	Semester: III						
	Transforms and Statistical Methods						
Cou	(Theory) Course Code MVJ21MA31A CIE Marks: 50						
Cree	dits	L:T:P:: 3:2:0	SEE Marks: 50				
Hours 30L+20T SEE Duration: 3 Hrs.			SEE Duration: 3 Hrs.				
Cou	rse Learning Objectives: The stud	ents will be able to					
1	Comprehend and use of analytical and numerical methods in different engineering fields.						
2	Apprehend and apply Fourier Series.						
3	Realize and use of Fourier transforms.						
4	Realize and use of Z-Transforms.						
5	Use of statistical methods in curve	fitting applications.					

UNIT-I	
Laplace Transform: Definition and Laplace transforms of elementary functions.	
Laplace transforms of Periodic functions and unit-step function and problems.	
Inverse Laplace Transform: Definition and problems, Convolution theorem to	
find the inverse Laplace transforms and problems.	
Applications: Solution of linear differential equations using Laplace transforms.	10 Hrs
Self study topic: Derivations of Laplace transforms of elementary functions, Unit	
impulse function-problems.	
Web Link and Video Lectures:	
https://nptel.ac.in/courses/111106139	
UNIT-II	
Fourier series: Recapitulation of Series, Continuous and Discontinuous functions, Periodic functions, Dirichlet's condition, Fourier series of periodic functions of period 2π and arbitrary period $2l$, Half-range Fourier sine and cosine series, Practical Harmonic Analysis and Problems.	10 Hrs
Web Link and Video Lectures:	
https://nptel.ac.in/courses/111106111/	
UNIT-III	
Fourier transforms: Infinite Fourier transform, Infinite Fourier sine and cosine transforms, Inverse Fourier transforms, Inverse Fourier sine and cosine transforms, Convolution theorem.	
Web Link and Video Lectures:	10 Hrs
https://nptel.ac.in/courses/111105123	
UNIT-IV	

 Z-Transforms: Difference equations, basic definition, Z-transform -definition, Properties of Z-transforms, Standard Z-transforms, damping rule, Shifting rule, Initial value and final value theorems - problems, Inverse Z-transform. Applications: Application of Z- transforms to solve difference equations. Self study topic: Proof of Initial value and final value theorems. Web Link and Video Lectures: https://nptel.ac.in/courses/108104100 	10 Hrs
Curve Fitting: Curve fitting by the method of least squares. Fitting of the curves of the form $y = ax + b$, $y = ax^2 + bx + c$, $y = ae^{bx}$. Statistical Methods: Introduction, Correlation and coefficient of correlation, Regression, lines of regression and problems. Self study topic: Fitting of the curves of the form $y = ax^b$. Web Link and Video Lectures: <u>https://nptel.ac.in/courses/111105042</u>	10 Hrs

Cours	Course Outcomes: After completing the course, the students will be able to				
CO1	Use Laplace transform and inverse transforms techniques in solving differential				
COI	equations.				
CO2	Communications, Know the use of periodic signals and Fourier series to analyze				
	circuits and system.				
CO3	Demonstrate Fourier Transform as a tool for solving Integral equations.				
	Apply Z Transform to solve Difference Equation.Use Method of Least Square for				
CO4	appropriate Curves.				
CO5	Fit a suitable curve by the method of least squares and determine the lines of regression				
	for a set of statistical data.				

Ref	erence Books
1.	B.S. Grewal, "Higher Engineering Mathematics" Khanna Publishers, 43 rd Edition, 2013.
2.	Erwin Kreyszig, "Advanced Engineering Mathematics", Wiley-India publishers, 10th edition,2014.
3.	Ramana B. V., "Higher Engineering Mathematics", Tata Mc Graw-Hill, 2006.
4.	Bali N. P. & Manish Goyal, "A text book of Engineering Mathematics", Laxmi Publications, 8 th Edition.

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CO-I	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	0	3	0	0	0	0	0	0	1	0
CO2	3	3	0	3	0	0	0	0	0	0	0	1
CO3	2	3	0	3	0	0	0	0	0	0	1	0
CO4	3	3	0	3	0	0	0	0	0	0	0	0
CO5	3	3	0	2	0	0	0	0	0	0	0	1

	Semester: III					
	OBJECT ORIENTED PROGRAMMING					
		(Theory)				
Cou	Course Code: MVJ21CS/CG/AI32 CIE Marks:100					
Cree	Credits: L:T:P:S: 3:0:0:0 SEE Marks: 100					
Hou	Hours: 40L SEE Duration: 3 Hrs					
Cou	rse Learning Objectives: The stud	ents will be able to				
1	Identify the need for Java - an object-oriented language. Set up Java JDKenvironment to create, debug and run simple Java programs.					
2	Illustrate the use of classes and distinguish the usage of different types of Inheritanceand constructors in real world.					
3	Demonstrate the use of exceptions	and to create multi-threaded programs.				

4	Illustrate the use of Collections with elements in Java program.
5	Develop Java Application using JDBC connectivity.

UNIT-I	
Prerequisites : Basic Knowledge about C or C++	8 Hrs
Introduction to Object Oriented Concepts and Java: Java's Magic: the Byte	
code; Java Development Kit (JDK); The Java Buzz words, Object Oriented	
Programming - Two Paradigms, Abstraction, The Three OOP Principles and its	
advantages, Simple Java programs. Data types, variables and arrays, Operators,	
Control Statements.	
Video link / Additional online information (related to module if any):	
• Differences between JVM vs JRE vs JDK in Java:	
https://www.youtube.com/watch?v=5Bp6GLU6HKE	
UNIT-II	
Classes, Inheritance, Packages and Interfaces: Classes fundamentals;	8 Hrs
Declaring objects; Assigning object reference variables; Introducing Methods,	
Constructors, this keyword, Finalize Method. Inheritance: Inheritance basics,	
using super, creating multi-level hierarchy ,when constructors are called, method	
overriding, using abstract classes. Packages, Access Protection, Importing	
Packages, Interfaces.	
Video link / Additional online information (related to module if any):	
Types of Inheritance: <u>https://www.youtube.com/watch?v=ZP27c7i5zpg</u>	
UNIT-III	
Exception Handling and Multi-Threaded Programming : Exception Handling	8 Hrs
fundamentals, Exception Types, Uncaught Exceptions, Using try catch, Multiple	
catch clauses, Nested try statements, throw, throws, finally, Java's built-in	
exceptions, Programming Examples.	
Multi-Threaded Programming: The java thread model, Main thread, Creating	
Thread, Creating multiple threads, Using isAlive() and join(),Thread priorities,	
Synchronization; InterThread Communication - Bounded buffer problem.	
Video link / Additional online information (related to module if any):	
Multithreading: <u>https://www.youtube.com/watch?v=O_Ojfq-OIpM</u>	
UNIT-IV	
The collections and Framework: Collections Overview, Recent Changes to	8 Hrs

Collections, The Collection Interfaces, The Collection Classes, Accessing a	
collection Via an Iterator, Storing User Defined Classes in Collections.	
Java Lambda expressions: Java Lambda expressions, Using Java Lambda	
expressions, Lambda expression vs method in java, Lambda expression in the	
array list.	
Video link / Additional online information (related to module if any):	
https://www.youtube.com/watch?v=Q_9vV3H-dt4	
UNIT-V	
JDBC: The Concept of JDBC; JDBC Driver Types; JDBC Packages; A Brief	8 Hrs
Overview of the JDBC process; Database Connection; Associating the	
JDBC/ODBC Bridge with the Database; Statement Objects; ResultSet;	
Transaction Processing; Metadata, Data types; Exceptions.	
Video link / Additional online information (related to module if any):	
Java JDBC : https://www.youtube.com/watch?v=hEWBIJxrLBQ	

Cours	Course Outcomes: After completing the course, the students will be able to				
CO1	Illustrate the Object Oriented Programming concepts and basic characteristics of Java.				
CO2	Demonstrate the principles of classes, inheritance, packages and interfaces.				
CO3	Experiment with exception handling Mechanisms and Create multi-threaded programs.				
CO4	Interpret the need for advanced Java concepts like collections in developing modular and efficient programs.				
CO5	Develop an application with Database using JDBC connectivity.				

Ref	Reference Books					
3.	Mahesh Bhave and Sunil Patekar, "Programming with Java", First Edition, Pearson					
	Education,2008, ISBN:9788131720806					
4.	Herbert Schildt, Java The Complete Reference, 7 /9th Edition, Tata McGraw Hill, 2007.					
3.	Jim Keogh: J2EE-The Complete Reference, McGraw Hill, 2007.					
4.	Effective Java, Third Edition, Joshua Bloch, Addison-Wesley Professional,2017					

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20

(2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	_			_	CO-I	PO Ma	pping		_	_		_
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	1	-	-	-	-	-	-		-	3
CO2	3	3	1	-	-	-	-	-	-		-	3
CO3	3	3	1	2	-	-	-	-	-	1	-	3
CO4	3	3	3	3	_	_	-	2	2	2	-	3
C05	3	3	3	3	-	-	2	2	3	2	-	3

	Semester: III					
	OPERATING SYSTEMS					
	(Theory)					
Cou	Course Code: MVJ21CS/CG/AI33 CIE Marks:100					
Cre	Credits: L:T:P:S: 3:0:0:0 SEE Marks: 100					
Hou	Hours: 40L SEE Duration: 3 Hrs					
Cou	rse Learning Objectives: The students will be a	ble to				
1	Introduce concepts and terminology used in OS.					
2	Explain threading and multithreaded systems.					
3	3 Illustrate process synchronization and concept of Deadlock.					
4	Introduce Memory and Virtual memory ma techniques.	nagement, File system and storage				

UNIT-I			
Introduction: What operating systems do; Computer System organization;	8 Hrs		
Computer System architecture; Operating System operations; Distributed system;			
Special-purpose systems; Computing environments. Operating System Services;			
User - Operating System interface; System calls; Types of system calls; System			
programs; Operating system design and implementation; Operating System			
structure; Virtual machines; System boot.			
Process Management : Process concept; Process scheduling; Operations on processes;Inter process communication.			
UNIT-II			
Multi-threaded Programming: Overview; Multithreading models; Thread	8 Hrs		
Libraries; Threading issues. Process Scheduling: Basic concepts; Scheduling			
Criteria; Scheduling Algorithms; Multiple-processor scheduling; Thread			
scheduling.			
Process Synchronization : Synchronization: The critical section problem; Peterson's solution; Synchronization hardware; Semaphores; Classical problems of synchronization; Monitors.			
UNIT-III			
Deadlocks : Deadlocks; System model; Deadlock characterization; Methods for	8 Hrs		
handling deadlocks; Deadlock prevention; Deadlock avoidance; Deadlock			

detection and recovery from deadlock.				
Memory Management : Memory management strategies: Background; Swapping; Contiguous memory allocation; Paging; Structure of page table; Segmentation				
UNIT-IV				
Virtual Memory Management: Background; Demand paging; Copy-on-write;	8 Hrs			
Page replacement; Allocation of frames; Thrashing.				
File System, Implementation of File System: File system: File concept; Access				
methods; Directory structure; File system mounting; File sharing;				
Implementing File system : File system structure; File system implementation; Directory implementation; Allocation methods; Free space management.				
UNIT-V				
Mass Storage Structure-Disk Structure - Disk Attachment-Disk Scheduling-Disk	8 Hrs			
Management- Swap-Space Management.				
Protection: Domain of protection, Access matrix, Implementation of access				
matrix, Access control, Revocation of access rights, Capability- Based systems.				
Case Studies: Windows, Unix, Linux, Android.				

Cours	Course Outcomes: After completing the course, the students will be able to				
CO1	Illustrate the fundamental concepts of operating systems.				
CO2	Compare and illustrate various process scheduling algorithms.				
CO3	Ability to recognize and resolve Deadlock problems ,Memory Management				
	techniques.				
CO4	Apply appropriate memory and file management schemes.				
CO5	Appreciate the need of access control and protection in Operating System and illustrate				
	various disk scheduling algorithms.				

Ref	Reference Books					
1.	Abraham Silberschatz, Peter Baer Galvin, Greg Gagne, Operating System Concepts 7th					
	edition,Wiley-India, 2006					
2.	D.M Dhamdhere, Operating Systems: A Concept Based Approach 3rd Ed, McGraw-					
	Hill, 2013.					
3.	Tanenbaum, A., "Modern Operating Systems", Prentice-Hall of India. 2004					
4.	P.C.P. Bhatt, An Introduction to Operating Systems: Concepts and Practice 4th					
	Edition,2013					

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may

be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	-	-	-	-	-	-	-	-	-
CO2	2	2	3	-	-	-	-	-	-	-	-	-
CO3	3	2	3	-	-	-	-	-	-	-	-	-
CO4	3	2	3	-	-	-	-	-	-	-	-	-
CO5	3	2	3	-	-	-	-	-	-	-	-	-

	Semester: III							
	DATA STRUCTURES & APPLICATIONS & LAB							
	(Theory and Practice)							
Cou	Course Code: MVJ21CS/CG/AI34 CIE Marks:50+50							
Cree	SEE Marks: 50 +50							
Hours:40 L+ 26 P SEE Duration: 03+03 H								
Cou	rse Learning Objectives: The stude	nts will be able to						
1	Identify the importance of data structures & memory allocation.							
2	Perform operations on stacks and queues and its applications							
3	Apply the operations of linked list, Trees & Graphs in various applications							
4	Apply searching and sorting operations in real time applications.							

UNIT-I					
Introduction: Data Structures, Classifications (Primitive & Non Primitive), Data	8 Hrs				
structure Operations, Review of Arrays, Structures, Self-Referential Structures. Pointers					
and Dynamic Memory Allocation Functions. Representation of Linear Arrays in					
Memory, Dynamically allocated arrays.					
Abstract Data Type, Array Operations: Traversing, inserting, deleting, searching,					

	I
and sorting,	
Array ADT : Multidimensional Arrays, Polynomials and Sparse Matrices.	
Strings: Basic Terminology, Storing, Operations and Pattern Matching algorithms. Programming Examples.	
UNIT-II	1
Stacks: Definition, Stack Operations, Stack ADT, Array Representation of Stacks,	8 Hrs
Stacks using Dynamic Arrays, Stack Applications: Polish notation, Infix to postfix	
conversion, evaluation of postfix expression.	
Recursion - GCD, Tower of Hanoi.	
Queues: Definition, Array Representation, Queue Operations, Queue ADT, Circular	
Queues, Circular queues using Dynamic arrays, Dequeues, Priority Queues.	
Programming Examples.	
UNIT-III	
Linked Lists: Definition, Representation of linked lists in Memory, Memory allocation;	8 Hrs
Garbage Collection. Linked list operations: Traversing, Searching, Insertion, and	
Deletion. Doubly Linked lists, Circular linked lists, and header linked lists. Linked	
Stacks and Queues. Applications of Linked lists – Polynomials. Programming Examples	
UNIT-IV	
Trees: Terminology, Binary Trees, Properties of Binary trees, Array and linked	8 Hrs
Representation of Binary Trees, Binary Tree Traversals - Inorder, postorder, preorder;	
Additional Binary tree operations. Threaded binary trees, Binary Search Trees -	
Definition, Insertion, Deletion, Traversal, Searching, Application of Trees-Evaluation of	
Expression, AVL Trees, Splay Trees, B-Tree, Programming Examples	
UNIT-V	
Graphs: Definitions, Terminologies, Matrix and Adjacency List Representation of	8 Hrs
Graphs, Elementary Graph operations, Traversal methods: Breadth First Search and	
Depth First Search, Topological Sort.	
Sorting and Searching: Quick sort, Insertion Sort, Radix sort, Merge Sort, Address	
Calculation Sort.	
LABORATORY EXPERIMENTS	I
1.A courier company has number of items to be delivered to its intended customers	s through its
salesman.	J

The salesman visits the following cities to deliver the respective items. Write a C program,

S.No	Cities	Number of items
1	Agra	25
2	Chennai	50
3	Kolkata	59
4	Mumbai	72
5	Delhi	12

*To display name of cities where salesman has delivered maximum and minimum number of ems

items

*To search the number of items to be delivered of a user supplied city.

2. Implement Knuth-Morris- Pratt pattern matching algorithm using C program.

3. Design, Develop and Implement a menu driven Program in C with the listed operations for the data structure which follows Last In First Out (LIFO) order. (Use Array Implementation of specified DS with maximum size MAX).

a. Push an Element

b. Pop an Element

c. Demonstrate how it can be used to check Palindrome

d. Demonstrate Overflow and Underflow situations

e. Display the status

f. Exit

Support the program with appropriate functions for each of the above operations

4.Design, Develop and Implement a Program in C for converting an Infix Expression to Postfix Expression. Program should support for both parenthesized and free parenthesized expressions with the operators: +, -, *, /, % (Remainder), ^ (Power) and alphanumeric operands.

5. Design, Develop and Implement a menu driven Program in C for the following operations on Ring

Buffer of Integers (Use Array Implementation)

a. Insert an Element on to Ring Buffer

b. Delete an Element from Ring Buffer

c. Demonstrate Overflow and Underflow situations on Ring Buffer

d. Display the status of Ring Buffer

e. Exit

Support the program with appropriate functions for each of the above operations

6. Design, Develop and Implement a menu driven Program in C for the following operations on Singly

Linked List (SLL) of Student Data with the fields: USN, Name, Programme, Sem, PhNo

a. Create a SLL of N Students Data by using front insertion

b. Display the status of SLL and count the number of nodes in it

c. Perform Insertion / Deletion at End of SLL

d. Perform Insertion / Deletion at Front of SLL

e. Exit

7. Design, Develop and Implement a menu driven Program in C for the following operations on Doubly Linked List (DLL) of Employee Data with the fields: SSN, Name, Dept, Designation, Sal, PhNo.

a. Create a DLL of N Employees Data by using end insertion.

b. Display the status of DLL and count the number of nodes in it.

c. Perform Insertion and Deletion at End of DLL .

d. Perform Insertion and Deletion at Front of DLL .

e. Demonstrate how this DLL can be used as Double Ended Queue.

f. Exit

8. Design, Develop and Implement a menu driven C Program for the following operations on Binary Search Tree (BST) of Integers.

a) Create a BST of N Integers: 6, 9, 5, 2, 8, 15, 24, 14, 7, 8, 5, 2.

b) Traverse the BST recursively in inorder, preorder & postorder

Search the BST for a given element (KEY) and report the appropriate message

9. Design, Develop and Implement a Program in C for the following operations on Graph(G) ofCities
a. Create a Graph of N cities using Adjacency Matrix.
b. Print all the nodes reachable from a given starting node in a digraph using DFS/BFS method

10. Develop a C program to sort a given set of n integer elements using Quick Sort method. Run the program for varied values of n and show the results of each iteration.

11. Given a File of N employee records with a set K of Keys(4-digit) which uniquely determine the records in file F. Assume that file F is maintained in memory by a Hash Table(HT) of m memory locations with L as the set of memory addresses (2- digit) of locations in HT. Let the keys in K and addresses in L are Integers. Design and develop a Program in C that uses Hash function H: $K \rightarrow L$ as $H(K)=K \mod m$ (remainder method), and implement hashing technique to map a given key K to the address space L. Resolve the collision (if any) using linear probing.

Any 10 experiments to be conducted

Cour	Course Outcomes: After completing the course, the students will be able to					
CO1	Analyze and Compare various linear data structures.					
CO2	Code, debug and demonstrate the working nature of different types of data structures					
	and their applications					
CO3	Implement, analyse and evaluate the searching and sorting algorithms.					
CO4	Choose the appropriate data structure for solving real world problems.					

Ref	Reference Books			
1.	A M Tenenbaum, Data Structures using C, PHI, 1989			
2.	Robert Kruse, Data Structures and Program Design in C, 2nd Ed, PHI, 1996.			
3.	Choose the appropriate data structure for solving real world problems.			

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Laboratory- 50 Marks

The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are awarded 10 marks. Total marks for the laboratory is 50.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the entire syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level

Semester:III						
	ANALOG AND DIGITAL ELECTRONICS & LAB					
	(Theor	y and Practice)				
Cou	rse Code: MVJ21CS/CG/AI35	CIE Marks:50+50				
Cree	lits: L:T:P: 3:0:1	SEE Marks: 50 +50				
Hours:40 L+ 26 P		SEE Duration: 03+03				
	Hours					
Cou	rse Learning Objectives: The stude	ents will be able to				
1	Analyze the working of oscillators	and use of regulators.				
2	Make use of simplifying techniques in the design of combinational circuits.					
3	3 Illustrate combinational and sequential digital circuits.					
4	4 Demonstrate the use of flipflops and design registers and counters.					
5	Design and test Analog-to-Digital and Digital-to-Analog conversion techniques.					

UNIT-I	
Prerequisites : Basic analog Circuits	8 Hrs
Metal Oxide Semiconductor Field Effect transistor(MOSFET): Structure and	
I-V characteristics, MOSFET as a switch, MOSFET as an amplifier, CMOS and	
its applications.	
Oscillators: Basic working and applications of RC Phase shift oscillator, Wien	
Bridge oscillator, LC oscillator, Colpitt oscillator, Crystal Oscillator.	
Linear Power Supplies: Constituents of a Linear Power Supply, Designing Mains Transformer, Linear IC voltage regulators, Regulated Power Supply Parameters. UNIT-II	
Prerequisites: Digital Electronic Fundamentals	8 Hrs
Karnaugh maps: Minimum forms of switching functions, two and three variable	
Karnaugh maps, four variable karnaugh maps, Quine-McClusky Method:	
determination of prime implicants, The prime implicant chart, petricks method,	
simplification of incompletely specified functions, simplification using map-	
entered variables	
UNIT-III	
Combinational Circuits: Multiplexer, Decoders, Adders, Subtractors, BCD	8 Hrs
arithmetic, carry look ahead adder, serial adder, ALU-Design and popular MSI	

chips, digital comparator, parity checker/generator, code converters, priority		
encoders, decoders/drivers for display devices.		
UNIT-IV	8 Hrs	
Flip-Flops and Registers:	ð Hrs	
Flip Flops: S-R,J-K,D and T flip flops,Edge-triggered JK FLIP-FLOPs		
Registers: Types of Registers, Serial In - Serial Out, Serial In - Parallel out,		
Parallel In - Serial Out, Parallel In - Parallel Out, Universal Shift Register,		
Applications of Shift Registers.		
Counters: Asynchronous Counters, Decoding Gates, Synchronous Counters,		
Changing the Counter Modulus, Decade Counters, Applications of Counters.		
UNIT-V		
D/A Conversion and A/D Conversion:	8 Hrs	
Digital to analog converters: weighted resistor/converter, R-2R Ladder D/A		
converter, specifications for D/A converters, examples of D/A converter lCs,		
sample and hold circuit.		
Analog to digital converters: quantization and encoding, parallel comparator		
A/D converter, successive approximation A/D converter, counting A/D converter,		
dual slope A/D converter, A/D converter using voltage to frequency and voltage to		
time conversion, specifications of A/D converters, example of A/D Converter ICs		
LABORATORY EXPERIMENTS		
 Study of transistor phase shift oscillator and observe the effect of variation in R & C or oscillator frequency and compare with theoretical value. Design and test IC 723 voltage regulator Given a 4-variable logic expression, simplify it using Entered Variable Map and realize the simplified logic expression using 8:1 multiplexer IC. Design and implement a faster way3 to add binary numbers using carry look ahead adders. a) Realization and implementation of 2-bit comparator using logic gates. 		
 b) Implementation of 4-bit magnitude comparator using IC 7485. 6. To design and construct basic flip-flops R-S ,J-K,J-K Master slave flip-flops us and verify their truth table 7. Implementation of SISO, SIPO, PISO and PIPO shift registers using Flip- flops 8. Design and implementation of 3-bit synchronous up/down counter 9. Design and implement a ring counter and Johnson counter using 4-bit shift reg demonstrate its working. 10. Design and implement a mod-n (n<8) synchronous up counter using J-K Flip-and demonstrate its working. 11. Design and implement an asynchronous counter using decade counter IC to from 0 to n (n<=9) and demonstrate on 7-segment display (using IC-7447). 12. Design 4 bit r-2r ladder DAC using opamp. 	gister and Flop ICs	

Any 12 experiments to be conducted

Cour	Course Outcomes: After completing the course, the students will be able to					
CO1	Design and analyze analog circuits using transistors, power supply, MOSFETS,					
	regulator IC and opamp					
CO2	Simplify digital circuits using Karnaugh Map , POS and Quine-McClusky Methods					
CO3	Explain construction and working of data processing circuits					
CO4	Understanding the various types of latches and flip flops and building the registers and					
	counters using flip flops.					
CO5	Explain the basic principles of A/D and D/A conversion circuits and develop the same.					

Ref	Reference Books				
1.	Anil K Maini, Varsha Agarwal, Electronic Devices and Circuits, Wiley, 2012.				
2.	Charles H Roth and Larry L Kinney, Fundamentals of Logic design, Cengage				
	Learning,2019.				
3.	Donald P Leach, Albert Paul Malvino & Goutam Saha, Digital Principles and				
	Applications, 8th Edition, Tata McGraw Hill, 2015.				
4.	M. Morris Mani, Digital Design, 4th Edition, Pearson Prentice Hall, 2008.				

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the self -study are 20 (2 presentations are be held for 10 marks each). The marks obtained in test, quiz and self -studies are added to get marks out of 100 and report CIE for 50 marks.

Laboratory- 50 Marks

The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are awarded 10 marks. Total marks for the laboratory is 50.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the complete syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	-	-	-	-	-	-	-	1
CO2	3	3	2	2	-	-	-	-	-	-	-	1
CO3	3	3	3	2	-	-	-	-	-	-	-	1
CO4	3	3	2	2	-	-	-	-	-	-	-	1
CO5	3	3	3	2	-	-	-	-	-	-	-	1

	Semester: III						
	Additional Mathematics-I						
		(Common to all bran	nches)				
Cou	rse Code:	MVJ21MATDIP1	CIE Marks:50				
Credits: L:T:P:S: 4:0:0:0 SEE Marks: 5		SEE Marks: 50					
Hours:		40L	SEE Duration: 3 Hrs				
Cou	rse Learning Object	ives: The students will be	able to				
1	To familiarize the in	nportant and introductory co	oncepts of Differential calculus				
2	Aims to provide essential concepts integral calculus						
3	To gain knowledge of vector differentiation						
4	4 To learn basic study of probability						
5	Ordinary differential equations of first order and analyze the engineering problems.						

T	IN	JT	Т	-I

Differential calculus: Recapitulation of successive differentiation -nth derivative	8 Hrs	
-Leibnitz theorem (without proof) and Problems, Polar curves - angle between		
the radius vector and tangent, angle between two curves, pedal equation, Taylor's		
and Maclaurin's series expansions- Illustrative examples.		
Video Link:		
1. <u>http://nptel.ac.in/courses.php?disciplineID=111</u>		
UNIT-II		
Integral Calculus: Statement of reduction formulae for the integrals of $\sin^{n}(x)$,		
$\cos^{n}(x)$, $\sin^{n}(x)\cos^{n}(n)$ and evaluation of these integrals with standard limits-		

problems. Double and triple integrals-Simple examples.	
Video Link:	
1. <u>http://nptel.ac.in/courses.php?disciplineID=111</u>	
UNIT-III	
Vector Differentiation: Scalar and Vector point functions, Gradient, Divergence,	8Hrs
Curl, Solenoidal and Irrotational vector fields.	01115
Vector identities - $div(\phi \vec{A})$, $curl(\phi \vec{A})$, $curl(grad(\phi))$, $div(curl \vec{A})$.	
Video Link:	
1. <u>http://nptel.ac.in/courses.php?disciplineID=111</u>	
UNIT-IV	
VI Probability: Basic terminology, Sample space and events. Axioms of probability. Conditional probability – illustrative examples. Bayes theorem- examples. Video Link:	8Hrs
1. <u>http://nptel.ac.in/courses.php?disciplineID=111</u>	
UNIT-V	
 Ordinary Differential Equations of First Order: Introduction – Formation of differential equation, solutions of first order and first degree differential equations: variable separable form, homogeneous, exact, linear differential equations. Video Link: http://nptel.ac.in/courses.php?disciplineID=111 	8Hrs

Cours	se Outcomes: After completing the course, the students will be able to
CO1	Apply the knowledge of calculus to solve problems related to polar curves and its applications
CO2	Apply the concept of integration and variables to evaluate multiple integrals and their usage in computing the area and volumes.
CO3	Illustrate the applications of multivariate calculus to understand the solenoidal and irrotational vectors and also exhibit the inter dependence of line, surface and volume integrals.
CO4	Understand the basic Concepts of Probability
CO5	Recognize and solve first-order ordinary differential equations occurring in different branches of engineering.

Ref	erence Books
1.	B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 43 rd Edition, 2013, .
2.	G. B. Gururajachar, Calculus and Linear Algebra, Academic Excellent Series Publication
	2018-19
3.	Chandrashekar K. S, Engineering Mathematics-I, Sudha Publications, 2010.

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	0	2	0	0	0	0	0	0	1	1
CO2	3	3	0	2	0	0	0	0	0	0	1	1
CO3	3	3	0	3	0	0	0	0	0	0	1	1
CO4	2	2	0	3	0	0	0	0	0	0	1	1
CO5	2	2	0	2	0	0	0	0	0	0	0	1

Semester: IV							
Complex Variables and Numerical Methods							
	(Theory)						
Course Code	MVJ21MA41A	CIE Marks: 50					
Credits	L:T:P:: 2:2:0	SEE Marks: 50					
Hours	20L+20T	SEE Duration: 3 Hrs.					

Cou	Course Learning Objectives: The students will be able to						
	Understand the concepts of Complex variables and transformation for solving						
1	Engineering Problems.						
2	Understand the concepts of complex integration, Poles and Residuals in the stability analysis of engineering problems.						
3	Apply the concept to find extremal of functionals.						
4	Solve initial value problems using appropriate numerical methods.						
5	Students learn to obtain solutions of ordinary and partial differential equations numerically.						

UNIT-I					
Complex variables - I: Functions of complex variables, Analytic function, Cauchy-Riemann Equations in Cartesian and polar coordinates, Consequences of Cauchy-Riemann Equations, Construction of analytic functions (Using Milne-Thomson method).					
Transformations: Bilinear Transformation, Conformal transformation,					
Discussion of the transformations $w = z^2$, $w = e^z$ and $w = z + \frac{a}{z}$, $(z \neq 0)$.	8 Hrs				
Self Study topic : Harmonic function and its properties					
Web Link and Video Lectures:					
https://nptel.ac.in/courses/111103070					
UNIT-II					
Complex variables-II: Complex integration - Cauchy theorem, Cauchy's Integral					
Theorem-Problems, Taylor & Laurent series- Problems, Singularities, Types of					
Singularities, Poles, Residues-definitions, Cauchy residue theorem - Problems.	8 Hrs				
Self Study topic: Consequences of Cauchy's theorem, Cauchy residue theorem.					
Web Link and Video Lectures:					
https://nptel.ac.in/courses/111103070					
UNIT-III					
Numerical methods-I:					
Numerical solution of Ordinary Differential Equations of first order and first					
degree, Taylor's series method, Modified Euler's method, Runge-Kutta method of					
fourth order, Milne's and Adam-Bashforth Predictor and Corrector method.					
Web Link and Video Lectures:					
https://nptel.ac.in/courses/127106019					
UNIT-IV					
Numerical methods-II: Numerical solution of Ordinary Differential Equations of	8 Hrs				

second order: Runge-Kutta method of fourth order, Milne's Predictor and					
Corrector method.					
Calculus of variations: Variation of function and Functional, variational					
problems, Euler's equation, Geodesics.					
Applications : Hanging Chain problem.					
Self Study topic : Adam-Bashforth Predictor and Corrector method.					
Web Link and Video Lectures:					
https://nptel.ac.in/courses/127106019 https://nptel.ac.in/courses/111107103					
UNIT-V					
Numerical methods-III: Numerical solution of Partial Differential Equations:					
Introduction, Finite difference approximations to derivatives, Explicit methods-					
Numerical Solution of Laplace Equation, Numerical solution of one-dimensional					
heat equation by Bender - Schmidt's method and by Crank-Nicholson Method,					
Implicit method-Numerical solution of one-dimensional wave equation.					
Self Study topic: Classification of Partial differential equations, Parabolic,					
Elliptic and Hyperbolic equations.					
Web Link and Video Lectures:					
https://pptel.ac.ip/courses/111107063					

https://nptel.ac.in/courses/111107063

Cour	se Outcomes: After completing the course, the students will be able to
CO1	State and prove Cauchy - Riemann equation with its consequences and demonstrate
	Con-formal Transformation.
CO2	Illustrate Complex Integration using Cauchy's Integral theorem, Cauchy's Integral
	formula and Cauchy's Residue theorem.
CO3	Identify appropriate numerical methods to solve ODE.
CO4	Determine the extremals of functionals and solve the simple problems of the calculus
	of variations.
CO5	Choose appropriate numerical methods to solve Partial Differential Equations.

Ref	erence Books
1.	B.S. Grewal, "Higher Engineering Mathematics" Khanna Publishers, 43 rd Edition, 2013.
2.	Erwin Kreyszig, "Advanced Engineering Mathematics", Wiley-India publishers, 10th
	edition,2014.
3.	Ramana B. V., "Higher Engineering Mathematics", Tata Mc Graw-Hill, 2006.
4.	Bali N. P. & Manish Goyal, "A text book of Engineering Mathematics", Laxmi
	Publications, 8 th Edition.

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	0	3	0	0	0	0	0	0	1	1
CO2	3	3	0	3	0	0	0	0	0	0	1	0
CO3	3	2	0	2	0	0	0	0	0	0	0	0
CO4	3	3	0	3	0	0	0	0	0	0	0	1
CO5	3	3	0	3	0	0	0	0	0	0	1	0

	Semester: IV						
	MICRO CONTROLLER AND EMBEDDED SYSTEMS						
		(Theory)					
Cou	rse Code: MVJ21CS/CG/AI42	CIE Marks:100					
Cree	Credits: L:T:P:S: 3:0:0:0 SEE Marks: 100						
Hou	Hours: 40L+26T SEE Duration: 3 Hrs						
Cou	rse Learning Objectives: The stude	nts will be able to					
1	Explain the fundamentals of ARM b	ased system, basic hardware components, selection					
1	methods and attributes of an ARM Controller.						
2	Program ARM controller using the various instructions.						
2	Explain the fundamentals of Exception Interrupt Handling and Memory Management						
3	³ Unit of ARM Controller.						
4	Identify the Embedded System Design applications.						
5	Explain the real time operating system for the embedded system design.						

UNIT-I	
Microprocessors versus Microcontrollers, ARM Embedded Systems: The	8 Hrs
RISC design philosophy, The ARM Design Philosophy, Embedded System	
Hardware, Embedded System Software.	
ARM Processor Fundamentals : Registers, Current Program Status Register, Pipeline, Exceptions, Interrupts, and the Vector Table , Core Extensions	
UNIT-II	
Introduction to the ARM Instruction Set : Data Processing Instructions,	8 Hrs
Programme Instructions, Software Interrupt Instructions, Program Status Register Instructions, Coprocessor Instructions, Loading Constants	
ARM programming using Assembly language: Writing Assembly code, Profiling and cycle counting, instruction scheduling	
UNIT-III	
Exception, Interrupt Handling : Exception handling, Interrupts, Interrupt	8 Hrs
handling Schemes	
Memory Management Unit : The Memory Hierarchy and Cache Memory, Cache Architecture, Cache Policy, Moving from MPU to an MMU, How Virtual Memory Works, Details of ARM MMU	
UNIT-IV	
Embedded System Components: Embedded Vs General computing system,	8 Hrs
History of embedded systems, Classification of Embedded systems, Major	

applications areas of embedded systems, purpose of embedded systems	
Core of an Embedded System including all types of processor/controller, Memory,	
Sensors, Actuators, LED, 7 segment LED display, stepper motor, Keyboard, Push	
button switch, Communication Interface (on board and external types), Embedded	
firmware, Other system components.	
UNIT-V	
Real Time Operating System (RTOS) based Embedded System Design:	8 Hrs
Operating System basics, Types of operating systems, Task, process and threads (Only POSIX Threads with an example program), Thread pre-emption, Multiprocessing and Multitasking, Task Communication (without any program), Task synchronization issues – Racing and Deadlock, Concept of Binary and counting semaphores (Mutex example without any program), How to choose an RTOS	

Cours	Course Outcomes: After completing the course, the students will be able to						
CO1	Describe the architectural features and instructions of ARM microcontroller						
CO2	Develop Assembly Programs in ARM for Embedded applications.						
CO3	Describe the fundamentals of Exception, Interrupt Handling and Memory Management						
	Unit of ARM Controller						
CO4	Interface external devices and I/O with ARM microcontroller.						
CO5	Demonstrate the need of real time operating system for embedded system applications						

Ref	erence Books
1.	Andrew N Sloss, Dominic Symes and Chris Wright, ARM system developer's guide,
	Elsevier, Morgan Kaufman publishers, 2008.
2.	Shibu K V, "Introduction to Embedded Systems", Tata McGraw Hill Education, Private
	Limited, 2nd Edition.
3.	Raghunandan.G.H, Microcontroller (ARM) and Embedded System, Cengage learning
	Publication, 2019
4.	The Insider's Guide to the ARM7 Based Microcontrollers, Hitex Ltd., 1st edition, 2005.

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	2	1	-	-	-	-	-	-	-	-
CO2	3	2	1	3	3	2	-	-	2	-	1	-
CO3	3	2	1	3	-	2	-	-	2	-	-	-
CO4	3	3	2	3	3	2	-	-	2	2	2	-
CO5	3	2	3	3	3	2	-	-	2	2	2	2

	Semester: IV								
	COMPUTER ORGANIZATION AND ARCHITECTURE								
		eory)							
Cou	rse Code: MVJ21CS/CG/AI43	CIE Marks:100							
Cree	dits: L:T:P:S: 3:0:0:0	SEE Marks: 100							
Hou	rs: 40L	SEE Duration: 3 Hrs							
Cou	rse Learning Objectives: The students	will be able to							
1	Learn the basic structure and operations of a computer.								
2	Learn the arithmetic and logic unit.								
	Learn the different ways of communication with I/O devices & memories, memory								
3	nierarchies, cache memories and virtual memories.								
4	Understand & implement arithmetic process.								
5	Understand the processor and pipelining concepts.								
6	Understand parallelism and multi-core p	rocessors.							

UNIT-I	
Basic Structure of Computers: Basic Operational Concepts, Bus Structures,	8 Hrs
Performance –Processor Clock, Basic Performance Equation, Clock Rate,	
Performance Measurement.	
Machine Instructions and Programs: Memory Location and Addresses,	

Memory Operations, Instructions and Instruction Sequencing, Addressing Modes,	
Assembly Language, Basic Input and Output Operations, Stacks and Queues,	
Subroutines, Additional Instructions, Encoding of Machine Instructions.	
Arithmetic: Numbers, Arithmetic Operations and Characters, Addition and	
Subtraction of Signed Numbers, Design of Fast Adders, Multiplication of Positive	
Numbers, Signed Operand Multiplication, Fast Multiplication, Integer Division.	
Video link : https://nptel.ac.in/courses/106105163/	
UNIT-II	
Input/output Organization: Accessing I/O Devices, Interrupts – Interrupt	8 Hrs
Hardware, Direct Memory Access, Buses, Interface Circuits, Standard I/O	
Interfaces – PCI Bus, SCSI Bus, USB	
Videolink: https://www.youtube.com/watch?v=RkAE4zE4uSE&list=PL13FD5F0 0C21BBC0B&index=11	
UNIT-III	
Memory: Basic Concepts, Semiconductor RAM Memories, Read Only	8 Hrs
Memories, Speed, Size, and Cost, Cache Memories – Types of cache ,Cache miss	
management Mapping Functions, Replacement Algorithms, Performance	
Considerations,(ARM Cache and Pentium cache).	
Video link : https://nptel.ac.in/courses/106105163/	
UNIT-IV	
Processor : A Basic MIPS implementation – Building a Data path – Control	8 Hrs
Implementation Scheme –Pipelining – Pipelined data path and control – Handling	
Data Hazards & Control Hazards –Exceptions.	
Video link: https://nptel.ac.in/courses/106106166/	
UNIT-V	
Parallelism: Parallel processing challenges –Flynn's classification – SISD,	8 Hrs
MIMD, SIMD, SPMD, and Vector Architectures - Hardware multithreading -	
Multi-core processors and other Shared Memory Multiprocessors - Introduction to	
Graphics Processing Units, Clusters, Warehouse Scale Computers and other	
Message-Passing Multiprocessors.	
Video link: https://nptel.ac.in/courses/106102114/	

Cours	Course Outcomes: After completing the course, the students will be able to						
CO1	Explain the basic organization of a computer system.						
CO2	Demonstrate functioning of different sub systems, such as processor, Input/output, and						
	memory.						

CO3	Design and analyses simple arithmetic and logical units.
CO4	Illustrate hardwired control and micro programmed control, pipelining, embedded and
	other Computing systems.
CO5	Design and analyses of simple Parallelism and Multithread.

Ref	erence Books
1.	Carl Hamacher, Zvonko Vranesic, SafwatZaky, Computer Organization, 5th Edition,
	Tata McGraw Hill, 2002. (Listed topics only from Chapters 1, 2, 4, 5, and 6).
2.	David A. Patterson and John L. Hennessy, Computer Organization and Design: The
	Hardware/Software Interface, Fifth Edition, Morgan Kaufmann / Elsevier, 2014.(Listed
	topics only from Chapters 4and 6).
3.	John P. Hayes, Computer Architecture and Organization, Third Edition, Tata McGraw
	Hill, 2012.
4.	John L. Hennessey and David A. Patterson, Computer Architecture - A Quantitative
	Approachl, Morgan Kaufmann / Elsevier Publishers, Fifth Edition, 2012.

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	2	1	1	1	-	-	-	-	-	-	-
CO2	2	2	1	1	1	-	-	-	-	-	-	-
CO3	1	2	2	1	1	-	-	-	-	-	-	-
CO4	2	2	2	1	2	-	-	-	-	-	-	-
CO5	1	2	2	1	2	-	-	-	-	-	-	-

Se	emester: IV						
РУТНО	PYTHON PROGRAMMING						
(Theor	ry and Practice)						
Course Code: MVJ21CS/CG/AI44	CIE Marks:50+50						
Credits: L:T:P: 3:0:1	SEE Marks: 50 +50						
Hours:40 L+ 26 P	SEE Duration: 03+03 Hours						

Course Learning Objectives: The students will be able to

1 Familiarize the students with the fundamentals and programming basics of Python Language

UNIT-I					
Introduction to Python: Features of python, Applications of python, Syntax,	8 Hrs				
Comments, Indentations, Number types, Variables and Data Types, Operators,					
conditional statement, Loops in Python.					
Python List: Create Python List, Access Python List, Slicing a Python List, slicing and dicing, Reassigning a Python List (Mutable), Reassigning the whole Python list, Deleting list and elements, Multidimensional Lists, List Operations, Built-in List Functions.					
UNIT-II					
Python Tuple: Create a Python Tuple, Tuples Packing, Tuples Unpacking,	8 Hrs				
Creating a tuple with a single item, Access Python Tuple, Slicing a Tuple,					
Deleting a Python Tuple, Reassigning Tuples, Tuple Functions Tuple Operations.					
Python Dictionary: Create a Dictionary, Dictionaries with mixed keys, Access a Python Dictionary, Delete Python Dictionary, In-Built Functions on a Python Dictionary, In-Built Methods on a Python Dictionary, Dictionary Operations. UNIT-III					
Python Function: User-Defined Functions in Python, Python Built-in Functions,	8 Hrs				
Python Lambda Expressions, Recursion Function, Range function.					
Python Method: Introduction to Method,init(), Self Parameter, Functions vs Method, Magic Methods					
UNIT-IV					
Python Class: Introduction to Python Class, Defining a Python Class, Accessing Python Class Members Python Object Attributes Belonging to Python Class, Delete Python Class, Attribute, Inheritance, Multiple inheritance.	8 Hrs				
UNIT-V	<u> </u>				
File Handling In Python: Read and Write File, Open File, Close File, File Methods, Data Base connections.					
LABORATORY EXPERIMENTS	<u> </u>				
1. Write a Python program to encrypt the text using Caesar Cipher technique. D	isplay the				
encrypted text. Prompt the user for input and the shift pattern.					
2. Devise a Python program to implement the Rock-Paper-Scissor game.					
3. Write a Python program to perform Jump Search for a given key and report su					
failure. Prompt the user to enter the key and a list of numbers.					
4. The celebrity problem is the problem of finding the celebrity among n people. A is someone who does not know anyone (including themselves) but is known by Write a Python program to solve the celebrity problem.					

Write a Python program to solve the celebrity problem.5. Write a Python program to construct a linked list. Prompt the user for input. Remove any duplicate numbers from the linked list.

6. Perform the following file operations using Python

a) Traverse a path and display all the files and subdirectories in each level till the deepest

level for a given path. Also, display the total number of files and subdirectories.

b) Read a file content and copy only the contents at odd lines into a new file.

7. Create a menu drive Python program with a dictionary for words and their meanings. Write functions to add a new entry (word: meaning), search for a particular word and retrieve meaning, given meaning find words with the same meaning, remove an entry, display all words sorted alphabetically.

8. Using Regular Expressions, develop a Python program to

- a) Identify a word with a sequence of one upper case letter followed by lower case letters.
- b) Find all the patterns of "1(0+)1" in a given string.
- c) Match a word containing 'z' followed by one or more o's.

Prompt the user for input.

9. Devise a Python program to implement the Hangman Game.

10. Write a Python program to print all the Disarium numbers between 1 and 100

Any 10 experiments to be conducted

Cour	Course Outcomes: After completing the course, the students will be able to		
CO1	Understand data types (like character strings, integers, and real numbers)and the		
	Operations that can be Applied to each data type.		
CO2	Write programs that get input, perform calculations, and provide output (using		
	Conditional logic, loops, Functions).		
CO3	Write well designed and well documented programs that are easily maintainable		
CO4	Analyze String Formatting Options.		
CO5	Enjoy the art and science of computer files using python.		

Reference Books 5. Michael T. Goodrich, Roberto Tamassia, Michael H. Goldwasser Data Structures and Algorithms in PythonJohn Wiley & Sons, Incorporated. 6. Frank Kane (2017)Hands-On Data Science and Python Machine Learning 1st Edition, Kindle Edition 3. Mark Smart,(2018), Introduction to Data Science with Python: Basics of Numpy and Pandas. 4. VK Jain,Data Science & Analytics, Khanna Book Publishing ;edition (2018)

Continuous Internal Evaluation (CIE): Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Laboratory- 50 Marks

The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are awarded 10 marks. Total marks for the laboratory is 50.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the entire syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	S	emester:IV	
		SIS OF ALGORITHMS & LAB y and Practice)	
Cou	irse Code: MVJ21CS/CG/AI45	CIE Marks:50+50	
Cre	Credits: L:T:P: 3:0:1 SEE Marks: 50 +50		
Hours:40 L+ 26 P		SEE Duration: 03+03 Hours	
Coι	rse Learning Objectives: The stud	ents will be able to	
1	Identify the importance of different asymptotic notation.		
2	Determine the complexity of recursive and non-recursive algorithms.		
3	Compare the efficiency of var backtracking etc.	ious design techniques like greedy method,	
4	Apply appropriate method to solve	a given problem.	

UNIT-I	
Basic Concept of Algorithms: Introduction-What is an Algorithm, Algorithm	8 Hrs
Specification, Analysis Framework, Performance Analysis: Space complexity,	
Time complexity. Asymptotic Notations: Big-Oh notation (O), Omega notation	
(Ω), Theta notation (Θ), and Little-oh notation (o), Mathematical analysis of Non-	
Recursive and recursive Algorithms with Examples . Important Problem Types.	
Fundamental Data Structures.	
UNIT-II	
Simple Design Techniques – Brute force :Selection sort, Bubble sort, Sequential	8 Hrs
Search and Brute-Force String Matching , Exhaustive search –Traveling Salesman	
problem, Knapsack problem , Assignment Problem.	
Divide and Conquer: General method, Binary search, Recurrence equation for	
divide and conquer, Finding the maximum and minimum , Merge sort, Quick	
sort, Strassen's matrix multiplication, Advantages and Disadvantages of divide	
and conquer.	
UNIT-III	
Decrease and Conquer approach: Topological Sort, Decrease-by-a-Constant-	8 Hrs
Factor Algorithms: Josephus Problem.	

Greedy Method: General method, Coin Change Problem, Knapsack Problem, Job sequencing with deadlines. Minimum cost spanning trees: Prim's Algorithm, Kruskal's Algorithm. Single source shortest paths: Dijkstra's Algorithm. Huffman Trees and Codes.

UNIT-IV

Dynamic Programming: General method with Examples, Multistage Graphs. 8	
Transitive Closure: Warshall's Algorithm, All Pairs Shortest Paths: Floyd's	
Algorithm, Optimal Binary Search Trees, Knapsack problem, Bellman-Ford	
Algorithm, Travelling Sales Person problem, Reliability design.	

UNIT-V

Backtracking: General method, N-Queens problem, Sum of subsets problem,8 HrsGraph coloring, Hamiltonian cyclesProgramme and Bound: AssignmentProblem, Travelling Sales Person problem, 0/1 Knapsack problem.

LC Programme and Bound solution : FIFO Programme and Bound solution.

NP-Complete and NP-Hard problems: Basic concepts, non-deterministic algorithms, P, NP, NP-Complete, and NP-Hard classes.

LABORATORY EXPERIMENTS

1.Create a Java class called Student with the following details as variables within it. (i) USN (ii) Name (iii) Branch (iv) Phone Write a Java program to create nStudent objects and print the USN, Name, Branch, and Phoneof these objects with suitable headings.

2.Write a Java program to read two integers a andb. Compute a/b and print, when b is not zero. Raise an exception when b is equal to zero.

3.Write a Java program that implements a multi-thread application that has three threads. First thread generates a random integer for every 1 second; second thread computes the square of the number and prints; third thread will print the value of cube of the number.

4.Sort a given set of n integer elements using Quick Sort method and compute its time complexity. Run the program for varied values of n > 5000 and record the time taken to sort. Plot a graph of the time taken versus non graph sheet. The elements can be read from a file or can be generated using the random number generator. Demonstrate using Java how the divide-and-conquer method works along with its time complexity analysis: worst case, average case and best case.

5.Sort a given set of n integer elements using Merge Sort method and compute its time complexity. Run the program for varied values of n > 5000, and record the time taken to sort. Plot a graph of the time taken versus non graph sheet. The elements can be read from a file or can be generated using the random number generator. Demonstrate using Java how the divide-and-conquer method works along with its time complexity analysis: worst case, average case and best case.

6. Implement in Java, the 0/1 Knapsack problem using (a) Dynamic Programming method

(b) Greedy method.

7. From a given vertex in a weighted connected graph, find shortest paths to other vertices using Dijkstra's algorithm. Write the program in Java.

8. Find Minimum Cost Spanning Tree of a given connected undirected graph using

Kruskal's algorithm. Use Union-Find algorithms in your program.

9. Find Minimum Cost Spanning Tree of a given connected undirected graph using Prim's algorithm.

10. Write Java programs to (a) Implement All-Pairs Shortest Paths problem using Floyd's algorithm. (b) Implement Travelling Sales Person problem using Dynamic programming.

11. Design and implement in Java to find all Hamiltonian Cycles in a connected undirected Graph G of n vertices using backtracking principle.

12. Design and implement in Java to find a subset of a given set $S = {S1, S2,....,Sn}$

of n positive integers whose SUM is equal to a given positive integer d.

For example, if $S = \{1, 2, 5, 6, 8\}$ and d = 9, there are two solutions $\{1,2,6\}$ and

{1,8}. Display a suitable message, if the given problem instance doesn't have a solution.

Any 10 experiments to be conducted

Cours	Course Outcomes: After completing the course, the students will be able to		
CO1	Describe the need of algorithm and the notations used in design analysis.		
CO2	Compare the efficiency of brute force, divide and conquer techniques for problem		
	solving.		
CO3	Ability to apply greedy algorithms, hashing and string matching algorithms.		
CO4	Ability to design efficient algorithms using various design techniques.		
CO5	Ability to apply the knowledge of complexity classes P, NP, and NP Complete and prove certain problems are NP-Complete.		

Ref	Reference Books		
1.	Introduction to the Design and Analysis of Algorithms, Anany Levitin:, 2rd Edition,		
	2009. Pearson.		
2.	Introduction to Algorithms, Thomas H. Cormen, Charles E. Leiserson, Ronal L. Rivest,		
	Clifford Stein, 3rd Edition, PHI.		
3.	Design and Analysis of Algorithms, S. Sridhar, Oxford (Higher Education).		
4.	Computer Algorithms/C++, Ellis Horowitz, Satraj Sahni and Rajasekaran, 2nd Edition,		
	2014, Universities Press.		

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks.

Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Laboratory- 50 Marks

The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are awarded 10 marks. Total marks for the laboratory is 50.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the entire syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	Semester: IV		
	Additional Mathematics-II		
(Common to all branches)			
Course Code: MVJ21MATDIP2 CIE Marks:50			
Credits:		L:T:P:S: 4:0:0:0	SEE Marks: 50
Hours:		40L	SEE Duration: 3 Hrs
Course Learning Objectives: The students will be able to			
1	1 To familiarize the important concepts of linear algebra.		
2	2 Aims to provide essential concepts differential calculus, beta and gamma functions.		
3	Introductory concepts of t	hree-dimensional geometry	along with methods to solve
5	them.		
4	4 Linear differential equations		
5	Formation of partial differer	ntial equations.	

UNIT-I	
 Linear Algebra: Introduction - Rank of matrix by elementary row operations - Echelon form. Consistency of system of linear equations - Gauss elimination method. Eigen values and eigen vectors of a square matrix. Diagonalization of a square matrix of order two. Self study: Application of Cayley-Hamilton theorem (without proof) to 	8 Hrs

compute the inverse of a matrix-Examples.	
Video Link:	
1. <u>http://nptel.ac.in/courses.php?disciplineID=111</u>	
UNIT-II	
Differential calculus: Indeterminate forms: L-Hospital rule (without proof), Total	8Hrs
derivatives, and Composite functions. Maxima and minima for a function of two	
variables.	
Beta and Gamma functions: Beta and Gamma functions, Relation between Beta	
and Gamma function-simple problems.	
Self study: Curve tracing.	
Video Link:	
1. <u>http://nptel.ac.in/courses.php?disciplineID=111</u>	
UNIT-III	
Analytical solid geometry : Introduction –Directional cosine and Directional	8Hrs
ratio of a line, Equation of line in space- different forms, Angle between two line,	
shortest distance between two line, plane and equation of plane in different forms	
and problems.	
Self study: Volume tetrahedron.	
Video Link:	
1. <u>http://nptel.ac.in/courses.php?disciplineID=111</u>	
UNIT-IV	
Differential Equations of higher order: Linear differential equations of second	8 Hrs
and higher order equations with constant coefficients. Inverse Differential	0 111 5
operator, Operators methods for finding particular integrals, and Euler –Cauchy	
equation.	
Self study: Method of variation of parameters	
Video Link:	
1. <u>http://nptel.ac.in/courses.php?disciplineID=111</u>	
UNIT-V	0.11
Partial differential equation: Introduction- Classification of partial differential	8 Hrs
equations, formation of partial differential equations. Method of elimination of arbitrary constants and functions. Solutions of non-homogeneous partial	
differential equations by direct integration. Solution of Lagrange's linear PDE.	
Self study: One dimensional heat and wave equations and solutions by the	
method of separable of variable	
Video Link:	
1. <u>http://nptel.ac.in/courses.php?disciplineID=111</u>	

Cour	Course Outcomes: After completing the course, the students will be able to	
CO1	Make use of matrix theory for solving system of linear equations and compute eigenvalues and eigen vectors required for matrix diagonalization process.	

CO2	Learn the notion of partial differentiation to calculate rates of change of multivariate functions and solve problems related to composite functions and Jacobians.
CO3	Understand the Three-Dimensional geometry basic, Equation of line in space- different forms, Angle between two line and studying the shortest distance .
CO4	Demonstrate various physical models through higher order differential equations and solve such linear ordinary differential equations.
CO5	Construct a variety of partial differential equations and solution by exact methods.

Ref	erence Books
1.	B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 43 rd Edition, 2013, .
2.	G. B. Gururajachar, Calculus and Linear Algebra, Academic Excellent Series Publication
	2018-19
3.	Chandrashekar K. S, Engineering Mathematics-I, Sudha Publications, 2010.

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping													
CO/PO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12											PO12			
CO1	3	3	0	2	0	0	0	0	0	0	1	1		
CO2	3	3	0	2	0	0	0	0	0	0	1	1		

CO3	3	3	0	3	0	0	0	0	0	0	0	1
CO4	2	2	0	3	0	0	0	0	0	0	1	1
CO5	2	2	0	2	0	0	0	0	0	0	0	1

	Semester: V											
	SOFTWARE ENGINEERING MANAGEMENT											
	(Theory)											
Cou	rse Code:	MVJ21SPM51	CIE Marks:50									
Cre	dits:	3	SEE Marks: 50									
Hou	irs:	40	SEE Duration: 3 Hrs									
Cou	rse Learning Objective	es: The students will be able to	D									
	Understand principles,	Understand principles, concepts, methods, and techniques of the software engineering										
1	approach to producing quality software (particularly for large, complex systems).											
	Impart skills in the de	sign and implementation of ef	ficient software systems across									
2	disciplines.											
	Familiarize engineering	g practices and standards used	in developing software products									
3	and components.											

4 Gather knowledge on various software testing, maintenance method4s.							
UNIT-I	11 0						
INTRODUCTION TO SOFTWARE ENGINEERING: The Evolving nature of	Hrs 8						
software engineering, Changing nature of software engineering, Software							
engineering Layers, The Software Processes, Software Myths.							
PROCESS MODELS: A Generic Process Model, Waterfall Model, Incremental							
Process Models, Evolutionary Process Models, Spiral Model, the Unified Process,							
Personal and Team Process Models, the Capability Maturity Model Integration							
(CMMI).							
Laboratory Sessions/ Experimental learning:							
To write the SRS for the given real time application using report writing tools.							
Applications: In Software development process.							
Applications: In Software development process.							
Applications: In Software development process.1. Videolink/Additionalonlineinformation:							
1. Video link / Additional online information:							
1. Video link / Additional online information: https://nptel.ac.in/courses/106105182/	Hrs 8						
1. Video link / Additional online information: https://nptel.ac.in/courses/106105182/ UNIT-II	Hrs 8						
1. Video link / Additional online information: https://nptel.ac.in/courses/106105182/ unit-ii unit-ii unit-ii EQUIREMENTS ENGINEERING: Functional and Non-Functional	Hrs 8						
1. Video link / Additional online information: https://nptel.ac.in/courses/106105182/ unit-ii unit-ii unit-ii EQUIREMENTS ENGINEERING: Functional and Non-Functional Requirements, The Software requirements Document, Requirements	Hrs 8						
1. Video link / Additional online information: https://nptel.ac.in/courses/106105182/ unit-ii unit-ii unit-ii EQUIREMENTS ENGINEERING: Functional and Non-Functional Requirements, The Software requirements Document, Requirements Specification, requirements Engineering, Requirements Elicitation and Analysis,	Hrs 8						
1. Video link / Additional online information: https://nptel.ac.in/courses/106105182/ unit-ii unit-ii unit-ii REQUIREMENTS ENGINEERING: Functional and Non-Functional Requirements, The Software requirements Document, Requirements Specification, requirements Engineering, Requirements Elicitation and Analysis, Requirement Validation, Requirement Management, System Modeling: Context	Hrs 8						
1. Video link / Additional online information: https://nptel.ac.in/courses/106105182/ unit unit<	Hrs 8						

Architectural Styles.

Applications: In Software development process.

Video link / Additional online information:

1. https://www.coursera.org/lecture/client-needs-and-software-requirements/3-2-4-use-cases-bZNCr

UNIT-I	II							
DESIG	N AND IN	MPLEMENTATI	ON: The	e Objec	t Oriente	ed Design with	UML,	Hrs 8
Design	Patterns,	Implementation	Issues,	Open	Source	Development.	User	

Interface Design: The Golden Rules, User Interface Analysis and Design, Interface Analysis, Interface Design Steps, Design Evaluation. SOFTWARE TESTING STRATEGIES: A Strategic approach to Software Testing, Strategic Issues, Test Strategies for Conventional Software, Validation Testing, System Testing, The Art of Debugging, White-Box Testing, Black Box Testing. Laboratory Sessions/ Experimental learning: Using Selenium IDE write a test suite containing minimum 4 test cases. Applications: In Software development process. • Video link / Additional online information: https://www.youtube.com/watch?v=T3q6QcCQZQg UNIT-IV PRODUCT METRICS: A Frame Work for Product Metrics, Metrics for the Requirements Model, Metrics for Design Model, Metrics for Source Code, Metrics for Testing. PROCESS AND PROJECT METRICES: Metrics in the Process and Project Domains, Software Measurements, Metrics for Software Quality, Risk Management: Risk verses Proactive Risk Strategies, Software Risks, Risk Identification, Risk Projection, Risk Refinements, Risk Mitigation Monitoring and Management (RMMM), The RMMM Plan. Laboratory Sessions/ Experimental learning: Create a project using MS projects for any real time scenario. Applications: In Software development process. • Video link / Additional online information: https://youtu.be/tlZ1dg4pxCE UNT-V QUALITY MANAGEMENT: Quality Concepts, Software Quality, Software Quality Dilemma, Achieving Software Quality, Review Techniques, Reviews: A Formal speetrum, Informal Reviews, Formal Technical Reviews, SOFTWARE QUALITY ASSURANCE: Background Issues, Elements of Software Quality Assurance, Tasks, Goals and Metrics, Software Reliability, the ISO 9000 Quality Standards. Laboratory Sessions/ Experimental learning: Estimation of test coverage extrine uvian ensured text exterie.		
TESTING STRATEGIES: A Strategic approach to Software Testing, Strategic Issues, Test Strategies for Conventional Software, Validation Testing, System Testing, The Art of Debugging, White-Box Testing, Black Box Testing. Laboratory Sessions/ Experimental learning: Using Sclenium IDE write a test suite containing minimum 4 test cases. Applications: In Software development process. • Video link / Additional online information: https://www.youtube.com/watch?v=T3q6QeCQZQg UNIT-IV PRODUCT METRICS: A Frame Work for Product Metrics, Metrics for the Requirements Model, Metrics for Design Model, Metrics for Source Code, Metrics for Testing. PROCESS AND PROJECT METRICES: Metrics in the Process and Project Domains, Software Measurements, Metrics for Software Quality, Risk Management: Risk verses Proactive Risk Strategies, Software Risks, Risk Identification, Risk Projection, Risk Refinements, Risk Mitigation Monitoring and Management (RMMM), The RMMM Plan. Laboratory Sessions/ Experimental learning: Create a project using MS projects for any real time scenario. Applications: In Software development process. • Video link / Additional online information: https://youtu.bc/tlZ1dg4pxCE UNIT-V Quality Dilemma, Achieving Software Quality, Review Techniques, Reviews:		
Issues, Test Strategies for Conventional Software, Validation Testing, System Testing, The Art of Debugging, White-Box Testing, Black Box Testing. Laboratory Sessions/ Experimental learning: Using Selenium IDE write a test suite containing minimum 4 test cases. Applications: In Software development process. • Video link / Additional online information: https://www.youtube.com/watch?v=T3q6QeCQZQg UNIT-IV PRODUCT METRICS: A Frame Work for Product Metrics, Metrics for the Requirements Model, Metrics for Design Model, Metrics for Source Code, Metrics for Testing. PROCESS AND PROJECT METRICES: Metrics in the Process and Project Domains, Software Measurements, Metrics for Software Quality, Risk Management: Risk verses Proactive Risk Strategies, Software Risks, Risk Identification, Risk Projection, Risk Refinements, Risk Mitigation Monitoring and Management (RMMM), The RMMM Plan. Laboratory Sessions/ Experimental learning: Create a project using MS projects for any real time scenario. Applications: In Software development process. • Video link / Additional online information: https://youtu.be/tlZ1dg4pxCE UNIT-V QUALITY MANAGEMENT: Quality Concepts, Software Quality, Software Quality Dilemma, Achieving Software Quality, Review: A Formal spectrum, Informal Reviews, Formal Technical Reviews, SOFTWARE QUALITY ASSURANCE: Background Issues, Elements of Software Quality Assurance, Tasks, Goals and Metrics, Software Reliability, the ISO 9000 Quality Standards. Laboratory Sessions/ Experimental learning: Estimation of test coverage		
Testing, The Art of Debugging, White-Box Testing, Black Box Testing. I.aboratory Sessions/ Experimental learning: Using Selenium IDE write a test suite containing minimum 4 test cases. Applications: In Software development process. • Video link / Additional online information: https://www.youtube.com/watch?v=T3q6QcCQZQg UNIT-IV PRODUCT METRICS: A Frame Work for Product Metrics, Metrics for the Requirements Model, Metrics for Design Model, Metrics for Source Code, Metrics for Testing. Hrs 8 PROCESS AND PROJECT METRICES: Metrics in the Process and Project Domains, Software Measurements, Metrics for Software Quality, Risk Management: Risk verses Proactive Risk Strategies, Software Risks, Risk Identification, Risk Projection, Risk Refinements, Risk Mitigation Monitoring and Management (RMMM), The RMMM Plan. Laboratory Sessions/ Experimental learning: Create a project using MS projects for any real time scenario. Applications: In Software development process. • Video link / Additional online information: https://youtu.bc/tIZ1dg4pxCE UNIT-V QUALITY MANAGEMENT: Quality Concepts, Software Quality, Software Quality, Software Quality, Dilemma, Achieving Software Quality, Review Techniques, Reviews: A Formal spectrum, Informal Reviews, Formal Technical Reviews, Hrs 8 SOFTWARE QUALITY ASSURANCE: Background Issues, Elements of Software Quality Assurance, Tasks, Goals and Metrics, Software Reliability, the ISO 9000 Quality Standards. Laboratory Sessions/ Experimental learning: Estimation of test coverage	TESTING STRATEGIES: A Strategic approach to Software Testing, Strategic	
Laboratory Sessions/ Experimental learning: Using Selenium IDE write a test suite containing minimum 4 test cases. Applications: In Software development process. • Video link / Additional online information: https://www.youtube.com/watch?v=T3q6QcCQZQg UNIT-IV PRODUCT METRICS: A Frame Work for Product Metrics, Metrics for the Requirements Model, Metrics for Design Model, Metrics for Source Code, Metrics for Testing. Hrs 8 PROCESS AND PROJECT METRICES: Metrics in the Process and Project Domains, Software Measurements, Metrics for Software Quality, Risk Management: Risk verses Proactive Risk Strategies, Software Risks, Risk Identification, Risk Projection, Risk Refinements, Risk Mitigation Monitoring and Management (RMMM), The RMMM Plan. Laboratory Sessions/ Experimental learning: Create a project using MS projects for any real time scenario. Hrs 8 Applications: In Software development process. • Video link / Additional online information: https://youtu.be/tlZ1dg4pxCE UNIT-V QUALITY MANAGEMENT: Quality Concepts, Software Quality, Software Quality Dilemma, Achieving Software Quality, Review Techniques, Reviews: A Formal spectrum, Informal Reviews, Formal Technical Reviews, SOFTWARE QUALITY ASSURANCE: Background Issues, Elements of Software Quality Assurance, Tasks, Goals and Metrics, Software Reliability, the ISO 9000 Quality Standards. Laboratory Sessions/ Experimental learning: Estimation of test coverage	Issues, Test Strategies for Conventional Software, Validation Testing, System	
Using Selenium IDE write a test suite containing minimum 4 test cases. Applications: In Software development process. • Video link / Additional online information: https://www.youtube.com/watch?v=T3q6QcCQZQg UNIT-IV PRODUCT METRICS: A Frame Work for Product Metrics, Metrics for the Requirements Model, Metrics for Design Model, Metrics for Source Code, Metrics for Testing. PROCESS AND PROJECT METRICES: Metrics in the Process and Project Domains, Software Measurements, Metrics for Software Quality, Risk Management: Risk verses Proactive Risk Strategies, Software Risks, Risk Identification, Risk Projection, Risk Refinements, Risk Mitigation Monitoring and Management (RMMM), The RMMM Plan. Laboratory Sessions/ Experimental learning: Create a project using MS projects for any real time scenario. Applications: In Software development process. • Video link / Additional online information: https://youtu.be/tlZ1dg4pxCE UNIT-V QUALITY MANAGEMENT: Quality Concepts, Software Quality, Software Quality Dilemma, Achieving Software Quality, Review Techniques, Reviews: A Formal spectrum, Informal Reviews, Formal Technical Reviews, SOFTWARE QUALITY ASSURANCE: Background Issues, Elements of Software Quality Assurance, Tasks, Goals and Metrics, Software Reliability, the ISO 9000 Quality Standards. Laboratory Sessions/ Experimental learning: Estimation of test coverage	Testing, The Art of Debugging, White-Box Testing, Black Box Testing.	
Applications: In Software development process. • Video link / Additional online information: https://www.youtube.com/watch?v=T3q6QeCQZQg UNIT-IV PRODUCT METRICS: A Frame Work for Product Metrics, Metrics for the Requirements Model, Metrics for Design Model, Metrics for Source Code, Metrics for Testing. Hrs 8 PROCESS AND PROJECT METRICES: Metrics in the Process and Project Domains, Software Measurements, Metrics for Software Quality, Risk Management: Risk verses Proactive Risk Strategies, Software Risks, Risk Identification, Risk Projection, Risk Refinements, Risk Mitigation Monitoring and Management (RMMM), The RMMM Plan. Laboratory Sessions/ Experimental learning: Create a project using MS projects for any real time scenario. Hrs 8 Applications: In Software development process. • Video link / Additional online information: https://youtu.bc/tlZ1dg4pxCE Hrs 8 QUALITY MANAGEMENT: Quality Concepts, Software Quality, Software Quality Dilemma, Achieving Software Quality, Review Techniques, Reviews: A Formal spectrum, Informal Reviews, Formal Technical Reviews, SOFTWARE QUALITY ASSURANCE: Background Issues, Elements of Software Quality Standards. Laboratory Sessions/ Experimental learning: Estimation of test coverage Hrs 8	Laboratory Sessions/ Experimental learning:	
 Video link / Additional online information: https://www.youtube.com/watch?v=T3q6QccQZqg UNIT-IV PRODUCT METRICS: A Frame Work for Product Metrics, Metrics for the Requirements Model, Metrics for Design Model, Metrics for Source Code, Metrics for Testing. PROCESS AND PROJECT METRICES: Metrics in the Process and Project Domains, Software Measurements, Metrics for Software Quality, Risk Management: Risk verses Proactive Risk Strategies, Software Risks, Risk Identification, Risk Projection, Risk Refinements, Risk Mitigation Monitoring and Management (RMMM), The RMMM Plan. Laboratory Sessions/ Experimental learning: Create a project using MS projects for any real time scenario. Applications: In Software development process. Video link / Additional online information: https://youtu.be/tlZ1dg4pxCE UNIT-V QUALITY MANAGEMENT: Quality Concepts, Software Quality, Software Quality Dilemma, Achieving Software Quality, Review Techniques, Reviews: A Formal spectrum, Informal Reviews, Formal Technical Reviews, SOFTWARE QUALITY ASSURANCE: Background Issues, Elements of Software Quality Assurance, Tasks, Goals and Metrics, Software Reliability, the ISO 9000 Quality Standards. Laboratory Sessions/ Experimental learning: Estimation of test coverage 	Using Selenium IDE write a test suite containing minimum 4 test cases.	
https://www.youtube.com/watch?v=T3q6QcCQZQgUNIT-IVPRODUCT METRICS: A Frame Work for Product Metrics, Metrics for the Requirements Model, Metrics for Design Model, Metrics for Source Code, Metrics for Testing.Hrs 8PROCESS AND PROJECT METRICES: Metrics in the Process and Project Domains, Software Measurements, Metrics for Software Quality, Risk Management: Risk verses Proactive Risk Strategies, Software Risks, Risk Identification, Risk Projection, Risk Refinements, Risk Mitigation Monitoring and Management (RMMM), The RMMM Plan. Laboratory Sessions/ Experimental learning: Create a project using MS projects for any real time scenario.Hrs 8Applications: In Software development process. • Video link / Additional online information: https://youtu.be/tlZ1dg4pxCEHrs 8Quality Dilemma, Achieving Software Quality, Review Techniques, Reviews: A Formal spectrum, Informal Reviews, Formal Technical Reviews, SOFTWARE QUALITY ASSURANCE: Background Issues, Elements of Software Quality Assurance, Tasks, Goals and Metrics, Software Reliability, the ISO 9000 Quality Standards. Laboratory Sessions/ Experimental learning: Estimation of test coverage	Applications: In Software development process.	
UNIT-IV PRODUCT METRICS: A Frame Work for Product Metrics, Metrics for the Requirements Model, Metrics for Design Model, Metrics for Source Code, Metrics for Testing. PROCESS AND PROJECT METRICES: Metrics in the Process and Project Domains, Software Measurements, Metrics for Software Quality, Risk Management: Risk verses Proactive Risk Strategies, Software Risks, Risk Identification, Risk Projection, Risk Refinements, Risk Mitigation Monitoring and Management (RMMM), The RMMM Plan. Laboratory Sessions/ Experimental learning: Create a project using MS projects for any real time scenario. Applications: In Software development process. • Video link / Additional online information: https://youtu.be/tIZ1dg4pxCE UNIT-V QUALITY MANAGEMENT: Quality Concepts, Software Quality, Software Quality Dilemma, Achieving Software Quality, Review Techniques, Reviews: A Formal spectrum, Informal Reviews, Formal Technical Reviews, SOFTWARE QUALITY ASSURANCE: Background Issues, Elements of Software Quality Assurance, Tasks, Goals and Metrics, Software Reliability, the ISO 9000 Quality Standards. Laboratory Sessions/ Experimental learning: Estimation of test coverage	• Video link / Additional online information:	
PRODUCT METRICS: A Frame Work for Product Metrics, Metrics for the Hrs 8 Requirements Model, Metrics for Design Model, Metrics for Source Code, Metrics for Testing. PROCESS AND PROJECT METRICES: Metrics in the Process and Project Domains, Software Measurements, Metrics for Software Quality, Risk Management: Risk verses Proactive Risk Strategies, Software Risks, Risk Identification, Risk Projection, Risk Refinements, Risk Mitigation Monitoring and Management (RMMM), The RMMM Plan. Laboratory Sessions/ Experimental learning: Create a project using MS projects for any real time scenario. Applications: In Software development process. • Video link / Additional online information: https://youtu.be/tlZ1dg4pxCE Hrs 8 Quality Dilemma, Achieving Software Quality, Review Techniques, Reviews: A Formal spectrum, Informal Reviews, Formal Technical Reviews, SOFTWARE QUALITY ASSURANCE: Background Issues, Elements of Software Quality Assurance, Tasks, Goals and Metrics, Software Reliability, the ISO 9000 Quality Standards. Laboratory Sessions/ Experimental learning: Estimation of test coverage	https://www.youtube.com/watch?v=T3q6QcCQZQg	
Requirements Model, Metrics for Design Model, Metrics for Source Code, Metrics for Testing.PROCESS AND PROJECT METRICES: Metrics in the Process and Project Domains, Software Measurements, Metrics for Software Quality, Risk Management: Risk verses Proactive Risk Strategies, Software Risks, Risk Identification, Risk Projection, Risk Refinements, Risk Mitigation Monitoring and Management (RMMM), The RMMM Plan. Laboratory Sessions/ Experimental learning: Create a project using MS projects for any real time scenario.Applications: In Software development process. • Video link / Additional online information: https://youtu.be/tlZ1dg4pxCEUNIT-V QUALITY MANAGEMENT: Quality Concepts, Software Quality, Software Quality Dilemma, Achieving Software Quality, Review Techniques, Reviews: A Formal spectrum, Informal Reviews, Formal Technical Reviews, SOFTWARE QUALITY ASSURANCE: Background Issues, Elements of Software Quality Assurance, Tasks, Goals and Metrics, Software Reliability, the ISO 9000 Quality Standards. Laboratory Sessions/ Experimental learning: Estimation of test coverage	UNIT-IV	
Metrics for Testing. PROCESS AND PROJECT METRICES: Metrics in the Process and Project Domains, Software Measurements, Metrics for Software Quality, Risk Management: Risk verses Proactive Risk Strategies, Software Risks, Risk Identification, Risk Projection, Risk Refinements, Risk Mitigation Monitoring and Management (RMMM), The RMMM Plan. Laboratory Sessions/ Experimental learning: Create a project using MS projects for any real time scenario. Applications: In Software development process. • Video link / Additional online information: https://youtu.be/tIZ1dg4pxCE UNIT-V QUALITY MANAGEMENT: Quality Concepts, Software Quality, Software Quality Dilemma, Achieving Software Quality, Review Techniques, Reviews: A Formal spectrum, Informal Reviews, Formal Technical Reviews, SOFTWARE QUALITY ASSURANCE: Background Issues, Elements of Software Quality Assurance, Tasks, Goals and Metrics, Software Reliability, the ISO 9000 Quality Standards. Laboratory Sessions/ Experimental learning: Estimation of test coverage	PRODUCT METRICS: A Frame Work for Product Metrics, Metrics for the	Hrs 8
PROCESS AND PROJECT METRICES: Metrics in the Process and Project Domains, Software Measurements, Metrics for Software Quality, Risk Management: Risk verses Proactive Risk Strategies, Software Risks, Risk Identification, Risk Projection, Risk Refinements, Risk Mitigation Monitoring and Management (RMMM), The RMMM Plan. Laboratory Sessions/ Experimental learning: Create a project using MS projects for any real time scenario.Image: Create a project using MS projects for any real time scenario.Applications: In Software development process. • Video link / Additional online information: https://youtu.be/tIZ1dg4pxCEImage: Hrs 8QUALITY MANAGEMENT: Quality Concepts, Software Quality, Software Quality Dilemma, Achieving Software Quality, Review Techniques, Reviews: A Formal spectrum, Informal Reviews, Formal Technical Reviews, SOFTWARE QUALITY ASSURANCE: Background Issues, Elements of Software Quality Assurance, Tasks, Goals and Metrics, Software Reliability, the ISO 9000 Quality Standards. Laboratory Sessions/ Experimental learning: Estimation of test coverage	Requirements Model, Metrics for Design Model, Metrics for Source Code,	
Domains, Software Measurements, Metrics for Software Quality, Risk Management: Risk verses Proactive Risk Strategies, Software Risks, Risk Identification, Risk Projection, Risk Refinements, Risk Mitigation Monitoring and Management (RMMM), The RMMM Plan. Laboratory Sessions/ Experimental learning: Create a project using MS projects for any real time scenario. Applications: In Software development process. • Video link / Additional online information: https://youtu.be/tIZ1dg4pxCE UNIT-V QUALITY MANAGEMENT: Quality Concepts, Software Quality, Software Quality Dilemma, Achieving Software Quality, Review Techniques, Reviews: A Formal spectrum, Informal Reviews, Formal Technical Reviews, SOFTWARE QUALITY ASSURANCE: Background Issues, Elements of Software Quality Assurance, Tasks, Goals and Metrics, Software Reliability, the ISO 9000 Quality Standards. Laboratory Sessions/ Experimental learning: Estimation of test coverage	Metrics for Testing.	
Management: Risk verses Proactive Risk Strategies, Software Risks, Risk Identification, Risk Projection, Risk Refinements, Risk Mitigation Monitoring and Management (RMMM), The RMMM Plan.Laboratory Sessions/ Experimental learning: Create a project using MS projects for any real time scenario.Applications: In Software development process.• Video link / Additional online information: https://youtu.be/tIZ1dg4pxCEUNIT-V QUALITY MANAGEMENT: Quality Concepts, Software Quality, Software Quality Dilemma, Achieving Software Quality, Review Techniques, Reviews: A Formal spectrum, Informal Reviews, Formal Technical Reviews, SOFTWARE QUALITY ASSURANCE: Background Issues, Elements of Software Quality Assurance, Tasks, Goals and Metrics, Software Reliability, the ISO 9000 Quality Standards.Hrs 8Laboratory Sessions/ Experimental learning: Estimation of test coverage	PROCESS AND PROJECT METRICES: Metrics in the Process and Project	
Identification, Risk Projection, Risk Refinements, Risk Mitigation Monitoring and Management (RMMM), The RMMM Plan.Laboratory Sessions/ Experimental learning: Create a project using MS projects for any real time scenario.Applications: In Software development process.• Video link / Additional online information: https://youtu.be/tIZ1dg4pxCEUNIT-V QUALITY MANAGEMENT: Quality Concepts, Software Quality, Software Quality Dilemma, Achieving Software Quality, Review Techniques, Reviews: A Formal spectrum, Informal Reviews, Formal Technical Reviews, SOFTWARE QUALITY ASSURANCE: Background Issues, Elements of Software Quality Assurance, Tasks, Goals and Metrics, Software Reliability, the ISO 9000 Quality Standards. Laboratory Sessions/ Experimental learning: Estimation of test coverage	Domains, Software Measurements, Metrics for Software Quality, Risk	
Management (RMMM), The RMMM Plan.Laboratory Sessions/ Experimental learning: Create a project using MSprojects for any real time scenario.Applications: In Software development process.• Video link / Additional online information: https://youtu.be/tIZ1dg4pxCEUNIT-VQUALITY MANAGEMENT: Quality Concepts, Software Quality, SoftwareQuality Dilemma, Achieving Software Quality, Review Techniques, Reviews: AFormal spectrum, Informal Reviews, Formal Technical Reviews,SOFTWARE QUALITY ASSURANCE: Background Issues, Elements ofSoftware Quality Assurance, Tasks, Goals and Metrics, Software Reliability, theISO 9000 Quality Standards.Laboratory Sessions/ Experimental learning: Estimation of test coverage	Management: Risk verses Proactive Risk Strategies, Software Risks, Risk	
Laboratory Sessions/ Experimental learning: Create a project using MSprojects for any real time scenario.Applications: In Software development process.• Video link / Additional online information: https://youtu.be/tIZ1dg4pxCEUNIT-VQUALITY MANAGEMENT: Quality Concepts, Software Quality, SoftwareQuality Dilemma, Achieving Software Quality, Review Techniques, Reviews: AFormal spectrum, Informal Reviews, Formal Technical Reviews,SOFTWARE QUALITY ASSURANCE: Background Issues, Elements ofSoftware Quality Assurance, Tasks, Goals and Metrics, Software Reliability, theISO 9000 Quality Standards.Laboratory Sessions/ Experimental learning: Estimation of test coverage	Identification, Risk Projection, Risk Refinements, Risk Mitigation Monitoring and	
projects for any real time scenario. Applications: In Software development process. • Video link / Additional online information: https://youtu.be/tIZ1dg4pxCE UNIT-V QUALITY MANAGEMENT: Quality Concepts, Software Quality, Software Quality Dilemma, Achieving Software Quality, Review Techniques, Reviews: A Formal spectrum, Informal Reviews, Formal Technical Reviews, SOFTWARE QUALITY ASSURANCE: Background Issues, Elements of Software Quality Assurance, Tasks, Goals and Metrics, Software Reliability, the ISO 9000 Quality Standards. Laboratory Sessions/ Experimental learning: Estimation of test coverage	Management (RMMM), The RMMM Plan.	
Applications: In Software development process.• Video link / Additional online information: https://youtu.be/tIZ1dg4pxCEUNIT-VQUALITY MANAGEMENT: Quality Concepts, Software Quality, SoftwareQuality Dilemma, Achieving Software Quality, Review Techniques, Reviews: AFormal spectrum, Informal Reviews, Formal Technical Reviews,SOFTWARE QUALITY ASSURANCE: Background Issues, Elements ofSoftware Quality Assurance, Tasks, Goals and Metrics, Software Reliability, theISO 9000 Quality Standards.Laboratory Sessions/ Experimental learning: Estimation of test coverage	Laboratory Sessions/ Experimental learning: Create a project using MS	
 Video link / Additional online information: https://youtu.be/tIZ1dg4pxCE UNIT-V QUALITY MANAGEMENT: Quality Concepts, Software Quality, Software Quality Dilemma, Achieving Software Quality, Review Techniques, Reviews: A Formal spectrum, Informal Reviews, Formal Technical Reviews, SOFTWARE QUALITY ASSURANCE: Background Issues, Elements of Software Quality Assurance, Tasks, Goals and Metrics, Software Reliability, the ISO 9000 Quality Standards. Laboratory Sessions/ Experimental learning: Estimation of test coverage 	projects for any real time scenario.	
UNIT-VQUALITY MANAGEMENT: Quality Concepts, Software Quality, SoftwareQuality Dilemma, Achieving Software Quality, Review Techniques, Reviews: AFormal spectrum, Informal Reviews, Formal Technical Reviews,SOFTWARE QUALITY ASSURANCE: Background Issues, Elements ofSoftware Quality Assurance, Tasks, Goals and Metrics, Software Reliability, theISO 9000 Quality Standards.Laboratory Sessions/ Experimental learning: Estimation of test coverage	Applications: In Software development process.	
QUALITY MANAGEMENT: Quality Concepts, Software Quality, SoftwareHrs 8Quality Dilemma, Achieving Software Quality, Review Techniques, Reviews: AFormal spectrum, Informal Reviews, Formal Technical Reviews,SOFTWARE QUALITY ASSURANCE: Background Issues, Elements ofSoftware Quality Assurance, Tasks, Goals and Metrics, Software Reliability, theISO 9000 Quality Standards.Laboratory Sessions/ Experimental learning: Estimation of test coverage	• Video link / Additional online information: https://youtu.be/tIZ1dg4pxCE	
Quality Dilemma, Achieving Software Quality, Review Techniques, Reviews: A Formal spectrum, Informal Reviews, Formal Technical Reviews, SOFTWARE QUALITY ASSURANCE: Background Issues, Elements of Software Quality Assurance, Tasks, Goals and Metrics, Software Reliability, the ISO 9000 Quality Standards. Laboratory Sessions/ Experimental learning: Estimation of test coverage	UNIT-V	
Formal spectrum, Informal Reviews, Formal Technical Reviews, SOFTWARE QUALITY ASSURANCE: Background Issues, Elements of Software Quality Assurance, Tasks, Goals and Metrics, Software Reliability, the ISO 9000 Quality Standards. Laboratory Sessions/ Experimental learning: Estimation of test coverage	QUALITY MANAGEMENT: Quality Concepts, Software Quality, Software	Hrs 8
SOFTWARE QUALITY ASSURANCE: Background Issues, Elements of Software Quality Assurance, Tasks, Goals and Metrics, Software Reliability, the ISO 9000 Quality Standards. Laboratory Sessions/ Experimental learning: Estimation of test coverage	Quality Dilemma, Achieving Software Quality, Review Techniques, Reviews: A	
Software Quality Assurance, Tasks, Goals and Metrics, Software Reliability, the ISO 9000 Quality Standards. Laboratory Sessions/ Experimental learning: Estimation of test coverage	Formal spectrum, Informal Reviews, Formal Technical Reviews,	
ISO 9000 Quality Standards. Laboratory Sessions/ Experimental learning: Estimation of test coverage	SOFTWARE QUALITY ASSURANCE: Background Issues, Elements of	
Laboratory Sessions/ Experimental learning: Estimation of test coverage	Software Quality Assurance, Tasks, Goals and Metrics, Software Reliability, the	
	ISO 9000 Quality Standards.	
matrice using manual test matrice	Laboratory Sessions/ Experimental learning: Estimation of test coverage	
metrics using manual test metrics.	metrics using manual test metrics.	
Applications: In Software development process.	Applications: In Software development process.	

1. Video link / Additional online information:

https://nptel.ac.in/courses/110105039/

Cours	Course Outcomes: After completing the course, the students will be able to								
CO1	Understand various Process Models.								
CO2	Investigate various requirements engineering and apply design concepts.								
CO3	Identify numerous Software Testing Strategies.								
CO4	Evaluate Process and Project Metrices.								
CO5	Illustrate Quality Management and Software Quality Assurance Concepts								

Tex	tt Books
1.	Roger S. Pressman (2011), Software Engineering, A Practitioner's approach, 7 th edition,
	McGraw Hill International Edition, New Delhi
2.	Sommerville (2001), Software Engineering, 9 th edition, Pearson education, India

Refer	ence Books:	
1.	K. K. Agarval, Yogesh Singh (2007), Software Engineering, 3rd edition, New Age International Publishers, India.	Con tinu ous
2.	Lames F. Peters, Witold Pedrycz(2000), Software Engineering an Engineering approach, John Wiely & Sons, New Delhi, India	Inte rna Eva
3	Shely Cashman Rosenblatt (2006), Systems Analysis and Design, 6th edition, Thomson Publications, India	luat ion (CI

E):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for

16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO/PSO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	2	2	2	-	-	1	2	2	2	-	2	-
CO2	2	2	2	2	2	1	-	1	2	2	2	1	2	2
CO3	2	2	2	2	2	1	-	1	2	2	2	-	3	-
CO4	1	2	2	2	2	1	-	1	2	2	2	1	2	2
CO5	1	2	2	1	2	1	2	1	2	2	2	2	1	-

	Semester: V				
	THEORY C	DF COMPUTATION			
		(Theory)			
Cou	rse Code: MVJ21CS52	CIE Marks:100			
Cree	Credits: L:T:P:S: 3:0:0:0 SEE Marks: 100				
Hou	Hours: 40L SEE Duration: 3 Hrs				
Cou	rse Learning Objectives: The stude	nts will be able to			
1	To have a knowledge of regular lang	uages and context free languages.			
2	To have an understanding of finite st	ate and pushdown automata.			
3	To make a study of the programming	capabilities of Turing machines.			

UNIT-I	
Finite Automata: Mathematical preliminaries and notations – Central concepts of	8 Hrs
automata theory – Finite automata -Deterministic Finite Automata -	
Nondeterministic Finite Automata - Equivalence of DFA and NFA -Finite	
Automata with Epsilon transitions - Application of FA	
Video link / Additional online information (related to module if any):	
https://nptel.ac.in/courses/106/105/106105196/	
UNIT-II	
Regular Expressions: Regular languages: Regular Expressions – Finite Automata	8 Hrs
and Regular Expressions –Applications of Regular Expressions - Regular	
Grammars.	
Video link / Additional online information (related to module if any):	
https://www.youtube.com/watch?v=OA8EY3HKZoc	
UNIT-III	

Regular Languages: Properties of regular languages: Pumping lemma for regular	8 Hrs
languages – Closure properties of regular languages –Equivalence and	
Minimization of Finite Automata. C	
Video link / Additional online information (related to module if any):	
https://www.youtube.com/watch?v=ganHwe4DU7A	
UNIT-IV	
Context Free Grammar: Context Free languages: Context Free Grammars -	8 Hrs
Parse Trees - Ambiguity in Grammars and languages- Applications of Context	
Free Grammars – Pushdown automata (PDA) – Languages of a PDA -Equivalence	
of PDA's and CFG's	
Video link / Additional online information (related to module if any):	
• https://www.youtube.com/watch?v=FjGrU7vczyg	
https://www.youtube.com/watch?v=b3OP15wS4AQ	
UNIT-V	
Context Free Languages: Properties of Context Free Languages: Normal Forms	8 Hrs
(CNF, GNF) for Context Free Grammars - Pumping lemma for CFL's - Closure	
properties of CFL	
Turing Machines: Turing Machines- Programming Techniques for Turing	
Machines – Multitape Turing Machines.	
Video link / Additional online information (related to module if any):	
https://www.youtube.com/watch?v=IhyEGNn-7Uo	

Cours	Course Outcomes: After completing the course, the students will be able to			
CO1	Design Finite automata for different Problems			
CO2	Understand about Regular Expressions			
CO3	Apply pumping lemma to Regular languages and Context Free languages			
CO4	Design Push down automata and write CFG for different problems			
CO5	Analyze the properties of Context free languages and Turing Machine			

Ref	erence Books
1.	J.E.Hopcroft, R.Motwani and J.D Ullman," Introduction to Automata Theory, Languages
	and Computations", 3rd Edition, Pearson Education, 2011
2.	J.Martin, "Introduction to Languages and the Theory of Computation", 3rd Edition,
	ТМН, 2007.
3.	H.R.Lewis and C.H.Papadimitriou, "Elements of the theory of Computation", 2nd
	Edition, Pearson Education/PHI, 2003

4.	Micheal Sipser, -Theory and Computatio,	7th Edition,	Thomson	Course	Technology,
	2008				

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	1	-	-	1	-	-	-	-	1	2
CO2	3	3	1	-	-	1	-	-	-	-	2	-
CO3	3	3	1	-	-	1	-	-	-	-	2	-
CO4	3	3	1	-	-	1	-	-	-	-	-	-
CO5	3	3	1	-	-	1	-	-	-	-	2	-

	Semeste	er: V			
	DATABASE MANAGEMEN	NT SYSTEMS AND LAB			
	(Theory and	Practice)			
Course Code:	MVJ21CS53	CIE Marks:50+50			
Credits:	4	SEE Marks: 50 +50			
Hours:	40L+26P	SEE Duration: 03+03 Hours			
Course (Theory) Learning Objectives: The students will be able to					
1Provide a strong foundation in database concepts, technology, and practice.					

2	Practice SQL programming through a variety of database problems.
3	Demonstrate the use of concurrency and transactions in database.
4	Design and build database applications for real world problems.
Cou	rse (Practice) Learning Objectives: The students will be able to
	Foundation knowledge in database concepts, technology and practice to groom students
1	into well-informed database application developers.
2	Strong practice in SQL programming through a variety of database problems.
3	Develop database applications using front-end tools and back-end DBMS.

UNIT-I

Introduction to Databases: Introduction; An example; characteristics of the databaseHrs 8approach; actors on the scene; workers behind the scene; advantages of using the DBMSapproach; A brief history of database Applications; when Not to use a DBMS.Overview of Database Languages and Architectures: Data Models, Schemas, andInstances. Three schema architecture and data independence, database languages, andinterfaces, The Database System environment.Modelling using Entities and Relationships: Entity types, Entity sets, attributes, roles, andstructural constraints, Weak entity types, ER diagrams, examples.Laboratory Sessions/ Experimental learning: Draw ER diagram for database applications(logical database design).Applications: Library Management system, Banking, Universities and colleges, credit card
transactions, social media sites, Telecommunications, Finance, Military, online shopping,

Human Resource Management, Manufacturing, Airline Reservation systems.

Video link / Additional online information (related to module if any):

- https://nptel.ac.in/courses/106106093/
- https://nptel.ac.in/courses/106105175/
- <u>https://www.youtube.com/watch?v=WSNqcYqByFk</u>

UNIT-II

Relational Model: Relational Model Concepts, Relational Model Constraints and relationalHrs 8database schemas, Update operations, dealing with constraint violations.

Relational Algebra: Unary and Binary relational operations, additional relational operations (aggregate, grouping, etc.) Examples of Queries in relational algebra.

 Mapping Conceptual Design into a Logical Design: Relational Database Design using

 ER-to-Relational mapping.

SQL: SQL data definition and data types, specifying constraints in SQL, retrieval queries in SQL, INSERT, DELETE, and UPDATE statements in SQL.

Laboratory Sessions/ Experimental learning: programs to perform set operations, arithmetic operations, joins, selection, projection, create tables for real world db applications and insert values to it.

Applications: RDBMS, enterprise level software solution(except light weight web applications)

Video link / Additional online information (related to module if any):

• https://nptel.ac.in/courses/106106093/

https://nptel.ac.in/courses/106105175/

UNIT-III

Database Application Development: Accessing databases from applications, An introduction to JDBC, JDBC classes and interfaces, SQLJ, Stored procedures, Embedded SQL.

Laboratory Sessions/ Experimental learning: Mini-projects to develop connections between front end and backend(database) using JDBC. Write SQL queries for the given schema.

Applications: Java Programming, In Server to reduce network traffic and to provide security(Stored procedure)

Video link / Additional online information (related to module if any):

• <u>https://www.youtube.com/watch?v=64szTfLNu3o</u>

https://www.digimat.in/nptel/courses/video/106105175/L11.html

UNIT-IV

Normalization: Database Design Theory – Introduction to Normalization using Functional	Hrs 8
and Multivalued Dependencies: Informal design guidelines for relation schema, Functional	
Dependencies, Normal Forms based on Primary Keys, Second and Third Normal Forms,	
Boyce-Codd Normal Form, Multivalued Dependency and Fourth Normal Form, Join	
Dependencies and Fifth Normal Form. Dependency theory - functional dependencies,	

Armstrong'	s axioms for FD's, closure of a set of FD's, minimal covers.		
Laborator	y Sessions/ Experimental learning: Draw schema diagram which satis	sfy all	
forms of no	rmalization for all db real world application		
Applicatio	ns: to optimize database design		
Video link	/ Additional online information (related to module if any):		
• <u>http</u>	s://nptel.ac.in/courses/106106093/		
• <u>http</u>	s://nptel.ac.in/courses/106105175/		
https://www	v.youtube.com/watch?v=YD8dhOmuVnY		
	UNIT-V		
Transactio	n Processing: Introduction to Transaction Processing, Transaction and S	ystem	Hrs 8
concepts,	Desirable properties of Transactions, Characterizing schedules base	ed on	
recoverabil	ity, Characterizing schedules based on Serializability, Transaction supp	ort in	
SQL.			
Concurren	cy Control in Databases: Two-phase locking techniques for Concur	rrency	
control, Co	ncurrency control based on Timestamp ordering.		
File Organ	nizations and Indexes: Introduction, Hashing techniques, Indexing, Stru	ctures	
for Files.			
Laborator	y Sessions/ Experimental learning: Develop banking and other fin	ancial	
application	5.		
Applicatio	ns: systems that manage sales order entry, airline reservations, payroll, emp	ployee	
records, ma	nufacturing, and shipping. Operating system(deadlock)		
Video link	/ Additional online information (related to module if any):		
• <u>http</u>	s://nptel.ac.in/courses/106106093/		
• <u>http</u>	s://nptel.ac.in/courses/106105175/		
https://www	v.youtube.com/watch?v=5ammL5KU4mo		
	LABORATORY EXPERIMENTS	I	
SL.	EXPERIMENT	HRS	
NO.			
	The following relations keep track of airline flight information:		
1	FLIGHTS (no: integer, from: string, to: string, distance: integer,	3	
	departs: time, arrives: time, price: real)	5	

departs: time, arrives: time, price: real)

AIRCRAFT (aid: integer, aname: string, cruisingrange: integer)

	CEDTIFIED (side integer side integer)	
	CERTIFIED (eid: integer, aid: integer)	
	EMPLOYEES (eid: integer, ename: string, salary: integer)	
	Note that the Employees relation describes pilots and other kinds of	
	employees as well; every pilot is certified for some aircraft, and only	
	pilots are certified to fly. Write each of the following queries in SQL.	
	i. Find the names of aircraft such that all pilots certified to operate them	
	have salaries more than Rs.80, 000.	
	ii. For each pilot who is certified for more than three aircrafts, find the	
	eid and the maximum cruisingrange of the aircraft for which she or he is certified.	
	iii. Find the names of pilots whose salary is less than the price of the	
	cheapest route from Bengaluru to Frankfurt.	
	iv. For all aircraft with cruising range over 1000 Kms, .find the name	
	of the aircraft and the average salary of all pilots certified for this	
	aircraft.	
	v. Find the names of pilots certified for some Boeing aircraft.	
	vi. Find the aids of all aircraft that can be used on routes from	
	Bengaluru to New Delhi.	
	Consider the Schema for a banking enterprise:	
	BRANCH(branch-name:string,branch-city:string,assets:real)	
	ACCOUNT(accno:int, branch-name:string, balance:real)	
	DEPOSITOR (customer-name:string, accno:int)	
	CUSTOMER(customer-name:string, customer-Street:string, customer-	
	city:string)	
	LOAN(loan-number:int, branch-name:string, amount:real)	
2	BORROWER(customer-name:string, loan-number:int)	3
	i. Create the above tables by properly specifying the primary keys	
	and the foreign keys	
	ii. Enter at least five tuples for each relation	
	iii. Find all the customers who have at least two accounts at the	
	Main branch.	
	iv. Find all the customers who have an account at all the branches	

	located in a specific city.	
	Demonstrate how you delete all account tuples at every branch located	
	in a specific city.	
	Consider the schema for College Database:	
	STUDENT(USN,SName, Address, Phone, Gender)	
	SEMSEC(SSID, Sem, Sec) CLASS(USN, SSID)	
	SUBJECT(Subcode, Title, Sem, Credits) IAMARKS(USN, Subcode,	
	SSID, Test1, Test2, Test3, FinalIA)	
3	Write SQL queries to1. List all the student details studying in fourth semester 'C' section.2. Compute the total number of male and female students in each semester and in each section.3. Create a view of Test1 marks of student USN '1MJ15CS101' in all subjects.	3
	4. Calculate the FinalIA (average of best two test marks) and update the corresponding table for all students.	
	5. Categorize students based on the following criterion:	
	If FinalIA = 17 to 20 then CAT = 'Outstanding'	
	If FinalIA = 12 to 16 then CAT = 'Average'	
	If FinalIA< 12 then CAT = 'Weak' Give these details only for	
	8th semester A, B, and C section students.	
	Consider the schema for Company Database:	
	EMPLOYEE(SSN, Name, Address, Sex, Salary, SuperSSN, DNo)	
	DEPARTMENT (DNo, DName, MgrSSN, MgrStartDate)	
	DLOCATION(DNo,DLoc)	
	PROJECT(PNo, PName, PLocation, DNo)	
4	WORKS_ON(SSN, PNo, Hours)	3
	Write SQL queries to	
	1. Make a list of all project numbers for projects that involve an	
	employee whose last name is 'Scott', either as a worker or as a manager	
	of the department that controls the project.	
	2. Show the resulting salaries if every employee working on the 'IoT'	

project is given a 10 percent raise.	
3. Find the sum of the salaries of all employees of the 'Accounts'	
department, as well as the maximum salary, the minimum salary, and the	
average salary in this department	
4. Retrieve the name of each employee who works on all the projects	
controlled by department number 5 (use NOT EXISTS operator).	
5. For each department that has more than five employees, retrieve the department number and the number of its employees who are making more than Rs. 6,00,000.	
STUDY EXPERIMENT	
For any problem selected, write the ER Diagram, apply ER-mapping rules, normalize the relations, and follow the application development process.	
Make sure that the application should have five or more tables, at least one trigger and one stored procedure, using suitable front-end tool.	2
Indicative areas include; health care, education, industry, transport,	
supply chain etc.	

Cours	e (Theory) Outcomes: After completing the course, the students will be able to
CO1	Identify, analyse and define database objects, enforce integrity constraints on a database using RDBMS.
CO2	Use Structured Query Language (SQL) for database manipulation.
CO3	Design and build simple database systems.
CO4	Apply the concepts of Normalization and design database which possess no anomalies.
CO5	Develop application to interact with databases.
Course	e (Practice) Outcomes: After completing the course, the students will be able to
CO1	Demonstrate the creation of relational tables using DDL/DML
CO2	Design and demonstrate the execution of simple queries retrieve information
CO3	Demonstrate the execution of complex queries
CO4	Design and implement a front end using modern tools
CO5	Implement, analyze and evaluate the project developed for an application.

Tex	t Books								
1	Fundamentals of Databas	e Systems,	Ramez	Elmasri	and	Shamkant	B.	Navathe,	7th

	Edition, 2017, Pearson
2	Database management systems, Ramakrishnan, and Gehrke, 3rd Edition, 2014, McGraw
	Hill
Ref	erence Books:
1	Silberschatz Korth and Sudharshan, Database System Concepts, 6th Edition, McGraw
	Hill, 2013.
2	Database Principles Fundamentals of Design, Implementation and Management,
	Cengage Learning 2012.
3	Raj Kamal, Embedded System, Tata McGraw-Hill Publishers, 2nd Edition, 2008.
	Ruj Rumui, Embedded System, Tau Westaw-Inn Tubishers, 2nd Edition, 2000.

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks

out of 100 and report CIE for 50 marks.

Laboratory- 50 Marks

The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are awarded 10 marks. Total marks for the laboratory is 50.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the entire syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

	CO-PO/PSO Mapping (Theory)													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2

CO1	1	3	3	2	3	-	-	-	1	-	-	2	2	-
CO2	3	3	3	2	2	-	-	-	1	-	-	2	1	-
CO3	3	3	3	2	2	-	-	-	1	-	-	2	2	2
CO4	2	3	3	2	2	-	-	-	1	-	-	2	2	3
CO5	2	3	3	3	3	-	-	-	2	-	-	2	-	1

					CO-P	O/PSC) Map	ping (l	Practic	al)				
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	1	3	1	2	1	-	1	-	-	2	2	-
CO2	3	3	2	3	2	2	-	-	1	-	-	2	2	1
CO3	3	3	2	3	2	1	-	-	1	-	-	2	1	-
CO4	3	3	2	2	2	1	-	-	-	-	-	2	1	3
CO5	3	3	2	2	1	1	1	-	-	-	-	2	1	3

		Semester	r: V				
		WEB PROGRAMM (Theory and					
Cou	irse Code:	MVJ21CS54	CIE Marks:50+50				
	dits:	4	SEE Marks: 50 +50				
Hou	irs:	40T+26P	SEE Duration: 03+03 Hours				
Cou	irse (Theory) L	earning Objectives: The stud	dents will be able to				
1	Understand di	fferent kind of Internet Technol	ologies.				
2	Learn java-sp	ecific web services architectur	e.				
3	Understand th	e SQL and JDBC.					
4	Learn the AJA	AX and JSON.					
	· · · · · ·	Learning Objectives: The m, develop, implement, analy	e students will be able to get practical yze and evaluation of				
1		d Style sheet creation.					
2	Client side pro	ogramming and Java script					
3	PHP and Database creation.						

Website Basics, HTML5, CSS 3, Web 2.0:Web Essentials: Clients, Servers and	Hrs 8
Communication, The Internet, Basic Internet protocols, World wide web, HTTP Request	
Message, HTTP Response Message, Web Clients, Web Servers, HTML5 : Tables, Lists,	
Image, HTML5 control elements , Semantic elements , Drag and Drop, Audio, Video	
controls, CSS3: Inline, embedded and external style sheets, Rule cascading, Inheritance,	
Backgrounds, Border Images, Colours, Shadows, Text, Transformations.	
Laboratory Sessions/ Experimental learning:	
Create a simple website with following effects on Text and images	
1. Add Background image/s	
2. Colors effect.	
3. Shadows and transformation.	
Real Time Applications: Animation website	
Video link / Additional online information (related to module if any):	
• https://youtu.be/FPtLsZ62pdA	
• https://nptel.ac.in/courses/106/106/106106222/	
• https://youtu.be/vCo6p7zrbt4	
https://nptel.ac.in/courses/106/106/106106223	
UNIT-II Client side Programming: An Introduction to java Script, JavaScript DOM Model, Date	Hrs 8
and Object, Regular Expression, Exception Handling, Validation, Built-in Objects, Event	11150
Handling, DHTML with JavaScript, JSON introduction, Syntax, Function Files, Http	
Request, SQL.	
Laboratory Sessions/ Experimental learning:	
 SQL and DOM model creation in website as created in module 1. 	
Real Time Applications: Students results / Application form in online	
Video link / Additional online information (related to module if any):	
 https://nptel.ac.in/courses/106/105/106105084/ 	
 https://youtu.be/uUhOEj4z8Fo (NPTEL) https://youtu.be/3uxp7mgLUftk (NPTEL) 	
https://youtu.be/3uxp7mqUIfk (NPTEL) https://youtu.be/tfPfyDrfSP8 (NPTEL)	
https://youtu.be/tfPfwDrfSP8 (NPTEL) UNIT-III	
Server Side Programming: Java Servlet Architecture, Servlet Life Cycle, Form GET and	Hrs 8
POST actions, Session handling, Installing and Configuring Apache Tomcat Web Server,	

Database Connectivity: JDBC perspectives, JDBC Program Example, JSP: Understanding	
Java server page, JSP Standard Tag Library (JSTL), Creating HTML form using JSP	
Code.	
Laboratory Sessions/ Experimental learning:	
Write a servlet program to display a message "Welcome to Java World" and deploy the	
process using GET and POST actions.	
Real Time Applications: Online ordering using any E-Commerce site.	
Video link / Additional online information (related to module if any):	
• https://nptel.ac.in/courses/106/105/106105224/	
• https://youtu.be/J6qfWtQ54Ig	
• https://nptel.ac.in/courses/106/105/106105084/	
UNIT-IV	
PHP and XML: Introduction to PHP, PHP using PHP, Variables, Program Control, Built-	Hrs 8
in Functions, Form Validation, Basic command with PHP examples, Connection to server,	
creating Database, Selecting Database, Listing Database, listing table names Creating a	
table, Inserting data, deleting data and tables, altering tables. XML: Document type	
definition, XML Schema DOM and presenting XML, XML Parser and Validations, XSL	
and XSLT Transformation.	
Laboratory Sessions/ Experimental learning:	
Design, Develop and Implement a student/Employee table and perform the following	
operations using PHP.	
1. Insert a row	
2. Delete a row	
3. Alter the table.	
Video link:	
• https://youtu.be/XlryaovT_3k	
• http://www.digimat.in/nptel/courses/video/106106127/L49.html	
http://www.nptelvideos.in/2012/11/internet-technologies.html	
UNIT-V	
AJAX and Web Services: AJAX: Ajax client server architecture, Xml HTTP request	Hrs 8
object, Call back methods. Advanced JavaScript and jQuery, JavaScript Pseudo-Classes,	
jQuery Foundations, Web Services: Introduction, Java web services Basics, Creating,	
Publishing, Testing and Describing a web services, Database driven web service from an	

application, SOAP.

Laboratory Sessions/ Experimental learning:

• jQuery process and AJAX services.

Video link/Lecturer/Tutorials:

- https://www.w3schools.com/xml/ajax_intro.asp (Practical examples)
- https://youtu.be/jMdHE4qInU4

https://youtu.be/FBDHe5T7quI

	LABORATORY EXPERIMENTS	
SL. NO.	EXPERIMENT	Hrs
1	Create a web page with the following.a. Cascading style sheets.b. Embedded style sheets.c. Inline style sheets.Use our college information (Department of CSE) for the web pages.	3
2	Design HTML form for keeping student record and validate it using Java script.	3
3	Write an HTML program to design an entry form of student details and send it to store at database server like SQL, Oracle or MS Access.	3
4	Write a JavaScript code that displays text "TEXT-GROWING" with increasing font size in the interval of 100ms in RED COLOR, when the font size reaches 50pt it displays "TEXT-SHRINKING" in BLUE color. Then the font size decreases to 5pt.	3
5	Assume four users user1, user2, user3 and user4 having the passwords py pwd2, pwd3 and pwd4 respectively. Write a servlet for doing the followin 1.Create a Cookie and add these four user id's and passwords to this Cook 2. Read the user id and passwords entered in the Login form and authenticate with the values available in the cookies.	
6	Write a JSP which insert the details of the 3 or 4 users who register with the web site by using registration form. Authenticate the user when he submits the login form using the user name and password from the database.	3

7	Validate the form using PHP regular expression. PHP stores a form data in to database	3
8	Write a PHP program to display a digital clock which displays the current time of the server.	3
9	Creating simple application to access data base using JDBC Formatting HTML with CSS.	3
10	Write a Program for manipulating Databases and SQL with real time application	3

Cours	e (Theory) Outcomes: After completing the course, the students will be able to
CO1	Learn web essentials, HTML5 and CSS3.
CO2	Understand about Client-side programming, DHTML and JSON
CO3	Comprehend server-side programming and JSP.
CO4	Learn PHP, functions, and XML.
CO5	Analyze the concepts of AJAX and web services.
Cours	e (Practice) Outcomes: After completing the course, the students will be able to
CO1	Construct Web pages using HTML/XML and style sheets.
	Build dynamic web pages with validation using Java Script objects and by applying diffe
CO2	event handling mechanisms.
CO3	Develop dynamic web pages using server side scripting.
CO4	Use PHP programming to develop web applications
CO5	Use JDBC and SQL to develop web applications

Tex	at Books
1	Jean-Paul Tremblay & Paul G. Sor Deitel and Deitel and Nieto, Internet and World Wide
	Web, How to Program, Prentice Hall, 5th Edition, 2011.
2	Randy Connolly, Ricardo Hoar, "Fundamentals of Web Development",1stEdition,
2	Pearson Education India. (ISBN:978-9332575271)
3	Robert W. Sebesta, Programming the World-Wide
3	Web, 8thEdition, University of Colorado, Colorado Springs. ©2015 Pearson
Ref	erence Books:
1	Stephen Wynkoop and John Burke -Running a Perfect Websitell, QUE, 2nd
	Edition,1999.
2	Chris Bates, Web Programming - Building Intranet Applications, 3rd Edition, Wiley
	publications, 2009.

3	Jeffrey C and Jackson, -Web Technologies A Computer Science Perspectivel, Pearson
	Education, 2011.
4	UttamK.Roy, —Web TechnologiesI, Oxford University Press, 2011
5	Gopalan N.P. and Akilandeswari J., —Web Technology, Prentice Hall of India, 2011.

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks

out of 100 and report CIE for 50 marks. Laboratory- 50 Marks

The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are awarded 10 marks. Total marks for the laboratory is 50.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the entire syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

	CO-PO/PSO Mapping (Theory)													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	-	1	-	-	-	-	-	-	2	1	-
CO2	3	3	3	-	1	-	-	-	1	-	1	2	3	-
CO3	2	2	2	1	3	-	-	-	-	-	1	3	-	-

CO4	3	2	3	-	2	-	-	-	-	2	3	2	1	-
CO5	3	2	3	-	3	-	-	-	-	2	3	2	3	2

	CO-PO/PSO Mapping (Practical)													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	-	3	3	-	-	3	-	3	2	1	-
CO2	3	3	2	-	3	3	-	-	3	-	3	2	1	2
CO3	3	3	2	-	3	3	-	-	3	-	3	2	1	2
CO4	3	3	2	-	3	3	-	-	3	-	3	2	1	3
CO5	3	3	2	-	3	3	-	-	3	-	3	2	2	3

	Semester: V							
	MOBILE COMPUTING							
Cou	rse Code:	MVJ21CS551	CIE Marks:50					
Credits:		3	SEE Marks: 50					
Hou	rs:	40T	SEE Duration: 3 Hrs					
Cou	rse Learning Objectiv	es: The students will be	able to					
1	Understand the concept of mobile computing terminology and basics							
2	Understand the wireless protocols.							
3	Realize various routing mechanisms.							

UNIT-I					
Introduction: Mobile Communications, Mobile Computing – Paradigm,	Hrs 8				
Promises/Novel Applications and Impediments and Architecture; Mobile and					
Handheld Devices, Limitations of Mobile and Handheld Devices.					
Global System for Mobile Communication(GSM): Services, System					
Architecture, Radio					
Interfaces, Protocols, Localization, Calling, Handover, New Data Services, GPRS					
Architecture, GPRS Network Nodes.					
Video link / Additional online information (related to module if any):					
• <u>https://www.youtube.com/watch?v=bur9hq_abog</u> (NPTEL VIDEO)					

UNIT-II	
Medium Access Control (MAC) : Motivation for a specialized MAC (Hidden and	Hrs 8
exposed terminals, Near and far terminals), Wireless LAN/(IEEE 802.11)	
architecture, key IEEE802.11 a/b/c/d/e/g/i/n/T/ac/ standards.	
Wireless Application Protocol (WAP): The Mobile Internet standard, WAP	
Gateway and Protocols, wireless mark up Languages (WML). Wireless Local	
Loop(WLL): Introduction to WLL Architecture, wireless Local Loop Technologies.	
Video link / Additional online information (related to module if any):	
• <u>https://www.youtube.com/watch?v=sx0UPzztC5o</u> (NPTEL VIDEO)	
UNIT-III	
Mobile Network Layer : IP and Mobile IP Network Layers, Packet Delivery and	Hrs 8
Handover Management, Location Management, Registration, Tunneling and	
Encapsulation, Route Optimization using Soft computing techniques - ANT Bee	
colony, Support Vector Machine, Particle Swarm Optimization and Genetic	
Algorithm.	
Video link / Additional online information (related to module if any):	
 <u>https://www.youtube.com/watch?v=0QLRULNfbFg</u> 	
UNIT-IV	
Mobile Transport Layer : Conventional TCP/IP Protocols, Indirect TCP, Snooping	Hrs 8
TCP, Mobile TCP.	
Third Generation (3G) Mobile Services: Introduction to International Mobile	
Telecommunications 2000 (IMT 2000) vision, Wideband Code Division Multiple	
Access (W- CDMA) and CDMA 2000, Quality of services in 3G.	
Video link / Additional online information (related to module if any):	
• <u>https://www.youtube.com/watch?v=KCcdF4IVrQk</u>	
• https://www.youtube.com/watch?v=ymnQ5rpcYA&list=PLbMVogVj5nJSi8FU	
svglRxLtN1TN9y4nx	
UNIT-V	
Mobile Ad hoc Networks (MANETs) : Introduction, Applications & Challenges of	Hrs 8
a MANET, Routing, Classification of Routing Algorithms, Algorithms such as	
DSR, AODV, DSDV, etc., Mobile Agents, Service Discovery ,case study using	
NS2 -traffic analysis using CBR and VBR.	

Text Books:							
1	Jochen Schiller, —Mobile Communications, PHI, Second Edition, 2009.						
2	Raj Kamal, "Mobile Computing", Oxford University Press, 2007, ISBN: 019568	6772					
Wi	reless Enterprise Networks: Introduction to Virtual Networks, Blue tooth						
tecł	nnology, Blue tooth Protocols.						
Vid	eo link:						
•	https://nptel.ac.in/courses/106/105/106105160/						
•	https://www.digimat.in/nptel/courses/video/106105160/L01.html						

Cours	Course Outcomes: After completing the course, the students will be able to						
CO1	Able to interpret GSM architecture and its services.						
CO2	Analyze the various wireless application protocols and its different concepts for various mobile applications.						
CO3	Learn the representation of mobile network layer protocols and its functionalities.						
CO4	Understand, analyze & develop any existing or new models of mobile environments for 3G networks.						
CO5	Understand, evaluate and create the platforms, protocols and related concepts along with along with mobile in mobile environment.						

Ref	erence Books:								
1	Dharma Prakash Agarval, Qing and An Zeng, "Introduction to Wireless and Mobile								
	Dharma Prakash Agarval, Qing and An Zeng, "Introduction to Wireless and Mobile systems", Thomson Asia Pvt Ltd, 2005.								
2	Martin Sauter, "From GSM to LTE-Advanced: An Introduction to Mobile Networks								
² and Mobile Broadband," Second Edition, Wiley.									
2	William.C.Y.Lee,—Mobile Cellular Telecommunications-Analog and Digital								
3	Systems, Second Edition, TataMcGraw Hill Edition ,2006.								

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may

be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO/PSO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	1	2	2	-	1	-	-	-	-	1	-	-
CO2	2	3	2	1	3	-	-	-	-	1	-	1	2	-
CO3	2	2	3	1	2	-	-	-	-	-	1	1	1	-
CO4	3	2	2	2	1	-	1	-	-	-	1	1	3	2
CO5	2	2	2	2	-	-	-	-	-	-	-	2	3	2

	Semester: V								
	VISUALIZATION TECHNIQUES								
Cou	Course Code: MVJ21CS552 CIE Marks:50								
Credits:		3	SEE Marks: 50						
Hou	rs:		SEE Duration: 3 Hrs						
Cou	rse Learning Objectives	s: The students will be able to							
	learn the value of visu	alization, specific techniques in	n information visualization and						
1 scientific visualization, and how understand how to best leverage visualization met									

UNIT-I	
Introduction -Visualization Stages -Computational Support -Issues -Different	Hrs 8

Types of Tasks –Data representation –Limitation: Display Space, Rendering Time,	
Navigation Link.	
UNIT-II	
Human Factors -Foundation for a Science of Data Visualization -Environment-	Hrs 8
Optics - Optimal Display -Overview about Lightness, Brightness, Contrast,	
Constancy, Color -Visual Attention that Pops Out -Types of Data -Data	
Complexity -The Encoding of Values - Encoding of Relation -Relation and	
Connection –Alternative Canvass.	
UNIT-III	
Human Vision – Space Limitation – Time Limitations – Design – Exploration of	Hrs 8
Complex Information Space –Figure Caption in Visual Interface –Visual Objects	
and Data Objects – Space Perception and Data in Space –Images, Narrative and	
Gestures for Explanation	
UNIT-IV	
Norman"s Action Cycle –Interacting with Visualization –Interaction for Information	Hrs 8
Visualization -Interaction for Navigation -Interaction with Models -Interacting	
with VisualizationInteractive 3D Illustrations with Images and TextPersonal	
View –Attitude – user perspective –Convergence –Sketching –Evaluation.	
UNIT-V	
Design –Virtual Reality: Interactive Medical Application –Tactile Maps for visually	Hrs 8
challenged People – Animation Design for Simulation – Integrating Spatial and	
Nonspatial Data –Innovating the Interaction –Small Interactive Calendars –	
Selecting One from Many– Web Browsing Through a Key Hole –Communication	
Analysis – Archival Galaxies	

Cours	Course Outcomes: After completing the course, the students will be able to						
CO1	Understand the fundamentals of data visualization						
CO2	Acquire knowledge about the issues in data representation						
CO3	Visualize the complex engineering design.						
CO4	Design real time interactive information visualization system						
CO5	Apply the visualization techniques in practical applications						

Tex	ext/Reference Books:					
1	Robert Spence, "Information V	Visualization:An	Introduction",	Third	Edition,	Pearson
	Education, 2014.					

2	Colin Ware, "Information Visualization Perception for Design", ThirdEdition, Morgan
	Kaufmann, 2012.
3	Robert Spence, "Information Visualization Design for Interaction", Second Edition,
5	Pearson Education, 2006
4	Benjamin B. Bederson, Ben shneiderman, "The Craft of Information Visualization",
4	Morgan Kaufmann, 2003.
5	Thomas Strothotte, "Computational Visualization: Graphics, Abstraction and
5	Interactivity", Springer, 1998.
6	Matthew O.Ward, George Grinstein, Daniel Keim, "Interactive Data Visualization:
6	Foundation, Techniques and Applications", Second Edition, A.K.Peters/CRC Press, 2015.
7	JoergOsarek, "Virtual Reality Analytics", Gordon"s Arcade, 2016.

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO/PSO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	-	-	-	1	-	-	-	-	-	-	2	2	-
CO2	3	3	3	2	-	-	-	-	1	-	1	2	2	2
CO3	2	2	2	1	3	-	-	-	-	-	1	3	2	2
CO4	3	2	3	2	1	-	-	-	-	2	3	2	2	3
CO5	3	2	3	1	-	-	-	-	-	2	3	2	2	-

	Semester: V								
	ARTIFICIAL INTELLIGENCE								
Cou	rse Code:	MVJ21CS553	CIE Marks:50						
Cree	dits:	3	SEE Marks: 50						
Hou	irs:	40T	SEE Duration: 3 Hrs						
Cou	rse Learning Objectives	s: The students will be able to							
1	information technology	undation for data science and and understand the underlying ence. Describe the basic principl	g core concepts and emerging						
2	Analyze and explain different AI learning methods.								
3	Compare and contrast d	ifferent AI techniques available.							

UNIT-I	
INTRODUCTION: What Is AI? The Foundations of Artificial Intelligence ,The	Hrs 8
History of Artificial Intelligence, The State of the Art .	
Intelligent Agents : Agents and Environments ,Good Behavior: The Concept of	
Rationality ,The Nature of Environments, The Structure of Agents. Knowledge	
Representation Issues, Using Predicate Logic, Representing knowledge using	
Rules.	
Experimental Learning: Implementation of Relational and Inheritable Knowledge	
Video Links	
https://www.youtube.com/watch?v=3MW3ICnkQ9k	
UNIT-II	
FIRST-ORDER LOGIC- Syntax and Semantics of First-Order Logic – Using	Hrs 8
First-Order Logic – Knowledge Engineering in First-Order Logic – Forward	
Chaining – Backward Chaining.	
Experimental Learning:	
Implementing programs in PROLOG to solve problems of Predicate Logic	
Video Links:	
• <u>https://www.youtube.com/watch?v=pzUBrJLIESU</u>	

<u>https://www.youtube.com/watch?v=2juspgYR7as</u>	
 <u>https://www.youtube.com/watch?v=h9jLWM2lFr0</u> 	
• <u>https://www.youtube.com/watch?v=-v1K9AnkAeM</u>	
UNIT-III	
Heuristic search techniques: Generate and test, Hill Climbing, Best First Search,	Hrs 8
Problem Reduction, Constraint Satisfaction, Means-ends Analysis.	
Weak Slot- and- Filler Structures: Semantic Nets ,Frames.	
Strong slot-and Filler Structures- Conceptual Dependency, Scripts.	
Experimental Learning :	
Program to implement Best first Search, A*, AO* algorithm	
Video Links:	
• <u>https://www.youtube.com/watch?v=ieZr_TpRwnQ</u>	
• <u>https://www.youtube.com/watch?v=lCrHYT_EhDs</u>	
UNIT-IV	
Game Playing :Overview, Minimax Search Procedure, Adding alpha beta cut off,	Hrs 8
Additional Refinements, Iterative Deepening, References on Specific games.	
Learning: What is learning?, Forms of learning, Rote learning, learning by taking	
advice, Learning in problem solving, Induction leaning, Explanation based learning,	
Discovery, Analogy, Formal learning Theory, Neural Net Learning and Genetic	
Learning.	
Experimental Learning :	
Real time problem solving using Game Playing	
Video Links:	
• <u>https://www.youtube.com/watch?v=_i-lZcbWkps</u>	
• <u>https://www.youtube.com/watch?v=l-hh51ncgDI</u>	
UNIT-V	
Natural Language Processing: Syntactic Processing, Semantic Analysis,	Hrs 8
Discourse and Pragmatic processing, Statistical Natural language processing and	
Spell checking.	
Genetic Algorithms: A peek into the biological world, Genetic Algorithms (GAs),	
Significance of genetic operators, termination parameters, niching and speciation,	
evolving neural-network, theoretical grounding, Ant Algorithms.	
Experimental Learning :	

Program to implement spell checking problem

Video Links:

- https://www.youtube.com/watch?v=zG8AJhVy5NY
- <u>https://www.youtube.com/watch?v=Z_8MpZeMdD4</u>

Cours	Course Outcomes: After completing the course, the students will be able to							
CO1	Identify AI based problems and understand Intelligent agents							
CO2	Apply predicate logic and heuristic techniques to solve AI problems.							
CO3	Understand the different representation of knowledge.							
CO4	Understand the concepts of learning and Natural Language Processing.							
CO5	Understand Genetic Algorithms and solve AI problems using PROLOG.							

Text Books								
1	Artificial Intelligence: A Modern Approach, Stuart Rusell, Peter Norving, Pearson Education 2nd Edition.							
2	E. Rich, K. Knight & S. B. Nair - Artificial Intelligence, 3/e, McGraw Hill.							

Refer	Reference Books:						
1	Dan W. Patterson, Introduction to Artificial Intelligence and Expert Systems – Prentice Hal of India.	Co tin ous					
2	G. Luger, "Artificial Intelligence: Structures and Strategies for complex problem Solving", Fourth Edition, Pearson Education, 2002.	Int rna Eva					
3	N.P. Padhy "Artificial Intelligence and Intelligent Systems", Oxford University Press- 2015	lua ion (Cl					

E):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO/PSO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	3	1	2	-	-	-	-	-	-	-	2	1	-
CO2	3	3	2	3	1	-	-	-	-	-	-	2	2	2
CO3	3	3	2	3	1	-	-	-	-	-	-	2	3	-
CO4	3	3	2	3	2	-	-	-	-	-	-	2	3	-
CO5	3	3	2	3	2	-	-	-	-	-	-	2	3	1

High-3, Medium-2, Low-1

	Semester: V								
	COMPILER DESIGN								
Cou	rse Code:	MVJ21CS554	CIE Marks:50						
Cre	dits:	3	SEE Marks: 50						
Hou	rs:		SEE Duration: 3 Hrs						
Cou	Course Learning Objectives: The students will be able to								
1	Learn the various parsing techniques and different levels of translation.								
2	2 Learn how to obtain specific object code from source language.								
3	3 Learn how to optimize the code and schedule for optimal performance.								

UNIT-I

0111-1								
FRONT END OF COMPILERS: The Structure of Compiler – Lexical Analysis:								
Role of Lexical Analyzer, Specification and Recognition of Tokens, Syntax								
Analysis: Top Down Parsing, Bottom up Parsing, LR Parsers: SLR, CLR, and								
LALR.								
Video Links :								
•https://www.youtube.com/watch?v=yxnbvS2t_QA								
UNIT-II								
INTERMEDIATE CODE GENERATION: Syntax Directed Definitions,	Hrs 8							

Evaluation Orders for Syntax Directed Definitions, Syntax Directed Translation				
Schemes, Intermediate Languages: Syntax Tree, Three Address Code, Postfix Code,				
Declarations, Translation of Expressions, Type Checking, Back Patching.				
• Video Links: https://www.youtube.com/watch?v=EpAzj7zXrbk				
UNIT-III				
RUNTIME AND OBJECT CODE GENERATION: Storage Organization, Stack	Hrs 8			
Allocation Space, Access to Non-local Data on the Stack, Heap Management -				
Issues in Code Generation - Design of Code Generator - Register Allocation and				
Assignment – Instruction Selection by Tree Rewriting – Optimal Code Generation				
for Expressions – Dynamic Programming Code Generation.				
• Video Links: https://www.youtube.com/watch?v=lRvaRhPsqOo				
UNIT-IV				
CODE OPTIMIZATION: Basic Blocks and Flow Graphs – Optimization of Basic	Hrs 8			
Blocks - Principal Sources of Optimizations - Data Flow Analysis - Constant				
Propagation – Partial Redundancy Elimination – Peephole Optimizations.				
• Video Links: https://nptel.ac.in/courses/106/108/106108113/				
UNIT-V				
SCHEDULING AND OPTIMIZING FOR PARALLELISM: Code Scheduling	Hrs 8			
Constraints – Basic Block Scheduling – Global Code Scheduling - Basic Concepts				
in Parallelization – Parallelizing Matrix Multiplication – Iteration Spaces – Affine				
Array Indexes.				
Video Links:				
 https://www.youtube.com/watch?v=-yMWgtTeQgY 				

Cours	Course Outcomes: After completing the course, the students will be able to						
CO1	Design compiler phases from language specification.						
CO2	Design code generators for the specified machine.						
CO3	Analyze Object Code Generation techniques.						
CO4	Apply the various optimization techniques.						
CO5	Understand the Optimizing for Parallelism						

Text Books							
	Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffrey D. Ullman, —Compilers: Principles, Techniques and Tools, Second Edition, Pearson Education, 2009.						
2	Randy Allen, Ken Kennedy, -Optimizing Compilers for Modern Architectures: A						

Dependence based Approach^I, Morgan Kaufmann Publishers, 2002.

Refer	ence Books:	
1	Keith D Cooper and Linda Torczon, —Engineering a Compiler ^{II} , Morgan Kaufmann Publishers Elsevier Science, 2004	Con tine ous
2	V. Raghavan, —Principles of Compiler Design ^{II} , Tata McGraw Hill Education Publishers, 2010.	Int rna Eva
3	Allen I. Holub, —Compiler Design in CI, Prentice-Hall Software Series, 1993.	lua
4	Steven S. Muchnick, —Advanced Compiler Design and Implementation, Morgan Kaufmann Publishers - Elsevier Science, India, Indian Reprint 2003.	ion (Cl E): The

ory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the entire syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO/PSO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	3	1	2	-	-	-	-	-	-	-	2	1	-
CO2	3	3	2	3	1	-	-	-	-	-	-	2	2	2
CO3	3	3	2	3	1	-	-	-	-	-	-	2	3	-
CO4	3	3	2	3	2	-	-	-	-	-	-	2	3	-
CO5	3	3	2	3	2	-	-	-	-	-	-	2	3	1

Semester: V								
ENVIRONMENTAL STUDIES								
Course Code: MVJ21CV56 CIE Marks: 50								
lits: L:T:P: 1:0:0	SEE Marks: 50							
rs: 15 L	SEE Duration: 2 Hrs.							
rse Learning Objectives: The stude	nts will be able to							
Relate interdisciplinary approach to complex environmental problems using basic tools of the natural and social sciences including geo-systems, biology, chemistry, economics, political science and international processes								
2 Study drinking water quality standards and to illustrate qualitative analysis of water.								
3 Critically evaluate the science and policy ramifications of diverse energy portfolios on air and water quality, climate, weapons proliferation and societal stability.								
Introduction to environmental studies, Multidisciplinary nature of environmental 3 Hrs								
studies; Scope and importance; Concept of sustainability and sustainable								
lopment.								
	ENVIRON rse Code: MVJ21CV56 lits: L:T:P: 1:0:0 rs: 15 L rse Learning Objectives: The stude Relate interdisciplinary approach to of the natural and social science economics, political science and inte Study drinking water quality standar Critically evaluate the science and p air and water quality, climate, weapon oduction to environmental studies, N							

Ecosystems (Structure and Function): Forest, Desert, Rivers, Ocean **Biodiversity:** Types, Hot spots; Threats and Conservation of biodiversity, Deforestation.

Video link: https://nptel.ac.in/courses/127/106/127106004/

UNIT-II								
Advances in Energy Systems (Merits, Demerits, Global Status and Applications):								
Hydrogen, Solar, Tidal and Wind.								
Natural Resource Management (Concept and case-study):DisasterManagement, Sustainable Mining and Carbon Trading.Video link: https://nptel.ac.in/courses/121/106/121106014/								
UNIT-III								
Environmental Pollution: Surface and Ground Water Pollution, Noise pollution,								
Soil Pollution and Air Pollution.								

Waste Management & Public Health Aspects: Bio-medical Waste, Solid waste,

Hazardous waste and E-waste.							
Video link:							
• https://nptel.ac.in/courses/122/106/122106030/							
 https://nptel.ac.in/courses/105/103/105103205/ 							
• https://nptel.ac.in/courses/120/108/120108005/							
• https://nptel.ac.in/courses/105/105/105105160/							
UNIT-IV							
Global Environmental Concerns (Concept, policies, and case-studies): Global	3 Hrs						
Warming, Climate Change, Acid Rain, Ozone Depletion and Fluoride problem in							
drinking water.							
Video link:							
• https://nptel.ac.in/courses/122/106/122106030/							
 https://nptel.ac.in/courses/120108004/ 							
 https://onlinecourses.nptel.ac.in/noc19_ge23/preview 							
UNIT-V							
Latest Developments in Environmental Pollution Mitigation Tools (Concept	3 Hrs						
and Applications): G.I.S. & Remote Sensing, Environment Impact Assessment,							
Environmental Management Systems.							
Video link:							
• https://nptel.ac.in/courses/105/102/105102015/							
• https://nptel.ac.in/courses/120/108/120108004/							

Cours	Course Outcomes: After completing the course, the students will be able to					
CO1	Describe the principles of ecology and environmental issues that apply to air, land, and					
	water issues on a global scale.					
CO2	Develop critical thinking and/or observation skills, and apply them to the analysis of a					
	problem or question related to the environment.					
CO3	Demonstrate ecology knowledge of a complex relationship between biotic and Abiotic					
	components.					
CO4	Apply their ecological knowledge to illustrate and graph a problem					
CO5	Describe the realities that managers face when dealing with complex issues.					

Reference Books

1. Principals of Environmental Science and Engineering, Raman Siva kumar, Cengage

	learning, Singapur, 2 nd Edition, 2005.									
2.	Environmental Science – working with the Earth G.Tyler Miller Jr. Thomson Brooks									
	/Cole, 11 th Edition, 2006									
3.	Textbook of Environmental and Ecology, Pratiba Singh, Anoop Singh & Piyush									
	Malaviya, ACME Learning Pvt. Ltd. New Delhi, 1st Edition.									

Theory for 50 Marks

CIE for 50 marks, executed by way of tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 40 marks and assignment is evaluated for 10 marks. The three tests are conducted for 40 marks each and the average of all the tests are calculated for 40. The marks for the assignments are 10 (2 assignments for 5 marks each). The marks obtained in test and assignment are added and report CIE for 50 marks.

Semester End Examination (SEE):

SEE for 50 marks, executed by means of an examination. The Question paper contains objective type questions for 100 marks covering the entire syllabus having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	1	_	2	2	1	1	_	2	1
CO2	3	3	2	1	_	1	2	_	1	1	2	1
CO3	3	3	2	1	_	2	2	_	1	1	2	1
CO4	3	3	2	2	-	2	2	-	1	1	2	1

Total marks: 50+50=100

	Semester: V						
	UNIVERSAL HUMAN VALUES						
Cou	Course Code: MVJ21UHVI58 CIE Marks: 50						
Cree	dits: L:T:P: 2:0:0	SEE Marks: 50					
Hou	rs: 30 L	SEE Duration: 3 Hrs.					
Cou	rse Learning Objectives: The stude	nts will be able to					
1		nentarily between 'VALUES' and 'SKILLS' to ensure					
	¹ sustained happiness and prosperity which are the core aspirations of all human beings.						
	1 1	Holistic perspective among students towards life and					
2		ness and prosperity based on a correct understanding of the					
2	Human reality and the rest of ex	istence. Such a holistic perspective forms the basis of					
	Universal Human Values and movement towards value-based living in a natural way.						
	Highlight plausible implications of	such a Holistic understanding in terms of ethical human					
3	conduct, trustful and mutually fulfil	lling human behaviour and mutually enriching interaction					
	with Nature.						

Prerequisites: Universal Human Values I	
UNIT-I	
Review on Right Understanding, Relationship and Physical Facility (Holistic Development and	Hrs 8
the Role of Education), Self-exploration as the Process for Value Education, Happiness and	
Prosperity – Current Scenario,	
Value Education: Understanding Value Education, Continuous Happiness and Prosperity – the	
Basic Human Aspirations, , Method to Fulfill the Basic Human Aspirations,	
Practical Sessions: Sharing about Oneself (Tutorial 1), Exploring Human Consciousness	
(Tutorial 2), Exploring Natural Acceptance (Tutorial 3)	
Video link:	
• https://www.youtube.com/watch?v=85XCw8SU084	
• https://www.youtube.com/watch?v=E1STJoXCXUU&list=PLWDeKF97v9SP_Kt6jqzA3p	
Z3yA7g_OAQz	
• https://www.youtube.com/channel/UCQxWr5QB_eZUnwxSwxXEkQw	
UNIT-II	

Review on Understanding Human being as the Co-existence of the Self and the Body, The Body	Hrs 8
as an Instrument of the Self, Harmony of the Self with the Body.	
Harmony in the Human Being: Distinguishing between the Needs of the Self and the Body,	
Understanding Harmony in the Self, Programme to ensure self-regulation and Health.	
Practical Sessions: Exploring the difference of Needs of Self and Body (Tutorial 4), Exploring	
Sources of Imagination in the Self (Tutorial 5), Exploring Harmony of Self with the Body	
(Tutorial 6).	
Video link:	
 https://www.youtube.com/watch?v=GpuZo495F24 	
• https://www.youtube.com/channel/UCQxWr5QB_eZUnwxSwxXEkQw	
Review on Harmony in the Family – the Basic Unit of Human Interaction, Other Feelings,	Hrs 8
Justice in Human-to-Human Relationship, Understanding Harmony in the Society.	
Harmony in the Family and Society: Trust' – the Foundational Value in Relationship, 'Respect'	
- as the Right Evaluation, Vision for the Universal Human Order,	
Practical Sessions: Exploring the Feeling of Trust (Tutorial 7), Exploring the Feeling of Respect	
(Tutorial 8), Exploring Systems to fulfil Human Goal (Tutorial 9).	
Video link:	
 https://www.youtube.com/watch?v=F2KVW4WNnS8 	
• https://www.youtube.com/channel/UCQxWr5QB_eZUnwxSwxXEkQw	
UNIT-IV	
Harmony in the Nature/Existence: Understanding Harmony in the Nature, Interconnectedness,	Hrs 8
self-regulation and Mutual Fulfillment among the Four Orders of Nature, Realizing Existence as	
Co-existence at All Levels, The Holistic Perception of Harmony in Existence.	
Practical Sessions: Exploring the Four Orders of Nature (Tutorial 10), Exploring Co-existence	
in Existence (Tutorial 11).	
Video link:	
• https://www.youtube.com/watch?v=1HR-QB2mCF0	
 https://www.youtube.com/watch?v=lfN8q0xUSpw 	
• https://www.youtube.com/channel/UCQxWr5QB_eZUnwxSwxXEkQw	
UNIT-V	

Review on Natural Acceptance of Human Values, Basis for Humanistic Education, Humanistic	Hrs 8
Constitution and Universal Human Order, Holistic Technologies, Production Systems and	
Management Models-Typical Case Studies.	
Implications of the Holistic Understanding – a Look at Professional Ethics: Definitiveness of	
(Ethical) Human Conduct, Competence in Professional Ethics, Strategies for Transition towards	
Value-based Life and Profession	
Practical Sessions: Exploring Ethical Human Conduct (Tutorial 12), Exploring Humanistic	
Models in Education (Tutorial 13), Exploring Steps of Transition towards Universal Human	
Order (Tutorial 14).	
Video link:	
• https://www.youtube.com/watch?v=BikdYub6RY0	
• https://www.youtube.com/channel/UCQxWr5QB_eZUnwxSwxXEkQw	

Cours	Course Outcomes: After completing the course, the students will be able to					
CO1	Explore themselves, get comfortable with each other and with the teacher.					
CO2	Enlist their desires and the desires are not vague.					
CO3	Restate that the natural acceptance (intention) is always for living in harmony, only competence is lacking.					
CO4	Differentiate between the characteristics and activities of different orders and study the mutual fulfillment among them.					
CO5	Present sustainable solutions to the problems in society and nature.					

Ref	Reference Books						
1.	AICTE SIP UHV-I Teaching Material, https://fdp-si.aicte india.org/ AicteSipUHV						
	_download.php						
2.	A Foundation Course in Human Values and Professional Ethics, R R Gaur, R Asthana, G P						
	Bagaria, 2nd Revised Edition, Excel Books, New Delhi, 2019. ISBN 978-93-87034-47-1						
3.	Teachers' Manual for A Foundation Course in Human Values and Professional Ethics, R R						
	Gaur, R Asthana, G P Bagaria, 2nd Revised Edition, Excel Books, New Delhi, 2019. ISBN						
	978-93-87034-53-2						
4.	Human Values and Professional Ethics by R R Gaur, R Sangal, G P Bagaria, Excel Books,						
	New Delhi, 2010						

Continuous Internal Evaluation (CIE):

CIE for 50 marks is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the entire syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Total marks: 50+50=100

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1		1				2	2	3	2	1	2	1
CO2		1				2	2	3	2	1	2	1
CO3		1				2	2	3	2	1	2	1
CO4		1				2	2	3	2	1	2	1
CO5		1				2	2	3	2	1	2	1

High-3, Medium-2, Low-1

PROJECT MANAGEMENT and OOMD					
Course Code	MVJ22CS61	CIE Marks	50		
Teaching Hours/Week (L:T:P: S)	2:2:0:0	SEE Marks	50		
Total Hours of Pedagogy	40	Total Marks	100		
Credits	03	Exam Hours	03		

Course Learning Objectives

- CLO 1. Outline software engineering principles and activities involved in building large software programs. Identify ethical and professional issues and explain why they are of concern to Software Engineers.
- CLO 2. Describe the process of requirement gathering, requirement classification, requirement specification and requirements validation.

CLO 3. Infer the fundamentals of object oriented concepts, differentiate system models, use UML diagrams and apply design patterns.5

CLO 4. Explain the role of DevOps in Agile Implementation.

CLO 5. Discuss various types of software testing practices and software evolution processes. CLO 6. Recognize the importance Project Management with its methods and methodologies.

CLO 7. Identify software quality parameters and quantify software using measurements and metrics. List software quality standards and outline the practices involved

Teaching-Learning Process (General Instructions)

These are sample Strategies, which teachers can use to accelerate the attainment of the various course outcomes.

- 1. Lecturer method (L) need not to be only a traditional lecture method, but alternative effective teaching methods could be adopted to attain the outcomes.
- 2. Use of Video/Animation to explain functioning of various concepts.
- 3. Encourage collaborative (Group Learning) Learning in the class.
- 4. Ask at least three HOT (Higher order Thinking) questions in the class, which promotes critical thinking.
- 5. Adopt Problem Based Learning (PBL), which fosters students' Analytical skills, developdesign thinking skills such as the ability to design, evaluate, generalize, and analyze information rather than simply recall it.
- 6. Introduce Topics in manifold representations.
- 7. Show the different ways to solve the same problem with different circuits/logic and encourage the students to come up with their own creative ways to solve them.
- 8. Discuss how every concept can be applied to the real world and when that's possible, it

helps improve the students' understanding.

Module-1

Introduction, Modelling Concepts and Class Modelling: What is Object orientation? What is OO development? OO Themes; Evidence for usefulness of OO development; OO modelling history. Modelling as Design technique: Modelling, abstraction, The Three models. Class Modelling: Object and Class Concept, Link and associations concepts, Generalization and Inheritance, A sample class model, Navigation of class models, Introduction to RUP(Textbook: 5 Sec 2.4) and UML diagrams

Textbook	3:	Chapter	1,2,3
----------	----	---------	-------

Building the Analysis Models: Requirement Analysis, Analysis Model Approaches, Data modeling Concepts, Object Oriented Analysis, Scenario-Based Modeling, Flow-Oriented Modeling, class Based Modeling, Creating a Behavioral Model.

Textbook 1: Chapter 8: 8.1 to 8.8

 Teaching-Learning Process
 Chalk and board, Active Learning, Problem based learning

Module-2

Process Overview: Process Overview, System Conception and Domain Analysis: Process Overview: Development stages; Development life Cycle; System Conception: Devising a system concept; elaborating a concept; preparing a problem statement. Domain Analysis: Overview of analysis; Domain Class model: Domain state model; Domain interaction model; Iterating the analysis.

Text Book-2:Chapter- 10,11,and 12

 Teaching-Learning Process
 Chalk and board, Active Learning, Demonstration

Module3

Use Cae on Banking System, Health Care , ATM, LMS,

Textbook 1: Chapter 13: 13.1 to 13.7

Agile Methodology & DevOps: Before Agile – Waterfall, Agile Development,

Self-Learning Section:

What is DevOps?, DevOps Importance and Benefits, DevOps Principles and Practices, 7 C's of DevOps Lifecycle for Business Agility, DevOps and Continuous Testing, How to Choose Right DevOps Tools?, Challenges with DevOps Implementation.

Textbook 4: Chapter 2: 2.1 to 2.9

Teaching-Learning Process Chalk and board, Active Learning, Demonstration

Module-4

Introduction to Project Management:

Introduction, Project and Importance of Project Management, Contract Management, Activities Covered by Software Project Management, Plans, Methods and Methodologies, Some ways of categorizing Software Projects, Stakeholders, Setting Objectives, Business Case, Project Success and Failure, Management and Management Control, Project Management life cycle, Traditional versus Modern Project Management Practices.

Textbook 3: Chapter 1: 1.1 to 1.17

 Teaching-Learning Process
 Chalk and board, Active Learning, Demonstration

Module-5

Activity Planning:

Objectives of Activity Planning, When to Plan, Project Schedules, Sequencing and Scheduling Activities, Network Planning Models, Forward Pass– Backward Pass, Identifying critical path, Activity Float, Shortening Project Duration, Activity on Arrow Networks.

Apple's iPhone develeopment

NASA's Mars Rover Mission

Textbook 3: Chapter 6: 6.1 to

6.16

Software Quality:

Introduction, The place of software quality in project planning, Importance of software quality, software

quality models, ISO 9126, quality management systems, process capability models,

techniques to enhance software quality, quality plans.

Textbook 3: Chapter 13: (13.1 to 13.6, 13.9, 13.11, 13.14),

Teaching-Learning Process	Chalk and board, Active Learning, Demonstration

Course Outcomes

At the end of the course the student will be able to:

- CO 1. Understand the activities involved in software engineering and analyze the role of various process models
- CO 2. Explain the basics of object-oriented concepts and build a suitable class model using modelling techniques
- CO 3. Describe various software testing methods and to understand the importance of agile methodology and DevOps

CO 4. Illustrate the role of project planning and quality management in software developmentCO 5. Understand the importance of activity planning and different planning models

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50) in the semester-end examination (SEE), and a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together

Continuous Internal Evaluation:

Three Unit Tests each of **20 Marks (duration 01 hour**)

- 1. First test at the end of 5^{th} week of the semester
- 2. Second test at the end of the 10^{th} week of the semester
- 3. Third test at the end of the 15^{th} week of the

semesterTwo assignments each of 10 Marks

- 4. First assignment at the end of 4^{th} week of the semester
- 5. Second assignment at the end of 9^{th} week of the semester

Group discussion/Seminar/quiz any one of three suitably planned to attain the COs and POs for **20Marks (duration 01 hours)**

6. At the end of the 13^{th} week of the semester

The sum of three tests, two assignments, and quiz/seminar/group discussion will be out of 100 marks and will be **scaled down to 50 marks**

(to have less stressed CIE, the portion of the syllabus should not be common /repeated for any of the methods of the CIE. Each method of CIE should have a different syllabus portion of the course).

CIE methods /question paper has to be designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the subject (**duration 03 hours**)

- 1. The question paper will have ten questions. Each question is set for 20 marks. Marks scored shall be proportionally reduced to 50 marks
- 2. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), **should have a mix of topics** under that module.

The students have to answer 5 full questions, selecting one full question from each module

Suggested Learning Resources:

Textbooks

- 1. Roger S. Pressman: Software Engineering-A Practitioners approach, 7th Edition, Tata McGrawHill.
- 2. 12 Grady Booch et. al.: Object-Oriented Analysis and Design with Applications,3rd Edition,Pearson Education,2007.
- 3. 13Michael Blaha, James Rumbaugh: Object Oriented Modelling and Design with UML, 2nd Edition, Pearson Education, 2005.
- 3. Bob Hughes, Mike Cotterell, Rajib Mall: Software Project Management, 6th Edition, McGraw HillEducation, 2018.
- 4. Deepak Gaikwad, Viral Thakkar, DevOps Tools From Practitioner's Viewpoint, Wiley.

5. Ian Sommerville: Software Engineering, 9th Edition, Pearson Education, 2012. **Reference:**

1. Pankaj Jalote: An Integrated Approach to Software Engineering, Wiley India.

Weblinks and Video Lectures (e-Resources):

- 1. <u>https://onlinecourses.nptel.ac.in/noc20_cs68/preview</u>
- <u>https://www.youtube.com/watch?v=WxkP5KR_Emk&list=PLrjkTql3j</u> <u>nm9b5nr- ggx7Pt1G4UAHeFlJ</u>
- 3. http://elearning.vtu.ac.in/econtent/CSE.php
- 4. http://elearning.vtu.ac.in/econtent/courses/video/CSE/15CS42.html
- 5. <u>https://nptel.ac.in/courses/128/106/128106012/</u> (DevOps)

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

Case study, Field visit

	Semester: VI						
	MACHINE LEARNING AND LAB (Theory and Practice)						
Cou	rse Code:	MVJ21CS62	CIE Marks:50+50				
Cree	dits:	4	SEE Marks: 50 +50				
Hou	rs:		SEE Duration: 03+03 Hours				
Cou	rse (Theory) Lea	rning Objectives: The stu	dents will be able to				
1	Define machine learning and problems relevant to machine learning.						
2	Differentiate supervised, unsupervised and reinforcement learning.						
	Apply neural ne	tworks, Bayes classifier an	d k nearest neighbor, for problems appear in				
3	3 machine learning.						
4	4 Perform statistical analysis of machine learning techniques.						
Cou	rse (Practice) Le	arning Objectives: The stu	idents will be able to				
1	1Make use of Data sets in implementing the machine learning algorithms						

•	Implement the machine learning concepts and algorithms in any suitable language of
2	choice.

UNIT-I	
Introduction: Well posed learning problems, Designing a Learning system, Perspective and Issues	Hrs 8
in Machine Learning.	0
Concept Learning: Concept learning task, Concept learning as search, Find-S algorithm, Version	
space, Candidate Elimination algorithm, Inductive Bias.	
Laboratory Sessions/ Experimental learning:	
To understand purpose, give real time dataset(problem) and ask to students to solve in class room.	
Video link / Additional online information (related to module if any):	
• <u>https://www.youtube.com/watch?v=rQ3oi9g8alY</u>	
https://www.youtube.com/watch?v=h0e2HAPTGF4	
UNIT-II	
Decision Tree Learning	Hrs 8
Decision tree representation, Appropriate problems for decision tree learning, Basic decision tree	U
learning algorithm, hypothesis space search in decision tree learning, Inductive bias in decision tree	
learning, Issues in decision tree learning.	
Laboratory Sessions/ Experimental learning:	
Ask students to design a Decision Tree using freely available dataset or problem in classroom.	
Video link / Additional online information (related to module if any):	
• <u>https://www.youtube.com/watch?v=qDcl-FRnwSU</u>	
• https://www.youtube.com/watch?v=FuJVLsZYkuE	
UNIT-III	
Bayesian Learning and Evaluating Hypotheses	Hrs
Bayesian Learning: Introduction, Bayes theorem, Bayes theorem and concept learning, MDL	8
principle, Naive Bayes classifier, Bayesian belief networks, EM algorithm.	
Evaluating Hypotheses: Estimating hypothesis accuracy, Basics of sampling theorem, General	
approach for deriving confidence intervals, Difference in error of two hypothesis	
Laboratory Sessions/ Experimental learning:	
Ask the students to build Bayes Belief Networks for real time problem in class room.	
Video link / Additional online information (related to module if any):	
• <u>https://www.youtube.com/watch?v=480a_2jRdK0</u>	

• https://www.youtube.com/watch?v=E3l26bTdtxI	
UNIT-IV	
Artificial Neural Networks and Instance based Learning	Hr: 8
Artificial Neural Networks: Introduction, Neural Network representation, Appropriate	
Perceptron, Backpropagation algorithm. Instanced Based Learning: Introduction,	k-nearest
neighbor learning, locally weighted regression.	
Laboratory Sessions/ Experimental learning:	
Give real time problem and ask students to design an ANN using perceptrons.	
Video link:	
• https://www.youtube.com/watch?v=xbYgKoG4x2g&list=PL53BE265CE4A6C05	6.
• <u>https://www.youtube.com/watch?v=BRMS3T11Cdw&list=PL3pGy4HtqwD2a</u>	
57wl7Cl7tmfxfk7JWJ9Y	
UNIT-V	
Reinforcement Learning and Deep Learning : Reinforcement Learning: Introduction,	
Fask, Q Learning.	8
Deep Learning: Introduction to Deep Learning-Reasons to go Deep Learning, Introd	duction to
Convolution Networks ,Restricted Boltzmann Machines, Deep Belief Nets, Recurrent Net	ts.
Video link:	
• <u>https://www.youtube.com/watch?v=TIIDzLZPyhY&list=PLyqSpQzTE6M_FwzH</u>	IFAyf4LS
kz IjMyjD9	
 <u>https://www.youtube.com/watch?v=iOh7QUZGyiU&list=PLqYmG7hTraZDNJre</u> 	23vaCGI
VpfZ K2RZs	
LABORATORY EXPERIMENTS	
SL. EXPERIMENT	
NO.	HRS
Implement and demonstrate the FIND-S algorithm for finding the most	
1 specific hypothesis based on a given set of training data samples. Read	3
the training data from a .CSV file.	
Implement and demonstrate the FIND-S algorithm for finding the most	
2 specific hypothesis based on a given set of training data samples. Read	3

Develop a program to demonstrate the prediction of values of a given

3

the training data from a .CSV file.

dataset using Linear regression.

3

4	Write a program to demonstrate the working of the decision tree based ID3 algorithm . Use an appropriate data set for building the decision tree and apply this knowledge to classify a new sample.	3
5	Build an Artificial Neural Network by implementing the Backpropagation algorithm and test the same using appropriate data sets.	3
6	Write a program to implement the naïve Bayesian classifier for a sample training data set stored as a .CSV file. Compute the accuracy of the classifier, considering few test data sets.	3
7	Assuming a set of documents that need to be classified, use the naïve Bayesian Classifier model to perform this task. Built-in Java classes/API can be used to write the program. Calculate the accuracy, precision, and recall for your data set.	3
8	Write a program to construct a Bayesian network considering medicaldata. Use this model to demonstrate the diagnosis of heart patients usingstandard Heart Disease Data Set. You can use Java/Python ML libraryclasses/API.	3
9	Apply EM algorithm to cluster a set of data stored in a .CSV file. Usethe same dataset for clustering using <i>k</i> -Means algorithm. Compare theresults of these two algorithms and comment on the quality of clustering.You can add Java/Python ML library classes/API in the program.	3
10	Write a program to implement k-Nearest Neighbour algorithm to classify the iris data set. Print both correct and wrong predictions. Java/Python ML library classes can be used for this problem.	3
11	Implement the non-parametricLocallyWeightedRegressionalgorithm in order to fit data points.Select appropriate data set for yourexperiment and draw graphs.	3

Cours	Course (Theory) Outcomes: After completing the course, the students will be able to						
CO1	Identify the issues in machine learning and Algorithms for solving it.						
CO2	Explain theory of probability and statistics related to machine learning.						
CO3	Investigate concept learning, ANN, Bayes classifier, k nearest neighbor, Q, Learning.						
CO4	Identify the difference between Machine Learning and Deep Learning and using						

	scenario
CO5	Explain the concepts of Q learning and deep learning
Cours	se (Practice) Outcomes: After completing the course, the students will be able to
CO1	Understand the implementation procedures for the machine learning algorithms.
CO2	Design Java/Python programs for various Learning algorithms.
CO3	Apply appropriate data sets to the Machine Learning algorithms.
CO4	Identify and apply Machine Learning algorithms to solve real world problems.
CO5	Perform statistical analysis of machine learning techniques.

Tex	t Books
1	Tom M. Mitchell, Machine Learning, India Edition 2013, McGraw Hill Education.
Ref	erence Books:
1	Trevor Hastie, Robert Tibshirani, Jerome Friedman, h The Elements of Statistical
	Learning, 2nd edition, springer series in statistics.
2	Ethem Alpaydın, Introduction to machine learning, second edition, MIT press.

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks

out of 100 and report CIE for 50 marks.

Laboratory- 50 Marks

The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are awarded 10 marks. Total marks for the laboratory is 50.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the entire syllabus. Part - B Students have to answer

five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

	CO-PO/PSO Mapping (Theory)													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	-	-	-	1	-	-	-	-	-	-	2	-	-
CO2	3	3	3	-	-	-	-	-	1	-	1	2	1	-
CO3	2	2	2	1	3	-	-	-	-	-	1	3	-	1
CO4	3	2	3	-	-	-	-	-	-	2	3	2	-	-
CO5	3	2	3	-	-	-	-	-	-	2	3	2	2	-

High-3, Medium-2, Low-1

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks

out of 100 and report CIE for 50 marks.

Laboratory- 50 Marks

The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to

implement additional innovative experiments in the lab and are awarded 10 marks. Total marks for the laboratory is 50.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the entire syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

	CO-PO/PSO Mapping (Theory)													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	1	-	-	-	-	-	1	-	2	-	-	2	3
CO2	3	2	2	1	-	-	-	-	-	2	-	1	2	2
CO3	2	3	1	3	-	1	1	1	-	1	-	2	2	1
CO4	3	2	2	1	-	2	-	-	-	-	2	1	2	2
CO5	2	2	3	3	-	1	2	1	2	-	1	2	2	2

Seme	ester: VI
CRYPTOGRAPHY AN	D NETWORKSECURITY
(Theory a	nd Practice)
Course Code: MVJ21CS63	CIE Marks: 50+50
Credits:4 L:T:S:3:0:2	SEE Marks: 50 +50
Hours: 40L+26P	SEEDuration:03+03Hours
Course Learning Objectives: The students will be a	ble to
1 Explain the objectives of information security	,

2	Explain the importance and application of each of confidentiality, integrity, authentication and availability
3	Understand various cryptographic algorithms.
4	Understand the basic categories of threats to computers and networks
5	Describe public-key cryptosystem.

UNIT-I			
Security Concepts: Introduction, The need for security, Security approaches, Principles of security, Types of Security attacks, Security services, Security Mechanisms, A model for Network Security.	8Hrs		
Cryptography Concepts and Techniques: Introduction, plaintext and cipher text, substitution techniques, transposition techniques, encryption and decryption, symmetric and asymmetric key cryptography, steganography, key range and key size, possible types of attacks.			
Modular arithmetic- Euclid's algorithm, Polynomial Arithmetic –Prime numbers- Fermat's and Euler's theorem- Testing for primality -The Chinese remainder theorem			
UNIT-II			
Symmetric key Ciphers: Block Cipher principles, DES, AES, Blowfish, RC5, IDEA, Block cipher operation, Stream ciphers,RC4.			
Asymmetric key Ciphers: Principles of public key cryptosystems, RSA algorithm, Elgamal Cryptography, Diffie-Hellman Key Exchange, Knapsack Algorithm.			
UNIT-III			
Cryptographic Hash Functions: Message Authentication, Secure Hash Algorithm(SHA-512), Message authentication codes: Authentication requirements, HMAC, CMAC, Digital signatures, Elgamal Digital Signature Scheme.	8Hrs		
Key Management and Distribution: Symmetric Key Distribution Using Symmetric & Asymmetric Encryption, Distribution of Public Keys,Kerberos,X.509 Authentication Service, Public– Key Infrastructure			
UNIT-IV			
Transport-level Security : Web security considerations, Secure Socket Layer and Transport Layer Security, HTTPS, Secure Shell(SSH)	8Hrs		

UNIT-V	
-Mail Security: Pretty Good Privacy, S/MIME IP Security: IP Security overview, II ecurity architecture, Authentication Header, Encapsulating security payload combining security associations, Internet Key Exchange	
ase Studies on Cryptography and security: Secure Multiparty Calculation, Virtua lections, Single sign On, Secure Inter-branch Payment Transactions, Crosssite cripting Vulnerability.	
LABORATORYEXPERIMENTS	
 Write a program that contains a string(charpointer) with a value 'HelloWorld' should XOR each character in this string with 0 and displays the result. 	The program
2. Write a program that contains a string (charpointer) with a value 'HelloWorld'. should AND or and XOR each character in this string with 127 and display the r	
 Write a Java program to perform encryption and decryption using the following a) Ceaser Cipher b) Substitution Cipher c) Hill Cipher. 	algorithms:
4. Write a Java program to implement the DES algorithm logic.	
5. Write a C/JAVA program to implement the Blowfish algorithm logic.	
6. Write a C/JAVA program to implement the Rijndael algorithm logic.	
7. Using Java Cryptography, encrypt the text "Helloworld" using Blowfish. Create using Java key tool.	your own key
8. Write a Java program to implement RSA Algorithm with p=3,q=11.	
9. Implement the Diffie-Hellman Key Exchange mechanism using HTML and JavaSe the end user as one of the parties (Alice) and the JavaScript application as othe	•
10. Calculate the message digest of a text using the MD5 algorithm in JAVA.	
11. Calculate the message digest of a text using the SHA-1 algorithm in JAVA.	
12. Using Java Cryptography, encrypt the text "Helloworld" using Blowfish. Create using Java key tool.	your own key

Any 12 experiments to be conducted

Cours	e Outcomes: After completing the course, the students will be able to
C01	Identify the major types of threats to information security and the associated attacks, Services and Mechanisms
CO2	Design and develop cryptographic algorithms using public key cryptography.
CO3	Generate the own key for developing cryptography algorithms.
CO4	Understand various Transport-level Security and Wireless Network Security
CO5	Generate and distribute a PGP key pair and use the PGP package to send an encrypted e- mail message.

Refe	erenceBooks
1.	Cryptography and Network Security-Principles and Practice: William Stallings, Pearson
	Education,6 th Edition
2.	Cryptography and Network Security: Atul Kahate, McGraw Hill, 3rd Edition
3.	Cryptography and Network Security: CK Shyamala, N Harini, Dr T R Padmanabhan, Wiley India,1 st Edition.
4.	Cryptography and Network Security: Forouzan Mukhopadhyay, McGraw Hill, 3 rd Edition

Theoryfor 50Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the self -study are 20 (2 presentations are be held for 10 marks each). The marks obtained in test, quiz and self -studies are added to get marks out of 100 and report CIE for 50 marks.

Laboratory-50Marks

The laboratory session is held every week as per the time table and the performance of the student is evaluated in everysession. The average of the marks over number of weeks isconsidered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are awarded 10 marks. Total marks for the laboratory is 50.

SemesterEndExamination(SEE): Total

marks: 50+50=100

 ${\small SEE} for 50 marks are executed by means of an examination.$

The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the complete syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

ExperimentConductionwithproperresultsisevaluatedfor40marksandVivaisfor10marks.Total SEE for laboratory is 50 marks.

	CO-PO/PSO Mapping (Practical)													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	1	-	-	-	-	-	-	1	-	1	-	-
CO2	1	1	2	-	-	-	-	-	-	2	-	1	1	2
CO3	2	2	1	-	-	-	-	-	-	1	-	1	-	3
CO4	2	1	1	-	-	-	-	-	-	2	-	1	-	3
CO5	2	2	1	-	-	-	-	-	-	2	-	1	1	2

High-3, Medium-2, Low-1

		Semester: VI	
		PYTHON PROGRAMMING	Ţ
		(Theory)	
Cou	rse Code:	MVJ21CS641	CIE Marks:50
Cre	dits:	3	SEE Marks: 50
Hou	irs:		SEE Duration: 3 Hrs
Cou	rse Learning Objectives	s: The students will be able to	
	Familiarize the student	ts with the fundamentals and J	programming basics of Python
1	Language		

UNIT-I	
Prerequisites: Knowledge of C Programming is required	Hrs 8

Introduction to Python: Features of python, Applications of python, Syntax,	
Comments, Indentations, Number types, Variables and Data Types, Operators,	
conditional statement, Loops in Python.	
Python List: Create Python List, Access Python List, Slicing a Python List,	
slicing and dicing, Reassigning a Python List (Mutable), Reassigning the whole	
Python list, Deleting list and elements, Multidimensional Lists, List Operations,	
Built-in List Functions.	
UNIT-II	
Python Tuple: Create a Python Tuple, Tuples Packing, Tuples Unpacking,	Hrs 8
creating a tuple with a single item, Access Python Tuple, slicing a Tuple, Deleting	
a Python Tuple, Reassigning Tuples, Tuple Functions Tuple Operations.	
Python Dictionary: Create a Dictionary, Dictionaries with mixed keys, access a	
Python Dictionary, Delete Python Dictionary, In-Built Functions on a Python	
Dictionary, In-Built Methods on a Python Dictionary, Dictionary Operations.	
UNIT-III	
Python Function: User-Defined Functions in Python, Python Built-in Functions,	Hrs 8
Python Lambda Expressions, Recursion Function, Range function.	
Python Method: Introduction to Method,init(), Self-Parameter, Functions	
vs Method, Magic Methods.	
UNIT-IV	
Python Class: Introduction to Python Class, defining a Python Class, Accessing	Hrs 8
Python Class Members Python Object Attributes Belonging to Python Class,	
Delete Python Class, Attribute, Inheritance, Multiple inheritance.	
UNIT-V	
File Handling In Python: Read and Write File, Open File, Close File, File	Hrs 8
Methods, Data Base connections.	

Cours	se Outcomes: After completing the course, the students will be able to
CO1	Understand data types (like character strings, integers, and real numbers) and the
	Operations that can be Applied to each data type.
CO2	Write programs that get input, perform calculations, and provide output (using
	Conditional logic, loops, Functions).
CO3	Write well designed and well documented programs that are easily maintainable
CO4	Analyze String Formatting Options.
CO5	Enjoy the art and science of computer files using python.

Text Bo	ooks:
	Michael T. Goodrich, Roberto Tamassia, Michael H. Goldwasser Data Structures and
1	Algorithms in Python John Wiley & Sons, Incorporated.
	Frank Kane (2017)Hands-On Data Science and Python Machine Learning 1st Edition,
2	Kindle Edition.

Ref	erence Books
1.	Mark Smart, (2018), Introduction to Data Science with Python: Basics of Numpy and
	Pandas.
2.	VK Jain, Data Science & Analytics, Khanna Book Publishing ;edition (2018)

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

						CO-P	O/PSO	Mapp	oing					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2	-	-	-	-	-	-	-	1	2	-
CO2	3	3	2	2	-	-	-	-	-	-	-	1	2	-
CO3	3	3	3	2	-	-	-	-	-	-	-	1	2	-

CO4	3	3	2	2	-	-	-	-	-	-	-	1	2	-
CO5	3	3	3	2	-	-	-	-	-	-	-	1	1	2

High-3, Medium-2, Low-1

		Semester: VI							
		WEB TECHNOLO	GIES						
		(Theory)							
Cou	rse Code:	MVJ21CS642	CIE Marks:50						
Cre	dits:	3	SEE Marks: 50						
Hou	irs:		SEE Duration: 3 Hrs						
Cou	rse Learning Obje	ctives: The students will be a	ble to						
1	Understand differe	nt Internet Technologies.							
2	Learn java-specific	e web services architecture							
3	Understand the SQL and JDBC								
4	Learn the AJAX and	Learn the AJAX and JSON							

UNIT-I

Website Basics, HTML5, CSS 3, Web 2.0: Web Essentials: Clients, Servers and	Hrs 8			
Communication ,The Internet, Basic Internet protocols, World wide web, HTTP				
Request Message, HTTP Response Message, Web Clients, Web Servers, HTML5 :				
Tables, Lists, Image, HTML5 control elements , Semantic elements , Drag and				
Drop, Audio, Video controls, CSS3: Inline, embedded and external style sheets,				
Rule cascading, Inheritance, Backgrounds, Border Images, Colours, Shadows, Text,				
Transformations				
Laboratory Sessions/ Experimental learning:				
1. Design HTML form for keeping student record.				
2. Write a HTML code to generate following output.				
Create an html page with following specifications				
a. Title should be about my college				
b. Put the image in the background				
c. Place your college name at the top of the page in large text followed by				

- address in smaller size
- d. Add names of courses offered each in a different color, style and typeface
- e. Add scrolling text with a message of your choice

Video link / Additional online information:	
• <u>https://www.youtube.com/watch?v=QEtWL4IWIL4</u>	
• <u>https://www.youtube.com/watch?v=h_RftxdJTzs</u>	
UNIT-II	
Client side Programming: An Introduction to java Script, JavaScript DOM	Hrs 8
Model, Date and Object, Regular Expression, Exception Handling, Validation,	
Built-in Objects, Event Handling, DHTML with JavaScript, JSON introduction,	
Syntax, Function Files, Http Request, SQL.	
Laboratory Sessions/ Experimental learning:	
1. Write a JavaScript to design a simple calculator to perform the following	
operations: sum, product, difference and quotient.	
2. Write a JavaScript code that displays text "TEXT-GROWING" with	
increasing font size in the interval of 100ms in RED COLOR, when the font	
size reaches 50pt it displays "TEXT-SHRINKING" in BLUE color. Then	
the font size decreases to 5pt.	
Video link / Additional online information:	
 https://www.youtube.com/watch?v=uDwSnnhl1Ng&list=PLsyeobzWxl7qtP 	
8Lo9TReqUMkiOp446cV	
• <u>https://www.youtube.com/watch?v=zPTY1hKq3SU&list=PLV1QHNRLflP-</u>	
ByWEVjCZAj79kJdshKQwu	
UNIT-III	
Server Side Programming: Java Servlet Architecture, Servlet Life Cycle, Form	Hrs 8
GET and POST actions, Session handling, Installing and Configuring Apache	
Tomcat Web Server, Database Connectivity: JDBC perspectives, JDBC Program	
Example, JSP: Understanding Java server page, JSP Standard Tag Library (JSTL),	
Creating HTML form using JSP Code.	
Laboratory Sessions/ Experimental learning:	
1. Assume four users user1, user2, user3 and user4 having the passwords	
pwd1, pwd2, pwd3 and pwd4 respectively. Write a servlet for doing the	
following.	
a. Create a Cookie and add these four user id's and passwords to this	
Cookie.	
b. Read the user id and passwords entered in the Login form and	

authenticate with the values available in the cookies.2. Write a JSP which insert the details of the 3 or 4users who register with the	
web site by using registration form. Authenticate the user when he submits	5
the login form using the user name and password from the database.	
Video link / Additional online information:	
 <u>https://www.youtube.com/watch?v=7TOmdDJc14s&list=PLsyeobzWx17pU</u> 	
<u>PF2xjjJiG4BKC9x_GY46</u>	
 <u>https://www.youtube.com/watch?v=xve6QEgIR-</u> 	
<u>0&list=PL0zysOfIRCel5BSXoslpfDawe8FyyOSZb</u>	
 <u>https://www.youtube.com/watch?v=0pzR2FGTEhk</u> 	
UNIT-IV DUD: Introduction to DUD. DUD using DUD. Variables. Program Control. Duilt in	Hrs 8
PHP : Introduction to PHP, PHP using PHP, Variables, Program Control, Built-in	пгуо
Functions, Form Validation, Basic command with PHP examples, Connection to	
server, creating Database, Selecting Database, Listing Database, listing table	
names Creating a table, Inserting data, deleting data and tables, altering tables.	
Laboratory Sessions/ Experimental learning:	
1. Write a PHP program to keep track of the number of visitors visiting the	
web page and to display this count of visitors, with proper headings.	
2. Write a PHP program to display a digital clock which displays the current	
time of the server.	
3. Write a PHP program to sort the student records which are stored in the	
database using selection sort.	
4. Design an XML document to store information about a student in an	
engineering college affiliated to VTU. The information must include	
USN, Name, and Name of the College, Branch, Year of Joining, and	
email id. Make up sample data for 3 students. Create a CSS style sheet	
and use it to display the document.	
Video link / Additional online information :	
• https://www.youtube.com/watch?v=itRkLa2kq6w	
• https://www.youtube.com/watch?v=KJHYdkKtafU	
• <u>https://www.youtube.com/watch?v=G_CFRAdbXfI&list=PL_RGaFnxSH</u>	
WrjkpK2zD4TWKWMWVfeYK-b	
UNIT-V	

AJAX: Ajax client server architecture, Xml HTTP request object, Call back	Hrs 8
methods. Advanced JavaScript and jQuery, JavaScript Pseudo-Classes, jQuery	
Foundations, Web Services: Introduction, Java web services Basics, Creating,	
Publishing, Testing and Describing a web services, Database driven web service	
from an application.	
Laboratory Sessions/ Experimental learning:	
1. Creating simple application to access data base using JDBC Formatting	
HTML with CSS.	
2. Write a Program for manipulating Databases and SQL with real time	
application.	
3. Write a Java applet to display the Application Program screen i.e.	
calculator and other.	
Video link / Additional online information	
• https://www.youtube.com/watch?v=qk9MWbyRlhE	
• https://www.youtube.com/watch?v=0pzR2FGTEhk	
• <u>https://www.youtube.com/watch?v=HgvIox6ehkM</u>	

Cours	Course Outcomes: After completing the course, the students will be able to				
CO1	Construct a basic website using HTML and Cascading Style Sheets.				
CO2	Build dynamic web page with validation using Java Script objects and by applying				
	different event handling mechanism.				
CO3	Develop server side programs using Servlets and JSP.				
CO4	Construct simple web pages in PHP and to represent data in XML format.				
CO5	Use AJAX and web services to develop interactive web applications.				

Text Bo	Text Books:					
_	Deitel and Deitel and Nieto, Internet and World Wide Web, How to Program, Prentice					
1	Hall, 5th Edition, 2011.					
	Randy Connolly, Ricardo Hoar, "Fundamentals of Web Development", 1stEdition,					
2	Pearson Education India. (ISBN:978-9332575271)					

Ref	erence Books
1.	Stephen Wynkoop and John Burke -Running a Perfect Websitel, QUE, 2nd
	Edition,1999
2.	Chris Bates, Web Programming – Building Intranet Applications, 3rd Edition, Wiley
	Publications, 2009.

Continuous Internal Evaluation (CIE): Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the entire syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO/PSO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	1	-	3	-	-	-	-	-	-	1	-	2
CO2	3	3	1	-	-	-	-	-	-	-	-	1	1	3
CO3	3	3	1	-	-	-	-	-	-	-	-	1	1	2
CO4	3	3	1	-	-	-	-	-	-	-	-	1	-	2
CO5	3	3	1	-	-	-	-	-	-	-	-	2	1	1

High-3, Medium-2, Low-1

Semester: VI				
OPERA	TING SYSTEMS			
Course Code: MVJ21CS643	CIE Marks:100			
Credits: L:T:P:S: 3:0:0:0	SEE Marks: 100			
Hours: 40L	SEE Duration: 3 Hrs			
Course Learning Objectives: The students will be able to				

1	Introduce concepts and terminology used in OS.
2	Explain threading and multithreaded systems.
3	Illustrate process synchronization and concept of Deadlock.
4	Introduce Memory and Virtual memory management, File system and storage techniques.

UNIT-I	
Introduction: What operating systems do; Computer System organization;	8 Hrs
Computer System architecture; Operating System operations; Distributed system;	
Special-purpose systems; Computing environments. Operating System Services;	
User - Operating System interface; System calls; Types of system calls; System	
programs; Operating system design and implementation; Operating System	
structure; Virtual machines; System boot.	
Process Management : Process concept; Process scheduling; Operations on processes; Inter process communication.	
UNIT-II	
Multi-threaded Programming: Overview; Multithreading models; Thread	8 Hrs
Libraries; Threading issues. Process Scheduling: Basic concepts; Scheduling	
Criteria; Scheduling Algorithms; Multiple-processor scheduling; Thread	
scheduling.	
Process Synchronization : Synchronization: The critical section problem; Peterson's solution; Synchronization hardware; Semaphores; Classical problems of synchronization; Monitors.	
UNIT-III	
Deadlocks: Deadlocks; System model; Deadlock characterization; Methods for	8 Hrs
handling deadlocks; Deadlock prevention; Deadlock avoidance; Deadlock	
detection and recovery from deadlock.	
Memory Management: Memory management strategies: Background; Swapping; Contiguous memory allocation; Paging; Structure of page table; Segmentation UNIT-IV	
Virtual Memory Management: Background; Demand paging; Copy-on-write;	8 Hrs
Page replacement; Allocation of frames; Thrashing.	
File System, Implementation of File System: File system: File concept; Access	
methods; Directory structure; File system mounting; File sharing;	
Implementing File system : File system structure; File system implementation; Directory implementation; Allocation methods; Free space management.	
UNIT-V	
Mass Storage Structure-Disk Structure - Disk Attachment-Disk Scheduling-Disk	8 Hrs

Management- Swap-Space Management.

Protection: Domain of protection, Access matrix, Implementation of access

matrix, Access control, Revocation of access rights, Capability- Based systems.

Case Studies: Windows, Unix, Linux, Android.

Cours	se Outcomes: After completing the course, the students will be able to					
CO1	Illustrate the fundamental concepts of operating systems.					
CO2	Compare and illustrate various process scheduling algorithms.					
CO3	Ability to recognize and resolve Deadlock problems ,Memory Management					
	techniques.					
CO4	Apply appropriate memory and file management schemes.					
CO5	Appreciate the need of access control and protection in Operating System and					
	illustrate various disk scheduling algorithms.					

Ref	Reference Books									
3.	Abraham Silberschatz, Peter Baer Galvin, Greg Gagne, Operating System Concepts 7th									
	edition,Wiley-India, 2006									
4.	D.M Dhamdhere, Operating Systems: A Concept Based Approach 3rd Ed, McGraw-									
	Hill, 2013.									
3.	Tanenbaum, A., "Modern Operating Systems", Prentice-Hall of India. 2004									
4.	P.C.P. Bhatt, An Introduction to Operating Systems: Concepts and Practice 4th									
	Edition,2013									

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the entire syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	-	-	-	-	-	-	-	-	-
CO2	2	2	3	-	-	-	-	-	-	-	-	-
CO3	3	2	3	-	-	-	-	-	-	-	-	-
CO4	3	2	3	-	-	-	-	-	-	-	-	-
CO5	3	2	3	-	-	-	-	-	-	-	-	-

maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

High-3, Medium-2, Low-1

	Semester: VI								
	MOBILE APPLICATION DEVELOPMENT								
Cou	rse Code:	MVJ21CS644	CIE Marks:50						
Cre	dits:	3	SEE Marks: 50						
Hou	irs:		SEE Duration: 3 Hrs						
Course Learning Objectives: The students will be able to									
1	Demonstrate their understanding of the fundamentals of Android operating systems								
2	Demonstrate their skills of using Android software development tools								
3	Familiarize engineering practices and standards used in developing software products and components.								
4	Demonstrate their ability to develop software with reasonable complexity on mobile platform								

Introduction to Android Operating System: Android OS design and Features						
- Android development framework, SDK features, Installing and running						
applications on Eclipse platform, Creating AVDs, Types of Android						
applications, best practices in Android programming, Android tools. Android						
application components - Android Manifest file, Externalizing resources like						
values, themes, layouts, Menus etc, Android Application Lifecycle – Activities,						
Activity lifecycle, activity states, monitoring state changes						
Video link / Additional online information (related to module if any):						
2. https://www.youtube.com/watch?v=deq8mkt_cxQ						
UNIT-II						
	TT O					

Android User Interface:Measurements – Device and pixel densityHrs 8independent measuring units Layouts – Linear, Relative, Grid and Table

Video link / Additional online information (related to module if any):	
updating location	
Based Services - Finding Current Location and showing location on the Map,	
Resources - Connecting to internet resource, using download manager Location	
Advanced Topics: Alarms – Creating and using alarms Using Internet	Hrs 8
UNIT-V	l
• <u>http://developer.android.com/develop/index.htm</u>	
Video link / Additional online information (related to module if any):	
Providers, Using content Providers (insert, delete, retrieve and update)	
creating tables, inserting retrieving and deleting data, Registering Content	
Database - Introduction to SQLite database, creating and opening a database,	
Creating shared preferences, saving and retrieving data using Shared Preference	
files, reading data from files, listing contents of a directory Shared Preferences -	
Persistent Storage: Files – Using application specific folders and files, creating	Hrs 8
UNIT-IV	
 https://nptel.ac.in/courses/106/106/106106147/ 	
Video link / Additional online information (related to module if any):	
- Creating and Displaying notifications, Displaying Toast.	
Intent filters, finding and using Intents received within an Activity Notifications	
Broadcast Receivers – Using Intent filters to service implicit Intents, Resolving	
from Activities, Native Actions, using Intent to dial a number or to send SMS	
starting new Activity, Implicit Intents, passing data to Intents, getting results	
UNIT-III Intents and Broadcasts: Intent – Using intents to launch Activities, explicitly	Hrs 8
Video link / Additional online information (related to module if any): 2. https://www.youtube.com/watch?v=PJ3RdfJ4Np8	
Applications: Design a Simple Calculator App	
screen Activities	
fragment transactions, interfacing between fragments and Activities, Multi-	
Adding fragments to Activity, adding, removing and replacing fragments with	
Fragments – Creating fragments, Lifecycle of fragments, Fragment states,	
pickers Event Handling – Handling clicks or changes of various UI components	
Views, Buttons, Radio and Toggle Buttons, Checkboxes, Spinners, Dialog and	

2. <u>https://www.codeschool.com/learn/ios</u>
--

Cours	Course Outcomes: After completing the course, the students will be able to							
CO1	Understand the fundamentals of Android operating systems							
CO2	Understand various layouts and designing UI.							
CO3	Understand major Android components intents, broadcasting and notifications.							
CO4	Understand basic concepts of SQLite database.							
CO5	Understand how to utilize Location based services.							

Text Books

3.	Charlie Collins, Michael Galpin and Matthias Kappler, "Android in Practice",					
	DreamTech, 2012					
4.	David Mark, Jack Nutting, Jeff LaMarche and Frederic Olsson, "Beginning iOS 6					
	Development: Exploring the iOS SDK", Apress, 2013.					
5.	Google Developer Training, "Android Developer Fundamentals Course - Concept					
	Reference", Google Developer Training Team, 2017.					

Refere	ence Books:
1.	James Dovey and Ash Furrow, "Beginning Objective C", Apress, 2012
2	Jeff McW herter and Scott Gowell, "Professional Mobile Application Development",
2.	Wrox, 2012.

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the entire syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a

						CO-PO	D/PSO	Mapp	ing					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	1	-	-	-	-	-	-	-	-	3	1	-
CO2	3	3	1	-	-	-	-	-	-	-	-	3	3	-
CO3	3	3	1	2	-	-	-	-	-	1	-	3	1	-
CO4	3	3	3	3	-	-	-	2	2	2	-	3	2	2
CO5	3	3	3	3	-	-	2	2	3	2	-	3	1	-

maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

High-3, Medium-2, Low-1

	Semester: VI								
NATURAL LANGUAGE PROCESSING									
Cou	rse Code:	MVJ21CS645	CIE Marks:50						
Cree	lits:	3	SEE Marks: 50						
Hours: SEE Duration: 3 Hrs									
Cou	Course Learning Objectives: The students will be able to								
1	Learn the fundamentals of natural language processing.								
2	Understand the use of CFG and PCFG in NLP.								
3	Understand the role of semantics of sentences and pragmatics.								
4	Gain knowledge in auto	mated Natural Language Genera	tion and Machine Translation.						

UNIT-I

0111-1		
INTRODUCTION: Origins and challenges of NLP – Language Modelling:		
Grammar-based LM, Statistical LM –Regular Expressions, Finite-State Automata –	Hrs 8	
English Morphology, Transducers forlexicon and rules, Tokenization, Detecting and		
Correcting Spelling Errors, Minimum EditDistance values of real symmetric		
matrices: Jacobi and Givens method.		
Laboratory Session: Word Analysis		
Applications: Text to Speech conversion		
Video link : https://nptel.ac.in/courses/106/105/106105158/		
UNIT-II		
WORD LEVEL AND SYNTACTIC ANALYSIS: Ngrams Models of Syntax -		
Counting Words - Unsmoothed Ngrams-Smoothing-Back off Deleted Interpolation -	Hrs 8	

Entropy - EnglishWord Classes - Tag sets for English-Part of Speech Tagging-		
RuleBased Part of Speech Tagging - Stochastic Part of Speech Tagging -		
Transformation-Based Tagging -Issues in PoS tagging - Hidden Markov and		
Maximum Entropy models.		
Laboratory Session: Morphological Analyzer for a given word		
Applications: Speech to text conversion		
Video link : https://nptel.ac.in/courses/106/105/106105158/		
UNIT-III		
CONTEXT FREE GRAMMARS: Context-Free Grammars, Grammar rules for		
English, Tree banks, Normal Forms for grammar – Dependency Grammar –	Hrs 8	
Syntactic Parsing, Ambiguity, Dynamic Programming parsing - Shallow parsing	U	
Probabilistic CFG, Probabilistic CYK, Probabilistic Lexicalized CFGs - Feature		
structures, Unification of feature structures		
Laboratory Sessions: Chunking for a given sentence		
Applications: Compiler		
• Video link : <u>https://www.youtube.com/watch?v=6b40kKe2SFg</u>		
UNIT-IV		
SEMANTICS AND PRAGMATICS: Representing Meaning - Meaning Structure		
of Language -First Order Predicate Calculus-Representing Linguistically Relevant	Hrs 8	
Concepts –SyntaxDriven Semantic Analysis - Semantic Attachments –Syntax Driven		
Analyzer- Robust Analysis - Lexemes and Their Senses - Internal Structure - Word		
Sense Disambiguation -Information Retrieval.		
Laboratory Session: Pragmatic Analysis of a given sentence		
Applications: Sentiment Analysis		
• Videolink: <u>https://www.coursera.org/lecture/humanlanguage/pragmatics-E8VXH</u>		
UNIT-V		

LANGUAGE GENERATION AND DISCOURSEANALYSIS: Discourse	IJ	
segmentation, Coherence - Reference Phenomena, Anaphora Resolution using	Hrs 8	
Hobbs and Centering Algorithm - Co reference Resolution - Resources: Porter	_	
Stemmer, Lemmatize, Penn Treebank, Brill's Tagger, Word Net, Prop Bank, Frame		
Net, Brown Corpus, and British National Corpus (BNC).		
Laboratory Session: Sentiment analysis on movie database		
Applications: Sentiment analysis		
Videolink: https://www.coursera.org/lecture/text-mining-analytics/5-6-how-to-do-		
sentiment-analysis-with-sentiwordnet-5RwtX		

Course Outcomes: After completing the course, the students will be able to		
CO1	To tag a given text with basic Language features.	
CO2	To design an innovative application using NLP components	
CO3	To implement a rule-based system to tackle morphology/syntax of a language	
CO4	To design a tag set to be used for statistical processing for real-time applications	
CO5	To compare the use of different statistical approaches for different types of NLP applications	

Tex	Text Books			
1	Daniel Jurafsky, James H. Martin-Speech and Language Processing: An			
	Introduction to Natural Language Processing, Computational Linguistics and			
	Speech, Pearson Publication, 2014.			
2	C. Manning and H. Schutze, "Foundations of Statistical Natural Language			
	Processing", MIT Press. Cambridge, MA:1999			

Refere	Reference Books:					
1	Steven Bird, Ewan Klein and Edward Loper, —Natural Language Processing with Python, First Edition, OReilly Media, 2009.					
2	Natural Language Processing and Information Retrieval: Tanvier Siddiqui, U.S.Tiwary					
3	Allen, James, Natural Language Understanding, Second Edition, Benjamin/Cumming, 1995.					

Continuous Internal Evaluation (CIE): Theory for 50 Marks CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO/PSO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	-	-	-	-	-	-	-	-	-	-	-
CO2	3	3	3	-	-	-	-	-	-	-	-	-	2	2
CO3	3	3	3	-	-	-	-	-	-	-	-	-	1	3
CO4	3	3	3	-	-	-	-	-	-	-	-	-	1	2
CO5	2	2	2	-	-	-	-	-	-	-	-	-	2	-

		Semester: VII				
		INTERNET OF THINGS AN	ND LAB			
		(Theory and Practice)				
Course Code:		MVJ21C871	CIE Marks:50+50			
Credits:		4	SEE Marks: 50 +50			
Hours:			SEE Duration: 03+03 Hours			
Course (T	heory) Learning	Objectives: The students will be abl	le to			
1	Learn the basic issues, policy and challenges in the Internet.					

2	Get an idea of some of the application areas where Internet of Things can be applied.
3	Understand the cloud and internet environment.
4	Understand the various modes of communications with Internet.
Course	(Practice) Learning Objectives: The students will be able to
1	Understand the concepts of Internet of Things.
2	Analyse basic protocols in wireless sensor network.
3	Design IoT applications in different domain and be able to analyze their performance
4	Implement basic IoT applications on embedded platform.

UNIT-I				
Prerequisites : Basic Knowledge about C or C++	Hrs 8			
Introduction to IoT: Definition – Foundations – Challenges and Issues - Identification - Security.				
Components in internet of things: Control Units - Sensors - Communication modules -Power				
Sources - Communication Technologies - RFID - Bluetooth - Zigbee - Wifi - Rflinks - Mobile				
Internet – Wired Communication-IoT Platform Overview-Raspberry pi-Arduino boards.*				
Applications: Sensors in IoT.				
Video link / Additional online information (related to module if any):				
• http://www.theinternetofthings.eu/what-is-the-internet-of-things.				
• <u>https://www.engineersgarage.com/article_page/sensors-different-types-of-sensors/</u>				
 https://www.educba.com/applications-of-sensors/ 				
* Programming Assignments are Mandatory.				
UNIT-II				
IoT Protocols: Protocol Standardization for IoT-M2M and WSN Protocols-SCADA and RFID	Hrs			
Protocols-Issues with IoT Standardization-Protocols-IEEE 802.15.4-BACNet Protocol-Zigbee	8			
Architecture - Network layer – APS Layer – Security.*				
Applications:				
IoT Protocol Applications				
Video link / Additional online information (related to module if any):				
<u>https://inductiveautomation.com/resources/article/what-is-scada</u>				
 https://iotbytes.wordpress.com/application-protocols-for-iot/ 				
 https://data-flair.training/blogs/iot-protocols/ 				
 https://www.avsystem.com/blog/iot-protocols-and-standards/ 				
* Programming Assignments are Mandatory.				
UNIT-III				

Synchronization - Clustering Principles in an Internet of Things Architecture - The Role of Context - 8 Design Guidelines -Software Agents for Object – Data Synchronization- Types of Network Architectures - Fundamental Concepts of Agility and Autonomy-Enabling Autonomy and Agility by the Internet of Things - The Evolution from the RFID-based EPC Network to an Agent based Internet of Things - Agents for the Behaviour of Objects.* Applications: RFID Applications Video link / Additional online information (related to module if any): RFID Applications: https://www.digiteum.com/rfid-technology-internet-of-things • https://www.uio.no/studier/emner/matnat/ifi/INF5910CPS/h10/undervisningsmateriale/RFID -IoT.pdf * Programming Assignments are Mandatory.	Hrs 3
Synchronization - Clustering Principles in an Internet of Things Architecture - The Role of Context - Design Guidelines -Software Agents for Object – Data Synchronization- Types of Network Architectures - Fundamental Concepts of Agility and Autonomy-Enabling Autonomy and Agility by the Internet of Things - The Evolution from the RFID-based EPC Network to an Agent based Internet of Things- Agents for the Behaviour of Objects.* Applications: RFID Applications Video link / Additional online information (related to module if any): RFID Applications: • https://www.digiteum.com/rfid-technology-internet-of-things • https://www.uio.no/studier/emner/matnat/ifi/INF5910CPS/h10/undervisningsmateriale/RFID -IoT.pdf * Programming Assignments are Mandatory.	
Architectures - Fundamental Concepts of Agility and Autonomy-Enabling Autonomy and Agility by the Internet of Things - The Evolution from the RFID-based EPC Network to an Agent based Internet of Things- Agents for the Behaviour of Objects.* Applications: RFID Applications Video link / Additional online information (related to module if any): RFID Applications: <u>https://www.digiteum.com/rfid-technology-internet-of-things</u> https://www.uio.no/studier/emner/matnat/ifi/INF5910CPS/h10/undervisningsmateriale/RFID -IoT.pdf * Programming Assignments are Mandatory.	
the Internet of Things - The Evolution from the RFID-based EPC Network to an Agent based Internet of Things- Agents for the Behaviour of Objects.* Applications: RFID Applications Video link / Additional online information (related to module if any): RFID Applications: • <u>https://www.digiteum.com/rfid-technology-internet-of-things</u> • <u>https://www.uio.no/studier/emner/matnat/ifi/INF5910CPS/h10/undervisningsmateriale/RFID</u> -IoT.pdf * Programming Assignments are Mandatory. UNIT-IV	
Internet of Things- Agents for the Behaviour of Objects.* Applications: RFID Applications Video link / Additional online information (related to module if any): RFID Applications: <u>https://www.digiteum.com/rfid-technology-internet-of-things</u> https://www.uio.no/studier/emner/matnat/ifi/INF5910CPS/h10/undervisningsmateriale/RFID -IoT.pdf * Programming Assignments are Mandatory.	
Applications: RFID Applications Video link / Additional online information (related to module if any): RFID Applications: https://www.digiteum.com/rfid-technology-internet-of-things https://www.uio.no/studier/emner/matnat/ifi/INF5910CPS/h10/undervisningsmateriale/RFID -IoT.pdf * Programming Assignments are Mandatory.	
 Video link / Additional online information (related to module if any): RFID Applications: <u>https://www.digiteum.com/rfid-technology-internet-of-things</u> https://www.uio.no/studier/emner/matnat/ifi/INF5910CPS/h10/undervisningsmateriale/RFID -IoT.pdf * Programming Assignments are Mandatory. 	
 RFID Applications: <u>https://www.digiteum.com/rfid-technology-internet-of-things</u> https://www.uio.no/studier/emner/matnat/ifi/INF5910CPS/h10/undervisningsmateriale/RFID -IoT.pdf * Programming Assignments are Mandatory. 	
 <u>https://www.digiteum.com/rfid-technology-internet-of-things</u> https://www.uio.no/studier/emner/matnat/ifi/INF5910CPS/h10/undervisningsmateriale/RFID -IoT.pdf * Programming Assignments are Mandatory. UNIT-IV 	
 https://www.uio.no/studier/emner/matnat/ifi/INF5910CPS/h10/undervisningsmateriale/RFID -IoT.pdf * Programming Assignments are Mandatory. UNIT-IV 	
-IoT.pdf * Programming Assignments are Mandatory. UNIT-IV	
* Programming Assignments are Mandatory. UNIT-IV	
UNIT-IV	
Case Study and IoT Application Development: IoT applications in home- infrastructures security-	
	Hrs
Industries- IoT electronic equipment's. Use of Big Data and Visualization in IoT Industry 4.0)
concepts - Sensors and sensor Node -Interfacing using Raspberry Pi/Arduino- Web Enabled	
Constrained Devices.	
Laboratory Sessions/ Experimental learning: Interfacing using Raspberry Pi/Arduino	
Applications: Elements in group	
Video link / Additional online information (related to module if any):	
• https://www.simform.com/home-automation-using-internet-of-things/	
 https://iot5.net/iot-applications/smart-home-iot-applications/ 	
• https://maker.pro/raspberry-pi/tutorial/how-to-connect-and-interface-raspberry-pi-with-	
arduino#	
• https://create.arduino.cc/projecthub/ruchir1674/how-to-interface-arduino-with-raspberrypi-	
504b06	
* Programming Assignments are Mandatory.	
UNIT-V	

Web of Things: Web of Things versus Internet of Things-Architecture Standardization for WoT-	
Platform Middleware for WoT- WoT Portals and Business Intelligence-Cloud of Things: Grid/SOA	8
and Cloud Computing-Cloud Standards –Cloud of Things Architecture-Open Source e-Health sensor	
platform.	

Video link / Additional online information (related to module if any):

- https://www.water-io.com/iot-vs-wot
- https://www.talend.com/resources/iot-cloud-architecture/

* Programming Assignments are Mandatory.

	LABORATORY EXPERIMENTS	
SL. NO.	EXPERIMENT	HRS
1	Familiarization with Arduino/Raspberry Pi and perform necessary software installation.	3
2	To interface LED/Buzzer with Arduino/Raspberry Pi and write a program toturn ON LED for 1 sec after every 2 seconds.	3
3	To interface motor using relay with Arduino/Raspberry Pi and write a program to turn ON motor when push button is pressed.	3
4	To interface OLED with Arduino/Raspberry Pi and write a program to print temperature and humidity readings on it.	3
5	To interface Bluetooth with Arduino/Raspberry Pi and write a program tosend sensor data to smartphone using Bluetooth.	3
6	To interface Push button/Digital sensor (IR/LDR) with Arduino / Raspberry Pi and write a program to turn ON LED when push button is pressed or at sensor detection.	3
7	To interface DHT11 sensor with Arduino/Raspberry Pi and write a programto print temperature and humidity readings.	3
8	Write a program on Arduino/Raspberry Pi to publish temperature data to MQTT broker.	3
9	To interface Bluetooth with Arduino/Raspberry Pi and write a program to turn LED ON/OFF when '1'/'0' is received from smartphone using Bluetooth.	3

Course (Theory) Outcomes: After completing the course, the students will be able to

001								
CO1	Identify the components of IoT.							
CO2	Analyze various protocols of IoT.							
CO3	Design portable IoT using appropriate boards							
CO4	Develop schemes for the applications of IOT in real time scenarios.							
CO5	Design business Intelligence and Information Security for WoT							
Cours	se (Practice) Outcomes: After completing the course, the students will be able to							
CO1	To understand how sensors and embedded systems work							
CO2	Design and implement an accessory with BLE connectivity using standard mobile application development tools							
CO3	To understand how to communicate with other mobile devices using various communication platforms such as Bluetooth and Wi-Fi.							
CO4	Develop and demonstrate applications e.g. smartphone-based, sensor station							
CO5	To understand how to program on embedded and mobile platforms.							

Tex	t Books							
1	Honbo Zhou, "The Internet of Things in the Cloud: A Middleware Perspective" -CRC							
	Press-2012.							
2	Dieter Uckelmann, Mark Harrison, "Architecting the Internet of Thing							
2	Springer2011.							
Ref	Reference Books:							
1	Arshdeep Bahga, Vijay Madisetti, "Internet of Things (A Hands-On-Approach)",							
	VPT, 2014.							
2	Olivier Hersent, David Boswarthick, Omar Elloumi, "The Internet of Things - Key							
	applications and Protocols", Wiley, 2012.							
3	Luigi Atzori, Antonio Lera, Giacomo Morabito, "The Internet of Things: A Survey",							
	Journal on Networks, Elsevier Publications, October, 2010.							

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks

out of 100 and report CIE for 50 marks.

Laboratory- 50 Marks

The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The

students are encouraged to implement additional innovative experiments in the lab and are awarded 10 marks. Total marks for the laboratory is 50.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the entire syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

	CO-PO/PSO Mapping (Theory)													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	1	-	-	-	-	-	-	-	-	3	1	-
CO2	3	3	1	-	-	-	-	-	-	-	-	3	2	-
CO3	3	3	1	2	-	-	-	-	-	1	-	3	2	3
CO4	3	3	3	3	-	-	-	2	2	2	-	3	1	3
CO5	3	3	3	3	-	-	2	2	3	2	-	3	2	2

	CO-PO/PSO Mapping (Practice)													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	1	1	-	-	-	-	-	-	2	-	1	2	-
CO2	2	1	1	-	-	-	-	-	-	2	-	1	1	3
CO3	2	1	1	-	-	-	-	-	-	2	-	1	2	3
CO4	2	1	1	-	-	-	-	-	-	2	-	1	1	3
CO5	2	1	1	-	-	-	-	-	-	2	-	1	2	2

	Semes	ter: VII
	QUANTUM	COMPUTING
Course Coo	le: MVJ21CS721	CIE Marks:50
Credits:	3	SEE Marks: 50
Hours:		SEE Duration: 3 Hrs
Course Lea	rning Objectives: The students	will be able to
1		
2		
3		
4		
5		

UNIT-I	
	Hrs 8
UNIT-II	
	Hrs 8
UNIT-III	
	Hrs 8
UNIT-IV	
	Hrs 8
UNIT-V	
	Hrs 8

Cours	Course Outcomes: After completing the course, the students will be able to				
CO1					
CO2					
CO3					
CO4					
CO5					

Text Books			
1			
2			

Reference Books:			
1			

Continuous Internal Evaluation (CIE): Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

						CO-PC)/PSO	Mapp	ing					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1														
CO2														
CO3														
CO4														
CO5														

Semester: VII					
	GREEN COMPUTING				
Course Code:	MVJ21CS722	CIE Marks:50			
Credits:	3	SEE Marks: 50			
Hours:		SEE Duration: 3 Hrs			

Cou	rse Learning Objectives: The students will be able to
	Acquire knowledge to adopt green computing practices to minimize negative impacts
1	on the environment.
2	Skill in energy saving practices in their use of hardware.
3	Examine technology tools that can reduce paper waste and carbon footprint by user
5	and to understand how to minimize equipment disposal requirements

UNIT-I	
FUNDAMENTALS: Green IT Fundamentals: Business, IT, and the	Hrs 8
Environment – Green computing: carbon foot print, scoop on power – Green IT	
Strategies: Drivers, Dimensions, and Goals - Environmentally Responsible	
Business: Policies, Practices, and Metrics.	
Real Time Applications: how they keep data safe while in transit	
Video link / Additional online information:	
• https://nptel.ac.in/courses/106/104/106104182/	
• <u>https://www.youtube.com/watch?v=350Rb2sOc3U</u>	
UNIT-II	
GREEN ASSETS AND MODELING :Green Assets: Buildings, Data Centers,	Hrs 8
Networks, and Devices - Green Business Process Management: Modeling,	
Optimization, and Collaboration – Green Enterprise Architecture –	
Environmental Intelligence - Green Supply Chains - Green Information	
Systems: Design and Development Models.	
Real Time Applications: climate-smart agriculture, land restoration,	
groundwater management, ecosystem-based adaptation	
Video link / Additional online information:	
• <u>https://nptel.ac.in/courses/110/107/110107128/</u>	
• <u>https://nptel.ac.in/courses/110/107/110107093/</u>	
UNIT-III	
GRID FRAMEWORK : Virtualizing of IT systems – Role of electric utilities,	Hrs 8
Telecommuting, teleconferencing and teleporting – Materials recycling – Best	
ways for Green PC – Green Data center – Green Grid framework.	
Real Time Applications: ChessBrain	
Video link / Additional online information:	
• <u>https://nptel.ac.in/noc/courses/noc18/SEM2/noc18-ee42/</u>	

https://onlinecourses.nptel.ac.in/noc19_ee64/preview_	
UNIT-IV	
GREEN COMPLIANCE :Socio-cultural aspects of Green IT – Green	Hrs 8
Enterprise Transformation Roadmap – Green Compliance: Protocols, Standards,	
and Audits – Emergent Carbon Issues: Technologies and Future.	
Real Time Applications: Addressing Inconsistent Date Formats, Reducing	
False Positives in PEP Screening, Integrating Screening with Credit Card	
Approval Processes.	
Video link / Additional online information:	
 <u>https://onlinecourses.nptel.ac.in/noc19_ee64/preview</u> 	
UNIT-V	
CASE STUDIES :The Environmentally Responsible Business Strategies	Hrs 8
(ERBS) - Case Study Scenarios for Trial Runs - Case Studies Applying	
Green IT Strategies and Applications to a Home, Hospital, Packaging	
Industry and Telecom Sector.	
Real Time Applications: The energy consumption in Torrent systems with	
malicious content, The use of thin client instead of desktop PC	
Video link / Additional online information:	
- 1.44 m. //w. et al. a. in /a annual /10//105/10/105105/	
• <u>https://nptel.ac.in/courses/106/105/106105195/</u>	

Cours	Course Outcomes: After completing the course, the students will be able to					
CO1	Acquire knowledge to adopt green computing practices to minimize negative impacts on the environment.					
CO2	Enhance the skill in energy saving practices in their use of hardware.					
CO3	Evaluate technology tools that can reduce paper waste and carbon footprint by the stakeholders.					
CO4	Understand the ways to minimize equipment disposal requirements.					
CO5	Carry out multiple real time case studies.					

Tex	xt Books
1	Bhuvan Unhelkar, "Green IT Strategies and Applications-Using Environmental
	Intelligence", CRC Press, June 2011
2	Woody Leonhard, Katherrine Murray, "Green Home computing for dummies",
	August 2009.

Ref	erence Books
1	Bhuvan Unhelkar, Green IT Strategies and Applications-Using Environmental
1	Intelligence, CRC Press, June 2014.
2	Woody Leonhard, Katherine Murray, Green Home computing for dummies, August
	2012.
3	Alin Gales, Michael Schaefer, Mike Ebbers, "Green Data Center: steps for the Journey", Shoff/IBM rebook, 2011.
3	Journey", Shoff/IBM rebook, 2011.
4	Carl speshocky, "Empowering Green Initiatives with IT", John Wiley & Sons, 2010.
5	Wu Chun Feng (editor), "Green computing: Large Scale energy efficiency", CRC
	Press, 2012.

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

						CO-PO	D/PSO	Mapp	oing					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	-	-	-	1	-	-	-	-	-	-	2	1	-
CO2	3	3	3	-	-	-	-	-	1	-	1	2	2	-
CO3	2	2	2	1	3	-	-	-	-	-	1	3	2	3
CO4	3	2	3	-	-	-	-	-	-	2	3	2	2	-
CO5	3	2	3	-	-	-	-	-	-	2	3	2	1	2

	Semester: VII								
	ETHICAL HACKING								
Cou	rse Code:	MVJ21CS723	CIE Marks:50						
Cree	dits:	3	SEE Marks: 50						
Hou	irs:		SEE Duration: 3 Hrs						
Cou	rse Learning Objectives	: The students will be able to							
1	Understand numerous methods of real-world information intelligence								
2	Learn about vulnerability scanners								
3	Understand techniques used to sniff traffic across a network								
4	Familiarize with the me	thodologies that can be used to h	ack into a target.						
5	Appreciate the wide var	iety of attacks that can be perfor	med against a wireless network						

UNIT-I	
INTRODUCTION TO HACKING : Terminologies, Categories of Penetration	Hrs 8
Test, Writing Reports, Structure of a Penetration Testing Report, Vulnerability	
Assessment Summary, Risk Assessment, Methodology, Linux Basics: File	
Structure, Cron Job, Users, Common Applications , BackTrack, Services.	
Applications: Network packet analysis, Password guessing and cracking	
Video link / Additional online information (related to module if any):	
https://www.tutorialspoint.com/ethical_hacking/ethical_hacking_process	
.htm	
• https://www.tutorialspoint.com/ethical_hacking/ethical_hacking_hacker_	
types.htm	
UNIT-II	
INFORMATION GATHERING, TARGETENUMERATION AND PORT	Hrs 8
SCANNING TECHNIQUES	
Active, Passive and Sources of information gathering, Copying Websites Locally,	
NeoTrace, Cheops-ng, Intercepting a Response, WhatWeb, Netcraft, Basic	
Parameters, Xcode Exploit Scanner, Interacting with DNS Servers, Fierce, Zone	
Transfer with Host Command and Automation, DNS Cache Snooping- Attack	
Scenario, Automating Attacks, SNMP - Problem, Sniffing Passwords, Solar Winds	
Toolset, sweep, Brute Force and Dictionary- Tools , Attack, Enumeration,	

Intelligence Gathering Using Shodan, Target enumeration and Port Scanning	
Techniques.	
Applications: Session hijacking, Session spoofing	
Video link / Additional online information (related to module if any):	
•https://www.tutorialspoint.com/ethical_hacking/ethical_hacking_enumeration.htm	
•https://www.tutorialspoint.com/ethical_hacking/ethical_hacking_sniffing.htm	
VULNERABILITY ASSESSMENT & NETWORKSNIFFING : Introduction to	Hrs 8
Vulnerability Assessment - Pros and Cons, NMap, Updation of database, Testing	
SCADA Environments with Nmap, Nessus, Sniffing: Types, Hubs versus Switches,	
Modes, MITM Attacks, ARP Protocol Basics- working, Attacks, DoS Attacks,	
Dsniff tool, Using ARP Spoof to Perform MITM Attacks, Sniffing the Traffic with	
Dsniff, Sniffing Pictures with Drifnet, Urlsnarf and Webspy, Sniffing with	
Wireshark, Ettercap- ARP Poisoning, Hijacking Session with MITM Attack, ARP	
Poisoning with Cain and Abel, Sniffing Session Cookies with Wireshark, Hijacking	
the Session, SSL Strip: Stripping HTTPS Traffic, Requirements, Automating Man	
in the Middle Attacks, DNS Spoofing, DHCP Spoofing	
Applications: Network traffic sniffing, Denial of Service attacks	
Video link / Additional online information (related to module if any):	
•https://www.tutorialspoint.com/ethical_hacking/ethical_hacking_sniffing.htm	
•https://www.tutorialspoint.com/ethical_hacking/ethical_hacking_tcp_ip_hijacking. htm	
UNIT-IV	
Understanding Network Protocols: Attacking Network Remote Services,	Hrs 8
Common Target Protocols, tools for cracking network remote services, Attacking	
SMTP, Attacking SQL Servers, Client Side Exploitation Methods: E-Mails Leading	
to Malicious Attachments & Malicious Links, Compromising Client Side Update,	
Malware Loaded on USB Sticks	
Post exploitation: Acquiring Situation Awareness, Privilege Escalation,	
Maintaining Access, Data Mining, Identifying and Exploiting Further Targets,	
Windows Exploit Development Basics.	
Applications: Exploiting buffer overflow vulnerabilities	
Video link / Additional online information (related to module if any):	

https://www.tutorialspoint.com/ethical_hacking/ethical_hacking_sql_inje	
ction.htm	
 https://www.tutorialspoint.com/ethical_hacking/ethical_hacking_exploit 	
ation.htm	
UNIT-V	
WIRELESS & WEB-HACKING	Hrs 8
Wireless Hacking : Requirements , Aircracking , Hidden SSIDs , Monitor Mode ,	
Monitoring Tool- Beacon Frames on Wireshark ,Airodump-ng , Wireless Adapter in	
Monitor Mode , Determining the Target , Cracking a WPA/WPA2 Wireless	
Network Using Aircrack-ng, Capturing Packets and Four-Way Handshake.	
Web Hacking : Attacking the Authentication , Brute Force and Dictionary Attacks ,	
Types of Authentication, Crawling Restricted Links, Testing for the Vulnerability,	
Authentication Bypass with Insecure Cookie Handling , SQL injection, XSS – DOM	
based,BeEF,CSRF, Bypassing CSRF and BeEF with XSS, Vulnerability in	
FCKeditor, efront.	
Applications: Cross Site Scripting, Firewall	
Video link / Additional online information (related to module if any):	
• https://www.tutorialspoint.com/ethical_hacking/ethical_hacking_ddos_at	
tacks.htm	
• https://www.tutorialspoint.com/ethical_hacking/ethical_hacking_wireles	
s.htm	

Cours	Course Outcomes: After completing the course, the students will be able to									
CO1	Understand the core concepts related to malware, hardware and software									
COI	vulnerabilities and their causes									
CO2	Understand ethics behind hacking and vulnerability disclosure									
CO3	Appreciate the Cyber Laws and impact of hacking Exploit the vulnerabilities related									
COS	to computer system and networks using state of the art tools and technologies									
CO4	Learn & understand different network protocols and attack strategies									
CO5	Understanding the usefulness of wireless & web hacking									
005										

Tex	at Books
1	Rafay Baloch, —Ethical Hacking and Penetration Testing Guidel, CRC Press, 2015.
2	Patrick Engebretson, —The Basics of Hacking and Penetration Testing : Ethical Hacking and Penetration Testing Made Easyl, Syngress Media, Second Revised Edition, 2013.

Refer	rence Books:
1	Michael T. Simpson, Kent Backman, James E. Corley, —Hands On Ethical Hacking

Continuous Internal Evaluation (CIE): Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

						CO-PO	D/PSO	Марр	ing					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	1	-	-	-	-	1	-	-	-	3	2	-
CO2	3	3	1	-	-	-	-	2	-	1	-	3	2	-
CO3	3	3	1	2	-	-	-	-	-	1	-	3	-	2
CO4	3	3	3	3	-	3	2	2	2	2	-	3	2	-
CO5	3	3	3	3	-	3	2	2	3	2	-	3	2	-

Semester: VII									
	CYBER SECURITY								
Course Code:	MVJ21CS724	CIE Marks:50							
Credits:	3	SEE Marks: 50							
Hours:		SEE Duration: 3 Hrs							

Cou	rse Learning Objectives: The students will be able to
1	Understand Ethical Hacking.
2	Understand Preventing, monitoring, and responding to data breaches and cyber- attacks.
3	Learn the key components of cyber security network architecture.
4	Analyse cyber security architecture principles

UNIT-I

web security forensic lesson, web languages, introduction to different web Hr tacks, overview of n-tier web applications; Web servers: Apache, IIS, database ervers, introduction and overview of cybercrime, nature and scope of cybercrime, pes of cybercrime: social engineering, categories of cybercrime, property	's 8
ervers, introduction and overview of cybercrime, nature and scope of cybercrime,	
pes of cybercrime: social engineering, categories of cybercrime, property	
/bercrime.	
ideo link / Additional online information (related to module if any):	
• https://nptel.ac.in/courses/106/106/106106129/	
NIT-II	
ublic key cryptography, RSA, online shopping, payment gateways, unauthorized Hr	s 8
ccess to computers, computer intrusions, white collar crimes, viruses and malicious	
ode, internet hacking and cracking, virus attacks, pornography, software piracy,	
tellectual property, mail bombs, exploitation, stalking and obscenity in internet,	
gital laws and legislation, law enforcement roles and responses.	
ideo link / Additional online information (related to module if any):	
 https://www.youtube.com/watch?v=6qdmriq2tWA 	
NIT-III	
Veb hacking basics HTTP and HTTPS URL, web under the cover overview of java Hr	s 8
ecurity reading the HTML source, applet security, servlets security, symmetric and	
symmetric encryptions, network security basics, firewalls and IDS. Investigation:	
troduction to cybercrime investigation, investigation tools, e-discovery, digital	
vidence collection, evidence preservation, e-mail investigation, e-mail tracking, IP	
acking, e-mail recovery, hands on case studies; Encryption and Decryption	
ethods, search and seizure of computers, recovering deleted evidences, password	
racking	
ideo link / Additional online information (related to module if any):	
• https://nptel.ac.in/courses/106/105/106105217/	
NIT-IV	

Digital certificates, hashing, message digest, and digital signatures; Digital **Hrs 8** forensics: Introduction to digital forensics, forensic software and hardware, analysis and advanced tools, forensic technology and practices, forensic ballistics and photography, face, iris and fingerprint recognition, audio video analysis, windows system forensics, Linux system forensics, network forensics.

Video link / Additional online information (related to module if any):

• https://www.digimat.in/nptel/courses/video/106106178/L05.html

UNIT-V	
Basics, secure JDBC, securing large applications, cyber graffiti; Laws and acts:	Hrs 8
Laws and ethics, digital evidence controls, evidence handling procedures, basics of	
Indian Evidence Act IPC and CrPC, electronic communication privacy act, legal	
policies.	
Video link / Additional online information (related to module if any):	

• https://www.youtube.com/watch?v=F7mH5vz1qEI

Course Outcomes: After completing the course, the students will be able to								
Analyze and resolve security issues in networks and computer systems to secure an								
IT infrastructure.								
Design, develop, test and evaluate secure software.								
Develop policies and procedures to manage enterprise security risks.								
Evaluate and communicate the human role in security systems with an emphasis								
on ethics, social engineering vulnerabilities and training.								
Assess cyber-security risk management policies in order to adequately protect an								
organization								

Tex	at Books
1	Mc Clure, Stuart, Saumil Shah, Shreeraj Shah, —Web Hacking: Attacks and Defensel, AddisonWesley Professional, Illustrated Edition, 2003.
2	Garms, Jess, Daniel Somerfield, —Professional Java Security ^{II} , WroxPress, Illustrated Edition, 2001.

Refere	Reference Books:										
1	Nelson Phillips, EnfingerSteuart, -Computer Forensics and Investigations, Cengage										
	Learning, New Delhi,2009.										
2	Kevin Mandia, Chris Prosise, Matt Pepe, -Incident Response and Computer										
2	Forensics —, Tata McGraw Hill,2009										
2	Robert M Slade, -Software Forensics, Tata McGraw Hill, New Delhi, 1st										
3	Edition,2005.										

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO/PSO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	1	-	-	-	-	1	-	-	-	3	2	-
CO2	3	3	1	-	-	-	-	2	-	1	-	3	2	-
CO3	3	3	1	2	-	-	-	-	-	1	-	3	-	2
CO4	3	3	3	3	-	3	2	2	2	2	-	3	2	-
CO5	3	3	3	3	-	3	2	2	3	2	-	3	2	-

High-3, Medium-2, Low-1

Semester: VII

	DIGITAL IMAGE PROCESING										
Cou	Course Code: MVJ21CS725 CIE Marks:50										
Cree	dits:	3	SEE Marks: 50								
Hou	rs:		SEE Duration: 3 Hrs								
Cou	Course Learning Objectives: The students will be able to										
1	Focuses on development of algorithms and techniques to analyze and interpret the visible world around us.										
2	Understand the fundamental concepts related to multi-dimensional signal processing, feature extraction, pattern analysis visual geometric modeling, stochastic optimization etc.										
3	Explore the applications ranging from Biometrics, Medical diagnosis, document processing, mining of visual content, to surveillance, advanced rendering etc.										

UNIT-I	
DIGITAL IMAGE FORMATION AND LOW-LEVEL PROCESSING	Hrs 8
Overview and State-of-the-art, Fundamentals of Image Formation, Transformation:	
Orthogonal, Euclidean, Affine, Projective, etc; Fourier Transform, Convolution and	
Filtering, Image Enhancement, Restoration, Histogram Processing	
Video link / Additional online information:	
• https://www.youtube.com/watch?v=CVV0TvNK6pk	
UNIT-II	
DEPTH ESTIMATION AND MULTI-CAMERA VIEWS	Hrs 8
Perspective, Binocular Stereopsis: Camera and Epipolar Geometry; Homography,	
Rectification, DLT, RANSAC, 3-D reconstruction framework; Auto-calibration.	
Video link / Additional online information:	
 http://www.cse.iitm.ac.in/~vplab/computer_vision.html 	
UNIT-III	
FEATURE EXTRACTION	Hrs 8
Edges - Canny, LOG, DOG; Line detectors (Hough Transform), Corners - Harris	
and Hessian Affine, Orientation Histogram, SIFT, SURF, HOG, GLOH, Scale-	
Space Analysis- Image Pyramids and Gaussian derivative filters, Gabor Filters and	
DWT.	
Video link / Additional online information:	
• <u>https://nptel.ac.in/courses/106/106/106106046/</u>	
UNIT-IV	
IMAGE SEGMENTATION	Hrs 8

Region Growing, Edge Based approaches to segmentation, Graph-Cut, Mean-Shift,	
MRFs, Texture Segmentation; Object detection.	
Video link / Additional online information:	
• https://nptel.ac.in/courses/117/105/117105079/	
UNIT-V	
PATTERN ANALYSIS	Hrs 8
Clustering: K-Means, K-Medoids, Mixture of Gaussians, Classification:	
Discriminant Function, Supervised, Un-supervised, Semi-supervised; Classifiers:	
Bayes, KNN, ANN models; Dimensionality Reduction: PCA, LDA, ICA; Non-	
parametric methods.	
Video link / Additional online information:	
• https://www.youtube.com/watch?v=mfePdDh9t6Q	

Cours	Course Outcomes: After completing the course, the students will be able to									
CO1	Understand the concepts of Digital Image Processing.									
CO2	Analyse Homography and stereopsis.									
CO3	Analyse Edges and Hough Transforms.									
CO4	Demonstrate the ideas of image Segmentation.									
CO5	Implement the concepts of Pattern Analysis.									

Tex	at Books
1	Richard Szeliski, Computer Vision: Algorithms and Applications, Springer-Verlag London Limited 2011.
2	Computer Vision: A Modern Approach, D. A. Forsyth, J. Ponce, Pearson Education, 2003.

Refere	ence Books:									
1	Richard Hartley and Andrew Zisserman, Multiple View Geometry in Computer									
	Vision, Second Edition, Cambridge University Press, March 2004.									
2	K. Fukunaga; Introduction to Statistical Pattern Recognition, Second Edition,									
2	Academic Press, Morgan Kaufmann, 1990.									
3	R.C. Gonzalez and R.E. Woods, Digital Image Processing, Addison- Wesley, 1992.									
4	Christopher M. Bishop; Pattern Recognition and Machine Learning, Springer, 2006									

Continuous Internal Evaluation (CIE): Theory for 50 Marks CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO/PSO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	1	1	-	1	1	2	-	-	-	-	-	2	-
CO2	3	3	3	3	2	-	-	-	-	-	-	-	3	2
CO3	1	-	-	1	1	-	2	3	3	3	3	-	3	2
CO4	3	3	2	2	2	-	-	-	-	-	-	3	-	1
CO5	3	3	3	3	3	2	-	-	3	3	3	3	-	2

	Semester: VII						
	GAME DESIGN & DEVELOPMENT						
	(Theory)						
Cou	Course Code: MVJ21CS731 CIE Marks:50						
Credits:		3	SEE Marks: 50				
Hou	rs:		SEE Duration: 3 Hrs				
Cou	Course Learning Objectives: The students will be able to						
1	1 Understand the concepts of Game design and development.						
2	2 Learn the processes, mechanics and issues in Game Design.						

3	Be exposed to the Core architectures of Game Programming.		
4	Know about Game programming platforms, frame works and engines. Learn to develop		
4	games		

UNIT-I				
3D GRAPHICS FOR GAME PROGRAMMING				
3D Transformations, Quaternions, 3D Modeling and Rendering, Ray Tracing,	Hrs 8			
Shader Models, Lighting, Color, Texturing, Camera and Projections, Culling and				
Clipping, Character Animation, Physics-based Simulation, Scene Graphs.				
UNIT-II				
GAME ENGINE DESIGN				
Game engine architecture, Engine support systems, Resources and File systems,	Hrs 8			
Game loop and real-time simulation, Human Interface devices, Collision and rigid				
body dynamics, Game profiling.				
UNIT-III				
GAME PROGRAMMING				
Application layer, Game logic, Game views, managing memory, controlling the	Hrs 8			
main loop, loading and caching game data, User Interface management, Game				
event management				
UNIT-IV				
GAMING PLATFORMS AND FRAMEWORKS				
2D and 3D Game development using Flash, DirectX, Java, Python, Game engines	Hrs 8			
- Unity. DX Studio.				
UNIT-V				
GAME DEVELOPMENT				
Developing 2D and 3D interactive games using DirectX or Python – Isometric and	Hrs 8			
Tile Based Games, Puzzle games, Single Player games, Multi-Player games.				

Cours	Course Outcomes: After completing the course, the students will be able to					
CO1	Discuss the concepts of Game design and development.					
CO2	Design the processes, and use mechanics for game development.					
CO3	Explain the Core architectures of Game Programming.					
CO4	Use Game programming platforms, frame works and engines.					
CO5	Create interactive Games					

Text/ Reference Books

1 Mike Mc Shaffrfy and David Graham, "Game Coding Complete", Fourth Edition, Cengage Learning, PTR, 2012.

2	Jason Gregory, "Game Engine Architecture", CRC Press / A K Peters, 2009.				
3	David H. Eberly, "3D Game Engine Design, Second Edition: A Practical Approach to				
	Real-Time Computer Graphics" 2 nd Editions, Morgan Kaufmann, 2006.				
4	Ernest Adams and Andrew Rollings, "Fundamentals of Game Design", 2 nd Edition				
	Prentice Hall / New Riders, 2009.				
5	Eric Lengyel, "Mathematics for 3D Game Programming and Computer Graphics", 3 rd				
	Edition, Course Technology PTR, 2011.				
6	Jesse Schell, The Art of Game Design: A book of lenses, 1 st Edition, CRC Press, 2008.				

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO/PSO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	-	-	-	-	-	-	-	-	-	-	-
CO2	3	3	3	-	-	-	-	-	-	-	-	-	2	2
CO3	3	3	3	-	-	-	-	-	-	-	-	-	1	3
CO4	3	3	3	-	-	-	-	-	-	-	-	-	1	2
CO5	2	2	2	-	-	-	-	-	-	-	-	-	2	-

High-3, Medium-2, Low-1

Semester: VII

	CLOUD COMPUTING						
	(Theory)						
	rse Code:	MVJ21CS732	CIE Marks:50				
Cree		3	SEE Marks: 50				
Hou			SEE Duration: 3 Hrs				
Cou		: The students will be able to					
	Understand the fundar	nental ideas behind Cloud Co	mputing, the evolution of the				
1	paradigm, its applicability; benefits, as well as current and future challenges;						
	Introduce the basic ide	Introduce the basic ideas and principles in data center design; cloud management					
2	techniques and cloud so	ftware deployment consideration	nc.				
	techniques and cloud software deployment considerations;						
	Discuss the different (CPU, memory and I/O virtualiz	zation techniques that serve in				
3	offering software, computation and storage services on the cloud; Software Defined						
	Networks (SDN) and Software Defined Storage (SDS);						
	Introduce cloud storag	e technologies and relevant dis	stributed file systems, NoSQL				
4	databases and object storage;						
_	Discuss the variety of p	rogramming models and develop	p working experience in several				
5	of them.						

UNIT-I		
Introduction to Cloud Computing:Cloud Computing in a Nutshell, Roots of	Hrs 8	
Cloud Computing, Layers and Types of Clouds, Desired Features of a Cloud,		
Cloud Infrastructure Management, Infrastructure as a Service Providers, Platform		
as a Service Providers, Challenges and Risks, Broad Approaches to Migrating		
into the Cloud, The Seven-Step Model of Migration into a Cloud. Introduction to		
big data analytics, using MapReduce/Hadoop for analyzing unstructured data,		
Hadoop ecosystem of tools.		
Applications:		
Microsoft Azure, Amazon Web Services		
Video link / Additional online information :		
3. https://www.youtube.com/watch?v=PW-V-72MJNY		
UNIT-II		
'Integration as a Service' Paradigm for the Cloud Era: An Introduction, The	Hrs 8	
Onset of Knowledge Era, The Evolution of SaaS, The Challenges of SaaS		
Paradigm, Approaching the SaaS Integration Enigma, New Integration Scenarios,		

The Integration Methodologies, SaaS Integration Products and Platforms, SaaS		
Integration Services, Businesses-to-Business Integration (B2Bi) Services, A		
Framework of Sensor- Cloud Integration, SaaS Integration Appliances, Issues for		
Enterprise Applications on the Cloud, Transition Challenges, Enterprise Cloud		
Technology and Market Evolution, Business Drivers Toward a Marketplace for		
Enterprise Cloud Computing, The Cloud Supply Chain		
Laboratory Sessions/ Experimental learning:		
1. Installation and Configuration of Hadoop.		
Applications: PAAS(Facebook, Google App Engine)		
Video link / Additional online information :		
3. https://www.youtube.com/watch?v=ifZh5SJAujA		
UNIT-III		
Virtual Machines Provisioning and Migration Services: Introduction and Hrs	8	
Inspiration- Background and Related Work-Virtual Machines Provisioning and		
Manageability- Virtual Machine Migration Services- VM Provisioning and		
Migration in Action-Provisioning in the Cloud Context- The Anatomy of Cloud		
Infrastructures-Distributed Management of Virtual Infrastructures - Scheduling		
Techniques for Advance Reservation of Capacity- Capacity Management to meet		
SLA Commitments- RVWS Design and Cluster as a Service: The Logical Design		
Laboratory Sessions/ Experimental learning:		
Implementation of Para-Virtualization using VM Ware's Workstation/ Oracle's		
Virtual Box and Guest O.S		
Applications:		
Hardware Virtualization, Operating system Virtualization, Server Virtualization,		
Storage Virtualization		
Video link / Additional online information :		
• https://www.youtube.com/watch?v=7m3f-P-WWbg		
UNIT-IV		
Platform and Software as a Service: Technologies and Tools for Cloud Hrs	8	
Computing- Aneka Cloud Platform- Aneka Resource Provisioning Service-		
Hybrid Cloud Implementation - CometCloud Architecture- Autonomic Behavior		
of CometCloud- Overview of CometCloud-based Applications- Implementation		
and Evaluation- Workflow Management Systems and Clouds- Architecture of		
Workflow Management Systems - Utilizing Clouds for Workflow Execution-		

Case Study: Evolutionary Multi objective Optimizations- Visionary thoughts for					
Practitioners					
Laboratory Sessions/ Experimental learning:					
Create an application (Ex: Word Count) using Hadoop Map/Reduce.					
Applications: Schedule book					
Video link / Additional online information :					
• https://www.youtube.com/watch?v=3KJjKY8k9Lk					
UNIT-V					
MapReduce Programming Model and Implementations: MapReduce	Hrs 8				
Programming Model- Major MapReduce Implementations for the Cloud- The					
Basic Principles of Cloud Computing-A Model for Federated Cloud Computing-					
Traditional Approaches to SLO Management- Types of SLA- Life Cycle of SLA-					
SLA Management in Cloud- Automated Policy-based Management- The Current					
State of Data Security in the Cloud-Data Privacy and Security Issues-					
Producer_Consumer Relationship-Cloud Service Life Cycle					
Laboratory Sessions/ Experimental learning:					
Create your resume in a neat format using google and zoho cloud Programs on					
PaaS					

Applications: Network Storage, Google Apps and Microsoft office online

Video link / Additional online information :

3. <u>https://www.youtube.com/watch?v=uj2Sb7b_Do0</u>

Cours	Course Outcomes: After completing the course, the students will be able to						
CO1	Recall the recent history of cloud computing, illustrating its motivation and evolution.						
CO2	List some of the enabling technologies in cloud computing and discuss their significance						
CO3	Articulate the economic benefits as well as issues/risks of the cloud paradigm for businesses as well as cloud providers						
CO4	Define SLAs and SLOs and illustrate their importance in Cloud Computing.						
CO5	List some of the common cloud providers and their associated cloud stacks and recall popular cloud use case scenarios.						

Tex	Text Books					
1	Cloud Computing, Principles and Paradigms, Rajkumar Buyya, James Broberg,					
	Wiley Publication					

2	Dan C Marinescu: Clo	oud Computing Theory	and Practice. Elsevier(MK) 2013.

Reference Books:										
1.	Barrie Sosinsky, "Cloud Computing Bible", John Wiley & Sons, 2010.									
2	Tim Mather, Subra Kumaraswamy, and Shahed Latif, "Cloud Security and Privacy:									
2.	An Enterprise Perspective on Risks and Compliance", O'Reilly, 2009.									

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO/PSO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	1	1	-	1	1	2	-	-	-	-	-	1	-
CO2	3	3	3	3	2	-	-	-	-	-	-	-	-	-
CO3	1	-	-	1	1	-	2	3	3	3	3	-	2	-
CO4	3	3	2	2	2	-	-	-	-	-	-	3	-	-
CO5	3	3	3	3	3	2	-	-	3	3	3	3	2	1

Semester: VII	
BLOCKCHAIN TECHNOLOGY	

	(Theory)										
Cou	rse Code:	MVJ21C8733	CIE Marks:50								
Cree	dits:	3	SEE Marks: 50								
Hou	rs:		SEE Duration: 3 Hrs								
Cou	rse Learning Objectives	s: The students will be able to									
1	Familiarise the functional/operational aspects of cryptocurrency ecosystem.										
2	Understand emerging abstract models for Blockchain Technology.										
	Understand how blocke	Understand how blockchain systems (mainly Bitcoin and Ethereum) work and how to									
3	securely interact with them.										
	Identify major research challenges and technical gaps existing between theory and										
4	practice in cryptocurrency domain.										
5	Design, build, and deplo	by smart contracts and distribute	d applications.								

UNIT-I	
Basics: Distributed Database, Two General Problem, Byzantine General problem	Hrs 8
and Fault Tolerance, Hadoop Distributed File System, Distributed Hash Table,	
ASIC resistance, Turing Complete. Cryptography: Hash function, Digital Signature	
- ECDSA, Memory Hard Algorithm, Zero Knowledge Proof.	
Applications: Telecommunications, finance, universities	
Video link / Additional online information (related to module if any):	
• https://coincentral.com/byzantine-generals-problem/	
4. https://www.tutorialspoint.com/distributed_dbms/distributed_dbms_databases.ht	
m	
UNIT-II	
Blockchain: Introduction, Advantage over conventional distributed database,	Hrs 8
Blockchain Network, Mining Mechanism, Distributed Consensus, Merkle Patricia	
Tree, Gas Limit, Transactions and Fee, Anonymity, Reward, Chain Policy, Life of	
Blockchain application, Soft & Hard Fork, Private and Public blockchain.	
Applications: Government, healthcare	
Video link / Additional online information (related to module if any):	
4. https://blockonomi.com/merkle-tree/	
UNIT-III	
Distributed Consensus: Nakamoto consensus, Proof of Work, Proof of Stake,	Hrs 8
Proof of Burn, Difficulty Level, Sybil Attack, Energy utilization and alternate.	
Applications: Decentralized Applications, Encrypted messaging applications	
Video link / Additional online information (related to module if any):	

https://blockonomi.com/nakamoto-consensus/							
 https://cointelegraph.com/explained/proof-of-work-explained 							
UNIT-IV							
Cryptocurrency: History, Distributed Ledger, Bitcoin protocols - Mining strategy	Hrs 8						
and rewards, Ethereum - Construction, DAO, Smart Contract, GHOST,							
Vulnerability, Attacks, Sidechain, Namecoin.							
Applications: Peer - to - peer payment application.							
Video link / Additional online information (related to module if any):							
 https://blockgeeks.com/guides/smart-contracts/ 							
UNIT-V							
Cryptocurrency Regulation: Stakeholders, Roots of Bit coin, Legal Aspects-Crypto	Hrs 8						
currency Exchange, Black Market and Global Economy. Applications: Internet of							
Things, Medical Record Management System, Domain Name Service and future of							
Blockchain.							
Video link / Additional online information (related to module if any):							
• https://www.water-io.com/iot-vs-wot							
4. https://www.talend.com/resources/iot-cloud-architecture/							

Cours	Course Outcomes: After completing the course, the students will be able to										
CO1	Basic Cryptographic primitives used in Blockchain – Secure, Collison-resistant hash functions, digital signature, public key cryptosystems, zero-knowledge proof systems.										
CO2	Policies and applications of Blockchain in Distributed databases.										
CO3	Explain the Nakamoto consensus, List and describe differences between proof-of- work and proof-of-stake consensus.										
CO4	Design, build, and deploy smart contracts and distributed applications.										
CO5	Cryptocurrency governance, regulations and applications.										

Tex	at Books										
1	Arvind Narayanan, Joseph Bonneau, Edward Felten, Andrew Miller and Steven										
	Goldfeder, Bitcoin and Cryptocurrency Technologies: A Comprehensive Introduction,										
	Princeton University Press (July 19, 2016).										
2	Antonopoulos, Mastering Bitcoin: Unlocking Digital Cryptocurrencies.										

Reference Books:

1.	Satoshi Nakamoto, Bitcoin: A Peer-to-Peer Electronic Cash System.

2	DR.	Gavin	Wood,	"ETHERE	UM: A	Se	cure I	Decentralized	Transact	ion		
۷.	Ledge	er,"Yellov	w paper.20	14.								
2	Nicol	a Atzei,	Massimo	Bartoletti,	and Tiz	ziana	Cimoli,	A survey	of attacks	on		
3	Ethereum smart contracts											

Continuous Internal Evaluation (CIE): Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO/PSO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	1	-	-	-	-	-	-	-	-	3	1	-
CO2	3	3	1	-	-	-	-	-	-	-	-	3	1	-
CO3	3	3	1	2	-	-	-	-	-	1	-	3	2	-
CO4	3	3	3	3	-	-	-	2	2	2	-	3	2	3
CO5	3	3	3	3	-	-	2	2	3	2	-	3	1	-

Semester: VII				
BIG DATA ANALYTICS				
Course Code:	MVJ21CS734	CIE Marks:50		
Credits:	3	SEE Marks: 50		
Hours:		SEE Duration: 3 Hrs		

Cou	Course Learning Objectives: The students will be able to			
1	The scope and essentiality of Big Data and Business Analytics.			
2	The technologies used to store, manage, and analyze big data in a Hadoop ecosystem.			
3	The techniques and principles in big data analytics with scalability and streaming capability.			
4	The hypothesis on the optimized business decisions in solving complex real-world problems.			

UNIT-I		
INTRODUCTION TO BIG DATA: Characteristics of Data, Evolution of Big	Hrs 8	
Data, Definition of Big Data, Challenges with Big Data, Traditional Business		
Intelligence (BI) versus Big Data. Big data analytics: Classification of Analytics,		
Importance and challenges facing big data, Terminologies Used in Big Data		
Environments, The Big Data Technology Landscape.		
Video link : https://www.digimat.in/nptel/courses/video/106104189/L01.html		
UNIT-II		
INTRODUCTION TO HADOOP: Introducing Hadoop,RDBMS versus	Hrs 8	
Hadoop, Distributed Computing Challenges, History and overview of Hadoop, Use		
Case of Hadoop, Hadoop Distributors, Processing Data with Hadoop, Interacting with		
Hadoop Ecosystem		
Video link : https://www.digimat.in/nptel/courses/video/106104189/L04.html		
UNIT-III		
THE HADOOP DISTRIBUTED FILESYSTEM: Hadoop Distributed File	Hrs 8	
System(HDFS):The Design of HDFS, HDFS Concepts, Basic Filesystem		
Operations, Hadoop Filesystems. The Java Interface- Reading Data from a Hadoop		
URL, Reading Data Using the Filesystem API, Writing Data. Data Flow- Anatomy		
of a File Read, Anatomy of a File Write, Limitations.		
• Video link : https://www.digimat.in/nptel/courses/video/106104189/L04.html		
UNIT-IV		
UNDERSTANDING MAP REDUCE FUNDAMENTALS: Map Reduce	Hrs 8	
Framework: Exploring the features of Map Reduce, Working of Map Reduce,		
Exploring Map and Reduce Functions, Techniques to optimize Map Reduce jobs,		
Uses of Map Reduce. Controlling MapReduce Execution with InputFormat,		
Reading Data with custom RecordReader,-Reader, Writer, Combiner, Partitioners,		
Map Reduce Phases, Developing simple MapReduce Application.		

Video link : https://www.digimat.in/nptel/courses/video/106104189/L06.html	
UNIT-V	
INTRODUCTION TO PIG: Introducing Pig: Pig architecture, Benefits, Installing	Hrs 8
Pig, Properties of Pig, Running Pig, Getting started with Pig Latin, Working with	
operators in Pig, Working with functions in Pig.	
• Video link: https://www.youtube.com/watch?v=qr_awo5vz0g	

Cours	Course Outcomes: After completing the course, the students will be able to				
CO1	Explain the evolution of big data with its characteristics and challenges with				
	traditional business intelligence.				
CO2	Explain the big data technologies used to process and querying the bigdata in				
02	Hadoop, MapReduce and Pig.				
CO3	Make use of appropriate components for processing, scheduling and knowledge				
005	extraction from large volumes in distributed Hadoop Ecosystem				
CO4	Develop a Map Reduce application for optimizing the jobs.				
CO5	Develop applications for handling huge volume of data using Pig Latin				

Tex	Text Books						
	Seema Acharya, Subhashini Chellappan,-BigData and Analytics,Wiley						
1	Publications,2nd Edition, 2014 DT Editorial Services,—BigData, Dream Tech Press,2nd						
	Edition,2015.						
2	Tom White,—Hadoop:The Definitive Guide,O'Reilly,3 rd Edition,2012.						
3	Big Data Black Book, dream tech publications, 1st Edition, 2017.						

Refere	Reference Books:				
1	Michael Minelli, Michele Chambers, Ambiga Dhiraj, —Big Data, Big Analytics: Emerging Business Intelligence and Analytic Trends for Today's Business, Wiley CIO Series,				
	1stEdition,2013. Rajiv Sabherwal, Irma Becerra- Fernandez, —Business Intelligence –Practice,				
2	Technologies and Management, John Wiley, 1st Edition,2011				
3	Arvind Sathi, —Big Data Analytics: Disruptive Technologies for Changing the Game, IBM Corporation, 1st Edition,2012.				

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for

10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO/PSO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2		-	-	-	-	-	-	-	-	-	2	-
CO2	2	2		-	-	-	-	-	-	-	-	-	2	2
CO3	2	3	2	2	-	-	-	-	-	-	-	-	1	3
CO4	1	2	3	-	-	-	-	-	-	-	-	-	1	2
CO5	1	2	2	2	-	-	-	-	-	-	-	-	2	-

	Semester: VII					
	INTRODUCTION TO DATA SCIENCE					
Cou	Course Code: MVJ21CS741 CIE Marks:50					
Cree	SEE Marks: 50					
Hou	Hours: SEE Duration: 3 Hrs					
Cou	Course Learning Objectives: The students will be able to					
	To provide strong foundation for data science and application area related to					
1	1 information technology and understand the underlying core concepts and emerging					
	technologies in data science.					

UNIT-I	
Introduction: Big Data and Data Science hype and getting past the hype Datacation.	Hrs 8

Current landscape of perspectives. Skill sets needed.Statistical		
Inference.Populations and samples. Statistical modeling, probability distributions,		
Introduction to R programming.		
Video-Links		
https://www.youtube.com/watch?v=KMj49syT8JM&list=PLyqSpQzTE6M-		
sBjDcT21Gpnj8grR2fDgc		
UNIT-II		
Exploratory Data Analysis and the Data Science Process. Basic tools (plots, graphs	Hrs 8	
and summary statistics) of EDA. Philosophy of EDA. The Data Science Process.		
Case Study: Real Direct (online real estate) Three Basic Machine Learning		
Algorithms. Linear Regression, k-Nearest Neighbors (k-NN), k-means		
Video Links: https://nptel.ac.in/courses/106/101/106101163/		
UNIT-III		
Feature Generation and Feature Selection (Extracting Meaning From Data).	Hrs 8	
Motivating application: user (customer) retention. Feature Generation		
(brainstorming, role of domain expertise, and place for imagination). Feature		
Selection algorithms. Filters; Wrappers; Decision Trees; Random Forests.		
Video Links: https://nptel.ac.in/courses/106/101/106101163/		
UNIT-IV		
Recommendation Systems: Building a User-Facing Data Product. Algorithmic	Hrs 8	
ingredients of a Recommendation Engine. Dimensionality Reduction. Singular		
Value Decomposition Principal Component Analysis.		
Video Links: https://nptel.ac.in/courses/106/101/106101163/		
UNIT-V		
Data Visualization.Basic principles, ideas and tools for data visualization. Data		
Science and Ethical Issues. Discussions on privacy, security, ethics		
Video Links: https://nptel.ac.in/courses/106/101/106101163/		

Cours	Course Outcomes: After completing the course, the students will be able to				
CO1	Understand the statistical foundations of data science				
CO2	Learn techniques to pre-process raw data so as to enable further analysis.				
CO3	Conduct exploratory data analysis and create insightful visualizations to identify patterns				
CO4	Introduce machine learning algorithms for prediction/classification and to derive insights.				

COS	Analyze the degree of certainty of predictions using statistical test and models.	

Tex	t Books
1	Cathy O'Neil and Rachel Schutt. Doing Data Science, Straight Talk From The
	Frontline. O'Reilly. 2014.
	Foster Provost and Tom Fawcett. Data Science for Business: What You Need to
	Foster Provost and Tom Fawcett. Data Science for Business: What You Need to Know about Data Mining and Data-analytic Thinking. ISBN 1449361323. 2013.
3	Avrim Blum, John Hopcroft and Ravindran Kannan. Foundations of Data Science.

Refere	Reference Books:									
1	Data Science from Scratch: First Principles with Python, Joel Grus, O'Reilly, 1st									
1	edition, 2015									

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO/PSO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	3	1	2	-	-	-	-	-	-	-	2	1	-
CO2	3	3	2	3	1	-	-	-	-	-	-	2	2	2
CO3	3	3	2	3	1	-	-	-	-	-	-	2	3	-
CO4	3	3	2	3	2	-	-	-	-	-	-	2	3	-

CO5	3	3	2	3	2	-	-	-	-	-	-	2	3	1

High-3, Medium-2, Low-1

Semester: V									
INTERNET OF THINGS									
Cou	Course Code:MVJ21CS742CIE Marks:50								
Cree	Credits: 3 SEE Marks: 50								
Hou	Hours: SEE Duration: 3 Hrs								
Cou	rse Learning Objectives	s: The students will be able to							
1	1 Learn the basic issues, policy and challenges in the Internet.								
2	2 Get an idea of some of the application areas where Internet of Things can be applied.								
3 Understand the cloud and internet environment.									
4	Understand the various modes of communications with Internet.								

UNIT-I

Prerequisites : Basic Knowledge about C or C++	Hrs 8				
Introduction to IoT: Definition – Foundations – Challenges and Issues -					
Identification - Security. Components in internet of things: Control Units - Sensors					
- Communication modules - Power Sources - Communication Technologies - RFID					
- Bluetooth - Zigbee - Wifi - Rflinks - Mobile Internet - Wired Communication-					
IoT Platform Overview-Raspberry pi-Arduino boards.*					
Applications: Sensors in IoT.					
Video link / Additional online information (related to module if any):					
• http://www.theinternetofthings.eu/what-is-the-internet-of-things.					
• <u>https://www.engineersgarage.com/article_page/sensors-different-types-of-</u>					
sensors/					
• https://www.educba.com/applications-of-sensors/					
* Programming Assignments are Mandatory.					
UNIT-II					
IoT Protocols: Protocol Standardization for IoT-M2M and WSN Protocols-	Hrs 8				
SCADA and RFID Protocols-Issues with IoT Standardization-Protocols-IEEE					
802.15.4-BACNet Protocol-Zigbee Architecture - Network layer - APS Layer -					
Security.*					

Applications:

IoT Protocol Applications

Video link / Additional online information (related to module if any):

- https://inductiveautomation.com/resources/article/what-is-scada
- https://iotbytes.wordpress.com/application-protocols-for-iot/
- https://data-flair.training/blogs/iot-protocols/
- https://www.avsystem.com/blog/iot-protocols-and-standards/

* Programming Assignments are Mandatory.

UNIT-III Hrs 8 Resource Management in the Internet of Things: Clustering - Software Agents -Data Synchronization - Clustering Principles in an Internet of Things Architecture -The Role of Context - Design Guidelines -Software Agents for Object - Data Synchronization-Types of Network Architectures - Fundamental Concepts of Agility and Autonomy-Enabling Autonomy and Agility by the Internet of Things -The Evolution from the RFID-based EPC Network to an Agent based Internet of Things- Agents for the Behaviour of Objects.* **Applications:** RFID Applications Video link / Additional online information (related to module if any): **RFID** Applications: https://www.digiteum.com/rfid-technology-internet-of-things https://www.uio.no/studier/emner/matnat/ifi/INF5910CPS/h10/undervisning • smateriale/RFID-IoT.pdf * Programming Assignments are Mandatory. **UNIT-IV** Case Study and IoT Application Development: IoT applications in home-Hrs 8 infrastructures security-Industries- IoT electronic equipment's. Use of Big Data and Visualization in IoT Industry 4.0 concepts - Sensors and sensor Node -Interfacing using Raspberry Pi/Arduino- Web Enabled Constrained Devices.* Laboratory Sessions/ Experimental learning:Interfacing using Raspberry Pi/Arduino **Applications:** Elements in group

Video link / Additional online information (related to module if any):

• https://www.simform.com/home-automation-using-internet-of-things/

https://iot5.net/iot-applications/smart-home-iot-applications/									
• https://maker.pro/raspberry-pi/tutorial/how-to-connect-and-interface-									
raspberry-pi-with-arduino#									
• https://create.arduino.cc/projecthub/ruchir1674/how-to-interface-arduino-									
with-raspberrypi-504b06									
* Programming Assignments are Mandatory.									
UNIT-V									
Web of Things: Web of Things versus Internet of Things-Architecture	Hrs 8								
Standardization for WoT-Platform Middleware for WoT- WoT Portals and Business									
Intelligence-Cloud of Things: Grid/SOA and Cloud Computing-Cloud Standards –									
Cloud of Things Architecture-Open Source e-Health sensor platform.									
Video link / Additional online information (related to module if any):									
• https://www.water-io.com/iot-vs-wot									
 https://www.talend.com/resources/iot-cloud-architecture/ 									
* Programming Assignments are Mandatory.									

Cours	Course Outcomes: After completing the course, the students will be able to										
CO1	Identify the components of IoT.										
CO2	Analyze various protocols of IoT.										
CO3	Design portable IoT using appropriate boards										
CO4	Develop schemes for the applications of IOT in real time scenarios.										
CO5	Design business Intelligence and Information Security for WoT										

Tex	ext Books:													
1	Honbo	Zhou, "The In	ternet o	of Things in	the Cloud: A M	iddle	ware Persp	oecti	ve" -CRC					
	Press-2	012.												
	Dieter	Uckelmann,	Mark	Harrison,	"Architecting	the	Internet	of	Things",					
Z	Springe	er2011.												

Ref	ference Books:
1	Arshdeep Bahga, Vijay Madisetti, "Internet of Things (A Hands-On-Approach)",
1	VPT, 2014.
2	Olivier Hersent, David Boswarthick, Omar Elloumi, "The Internet of Things – Key applications and Protocols", Wiley, 2012.
	applications and Protocols", Wiley, 2012.
2	Luigi Atzori, Antonio Lera, Giacomo Morabito, "The Internet of Things: A Survey", Journal on Networks, Elsevier Publications, October, 2010.
3	Journal on Networks, Elsevier Publications, October, 2010.

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO/PSO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	1	-	-	-	-	-	-	-	-	3	1	-
CO2	3	3	1	-	-	-	-	-	-	-	-	3	2	-
CO3	3	3	1	2	-	-	-	-	-	1	-	3	2	3
CO4	3	3	3	3	-	-	-	2	2	2	-	3	1	3
CO5	3	3	3	3	-	-	2	2	3	2	-	3	2	2

High-3, Medium-2, Low-1

	Semester: V										
VISUALIZATION TECHNIQUES											
Course Code: MVJ21CS743 CIE Marks:50											
Credits:		3	SEE Marks: 50								
Hou	rs:		SEE Duration: 3 Hrs								
Cou	rse Learning Objective	s: The students will be able to									
	learn the value of visu	alization, specific techniques in	n information visualization and								
1	scientific visualization, and how understand how to best leverage visualization methods										

UNIT-I	
Introduction –Visualization Stages –Computational Support –Issues –Different	Hrs 8
Types of Tasks -Data representation -Limitation: Display Space, Rendering Time,	
Navigation Link.	
UNIT-II	
Human Factors –Foundation for a Science of Data Visualization –Environment-	Hrs 8
Optics - Optimal Display -Overview about Lightness, Brightness, Contrast,	
Constancy, Color -Visual Attention that Pops Out -Types of Data -Data	
Complexity -The Encoding of Values - Encoding of Relation -Relation and	
Connection –Alternative Canvass.	
UNIT-III	
Human Vision – Space Limitation – Time Limitations – Design – Exploration of	Hrs 8
Complex Information Space – Figure Caption in Visual Interface – Visual Objects	
and Data Objects - Space Perception and Data in Space -Images, Narrative and	
Gestures for Explanation	
UNIT-IV	
Norman's Action Cycle –Interacting with Visualization –Interaction for Information	Hrs 8
Visualization -Interaction for Navigation -Interaction with Models -Interacting	
with Visualization -Interactive 3D Illustrations with Images and Text -Personal	
View –Attitude – user perspective –Convergence –Sketching –Evaluation.	
UNIT-V	
Design –Virtual Reality: Interactive Medical Application –Tactile Maps for visually	Hrs 8
challenged People – Animation Design for Simulation – Integrating Spatial and	
Nonspatial Data –Innovating the Interaction –Small Interactive Calendars –	
Selecting One from Many- Web Browsing Through a Key Hole -Communication	
Analysis – Archival Galaxies	

Cours	Course Outcomes: After completing the course, the students will be able to										
CO1	Understand the fundamentals of data visualization										
CO2	Acquire knowledge about the issues in data representation										
CO3	Visualize the complex engineering design.										
CO4	Design real time interactive information visualization system										
CO5	Apply the visualization techniques in practical applications										

Text/Reference Books:

1	Robert Spence, "Information Visualization: An Introduction", Third Edition, Pearson
1	Education, 2014.
2	Colin Ware, "Information Visualization Perception for Design", ThirdEdition, Morgan
2	Kaufmann, 2012.
3	Robert Spence, "Information Visualization Design for Interaction", Second Edition,
3	Pearson Education, 2006
4	Benjamin B. Bederson, Ben shneiderman, "The Craft of Information Visualization",
4	Morgan Kaufmann, 2003.
5	Thomas Strothotte, "Computational Visualization: Graphics, Abstraction and
5	Interactivity", Springer, 1998.
	Matthew O.Ward, George Grinstein, Daniel Keim, "Interactive Data Visualization:
6	Foundation, Techniques and Applications", Second Edition, A.K.Peters/CRC
	Press,2015.
7	JoergOsarek, "Virtual Reality Analytics", Gordon"s Arcade, 2016.

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the entire syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO/PSO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	-	-	-	1	-	-	-	-	-	-	2	2	-
CO2	3	3	3	2	-	-	-	-	1	-	1	2	2	2
CO3	2	2	2	1	3	-	-	-	-	-	1	3	2	2
CO4	3	2	3	2	1	-	-	-	-	2	3	2	2	3

CO5	3	2	3	1	-	-	-	-	-	2	3	2	2	-

High-3, Medium-2, Low-1

Semester: VII								
	ETHICAL HACKING							
Cou	rse Code:	MVJ21CS744	CIE Marks:50					
Cre	dits:	3	SEE Marks: 50					
Hou	rs:		SEE Duration: 3 Hrs					
Cou	rse Learning Objective	s: The students will be a	ble to					
1	Understand numerous methods of real-world information intelligence							
2	Learn about vulnerability scanners							
3	3 Understand techniques used to sniff traffic across a network							
4	4 Familiarize with the methodologies that can be used to hack into a target.							
5	Appreciate the wide variety of attacks that can be performed against a wireless network							

UNIT-I

INTRODUCTION TO HACKING : Terminologies, Categories of Penetration	Hrs 8
Test, Writing Reports, Structure of a Penetration Testing Report, Vulnerability	
Assessment Summary, Risk Assessment, Methodology, Linux Basics: File	
Structure, Cron Job, Users, Common Applications , BackTrack, Services.	
Applications: Network packet analysis, Password guessing and cracking	
Video link / Additional online information (related to module if any):	
• https://www.tutorialspoint.com/ethical_hacking/ethical_hacking_process	
.htm	
• https://www.tutorialspoint.com/ethical_hacking/ethical_hacking_hacker_	
types.htm	
UNIT-II	
INFORMATION GATHERING, TARGETENUMERATION AND PORT	Hrs 8
SCANNING TECHNIQUES	
Active, Passive and Sources of information gathering, Copying Websites Locally,	
NeoTrace, Cheops-ng, Intercepting a Response, WhatWeb, Netcraft, Basic	
Parameters, Xcode Exploit Scanner, Interacting with DNS Servers, Fierce, Zone	
Transfer with Host Command and Automation, DNS Cache Snooping- Attack	

Scenario, Automating Attacks, SNMP - Problem, Sniffing Passwords, Solar Winds	
Toolset, sweep, Brute Force and Dictionary- Tools , Attack, Enumeration,	
Intelligence Gathering Using Shodan, Target enumeration and Port Scanning	
Techniques.	
Applications: Session hijacking, Session spoofing	
Video link / Additional online information (related to module if any):	
•https://www.tutorialspoint.com/ethical_hacking/ethical_hacking_enumeration.htm	
•https://www.tutorialspoint.com/ethical_hacking/ethical_hacking_sniffing.htm	
UNIT-III VIII NED A DII ITVI A SCESSMENTE & NETWODI/SNIFEING - Liter fortion to	
VULNERABILITY ASSESSMENT & NETWORKSNIFFING : Introduction to	Hrs 8
Vulnerability Assessment - Pros and Cons, NMap, Updation of database, Testing	
SCADA Environments with Nmap, Nessus, Sniffing: Types, Hubs versus Switches,	
Modes, MITM Attacks, ARP Protocol Basics- working, Attacks, DoS Attacks,	
Dsniff tool, Using ARP Spoof to Perform MITM Attacks, Sniffing the Traffic with	
Dsniff, Sniffing Pictures with Drifnet, Urlsnarf and Webspy, Sniffing with	
Wireshark, Ettercap- ARP Poisoning, Hijacking Session with MITM Attack, ARP	
Poisoning with Cain and Abel, Sniffing Session Cookies with Wireshark, Hijacking	
the Session, SSL Strip: Stripping HTTPS Traffic, Requirements, Automating Man	
in the Middle Attacks, DNS Spoofing, DHCP Spoofing	
Applications: Network traffic sniffing, Denial of Service attacks	
Video link / Additional online information (related to module if any):	
•https://www.tutorialspoint.com/ethical_hacking/ethical_hacking_sniffing.htm	
•https://www.tutorialspoint.com/ethical_hacking/ethical_hacking_tcp_ip_hijacking. htm	
Understanding Network Protocols: Attacking Network Remote Services,	Hrs 8
Common Target Protocols, tools for cracking network remote services, Attacking	
SMTP, Attacking SQL Servers, Client Side Exploitation Methods: E-Mails Leading	
to Malicious Attachments & Malicious Links, Compromising Client Side Update,	
Malware Loaded on USB Sticks	
Post exploitation: Acquiring Situation Awareness, Privilege Escalation,	
Maintaining Access, Data Mining, Identifying and Exploiting Further Targets,	
Windows Exploit Development Basics.	

Applications: Exploiting buffer overflow vulnerabilities					
Video link / Additional online information (related to module if any):					
 https://www.tutorialspoint.com/ethical_hacking/ethical_hacking_sql_inje ction.htm 					
• https://www.tutorialspoint.com/ethical_hacking/ethical_hacking_exploit ation.htm					
UNIT-V					
WIRELESS & WEB-HACKING	Hrs 8				
Wireless Hacking : Requirements , Aircracking , Hidden SSIDs , Monitor Mode ,					
Monitoring Tool- Beacon Frames on Wireshark ,Airodump-ng , Wireless Adapter in					
Monitor Mode , Determining the Target , Cracking a WPA/WPA2 Wireless					
Network Using Aircrack-ng, Capturing Packets and Four-Way Handshake.					
Web Hacking : Attacking the Authentication , Brute Force and Dictionary Attacks ,					
Types of Authentication, Crawling Restricted Links, Testing for the Vulnerability,					
Authentication Bypass with Insecure Cookie Handling , SQL injection, XSS – DOM					
based,BeEF,CSRF, Bypassing CSRF and BeEF with XSS, Vulnerability in					
FCKeditor, efront.					
Applications: Cross Site Scripting, Firewall					
Video link / Additional online information (related to module if any):					
• https://www.tutorialspoint.com/ethical_hacking/ethical_hacking_ddos_at					
tacks.htm					
• https://www.tutorialspoint.com/ethical_hacking/ethical_hacking_wireles					
s.htm					

Cours	Course Outcomes: After completing the course, the students will be able to							
CO1	Understand the core concepts related to malware, hardware and software							
	vulnerabilities and their causes							
CO2	Understand ethics behind hacking and vulnerability disclosure							
CO3	Appreciate the Cyber Laws and impact of hacking Exploit the vulnerabilities related							
	to computer system and networks using state of the art tools and technologies							
CO4	Learn & understand different network protocols and attack strategies							
CO5	Understanding the usefulness of wireless & web hacking							

Text Books

1	Rafay Baloch, —Ethical Hacking and Penetration Testing Guidel, CRC Press, 2015.
2	Patrick Engebretson, -The Basics of Hacking and Penetration Testing : Ethical

Hacking and Penetration Testing Made Easyl, Syngress Media, Second Revised Edition,	
2013.	

Reference Books:

1

Michael T. Simpson, Kent Backman, James E. Corley, -Hands On Ethical Hacking

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					(CO-PC)/PSO	Mapp	ing					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	1	-	-	-	-	1	-	-	-	3	2	-
CO2	3	3	1	-	-	-	-	2	-	1	-	3	2	-
CO3	3	3	1	2	-	-	-	-	-	1	-	3	-	2
CO4	3	3	3	3	-	3	2	2	2	2	-	3	2	-
CO5	3	3	3	3	-	3	2	2	3	2	-	3	2	-

High-3, Medium-2, Low-1

Semester: VII
BLOCKCHAIN TECHNOLOGY

Course Code:		MVJ21CS745	CIE Marks:50			
Credits:		3	SEE Marks: 50			
Hou	irs:		SEE Duration: 3 Hrs			
Cou	Course Learning Objectives: The students will be able to					
1	Familiarize the functional/operational aspects of cryptocurrency ecosystem.					
2	Understand emerging abstract models for Blockchain Technology.					
3	Understand how blockchain systems (mainly Bitcoin and Ethereum) work and how to securely interact with them.					
4	Identify major research challenges and technical gaps existing between theory and practice in cryptocurrency domain.					
5	Design, build, and deploy smart contracts and distributed applications.					

UNIT-I		
Basics: Distributed Database, Two General Problem, Byzantine General problem	Hrs 8	
and Fault Tolerance, Hadoop Distributed File System, Distributed Hash Table,		
ASIC resistance, Turing Complete. Cryptography: Hash function, Digital Signature		
- ECDSA, Memory Hard Algorithm, Zero Knowledge Proof.		
Applications: Telecommunications, finance, universities		
Video link / Additional online information (related to module if any):		
• https://coincentral.com/byzantine-generals-problem/		
• https://www.tutorialspoint.com/distributed_dbms/distributed_dbms_databas		
es.htm		
UNIT-II		
Blockchain: Introduction, Advantage over conventional distributed database,	Hrs 8	
Blockchain Network, Mining Mechanism, Distributed Consensus, Merkle Patricia		
Tree, Gas Limit, Transactions and Fee, Anonymity, Reward, Chain Policy, Life of		
Blockchain application, Soft & Hard Fork, Private and Public blockchain.		
Applications: Government, healthcare		
Video link / Additional online information (related to module if any):		
5. https://blockonomi.com/merkle-tree/		
UNIT-III		
Distributed Consensus: Nakamoto consensus, Proof of Work, Proof of Stake,		
Proof of Burn, Difficulty Level, Sybil Attack, Energy utilization and alternate.		
Applications: Decentralized Applications, Encrypted messaging applications		
Video link / Additional online information (related to module if any):		

https://blockonomi.com/nakamoto-consensus/				
• https://cointelegraph.com/explained/proof-of-work-explained				
UNIT-IV				
Cryptocurrency: History, Distributed Ledger, Bitcoin protocols - Mining strategy				
and rewards, Ethereum - Construction, DAO, Smart Contract, GHOST,				
Vulnerability, Attacks, Sidechain, Namecoin.				
Applications: Peer - to - peer payment application.				
Video link / Additional online information (related to module if any):				
6. https://blockgeeks.com/guides/smart-contracts/				
UNIT-V				
Cryptocurrency Regulation: Stakeholders, Roots of Bit coin, Legal Aspects-Crypto	Hrs 8			
currency Exchange, Black Market and Global Economy. Applications: Internet of				
Things, Medical Record Management System, Domain Name Service and future of				
Blockchain.				
Video link / Additional online information (related to module if any):				
• https://www.water-io.com/iot-vs-wot				
 https://www.talend.com/resources/iot-cloud-architecture/ 				

Cours	Course Outcomes: After completing the course, the students will be able to							
CO1	Basic Cryptographic primitives used in Blockchain – Secure, Collison-resistant hash functions, digital signature, public key cryptosystems, zero-knowledge proof systems.							
CO2	Policies and applications of Blockchain in Distributed databases.							
CO3	Explain the Nakamoto consensus, List and describe differences between proof-of-work and proof-of-stake consensus.							
CO4	Design, build, and deploy smart contracts and distributed applications.							
CO5	Cryptocurrency governance, regulations and applications.							

Tex	Text Books								
	Arvind Narayanan, Joseph Bonneau, Edward Felten, Andrew Miller and Steven								
1	Goldfeder, Bitcoin and Cryptocurrency Technologies: A Comprehensive Introduction,								
	Princeton University Press (July 19, 2016).								
2	Antonopoulos, Mastering Bitcoin: Unlocking Digital Cryptocurrencies.								

Re	Reference Books:										
1	[Satos	Satoshi Nakamoto, Bitcoin: A Peer-to-Peer Electronic Cash System.								
2	2	DR.	Gavin	Wood,	"ETHEREUM:	А	Secure	Decentralized	Transaction		

	Ledger,"Yellow paper.2014.									
2	Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli, A survey of attacks on									
3	Ethereum smart contracts									

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO/PSO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	1	-	-	-	-	-	-	-	-	3	1	-
CO2	3	3	1	-	-	-	-	-	-	-	-	3	1	-
CO3	3	3	1	2	-	-	-	-	-	1	-	3	2	-
CO4	3	3	3	3	-	-	-	2	2	2	-	3	2	3
CO5	3	3	3	3	-	-	2	2	3	2	-	3	1	-

High-3, Medium-2, Low-1

	Semester: VIII							
	PROJI	ECT PHASE – 2						
~	(Theory)							
	rse Code: MVJ21CSP81		CIE Marks:100					
	dits: L:T:P:S:3:0:0:0		SEE Marks: 100					
Hou	rs: 40L		SEE Duration: 3 Hrs					
Cou	rse Learning Objectives: The stude	nts will be able to						
1	To support independent learning							
2	To develop interactive, communication, organization, time management, and							
2	presentation skills							
3	To impart flexibility and adaptability.							
4	To inspire independent and team working.							
5	To expand intellectual capacity, credibility, judgment, intuition.							
6	To adhere to punctuality, setting and	l meeting deadlines.						
7	To instill responsibilities to oneself and others							
	To train students to present the topic of project work in a seminar without any fear, face							
8	audience confidently, enhance con	nmunication skill, i	nvolve in group discussion to					
	present and exchange ideas.							

Project Work Phase - II:

Each student of the project batch shall involve in carrying out the project work jointly in constant consultation with internal guide, co-guide, and external guide and prepare the project report as per the norms avoiding plagiarism.

Cours	Course Outcomes: After completing the course, the students will be able to						
CO1	Describe the project and be able to defend it.Develop critical thinking and problem solving skills						
CO2	Learn to use modern tools and techniques. Communicate effectively and to present ideas clearly and coherently both in written and oral forms.						
CO3	Develop skills to work in a team to achieve common goal. Develop skills of project management and finance.						
CO4	Develop skills of self-learning, evaluate their learning and take appropriate actions to improve it.						
CO5	Prepare them for life-long learning to face the challenges and support the technological changes to meet the societal needs.						

Scheme of Evaluation :

Internal Marks: The Internal marks (50 marks) evaluation shall be based on Phase wise completion of the project work, Project report, Presentation and Demonstration of the actual/model/prototype of the project.

Semester End Examination: SEE marks for the project (50 marks) shall be based on Project

report, Presentation and Demonstration of the actual/model/prototype of the project, as per the norms by the examiners appointed

CIE Marks Breakup for Major Project during VIII Semester :

Seminar on Project and Demonstration	20 Marks
Report	10 Marks
Evaluation by Guide	15 Marks
Co-curricular Activities	05 Marks
Total	50 Marks

Breakup for SEE Marks for Major Project

Project Report, Presentation, Demonstration	
and Quality of Work	30 Marks
Viva- Voce	25 Marks
Total	50 Marks

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	3	3	2	1	1	2	1	1	2
CO2	2	2	2	3	3	2	1	1	2	1	2	2
CO3	2	2	2	3	3	2	1	1	2	1	2	2
CO4	2	2	2	3	3	2	1	1	2	1	2	2
CO5	2	2	2	3	3	2	1	1	2	1	2	2

	Semester: VIII INTERNSHIP						
(Theory)							
Course Code: MVJ21INT82 CIE Marks:100							
Cree	Credits: L:T:P:S:3:0:0:0 SEE Marks: 100						
Hours: 40L SEE Duration: 3 Hrs							
Cou	rse Learning Objectives: The stude	nts will be able to					
1	To get the field exposure and experience						
2	To apply the theoretical concept in field application						
3	To prepare the comparison statement of difference activities						

Internship:

This shall be carried out by students in industry set-up related to the laboratories/research organizations/project management consulting firms/QS and QA organizations/ planning and design offices/Professional organizations and other avenues related to the computer science and engineering domain in consultation and approval of internship guide/HOD /internship committees of the institutions

Cour	Course Outcomes: After completing the course, the students will be able to							
CO1	Develop skills to work in a team to achieve common goal. Develop skills of project							
	management and finance.							
CO2	Develop skills of self-learning, evaluate their learning and take appropriate actions to							
	improve it.							
CO3	Prepare them for life-long learning to face the challenges and support the							
	technological changes to meet the societal needs.							

Scheme of Evaluation :

Marks: The marks (100 marks) evaluation shall be based on final presentation of the activities

undertaken during the internship, to a panel comprising internship guide, a senior faculty

from the department and head of the department. Each student should submit the internship

report at the end of semester with internship certificate.

Semester End Examination: Viva-Voce examination shall be conducted by a panel of examiners consisting of internship supervisor, a senior faculty from the department and head of the department.

Marks Breakup for Industry Training Evaluation:

Evaluation	25 Marks	
out		
Evaluation	n by	10 Marks
i)	Relevance of the Industrial Internship	
ii)	Report	25 Marks
iii)	Evaluation	40 Marks
	100 Marks	

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	3	3	2	1	1	2	1	1	2
CO2	2	2	2	3	3	2	1	1	2	1	2	2
CO3	2	2	2	3	3	2	1	1	2	1	2	2
CO4	2	2	2	3	3	2	1	1	2	1	2	2
CO5	2	2	2	3	3	2	1	1	2	1	2	2

Semester: VIII TECHNICAL SEMINAR									
(Theory)									
Course Code: MVJ21CSS83 CIE Marks:100									
Credits: L:T:P:S:3:0:0:0	SEE Marks: 100								
Hours: 40L	SEE Duration: 3 Hrs								
Course Learning Objectives: The students will be able to									
To inculcate self-learning, face audience confidently, enhance communication skill,									
	. 1 1 1								

involve in group discussion and present and exchange ideas.

Seminar:

Each student, under the guidance of a Faculty, is required to choose, preferably, a recent topic of his/her interest relevant to the course of specialization. Carryout literature survey; organize the Course topics in a systematic order.

- Conduct literature survey in the domain area to find appropriate topic.
- Prepare the synopsis report with own sentences in a standard format.
- Learn to use MS word, MS power point, MS equation and Drawing tools or any such facilities in the preparation of report and presentation.
- Present the seminar topic orally and/or through power point slides.
- Communicate effectively to answer the queries and involve in debate/discussion.

The participants shall take part in discussion to foster friendly and stimulating environment in which the students are motivated to reach high standards and become self-confident

Course Outcomes: After completing the course, the students will be able to								
CO1	Develop knowledge in the field of Computer Science and Engineering and other							
disciplines through independent learning and collaborative study.								

CO2	Identify and discuss the current, real-time issues and challenges in engineering &
	technology. Develop written and oral communication skills
CO3	Explore concepts in larger diverse social and academic contexts.
CO4	Apply principles of ethics and respect in interaction with others.
CO5	Develop the skills to enable life-long learning

Scheme of Evaluation :

Marks: The marks (100 marks) evaluation shall be based on final presentation, to a panel comprising seminar guide, a senior faculty from the department and head of the department. Each student should submit the Seminar report at the end of semester Semester End Examination: Viva-Voce examination shall be conducted by a panel of examiners consisting of seminar supervisor, a senior faculty from the department and head of the department.

Marks Breakup for Seminar:

Relevance of the Topic	10 Marks
Report	20 Marks
Presentation	50 Marks
Viva- Voce	20 Marks
Total	100 Marks

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	3	3	2	1	1	2	1	1	2
CO2	2	2	2	3	3	2	1	1	2	1	2	2
CO3	2	2	2	3	3	2	1	1	2	1	2	2
CO4	2	2	2	3	3	2	1	1	2	1	2	2
CO5	2	2	2	3	3	2	1	1	2	1	2	2