point – to- point networks with duplex links between them. Set the queue size vary the bandwidth and find the number of packets dropped.

10. Simulate the transmission of ping messages/trace route over a network topology consisting of 6 nodes and find the number packets of dropped due to congestion.

11. Simulate an Ethernet LAN using n nodes and set multiple traffic nodes and plot congestion window for different source / destination.

12. Simulate simple ESS and with transmitting nodes in wireless LAN by simulation and determine the performance with respect to transmission of packets

Any 12 experiments to be conducted

	Course Outcomes: After completing the course, the students will be able to				
CO1	Interpret the basics of Computer N etworks and Various Protocols .				
CO2	Generalize functionalities and services of each layer of OSI model.				
CO3	Explains the concept of data framing and error control mechanisms				
CO4	Compares Different routing protocols				
CO 5	Identify the concepts of network security, Mobile and adhoc networks				

Re	ference Books
1.	Data Communications and Networking, Behrouz A. Forouzan , Fourth Edition TMH,2006.
2.	Computer Networks, Andrew S Tanenbaum, 4th Edition. Pearson Education, PHI.
З.	An Engineering Approach to Computer Networks, S. Keshav, 2 nd Edition, Pearson Education.

4. Computer Networking: A Top-Down Approach Featuring the Internet. James F. Kurose & Keith W. Ross, 3 rd Edition, Pearson Education.

Continuous Internal Evaluation (CIE): Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional guizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the self -study are 20 (2 presentations are be held for 10 marks each). The marks obtained in test, quiz and self studies are added to get marks out of 100 and report CIE for 50 marks.

Laboratory- 50 Marks

The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are awarded 10 marks. Total marks for the laboratory is 50.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

			CO-PO Mapping					
CO/PO	P01	PO2	PO3	PO4	P05	P06	P07	POE
CO1	З	-	-	-	1	-	-	-
CO2	3	3	3	-	-	-	-	-
CO3	3	2	2	1	3	-	-	-
CO4	3	2	3	-	-	-	-	-
CO 5	3	2	3	-	-	-	-	-

High-3, Medium-2, Low-1

	Ser	nester: V	
		CYBER FORENSICS	
A	NDIPR		
	(7)	Theory)	
C	ourse Code:	CIE	
М	VJ21CG551	Marks:100	
C	redits: L:T:P:S:	SEE Marks:	
3:	0:0:0	100	
H	ours: 40L	SEE	
		Duration: 3	
		Hrs	
	able to	jectives: The students will	
1	Be familiar with different forensics methods		
2	Analyse variou	s computer forensics	
	² technologies		
3	Disseminate know protects IPR	wledge on laws and acts to	
	Understanding,	defining and	
4	differentiating	different types of	
-		rties (IPs) and their roles	

UNIT-I

Prerequisites: Basic Knowledge of	8 Hr	
crypto algorithms		
Introduction to Digital Forensics,	5	
Forensic Software and Hardware,		
Analysis and Advanced Tools, Forensic		
Technology and Practices, Forensic		
Ballistics and Photography, Face, Iris		
and Fingerprint Recognition, Audio		
Video Analysis		
Video link / Additional online		
information:		
• https://www.youtube.com/watch?v=		
2ESqwX3qb94-		
https://nptel.ac.in/courses/106/104/10 6104119/		
UNIT-II		
Introduction to Cyber Crime	8	
Investigation, Investigation Tools,	Hr 5	
eDiscovery, Digital Evidence Collection,		
Evidence Preservation, E-Mail		
Investigation, E-Mail Tracking, IP		
Tracking, E-Mail Recovery, Hands on		
Case Studies, Encryption and		
Decryption Methods, Search and		
Seizure of Computers, Recovering		
Deleted Evidences, Password Cracking.		
Deleted Evidences, Password Cracking. Video link / Additional online		
Video link / Additional online		
Video link / Additional online information:		
<pre>Video link / Additional online information: https://www.coursera.org/lecture/c</pre>		

xndSq

UNIT-III

8

and Ethics, Digital Evidence Laws Hr Controls. Evidence Handling 8 **Procedures, Basics of Indian Evidence** ACT IPC and CrPC Electronic • **Communication Privacy ACT, Legal** Poli Video link / Additional online information:

https://www.youtube.com/watch?v=qJ6 **93ZlyceAcies**

UNIT-IV

Protection Intellectual Property of 8 Hr **Rights in Cyberspace in India:** The s **Cyberspace The Relevance of Domain** Names in Intellectual Property Rights, **Deception by Squatting in Cyberspace**, **Bad Faith in Relation to Domain Name** Infringement, Some Leading Cases **Involving Complaints from India before** WIPO, **Protection of** Copyright on Cyberspace, Rights of Software **Copyright Owners, Infringement** of Copyright on Cyberspace, Cyberspace, the Internet, Websites and the Nature of the Copyright, Linking, Hyper-Linking Framing, Remedies and for Infringement of Copyright on Liabilities Cyberspace, The of an Internet Services Provider (ISP) in Cyberspace

Video link / Additional online	
information:	
 https://nptel.ac.in/courses/109/105/ 	
109105112/	
UNIT-Y	
Penalties, Compensation and	
Adjudication of Violations of Provisions	Hr s
of IT Act and Judicial Review: Penalty	
and Compensation for Damage to	
Computer, Computer System,	
Compensation for Failure to Protect	
Data, Penalty for Failure to Furnish	
Information, Return or any Other	
Penalty , Adjudication of Disputes under	
the IT Act, Cyber Appellate Tribunal, Its	
Functions and Powers under the IT Act	
Video link / Additional online	
information:	
https://www.lawctopus.com/video- lectures-law-sudhir-law-review/	

	se Outcomes: After completing the se, the students will be able to
CO1	Analyze Computer Crime and Criminals and Liturgical Procedures
CO 2	Apply the laws and regulations to the applications
CO3	Analyze the email tracking cyber applications
CO4	Understanding the protection of Intellectual Property Rights
CO 5	Knowledge of law and acts

Reference Books

1.	Nelson Phillips and
	EnfingerSteuart, -Computer Forensics
	and Investigations , Cengage Learning,
	New Delhi, 2009.
2.	Harish Chander, Cyber Laws and IT protections, PHI Edition
З.	Dumortier, International Encyclopedia Of Cyber Law (3vol), Jos
4.	Bernadette H Schell, Clemens Martin, Cybercrime, ABC , CLIO Inc, California, 2004

Continuous Internal Evaluation (CIE): Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

			CO-PO Mapping					
CO/PO	P01	PO2	PO3	PO4	PO5	P06	P07	POS
CO1	2	2	-	3	-	2	-	2
CO2	3	3	-	З	2	2	-	З
CO3	2	2	2	2	-	3	3	3
CO4	3	3	2	3	-	-	-	З
CO5	3	З	-	3	-	-		З

High-3, Medium-2, Low-1

	Semes	ter: Y
	COMPILEF	RDESIGN
	(Theo	ory)
C	ourse Code:	CIE
M	VJ21CG552	Marks:100
C	redits: L:T:P:S:	SEE Marks:
3:	0:0:0	100
H	ours: 40L	See
		Duration: 3
		Hrs
	ourse Learning Object ill be able to	tives: The students
1	Learn the various pa different levels of tra	ursing techniques and Inslation.
2	Learn how to obtain from source language	n specific object code e.
3	Learn how to opt schedule for optimal	imize the code and performance.

UNIT-I	
FRONT END OF COMPILERS: The	
Structure of Compiler – Lexical	Hr s
Analysis: Role of Lexical Analyzer,	~3
Specification and Recognition of	
Tokens, Syntax Analysis: Top Down	
Parsing, Bottom up Parsing, LR	
Parsers: SLR, CLR, and LALR.	
Yideo Links :	
https://www.youtube.com/watch?v=yxn bvS2t_QA	
UNIT-II	
INTERMEDIATE CODE	8
GENERATION: Syntax Directed	Hr
Definitions, Evaluation Orders for	ß
Syntax Directed Definitions, Syntax	
Directed Translation Schemes,	
Intermediate Languages: Syntax Tree,	
Three Address Code, Postfix Code,	
Declarations, Translation of	
Expressions, Type Checking, Back	
Patching.	
VideoLinks:https://www.youtube.com/watch?v=EpAzj7zXrbk	
UNIT-III	
RUNTIME AND OBJECT CODE	8
GENERATION: Storage Organization,	Hr s
Stack Allocation Space, Access to Non-	
local Data on the Stack, Heap	
Management - Issues in Code	
Generation - Design of Code Generator -	
Register Allocation and Assignment –	
Instruction Selection by Tree Rewriting	

- Optimal Code Generation for	
Expressions – Dynamic Programming	
Code Generation.	
VideoLinks:	
https://www.youtube.com/watch?y=lRy aRhPsqOo	
UNIT-IY	
CODE OPTIMIZATION: Basic Blocks	8
and Flow Graphs – Optimization of	Hr s
Basic Blocks – Principal Sources of	
Optimizations – Data Flow Analysis –	
Constant Propagation – Partial	
Redundancy Elimination – Peephole	
Optimizations.	
Video Links:	
https://nptel.ac.in/courses/106/108/10 6108113/	
UNIT-Y	
SCHEDULING AND OPTIMIZING	8
FOR PARALLELISM: Code Scheduling	Hr s
Constraints – Basic Block Scheduling –	
Global Code Scheduling - Basic Concepts	
in Parallelization – Parallelizing Matrix	
Multiplication – Iteration Spaces –	
Affine Array Indexes.	
Video Links:	
https://www.youtube.com/watch?v=-	

Course Outcomes: After completing the course, the students will be able to					
CO1	CO1 Design compiler phases from language specification.				
CO2	Design code generators for the specified machine.				
CO3	Analyze Object Code Generation techniques.				

CO4	Apply the various optimization techniques.
CO 5	Understand the Optimizing for Parallelism

Re	ference Books
1.	Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffrey D. Ullman, —Compilers: Principles, Techniques and Tools , Second Edition, Pearson Education, 2009.
2.	Randy Allen, Ken Kennedy, —Optimizing Compilers for Modern Architectures: A Dependence based Approach , Morgan Kaufmann Publishers, 2002.
3.	Keith D Cooper and Linda Torczon, —Engineering a Compiler , Morgan Kaufmann Publishers Elsevier Science, 2004
4.	V. Raghavan, —Principles of Compiler Design , Tata McGraw Hill Education Publishers, 2010.

Continuous Internal Evaluation (CIE): Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) assignments. A minimum of three and quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

			CO-PO Mapping					
CO/PO	P01	PO2	PO3	P04	P05	P06	P07	POS
CO1	2	3	1	2	-	-	-	-
CO2	3	3	2	3	1	-	-	-
CO3	3	3	2	3	1	-	-	-
CO4	3	3	2	3	2	-	-	-
CO5	3	3	2	3	2	-	-	-

High-3, Medium-2, Low-1

	Seme	ster: Y				
	CRYPTOGRAPHY AND NETWORK					
	SECURITY					
		eory)				
	ourse Code:	CIE				
	VJ21CG553	Marks:100				
	redits: L:T:P:S:	SEE Marks:				
	0:0:0	100				
H	ours: 40L	SEE				
		Duration: 3				
		Hrs stimes: The strudents				
	ourse Learning Obje ill be able to	cuyes: The students				
XX		al knowledge on the				
	Acquire fundament	ai knowledge on the				
1	concepts of finite fie	elds and number				
	theory.					
	To gain various bloc	ck cipher and stream				
2	cipher models.					
	Describe the princi	ples of public key				
З	cryptosystems, has	h functions and digital				
	signature.					
_	Learn the various n	nalicious attacks and				
4	firewall applications.					
5	To develop various security protocols for					

UNIT-I

INTRODUCTION æ NUMBER 8 Hr **THEORY:** Services, Mechanisms and 9 Classical attacks-Encryption techniques (Symmetric cipher model, substitution techniques, transposition techniques. finite fields and number theory: Groups, Rings, Fields-Modular **Euclid's algorithm-Finite** arithmeticfields- Polynomial Arithmetic -Prime numbers-Fermat's and Euler's theorem-**Testing for primality -The Chinese** remainder theorem. **Applications:** Developing cryptographic algorithms link Additional Video online information (related to module if any): https://www.cc.gatech.edu/~echow/ipcc /hpc-course/ UNIT-II **BLOCK CIPHERS & PUBLIC KEY** 8 Hr **CRYPTOGRAPHY**:Data Encryption s Standard-Block cipher principles-block cipher modes of operation-Advanced **Encryption Standard (AES)-Blowfish-**RC5 algorithm. **Public** key cryptography: Principles of public key cryptosystems-The RSA algorithm-Key

management - Diffie Hellman Key exchange- Elliptic curve arithmetic-Elliptic curve cryptography. **Applications:** Online transactions Video link Additional / online information (related to module if any): • http://www.infocobuild.com/educati on/audio-video-courses/computerscience/IntroductionToCryptograph y-Ruhr/lecture-08.html UNIT-III HASH FUNCTIONS AND DIGITAL 8 Hr **SIGNATURES:**Authentication s requirement – Authentication function – **MAC – Hash function – Security of hash**

function and MAC –MD5 - SHA - HMAC – CMAC - Digital signature and authentication protocols – DSS – EIGamal.

Applications: Cyber forensic

Video link / Additional online

information (related to module if any):

https://www.educba.com/md5alogrithm/

UNIT-IV	
SECURITY PRACTICE & SYSTEM	8
SECURITY: Authentication	Hr s
applications – Kerberos – X.509	
Authentication services - Internet	
Firewalls for Trusted System: Roles of	
Firewalls – Firewall related	
terminology- Types of Firewalls -	
Firewall designs - SET for E-Commerce	
Transactions. Intruder – Intrusion	
detection system – Virus and related	

threats – Countermeasures.							
Applications: Antivirus / Malware							
detectir	detecting software						
Video	Video link / Additional online						
information (related to module if any):							

 https://www.simplilearn.com/whatis-kerberos-article

UNIT-Y

E-MAIL & IP SECURITY: E-mail	8
Security: Security Services for E-mail-	Hr s
attacks possible through E-mail -	
establishing keys privacy-	
authentication of the source-Message	
Integrity-Non-repudiation-Pretty Good	
Privacy-S/MIME. IPSecurity:	
Overview of IPSec - IP and IPv6-	
Authentication Header-Internet Key	
Exchange (Phases of IKE,	
ISAKMP/IKE Encoding).	
Applications: Email and Banking	
applications	
Video link / Additional online	
information (related to module if any):	
• https://www.barracuda.com/glossar	
y/email-security	

Course Outcomes: After completing the course, the students will be able to				
CO1	Implement number theory for various			
	identified attacks.			
CO2	Design and develop the public key			

	cryptographic algorithms.			
CO3				
	hashing algorithms			
CO4	Design a firewall for detecting			
	malicious attacks.			
CO 5	D esign the protocols for improving			
	security on email, web and IP.			

Reference Books

1.	William Stallings, Cryptography and Network Security, 6th Edition, Pearson Education, March 2013.
2.	Charlie Kaufman, Radia Perlman and Mike Speciner, "Network Security", Prentice Hall of India, 2002.
З.	Behrouz A. Ferouzan, "Cryptography & Network Security", Tata Mc Graw Hill, 2007.
4.	Charles Pfleeger, "Security in Computing", 4th Edition, Prentice Hall of India, 2006.

Continuous Internal Evaluation (CIE): Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) assignments. A minimum of three and quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting guizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping						5		
CO/PO	P01	PO2	PO3	PO4	P05	P06	P07	POE
CO1	З	1	-	-	-	-	-	1
CO2	3	2	2	1	-	-	-	-
CO3	2	3	1	3	-	1	1	1
CO4	3	2	2	1	-	2	-	-
CO5	2	2	3	3	-	1	1	1

High-3, Medium-2, Low-1

Semester: V CLOUD COMPUTING (Theory)		
Course Code:	CIE	
MYJ21CG554	Marks:100	
Credits: L:T:P:S:	SEE Marks:	
3:0:0:0	100	
Hours: 40L	SEE	
	Duration: 3	
	Hrs	

	Course Learning Objectives: The students will be able to		
1	To understand the fundamental ideas behind Cloud Computing, the evolution of the paradigm, its applicability; benefits, as well as current and future challenges		
2	To introduce the basic ideas and principles in data center design; cloud management techniques and cloud software deployment considerations		
3	To discuss the different CPU, memory and I/O virtualization techniques that serve in offering software, computation and storage services on the cloud; Software Defined Networks (SDN) and Software Defined Storage (SDS);		
4	To introduce cloud storage technologies and relevant distributed file systems, NoSQL databases and object storage;		
5	To discuss the variety of programming models and develop working experience in several of them		

TINIT-I

Introduction to Cloud Computing:	
Cloud Computing in a Nutshell, Roots	Hrs
of Cloud Computing, Layers and Types	
of Clouds, Desired Features of a Cloud,	
Cloud Infrastructure Management,	
Infrastructure as a Service Providers,	
Platform as a Service Providers,	
Challenges and Risks, Broad	
Approaches to Migrating into the Cloud,	
The Seven-Step Model of Migration into	
a Cloud	
Applications:	

Microsoft Azure, Amazon Web	
Services	
Video link / Additional online	
information:	
https://www.youtube.com/watch?v=P W-V-72MJNY	
UNIT-II	
'Integration as a Service' Paradigm for	8
the Cloud Era:	Hrs
An Introduction, The Onset of	
Knowledge Era, The Evolution of	
SaaS , The Challenges of SaaS	
Paradigm, Approaching the SaaS	
Integration Enigma, New Integration	
Scenarios, The Integration	
Methodologies, SaaS Integration	
Products and Platforms , SaaS	
Integration Services, Businesses-to-	
Business Integration (B2Bi) Services,	
A Framework of Sensor- Cloud	
Integration, SaaS Integration	
Appliances, Issues for Enterprise	
Applications on the Cloud, Transition	
Challenges, Enterprise Cloud	
Technology and Market Evolution,	
Business Drivers Toward a	
Marketplace for Enterprise Cloud	
Computing, The Cloud Supply Chain	
Applications: PAAS(Facebook, Google	
App Engine)	
Video link / Additional online	

information:	
https://www.youtube.com/watch?y=ifZ	
h5SJAujA UNIT-III	
Virtual Machines Provisioning and	8
	Hrs
Migration Services:	
Introduction and Inspiration-	
Background and Related Work-Virtual	
Machines Provisioning and	
Manageability- Virtual Machine	
Migration Services- VM Provisioning	
and Migration in Action–Provisioning	
in the Cloud Context- The Anatomy of	
Cloud Infrastructures-Distributed	
Management of Virtual	
Infrastructures - Scheduling	
Techniques for Advance Reservation of	
Capacity- Capacity Management to	
meet SLA Commitments- RVWS	
Design and Cluster as a Service: The	
Logical Design	
Applications:	
Hardware Virtualization, Operating	
system Virtualization, Server	
Virtualization, Storage Virtualization	
Video link / Additional online	
information:	
https://www.youtube.com/watch?v=7m 3f-P-WWbg	
UNIT-IV	
Platform and Software as a	8 Hrs
Service:Technologies and Tools for	<u>ar</u> s
Cloud Computing- Aneka Cloud	

Platform- Aneka Resource	
Provisioning Service- Hybrid Cloud	
Implementation - CometCloud	
Architecture- Autonomic Behavior of	
CometCloud- Overview of CometCloud-	
based Applications- Implementation	
and Evaluation- Workflow	
Management Systems and Clouds-	
Architecture of Workflow Management	
Systems - Utilizing Clouds for	
Workflow Execution- Case Study:	
Evolutionary Multi objective	
Optimizations- Visionary thoughts for	
Practitioners	
Applications: Schedule book	
Video link / Additional online	
information:	
https://www.youtube.com/watch?v=3K JjKY8k9Lk	
UNIT-V	
MapReduce Programming Model and	8
Implementations: MapReduce	Hrs
Programming Model- Major	
MapReduce Implementations for the	
Cloud- The Basic Principles of Cloud	
Computing-A Model for Federated	
Cloud Computing- Traditional	
Approaches to SLO Management- Types	
of SLA- Life Cycle of SLA- SLA	
Management in Cloud- Automated	
Policy-based Management- The Current	
State of Data Security in the Cloud-Data	

Privacy	and	Security	Issues-
Producer	Consun	ner Relat	tionship-
Cloud Ser	vice Life	e Cycle	
Applicatio	ns: Net	work Storag	e,Google
Apps and I	Microso	ft office onlin	e
Video li	nk /	Additional	online
informatio	on:		
https://www	vw.yout	ube.com/wat	<u>ch?v=uj</u>
2Sb7b_Do	<u>D</u>		

	se Outcomes: After completing the se, the students will be able to
CO1	Recall the recent history of cloud computing, illustrating its motivation and evolution.
CO2	List some of the enabling technologies in cloud computing and discuss their significance
CO3	Articulate the economic benefits as well as issues/risks of the cloud paradigm for businesses as well as cloud providers
CO4	Define SLAs and SLOs and illustrate their importance in Cloud Computing.
CO 5	List some of the common cloud providers and their associated cloud stacks and recall popular cloud use case scenarios.

R	eference Books
1.	Cloud Computing, Principles and
	Paradigms, Rajkumar Buyya, James
	Broberg,
	Wiley Publication
9	Dan C Marinescu: Cloud Computing
	Theory and Practice. Elsevier(MK) 2013.

Continuous Internal Evaluation (CIE): Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping								
CO/PO	PO1	PO2	PO3	PO4	PO5	P06	P07	POS
CO1	2	1	1	-	1	1	2	-
CO 2	3	3	3	3	2	-	-	-
CO3	1	-	-	1	1	-	2	3
CO4	3	3	2	3	2	-	-	-

CO5	3	З	3	3	З	2	-	-
High-3,	Medi	um-2,	Low-	1	•			

Semes	ter: Y
ENVIRONMEN	TAL STUDIES
Course Code: MVJ21CV56	CIE Marks: 50
Credits: L:T:P: 1:0:0	SEE Marks: 50
Hours: 15 L	SEE Duration: 2 Hrs.
Course Learning Object will be able to	tives: The students
-	inary approach to ental problems using natural and social

	sciences including geo-systems, biology, chemistry, economics, political science and international processes
2	Study drinking water quality standards and to illustrate qualitative analysis of water.
3	Critically evaluate the science and policy ramifications of diverse energy portfolios on air and water quality, climate, weapons proliferation and societal stability.

UNIT-I

Introduction to environmental studies,	3
Multidisciplinary nature of	H
environmental studies; Scope and	rs
importance; Concept of sustainability	
and sustainable development.	

Ecosystems (Structure and Function): Forest, Desert, Rivers, Ocean **Biodiversity:** Types, Hot spots; Threats and Conservation of biodiversity, Deforestation.

Video link: https://nptel.ac.in/courses/127/106/12 7106004/

UNIT-II	
Advances in Energy Systems (Merits,	3
Demerits, Global Status and	
Applications): Hydrogen, Solar, Tidal	rs
and Wind.	
Natural Resource Management (Concent	

Natural Resource Management (Concept and case-study): Disaster Management, Sustainable Mining and Carbon Trading.

Ground Water Pollution, Noise pollution, Soil Pollution and Air Pollution. Waste Management & Public Health Aspects: Bio-medical Waste, Solid waste, Hazardous waste and E-waste. Video link: • https://nptel.ac.in/courses/122/106 /122106030/ • https://nptel.ac.in/courses/105/103 /105103205/ • https://nptel.ac.in/courses/105/108 /120108005/ • https://nptel.ac.in/courses/105/105 /105105160/ UNIT-IV Global Environmental Concerns (Concept, policies, and case-studies): Global Warming, Climate Change, Acid Rain, Ozone Depletion and Fluoride problem in drinking water. Video link: • https://nptel.ac.in/courses/122/106/		
UNIT-III UNIT-III Environmental Pollution: Surface and Ground Water Pollution, Noise pollution, Soil Pollution and Air Pollution. Waste Management & Public Health Aspects: Bio-medical Waste, Solid waste, Hazardous waste and E-waste. Video link: • https://nptel.ac.in/courses/122/106 /122106030/ • https://nptel.ac.in/courses/105/103 /105103205/ • https://nptel.ac.in/courses/120/108 /120108005/ • https://nptel.ac.in/courses/105/105 /105105160/ INIT-IY Global Environmental Concerns 13 Concept, policies, and case-studies): Https://nptel.ac.in/courses/105/105 Global Warming, Climate Change, Acid Rain, Ozone Depletion and Fluoride problem in drinking water. Yideo link: Video link: • https://nptel.ac.in/courses/122/106/ Image: Solid Soli	Video link:	
UNIT-IIIEnvironmental Pollution: Surface and Ground Water Pollution, Noise pollution, Soil Pollution and Air Pollution.HSoil Pollution and Air Pollution.Waste Management & Public Health Aspects: Bio-medical Waste, Solid waste, Hazardous waste and E-waste.Video link:••https://nptel.ac.in/courses/122/106 /122106030/•https://nptel.ac.in/courses/105/103 /105103205/•https://nptel.ac.in/courses/120/108 /120108005/•https://nptel.ac.in/courses/105/105 /105105160/UNIT-IVGlobal Environmental Concerns (Concept, policies, and case-studies): Global Warming, Climate Change, Acid Rain, Ozone Depletion and Fluoride problem in drinking water.Video link: •••https://nptel.ac.in/courses/122/106/	https://nptel.ac.in/courses/121/106/121	
Environmental Pollution: Surface and Ground Water Pollution, Noise pollution, Soil Pollution and Air Pollution. Waste Management & Public Health Aspects: Bio-medical Waste, Solid waste, Hazardous waste and E-waste. Video link: • https://nptel.ac.in/courses/122/106 /122106030/ • https://nptel.ac.in/courses/105/103 /105103205/ • https://nptel.ac.in/courses/105/108 /120108005/ • https://nptel.ac.in/courses/105/105 /105105160/ UNIT-IV Global Environmental Concerns 3 (Concept, policies, and case-studies): Global Warming, Climate Change, Acid Rain, Ozone Depletion and Fluoride problem in drinking water. Video link: • https://nptel.ac.in/courses/122/106/	106014/	
Environmental Pollution: Surface and Ground Water Pollution, Noise pollution, Soil Pollution and Air Pollution. Waste Management & Public Health Aspects: Bio-medical Waste, Solid waste, Hazardous waste and E-waste. Video link: • https://nptel.ac.in/courses/122/106 /122106030/ • https://nptel.ac.in/courses/105/103 /105103205/ • https://nptel.ac.in/courses/105/108 /120108005/ • https://nptel.ac.in/courses/105/105 /105105160/ UNIT-IV Global Environmental Concerns 3 (Concept, policies, and case-studies): Global Warming, Climate Change, Acid Rain, Ozone Depletion and Fluoride problem in drinking water. Video link: • https://nptel.ac.in/courses/122/106/	τινιτ-τι	
<pre>Ground Hader Fonderon, Roise ponderon, Soil Pollution and Air Pollution.</pre> <pre>File</pre> <pre>File</pre> <pre>Soil Pollution and Air Pollution.</pre> <pre>File</pre> <pre>File</pre> <pre>File</pre> <pre>Soil Pollution and Air Pollution.</pre> <pre>File</pre> <pre>File</pre> <pre>File</pre> <pre>Soil Pollution and Air Pollution.</pre> <pre>File</pre> <pre> File</pre> <pre>File</pre> <pre>File</pre> <pre> File</pre> <pre> File<</pre>		3
Soil Pollution and Air Pollution. Waste Management & Public Health Aspects: Bio-medical Waste, Solid waste, Hazardous waste and E-waste. Video link: • https://nptel.ac.in/courses/122/106 /122106030/ • https://nptel.ac.in/courses/105/103 /105103205/ • https://nptel.ac.in/courses/120/108 /120108005/ • https://nptel.ac.in/courses/105/105 /105105160/ UNIT-IY Global Environmental Concerns 3 (Concept, policies, and case-studies): H Rain, Ozone Depletion and Fluoride problem in drinking water. Video link: • https://nptel.ac.in/courses/122/106/	Ground Water Pollution, Noise pollution,	F
Aspects: Bio-medical Waste, Solid waste, Hazardous waste and E-waste. Video link: • https://nptel.ac.in/courses/122/106 /122106030/ • https://nptel.ac.in/courses/105/103 /105103205/ • https://nptel.ac.in/courses/120/108 /120108005/ • https://nptel.ac.in/courses/105/105 /105105160/ UNIT-IY Global Environmental Concerns (Concept, policies, and case-studies): Global Warming, Climate Change, Acid Rain, Ozone Depletion and Fluoride problem in drinking water. Video link: • https://nptel.ac.in/courses/122/106/	Soil Pollution and Air Pollution.	rs
Aspects: Bio-medical Waste, Solid waste, Hazardous waste and E-waste. Video link: • https://nptel.ac.in/courses/122/106 /122106030/ • https://nptel.ac.in/courses/105/103 /105103205/ • https://nptel.ac.in/courses/120/108 /120108005/ • https://nptel.ac.in/courses/105/105 /105105160/ UNIT-IY Global Environmental Concerns (Concept, policies, and case-studies): Global Warming, Climate Change, Acid Rain, Ozone Depletion and Fluoride problem in drinking water. Video link: • https://nptel.ac.in/courses/122/106/	Weste Menagement & Dublie Health	
Hazardous waste and E-waste. Video link: • https://nptel.ac.in/courses/122/106 /122106030/ • https://nptel.ac.in/courses/105/103 /105103205/ • https://nptel.ac.in/courses/120/108 /120108005/ • https://nptel.ac.in/courses/105/105 /105105160/ UNIT-IY Global Environmental Concerns 3 (Concept, policies, and case-studies): Global Warming, Climate Change, Acid Rain, Ozone Depletion and Fluoride problem in drinking water. Video link: • https://nptel.ac.in/courses/122/106/		
Video link:• https://nptel.ac.in/courses/122/106/122106030/• https://nptel.ac.in/courses/105/103/105103205/• https://nptel.ac.in/courses/120/108/120108005/• https://nptel.ac.in/courses/105/105/105105160/UNIT-IYGlobal Environmental ConcernsGlobal Warming, Climate Change, AcidRain, Ozone Depletion and Fluorideproblem in drinking water.Video link:• https://nptel.ac.in/courses/122/106/		
 https://nptel.ac.in/courses/122/106 /122106030/ https://nptel.ac.in/courses/105/103 /105103205/ https://nptel.ac.in/courses/120/108 /120108005/ https://nptel.ac.in/courses/105/105 /105105160/ UNIT-IY Global Environmental Concerns (Concept, policies, and case-studies): Global Warming, Climate Change, Acid Rain, Ozone Depletion and Fluoride problem in drinking water. Video link: https://nptel.ac.in/courses/122/106/ 	Mazaruous waste anu 12-waste.	
<pre>/122106030/ https://nptel.ac.in/courses/105/103 /105103205/ https://nptel.ac.in/courses/120/108 /120108005/ https://nptel.ac.in/courses/105/105 /105105160/ UNIT-IV Global Environmental Concerns (Concept, policies, and case-studies): Global Warming, Climate Change, Acid Rain, Ozone Depletion and Fluoride problem in drinking water. Video link: https://nptel.ac.in/courses/122/106/</pre>	Video link:	
<pre>/122106030/ https://nptel.ac.in/courses/105/103 /105103205/ https://nptel.ac.in/courses/120/108 /120108005/ https://nptel.ac.in/courses/105/105 /105105160/ UNIT-IV Global Environmental Concerns (Concept, policies, and case-studies): Global Warming, Climate Change, Acid Rain, Ozone Depletion and Fluoride problem in drinking water. Video link: https://nptel.ac.in/courses/122/106/</pre>	• https://pptel.ac.in/courses/122/106	
 https://nptel.ac.in/courses/105/103 /105103205/ https://nptel.ac.in/courses/120/108 /120108005/ https://nptel.ac.in/courses/105/105 /105105160/ UNIT-IY Global Environmental Concerns (Concept, policies, and case-studies): Global Warming, Climate Change, Acid Rain, Ozone Depletion and Fluoride problem in drinking water. Video link: https://nptel.ac.in/courses/122/106/ 		
/105103205/ • https://nptel.ac.in/courses/120/108 /120108005/ • https://nptel.ac.in/courses/105/105 /105105160/ UNIT-IY Global Environmental Concerns (Concept, policies, and case-studies): Global Warming, Climate Change, Acid Rain, Ozone Depletion and Fluoride problem in drinking water. Video link: • https://nptel.ac.in/courses/122/106/		
 https://nptel.ac.in/courses/120/108 /120108005/ https://nptel.ac.in/courses/105/105 /105105160/ UNIT-IY Global Environmental Concerns (Concept, policies, and case-studies): Global Warming, Climate Change, Acid Rain, Ozone Depletion and Fluoride problem in drinking water. Video link: https://nptel.ac.in/courses/122/106/ 		
 https://nptel.ac.in/courses/105/105 /105105160/ UNIT-IV Global Environmental Concerns (Concept, policies, and case-studies): Global Warming, Climate Change, Acid Rain, Ozone Depletion and Fluoride problem in drinking water. Video link: https://nptel.ac.in/courses/122/106/ 		
/105105160/ UNIT-IY Global Environmental Concerns 3 (Concept, policies, and case-studies): Global Warming, Climate Change, Acid Rain, Ozone Depletion and Fluoride problem in drinking water. Video link: • https://nptel.ac.in/courses/122/106/		
UNIT-IVGlobal Environmental Concerns3(Concept, policies, and case-studies):HGlobal Warming, Climate Change, AcidFRain, Ozone Depletion and Fluorideproblem in drinking water.Video link:• https://nptel.ac.in/courses/122/106/	 https://nptel.ac.in/courses/105/105 	
GlobalEnvironmentalConcerns3(Concept, policies, and case-studies):HGlobal Warming, Climate Change, AcidRain, OzoneDepletion and Fluorideproblem in drinking water.Video link:• https://nptel.ac.in/courses/122/106/	/105105160/	
<pre>(Concept, policies, and case-studies): Global Warming, Climate Change, Acid Rain, Ozone Depletion and Fluoride problem in drinking water. Video link: https://nptel.ac.in/courses/122/106/</pre>	UNIT-IV	
Global Warming, Climate Change, Acid Rain, Ozone Depletion and Fluoride problem in drinking water. Video link: • https://nptel.ac.in/courses/122/106/		3
Global Warming, Climate Change, Acid Rain, Ozone Depletion and Fluoride problem in drinking water. Video link: • https://nptel.ac.in/courses/122/106/	(Concept, poneies, and case statics).	
problem in drinking water. Video link: • https://nptel.ac.in/courses/122/106/	Global Warming, Climate Change, Acid	
Video link: • https://nptel.ac.in/courses/122/106/		
 https://nptel.ac.in/courses/122/106/ 	problem in drinking water.	
 https://nptel.ac.in/courses/122/106/ 		
 https://nptel.ac.in/courses/122/106/ 		
	Yideo link:	
122106030/	 https://nptel.ac.in/courses/122/106/ 	
	122106030/	
 https://nptel.ac.in/courses/1201080 	 https://nptel.ac.in/courses/1201080 	
04/	04/	
 https://onlinecourses.nptel.ac.in/noc 	 https://onlinecourses.nptel.ac.in/noc 	

19_ge23/preview

UNIT-Y

Latest Developments in Environmental3Pollution Mitigation Tools (Concept andHApplications): G.I.S. & Remote Sensing,rsEnvironmentImpactAssessment,Environmental Management Systems.

Video link:

- https://nptel.ac.in/courses/105/102
 /105102015/
- https://nptel.ac.in/courses/120/108
 /120108004/

Course Outcomes: After completing the
course, the students will be able to

	se, the students man se dole to
C01	Describe the principles of ecology and environmental issues that apply to air, land, and water issues on a global scale.
CO2	Develop critical thinking and/or observation skills, and apply them to the analysis of a problem or question related to the environment.
CO3	Demonstrate ecology knowledge of a complex relationship between biotic and Abiotic components.
CO4	Apply their ecological knowledge to illustrate and graph a problem
CO 5	Describe the realities that managers face when dealing with complex issues.

Re	eference Books
1	Principals of Environmental Science and
	Engineering, Raman Siva kumar,
	Cengage learning, Singapur, 2nd Edition,
	2005.
2	Environmental Science – working with
	the Earth G.Tyler Miller Jr. Thomson

	Brooks /Cole, 11 th Edition, 2006					
З.	Textbook of Environmental and Ecology ,					
	Pratiba Singh, Anoop Singh & Piyush					
	Malaviya , ACME Learning Pvt. Ltd. New					
	Delhi, 1 st Edition.					

Continuous Internal Evaluation (CIE): Theory for 50 Marks

CIE for 50 marks, executed by way of tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 40 marks and assignment is evaluated for 10 marks. The three tests are conducted for 40 marks each and the average of all the tests are calculated for 40. The marks for the assignments are 10 (2 assignments for 5 marks each). The marks obtained in test and assignment are added and report CIE for 50 marks.

Semester End Examination (SEE):

SEE for 50 marks, executed by means of an examination. The Question paper contains objective type questions for 100 marks covering the entire syllabus having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping							
P01	PO2	PO3	PO4	PO5	P06	P07	POS
З	3	3	1	-	2	2	1
3	3	2	1	-	1	2	-
З	3	2	1	_	2	2	_
3	3	2	2	-	2	2	_
	3 3 3	3 3 3 3 3 3 3 3	3 3 3 3 3 2 3 3 2	333133213321	PO1PO2PO3PO4PO53331-3321-3321-	PO1PO2PO3PO4PO5PO63331-23321-13321-2	PO1PO2PO3PO4PO5PO6PO73331-223321-123321-22

Total marks: 50+50=100

High-3, Medium-2, Low-1

	Sem	ester: V				
	RESEARCH ME	THODOLOGY & IPR				
	(Th	leory)				
C	ourse Code:	CIE				
M	VJ21AEC57	Marks:100				
	redits: L:T:P:S:	SEE Marks:				
3:	0:0:0	100				
H	ours: 40L	SEE				
		Duration: 3				
		Hrs				
		ectives: The students				
W	ill be able to					
	Give an overview o	of the research				
1	methodology and e	xplain the technique of				
	defining a research problem.					
2	Explain various re	esearch designs and				
2	their characteristi	cs.				
	Explain the details	of sampling designs,				
З						
	also different methods of data collections.					
Explain several parametric tests of						
4 hypotheses.						
	Discuss lead	ing International				
5		ncerning Intellectual				
Property Rights.						

UNIT-I						
Research Methodology: Introduction,	8					
Meaning of Research, Objectives of	Hr s					
Research, Types of Research, Research						
Approaches, Significance of Research,						
Research Methods versus Methodology,						
Research and Scientific Method,						

Research Process, Criteria of Good Research, Problems Encountered by Researchers in India.

Video link / Additional online information:

https://youtu.be/9IJscfF_irU

UNIT-II

Research Design: Meaning of Research Hr Design, Need for Research Design, Features of a Good Design, Important **Concepts Relating to Research Design**, **Research Designs**, Different Basic **Principles of Experimental Designs**, **Important Experimental Designs.**

Reviewing the literature: Place of the literature review in research, Bringing clarity and focus to research problem, research Improving methodology, **Broadening knowledge base in research** area, Enabling contextual findings, **Review of the literature, searching the** existing literature, reviewing the selected literature, **Developing** a theoretical framework, Developing a conceptual framework, Writing about the literature reviewed

Video link Additional online information:

• https://youtu.be/Yzfl3rtFOSM

UNIT-III

Design of Sample Surveys: Design of 8

8

s

Sampling: Introduction, Sample **s Design, Sampling and Non-sampling** Errors, Sample Survey versus Census Survey, Types of Sampling Designs. **Measurement and Scaling:** Qualitative and Quantitative Data, Classifications of Measurement Scales, Goodness of **Measurement Scales, Sources of Error** in Measurement, Techniques of Measurement Tools, Developing Scale Classification Scaling. **Bases**. Multidimensional Scaling Technics, Scale. Scaling, Deciding the Data **Collection: Introduction, Experimental** and Surveys, Collection of Primary Data, Collection of Secondary Data.

Video link / Additional online information:

https://youtu.be/GYmQpGn-Zuo

UNIT-IV

Testing of Hypotheses: Hypothesis, 8 Hr **Basic Concepts Concerning Testing of** 8 Hypotheses, Testing of Hypothesis, Test **Statistics and Critical Region, Critical Value and Decision Rule, Procedure for Hypothesis Testing, Hypothesis Testing** Mean, Proportion, Variance, for for **Difference of Two Mean, for Difference** of Two Proportions, for Difference of Variances, **P-Value** approach, Two **Power of Test, Limitations of the Tests** of Hypothesis

Video	link	/	Additional	online				
inform	ation:							
https://youtu.be/IEP3swFeauE								

UNIT-V

8

Hr **Intellectual Property:** The Concept, Int Develop **Property System in India**, **TRIPS** Complied Regime in India, Pate 1970, Trade Mark Act, 1999, The Desi 2000, The Geographical Indications o (Registration and **Protection**) Z Copyright Act,1957,The Protection O Varieties and Farmers' Rights Act, 2 Semi-Conductor Integrated Circuits **Design Act, 2000, Trade Secrets, Utility** IPR and Biodiversity, The Conven Biological Diversity (CBD) 1992, Co, International Instruments Concernin World Intellectual Property Orga (WIPO), WIPO and WTO, Paris Conver the Protection of Industrial Property, Treatment, Right of Priority, Common Patents. Marks. Industrial Designs Indications Names. of Source. **Competition, Patent Cooperation Treat Advantages of PCT Filing, Berne Conver** the Protection of Literary and Artistic **Basic Principles, Duration of Protection** Aspects of Intellectual Related **Rights(TRIPS)** Agreement, Covered **TRIPS** Agreement, Features of the Ag

Protection of Intellectual Property under Copyright and Related Rights, Trad Geographical indications, Industrial Patents, Patentable Subject Matter, Conferred, Exceptions, Term of pr Conditions on Patent Applicants, Patents, Other Use without Authorizatic Right Holder, Layout-Designs of In Circuits, Protection of Undisclosed Info Enforcement of Intellectual Property UNSECO.

	Course Outcomes: After completing the course, the students will be able to					
CO1						
CO 2	To explain various research designs and their characteristics					
CO3	To explain the details of sampling designs, measurement and scaling techniques and also different methods of data collections					
CO4	To explain several parametric tests of hypotheses					
CO 5	To discuss leading International Instruments concerning Intellectual Property Rights.					

Re	Reference Books						
1.	Research	Methodology:	Methods and				
	Technique	s, C.R. Kothari	, Gauray Garg,				
	New Age	International,	4th Edition,				

	2018
2.	Study Material (For the topic Intellectual
	Property under module 5)Professional
	Programme Intellectual Property
	Rights, Law and Practice, The Institute
	of Company Secretaries of India,
	Statutory Body Under an Act of
	Parliament, September 2013
З.	Research Methods: the concise
	knowledge base, Trochim, Atomic Dog
	Publishing, 2005

Continuous Internal Evaluation (CIE): Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mappin					pping			
CO/PO	P01	PO2	PO3	PO4	PO5	P06	P07	POS
CO1	3	3	1	-	3	-	-	
CO2	З	3	1	-	-	-	-	-
CO3	З	3	1	-	-	-	-	-
CO4	З	3	1	-	-	-	-	-
CO5	3	3	1		-	-		-

High-3, Medium-2, Low-1

Semester: V					
UNIVERSAL HUMAN VALUES					
Course Code:CIE Marks: 50MYJ21UHYI58					
Credits: L:T:P: 2:0:0	SEE Marks: 50				
Hours: 30 L SEE Duration: 3 Hrs.					
Course Learning Object be able to	tives: The students will				

1	Appreciate the essential complementarily between 'VALUES' and 'SKILLS' to ensure sustained happiness and prosperity which are the core aspirations of all human beings.
2	Facilitate the development of a Holistic perspective among students towards life and profession as well as towards happiness and prosperity based on a correct understanding of the Human reality and the rest of existence. Such a holistic perspective forms the basis of Universal Human Values and movement towards value-based living in a natural way.
3	Highlight plausible implications of such a Holistic understanding in terms of ethical human conduct, trustful and mutually fulfilling human behavior and mutually

UNIT-I

enriching interaction with Nature.

Introduction to Value Education: Right Understanding, Relationship and Physical Facility (Holistic Development and the Role of Education), Understanding Value Education, Self-exploration as the Process for Value Education, Continuous Happiness and Prosperity – the Basic Human Aspirations, Happiness and Prosperity – Current Scenario, Method to Fulfill the Basic Human Aspirations.

Practical Sessions: (1) Sharing aboutOneself(2) ExploringHumanConsciousness(3) ExploringNaturalAcceptance

6 Hr

8

Video link:

- https://www.youtube.com/watch?v=85
 XCw8SU084
- https://www.youtube.com/watch?v=E1S TJoXCXUU&list=PLWDeKF97v9SP_K t6jqzA3p Z3yA7g_0AQz

 https://www.youtube.com/channel/UC QxWr5QB_eZUnwxSwxXEkQw 	
UNIT-II	
 Harmony in the Human Being: Understanding Human being as the Co- existence of the Self and the Body, Distinguishing between the Needs of the Self and the Body, The Body as an Instrument of the Self, Understanding Harmony in the Self, Harmony of the Self with the Body, Programme to ensure self- regulation and Health. Practical Sessions: (4) Exploring the difference of Needs of Self and Body (5) Exploring Sources of Imagination in the Self (6) Exploring Harmony of Self with the Body 	6 Hr s
Video link: • https://www.youtube.com/watch?v=Gpu Zo495F24 • https://www.youtube.com/channel/UCQ xWr5QB_eZUnwxSwxXEkQw UNIT-III	
Harmony in the Family and Society:	
Harmony in the Family – the Basic Unit of Human Interaction, 'Trust' – the Foundational Value in Relationship, 'Respect' – as the Right Evaluation, Other Feelings, Justice in Human-to-Human	6 Hr s

Relationship, Understanding Harmony in	
the Society, Vision for the Universal	
Human Order.	
Practical Sessions: (7) Exploring the	
Feeling of Trust (8) Exploring the Feeling	
of Respect (9) Exploring Systems to fulfill	
Human Goal	
Video link:	
https://www.youtube.com/watch?v=F2K	
VW4WNnS	
 https://www.youtube.com/channel/UCQ 	
xWr5QB_eZUnwxSwxXEkQw	
UNIT-IY	
Harmony in the Nature/Existence:	
Understanding Harmony in the Nature,	
Interconnectedness, self-regulation and	
Mutual Fulfillment among the Four Orders	
e	
of Nature, Realizing Existence as Co-	
existence at All Levels, The Holistic	
Perception of Harmony in Existence.	
Practical Sessions: (10) Exploring the Four	e
Orders of Nature (11) Exploring Co-	6
existence in Existence	Ir
	s
Video link:	
• https://www.youtube.com/watch?y=1HR-	
QB2mCFO	
 https://www.youtube.com/watch?v=lfN8q 	
OxUSpw	
 https://www.youtube.com/channel/UCQ 	
xWr5QB_eZUnwxSwxXEkQw	
UNIT-Y	
Implications of the Holistic Understanding	
- a Look at Professional Ethics: Natural	
Acceptance of Human Values,	
Definitiveness of (Ethical) Human	
Conduct, A Basis for Humanistic	
	e
	6 7
	Ir
	6
Production Systems and Management	
Models-Typical Case Studies, Strategies for	
Transition towards Value-based Life and	
Profession	
Practical Sessions: (12) Exploring Ethical	

HumanConduct(13)ExploringHumanisticModelsinEducation(14)ExploringStepsofTransitiontowardsUniversalHumanOrderImage: StepsImage: Steps

Video link:

- https://www.youtube.com/watch?v=Bikd
 Yub6RYO
- https://www.youtube.com/channel/UCQ xWr5QB_eZUnwxSwxXEkQw

Course Outcomes: After completing the course, the students will be able to

	com se, une students man se usie to		
CO1	Explore themselves, get comfortable with each other and with the teacher		
CO 2	Enlist their desires and the desires are not vague.		
CO3	Restate that the natural acceptance (intention) is always for living in harmony, only competence is lacking		
CO4	Differentiate between the characteristics and activities of different orders and study the mutual fulfillment among them		
CO 5	Present sustainable solutions to the problems in society and nature		

Reference Books

	Terence Books
З.	AICTE SIP UHV-I Teaching Material,
	https://fdp-si.aicte india.org/ AicteSipUHV
	_download.php
4.	A Foundation Course in Human Values and
	Professional Ethics, R R Gaur, R Asthana,
	G P Bagaria, 2nd Revised Edition, Excel
	Books, New Delhi, 2019. ISBN 978-93-
	87034-47-1
З.	Teachers' Manual for A Foundation Course
	in Human Values and Professional Ethics,
	R R Gaur, R Asthana, G P Bagaria, 2nd
	Revised Edition, Excel Books, New Delhi,
	2019. ISBN 978-93-87034-53-2
4.	Human Values and Professional Ethics by
	R R Gaur, R Sangal, G P Bagaria, Excel
	Books, New Delhi, 2010

Continuous Internal Evaluation (CIE):

CIE for 50 marks is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same

PROJECT MANAGEMENT and OOMD			
Course Code	MVJ22CS61	CIE Marks	50
Teaching Hours/Week (L:T:P: S)	2:2:0:0	SEE Marks	50
Total Hours of Pedagogy	40	Total Marks	100
Credits	03	Exam Hours	03

Course Learning Objectives

- CLO 1. Outline software engineering principles and activities involved in building large software programs. Identify ethical and professional issues and explain why they are of concern to Software Engineers.
- CLO 2. Describe the process of requirement gathering, requirement classification, requirement specification and requirements validation.
- CLO 3. Infer the fundamentals of object oriented concepts, differentiate system models, use UML diagrams and apply design patterns.5
- CLO 4. Explain the role of DevOps in Agile Implementation.
- CLO 5. Discuss various types of software testing practices and

software evolution processes. CLO 6. Recognize the importance Project Management with its methods and methodologies.

CLO 7. Identify software quality parameters and quantify software using measurements and metrics. List software quality standards and outline the practices involved

Teaching-Learning Process (General Instructions)

These are sample Strategies, which teachers can use to accelerate the attainment of the various course outcomes.

- Lecturer method (L) need not to be only a traditional lecture method, but alternative effective teaching methods could be adopted to attain the outcomes.
- 2. Use of Video/Animation to explain functioning of various concepts.
- 3. Encourage collaborative (Group Learning) Learning in the class.
- 4. Ask at least three HOT (Higher order Thinking) questions in the class, which promotes critical thinking.
- 5. Adopt Problem Based Learning (PBL), which fosters students' Analytical skills, develop design thinking skills such as the ability to design, evaluate, generalize, and analyze information rather than simply recall it.
- 6. Introduce Topics in manifold representations.
- 7. Show the different ways to solve the same problem with

	different circuits/logic and encourage the students to come up			
	with their own creative ways to solve them.			
8.	Discuss how ev	ery concept	can be applied to the real v	vorld - and
	when that's pos	ssible, it		
	helps improve t	he students	'understanding.	
		Мо	odule-1	
Introductio	n Modelling Conc	ents and Class	Modelling: What is Object orie	antation? What is
	· •	•	r usefulness of OO developmer	
history. Mc	odelling as Design	technique: M	lodelling, abstraction, The Thre	ee models. Class
-	-		and associations concepts, Ge avigation of class models,	
	, A sample class ook: 5 Sec 2.4) and		-	
•		C		1 2 2
Textbook		3:	Chapter	1,2,3
modeling Concepts, Object Oriented Analysis, Scenario-Based Modeling, Flow-Oriented Modeling, class Based Modeling, Creating a Behavioral Model. Textbook 1: Chapter 8: 8.1 to 8.8				
Teaching-Learn	ing Process	Chalk and board, A	Active Learning, Problem based learning	
		M	odule-2	
Process Overview: Process Overview, System Conception and Domain Analysis: Process Overview: Development stages; Development life Cycle; System Conception: Devising a system concept; elaborating a concept; preparing a problem statement. Domain Analysis: Overview of analysis; Domain Class model: Domain state model; Domain interaction model; Iterating the analysis.				
Text Book-2:Chapter- 10,11,and 12				
Teaching-Leai	rning Process	Chalk and board,	, Active Learning, Demonstration	
	Module3			

Use Cae on Banking System, Health Care , ATM , LMS,

Textbook 1: Chapter 13: 13.1 to 13.7

Agile Methodology & DevOps: Before Agile – Waterfall, Agile Development,

Self-Learning Section:

What is DevOps?, DevOps Importance and Benefits, DevOps Principles and Practices, 7 C's of DevOps Lifecycle for Business Agility, DevOps and Continuous Testing, How to Choose Right DevOps Tools?, Challenges with DevOps Implementation.

Textbook 4: Chapter 2: 2.1 to 2.9

Teaching-Learning Process

Module-4

Chalk and board, Active Learning, Demonstration

Introduction to Project Management:

Introduction, Project and Importance of Project Management, Contract Management, Activities Covered by Software Project Management, Plans, Methods and Methodologies, Some ways of categorizing Software Projects, Stakeholders, Setting Objectives, Business Case, Project Success and Failure, Management and Management Control, Project Management life cycle, Traditional versus Modern Project Management Practices.

Textbook 3: Chapter 1: 1.1 to 1.17

Teaching-Learning Process	Chalk and board, Active Learning, Demonstration

Module-5

Activity Planning:

Objectives of Activity Planning, When to Plan, Project Schedules, Sequencing and Scheduling Activities, Network Planning Models, Forward Pass– Backward Pass, Identifying critical path, Activity Float, Shortening Project Duration, Activity on Arrow Networks.

Apple's iPhone develeopment

NASA's Mars Rover Mission

Textbook 3: Chapter 6: 6.1 to 6.16

Software Quality:

Introduction, The place of software quality in project planning, Importance of software quality, software

quality models, ISO 9126, quality management systems, process capability models, techniques to enhance software quality, quality plans.

Textbook 3: Chapter 13: (13.1 to 13.6 , 13.9, 13.11, 13.14),

Teaching-Learning Process	Chalk and board, Active Learning, Demonstration	

Course Outcomes

At the end of the course the student will be able to:

- CO 1. Understand the activities involved in software engineering and analyze the role of various process models
- CO 2. Explain the basics of object-oriented concepts and build a suitable class model using modelling techniques
- CO 3. Describe various software testing methods and to understand the importance of agilemethodology and DevOps

CO 4. Illustrate the role of project planning and quality management in software developmentCO 5. Understand the importance of activity planning and different planning models

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50) in the semester-end examination (SEE), and a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together

Continuous Internal Evaluation:

Three Unit Tests each of **20 Marks (duration 01 hour**)

- 1. First test at the end of 5th week of the semester
- 2. Second test at the end of the 10th week of the semester
- 3. Third test at the end of the 15^{th} week of the semester

Two assignments each of 10 Marks

- 4. First assignment at the end of 4th week of the semester
- 5. Second assignment at the end of 9th week of the semester

Group discussion/Seminar/quiz any one of three suitably planned to attain the COs and POs for **20Marks** (duration 01 hours)

6. At the end of the 13th week of the semester

The sum of three tests, two assignments, and quiz/seminar/group discussion will be out of 100 marksand will be scaled down to 50 marks

(to have less stressed CIE, the portion of the syllabus should not be common /repeated for any of the methods of the CIE. Each method of CIE should have a different syllabus portion of the course).

CIE methods /question paper has to be designed to attain the different levels of Bloom'staxonomy as per the outcome defined for the course.

Semester End Examination:

Theory SEE will be conducted by University as per the scheduled timetable, with common questionpapers for the subject (**duration 03 hours)**

- 1. The question paper will have ten questions. Each question is set for 20 marks. Marks scoredshall be proportionally reduced to 50 marks
- 2. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), **should have a mix of topics** under that module.

The students have to answer 5 full questions, selecting one full question from each module

Suggested Learning Resources:

Textbooks

- 1. Roger S. Pressman: Software Engineering-A Practitioners approach, 7th Edition, Tata McGrawHill.
- 2. 12 Grady Booch et. al.: Object-Oriented Analysis and Design with Applications, 3rd Edition, Pearson Education, 2007.
- 3. 13Michael Blaha, James Rumbaugh: Object Oriented Modelling and Design with UML, 2nd Edition, Pearson Education, 2005.

- 3. Bob Hughes, Mike Cotterell, Rajib Mall: Software Project Management, 6th Edition, McGraw Hill Education, 2018.
- 4. Deepak Gaikwad, Viral Thakkar, DevOps Tools From Practitioner's Viewpoint, Wiley.
- 5. Ian Sommerville: Software Engineering, 9th Edition, Pearson Education, 2012.

Reference:

1. Pankaj Jalote: An Integrated Approach to Software Engineering, Wiley India.

Weblinks and Video Lectures (e-Resources):

- 1. <u>https://onlinecourses.nptel.ac.in/noc20_cs68/preview</u>
- 2. https://www.youtube.com/watch?v=WxkP5KR_Emk&list=PLrjkTql3jnm9b5nr-
- ggx7Pt1G4UAHeFlJ
- 3. <u>http://elearning.vtu.ac.in/econtent/CSE.php</u>
- 4. http://elearning.vtu.ac.in/econtent/courses/video/CSE/15CS42.html
- 5. <u>https://nptel.ac.in/courses/128/106/128106012/</u> (DevOps)

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

Case study, Field visit

Semester: VI					
	WEB DEVELOPMENT &LAB				
	(Theory and	_			
Course Code: CIE		Marks:50+50			
		SEE Marks:			
	0:1	50+50			
H	ours:40 L+26 P	SEE			
		Duration:			
		03+03 Hours			
	Course Learning Objectives: The students will be able to				
	To understand differ	ent Internet			
1 Technologies.					
	To learn java-specific web services				
2 architecture					
3	3 To understand the SQL and JDBC				
4	To learn the AJAX an	d JSON			
	UNI	C-I			

Website Basics, HTML5, CSS 3, Web 8 Hr 2.0: Web Essentials: Clients, Servers s and Communication, The Internet, Basic Internet protocols, World wide web, HTTP Request Message HTTP • Response Message, Web Clients, Web Servers, HTML5 : Tables, Lists, Image, HTML5 control elements, Semantic elements, Drag and Drop, Audio, Video controls, CSS3: Inline, embedded and external style sheets, Rule cascading, Inheritance, Backgrounds, Border Colours, Shadows, Images, Text. Transformations

Video link / Additional online information:

https://www.youtube.com/watch?v=QEt WL4IWIL4

	UNIT-II
Client side	Programming: An 8
Introduction to ja	ava Script, JavaScript <mark>H</mark> r
DOM Model, Date	e and Object, Regular
Expression, E	xception Handling,
Validation, Buil	t-in Objects, Event
Handling, DHTM	IL with JavaScript,
JSON introduction	on, Syntax, Function
Files, Http Reques	st, SQL.
Video link /	Additional online
information:	
• https://www.y	outube.com/watch?v=
u D wSnnhl1Ng	g&list=PLsyeobzWxl7
qt PSLo9 TReq	UMkiOp446cV

UNIT-III

8 Hr

8

Server Side Programming: Java Servlet Architecture, Servlet Life Cycle, Form GET and POST actions, Session handling, Installing and Configuring Apache Tomcat Web Server, Database Connectivity: JDBC perspectives, JDBC Program Example, JSP: Understanding Java server page, JSP Standard Tag Library (JSTL), Creating HTML form using JSP Code.

Video link / Additional online information:

 https://www.youtube.com/watch?v= 7TOmdDJcl4s&list=PLsyeobzWxl7 pUPF2xjjJiG4BKC9x GY46

UNIT-IV

PHP: Introduction to PHP, PHP using PHP, Variables, Program Control, Builtin Functions, Form Validation, Basic command with PHP examples, Connection to server, creating Database, Selecting Database, Listing Database, listing table names Creating a table, Inserting data, deleting data and tables, altering tables.

Video link / Additional online information:

• https://www.youtube.com/watch?v=i

tRkLa2kq6w

UNIT-Y

8 Hr

6

AJAX: Ajax client server architecture, Xml HTTP request object, Call back methods. Advanced JavaScript and JavaScript **Pseudo-Classes**, jQuery, jQuery Foundations, Web Services: Introduction, Java web services Basics, Creating, Publishing, Testing and Describing a web services, Database driven web service from an application.

Video link / Additional online information

 https://www.youtube.com/watch?v= qk9MWbyRlhE

LABORATORY EXPERIMENTS

1. Create a web page with the following.

a. Cascading style sheets.

b. Embedded style sheets.

c. Inline style sheets.

Use our college information(Department of CSE) for the web pages.

2. Design HTML form for keeping student record and validate it using Java script.

3. Write an HTML program to design an entry form of student details and send it to store at database server like SQL, Oracle or MS Access.

4. Write a JavaScript code that displays text "TEXT-GROWING" with increasing font size in the interval of 100ms in RED COLOR, when the font size reaches 50pt it displays "TEXT-SHRINKING" in BLUE color. Then the font size decreases to 5pt.

5. Assume four users user1, user2, user3 and user4 having the passwords pwd1, pwd2, pwd3 and pwd4 respectively. Write a servlet for doing the following. 1.Create a Cookie and add these four user id's and passwords to this Cookie. 2. Read the user id and passwords entered in the Login form and authenticate with the values available in the cookies.

- 6. Write a JSP which insert the details of the 3 or 4 users who register with the web site by using registration form. Authenticate the user when he submits the login form using the user name and password from the database.
- 7.Validate the form using PHP regular expression. PHP stores a form data in to database
- 8. Write a PHP program to display a digital clock which displays the current time of the server.
- 9. Creating simple application to access data base using JDBC Formatting HTML with CSS.
- 10. Write a Program for manipulating Databases and SQL with real time application

Any 10 experiments to be conducted

	Course Outcomes: After completing the course, the students will be able to		
CO1	Construct a basic website using HTML and Cascading Style Sheets.		
CO2	Build dynamic web page with validation using Java Script objects and by applying different event handling mechanism		
CO3	Develop server side programs using Servlets and JSP.		
CO4	Construct simple web pages in PHP and to represent data in XML format.		
CO 5	Use AJAX and web services to develop		

interactive web applications.

Re	Reference Books				
1.	Deitel and Deitel and Nieto,Internet and World Wide Web, How to Program, Prentice Hall, 5th Edition, 2011.				
2.	Randy Connolly, Ricardo Hoar, "Fundamentals of Web Development", 1stEdition, Pearson Education India. (ISBN:978-9332575271)				
З.	StephenWynkoopandJohnBurke-RunningaPerfectWebsite ,QUE, 2nd Edition, 1999				

Continuous Internal Evaluation (CIE): Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) assignments. A minimum of three and quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The the assignments marks for are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Laboratory- 50 Marks

The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are awarded 10 marks. Total marks for the laboratory is 50.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level

	EARNING &LAB and Practice)	
Course Code: MVJ21CG63	CIE Marks:50+50	
Credits: L:T:P: 3:0:1	SEE Marks: 50+50	
Hours:40 L+26 P	SEE Duration: 03+03 Hours	
Course Learning Obj will be able to	jectives: The students	
1 Define machine relevant to machine	learning and problems ne learning	
Differentiate supervised, unsupervised and reinforcement learning.		
	works, Bayes classifier neighbor, for problems	

appear in machine learning.

4 Perform statistical analysis of machine learning techniques.

UNIT-I

UNIT-I			
Introduction: Well posed learning			
problems, Designing a Learning	Hrs		
system, Perspective and Issues in			
Machine Learning.			
Concept Learning: Concept learning			
task, Concept learning as search, Find-			
S algorithm, Version space, Candidate			
Elimination algorithm, Inductive Bias.			
Video link / Additional online			
information (related to module if any):			

https://www.youtube.com/watch?v
=rQ3oi9g8alY

UNIT-II				
Decision Tree Learning				
Decision tree representation,	8H rs			
Appropriate problems for decision tree				
learning, Basic decision tree learning				
algorithm, hypothesis space search in				
decision tree learning, Inductive bias in				
decision tree learning, Issues in				
decision tree learning.				
Video link / Additional online				
information (related to module if any):				
https://www.youtube.com/watch?y				
=qDcl-FRnwSU				
1 — • • • • • • • • • • • • • • • • • • •				
UNIT-III				
Bayesian Learning and Evaluating	8			
Hypotheses	Hrs			
Bayesian Learning: Introduction,				
Bayes theorem, Bayes theorem and				
concept learning, MDL principle, Naive				
Bayes classifier, Bayesian belief				
networks, EM algorithm.				
Evaluating Hypotheses : Estimating				
hypothesis accuracy, Basics of				
sampling theorem, General approach				
for deriving confidence intervals,				
D ifference in error of two hypothesis				
Video link / Additional online				
information (related to module if any):				

https://www.youtube.com/watch?v	
=480a_2jRdK0	
UNIT-IY	
Artificial Neural Networks and	
Instance based Learning	8H rs
Artificial Neural Networks:	
Introduction, Neural Network	
representation, Appropriate problems,	
Perceptrons, Backpropagation	
algorithm. Instanced Based	
Learning:Introduction, k-nearest	
neighbor learning, locally weighted	
regression.	
Video link:	
• https://www.youtube.com/watch?v	
=xbYgKoG4x2g&list=PL53BE265	
CE4A6C056 .	
UNIT-Y	
Reinforcement Learning and Deep Learning	8 Hrs
Reinforcement Learning: Introduction,	
Learning Task, Q Learning.	
Deep Learning: Introduction to Deep	
Learning-Reasons to go Deep Learning,	
Introduction to Convolutional	
Networks ,Restricted Boltzmann	
Machines, Deep Belief Nets, Recurrent	
Nets.	
Video link:	
https://www.youtube.com/watch?v=TIl DzLZPyhY&list=PLyqSpQzTE6M_Fw	

ZHF

LABORATORY EXPERIMENTS

1. Implement and demonstrate the FIND-S algorithm for finding the most specific hypothesis based on a given set of training data samples. Read the training data from a.CSV file.

2. For a given set of training data examples stored in a .CSV file, implement and demonstrate the Candidate-Elimination algorithm to output a description of the set of all hypotheses consistent with the training examples.

- 3. Develop a program to demonstrate the prediction of values of a given dataset using Linear regression
- 4. Write a program to demonstrate the working of the decision tree based **ID3 algorithm**. Use an appropriate data set for building the decision tree and apply this knowledge to classify a new sample.
- 5. Build an Artificial Neural Network by implementing the **Backpropagation algorithm** and test the same using appropriate data sets.
- 6. Write a program to implement the **naïve Bayesian classifier** for a sample training data set stored as a .CSV file. Compute the accuracy of the classifier, considering few test data sets.
- 7.Assuming a set of documents that need to be classified, use the **naïve Bayesian Classifier** model to perform this task. Built-in Java classes/API can be used to write the program. Calculate the accuracy, precision, and recall for your data set.
- 8. Write a program to construct a **Bayesian network** considering medical data. Use this model to demonstrate the diagnosis of heart patients using standard Heart Disease Data Set. You can use Java/Python ML library classes/API.
- 9. Apply EM algorithm to cluster a set of data stored in a .CSV file. Use the same dataset for clustering using *k*-Means algorithm. Compare the results of these

two algorithms and comment on the quality of clustering. You can add Java/Python ML library classes/API in the program.

- 10. Write a program to implement **k-Nearest** Neighbour algorithm to classify the iris data set. Print both correct and wrong predictions. Java/Python ML library classes can be used for this problem.
- 11. Implement the non-parametric Locally Weighted Regression algorithm in order to fit data points. Select appropriate data set for your experiment and draw graphs.

Any 11 experiments to be conducted

	se Outcomes: After completing the se, the students will be able to
CO1	Identify the issues in machine learning and Algorithms for solving it.
CO2	Explain theory of probability and statistics related to machine learning.
CO3	Investigate concept learning, ANN, Bayes classifier, k nearest neighbor, Q, Learning.
CO4	Identify the difference between Machine Learning and Deep Learning and using scenario
CO 5	Explain the concepts of Q learning and deep learning

Reference Books

1.	Tom M. Mitchell, Machine Learning,				
	India Edition 2013, McGraw Hill				
	Education.				
2.	Trevor Hastie, Robert Tibshirani,				
	Jerome Friedman, h The Elements of				
	Statistical Learning, 2nd edition,				
	springer series in statistics.				
З.	Ethem Alpaydın, Introduction to				
	machine learning, second edition, MIT				
	press.				

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes(Q), tests(T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the self -study are 20 (2 presentations are be held for 10 marks each). The marks obtained in test, quiz and self studies are added to get marks out of 100 and report CIE for 50 marks.

Laboratory- 50 Marks

The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are awarded 10 marks. Total marks for the laboratory is 50.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of **CO**s and **B**loom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

					CO-F	PO Ma	pping	5
CO/PO	P01	PO2	PO3	P04	PO5	P06	P07	POS
CO1	3		-	-	1	-	-	-
CO2	3	3	3	-	-	-	-	-
СОЗ	3	2	2	1	3	-	-	-
CO4	3	2	3	-	-	-	-	-
CO5	3	2	3	-	-	-	-	-

	Semester: VI					
	BRAIN COMPUTER					
IR	TERFACE					
	(T	heory)				
C	ourse Code:	CIE				
M	VJ21CG641	Marks:100				
C	SEE Marks:					
3:	3:0:0:0 100					
H	ours: 40L	SEE				
		Duration: 3				
		Hrs				
Course Learning Objectives: The students will be able to						
	Discuss differen	t types of BCI signals				
1	from instruments	5				

	Discuss and compare different types of	
2	brain signals used for feature extraction	
	Discuss the major components of BCI	
3	which makes up the system	
4	Explain the applications based on BCI	
5	Use the toolbox BCILAB	

TINTE	

UNIT-I					
What is BCI? How do BCI works,					
Brain computer interface types-	SH rs				
Invasive, Partially invasive, Non-					
invasive, Brain signal for BCI signal-					
EEG, MEG, fNIRS, fMRI , Non brain					
signals for BCI					
Video link / Additional online					
information:					
https://nptel.ac.in/courses/108/108/1 08108167/					
UNIT-II					
EEG Process, Temporal					
characteristics, Spatial	8H				
Characteristics, Oscillatory EEG	rs				
activity, eventrelated potentials (ERP),					
slow cortical potentials (SCP), and					
neuronal potentials. Motor Imagery					
BCI					
Video link / Additional online					
information:					
https://www.youtube.com/watch?v=P WRGe3uyS4c					
UNIT-III					
Signal Processing-Spatial, temporal,					
spectral, spatio-temporal filters,	SH rs				
Feature extraction, Machine Learning					

Video link / Additional online					
information:					
https://www.youtube.com/watch?v=P					
WRGe3uyS4c&t=214 UNIT-IY					
BCI monitoring hardware and					
hardware, BCI application-P300	8H rs				
speller, neuro prosthetic devices					
Video link / Additional online					
information:					
https://www.youtube.com/watch?v=Kf aGvb9YfVM					
UNIT-Y					
Toolbox Architecture, Plug-in concepts,					
Implementing ERP Based BCI, ERP	SH rs				
Analysis in BCI Lab					
Video link / Additional online					
information:					
https://www.youtube.com/watch?v=P WRGe3uyS4c&t=322					

	Course Outcomes: After completing the course, the students will be able to					
CO1	Acquire the brain signal in the format required for the specific application					
CO2	P reprocessing the signal for signal enhancement					
CO3	Extract the dominant and required features					
CO4	Classify and derive the control signals for BCI applications					
CO 5	Apply the BCI knowledge for medical applications					

Reference Books

1. R. Wolpaw and Elizabeth Winter Wolpaw, "Review of "Brain- Computer Interfaces,

	principle	s and	practice",	Biomed
	Engineer	ring online		
2	Brain	Computer	Princip	oles and
	Practices	s",Jonathan	Wolpaw	,Elizabeth
	Winter W	olpaw, Oxf	ord Univer	sity Press

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-PO Mapping				
CO/PO	P01	PO2	PO3	P04	P05	P06	P07	POS	
CO1	2	1	1	-	1	1	2	-	
CO2	3	3	3	3	2	-	-	-	
CO3	1	-	-	1	1	-	2	3	
CO4	3	3	2	2	2		-		
CO5	3	3	3	3	3	2	-	-	

	Seme	ster: VI
	VISUAL DESIGN &	COMMUNICATION
	(The	eory)
C	ourse Code:	CIE
M	VJ21CG642	Marks:100
C	redits: L:T:P:S:	SEE Marks:
3:	0:0:0	100
H	ours: 40L	SEE
		Duration: 3
		Hrs
	ourse Learning Objection ill be able to	ctives: The students
1		communication skills poses, and audiences.
2	Demonstrate	knowledge of
	communication the	ory and application.
	TIN	TT_T

UNIT-I	
Need for and the Importance of	
Human and Visual Communication.	SHrs
Communication a expression, skill	
and process, Understanding	
Communication: SMRC-Model	
UNIT-II	
Communication as a process.	
	SHrs
Message, Meaning, Connotation,	
Denotation Culture/Codes etc Levels	
of communication: Technical,	
Semantic, and Pragmatic. The	
semiotic landscape: language and	
visual communication, narrative	
representation	
UNIT-III	
Fundamentals of Design: Definition.	
Approaches to Design, Centrality of	SHrs

Design, Elements of Design: Line, Shape, Space, Colour, Texture. Form Etc. Principles of Design: Symmetry. Rhythm, Contrast, Balance Mass/Scale etc. Design and Designers (Need, role, process, methodologies etc.)

UNIT-IV

Visual and Principles of other **SHrs Perceptions**. Colour Sensory psychology and theory (some aspects) **D**efinition, **O**ptical / **Visual Illusions** Etc Various stages of design processproblem identification, search for solution refinement, analysis, decision making, and implementation

UNIT-V

Basics of Graphic Design. Definition,	
Elements of GD, Design process-	8Hrs
research, a source of concept, the	
process of developing ideas-verbal,	
visual, combination & thematic, visual	
thinking, associative techniques,	
materials, tools (precision	
instruments etc.) design execution,	
and presentation.	

Course Outcomes: After completing theCO1Demonstratecriticalandinnovative

	thinking		
CO2	Display competence in oral, written, and visual communication		
CO3	Apply communication theories.		

Re	ference Books
1.	Communication between cultures - Larry A. Samovar, Richard E. Porter, Edwin R. McDaniel & Carolyn Sexton Roy, Monica Eckman, USA, 2012
2.	Introduction to Communication studies - John Fiske & Henry Jenkins 3rd edition, Routledge, Oxon 2011
З.	An Introduction to communication studies - Sheila Steinberg, Juta & Co., Cape Town, 2007
4.	One World Many Voices: Our Cultures - Marilyn Marquis & Sarah Nielsen, Wingspan Press, California, 2010

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping								
CO/PO	PO1	PO2	PO3	PO4	PO5	P06	P07	POS
CO1	2	1	1	-	1	1	2	-
CO2	З	3	З	3	2	-	-	-
СОЗ	1	-		1	1		2	3

	Semest	er: VI			
	INFORMATION				
C	(Theo ourse Code:				
M	MVJ21CG643 Marks:100				
C	Credits: L:T:P:S: SEE Marks:				
3:	0:0:0	100			
H	ours: 40L	SEE			
Duration					
		Hrs			
	ourse Learning Object ill be able to	tives: The students			
1	To understand the basics of InformationRetrieval.				
2	2 To understand machine learning techniques for text classification and clustering.				
3To understand various search engine system operations.					
4	To learn differe recommender system	A			

UNIT-I					
Information	Retrieval	—	Early		
Developments – The IR Problem – The					
Users Task – Information versus Data					

Retrieval – The IR System – The Software Architecture of the IR System – The Retrieval and Ranking Processes – The Web – The e-Publishing Era – How the web changed Search – Practical Issues on the Web – How People Search – Search Interfaces Today – Visualization in Search Interfaces.

Video link / Additional online information (related to module if any):

https://www.youtube.com/watch?v=f FxpSmyICwI

UNIT-II	
Basic IR Models – Boolean Model – TF-	
IDF (Term Frequency/Inverse	Hrs
Document Frequency) Weighting -	
Vector Model – Probabilistic Model –	
Latent Semantic Indexing Model -	
Neural Network Model – Retrieval	
Evaluation – Retrieval Metrics –	
Precision and Recall – Reference	
Collection – User-based Evaluation –	
Relevance Feedback and Query	
Expansion – Explicit Relevance	
Feedback.	
Video link / Additional online	
information (related to module if	
any):	
https://www.youtube.com/watch?v=m OoiAOgSQFw	
UNIT-III	

A Characterization of Text	8
Classification – Unsupervised	Hrs
Algorithms: Clustering – Naïve Text	
Classification – Supervised	
Algorithms – Decision Tree – k-NN	
Classifier – SVM Classifier – Feature	
Selection or Dimensionality	
Reduction – Evaluation metrics –	
Accuracy and Error – Organizing the	
classes – Indexing and Searching –	
Inverted Indexes – Sequential	
Searching – Multi-dimensional	
Indexing.	
Video link / Additional online	
information (related to module if	
any):	
https://www.youtube.com/watch?v=v uc93jbO2Dw	
UNIT-IY	
The Web – Search Engine	
Architectures – Cluster based	8Hrs
Architecture – Distributed	
Architectures – Search Engine	
Ranking – Link based Ranking –	
Simple Ranking Functions – Learning	
Simple Ranking Functions – Learning	
Simple Ranking Functions – Learning to Rank – Evaluations – Search	
Simple Ranking Functions – Learning to Rank – Evaluations — Search Engine Ranking – Search Engine User	
Simple Ranking Functions – Learning to Rank – Evaluations – Search Engine Ranking – Search Engine User Interaction – Browsing – Applications	
Simple Ranking Functions – Learning to Rank – Evaluations – Search Engine Ranking – Search Engine User Interaction – Browsing – Applications of a Web Crawler – Taxonomy –	
Simple Ranking Functions – Learning to Rank – Evaluations – Search Engine Ranking – Search Engine User Interaction – Browsing – Applications of a Web Crawler – Taxonomy – Architecture and Implementation –	

information (related to module if	
any):	
https://www.youtube.com/watch?v=Jj ywDlY10Jk	
UNIT-Y	
Recommender Systems Functions –	
Data and Knowledge Sources – ⁸	Hrs
Recommendation Techniques – Basics	
of Content-based Recommender	
Systems – High Level Architecture –	
Advantages and Drawbacks of	
Content-based Filtering -	
Collaborative Filtering – Matrix	
factorization models – Neighborhood	
models.	
Video link / Additional online	
information (related to module if	
any):	
https://www.youtube.com/watch?v=1 JRrCEgiyHM	

Course Outcomes: After completing the course, the students will be able to							
CO1	Use an open source search engine framework and explore its capabilities						
CO2	Evaluate Boolean Model						
CO3	Apply appropriate method of classification or clustering.						
CO4	Design and implement innovative features in a search engine.						
CO 5	Design and implement a recommender system.						

Reference Books					
1.	Ricardo	Bae	za-Yates	and	Berthier
	Ribeiro-N	eto,	- Modern	In	formation

	Retrieval: The Concepts and Technology behind Search, Second Edition, ACM Press Books, 2011.
2.	Press Books, 2011.Ricci,F,Rokach,L.Shapira,B.Kantor,-RecommenderSystemsHandbook, First Edition, 2011.
3.	C. Manning, P. Raghavan, and H. Schütze, –Introduction to Information Retrieval, Cambridge University Press, 2008.
4.	Stefan Buettcher, Charles L. A. Clarke and Gordon V. Cormack, –Information Retrieval: Implementing and Evaluating Search Engines, The MIT Press, 2010.

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional guizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping							5
CO/PO	P01	PO2	PO3	PO4	P05	P06	P07	POE
CO1	3	1	-	-	-	-	-	1
CO2	3	2	2	1	-	-	-	-
CO3	2	3	1	3	-	1	1	1
CO4	3	2	2	1	-	2	-	-
CO5	2	2	3	3	-	1	2	1

	Semeste	er: VI	
	GPU COME	PUTING	
	(Theorem	r y)	
C	ourse Code:	CIE	
М	VJ21CG644	Marks:100	
Credits: L:T:P:S:		SEE Marks:	
3:0:0:0		100	
Hours: 40L		SEE	
		Duration: 3	
		Hrs	
C	ourse Learning Objecti	ives: The students	
-	ill be able to		
To learn parallel programming with graphics processing units (GPUs).		ramming with	
		nits (GPUs).	

UNIT-I	
Evolution of GPU architectures -	
Understanding Parallelism with GPU – $\begin{bmatrix} 9 \\ r \end{bmatrix}$	BH S
Typical GPU Architecture – CUDA	
Hardware Overview – Threads, Blocks,	
Grids, Warps, Scheduling – Memory	
Handling with CUDA: Shared Memory,	
Global Memory, Constant Memory and	
Texture Memory.	
Video link / Additional online	
information (related to module if any):	
https://nptel.ac.in/courses/106/105/10 6105220/	
UNIT-II	
Using CUDA – Multi GPU – Multi GPU	
Solutions – Optimizing CUDA	s S
Applications: Problem Decomposition,	
Memory Considerations, Transfers,	
Thread Usage, Resource Contentions.	
Video link / Additional online	
information (related to module if any):	
https://nptel.ac.in/courses/106/105/10 6105220/	
UNIT-III	
Common Problems: CUDA Error	
Handling, Parallel Programming	Ir
Issues, Synchronization, Algorithmic	
Issues, Finding and Avoiding Errors.	
Video link / Additional online	
information (related to module if any):	
https://nptel.ac.in/courses/106/105/10	

UNIT-IY	1
OpenCL Standard – Kernels – Host	
Device Interaction – Execution	8H rs
Environment – Memory Model – Basic	
O pen CL Examples .	
Video link / Additional online	
information (related to module if any):	
 http://www.nvidia.com/object/cuda _home_new.html 	
UNIT-Y	
UNIT-VParallel Patterns: Convolution, PrefixSum, Sparse Matrix – Matrix	8H rs
Parallel Patterns: Convolution, Prefix	
Parallel Patterns: Convolution, PrefixSum, Sparse Matrix - MatrixMultiplication- Programming	
Parallel Patterns: Convolution, Prefix Sum, Sparse Matrix – Matrix Multiplication – Programming Heterogeneous Cluster.	
Parallel Patterns: Convolution, Prefix Sum, Sparse Matrix – Matrix Multiplication – Programming Heterogeneous Cluster.	

	se Outcomes: After completing the se, the students will be able to			
CO1	Describe GPU Architecture			
CO2	Write programs using CUDA, identify issues and debug them			
CO3	Implement efficient algorithms in GPUs for common application kernels, such as matrix multiplication			
CO4	Write simple programs using OpenCL			
CO 5	Identify efficient parallel programming patterns to solve problems			

Re	ference Books	
1.	Shane Cook, CUDA Programming: A	L
	Developers Guide to Parallel Computing	g

	with GPUs (Applications of GPU
	Computing), First Edition, Morgan
	Kaufmann, 2012.
2.	David R. Kaeli, Perhaad Mistry, Dana
	Schaa, Dong Ping Zhang, Heterogeneous
	computing with OpenCL, 3rd Edition,
	Morgan Kauffman, 2015.
З.	Nicholas Wilt, CUDA Handbook: A
	Comprehensive Guide to GPU
	Programming, Addison - Wesley, 2013.
4.	Jason Sanders, Edward Kandrot, CUDA
	by Example: An Introduction to General
	Purpose GPU Programming^, Addison –
	Wesley, 2010.

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional guizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

			CO-PO Mapping					
CO/PO	P01	PO2	PO3	PO4	PO5	P06	P07	POS
CO1	3	3	1	-	-	-	-	-
CO2	3	3	1	-	-	-	-	-
CO3	3	3	1	2	-	-	-	-
CO4	3	3	3	3	-	-	-	2
CO5	3	3	3	3	-	-	2	2

Sem	ester: VI				
VISUALIZATION TECHNIQUES					
	heory)				
Course Code:	CIE				
MVJ21CG645	Marks:100				
Credits: L:T:P:S:	SEE Marks:				
3:0:0:0	100				
Hours: 40L	SEE				
	Duration: 3				
	Hrs				
	jectives: The students				
will be able to					
	of visualization, specific formation visualization				
-	risualization, and how				
understand how					
visualization met	9				
υ	NIT-I				
Introduction -Visua					
	pport –Issues – SHrs				
Different Types of Tasks -Data					
representation -Limitation: Display					
Space, Rendering	Time, Navigation				
Link.					
	NIT-II				
Human Factors –					
	Visualization – SHrs				
Environment-Optics	-				
Display –Overview about Lightness,					
Brightness, Contrast, Constancy,					
Color –Visual Attention that Pops Out					
-Types of Data -Data Complexity -The					
Encoding of Values – Encoding of Relation –Relation and Connection –					
Alternative Canvass					
Human Vision –Sp					
-					
TimeLimitations-Design-SHrsExploration of Complex Information					
Space –Figure Caption in Visual					
Interface –Visual Objects and Data					
Objects - Space Perception and Data in					

Space –Images, Narrative and	
Gestures for Explanation	
UNIT-IY	
Norman's Action Cycle –Interacting	
with Visualization –Interaction for	8Hrs
Information Visualization –	
Interaction for Navigation -	
Interaction with Models –Interacting	
with Visualization –Interactive 3D	
Illustrations with Images and Text –	
Personal View –Attitude – user	
perspective -Convergence -Sketching	
-Evaluation.	
UNIT-Y	
Design – Virtual Reality: Interactive	
Medical Application –Tactile Maps for	8Hrs
visually challenged People -	
Animation Design for Simulation -	
Integrating Spatial and Nonspatial	
Data –Innovating the Interaction –	
Small Interactive Calendars -	
Selecting One from Many- Web	
Browsing Through a Key Hole –	
Communication Analysis –Archival	
Galaxies	

Course Outcomes: After completing the course, the students will be able to				
CO1	Understand the fundamentals of data visualization			
CO2	Acquire knowledge about the issues in data representation			
CO3	Visualize the complex engineering design.			
CO4	Design real time interactive information visualization system			
CO 5	Apply the visualization techniques in practical applications			

Reference Books1.RobertSpence, "InformationVisualization:AnIntroduction", ThirdEdition, Pearson Education, 2014

2.	Colin Ware, "Information Visualization Perception for Design", ThirdEdition, Morgan Kaufmann, 2012.
З.	RobertSpence,"InformationVisualizationDesign for Interaction",SecondEdition,Pearson2006
4.	BenjaminB.Bederson,Benshneiderman, "The Craft of InformationVisualization",MorganKaufmann,2003.

CIE is executed by way of quizzes (Q), tests (T) assignments. A minimum of three and quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping						5		
CO/PO	P01	PO2	PO3	PO4	PO5	P06	P07	POS
CO1	3	-	-	-	1	-	-	-
CO2	3	3	3	2	-	-	-	-
CO3	2	2	2	1	3	-	-	-
CO4	3	2	3	2	1	-	-	-
CO5	3	2	3	1	-	-	-	-

	Semeste	r:VII	
	INTERNET OF T	HINGS & LAB	
	(Theory and)	Practice)	
C	ourse Code:	CIE	
M	YJ21CG71	Marks:50+50	
C	redits: L:T:P:	SEE Marks:	
3:	0:1	50+50	
H	ours:40 L+26 P	SEE	
		Duration:	
	ourse Learning Objecti	03+03 Hours	
<u>w</u>	ill be able to To learn the basic challenges in the Inter	rnet.	
2	To get an idea of some of the application areas where Internet of Things can be applied.		
3	To understand the environment.	cloud and internet	
4	To understand the communications with		

UNIT-I			
Introduction to IoT: D efinition –	8		
Foundations – Challenges and Issues -	Hr S		
Identification - Security. Components in			

internet of things: Control Units – Sensors – Communication modules – Power Sources – Communication Technologies – RFID – Bluetooth – Zigbee – Wifi – Rflinks – Mobile Internet – Wired Communication-IoT Platform Overview-Raspberry pi-Arduino boards.*

Video link / Additional online information (related to module if any):

http://www.theinternetofthings.eu/
 what-is-the-internet-of-things.

UNIT-II	
IoT Protocols: Protocol	8
Standardization for IoT-M2M and WSN	Hr s
Protocols-SCADA and RFID Protocols-	
Issues with IoT Standardization-	
Protocols-IEEE 802.15.4-BACNet	
Protocol-Zigbee Architecture - Network	
layer – APS Layer – Security.*	
Video link / Additional online	
information (related to module if any):	
https://inductiveautomation.com/resou rces/article/what-is-scada	
UNIT-III	
Resource Management in the Internet	
of Things: Clustering - Software Agents -	8H rs
Data Synchronization - Clustering	
Principles in an Internet of Things	
Architecture - The Role of Context -	
Design Guidelines -Software Agents for	
O bject – D ata Synchronization- Types of	

Network Architectures - Fundamental
Concepts of Agility and Autonomy-
Enabling Autonomy and Agility by the
Internet of Things - The Evolution from
the RFID-based EPC Network to an
Agent based Internet of Things- Agents
for the Behaviour of Objects.*
Video link / Additional online
information (related to module if any):
RFID Applications:
https://www.digiteum.com/rfid-
technology-internet-of-things
UNIT-IV
Case Study and IoT Application
Development: IoT applications in home-
infrastructures security-Industries-
IoT electronic equipment's. Use of Big
Data and Visualization in IoT Industry
4.0 concepts - Sensors and sensor Node
-Interfacing using Raspberry
Pi/Arduino- Web Enabled Constrained
Devices.*
Video link / Additional online
information (related to module if any):
 https://www.simform.com/home-
 https://www.simform.com/home-
 https://www.simform.com/home- automation-using-internet-of-

Web of Things: Web of Things versus 8 Hr Internet **Things-Architecture** of s Standardization for **WoT-Platform** Middleware for WoT- WoT Portals and **Business Intelligence-Cloud of Things:** Grid/SOA and Cloud Computing-Cloud Standards -Cloud of Things Architecture-Open e-Health Source sensor platform.

Videolink/Additionalonlineinformation (related to module if any):

 https://www.water-io.com/iot-vswot

LABORATORY EXPERIMENTS

1. Familiarization with Arduino/Raspberry Pi and perform necessary software installation.

2. To interface LED/Buzzer with Arduino/Raspberry Pi and write a program to turn ON LED for 1 sec after every 2 seconds.

3. To interface motor using relay with Arduino/Raspberry Pi and write a program to turn ON motor when push button is pressed.

4. To interface OLED with Arduino/Raspberry Pi and write a program to print temperature and humidity readings on it.

5. To interface Bluetooth with Arduino/Raspberry Pi and write a program to send sensor data to smartphone using Bluetooth.

6. To interface Push button/Digital sensor (IR/LDR) with Arduino / Raspberry Pi and write a program to turn ON LED when push button is pressed or at sensor detection.

7. To interface DHT11 sensor with Arduino/Raspberry Pi and write a program

to print temperature and humidity readings. 8. Write a program on Arduino/Raspberry Pi to publish temperature data to MQTT broker.

9. To interface Bluetooth with Arduino/Raspberry Pi and write a program to turn LED ON/OFF when '1'/'O' is received from smartphone using Bluetooth.

Any 9 experiments to be conducted

Course Outcomes: After completing the course, the students will be able to				
CO1	Identify the components of IoT.			
CO2	Analyze various protocols of IoT.			
CO3	Design portable IoT using appropriate boards			
CO4	Develop schemes for the applications of IOT in real time scenarios.			
CO 5	Design business Intelligence and Information Security for WoT			

Re	ference Books
1	Honbo Zhou, "The Internet of Things in the Cloud:A Middleware Perspective" - CRC Press-2012.
2	Dieter Uckelmann, Mark Harrison, "Architecting the Internet of Things", Springer2011.
3.	Arshdeep Bahga, Vijay Madisetti, "Internet of Things (A Hands-On- Approach)", VPT, 2014.
4.	Olivier Hersent, David Boswarthick, Omar Elloumi, "The Internet of Things – Key applications and Protocols", Wiley, 2012.

Continuous Internal Evaluation (CIE): Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Laboratory- 50 Marks

The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are awarded 10 marks. Total marks for the laboratory is 50.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Semester: VII		
ARTIFICIAL INTELLIGENCE		
(Theory)		
Course Code:	CIE	
MVJ21CG721	Marks:100	
Credits: L:T:P:S:	SEE Marks:	

3:0:0:0		100			
Hours: 40L		SEE			
		Duration: 3			
		Hrs			
	Course Learning Objectives: The students will be able to				
	Describe the basi	c principles, techniques,			
1	and applications of	of Artificial Intelligence			
2	Analyze and expl methods	ain different AI learning			
З	Compare and	contrast different AI			
	techniques availa	ble.			

UNIT-I	
INTRODUCTION: What Is AI? The	
Foundations of Artificial	8Hrs
Intelligence ,The History of Artificial	
Intelligence, The State of the Art.	
Intelligent Agents : Agents and	
Environments ,Good Behavior: The	
Concept of Rationality ,The Nature of	
Environments, The Structure of	
Agents.Knowledge Representation	
Issues, Using Predicate Logic,	
Representing knowledge using Rules.	
Video Links	
 <u>https://www.youtube.com/watch?</u> <u>v=3MW3ICnkQ9k</u> 	
UNIT-II	
PROLOG- The natural Language of	
Artificial Intelligence: Introduction,	8Hrs
Converting English to Prolog Facts	
and Rules, Goals, Prolog	
Terminology, Variables, Control	
Structures, Arithmetic operators,	

Matching in Prolog, Backtracking,	
Cuts, Recursion, Lists, Dynamic	
databases, Input/Output and Streams	
Using Predicate Logic: Representing	
simple facts in logic, representing	
instance and ISA relationships,	
Computable Functions and	
Predicates, Resolution, Natural	
Deduction.	
Video Links:	
https://www.youtube.com/watch?v-p zUBrJLIESU	
UNIT-III	
Heuristic search techniques: Generate	
and test, Hill Climbing, Best First	3Hrs
Search, Problem Reduction,	
Constraint Satisfaction, Means-ends	
Analysis.	
Weak Slot- and- Filler Structures:	
Semantic Nets ,Frames.	
Strong slot-and Filler Structures-	
Conceptual Dependency, Scripts.	
Video Links:	
https://www.youtube.com/watch?y=ie Zr TpRwnQ	
UNIT-IY	
Game Playing : Overview, Minimax	
Search Procedure, Adding alpha beta	BHrs
cut off, Additional Refinements,	
Iterative Deepening, References on	
Specific games.	
Learning: What is learning?, Forms of	
learning, Rote learning, learning by	

taking advice, Learning in problem					
solving,	Induction	leaning,			
Explanation	based	learning,			
Discovery, A Video Links:					
https://www.youtube.com/watch?v=_i-					
<u>lZcbWkps</u> nalogy, Formal learning					
Theory, Neural Network Learning.					

UNIT-Y

Natural Language Processing:				
Syntactic Processing, Semantic	8Hrs			
Analysis, Discourse and Pragmatic				
processing, Statistical Natural				
language processing and Spell				
checking.				
Genetic Algorithms: A peek into the				
biological world, Genetic				
Algorithms(GAs),Significance of				
genetic operators, termination				
parameters, niching and speciation,				
evolving neural network, theoretical				
grounding.				
Video Links:				
https://www.youtube.com/watch?v=z				
<u>G8AJhVy5NY</u>				

Course Outcomes: After completing the course, the students will be able to				
CO1	Identify AI based problems and understand Intelligent agents			
CO 2	Apply predicate logic and heuristic techniques to solve AI problems.			
CO3	Understand the different representation of knowledge.			
CO4	Understand the concepts of learning			

	and Natural Language Processing.				
CO 5	Understand Genetic Algorithms and solve AI problems using PROLOG .				

Re	eference Books
1.	Artificial Intelligence: A Modern
	Approach, Stuart Rusell, Peter Norving,
	Pearson Education 2nd Edition
2.	E. Rich, K. Knight & S. B. Nair - Artificial
	Intelligence, 3/e, McGraw Hill.
З.	Dan W. Patterson, Introduction to
	Artificial Intelligence and Expert
	Systems – Prentice Hal of India.
4.	G. Luger, "Artificial Intelligence:
	Structures and Strategies for complex
	problem Solving", Fourth Edition,
	Pearson Education, 2002.

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional guizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each

course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping							
CO/PO	PO1	PO2	PO3	PO4	PO5	P06	P07	POS
CO1	2	З	1	2	-	-	-	-
CO2	3	3	2	3	1	-	-	-
СОЗ	З	3	2	3	1	-	-	-
CO4	3	3	2	3	2	-	-	-
CO 5	З	З	2	3	2	-	-	-

Semeste	r: VII			
AGILE TECHNOLOGIES (Theory)				
MVJ21CG722	Marks:100			
Credits: L:T:P:S:	SEE Marks:			
3:0:0:0	100			
Hours: 40L	SEE			
	Duration: 3			
	Hrs			
Course Learning Object	ives: The students			
will be able to				
1 Discuss the essence of agile development				

	methods.
2	Carry out all stages of an agile software process in a team, to produce working software.
3	Provide practical knowledge of how to manage a project using Scrum framework.
4	Use test driven development to ensure software quality.
5	Should be able to demonstrate a more advanced capability to apply lean and agile development techniques to solve complex problems.

UNIT-I	
Fundamentals of Agile: The Genesis of	
Agile, Introduction and background,	SHrs
Agile Manifesto and Principles,	
Overview of Scrum, Extreme	
Programming, Feature Driven	
development, Lean Software	
Development, Agile project	
management, Design and	
development practices in Agile	
projects, Test Driven Development,	
Continuous Integration, Refactoring,	
Pair Programming, Simple Design,	
User Stories, Agile Testing, Agile	
Tools	
UNIT-II	
	0

Agile	Scr	um	Fra	amework:	8
Introdu	ction	to	Scrum,	Project	Hrs
phases,	Agile	Esti	mation,	Planning	
game,	Produ	ct	backlog,	Sprint	
backlog,	Itera	tion	planni	ng, User	
story de	finitio	n, C	haracteri	istics and	
content	of use	er st	tories, A	cceptance	
tests an	d Veri	fyin	g stories	s, Project	
velocity,	, Burn	do	wn char	rt, Sprint	
planning	g and	ret	rospectiv	re, Daily	
scrum, §	Scrum	roles	5 – Produ	ct Owner,	
Scrum 1	Master,	S cr	rum Tear	n, Scrum	

case study, Tools for Agile project	
management	
UNIT-III	
Agile Testing: The Agile lifecycle and	
its impact on testing, Test-Driven	8Hrs
Development (TDD), xUnit	
framework and tools for TDD, Testing	
user stories - acceptance tests and	
scenarios, Planning and managing	
testing cycle, Exploratory testing,	
Risk based testing, Regression tests,	
Test Automation, Tools to support the	
Agile tester	
UNIT-IV	
Agile Software Design and	
Development: Agile design practices,	8Hrs
Role of design Principles including	
Single Responsibility Principle, Open	
Closed Principle, Liskov Substitution	
Principle, Interface Segregation	
Principles, Dependency Inversion	
Principle in Agile Design, Need and	
significance of Refactoring,	
Refactoring Techniques, Continuous	
Integration, Automated build tools,	
Version control.	
UNIT-Y	
Industry Trends: Market scenario and	
adoption of Agile, Agile ALM, Roles in	8Hrs
an Agile project, Agile applicability,	
Agile in Distributed teams, Business	
benefits, Challenges in Agile, Risks	
and Mitigation, Agile projects on	
Cloud, Balancing Agility with	
Discipline, Agile rapid development	
technologies.	

Cour	Course Outcomes: After completing the			
cours	se, the students will be able to			
CO1	Understand the background and			
	driving forces for taking an Agile			
	approach to software development			
CO2	Understand the business value of			
	adopting Agile approaches.			
CO3	Drive development with unit tests			

	using Test Driven Development
CO4	Deploy automated build tools, version control and continuous integration
CO 5	Apply design principles and refactoring to achieve Agility.

Re	ference Books
1.	Ken Schawber, Mike Beedle," Agile Software Development with Scrum", Pearson Education.
2.	Lisa Crispin, Janet Gregory, "Agile Testing: A Practical Guide for Testers and Agile Teams", Addison Wesley.
З.	Robert C. Martin, "Agile Software Development, Principles, Patterns and Practices", Prentice Hall
4.	Robert Spalding: "Storage Networks the Complete Reference", Tata McGraw-Hill, 2011.

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional guizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

			CO-PO Mapping					
CO/PO	P01	PO2	PO3	P04	PO5	P06	P07	POS
CO1	3	2	1	-	-	-	-	-
CO2	3	2	1	-	-	-	-	-
СОЗ	3	2	`1	-	-	-	-	-
CO4	3	2	1	-	-	-	-	-
CO 5	3	2	1	-	-	-		-

Semester: VII SPATIAL INFORMATION SYSTEM (Theory) **Course Code:** CIE **MVJ21CG723** Marks:100 SEE Marks: Credits: L:T:P:S: 3:0:0:0 100 SEE Hours: 40L **Duration: 3** Hrs **Course Learning Objectives: The students** will be able to Expose the students with concepts of cartography as major components of input 1 and output related to cartography To provide exposure to data models and data structures in GIS and to introduce 2 various Raster and Vector Analysis capabilities. To expose the concept of quality and 3 design of cartographic outputs in open **GIS** environment

UNIT-I	
D efinition of Map - Mapping	8
O rgansiation in India- C lassification	Hrs
based on Function, Scale,	
Characteristics – Ellipsoid and Geoid –	
Co-ordinate Systems - Rectangular	
and Geographic Coordinates – UTM	

and UPS - Projection - Function -	
Types of Map Projections -	
Transformations – Function - Affine	
transformation - Choice of Map	
Projection – Evolution of cartography-	
Geo-Spatial, Spatial and Non-spatial	
data – Definition of GIS – Evolution	
GIS – Components of GIS.	
UNIT-II	
Point, Line Polygon / Area, elevation	
and surface – Tessellations - Attributes	8Hrs
and Levels of Measurement - Data	
Sources – Ground and Remote	
Sensing survey – Collateral data	
collection – Input: Map scanning and	
digitization, Registration and	
Georeferencing – Concepts of RDBMS	
- Raster Data Model – Grid – Data	
Encoding - Data Compression – Vector	
Data Model – Topological properties –	
Arc Node Data Structure – Raster Vs.	
Vector Comparison – File Formats for	
Raster and Vector – Data conversion	
between Raster and vector	
UNIT-III	
Raster Data analysis: Local,	8Hrs
Neighborhood and Regional	onrs
O perations – M ap Algebra – V ector	
Data Analysis: Topological Analysis,	
point-in-polygon, Line-in-polygon,	
Polygon-in-Polygon – Proximity	
Analysis: buffering, Thiessen Polygon	
– Non-topological analysis: Attribute	
data Analysis- concepts of SQL-	

ODBC	
UNIT-IV	
Network – Creating Network Data -	
Origin, Destination, Stops, Barriers –	8Hrs
Closest Facility Analysis, Service	
Area Analysis, OD Cost matrix	
analysis, Shortest Path Analysis –	
Address Geocoding – Surface Analysis	
- DEM, DTM - Point data to Surface	
interpolation – DEM Representaiton -	
Applications	
UNIT-Y	
Map Compilation – Cartographic	
functionalities for Map Design -	8Hrs
Symbolization – Conventional signs	
and symbols – Spatial Data Quality –	
Lineage, Positional Accuracy,	
Attribute Accuracy, Completeness, Logical Consistency - Meta Data – Web	
based GIS: Definition, Merits -	
Architecture – Map Server – Spatial	
Data Infrastructure – Spatial Data	
Standards	

	Course Outcomes: After completing the course, the students will be able to		
CO1	Acquire knowledge about cartographic principles, spatial data models and spatial analysis.		
CO2	Understand the cartographic outputs in open GIS environment		
CO3	Understand Network and Surface Analysis		
CO4	Design Raster and Vector Data Analysis		
CO 5	Compare Gis Data Models And Data Input		

Re	eference Books
1.	C.P. Lo, Albert K.W. Yeung, Concepts and Techniques of Geographic Information Systems, 2nd Edition, Prentice Hall, 2006, ISBN-13: 9780131495029
2.	John Jensen, Ryan Jensen, Introductory Geographic Information Systems, International Edition, Pearson Publishers, 2012, ISBN-10: 0136147763, ISBN-13: 9780136147763
3.	Kang-tsung Chang, Introduction to Geographic Information Systems with Data Set CD- ROM, 6th Edition, Mc Graw Hill, 2013, ISBN-10: 0077805402,. ISBN-13: 978-0077805401

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

			CO-PO Mapping						
CO/PO	P01	PO2	PO3	PO4	PO5	P06	P07	POE	
CO1	3	2	2	-	-	-	-	-	
CO2	3	3	3	-	-	-	-	-	
CO3	3	3	3	-	-	-	-	-	
CO4	3	3	3	-	-	-	-	-	
CO 5	2	2	2	-	-	-	-	-	

Semester: VII						
COMPUTATIONAL PHOTOGRAMMETRY						
(Theory)						
Course Code:						
MVJ21CG724 Marks:100						
Credits: L:T:P:S: SEE Marl						
<mark>3:0:0:0</mark>	<mark>100</mark>					
Hours: 40L	SEE					
	Duration: 3					
	Hrs					
Course Learning Objectives: The students						
will be able to						
To introduce basics and concepts of aerial						

1 photography, acquisition and mapping from aerial photographs using different types of stereo plotters

UNIT-I

Principles - Stereoscopic depth	
perception – aerial photo-aerial	<mark>8Hrs</mark>
<mark>camera -Scale – overlaps – stereoscopy</mark>	
– concepts – viewing and measuring	
system – principle of floating mark –	
methods of parallax measurement –	
vertical photographs – geometry, scale,	
parallax equations, planimetric	
<mark>mapping – Tilted photograph –</mark>	
Geometry, Coordinate system, Scale,	
Planimetric mapping	
UNIT-II	
Coordinate systems for	
Photogrammetry - Map projections,	<mark>8Hrs</mark>
Datums and conversions- 2D	
Coordinate transformations-	
Collinearity and Space resection-	
Analytical stereomodel and relative	
orientation- Three dimensional	
Coordinate transformations	
UNIT-III	
Concepts of interior, relative, absolute	
orientation – direct georeferencing –	<mark>8Hrs</mark>
object, image relation - collinearity and	
coplanarity conditions – effect of	
orientation elements - Elements and	
principles of Aerotriangulation -	

Independent Models-Simultaneous	
<mark>bundle adjustment - ortho mosaic</mark>	
UNIT-IY	
Digital cameras- CCD camera- full	
frame, frame transfer, interline CCD	<mark>8Hrs</mark>
camera - Time delay integration-	
spectral sensitivity of CCD sensor –	
geometry and radiometry problem of	
CCD image - Image Generation - Data	
Compression - formats —	
Georeferencing - Stereo viewing -	
Display modes - image matching	
<mark>techniques - Image measurements.</mark>	
UNIT-Y	
Review of space resection &	
intersection - Automatic tie point	<mark>8Hrs</mark>
generation - Automatic Block	
triangulation, feature collection and	
plotting-DEM Generation - accuracy	
of DEMs , Orthorectification - regular	
& irregular data collection methods -	
contour generation - watershed	
delineation - Satellite	
Photogrammetry principles –	
<mark>missions - stereo image products</mark>	

Cour	Course Outcomes: After completing the								
cour	course, the students will be able to								
<mark>C01</mark>	Acquire knowledge about								
	photogrammetry principles, methods								
	and products generation strategies in								
	both Analytical and digital								
	photogrammetry system.								
CO2	Understand the problem related to								
	generation of products and solving								
	them.								

ſ

Re	ference Books
1.	Edward M. Mikhail, James S.Bethel,
	J.Chris McGlone, Introduction on
	"Modern Photogrammetry", John Wiley
	<mark>& Sons, Inc., 2001, ISBN 0-471-30924-9</mark>
2 .	Francis h. Moffitt, Edward M. Mikhail,
	Photogrammetry, TBS The Book Service

	Ltd,	Third	Editio	n, 1980 ,	ISBN
	<mark>0700</mark> 2	<mark>2517X, 9</mark>	780700	<mark>)225170</mark>	
<mark>3.</mark>	Karl	Krau	ls,	Photogra	<mark>mmetry,</mark>
	Funda	mentals	and sta	ndard p	cocesses,
	Dümn	ler, 200	<mark>o, isbn</mark>	978 3 1	019007
	<mark>6</mark>				
4.	Miche	<mark>al Kasser</mark>	<mark>and Yy</mark>	es Egels,	"Digital
	Photog	grammet:	ry", Tay	vlor and	Francis,
	<mark>2003</mark> ,	IS	BN	0203	<mark>305957,</mark>
	<mark>9780</mark> 2	2033059	<mark>59</mark>		

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice

in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-F	PO Ma	<mark>pping</mark>	
CO/PO	P01	PO2	PO3	P04	P05	P06	P07	PO 8
CO1	2	1	1	-	1	1	2	_
CO2	<mark>3</mark>	<mark>3</mark>	<mark>3</mark>	3	2	-	-	-
High 2 Modimus O Lowy 1								

Semes	ster: VII
	ESCIENCE
-	eory)
Course Code:	CIE
MVJ21CG725	Marks:100
Credits: L:T:P:S:	SEE Marks:
3:0:0:0	100
Hours: 40L	SEE
	Duration: 3
	Hrs
Course Learning Obje will be able to	ctives: The students
To learn the basic	s of Cognitive Science
and use of known minds, brains, and	isition, representation, wledge by individual l machines, as well as ns, and other social
2 embracing psy	ind and intelligence, ychology, artificial science and linguistics
To appreciate theBaychology	e basics of cognitive

4 To understand the role of Neuro science in Cognitive field

UNIT-I	
The Cognitive view –Some	
Fundamental Concepts – Computers	8Hrs
in Cognitive Science – Applied	
Cognitive Science – The	
Interdisciplinary Nature of Cognitive	
Science – Artificial Intelligence:	
Knowledge representation -The	
Nature of Artificial Intelligence -	
Knowledge Representation -	
Artificial Intelligence: Search,	
Control, and Learning	
UNIT-II	·
Cognitive Psychology – The	
Architecture of the Mind - The Nature	SHrs
of Cognitive Psychology- A Global	
View of The Cognitive Architecture-	
Propositional Representation-	
Schematic Representation Cognitive	
Processes, Working Memory, and	
Attention- The Acquisition of Skill-	
The Connectionist Approach to	
Cognitive Architecture	
UNIT-III	
Brain and Cognition Introduction to	8
the Study of the Nervous System -	Hrs
Neural Representation –	
Neuropsychology- Computational	
Neuroscience - The Organization of	
the mind - Organization of Cognitive	
systems - Strategies for Brain	
mapping – A Case study: Exploring	
mindreading	
UNIT-IV	
Language Acquisition: Milestones in	
Acquisition – Theoretical	8Hrs
Perspectives- Semantics and	
Cognitive Science – Meaning and	
Entailment – Reference – Sense –	
Cognitive and Computational Models	
of Semantic Processing – Information	
Processing Models of the Mind-	
Physical symbol systems and	

language of thought- Applying the	
Symbolic Paradigm- Neural networks	
and distributed information	
processing- Neural network models of	
Cognitive Processes	
UNIT-Y	
Reasoning – Decision Making –	
Computer Science and AI:	8Hrs
Foundations & Robotics – New	
Horizons - Dynamical systems and	
situated cognition- Challenges -	
Emotions and Consciousness -	
Physical and Social Environments -	
Applications	

Course Outcomes: After completing the
course, the students will be able to

CO1	Explain, and analyze the major					
	concepts, philosophical and theoretical					
	perspectives, empirical findings, and					
	historical trends in cognitive science, related to cultural diversity and living					
	in a global community.					
CO2						
	to create their own methods for answering novel questions of either a					
	theoretical or applied nature,					

CO3	Proficient with basic cognitive science				
	research methods, including both				
	theory-driven and applied research				
	design, data collection, data analysis,				
	and data interpretation.				

Reference Books

1.	Cognitive Science: An Introduction, Second Edition by Neil Stillings, Steven E. Weisler, Christopher H. Chase and Mark H. Feinstein,1995
2.	Cognitive Science: An Introduction to the Science of the Mind ,José Luis Bermúdez, Cambridge University Press, New York,2010
3.	Cognitive Psychology, Robert L. Solso, Otto H. MacLin and M. Kimberly MacLin,

	2007, Pearson Education				
4.	Cognitive Science: An Introduction to the				
	Study of Mind (2006) by J. Friedenberg				
	and G. Silverman				

CIE is executed by way of quizzes (Q), tests (T) assignments. A minimum of three and quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO/PO	P01	PO2	PO3	PO4	PO5	P06	P07	POS
CO1	3	1	2	1	-	-	-	-
CO2	З	2	1	3	3	2	-	-
СОЗ	З	2	1	З	-	2	-	-

	Seme	ester: VII				
M	MOBILE AND PERVASIVE COMPUTING					
	-	heory)				
C	ourse Code:	CIE				
M	VJ21CG731	Marks:100				
	redits: L:T:P:S:	SEE Marks:				
3:	0:0:0	100				
H	ours: 40L	SEE				
		Duration: 3				
		Hrs				
C	ourse Learning Ob	jectives: The students				
	ill be able to					
	To understand	the basics of Mobile				
1	computing and Personal computing					
	To learn the role	of wireless networks in				
2	Mobile Comput	ting and Pervasive				
	Computing					
	To study about t	he underlying wireless				
3						
	To understand the	e architectures of mobile				
4	and pervasive app					
_	<u> </u>	liar with the pervasive				
5		e computing platforms.				

UNIT-I	
Differences between Mobile	
C ommunication and M obile	8Hrs
Computing – Contexts and Names –	
Functions – Applications and Services	
– New Applications – Making Legacy	
Applications Mobile Enabled – Design	
Considerations – Integration of	
Wireless and Wired Networks –	
Standards Bodies – Pervasive	
Computing – Basics and Vision –	
Principles of Pervasive Computing –	
Categories of Pervasive Devices	
UNIT-II	
Migration to 3G Networks – IMT	
2000 and UMTS - UMTS	8Hrs
Architecture – User Equipment –	
Radio Network Subsystem – UTRAN –	
Node B - RNC functions - USIM -	
Protocol Stack – CS and PS Domains –	

IMS Architecture – Handover – 3.5G and 3.9G a brief discussion – 4G LAN and Cellular Networks – LTE **Control Plane – NAS and RRC – User** Plane - PDCP. RLC and MAC WiMax **IEEE 802.16**d/e - WiMax Internetworking with **3GPP** UNIT-III Sensor Networks – Role in Pervasiye **Computing – In Network Processing** SHrs and Data Dissemination – Sensor Databases – Data Management in Wireless Mobile Environments Mesh Networks Wireless **Architecture – Mesh Routers – Mesh Routing - Cross Layer** Clients – Security Aspects Approach – of Various Layers in WMN Applications of Sensor and Mesh networks UNIT-IV Mechanisms for Adaptability — **Adaptation - Functionality and Data -SHrs** Location Transcoding — Aware **Computing – Location Representation** Techniques Localization Triangulation and Scene Analysis -**Delaunay Triangulation and Voronoi** graphs – Types of Context – Role of **Mobile Middleware – Adaptation and** Agents Service Discovery Middleware UNIT-V **Three tier architecture - Model View Controller Architecture - Memory** SHrs **Management – Information Access Devices – PDAs and Smart Phones – Smart Cards and Embedded Controls** - J2ME - Programming for CLDC -GUI in MIDP — Application **Development ON Android and iPhone.**

Course Outcomes: After completing theCO1Deploy 3G networks

CO2	Develop suitable algorithms for 4G networks.				
CO3	Use sensor and mesh networks to develop mobile computing environment.				
CO4	Develop mobile computing applications based on the paradigm of context aware computing.				
CO 5	Identify architecture for Application Development				

Re	Reference Books						
1.	Asoke K Talukder, Hasan Ahmed, Roopa R Yavagal, "Mobile Computing: Technology, Applications and Service Creation", Second Edition, Tata McGraw Hill, 2010.						
2.	Reto Meier, "Professional Android 2 Application Development", Wrox Wiley, 2010.						
З.	Pei Zheng and Lionel M Li, 'Smart Phone & Next Generation Mobile Computing', Morgan Kaufmann Publishers, 2006						
4.	Frank Adelstein, 'Fundamentals of Mobile and Pervasive Computing', TMH, 2005						

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapp					pping	5	
CO/PO	P01	PO2	PO3	PO4	PO5	P06	P07	POS
CO1	3	-	-	-	1	-	-	-
CO2	3	3	3	-	-	-	-	-
CO3	3	2	2	1	3	-	-	-
CO4	3	2	3	-	-	-	-	-
CO5	3	2	3	-	-	-	-	-

Semeste	er: VII		
COMPUTER APPLIC	ATIONS IN DESIGN		
(Theo	ory)		
Course Code:	CIE		
MVJ21CG732	Marks:100		
Credits: L:T:P:S:	SEE Marks:		
3:0:0:0	100		
Hours: 40L	SEE		
	Duration: 3		
	Hrs		
Course Learning Object will be able to	ives: The students		
—	edge on computer e used routinely in		

1 diverse areas as science, engineering, medicine, etc

UNIT-I						
Output	primitives	(points,	lines,			

curves etc.,), 2-D & 3-D	8Hrs
transformation (Translation, scaling,	
rotation) windowing - view ports -	
clipping transformation	
UNIT-II	
Introduction to curves - Analytical	
curves: line, circle and conics –	8Hrs
synthetic curves: Hermite cubic	
spline- Bezier curve and B-Spline	
curve – curve manipulations.	
Introduction to surfaces - Analytical	
surfaces: Plane surface, ruled surface,	
surface of revolution and tabulated	
cylinder – synthetic surfaces: Hermite	
bicubic surface- Bezier surface and B-	
Spline surface- surface	
manipulations.	
UNIT-III	
NURBS- Basics- curves, lines, arcs,	8
circle and bi linear surface.	Hrs
Regularized Boolean set operations -	
primitive instancing - sweep	
representations - boundary	
representations – constructive solid	
Geometry - comparison of	
representations - user interface for	
solid modeling.	
UNIT-IV	
Hidden – Line – Surface – solid	8
removal algorithms shading -	Hrs
coloring. Introduction to parametric	
and variational geometry based	
software's and their principles	
creation of prismatic and lofted parts	
using these packages.	
UNIT-Y	
Assembly modeling - interferences of	
positions and orientation - tolerances	8Hrs
analysis – mass property calculations -	
mechanism simulation. Graphics and	
computing standards- Open GL Data	
Exchange standards – IGES, STEP	
etc-Communication standards.	

Course Outcomes: After completing the

cours	course, the students will be able to						
C01	It helps the students to get familiarized with the computer graphics application in design.						
C02	This understanding reinforces the knowledge being learned and shortens the overall learning curve which is necessary to solve CAE problems that arise in engineering						

Reference Books David F. Rogers, James Alan Adams 1. "Mathematical elements for computer graphics" second edition, Tata McGraw-Hill edition.2003 2. Donald Hearn and M. Pauline Baker "Computer Graphics", Prentice Hall. Inc., 1992 3. Foley, Wan Dam, Feiner and Hughes – **Computer** graphics principles practices, Pearson Education - 2003. 4. Ibrahim Zeid Mastering CAD/CAM -McGraw Hill, International Edition,

&

Continuous Internal Evaluation (CIE): Theory for 50 Marks

2007

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional guizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping								
CO/PO	PO1	PO2	PO3	PO4	PO5	P06	P07	POS
CO1	2	2	2	-	-	-	-	-
CO2	2	2	3	-	-	-		-

Semester: VII GAME DESIGN & DEVELOPMENT						
Course Code: CIE						
MVJ21CG733 Marks:100						
Credits: L:T:P:S: SEE Marks:						
3:0:0:0	100					
Hours: 40L SEE						
Duration: 3						
	Hrs					

Course Learning Objectives: The students	
will be able to	

	Understand the concepts of Game design							
1	and development.							
	Learn the processes, mechanics and							
2	issues in Game Design.							
	Be exposed to the Core architectures of							
3	Game Programming.							
	Know about Game programming							
4	platforms, frame works and engines.							
	Learn to develop games.							

UNIT-I

3D Transformations, Quaternions,	8
3D Modeling and Rendering, Ray	Hrs
Tracing, Shader Models, Lighting,	
Color, Texturing, Camera and	
Projections, Culling and	
Clipping, Character Animation,	
Physics-based Simulation, Scene	
Graphs.	
UNIT-II	
Game engine architecture, Engine	8
support systems, Resources and File	Hrs
systems, Game loop and real-time	
simulation, Human Interface devices,	
Collision and rigid body dynamics,	
Game profiling.	
UNIT-III	
Application layer, Game logic, Game	
views, managing memory, controlling	8Hrs
the main loop, loading and caching	
game data, User Interface	
management, Game event	
management	
UNIT-IY	
2D and 3D Game development using	
Flash, DirectX, Java, Python, Game	8Hrs
an aire an Alasidar DV Standia	
engines - Unity. DX Studio.	
UNIT-Y	
UNIT-Y	8Hrs

Games, Puzzle games, Single Player	
games, Multi Player games.	

	se Outcomes: After completing the se, the students will be able to
CO1	D iscuss the concepts of G ame design and development.
CO2	Design the processes, and use mechanics for game development.
CO3	Explain the Core architectures of Game Programming
CO4	Use Game programming platforms, frame works and engines.
CO 5	Create interactive Games

Reference Books

1.	Mike Mc Shaffrfy and David Graham,
	"Game Coding Complete", Fourth
	Edition, Cengage Learning, PTR, 2012
2.	Jason Gregory, "Game Engine
	Architecture", CRC Press / A K Peters, 2009
3.	David H. Eberly, "3D Game Engine Design, Second Edition: A Practical Approach to Real-Time Computer Graphics" 2 nd Editions, Morgan Kaufmann, 2006.
4.	Ernest Adams and Andrew Rollings, "Fundamentals of Game Design", 2 nd Edition Prentice Hall / New Riders, 2009.

Continuous Internal Evaluation (CIE): Theory for 50 Marks

CIE is executed by way of quizzes (**Q**), tests (**T**) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mappin								
CO/PO	P01	PO2	PO3	PO4	PO5	P06	P07	POS
CO1	З	2	2	-	-	-	-	-
CO 2	З	3	3	-	-	-	-	-
CO3	З	3	3	-	-	-	-	-
CO4	З	3	3	-	-	-	-	-
C05	2	2	3	-	-	-	-	-

		RGRAPHICS eory)		
	Course Code: CIE MVJ21CG733 Marks:100			
Credits: L:T:P:S: SEE Marks: 3:0:0:0 100				
H	ours: 40L	SEE Duration: 3 Hrs		
	ourse Learning Obje ill be able to	ctives: The students		
1	Understand the two dimensional graphics and their transformations			
2	Gain knowledge ab devices and softwa	out graphics hardware re used.		
З	Appreciate illumina	ation and color models.		
4	Understand the graphics and their t			
5	Be familiar with techniques.	understand clipping		

UNIT-I

Γ

Survey of computer graphics,	
O verview of graphics systems – Video	SHrs
display devices, Raster scan systems,	
Random scan systems, Graphics	
monitors and Workstations, Input	
devices, Hard copy Devices, Graphics	
Software; Output primitives – points	
and lines, line drawing algorithms,	
loading the frame buffer, line	
function; circle and ellipse generating	
algorithms; Pixel addressing and	
object geometry, filled area primitives.	
UNIT-II	
Two dimensional geometric	8
transformations – Matrix	Hrs
representations and homogeneous	
coordinates, composite	
transformations; Two dimensional	
viewing – viewing pipeline, viewing	
coordinate reference frame; widow-to-	
viewport coordinate transformation,	
Two dimensional viewing functions;	

clipping operations – point, line, and	
polygon clipping algorithms.	
UNIT-III	
Three dimensional concepts; Three	OW
dimensional object representations –	8Hrs
Polygon surfaces- Polygon tables-	
Plane equations – Polygon meshes;	
Curved Lines and surfaces, Quadratic	
surfaces; Blobby objects; Spline	
representations – Bezier curves and	
surfaces -B-Spline curves and	
surfaces.	
TRANSFORMATION AND	
VIEWING: Three dimensional	
geometric and modeling	
transformations – Translation,	
Rotation, Scaling, composite	
transformations; Three dimensional	
viewing – viewing pipeline, viewing	
coordinates, Projections, Clipping;	
Visible surface detection methods	
UNIT-IV	
Light sources – basic illumination	
models – halftone patterns and	
■	onrs
dithering techniques; Properties of	
light – Standard primaries and	
chromaticity diagram; Intuitive	
colour concepts – RGB colour model –	
YIQ colour model – CMY colour model	
- HSV colour model - HLS colour	
model; Colour selection.	
UNIT-V	
Design of Animation sequences –	8Hrs
animation function – raster animation	ohrs
– key frame systems – motion	
specification -morphing - tweening.	
COMPUTER GRAPHICS	
REALISM: Tiling the plane –	
Recursively defined curves - Koch	
curves – C curves – Dragons – space	

```
filling curves – fractals – Grammar
based models – fractals – turtle
graphics – ray tracing.
```

	se Outcomes: After completing the se, the students will be able to
CO1	Design two dimensional graphics
CO2	Applytwodimensionaltransformations.
CO3	Design three dimensional graphics.
CO4	Apply three dimensional transformations.
CO 5	Design animation sequences.

Reference Books

1.	John F. Hughes, Andries Van Dam,
	Morgan Mc Guire ,David F. Sklar , James
	D. Foley, Steven K. Feiner and Kurt
	Akeley , "Computer Graphics: Principles
	and Practice", , 3rd Edition, Addison-
	Wesley Professional,2013. (UNIT I, II,
	III, IV)
2.	Donald Hearn and Pauline Baker M,
	"Computer Graphics", Prentice Hall,
	New Delhi, 2007 (UNIT Y).
З.	Donald Hearn and M. Pauline Baker,
	Warren Carithers,"Computer Graphics
	With Open GL", 4th Edition, Pearson
	Education, 2010.
4.	Hill F S Jr., "Computer Graphics",
	Maxwell Macmillan", 1990.

Continuous Internal Evaluation (CIE): Theory for 50 Marks

CIE is executed by way of quizzes (**Q**), tests (**T**) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mappi					pping			
CO/PO	P01	PO2	PO3	PO4	PO5	P06	P07	POS
CO1	1							
CO2	1		2	2			1	
CO3	1							2
CO4	1	2				2		

Seme	ster: VII	
3D ANI	MATION	
(Th	leory)	
Course Code:	CIE	
MYJ21CG735 Marks:100		
Credits: L:T:P:S: SEE Marks:		
3:0:0:0 100		
Hours: 40L	SEE	
	Duration: 3	
	Hrs	
Course Learning Obje	ectives: The students	
will be able to		
To Understand fur	ndamental properties of	
1 animation		
2 To educate the basi	c of animation history	

	To develop a simple 3D model in a
3	software
4	To understand the topology of 3D mode
E	To educate the basic physical property of
Э	To educate the basic physical property of different 3D objects and environment.

3D animation, animation industry, history of 3D animation, concept of modelling, texturing, rigging, animation, lighting and rendering. Different type of video formats, pixels vector and raztor, file formats, colour depth, bit depth, frame rate, timecode.HrsUNIT-IIStory - developing story for 3D Script, screen play, storyboard, animatic, previsualization, design. Character, conflict, goal, story telling principles, basic shot framing, camera movement in 3D, global surroundings. Working principles of producer, director, animator.SHrsUNIT-IIIUNIT-IIIUnderstanding the differences between NURBS and Polygon, topology of objects, working with references, Reading anatomy-human and living organisms, breaking human anatomy into different parts.S
modelling, texturing, rigging, animation, lighting and rendering. Different type of video formats, pixels vector and raztor, file formats, colour depth, bit depth, frame rate, timecode. UNIT-II Story – developing story for 3D Script, screen play, storyboard, animatic, pre visualization, design. Character, conflict, goal, story telling principles, basic shot framing, camera movement in 3D, global surroundings. Working principles of producer, director, animator. UNIT-III Understanding the differences between NURBS and Polygon, topology of objects, working with references, Reading anatomy- human and living organisms, breaking human anatomy into different parts.
modelling, texturing, rigging, animation, lighting and rendering. Different type of video formats, pixels vector and raztor, file formats, colour depth, bit depth, frame rate, timecode. UNIT-II Story – developing story for 3D Script, screen play, storyboard, animatic, pre visualization, design. Character, conflict, goal, story telling principles, basic shot framing, camera movement in 3D, global surroundings. Working principles of producer, director, animator. UNIT-III Understanding the differences between NURBS and Polygon, topology of objects, working with references, Reading anatomy- human and living organisms, breaking human anatomy into different parts.
Different type of video formats, pixels vector and raztor, file formats, colour depth, bit depth, frame rate, timecode. UNIT-II Story – developing story for 3D Script, screen play, storyboard, animatic, pre visualization, design. Character, conflict, goal, story telling principles, basic shot framing, camera movement in 3D, global surroundings. Working principles of producer, director, animator. UNIT-III Understanding the differences S between NURBS and Polygon, topology of objects, working with references, Reading anatomy- human and living organisms, breaking human anatomy into different parts.
vector and raztor, file formats, colour depth, bit depth, frame rate, timecode.UNIT-IIStory – developing story for 3D Script, screen play, storyboard, animatic, previsualization, design. Character, conflict, goal, story telling principles, basic shot framing, camera movement in 3D, global surroundings. Working principles of producer, director, animator.SHrsUNIT-IIIUnderstanding the differencesSUnderstanding topology of objects, working with references, Reading anatomy- human and living organisms, breaking human anatomy into different parts.S
vector and raztor, file formats, colour depth, bit depth, frame rate, timecode.UNIT-IIStory – developing story for 3D Script, screen play, storyboard, animatic, previsualization, design. Character, conflict, goal, story telling principles, basic shot framing, camera movement in 3D, global surroundings. Working principles of producer, director, animator.SHrsUNIT-IIIUnderstanding the differencesSUnderstanding topology of objects, working with references, Reading anatomy- human and living organisms, breaking human anatomy into different parts.S
UNIT-IIStory – developing story for 3D Script, screen play, storyboard, animatic, pre visualization, design. Character, conflict, goal, story telling principles, basic shot framing, camera movement in 3D, global surroundings. Working principles of producer, director, animator.SHrsUNIT-IIIUNIT-IIIUnderstanding the differences between NURBS and Polygon, topology of objects, working with references, Reading anatomy- human and living organisms, breaking human anatomy into different parts.S
UNIT-IIStory – developing story for 3D Script, screen play, storyboard, animatic, pre visualization, design. Character, conflict, goal, story telling principles, basic shot framing, camera movement in 3D, global surroundings. Working principles of producer, director, animator.SHrsUNIT-IIIUNIT-IIIUnderstanding the differences between NURBS and Polygon, topology of objects, working with references, Reading anatomy- human and living organisms, breaking human anatomy into different parts.S
screen play, storyboard, animatic, pre visualization, design. Character, conflict, goal, story telling principles, basic shot framing, camera movement in 3D, global surroundings. Working principles of producer, director, animator. UNIT-III Understanding the differences between NURBS and Polygon, topology of objects, working with references, Reading anatomy- human and living organisms, breaking human anatomy into different parts.
visualization, design. Character, conflict, goal, story telling principles, basic shot framing, camera movement in 3D, global surroundings. Working principles of producer, director, animator. UNIT-III Understanding the differences S between NURBS and Polygon, topology of objects, working with references, Reading anatomy- human and living organisms, breaking human anatomy into different parts.
visualization, design. Character, conflict, goal, story telling principles, basic shot framing, camera movement in 3D, global surroundings. Working principles of producer, director, animator. UNIT-III Understanding the differences S between NURBS and Polygon, topology of objects, working with references, Reading anatomy- human and living organisms, breaking human anatomy into different parts.
basic shot framing, camera movement in 3D, global surroundings. Working principles of producer, director, animator. UNIT-III Understanding the differences S between NURBS and Polygon, topology of objects, working with references, Reading anatomy- human and living organisms, breaking human anatomy into different parts.
in 3D, global surroundings. Working principles of producer, director, animator. UNIT-III Understanding the differences S between NURBS and Polygon, topology of objects, working with references, Reading anatomy- human and living organisms, breaking human anatomy into different parts.
principles of producer, director, animator. UNIT-III Understanding the differences S between NURBS and Polygon, topology of objects, working with references, Reading anatomy- human and living organisms, breaking human anatomy into different parts.
animator.UNIT-IIIUnderstandingthedifferencesSbetweenNURBSandPolygon,topologyofobjects,workingWithreferences,Readinganatomy-humanandlivingorganisms,breakinghumananatomyintodifferent
UNIT-III Understanding the differences S between NURBS and Polygon, topology of objects, working with references, Reading anatomy- human and living organisms, breaking human anatomy into different parts.
Understanding the differences S between NURBS and Polygon, topology of objects, working with references, Reading anatomy- human and living organisms, breaking human anatomy into different parts.
between NURBS and Polygon, Hrs topology of objects, working with references, Reading anatomy- human and living organisms, breaking human anatomy into different parts.
topology of objects, working with references, Reading anatomy- human and living organisms, breaking human anatomy into different parts.
topology of objects, working with references, Reading anatomy- human and living organisms, breaking human anatomy into different parts.
references, Reading anatomy- human and living organisms, breaking human anatomy into different parts.
human anatomy into different parts.
human anatomy into different parts.
Face, facial expressions, eye
movement, lip movement, Character
definition. Basic poses, Curve editor.
UNIT-IV
Timing movement of object or
character, space and scale.Law of SHrs
inertia, movement laws, newton"s
third law, working with gravity,
action – reaction, motion weight and
gravity, jump, walk and run.
UNIT-Y
Rigging – pivot positions, FK and IK,
parenting, deformers, scripting, SHrs
expressions, rigging workflow.
Keyframe, Graph editor, dope sheet,

animation techniques, basic lighting,	
lighting and attributes, motion capture	
technology, real time rendering.	

Course Outcomes: After completing the course, the students will be able to		
CO1	Students will be able to understand the physics behind the 3D animation	
CO2	Students will understand the basic movement of character	
CO3	Students will develop the idea for the 3D animation movie	
CO4	Students will understand the physics behind the different types of forces	
CO 5	Students will rig a character and animate it.	

Re	ference Books
1.	Ami Chopine, "3D art essentials" Taylor & Francis" 2012.
2.	Beane A. "3D animation essentials". John Wiley & Sons; 2012.
З.	Cabrera C. "An Essential Introduction to Maya Character Rigging with DVD". Routledge; 2012.
4.	King R. "3D Animation for the Raw Beginner Using Autodesk Maya 2e". CRC Press; 2019.

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2) assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

				CO-PO Mapping				
CO/PO	PO1	PO2	PO3	PO4	PO5	P06	P07	POS
CO1	З	1	2	1	-	-	-	-
CO2	З	2	1	3	З	2	-	-
CO3	З	2	1	3	-	2	-	-

Semest	er: VII		
PHOTOG	RAPHY		
(The	ory)		
Course Code:	CIE		
MVJ21CG741	Marks:100		
Credits: L:T:P:S:	SEE Marks:		
3:0:0:0	100		
Hours: 40L	SEE Duration: 3		
	Hrs		
Course Learning Object will be able to	tives: The students		
To create opportun1and creative exprpractice and art of pl	6		

2	To understand the concept of lighting
3	To educate the importance of photo journalism
4	To inculcate aesthetic sense involved in creativity
5	To educate the student about different genres of photography

٦

UNIA-I	
History of Photography, History of	
camera, Different camera formats,	8Hrs
working of an SLR and DSLR	
Cameras. Features and functions of	
SLR and DSLR Cameras. Various	
camera controls. Zonesystem.	
Exposure. Image sensors. Different	
storage formats.	
UNIT-II	
Different type of Lenses - Basic Shots	
and Camera Angles, Photographic	SHrs
Composition - View point and Camera	
angle-Eye Level, Low and High,	
Balance-Aspects of Balancing, Shapes	
and Lines, Pattern, Volume, Lighting,	
Texture, Tone, Contrast- and Colour,	
Framing, various Perspectives.	
UNIT-III	
Colour Theory, Colour Temperature,	
Electromagnetic spectrum, Different	8Hrs
types of Lights based on	
Manufacturing and photography	
purpose, Different lighting patterns,	
Light equipments, Light Reflectors	
and Diffusers for Portraits and other	
genres of photography, Light Meters	
and Light measurement Units. Uses of	
various Filters.	
UNIT-IV	
Basics of News Photography-	
Essential elements of News,	8Hrs
Importance of News photographs,	<u> </u>
Types of News photographs Spot	
News, Feature, Planning for News	
Photography-Planning of shooting	

script, Shooting script techniques,	
Layout design, Qualities for a	
Photojournalist, Picture stories and	
Lens required for News Photography.	
UNIT-Y	
Basic shooting and Lighting	
Techniques and Equipments required	8Hrs
for different genres of Photography	
like Black and White, Landscape,	
Cityscape, Architecture, Advertising,	
Fashion, Food, Automobile, Sports,	
Travel, Children, Portrait, Still Life,	
Event, Silhouette, Festival and	
Themes.	

	se Outcomes: After completing the se, the students will be able to
CO1	Students will learn the principles of good composition in photography
CO2	Students will develop an individual style in representing the society through photographs.
CO3	Students will understand the function of camera.
CO4	Students will develop an individual style in representing the society through photographs.
CO 5	Students will be able to understand the advanced camera operations.

Re	ference Books
1.	Ansel Adams, The Negative,Bulfinch press, Fourteenth Edition, 2008
2.	BryanPeterson,Understandingexposure,Amphoto books,4th edition,2016.
З.	BalakrishnaAiyer, Digital Photojournalism, Authors press,2005
4.	Ben long, Complete Digital Photography, Charles River Media, Third Edition, 2005

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO/PO	P01	PO2	PO3	PO4	PO5	P06	P07	POS
CO1	3	1	2	1	-	-	-	-
CO2	3	2	1	3	3	2	-	-
CO3	3	2	1	3	-	2		-
CO4	3	3	2	3	3	2	-	-
CO5	3	2	3	3	3	2	-	-

High-3, Medium-2, Low-1

	Semeste	r: VII
	VIDEO PRODUCTIO (Theo	
	ourse Code: VJ21CG742	CIE Marks:100
	redits: L:T:P:S: 0:0:0	SEE Marks: 100
	ours: 40L	SEE Duration: 3 Hrs
	ourse Learning Object ill be able to	ives: The students
1	To understand the ba videography	sic and evaluation of
2	To understand th knowledge for y techniques	e audio recording various production
3	-	production aesthetic ghting, composition, uipment.
4	To gain knowledge usage and benefits	of studio equipment
5	To create opportu expression through production of program	the practice and

UNIT-I

History of Video Cameras, Different	
camera formats, working of an Video	Hrs
Camera. Features and functions video	
cameras, Shots and Camera angles	
used in various production process.	
UNIT-II	
Basics of sound recording. Different	8
types of microphones and factors	Hrs
governing their selection. In built	
microphones in cameras, Mixing of	
Sound. Audio sweetening practical.	
Sound manipulation. Outdoor sound	
recording vs Studio recording.	
UNIT-III	•

Lighting patterns, light equipment [*] s and accessories, reflectors, light measurement, control of light. Lighting for different programs, Design considerations, Economical Sets, Virtual Sets, Make-ups and costumes.	SHrs
UNIT-IV	
Lighting in the studio, Different camera mounting equipment's, Single and Multi-cameraproduction, Production control room, Use of Video mixer, Chromo keying and other visual effects. Editing the production – The Art and techniques of Editing.	
UNIT-V	
DifferentgenresofVideoprogrammes, Talk shows, Interviews,shortfilmmaking,PublicserviceannouncementsandCorporatefilms.Broadcastdistribution,Onlinedistribution,FestivalsandCompetitionsCompetitionsCompetition	SHrs

	se Outcomes: After completing the se, the students will be able to				
CO1	recognize the principles of production techniques				
CO2	expertise in both indoor and outdoor production.				
CO3	producesocialresponsibleprogrammestocreatechangeinthesociety </td				
CO4	follow ethical and social and also represent the society in a good way.				
CO 5	Students become experts in handling camera and related equipments				

Reference Books							
1.	Albert Mo	ran and	Mich	nael	Kea	ne,	
	Television	across	Asia:	a: Televi		sion	
	Industries,	Progran	nme	form	nats	&	

	Globalisation, Routledge Curzon, Taylor & Francis Group, 2004
2.	Belavadi Vasuki, "Video Production,"
	Oxford University Press, 2012
З.	Gerald Millerson, Television Production,
	15th Edition, Focal Press, 2012.
4.	Herbert Zettl, Television Production
	Handbook, 10th Edition, Wadsworth
	Publications,2009.

Continuous Internal Evaluation (CIE): Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit

having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping								5
CO/PO	P01	PO2	PO3	P04	P05	P06	P07	POE
CO1	3	1	2	1	-	-	-	-
CO2	3	2	1	3	3	2	-	
CO3	3	2	1	3	-	2	-	-
CO4	3	3	2	3	3	2	-	-
CO5	3	2	3	3	3	2	-	-

High-3, Medium-2, Low-1

	Semester: VII					
	EDITING TECHNIQUES					
	T)	heory)				
Co	<mark>ourse Code:</mark>					
N/	VJ21CG743	Marks:100				
	redits: L:T:P:S:	<mark>SEE Marks:</mark>				
<mark>3:</mark>	<mark>0:0:0</mark>	<mark>100</mark>				
	ours: 40L	SEE				
		Duration: 3				
		Hrs				
	<mark>ourse Learning Ob</mark> ill be able to	jectives: The students				
		ting as creative element				
1	for storytelling					
C	To understand procedures, techniques,					
2	² and standard practices in video editing					
<mark>3</mark>	To understand the aesthetic principles and concepts of video editing					

UNIT-I

Definition of editing, the historical	
development of editing theory,	<mark>8Hrs</mark>
audience manipulation through	
editing, Understanding the trends in	
the editing industry- New technologies	
in post production. Film and video	
formats, the principles and formats of	
digital video, Hardware and software	
requirements for nonlinear editing,	
introduction to various operating	
systems, overview of software	

available for editing.	
UNIT-II	
Roles and responsibilities of editors, skills required for an successful editor, Working Principles - Considering Script as an Architeure, Understanding directional intent, Camera angles and movement, reading light, reading the actor, understanding stories and their purpose. Copyright and ethical issues in editing. <u>UNIT-III</u> Definition of Shot, Scene and Sequence, Five Shot Rule, Editing Decisions, Editing Opportunities, Six Elements of Edit, Five Types of Edit,	
Working Practices, Importance of tone, pace and rhythm. Establishing Continuity.	
UNIT-IV	
Styles in editing, Techniques in editing, Editing to Manipulate Time, Editing Transitions, Graphics, Animation and Plug-Ins Continuity Editing and Complexity Editing, Dynamics of Sound – discovering the beat, sound as a character, invisible	SHrs
sound, tone and pitch and creative usage of sound in editing. Usage of Colours based on gender, culture and personalities. Planning the nonlinear editing process: Budgeting time, personnel and space.	
UNIT-V	
Digital Story telling - Editing styles for reality programs - News, features, bulletins, documentaries, reality shows; Editing styles fictional Narratives -Short Films, Serials, Films; Editing Styles for PSAs, Advertisements and Music Videos. Editing for sports and other live and recorded events	<mark>8Hrs</mark>

	Course Outcomes: After completing the course, the students will be able to					
<mark>C01</mark>	Students will be able to understand the					
	different principles of editing					
<mark>C02</mark>	Students will learn the application of					
	various styles and methods of editing					
	<mark>in their video projects</mark>					
CO3	Students will understand the aesthetic					
	reason for the edit choices made by					
	<mark>film/video makers.</mark>					
<mark>C04</mark>	Students will understand the role of					
	editor					
CO5	Students will be able to edit the video					
	projects.					

Re	ference Books
1.	Bryce Button, Nonlinear Editing:
	Storytelling, Aesthetics, & Craft, Focal
	Press, 2002
2 .	Dancyger Ken, The Technique of Film
	and Video Editing – History, Theory and
	Practice. Focal Press, 2005.
<mark>3.</mark>	Koppelman Charles, Behind The Seen -
	How Walter Murch Edited Cold
	Mountain on Final Cut Pro - Pearson
	Publications, 2014.
<mark>4.</mark>	Lumet Sidney, Making Movies, Random
	House, New York, 1995.

Continuous Internal Evaluation (CIE): Theory for 50 Marks

CIE is executed by way of quizzes (**Q**), tests (**T**) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-F	<mark>PO Ma</mark>	<mark>pping</mark>	5
CO/PO	PO1	PO2	PO3	P04	PO5	P06	P07	PO 8
CO1	<mark>3</mark>	1	2	1	-	-	-	-
CO2	<mark>3</mark>	2	1	<mark>3</mark>	<mark>3</mark>	<mark>2</mark>	-	-
CO3	<mark>3</mark>	2	1	3	-	2	-	-
CO4	<mark>3</mark>	3	2	3	3	2	-	-
CO5	3	2	3	3	3	2	—	_
High-3. Medium-2. Low-1								I

	Semeste	r: VII
	MOTION GR	RAPHICS
	(Theo:	ry)
Cour	se Code:	CIE
MVJ	21CG744	Marks:100
Cred	its: L:T:P:S:	SEE Marks:
3:0:0	: •	100
Hours: 40L		SEE
		Duration: 3
		Hrs
	se Learning Object: be able to	ives: The students
1 co		v literate, including non-verbal languages

	To develop visual, verbal, and written
2	responses to visual phenomena, and
	organize perception and
	conceptualizations both rationally and
	intuitively
	To learn the basic principles of
3	storyboarding and project mapping
4	To educate the concept of tracking
5	To understand the usage of 3D in live action

UNIT-I

General principles of motion graphics,	
- Different software's used for motion	SHrs
graphics, Photoshop, Final cut pro,	
Premier Pro, After effects,	
Combustion, Nuke Create Pipeline	
for production Exercise for each	
software differently Creating a story	
board	
UNIT-II	
Understanding and working with the	8
keying concepts, Working with	Hrs
different types of keyer Working with	
Roto shots, Removing the blue/green	
screen using different keyers,	
Working with 2D tracking Working	
with planar tracking	
UNIT-III	
Working with RGB, colour waveform,	
colour histogram, Curves	SHrs
Understanding the alpha value,	
Colour grading of Computer generated	
objects, Adding the lights and shadow	
Matching light space and adjusting for	
brightness and colour Mask the region	
Working with layer and node based	
software's.	
UNIT-IV	
Camera tracking in different	
software's - Combining of graphics	SHrs
elements into the live action Create	

and modify 3D objects, Importing 3D materials to various software, Create a 3D title				
UNIT-Y				
Understanding audio properties,				
Working with different levels of	SHrs			
audio, Different type of audio formats,				
Working with multi track audio,				
Rendering the final mix down audio,				
Lip sync with the visual, Export the				
final output.				

	Course Outcomes: After completing the course, the students will be able to					
CO1	Students will able to shoot the graphics video on their own					
CO2	Students will be able to assemble the green /blue mate footage					
CO3	Students will be able to work with the 3D environment digitally					
CO4	Students will be able to work with the audio					
CO 5	Students will understand the concept of rendering					

Reference Books

1.	Blazer L. Animated storytelling: Simple steps for creating animation and motion graphics. Peachpit Press; 2015.
2.	Ian Crook, Peter Beare, Motion Graphics: Principles and Practices from the Ground Up, Bloomsbury Publishing, 2017.
З.	Jackson C. After Effects for Designers: Graphic and Interactive Design in Motion. Focal Press; 2018.
4.	Jon Krasner, Motion Graphic Design: Applied History and Aesthetics Focal press, 2013.

Continuous Internal Evaluation (CIE): Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

		CO-PO Mapping						
CO/PO	P01	PO2	PO3	PO4	PO5	P06	P07	POS
CO1	3	1	2	1	-	-	-	-
CO 2	3	2	1	3	3	2	-	-
CO3	3	2	1	3	-	2	-	-
CO4	3	3	2	3	3	2		-
CO 5	3	2	3	3	3	2	-	-

Semeste	er: VII			
COMPUTER VISION				
(Theo	ory)			
Course Code: CIE				
MVJ21CG745 Marks:100				
Credits: L:T:P:S: SEE Marks:				
3:0:0:0 100				
Hours: 40L SEE				
	Duration: 3			
	Hrs			

Course Learning Objectives: The students will be able to

This course will enable students to

Computer Vision focuses on development of algorithms and techniques to analyze and interpret the visible world around us. This requires understanding of the fundamental concepts related to multidimensional signal processing, feature extraction, pattern analysis visual 1 geometric modeling, stochastic optimization etc. Knowledge of these concepts is necessary in this field, to explore and contribute to research and further developments in the field of computer vision. Applications range from **Biometrics, Medical diagnosis, document** processing, mining of visual content, to surveillance, advanced rendering etc.

UNIT-I					
Digital Image Formation and low	7-				
level processing	SHrs				
Overview and State-of-the-ar	t,				
Fundamentals of Image Formation	1 ,				
Transformation: Orthogonal,					
Euclidean, Affine, Projective, etc	;				
Fourier Transform, Convolution and	d				
Filtering, Image Enhancemen	t,				
Restoration, Histogram Processing					

UNIT-II	
Depth estimation and Multi-camera	
views	8Hrs
Perspective, Binocular Stereopsis:	
Camera and Epipolar Geometry;	
Homography, Rectification, DLT,	
RANSAC, 3-D reconstruction	
framework; Auto-calibration.	
UNIT-III	
Feature Extraction	OV
Edges - Canny, LOG, DOG; Line	8Hrs
detectors (Hough Transform),	
Corners - Harris and Hessian Affine,	
Orientation Histogram, SIFT, SURF,	
HOG, GLOH, Scale-Space Analysis-	
Image Pyramids and Gaussian	
derivative filters, Gabor Filters and	
DWT.	
UNIT-IV	
Image Segmentation	
Region Growing, Edge Based	8Hrs
approaches to segmentation, Graph-	
Cut, Mean-Shift, MRFs, Texture	
Segmentation; Object detection.	
UNIT-Y	ı
Pattern Analysis	
Clustering: K-Means, K-Medoids,	8Hrs
Mixture of Gaussians, Classification:	
Discriminant Function, Supervised,	
Un-supervised, Semi-supervised;	

Classifiers: Bayes, KNN, ANN models;					
Dimensionality	Reduction:	PCA,			
LDA, ICA; Non-parametric methods.					

	Course Outcomes: After completing the course, the students will be able to					
CO1	Understand the concepts of Digital Image Processing.					
CO2	Analyse Homography and stereopsis.					
CO3	Analyse Edges and Hough Transforms.					
CO4	Demonstrate the ideas of image Segmentation.					
CO 5	Implement the concepts of Pattern Analysis.					

Re	ference Books
1.	Richard Szeliski, Computer Vision: Algorithms and Applications, Springer- Verlag London Limited 2011.
2.	Computer Vision: A Modern Approach, D. A. Forsyth, J. Ponce, Pearson Education, 2003.
3.	Richard Hartley and Andrew Zisserman, Multiple View Geometry in Computer Vision, Second Edition, Cambridge University Press, March 2004.
4.	K. Fukunaga; Introduction to Statistical Pattern Recognition, Second Edition, Academic Press, Morgan Kaufmann, 1990.

Continuous Internal Evaluation (CIE): Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping						• •	
CO/PO	P01	PO2	PO3	PO4	PO5	P06	P07	POS
CO1	2	1	1	-	1	1	2	-
CO2	3	3	3	3	2	-	-	-
CO3	1	-	-	1	1	-	2	3
CO4	3	3	2	2	2	-	-	-
CO5	3	3	3	3	3	2	-	-

	Seme	ster: VII					
	PROJECT PHASE - 1						
	(T)	heory)					
Ŭ	ourse Code:	CIE					
M	VJ21CGPR75	Marks:100					
	redits: L:T:P:S:	SEE Marks:					
3:	0:0:0	100					
H	ours: 40L	SEE					
		Duration: 3					
		Hrs					
	ourse Learning Obj ill be able to	jectives: The students					
1							
2	To develop interactive, communication, organization, time management, and presentation skills.						
3							
4	To expand intellectual capacity,						
5	To train students to present the topic of project work in a seminar without any fear, face audience confidently, enhance communication skill, involve in group discussion to present and exchange ideas						

Project Work Phase - I

Each student of the project batch shall involve in carrying out the project work jointly in constant consultation with internal guide, co-guide, and external guide and prepare the project report as per the norms avoiding plagiarism.

	Course Outcomes: After completing the course, the students will be able to					
CO1	Describe the project and be able to defend it.					
CO 2	Learn to use modern tools and techniques					
CO3	Develop skills to work in a team to achieve common goal. Develop skills of project management and finance.					
CO4	Develop skills of self-learning, evaluate their learning and take appropriate actions to improve it.					
CO 5	Prepare them for life-long learning to face the challenges and support the technological changes to meet the societal needs.					

Scheme of Evaluation

Internal Marks: The Internal marks (50 marks) evaluation shall be based on Phase wise completion of the project work, Project report, Presentation and Demonstration of the actual/model/prototype of the project.

CIE Marks Breakup for Major Project

during VII Semester :

Relevance of	
the Topic	10 Marks
Report	20 Marks

Evaluation by	
Guide	25 Marks
Presentation	30 Marks
Viva-Voce	15 Marks
Total	100 Marks

CO-PO Mapping							5	
CO/PO	P01	PO2	PO3	PO4	PO5	P06	P07	POS
CO1	2	2	2	З	3	2	1	1
CO2	2	2	2	3	3	2	1	1
CO3	2	2	2	3	3	2	1	1
CO4	2	2	2	3	3	2	1	1
CO5	2	2	2	3	3	2	1	1

	Seme	ster: VIII				
	PROJEC	TPHASE-2				
	T)	heory)				
Co	Course Code: CIE					
M	VJ21CGP81	Marks:100				
	redits: L:T:P:S:	SEE Marks:				
	0:0:0	100				
H	ours: 40L	SEE				
		Duration: 3				
		Hrs				
	-	jectives: The students				
	ill be able to					
1	To support indepe)				
	_	ractive, communication,				
2	organization, ti	e				
	 presentation skills To impart flexibility and adaptability. 					
З	To impart flexion	ity and adaptability.				
4	To inspire indepe	ndent and team working.				
	To expand	intellectual capacity,				
5	credibility, judgm	ent, intuition.				
	To adhere to p	unctuality, setting and				
6						
	To instill respon	sibilities to oneself and				
7	7 others					
	To train students to present the topic of					
		a seminar without any				
8	8 fear, face audience confidently, enhance					
	communication	skill, involve in group				
	discussion to pres	sent and exchange ideas.				

Project Work Phase - II:

Each student of the project batch shall involve in carrying out the project work jointly in constant consultation with internal guide, co-guide, and external guide and prepare the project report as per the norms avoiding plagiarism.

Course Outcomes: After completing the

cour	se, the students will be able to
COl	Describe the project and be able to defend it.Develop critical thinking and problem solving skills
C02	Learn to use modern tools and techniques. Communicate effectively and to present ideas clearly and coherently both in written and oral forms.
CO3	Develop skills to work in a team to achieve common goal. Develop skills of project management and finance.
CO4	Develop skills of self-learning, evaluate their learning and take appropriate actions to improve it.
CO 5	Prepare them for life-long learning to face the challenges and support the technological changes to meet the societal needs.

Scheme of Evaluation :

Internal Marks: The Internal marks (50 marks) evaluation shall be based on Phase wise completion of the project work, Project report, Presentation and Demonstration of the actual/model/prototype of the project.

Semester End Examination: SEE marks for the project (50 marks) shall be based on Project report, Presentation and Demonstration of the actual/model/prototype of the project, as per the norms by the examiners appointed

CIE Marks Breakup for Major Project

during VIII Semester:

Seminar on Project	20
--------------------	----

and Demonstration	Marks
Report	10
	Marks
Evaluation by Guide	15
	Marks
Co-curricular	05
Activities	Marks
Total	50
	Marks

Breakup for SEE Marks for Major Project

Project Report ,	
Presentation,	30
Demonstration and	Marks
Quality of Work	
Viva-Voce	25
	Marks
Total	50
	Marks

				CO-PO Mapping				
CO/PO	PO1	PO2	PO3	PO4	PO5	P06	P07	POS
CO1	2	2	2	3	3	2	1	1
CO2	2	2	2	3	3	2	1	1
CO3	2	2	2	3	3	2	1	1
CO4	2	2	2	3	3	2	1	1
CO 5	2	2	2	3	3	2	1	1

Semester: VIII						
	INTERNSHIP					
	(Theory)					
Co	ourse Code:	CIE				
M	VJ21CGINT82	Marks:100				
Cı	redits: L:T:P:S:	SEE Marks:				
3:	0:0:0	100				
H	ours: 40L	SEE				
		Duration: 3				
	Hrs					
Course Learning Objectives: The students will be able to						
1 To get the field exposure and experience						
To apply the theoretical concept in field						
2 application						
To prepare the comparison statement of						
3 difference activities						

Internship:

This shall be carried out by students in industry set-up related to the laboratories/research organizations/project management consulting firms/QS and QA organizations/ planning and design offices/Professional organizations and other avenues related to the computer science and engineering domain in consultation and approval of internship guide/HOD / internship committees of the institutions

	Course Outcomes: After completing the course, the students will be able to					
CO1	Develop skills to work in a team to achieve common goal. Develop skills of project management and finance.					
CO 2	Develop skills of self-learning, evaluate their learning and take appropriate actions to improve it.					
CO 3	Prepare them for life-long learning to face the challenges and support the technological changes to meet the societal needs.					

Scheme of Evaluation :

Marks: The marks (100 marks) evaluation shall be based on final presentation of the activities undertaken during the internship, to a panel comprising internship guide, a senior faculty from the department and head of the department. Each student should submit the internship report at the end of semester with internship certificate.

Semester End Examination: Viva-Voce examination shall be conducted by a panel of examiners consisting of internship supervisor, a senior faculty from the department and head of the department.

Marks Breakup for Industry Training

Evaluation:

Evaluation by the supervisor	25
under whom the training was	Marks
carried out	
Evaluation by	10
i) Relevance of the	Marks
Industrial Internship	
ii) Report	25
	Marks
iii) Evaluation	40
	Marks
Total	100
	Marks

CO-PO Mapping									
CO/PO	P01	PO2	PO3	PO4	PO5	P06	P07	POS	

CO1	2	2	2	3	3	2	1	1
CO2	2	2	2	3	3	2	1	1
CO3	2	2	2	3	3	2	1	1
CO4	2	2	2	3	3	2	1	1
CO5	2	2	2	З	3	2	1	1

Semeste	r: VIII
TECHNICAL	SEMINAR
(Theo	ory)
Course Code:	CIE
MVJ21CGS83	Marks:100
Credits: L:T:P:S:	SEE Marks:
3:0:0:0	100
Hours: 40L	SEE
	Duration: 3
	Hrs
Course Learning Object	vives: The students

will be able to

To inculcate self-learning, face audience confidently, enhance communication skill, involve in group discussion and present and exchange ideas.

Seminar:

Each student, under the guidance of a Faculty, is required to choose, preferably, a recent topic of his/her interest relevant to the course of specialization. Carryout literature survey; organize the Course topics in a systematic order.

- Conduct literature survey in the domain area to find appropriate topic.
- Prepare the synopsis report with own sentences in a standard format.
- Learn to use MS word, MS power point, MS equation and Drawing tools or any such facilities in the preparation of report and presentation.
- Present the seminar topic orally and/or through power point slides.
- Communicate effectively to answer the queries and involve in debate/discussion.

The participants shall take part in discussion to foster friendly and stimulating environment in which the students are motivated to reach high standards and become self-confident

Course Outcomes: After completing the course, the students will be able to CO1 Develop knowledge in the field of

	Computer Science and Engineering and other disciplines through independent learning and collaborative study.
CO2	Identify and discuss the current, real- time issues and challenges in engineering & technology. Develop written and oral communication skills
CO3	Explore concepts in larger diverse social and academic contexts.
CO4	Apply principles of ethics and respect in interaction with others.
CO 5	Develop the skills to enable life-long learning

Scheme of Evaluation :

Marks: The marks (100 marks) evaluation shall be based on final presentation, to a panel comprising seminar guide, a senior faculty from the department and head of the department. Each student should submit the Seminar report at the end of semester Semester End Examination: Viva-Voce examination shall be conducted by a panel of examiners consisting of seminar supervisor, a senior faculty from the department and head of the department.

Marks Breakup for Seminar:

Relevance of the Topic	10		
	Marks		
Report	20		

	Marks		
Presentation	50		
	Marks		
Viva-Voce	20		
	Marks		
Total	100		
	Marks		

				CO-PO Mapping					
CO/PO	P01	PO2	PO3	P04	P05	P06	P07	POE	
CO1	2	2	2	З	З	2	1	1	
CO2	2	2	2	3	3	2	1	1	
CO3	2	2	2	3	3	2	1	1	
CO4	2	2	2	3	3	2	1	1	
C05	2	2	2	3	3	2	1	1	