	Semester: III				
	Strength of Mat	erials			
	(Theory)				
Cour	rse Code: MVJ22CV31	CIE Marks: 50			
Cred	lits: L:T:P: 3:0:0	SEE Marks: 50			
Hour	rs: 40L	SEE Duration: 3 Hrs.			
Cour	se Learning Objectives: The students will be able to				
1	Understand the simple stresses, strains, and compound	stresses in various structural components.			
2	Understand the bending moments and shear forces in different types of beams under various loading conditions				
3	Know the bending stress, shear stress, and torsional sections	stress in beams and shafts with different cross			
4	Understand the deflection in beams and the stability of	columns under different loading conditions.			
5	5 Understand the behaviour and strength of structural elements subjected to compound stresses and stress in thin and thick cylinders.				

UNIT-I	L1,L2,L3
Simple Stresses and Strains: Introduction, Properties of Materials, Stress, Strain, Hooke's	8 Hrs
law, Poisson's Ratio, Stress – Strain Diagram for structural steel, Principles of	0 1113
superposition, Total elongation of tapering bars of circular and rectangular cross sections.	
Composite section, Volumetric strain, expression for volumetric strain, Elastic constants,	
relationship among elastic constants. Thermal stresses and strains, Compound bars	
subjected to thermal stresses, state of simple shear.	
Video link / Additional online information: (Self Learning)	
Masonry materials: https://nptel.ac.in/courses/105102088/	
UNIT-II	L1,L2,L3
Bending moment and shear force diagrams in beams: Introduction to types of beams,	8 Hrs
supports and loadings. Definition of shear force and bending moment, sign convention,	
Relationship between loading, shear force and bending moment, Shear force and bending	
moment equations, development of Shear Force Diagram(SFD) and Bending Moment	
Diagram (BMD) with salient values for cantilever, simply supported and overhanging	
beams for point loads, UDL (Uniformly Distributed Load), UVL (Uniformly Varying	
Load), Couple and their combinations	
Video link / Additional online information: (Self Learning) https://nptel.ac.in/courses/105102088/ UNIT-III	L1,L2,L3
Bending and Shear Stresses in Beams: Introduction, pure bending theory, Assumptions,	8 Hrs
derivation of bending equation, modulus of rupture, section modulus, flexural rigidity.	
Expression for transverse shear stress in beams, Bending and shear stress distribution	
diagrams for circular, rectangular, 'I', and 'T' sections.	
Torsion in Circular Shaft: Introduction, pure torsion, Assumptions, derivation of torsion	
equation for circular shafts, torsional rigidity and polar modulus Power transmitted by a shaft.	
Video link / Additional online information: (Self Learning)	
• https://nptel.ac.in/courses/105102088/	
UNIT-IV	L1,L2,L3,L4
Deflection of Beams: Definition of slope, Deflection and curvature, Sign conventions,	8 Hrs
Derivation of moment- curvature equation. Double integration method and Macaulay's	
method: Slope and deflection for standard loading cases and for determinate prismatic beams	
subjected to point loads, UDL, UVL and couple.	
Columns and Struts: Introduction, short and long columns. Euler's theory; Assumptions, Derivation for Euler's Buckling load for different end conditions, Limitations of Euler's	

theory. Rankine-Gordon's formula for columns	
 Video link / Additional online information: (Self Learning) <u>https://nptel.ac.in/courses/105102088/</u> 	
UNIT-V	L1,L2,L3,L4
Compound Stresses:	8 Hrs
Introduction, state of stress at a point, General two dimensional stress system, Principal stresses and principal planes. Mohr's circle of stresses	
Thin and Thick Cylinders: Introduction, Thin cylinders subjected to internal pressure; Hoop stresses, Longitudinal stress and change in volume. Thick cylinders subjected to both internal and external pressure; Lame's equation, radial and hoop stress distribution.	
Video link / Additional online information: (Self Learning)	

<u>https://nptel.ac.in/courses/105102088/</u>

Course (Dutcomes: After completing the course, the students will be able to
CO1	Evaluate the simple stresses, strains and compound stresses
CO2	Calculate the Bending moments, shear force and draw BMD, SFD for various types of beams and
	loadings
CO3	Analyse the bending stress, shear stress and torsional stress in beams and shafts with different cross
	sections
CO4	Evaluate the deflection in beams and determine the stability of the columns.
CO5	Evaluate the behaviour and strength of structural elements under the action of compound stresses and
	stresses in thin and thick cylinders.

Refer	rence Books
1.	B.C Punmia Ashok Jain, Arun Jain, "Strength of Materials", Laxmi - 2018-22 Publications, 10th Edition-
	2018
2.	R K Bansal, "A Textbook of Strength of Materials", 4th Edition, Laxmi Publications, 2010
3.	S.S. Rattan "Strength of Materials" McGraw Hill Education (India) Pvt. Ltd., 2nd Edition (Sixth reprint
	2013).
4.	Vazirani, V N, Ratwani M M. and S K Duggal "Analysis of Structures Vol. I", 17th Edition, Khanna
	Publishers, New Delhi.
5.	R.K. Rajput, "Strength of materials" S. Chand Publishing (6th Edition)
6.	S S Bhavikatti, "Strength of Materials" Vikas Publishing (5th Edition)
7.	B.S. Basavarajaiah, P. Mahadevappa "Strength of Materials" in SI Units, University Press
	(India) Pvt. Ltd., 3rd Edition,2010

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the entire syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks

adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					С	O-PO Map	ping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2												
CO3												
CO4												
CO5												

	Semester: III			
	Engineering Survey			
	(Theory and Practice)			
Cou	rse Code: MVJ22CV32	CIE Marks: 50		
Cree	lits: L:T:P: 3:0:2	SEE Marks: 50		
Hou	rs: 40L + 26P	SEE Duration: 3 Hrs.		
Cou	rse Learning Objectives: The students will be able to			
1	Ability to understand principles of both traditional and m	odern surveying applying		
1	knowledge of mathematics.			
2	Ability to handle surveying equipment's and software			
2	surveying, plot topographical Drawings and construction drawing			
3	Ability to use Total station for data capture, data storage, da	ata transfer.		
4	Ability to prepare construction drawing and setting out			

UNIT-I	L1,L2,L3
Engineering surveying – Definition & importance of surveying for Civil	8 Hrs
Engineers. Surveying types- Control survey, Topographical surveying,	
Construction Survey, Cadastral survey, Hydrographic survey and	
Underground Survey. Surveying through the ages- Chain surveying,	
Compass surveying and Plane Table Surveying (concepts and limitations	
only).	
Measurement of Distance- Various types of tapes, Laser distance meter,	
Distance measuring wheel, Electronic Distance measurement, GPS.	
Video link / Additional online information: (Self Learning)	
• Masonry materials: https://nptel.ac.in/courses/105102088/	
UNIT-II	L1,L2,L3
Vertical Control- Concepts of various types of Datum – Mean Sea level,	8 Hrs
Bench marks – Temporary and Permanent.	
Levelling- Terms used in levelling, Setting up of Dumpy level.	
Differential levelling by plane of collimation method using Dumpy level.	
Theodolite Surveying – Terms used in Theodolite surveying. Setting up a	
Theodolite. Measurement of horizontal and vertical angles with	
Theodolite.	
Total Station Surveying – Features, parts, accessories and advantages of	
Total Station. Surveying with total station – Measurement of Horizontal	
angle, vertical angle, distance, slope, vertical distance, multiple angles with	
Total station. Using Total station for Area measurement and Volume	
calculation	
Video link / Additional online information: (Self Learning)	
 https://nptel.ac.in/courses/105102088/ 	
UNIT-III	L1,L2,L3
Contours - Definition, terms used, characteristics of contours and	8 Hrs
applications of contours in civil engineering practice. Contouring using	
level, theodolite and total station. Plotting of contours in CAD.	
Longitudinal and cross sectioning – Definition, importance of L/S & C/S.	

L/S & C/S using level, theodolite and Total station. Plotting of L/S & C/S in CAD. CAD. Coordinate survey with Total station - Measurement of coordinates using total station. Creating Job files, importance of back sight data, coordinate data recording. Data transferring, data refinement and plotting in CAD. Video link / Additional online information: (Self Learning) • https://nptel.ac.in/courses/105102088/ UNT-IV L1,L2,L3,L4 Curves -Types of Curves- Application of curves in civil engineering. Setting out of Horizontal curve by Theodolite (Rankine's method) and using Total Station. Components of Compound, Reverse curve. Transition Curve and Combined curve. Various types of vertical curves and its applications. Areas and Volumes- Methods of determining areas by trapezoidal and Simpsons' rule. Measurement of volume by prismoidal and trapezoidal formula. Earthwork volume calculations from spot levels and from contour maps; Earthwork calculation in Embankments. Construction Surveying - Setting out works using Total Station, Setting out buildings by Centre line method Video link / Additional online information: (Self Learning) • https://nptel.ac.in/courses/105102088/ UNIT-V L1,L2,L3,L4 GPS Surveying - Introduction. Overview of GPS system- space, control and user segments. Reference co- ordinate systems. Absolute and Differential positioning with GPS. Gagan system in India. Types of GPS Receivers. Engineering survey using Differential GPS. Surveying with Dro	CAD. Coordinat using to coordinat	ate survey with Total station - Measurement of coordinates tal station. Creating Job files, importance of back sight data,	
Coordinate survey with Total station - Measurement of coordinates using total station. Creating Job files, importance of back sight data, coordinate data recording. Data transferring, data refinement and plotting in CAD. Video link / Additional online information: (Self Learning) • https://nptel.ac.in/courses/105102088/ UNIT-IV L1,L2,L3,L4 Curves - Types of Curves- Application of curves in civil engineering. 8 Hrs Setting out of Horizontal curve by Theodolite (Rankine's method) and using Total Station. Components of Compound, Reverse curve. 8 Hrs Transition Curve and Combined curve. Various types of vertical curves and its applications. 8 Hrs Areas and Volumes- Methods of determining areas by trapezoidal and Simpsons' rule. Measurement of volume by prismoidal and trapezoidal formula. Earthwork volume calculations from spot levels and from contour maps; Earthwork calculation in Embankments. Construction Surveying - Setting out works using Total Station, Setting out buildings by Centre line method Video link / Additional online information: (Self Learning) • https://nptel.ac.in/courses/105102088/ UNIT-V L1,L2,L3,L4 GPS Surveying - Introduction. Overview of GPS system- space, control and user segments. Reference co- ordinate systems. Absolute and Differential positioning with GPS. Gagan system in India. Types of GPS Receivers. Engineering survey using Differential GPS. 8 Hrs Surveying with Drone - Introduction, applications and advantages. Features of photogrammetric mapping method. Drone surveying requirements- Drone	Coordina using to coordinat	tal station. Creating Job files, importance of back sight data,	
using total station. Creating Job files, importance of back sight data, coordinate data recording. Data transferring, data refinement and plotting in CAD. Video link / Additional online information: (Self Learning) • https://nptel.ac.in/courses/105102088/ UNIT-IV L1,L2,L3,L4 Curves — Types of Curves- Application of curves in civil engineering. Setting out of Horizontal curve by Theodolite (Rankine's method) and using Total Station. Components of Compound, Reverse curve. Transition Curve and Combined curve. Various types of vertical curves and its applications. Areas and Volumes- Methods of determining areas by trapezoidal and Simpsons' rule. Measurement of volume by prismoidal and trapezoidal formula. Earthwork calculation in Embankments. Construction Surveying - Setting out works using Total Station, Setting out buildings by Centre line method Video link / Additional online information: (Self Learning) • https://nptel.ac.in/courses/105102088/ UNIT-V GPS Surveying — Introduction. Overview of GPS system- space, control and user segments. Reference co- ordinate systems. Absolute and Differential positioning with GPS. Gagan system in India. Types of GPS Receivers. Engineering survey using Differential GPS. Surveying with Drone — Introduction, applications and advantages. Features of photogrammetric mapping method. Drone surveying requirements- Drone platform, Flight planning, DGPS markers, capturing images, post processing of images using photogrammetry software and output maps. Application and uses of Remote sensing and GIS in engineering surveying. Video link / Additional online information: (Self Learning) • https://nptel.ac.in/courses/105102088/	using to coordinat	tal station. Creating Job files, importance of back sight data,	
coordinate data recording. Data transferring, data refinement and plotting in CAD. Video link / Additional online information: (Self Learning) • https://nptel.ac.in/courses/105102088/ UNIT-IV L1,L2,L3,L4 Curves -Types of Curves- Application of curves in civil engineering. Setting out of Horizontal curve by Theodolite (Rankine's method) and using Total Station. Components of Compound, Reverse curve. Transition Curve and Combined curve. Various types of vertical curves and its applications. 8 Hrs Areas and Volumes- Methods of determining areas by trapezoidal and Simpsons' rule. Measurement of volume by prismoidal and trapezoidal formula. Earthwork volume calculations from spot levels and from contour maps; Earthwork calculation in Embankments. Construction Surveying - Setting out works using Total Station, Setting out buildings by Centre line method Video link / Additional online information: (Self Learning) • https://nptel.ac.in/courses/105102088/ UNIT-V L1,L2,L3,L4 GPS Surveying - Introduction. Overview of GPS system- space, control and user segments. Reference co- ordinate systems. Absolute and Differential positioning with GPS. Gagan system in India. Types of GPS Receivers. Engineering survey using Differential GPS. 8 Hrs Surveying with Drone - Introduction, applications and advantages. Features of photogrammetric mapping method. Drone surveying requirements. Drone platform, Flight planning, DGPS markers, capturing images, post processing of images using photogrammetry software and output maps. Application and uses of Remote sensing and GIS in engineering surveying.	coordinat		
CAD. Video link / Additional online information: (Self Learning) ILIL2,L3,L4 Video link / Additional online information: (Self Learning) L1,L2,L3,L4 Curves - Types of Curves- Application of curves in civil engineering. Setting out of Horizontal curve by Theodolite (Rankine's method) and using Total Station. Components of Compound, Reverse curve: Transition Curve and Combined curve. Various types of vertical curves and its applications. 8 Hrs Areas and Volumes- Methods of determining areas by trapezoidal and Simpsons' rule. Measurement of volume by prismoidal and trapezoidal formula. Earthwork calculations from spot levels and from contour maps; Earthwork calculation in Embankments. Construction Surveying - Setting out works using Total Station, Setting out buildings by Centre line method Video link / Additional online information: (Self Learning) 11,12,L3,L4 BY Surveying - Introduction. Overview of GPS system- space, control and user segments. Reference co- ordinate systems. Absolute and Differential positioning with GPS. Gagan system in India. Types of GPS Receivers. Engineering survey using Differential GPS. 8 Hrs Surveying with Drone - Introduction, applications and advantages. Features of photogrammetric mapping method. Drone surveying requirements. Drone platform, Flight planning, OGPS markers, capturing images, post processing of images using photogrammetry software and output maps. Application and uses of Remote sensing and GIS in engineering surveying. Video link / Additional online information: (Self Learning) 1, https://nptel.ac.in/courses/105102088/			
Video link / Additional online information: (Self Learning) I.1,L2,L3,L4 UNT-IV L1,L2,L3,L4 Curves -Types of Curves- Application of curves in civil engineering. 8 Hrs Setting out of Horizontal curve by Theodolite (Rankine's method) and using Total Station. Components of Compound, Reverse curve. Transition Curve and Combined curve. Various types of vertical curves and its applications. 8 Hrs Areas and Volumes- Methods of determining areas by trapezoidal and Simpsons' rule. Measurement of volume by prismoidal and trapezoidal formula. Earthwork calculation in Embankments. Construction Surveying - Setting out works using Total Station, Setting out buildings by Centre line method Video link / Additional online information: (Self Learning) 1.1,L2,L3,L4 GPS Surveying – Introduction. Overview of GPS system- space, control and user segments. Reference co- ordinate systems. Absolute and Differential positioning with GPS. Gagan system in India. Types of GPS Receivers. Engineering survey using Differential GPS. 8 Hrs Surveying with Drone – Introduction, applications and advantages. Features of photogrammetric mapping method. Drone surveying requirements- Drone platform, Flight planning software, Sensor DGPS equipment and Image processing software. Types of drones and sensors. Process of drone surveying – flight planning, DGPS markers, capturing images, post processing of images using photogrammetry software and output maps. Application and uses of Remote sensing and GIS in engineering surveying. Video link / Additional online information: (Self Learning) https://nptel.ac.in/courses/105102088/	CAD.	te data recording. Data transferring, data refinement and plotting in	l
 https://nptel.ac.in/courses/105102088/ UNIT-IV L1,L2,L3,L4 Curves –Types of Curves- Application of curves in civil engineering. Setting out of Horizontal curve by Theodolite (Rankine's method) and using Total Station. Components of Compound, Reverse curve. Transition Curve and Combined curve. Various types of vertical curves and its applications. Areas and Volumes- Methods of determining areas by trapezoidal and Simpsons' rule. Measurement of volume by prismoidal and trapezoidal formula. Earthwork volume calculations from spot levels and from contour maps; Earthwork calculation in Embankments. Construction Surveying - Setting out works using Total Station, Setting out buildings by Centre line method Video link / Additional online information: (Self Learning) <u>https://nptel.ac.in/courses/105102088/</u> L1,L2,L3,L4 GPS Surveying – Introduction. Overview of GPS system- space, control and user segments. Reference co- ordinate systems in India. Types of GPS Receivers. Engineering survey using Differential GPS. Surveying with Drone – Introduction, applications and advantages. Features of photogrammetric mapping method. Drone surveying requirements- Drone platform, Flight planning software, Sensor DGPS equipment and Image processing software. Types of drones and sensors. Process of drone surveying – flight planning, DGPS markers, capturing images, post processing of images using photogrammetry software and output maps. Application and uses of Remote sensing and GIS in engineering surveying. Video link / Additional online information: (Self Learning) <u>https://nptel.ac.in/courses/105102088/</u> 			1
 https://nptel.ac.in/courses/105102088/ UNIT-IV L1,L2,L3,L4 Curves –Types of Curves- Application of curves in civil engineering. Setting out of Horizontal curve by Theodolite (Rankine's method) and using Total Station. Components of Compound, Reverse curve. Transition Curve and Combined curve. Various types of vertical curves and its applications. Areas and Volumes- Methods of determining areas by trapezoidal and Simpsons' rule. Measurement of volume by prismoidal and trapezoidal formula. Earthwork volume calculations from spot levels and from contour maps; Earthwork calculation in Embankments. Construction Surveying - Setting out works using Total Station, Setting out buildings by Centre line method Video link / Additional online information: (Self Learning) <u>https://nptel.ac.in/courses/105102088/</u> L1,L2,L3,L4 GPS Surveying – Introduction. Overview of GPS system- space, control and user segments. Reference co- ordinate systems in India. Types of GPS Receivers. Engineering survey using Differential GPS. Surveying with Drone – Introduction, applications and advantages. Features of photogrammetric mapping method. Drone surveying requirements- Drone platform, Flight planning software, Sensor DGPS equipment and Image processing software. Types of drones and sensors. Process of drone surveying – flight planning, DGPS markers, capturing images, post processing of images using photogrammetry software and output maps. Application and uses of Remote sensing and GIS in engineering surveying. Video link / Additional online information: (Self Learning) <u>https://nptel.ac.in/courses/105102088/</u> 			1
UNIT-IV L1,L2,L3,L4 Curves – Types of Curves- Application of curves in civil engineering. Setting out of Horizontal curve by Theodolite (Rankine's method) and using Total Station. Components of Compound, Reverse curve. Transition Curve and Combined curve. Various types of vertical curves and its applications. 8 Hrs Areas and Volumes- Methods of determining areas by trapezoidal formula. Earthwork volume calculations from spot levels and from contour maps; Earthwork calculation in Embankments. 6 Construction Surveying - Setting out works using Total Station, Setting out buildings by Centre line method 11,L2,L3,L4 Video link / Additional online information: (Self Learning) • https://nptel.ac.in/courses/105102088/ 11,L2,L3,L4 GPS Surveying – Introduction. Overview of GPS system- space, control and user segments. Reference co- ordinate systems. Absolute and Differential positioning with GPS. Gagan system in India. Types of GPS Receivers. Engineering survey using Differential GPS. 8 Hrs Surveying with Drone – Introduction, applications and advantages. Features of photogrammetric mapping method. Drone surveying requirements- Drone platform, Flight planning software, Sensor DGPS equipment and Image processing software. Types of drones and sensors. Process of drone surveying – flight planning, DGPS markers, capturing images, post processing of images using photogrammetry software and output maps. Application and uses of Remote sensing and GIS in engineering surveying. Video link / Additional online information: (Self Learning) • https://nptel.ac.in/courses/105102088/	Video li	nk / Additional online information: (Self Learning)	1
UNIT-IV L1,L2,L3,L4 Curves – Types of Curves- Application of curves in civil engineering. Setting out of Horizontal curve by Theodolite (Rankine's method) and using Total Station. Components of Compound, Reverse curve. Transition Curve and Combined curve. Various types of vertical curves and its applications. 8 Hrs Areas and Volumes- Methods of determining areas by trapezoidal formula. Earthwork volume calculations from spot levels and from contour maps; Earthwork calculation in Embankments. 6 Construction Surveying - Setting out works using Total Station, Setting out buildings by Centre line method 11,L2,L3,L4 Video link / Additional online information: (Self Learning) • https://nptel.ac.in/courses/105102088/ 11,L2,L3,L4 GPS Surveying – Introduction. Overview of GPS system- space, control and user segments. Reference co- ordinate systems. Absolute and Differential positioning with GPS. Gagan system in India. Types of GPS Receivers. Engineering survey using Differential GPS. 8 Hrs Surveying with Drone – Introduction, applications and advantages. Features of photogrammetric mapping method. Drone surveying requirements- Drone platform, Flight planning software, Sensor DGPS equipment and Image processing software. Types of drones and sensors. Process of drone surveying – flight planning, DGPS markers, capturing images, post processing of images using photogrammetry software and output maps. Application and uses of Remote sensing and GIS in engineering surveying. Video link / Additional online information: (Self Learning) • https://nptel.ac.in/courses/105102088/	• ht	ttps://nptel.ac.in/courses/105102088/	l
Setting out of Horizontal curve by Theodolite (Rankine's method) and using Total Station. Components of Compound, Reverse curve. Transition Curve and Combined curve. Various types of vertical curves and its applications. Areas and Volumes- Methods of determining areas by trapezoidal and Simpsons' rule. Measurement of volume by prismoidal and trapezoidal formula. Earthwork volume calculations from spot levels and from contour maps; Earthwork calculation in Embankments. Construction Surveying - Setting out works using Total Station, Setting out buildings by Centre line method Video link / Additional online information: (Self Learning) • https://nptel.ac.in/courses/105102088/ L11,L2,L3,L4 GPS Surveying – Introduction. Overview of GPS system- space, control and user segments. Reference co- ordinate systems. Absolute and Differential positioning with GPS. Gagan system in India. Types of GPS Receivers. Engineering survey using Differential GPS. Surveying with Drone – Introduction, applications and advantages. Features of photogrammetric mapping method. Drone surveying requirements- Drone platform, Flight planning, DGPS markers, capturing images, post processing of images using photogrammetry software and output maps. Application and uses of Remote sensing and GIS in engineering surveying. Video link / Additional online information: (Self Learning) • https://nptel.ac.in/courses/105102088/			L1,L2,L3,L4
Setting out of Horizontal curve by Theodolite (Rankine's method) and using Total Station. Components of Compound, Reverse curve. Transition Curve and Combined curve. Various types of vertical curves and its applications. Areas and Volumes- Methods of determining areas by trapezoidal and Simpsons' rule. Measurement of volume by prismoidal and trapezoidal formula. Earthwork volume calculations from spot levels and from contour maps; Earthwork calculation in Embankments. Construction Surveying - Setting out works using Total Station, Setting out buildings by Centre line method Video link / Additional online information: (Self Learning) • https://nptel.ac.in/courses/105102088/ L11,L2,L3,L4 GPS Surveying – Introduction. Overview of GPS system- space, control and user segments. Reference co- ordinate systems. Absolute and Differential positioning with GPS. Gagan system in India. Types of GPS Receivers. Engineering survey using Differential GPS. Surveying with Drone – Introduction, applications and advantages. Features of photogrammetric mapping method. Drone surveying requirements- Drone platform, Flight planning, DGPS markers, capturing images, post processing of images using photogrammetry software and output maps. Application and uses of Remote sensing and GIS in engineering surveying. Video link / Additional online information: (Self Learning) • https://nptel.ac.in/courses/105102088/	Curves	s – Types of Curves- Application of curves in civil engineering.	8 Hrs
using Total Station. Components of Compound, Reverse curve. Transition Curve and Combined curve. Various types of vertical curves and its applications. Areas and Volumes- Methods of determining areas by trapezoidal and Simpsons' rule. Measurement of volume by prismoidal and trapezoidal formula. Earthwork volume calculations from spot levels and from contour maps; Earthwork calculation in Embankments. Construction Surveying - Setting out works using Total Station, Setting out buildings by Centre line method Video link / Additional online information: (Self Learning) • https://nptel.ac.in/courses/105102088/ UNIT-V L1,L2,L3,L4 GPS Surveying – Introduction. Overview of GPS system- space, control and user segments. Reference co- ordinate systems. Absolute and Differential positioning with GPS. Gagan system in India. Types of GPS Receivers. Engineering survey using Differential GPS. Surveying with Drone – Introduction, applications and advantages. Features of photogrammetric mapping method. Drone surveying requirements- Drone platform, Flight planning software, Sensor DGPS equipment and Image processing software. Types of drones and sensors. Process of drone surveying – flight planning, DGPS markers, capturing images, post processing of images using photogrammetry software and output maps. Application and uses of Remote sensing and GIS in engineering surveying. Video link / Additional online information: (Self Learning) • https://nptel.ac.in/courses/105102088/			1
Transition Curve and Combined curve. Various types of vertical curves and its applications.Areas and Volumes-Methods of determining areas by trapezoidal and Simpsons' rule. Measurement of volume by prismoidal and trapezoidal formula. Earthwork volume calculations from spot levels and from contour maps; Earthwork calculation in Embankments.Construction Surveying - Setting out works using Total Station, Setting out buildings by Centre line methodL1,L2,L3,L4Video link / Additional online information: (Self Learning) • https://nptel.ac.in/courses/105102088/L1,L2,L3,L4GPS Surveying – Introduction. Overview of GPS system- space, control and user segments. Reference co- ordinate systems. Absolute and Differential positioning with GPS. Gagan system in India. Types of GPS Receivers. Engineering survey using Differential GPS.8 HrsSurveying with Drone – Introduction, applications and advantages. Features of photogrammetric mapping method. Drone surveying requirements- Drone platform, Flight planning, Software, Sensor DGPS equipment and Image processing software. Types of drones and sensors. Process of drone surveying – flight planning, DGPS markers, capturing images, post processing of images using photogrammetry software and output maps.Application and uses of Remote sensing and GIS in engineering surveying.Video link / Additional online information: (Self Learning) • https://nptel.ac.in/courses/105102088/Hearing)			1
and its applications.Areas and Volumes- Methods of determining areas by trapezoidal and Simpsons' rule. Measurement of volume by prismoidal and trapezoidal formula. Earthwork volume calculations from spot levels and from contour maps; Earthwork calculation in Embankments.Construction Surveying - Setting out works using Total Station, Setting out buildings by Centre line methodVideo link / Additional online information: (Self Learning) • https://nptel.ac.in/courses/105102088/UNIT-VL1,L2,L3,L4GPS Surveying - Introduction. Overview of GPS system- space, control and user segments. Reference co- ordinate systems. Absolute and Differential positioning with GPS. Gagan system in India. Types of GPS Receivers. Engineering survey using Differential GPS.Surveying with Drone - Introduction, applications and advantages. Features of photogrammetric mapping method. Drone surveying requirements- Drone platform, Flight planning software, Sensor DGPS equipment and Image processing software. Types of drones and sensors. Process of drone surveying - flight planning, DGPS markers, capturing images, post processing of images using photogrammetry software and output maps.Application and uses of Remote sensing and GIS in engineering surveying.Video link / Additional online information: (Self Learning) • https://nptel.ac.in/courses/105102088/	-		1
Areas and Volumes- Methods of determining areas by trapezoidal and Simpsons' rule. Measurement of volume by prismoidal and trapezoidal formula. Earthwork volume calculations from spot levels and from contour maps; Earthwork calculation in Embankments.Construction Surveying - Setting out works using Total Station, Setting out buildings by Centre line methodL1,L2,L3,L4Video link / Additional online information: (Self Learning) • https://nptel.ac.in/courses/105102088/ L1,L2,L3,L4GPS Surveying - Introduction. Overview of GPS system- space, control and user segments. Reference co- ordinate systems. Absolute and Differential positioning with GPS. Gagan system in India. Types of GPS Receivers. Engineering survey using Differential GPS.8 HrsSurveying with Drone - Introduction, applications and advantages. Features of photogrammetric mapping method. Drone surveying requirements- Drone platform, Flight planning, DGPS markers, capturing images, post processing of images using photogrammetry software and output maps.Application and uses of Remote sensing and GIS in engineering surveying.Video link / Additional online information: (Self Learning) • https://nptel.ac.in/courses/105102088/		••	1
Simpsons' rule. Measurement of volume by prismoidal and trapezoidal formula. Earthwork volume calculations from spot levels and from contour maps; Earthwork calculation in Embankments.Construction Surveying - Setting out works using Total Station, Setting out buildings by Centre line methodL1,L2,L3,L4Video link / Additional online information: (Self Learning) • https://nptel.ac.in/courses/105102088/L1,L2,L3,L4GPS Surveying - Introduction. Overview of GPS system- space, control and user segments. Reference co- ordinate systems. Absolute and Differential positioning with GPS. Gagan system in India. Types of GPS Receivers. Engineering survey using Differential GPS. Surveying with Drone - Introduction, applications and advantages. Features of photogrammetric mapping method. Drone surveying requirements- Drone platform, Flight planning, DGPS markers, capturing images, post processing of images using photogrammetry software and output maps. Application and uses of Remote sensing and GIS in engineering surveying.Video link / Additional online information: (Self Learning) • https://nptel.ac.in/courses/105102088/			
formula. Earthwork volume calculations from spot levels and from contour maps; Earthwork calculation in Embankments. Construction Surveying - Setting out works using Total Station, Setting out buildings by Centre line method Video link / Additional online information: (Self Learning) • https://nptel.ac.in/courses/105102088/ L1,L2,L3,L4 GPS Surveying – Introduction. Overview of GPS system- space, control and user segments. Reference co- ordinate systems. Absolute and Differential positioning with GPS. Gagan system in India. Types of GPS Receivers. Engineering survey using Differential GPS. Surveying with Drone – Introduction, applications and advantages. Features of photogrammetric mapping method. Drone surveying requirements- Drone platform, Flight planning, DGPS markers, capturing images, post processing of images using photogrammetry software and output maps. Application and uses of Remote sensing and GIS in engineering surveying. Video link / Additional online information: (Self Learning) • https://nptel.ac.in/courses/105102088/			
contour maps; Earthwork calculation in Embankments.Construction Surveying - Setting out works using Total Station, Setting out buildings by Centre line methodVideo link / Additional online information: (Self Learning) • https://nptel.ac.in/courses/105102088/ CONSTRUEL1,L2,L3,L4GPS Surveying - Introduction. Overview of GPS system- space, control and user segments. Reference co- ordinate systems. Absolute and Differential positioning with GPS. Gagan system in India. Types of GPS Receivers. Engineering survey using Differential GPS.8 HrsSurveying with Drone - Introduction, applications and advantages. Features of photogrammetric mapping method. Drone surveying requirements- Drone platform, Flight planning software, Sensor DGPS equipment and Image processing software. Types of drones and sensors. Process of drone surveying - flight planning, DGPS markers, capturing images, post processing of images using photogrammetry software and output maps. Application and uses of Remote sensing and GIS in engineering surveying.Video link / Additional online information: (Self Learning) • https://nptel.ac.in/courses/105102088/	Simpso	ons' rule. Measurement of volume by prismoidal and trapezoidal	
Construction Surveying - Setting out works using Total Station, Setting out buildings by Centre line methodVideo link / Additional online information: (Self Learning) • https://nptel.ac.in/courses/105102088/ UNIT-VL1,L2,L3,L4GPS Surveying – Introduction. Overview of GPS system- space, control and user segments. Reference co- ordinate systems. Absolute and Differential positioning with GPS. Gagan system in India. Types of GPS Receivers. Engineering survey using Differential GPS.8 HrsSurveying with Drone – Introduction, applications and advantages. Features of photogrammetric mapping method. Drone surveying requirements- Drone platform, Flight planning software, Sensor DGPS equipment and Image processing software. Types of drones and sensors. Process of drone surveying – flight planning, DGPS markers, capturing images, post processing of images using photogrammetry software and output maps. Application and uses of Remote sensing and GIS in engineering surveying.Video link / Additional online information: (Self Learning) • https://nptel.ac.in/courses/105102088/	formula	a. Earthwork volume calculations from spot levels and from	
Construction Surveying - Setting out works using Total Station, Setting out buildings by Centre line methodVideo link / Additional online information: (Self Learning) • https://nptel.ac.in/courses/105102088/ UNIT-VL1,L2,L3,L4GPS Surveying – Introduction. Overview of GPS system- space, control and user segments. Reference co- ordinate systems. Absolute and Differential positioning with GPS. Gagan system in India. Types of GPS Receivers. Engineering survey using Differential GPS.8 HrsSurveying with Drone – Introduction, applications and advantages. Features of photogrammetric mapping method. Drone surveying requirements- Drone platform, Flight planning software, Sensor DGPS equipment and Image processing software. Types of drones and sensors. Process of drone surveying – flight planning, DGPS markers, capturing images, post processing of images using photogrammetry software and output maps. Application and uses of Remote sensing and GIS in engineering surveying.Video link / Additional online information: (Self Learning) • https://nptel.ac.in/courses/105102088/	contour	r maps; Earthwork calculation in Embankments.	l
out buildings by Centre line methodImage: Control of the system of the system.Image: Control of the system of		-	1
Video link / Additional online information: (Self Learning)Ittps://nptel.ac.in/courses/105102088/UNIT-VL1,L2,L3,L4GPS Surveying – Introduction. Overview of GPS system- space, control and user segments. Reference co- ordinate systems. Absolute and Differential positioning with GPS. Gagan system in India. Types of GPS Receivers. Engineering survey using Differential GPS. Surveying with Drone – Introduction, applications and advantages. Features of photogrammetric mapping method. Drone surveying requirements- Drone platform, Flight planning software, Sensor DGPS equipment and Image processing software. Types of drones and sensors. Process of drone surveying – flight planning, DGPS markers, capturing images, post processing of images using photogrammetry software and output maps. Application and uses of Remote sensing and GIS in engineering surveying.Video link / Additional online information: (Self Learning) • https://nptel.ac.in/courses/105102088/			l l
GPS Surveying – Introduction. Overview of GPS system- space, control and user segments. Reference co- ordinate systems. Absolute and Differential positioning with GPS. Gagan system in India. Types of GPS Receivers. Engineering survey using Differential GPS. Surveying with Drone – Introduction, applications and advantages. Features of photogrammetric mapping method. Drone surveying requirements- Drone platform, Flight planning software, Sensor DGPS equipment and Image processing software. Types of drones and sensors. Process of drone surveying – flight planning, DGPS markers, capturing images, post processing of images using photogrammetry software and output maps. Application and uses of Remote sensing and GIS in engineering surveying.Video link / Additional online information: (Self Learning) • https://nptel.ac.in/courses/105102088/			
 and user segments. Reference co- ordinate systems. Absolute and Differential positioning with GPS. Gagan system in India. Types of GPS Receivers. Engineering survey using Differential GPS. Surveying with Drone – Introduction, applications and advantages. Features of photogrammetric mapping method. Drone surveying requirements- Drone platform, Flight planning software, Sensor DGPS equipment and Image processing software. Types of drones and sensors. Process of drone surveying – flight planning, DGPS markers, capturing images, post processing of images using photogrammetry software and output maps. Application and uses of Remote sensing and GIS in engineering surveying. Video link / Additional online information: (Self Learning) <u>https://nptel.ac.in/courses/105102088/</u> 		UNIT-V	L1,L2,L3,L4
 Differential positioning with GPS. Gagan system in India. Types of GPS Receivers. Engineering survey using Differential GPS. Surveying with Drone – Introduction, applications and advantages. Features of photogrammetric mapping method. Drone surveying requirements- Drone platform, Flight planning software, Sensor DGPS equipment and Image processing software. Types of drones and sensors. Process of drone surveying – flight planning, DGPS markers, capturing images, post processing of images using photogrammetry software and output maps. Application and uses of Remote sensing and GIS in engineering surveying. Video link / Additional online information: (Self Learning) • <u>https://nptel.ac.in/courses/105102088/</u> 	GPS St	urveying – Introduction. Overview of GPS system- space, control	8 Hrs
 Receivers. Engineering survey using Differential GPS. Surveying with Drone – Introduction, applications and advantages. Features of photogrammetric mapping method. Drone surveying requirements- Drone platform, Flight planning software, Sensor DGPS equipment and Image processing software. Types of drones and sensors. Process of drone surveying – flight planning, DGPS markers, capturing images, post processing of images using photogrammetry software and output maps. Application and uses of Remote sensing and GIS in engineering surveying. Video link / Additional online information: (Self Learning) <u>https://nptel.ac.in/courses/105102088/</u> 	and us	er segments. Reference co- ordinate systems. Absolute and	1
 Receivers. Engineering survey using Differential GPS. Surveying with Drone – Introduction, applications and advantages. Features of photogrammetric mapping method. Drone surveying requirements- Drone platform, Flight planning software, Sensor DGPS equipment and Image processing software. Types of drones and sensors. Process of drone surveying – flight planning, DGPS markers, capturing images, post processing of images using photogrammetry software and output maps. Application and uses of Remote sensing and GIS in engineering surveying. Video link / Additional online information: (Self Learning) <u>https://nptel.ac.in/courses/105102088/</u> 	Differe	ntial positioning with GPS. Gagan system in India. Types of GPS	l
 Surveying with Drone – Introduction, applications and advantages. Features of photogrammetric mapping method. Drone surveying requirements- Drone platform, Flight planning software, Sensor DGPS equipment and Image processing software. Types of drones and sensors. Process of drone surveying – flight planning, DGPS markers, capturing images, post processing of images using photogrammetry software and output maps. Application and uses of Remote sensing and GIS in engineering surveying. Video link / Additional online information: (Self Learning) <u>https://nptel.ac.in/courses/105102088/</u> 			
 Features of photogrammetric mapping method. Drone surveying requirements- Drone platform, Flight planning software, Sensor DGPS equipment and Image processing software. Types of drones and sensors. Process of drone surveying – flight planning, DGPS markers, capturing images, post processing of images using photogrammetry software and output maps. Application and uses of Remote sensing and GIS in engineering surveying. Video link / Additional online information: (Self Learning) <u>https://nptel.ac.in/courses/105102088/</u> 			
 requirements- Drone platform, Flight planning software, Sensor DGPS equipment and Image processing software. Types of drones and sensors. Process of drone surveying – flight planning, DGPS markers, capturing images, post processing of images using photogrammetry software and output maps. Application and uses of Remote sensing and GIS in engineering surveying. Video link / Additional online information: (Self Learning) <u>https://nptel.ac.in/courses/105102088/</u> 	•		l
 equipment and Image processing software. Types of drones and sensors. Process of drone surveying – flight planning, DGPS markers, capturing images, post processing of images using photogrammetry software and output maps. Application and uses of Remote sensing and GIS in engineering surveying. Video link / Additional online information: (Self Learning) <u>https://nptel.ac.in/courses/105102088/</u> 			l
 Process of drone surveying – flight planning, DGPS markers, capturing images, post processing of images using photogrammetry software and output maps. Application and uses of Remote sensing and GIS in engineering surveying. Video link / Additional online information: (Self Learning) <u>https://nptel.ac.in/courses/105102088/</u> 	_		l
 images, post processing of images using photogrammetry software and output maps. Application and uses of Remote sensing and GIS in engineering surveying. Video link / Additional online information: (Self Learning) <u>https://nptel.ac.in/courses/105102088/</u> 			l l
output maps. Application and uses of Remote sensing and GIS in engineering surveying. Video link / Additional online information: (Self Learning) • <u>https://nptel.ac.in/courses/105102088/</u>			l l
Application and uses of Remote sensing and GIS in engineering surveying. Video link / Additional online information: (Self Learning) • <u>https://nptel.ac.in/courses/105102088/</u>	images,	, post processing of images using photogrammetry software and	
surveying. Video link / Additional online information: (Self Learning) • <u>https://nptel.ac.in/courses/105102088/</u>	output	maps.	
Video link / Additional online information: (Self Learning) <u>https://nptel.ac.in/courses/105102088/</u> 	Applica	ation and uses of Remote sensing and GIS in engineering	
<u>https://nptel.ac.in/courses/105102088/</u>	surveyi	ng.	l
<u>https://nptel.ac.in/courses/105102088/</u>	-		
<u>https://nptel.ac.in/courses/105102088/</u>	Video li	nk / Additional online information: (Self Learning)	
		· · —	
SLIV Experiments			
1 Use of Various types of tapes, Laser distance meter, Distance measuring wheel.	Sl.NO	Experiments	
2 Differential levelling by Dumpy level by plane of collimation method		•	ing wheel.
3 Measurement of horizontal and vertical angles by Theodolite. Method of repetition	1	Use of Various types of tapes, Laser distance meter, Distance measur	0

4	Setting out simple curve using Rankine's method using Theodolite
5	Setting out central line of a small residential building.
6	Setting up of Total station. Features and components of Total station
7	Measurement of Distance, slope, vertical distance, horizontal and vertical angles
/	using Total station
8	Coordinate measurement with Total station
9	Longitudinal sectioning and cross sectioning using Total station
10	Contouring and plotting with Total station
11	Demonstration of Equipment's used for chain, compass and plane table surveying
12	Visit to railway station/ large construction site to understand the importance of
12	datum and benchmark.

Course	Course Outcomes: After completing the course, the students will be able to					
CO1	Summarize various types of surveying and carry out distance measurement using					
	various equipment's					
CO2	Illustrate the use and applications of levelling and theodolite					
CO3	Plot contours, longitudinal and cross sections for construction projects.					
CO4	Set curves for construction works and carry out estimation of areas and volumes.					
CO5	Demonstrate the necessary skills to carry out GPS and DRONE Surveying					

Reference Books

3.	Punmia BC, & Jain Ashok Kumar. (2016). Surveying (17th ed., Vol. 1). Laxmi Publications.
4.	Dr. K.R. Arora. (2019). Surveying (17th ed., Vol. 1). Standard Book House.
3.	Charles D. Ghilani. (2012) (13 th ed.). Prentice Hall

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Laboratory- 50 Marks

The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are awarded 10 marks. Total marks for the laboratory is 50.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the entire syllabus. Part - B Students have to answer

five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2												
CO3												
CO4												
CO5												

	Semester: III				
Fluid Mechanics and Hydraulics					
(Theory and Practice)					
Cou	rse Code: MVJ22CV33	CIE Marks: 50			
Cree	Credits: L:T:P: 3:0:2 SEE Marks: 50				
Hou	Hours: 40L + 26P SEE Duration: 3 Hrs.				
Cou	Course Learning Objectives: The students will be able to				
1	Understand the Fundamentals of properties of fluids, fluid	pressure measurement and			
¹ hydrostatic law					
2	2 Learn the Principles of kinematics, hydrodynamics and its applications				
3	3 Study the Flow measurements and design of pipes				
4	4 Understand the design of open channels and energy concepts				
5	Understand the Working principles of hydraulic turbines and pumps				

UNIT-I	L2,L3
Fluids and their properties – compressibility, surface tension, capillarity, Pascal's	8 Hrs
law, hydrostatic law, fluid pressure measurement using simple and differential	
manometers, Total pressure and center of pressure on vertical and inclined plane	
surfaces.	
Video link / Additional online information: (Self Learning)	
 Masonry materials: https://nptel.ac.in/courses/105102088/ 	
UNIT-II	L2,L4
Kinematics- Types of flow, continuity equation in Cartesian coordinates, velocity	8 Hrs
potential, stream function, flow nets, Dynamics-Euler's equation of motion,	
Bernoulli's equation, Application Venturimeter, Orifice meter, Pitot tube.	
Video link / Additional online information: (Self Learning)	
 https://nptel.ac.in/courses/105102088/ 	
UNIT-III	L2,L4
Classification of orifice and mouthpiece, hydraulic coefficients, discharge over	8 Hrs
rectangular, triangular and Cipoletti notch, Flow through pipes- major and minor	
losses, pipes in series and parallel, equivalent pipe, concept of water hammer and	
surge tanks.	
Video link / Additional online information: (Self Learning)	
 https://nptel.ac.in/courses/105102088/ 	
UNIT-IV	
UN11-1V	L2,L4
	L2,L4 8 Hrs
Open channel hydraulics- classification of flow, Most economical channel sections-	/
Open channel hydraulics- classification of flow, Most economical channel sections- rectangular, triangular, trapezoidal, circular, Uniform flow, specific energy-	/
Open channel hydraulics- classification of flow, Most economical channel sections-	,
Open channel hydraulics- classification of flow, Most economical channel sections- rectangular, triangular, trapezoidal, circular, Uniform flow, specific energy- rectangular channels, on-uniform flow, hydraulic jump-equation and applications, GVF equation-types.	/
Open channel hydraulics- classification of flow, Most economical channel sections- rectangular, triangular, trapezoidal, circular, Uniform flow, specific energy- rectangular channels, on-uniform flow, hydraulic jump-equation and applications, GVF equation-types. Video link / Additional online information: (Self Learning)	/
 Open channel hydraulics- classification of flow, Most economical channel sections- rectangular, triangular, trapezoidal, circular, Uniform flow, specific energy- rectangular channels, on-uniform flow, hydraulic jump-equation and applications, GVF equation-types. Video link / Additional online information: (Self Learning) https://nptel.ac.in/courses/105102088/ 	8 Hrs
Open channel hydraulics- classification of flow, Most economical channel sections- rectangular, triangular, trapezoidal, circular, Uniform flow, specific energy- rectangular channels, on-uniform flow, hydraulic jump-equation and applications, GVF equation-types. Video link / Additional online information: (Self Learning)	8 Hrs L2,L4
Open channel hydraulics- classification of flow, Most economical channel sections- rectangular, triangular, trapezoidal, circular, Uniform flow, specific energy- rectangular channels, on-uniform flow, hydraulic jump-equation and applications, GVF equation-types. Video link / Additional online information: (Self Learning) • https://nptel.ac.in/courses/105102088/ UNIT-V Momentum equation, impact of jet on stationary and moving curved vanes Turbines-	8 Hrs
Open channel hydraulics- classification of flow, Most economical channel sections- rectangular, triangular, trapezoidal, circular, Uniform flow, specific energy- rectangular channels, on-uniform flow, hydraulic jump-equation and applications, GVF equation-types. Video link / Additional online information: (Self Learning) • https://nptel.ac.in/courses/105102088/ UNIT-V Momentum equation, impact of jet on stationary and moving curved vanes Turbines- types, Pelton wheel-working proportions, velocity triangles Francis turbine- working	8 Hrs L2,L4
Open channel hydraulics- classification of flow, Most economical channel sections- rectangular, triangular, trapezoidal, circular, Uniform flow, specific energy- rectangular channels, on-uniform flow, hydraulic jump-equation and applications, GVF equation-types. Video link / Additional online information: (Self Learning) • https://nptel.ac.in/courses/105102088/ UNIT-V Momentum equation, impact of jet on stationary and moving curved vanes Turbines-	8 Hrs L2,L4

Video link / Additional online information: (Self Learning)

• https://nptel.ac.in/courses/105102088/

*			
Sl.NO	Sl.NO Experiments		
1	1 Verification of Bernoulli's equation		
2	2 Calibration of Venturimeter/Orifice meter		
3 Determination of hydraulic coefficients of small vertical orifice			
4 Calibration of triangular notch			
5	Determination of minor losses (Sudden Enlargement, Bends and Contraction		
5	Only) in pipes		
6	Determination of major losses in pipes		
7 Determination of Cd for ogee/broad crested weir			
8Determination of efficiency of jet on flat and curved vanes9Determination of Cd of Venturiflume10Demo of determination of efficiency of centrifugal pump			
		11	Demo of determination of efficiency of Francis/Kaplan turbine
		12	12 Demo of determination of efficiency of Pelton wheel

Course	Course Outcomes: After completing the course, the students will be able to				
CO1	Explain the fundamental properties of fluids and solve problems on fluid pressure and				
	hydrostatics.				
CO2	Apply the principles of kinematics and dynamics of fluid flow to solve problems on				
	velocity and pressure.				
CO3	Compute the discharge through pipes, notches and weirs.				
CO4	Design the turbines and open channels of different sections and to estimate the energy				
	loss in hydraulic jump.				
CO5	Able to interpret the experimental results of discharge, efficiency based on the test				
	conducted in the laboratory.				

Refe	erence Books
1.	P.N. Modi and S.M. Seth-Hydraulics and Fluid Mechanics, including Hydraulic
	machines, standard Book House, New Delhi
2.	K Subramanya- Fluid Mechanics and Hydraulic Machines, Tata McGraw-Hill, New
	Delhi
3.	R.K. Bansal- A text book of Fluid Mechanics and Hydraulic Machines- Laxmi
	Publications, New Delhi
4.	Victor L. Streeter, Benjamin Wyile E and Keith W. Bedford- Fluid Mechanics, Tata
	McGraw Hill publishing Co Ltd, New Delhi
5.	J.F. Douglas. M. Gastric, John Warfield, Lynne Jack – Fluid Mechanics, Pearson, Fifth
	edition.
6.	K. Subramanya- Fluid Mechanics and Hydraulic Machines, Problems and Solutions,
	Tata
	McGrawhill, New Delhi.
7.	S K SOM and G.Bis was – " introduction to Fluid Mechanics and Fluid Machines, Tata
	Mcg raw Hill, New Delhi.
Conti	nuous Internal Evaluation (CIE).

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Laboratory- 50 Marks

The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are awarded 10 marks. Total marks for the laboratory is 50.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the entire syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

	Semester: III					
	TRANSPORTATION ENGINEERING					
(Theory)						
Course Code: MVJ22CV34 CIE Marks: 50						
Credits: L:T:P: 3:0:0 SEE Marks: 50						
Hours: 40L SEE Duration: 3 E						
Cou	rse Learning Objectives: The students will be able to					
1	Gain knowledge of different modes of transportation s	systems and to learn the				
¹ introductory concepts on Highway Engineering.						
2	Get insight to different highway materials and pavement design elements of a highway					
2	network.					
3	Realize the significance of road safety by incorporating	g the concepts of Traffic				
5	⁵ Engineering.					
4	Understand to different aspects of geometric elements of ra	ilway system and evaluate				
4	the material quantity required for track laying					
5	Gain knowledge about various components of an Airport and its runway design.					

UNIT-I	L1,L2
TRANSPORTATION ENGINEERING: Introduction, Different Modes of	8 Hrs
Transportation, M R Jayakar Committee recommendations, Road	
Classifications and Road Patterns.	
Highway Alignment: Factors affecting highway alignment, Engineering	
surveys for alignment-conventional and modern methods.	
Highway Geometric Design: Factors affecting geometric design of roads,	
Cross Sectional Elements, Sight distances, Horizontal alignment- Transition	
curve, superelevation, Extra widening, Vertical alignment-gradients, summit	
and valley curves. (No derivations)	
Problems on Sight distance, Super elevation, extra widening of curves, Length	
of transition curve, Length of summit and valley curve.	
UNIT-II	L1,L2,L3
Highway Materials and Pavements: Desirable properties of aggregates, soil	8 Hrs
subgrade & Bitumen, Application of bituminous emulsion, Desirable	
properties of Bituminous Mixes	
Pavement Design: Factors Controlling design of highway pavements,	
Pavement types, component parts of pavements and their functions; types of	
joints used in rigid pavement. Critical stresses in flexible and rigid pavement.	
Highway Drainage: Significance and requirements, Surface drainage system	
and design-Examples, sub surface drainage system, Types of cross drainage	
structures their choice and location.	
Problems on design of Longitudinal drain.	
UNIT-III	L1,L2,L3
Traffic Engineering: Objectives and scope of Traffic Engineering. Traffic	8 Hrs
Characteristics: Road user characteristics, vehicular characteristics – static	
and dynamic characteristics, Reaction time of driver and PIEV theory, Types	
of traffic engineering studies-volume, spot speed, speed and delay, parking,	
accident, origin & destination, objectives of studies and data collection,	
method of study, analysis. PCU concept, factors affecting and PCU at	
different locations and applications. Traffic signs, Signal design by IRC	
method; Types of intersections.	

Problems on Spot speed studies, Speed and delay studies, accident	
studies, Signal design by IRC method.	
UNIT-IV	L1,L2
 Railway Engineering: Permanent way and its requirements, Gauges and types, Typical cross sections single and double-line BG track, Coning of wheels and tilting of rails, Rails-Functions-requirements, types and defects of rails. Sleepers and Ballast: Functions, requirements, Track fitting and fasteners, Calculation of quantity of materials required for laying a track, Points & crossings, Railway Station and Yards. Metro train & highspeed train-Design factors considered. Problem on Quantity calculation for laying railway track. Super-elevation 	8 Hrs
UNIT-V	L1,L2,L3
 Airport Engineering: Layout of an airport with component parts and functions, Site selection for airport, Aircraft characteristics affecting the design and planning of airport, Airport classification, Runway orientation using wind rose with examples. RUNWAY-Basic runway length-Corrections and examples, Runway geometrics, Taxiway-Factors affecting the layout - geometrics of taxiway-Comparison between Runway and Highway, Design of exit taxiway with examples. Problems on Runway orientation, Basic Runway length, Exit taxiway design. 	8 Hrs

Course	Course Outcomes: After completing the course, the students will be able to				
CO1	Explain the basic principles of geometric design in the context of transportation				
	engineering and planning.				
CO2	Select the appropriate pavement materials for construction and design the pavement				
	as per standard practices.				
CO3	Conduct traffic studies and analyse traffic data for practical applications.				
CO4	Identify the Components parts of Railway Track and design the suitable runway for				
	an Airport.				
CO5	Able to interpret the experimental results of highway materials based on laboratory				
	tests and design the pavement as per IRC guidelines.				

Refe	Reference Books				
5.	S K Khanna and C E G Justo, "Highway Engineering", Nem Chand Bros, Roorkee.				
6.	L R Kadiyali, "Highway Engineering", Khanna Publishers, New Delhi.				
3.	"A Text Book of Railway Engineering" by S C Saxena and S P Arora				
4.	"Airport Engineering" by S C Rangwala				
5.	"Airport Planning and Design" by Khanna Arora and Jain, Nem Chand Bros, Roorke.				
6.	"Roads, Railways, Bridges, Tunnels and Harbour Dock Engineering by B L Gupta, Amit				
	Gupta.				
7.	S K Khanna, C E G Justo and A Veeraragavan, "Highway Materials Testing Laboratory				
	Manual", Nem Chand Bros, Roorkee.				

Continuous Internal Evaluation (CIE): Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

Semester: III					
Computer Aided Building Planning And Drawing					
(Practice)					
Coι	urse Code: MVJ22CVL35	CIE Marks: 50			
Cre	Credits: L:T:P: 0:0:2 SEE Marks: 50				
Hou	Hours: 26P SEE Duration: 3 Hrs.				
Course Learning Objectives: The students will be able to					
1	Gain skill set to prepare Computer Aided Engineering Drawings using a software				
2	Understanding the details of construction of different building elements				
Visualize the completed form of the building and the intricacies of construction		the intricacies of construction based on the			
3	engineering drawings				
4	Get familiarization of practices used in Industry				

Sl.NO	Experiments L3,L4
1	Drawing Basics: Selection of scales for various drawings, thickness of lines, dimensioning, abbreviations and conventional representations as per IS:962.
2	Drawing Tools: Lines Circle, Arc, Poly line, Multiline, Polygon, Rectangle, Spline, Ellipse, Modify tools: Erase, Copy, Mirror, Offset, Array, Move, Rotate, Scale, Stretch, Lengthen, Trim, Extend, Break, Chamfer and Fillet,
3	Using Text: Single line text, Multiline text, Spelling, Edit text
4	Special Features: View tools, Layers concept, Dimension tools, Hatching, Customizing Toolbars, Working with multiple drawings.
	Drawings of Different Building Elements: Refer NBC before practice
	• Footing/ Foundation – Foundation dimension for Isolated, combined footing, Standard dimension and cross section of footing
5	• Size stone Masonry – Size of single and double bond stone, Sections at wall foundation
	• Brick Masonry – Size of standard Burnt Brick, Solid Cement Block, Hollow Cement block, Other bricks used in current practice
6	Principles of planning, Planning regulations and building bye-laws, factors affecting site selection, Functional planning of residential and public buildings, design aspects for different public buildings. Recommendations of NBC.
7	Draw a building plan for single and double bed room accommodation for a given site dimension. Students have to go through Building Bye Laws and regulations
8	Prepare the centre line drawing for marking the single and double bedroom house as in in exercise 6
9	Prepare a complete sanction plan for the exercise 6 as per the bye law. Also study the requirements to plan Residential Building, School building, Hospital Building, Offices
10	Drawing of plan with electrical, plumbing and sanitary services using CAD software
11	Drawing standard sections for Lintel and chajja, RCC Slabs, Columns and beams.
12	Drawing different types of staircases – Dog legged, Open well – plan and section

Course	Outcomes: After completing the course, the students will be able to
CO1	Prepare, read and interpret the drawings in a professional set up.
CO2	Know the procedures of submission of drawings and Develop working and submission
	drawings for building
CO3	Plan of residential or public building as per the given requirements

Refe	erence Books
1.	MG Shah, CM Kale, SY Patki, "Building drawing with an integrated approach to Built
	Environment Drawing", Tata McGraw Hill Publishing co. Ltd, New Delhi.
2.	Gurucharan Singh, "Building Construction", Standard Publishers, & distributors, New Delhi.
3.	Malik RS and a Meo GS, "Civil Engineering Drawing", Asian Publishers/Computech
	Publication Pvt Ltd

Laboratory- 50 Marks

The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are awarded 10 marks. Total marks for the laboratory is 50.

Semester End Examination (SEE):

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

	Semester	: III			
	Rural, Urban Planning				
	(Theor	y)			
Cou	rse Code: MVJ22CV361	CIE Marks: 50			
Cree	dits: L:T:P: 3:0:0	SEE Marks: 50			
Hou	rs: 40L	SEE Duration: 3 Hrs.			
Cou	rse Learning Objectives: The students will	be able to			
1	1 To make the student understand about the past and present architecture of different parts world				
1					
2	Rural and urban planning and growth and circulation of patterns and effect of increase in				
² urbanization					
The basic planning required for urban and rural centres with respect to physical and social					
3	aspects				
4	Student s to visit the different place of architectu	are monuments to understand the concept			
5	To understand different types of architecture and	1 planning			

UNIT-I	L1,L2,L3
Introduction: Aim and importance of Architecture, Architecture as a fine art. Role of an	
architect and an engineer.	
Essential principles and qualities of architecture with examples	
Factors of architecture: Mass, Form, Colour, Solids, and Voids, Uniformity, Balance and Symmetry, Painting with examples.	
Laboratory Sessions/ Experimental learning: (Self Learning)	10 Hrs
• Verification of dimensions of different types of brick	
• Determination of water absorption of brick	
Determination of efflorescence of brick	
• Find the soundness and hardness of brick	
Applications: (Self Learning)	
• Assess quality of bricks	
Video link / Additional online information: (Self Learning)	
Masonry materials: https://nptel.ac.in/courses/105102088/	
UNIT-II	L1,L2,L3
Architectural influence of the following: Association, Tradition, Climate, Materials,	10 Hrs
Topography, Religion social customs and aspiration of time.	
Architectural characteristics of the following architecture with examples. 1. Egyptian, 2. Greek, 3. Roman, 4. Buddhist, 5. Hindu, 6. Jain, 7. Chalukyan, 8. Modern architecture	
Factors that have influence present day Modern Architecture, Aesthetic difference between the past and present Architecture.	
 Laboratory Sessions/ Experimental learning: (Self Learning) Arrange bricks according to different bonds- Header, stretcher, English and Flemish. Identify various types of stone masonry in the campus. Applications: (Self Learning) 	
 Select suitable masonry for a structure. Video link / Additional online information: (Self Learning) https://nptel.ac.in/courses/105102088/ 	

UNIT-III	L1,L2
Human settlements, Rural and urban pattern of growth, Factors that promote growth	10 Hrs
and development of Rural and urban areas	
Ancient Town Planning in India: Principles of town planning and circulation pattern with	
Ancient Town Planning in India: Principles of town planning and circulation pattern with examples	
Laboratory Sessions/ Experimental learning: (Self Learning)	
• Identify the defects in plastering	
Applications: (Self Learning)	
Measure the condition of painting against water proofing	
Video link / Additional online information: (Self Learning)	
https://nptel.ac.in/courses/105102088/	
UNIT-IV	L1,L2,L3
Industrialisation: Impact on town planning, Urbanisation causes, its effect on town and cities,	10 Hrs
remedial measures both in urban and rural planning	
Circulation pattern in cities: Urban roads and streets, their fuctional classification, traffic survey	
data and its use in town planning	
Laborate and Considered (Encoder and all locations) (Colf Laborations)	
Laboratory Sessions/ Experimental learning: (Self Learning)	
Diagnose causes of dampness in a building	
Applications: (SelfLearning)	
• Take suitable measures to improve functional performance and durability of structure.	
Video link / Additional online information: (Self Learning)	
 https://nptel.ac.in/courses/105102088/ 	
UNIT-V	L1,L2,L3
Contemporary objectives and methods of planning of town: Development plans for cities,	10 Hrs
objectives and stages involved in their preparation and implementation, space standards for	10 1113
planning.	
Laboratory Sessions/ Experimental learning: (Self Learning)	
• Identify various materials used in the residential building and institutional	
building.	
Applications: (Self Learning)	
• Select sustainable and alternative materials according to the requirement.	
Video link / Additional online information: (Self Learning)	
https://nptel.ac.in/courses/105102088/	<u> </u>

Course	Outcomes: After completing the course, the students will be able to
CO1	Understand importance of architecture in rural and urban planning
CO2	Understand Influence of architecture
CO3	Design infrastructure for rural and urban region
CO4	Plan and design rural and urban roads
CO5	

Refe	erence Books
7.	History of Architecture – Fletcher
8.	Urban pattern – Galliaon

3.	Indian architecture – Vol. I & II – Perey Brown
4.	Principle of town and country planning – Lewis Keeble
5.	Urbanization and Urban Syatems in India, Ramachandran R, Oxford University Press, New Delhi.
6.	Town planning – Rangwala, Charothar Publication

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

					CO-I	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	-	-	1	-	-	-	-	1	-	1	1
CO2	3	-	-	1	-	-	-	-	1	-	1	1
CO3	3	2	-	1	-	-	-	-	1	-	1	1
CO4	3	2	2	1	-	-	-	-	1	-	1	1
CO5	3	-	-	1	-	-	1	1	1	-	1	1

Semester: III					
Geospatial Techniques in Practice					
		(Theory)			
Cou	rse Code: MVJ22CV362	CIE Marks: 50			
Credits: L:T:P: 3:0:0 SEE Marks: 50					
Hours: 40L SEE Duration: 3 Hrs.					
Course Learning Objectives: The students will be able to					
1	Introduce the concept of various geospa	atial technologies used in the industry			
Help to acquire basic idea about the processin		cessing and mapping with modern surveying			
equipment.					
3	3 Elaborate proven concepts, business practices and applications of geospatial technology.				
4	Explain learners understand how geospatial concepts are leveraged in handling real world				
4	business challenges of engineering and construction industry.				

UNIT-I	L1,L2,L3
Need of Geospatial technology in Industry: Geospatial in Day to Day Life, Spatial thinking, Evolution of location technology and importance of geography and maps. Need for spatial information, Terminologies, logic, language and formats of spatial technology. Location perspective of construction industry, Overview of Geospatial technology in tenders, Design and execution and Construction lifecycle management. Fundamentals and components of Geospatial Engineering, Surveying and Conventional survey equipment Vs Modern surveying equipment Components. Digital Land	
 Surveying Needs. Laboratory Sessions/ Experimental learning: (Self Learning) Verification of dimensions of different types of brick Determination of water absorption of brick Determination of efflorescence of brick Find the soundness and hardness of brick Applications: (Self Learning) Assess quality of bricks Video link / Additional online information: (Self Learning) Masonry materials: https://nptel.ac.in/courses/105102088/ 	8 Hrs
UNIT-II	L1,L2,L3
UNIT-II Total Station and Global Navigation Satellite System (GNSS): Basics of Surveying,	L1,L2,L3 8 Hrs
	<i>/ /</i>
Total Station and Global Navigation Satellite System (GNSS): Basics of Surveying,	/ /
Total Station and Global Navigation Satellite System (GNSS): Basics of Surveying, Introduction to Survey and Mapping, Geospatial Surveying Equipment, Demo of Total	/ /
Total Station and Global Navigation Satellite System (GNSS): Basics of Surveying, Introduction to Survey and Mapping, Geospatial Surveying Equipment, Demo of Total Station Equipment, Setting out and mapping, Advanced geospatial solutions, GNSS	/ /
 Total Station and Global Navigation Satellite System (GNSS): Basics of Surveying, Introduction to Survey and Mapping, Geospatial Surveying Equipment, Demo of Total Station Equipment, Setting out and mapping, Advanced geospatial solutions, GNSS Overview of components, working and signal structure of Global navigation System. Laboratory Sessions/ Experimental learning: (Self Learning) Arrange bricks according to different bonds- Header, stretcher, English and Flemish. Identify various types of stone masonry in the campus. Applications: (Self Learning) Select suitable masonry for a structure. Video link / Additional online information: (Self Learning) 	<i>/ /</i>

 remote sensing, Sensors and its types, Application of sensors & platforms, Image Acquisition, Applications of Remote Sensing. 3D scanning, Principles and the science behind photogrammetry, LiDAR, RADAR and SONAR. Introduction to Platforms and working. Laboratory Sessions/ Experimental learning: (Self Learning) Identify the defects in plastering 							
behind photogrammetry, LiDAR, RADAR and SONAR. Introduction to Platforms and working. Laboratory Sessions/ Experimental learning: (Self Learning)							
working. Laboratory Sessions/ Experimental learning: (Self Learning)							
Laboratory Sessions/ Experimental learning: (Self Learning)							
Laboratory Sessions/ Experimental learning: (Self Learning)							
Applications: (Self Learning)							
Measure the condition of painting against water proofing							
Video link / Additional online information: (Self Learning)							
https://nptel.ac.in/courses/105102088/							
	,L2,L3						
	8 Hrs						
Types and components of a Map. Hardware for GIS, DEM and TIN Data products,							
Attribute Data Types. Basic GIS data conversions, conversions from non-spatial formats							
to spatial formats. Demo of Conversion of Excel to GIS, Demo of Conversion of CAD							
TO GIS, Demo of Downloading and Geo-referencing Topo sheets and Raster files.							
Laboratory Sessions/ Experimental learning: (Self Learning)							
Diagnose causes of dampness in a building							
Applications:(SelfLearning)							
• Take suitable measures to improve functional performance and							
durability of structure.							
 Video link / Additional online information: (Self Learning) https://nptel.ac.in/courses/105102088/ 							
	,L2,L3						
	<u>,12,13</u> 8 Hrs						
Spatial Analysis, Catchment Area delineation, Overlay Analysis, Cluster Analysis,							
Hotspot Analysis and View shed Analysis. Future Trends of Geospatial Technologies.							
Case Study 1 -Benefit Realization - Case Study 2 Advancements in Modern Survey &							
Case Study 1 -Benefit Keanzation - Case Study 2 Advancements in Modern Survey &							
Mapping Technologies, Advancements in Spatial Analytics – Geo Intelligence, Future							
 Mapping Technologies, Advancements in Spatial Analytics – Geo Intelligence, Future Trends, Geospatial Technology - Way Forward. Laboratory Sessions/ Experimental learning: (Self Learning) 							
 Mapping Technologies, Advancements in Spatial Analytics – Geo Intelligence, Future Trends, Geospatial Technology - Way Forward. Laboratory Sessions/ Experimental learning: (Self Learning) Identify various materials used in the residential building and institutional 							
 Mapping Technologies, Advancements in Spatial Analytics – Geo Intelligence, Future Trends, Geospatial Technology - Way Forward. Laboratory Sessions/ Experimental learning: (Self Learning) Identify various materials used in the residential building and institutional building. 							
 Mapping Technologies, Advancements in Spatial Analytics – Geo Intelligence, Future Trends, Geospatial Technology - Way Forward. Laboratory Sessions/ Experimental learning: (Self Learning) Identify various materials used in the residential building and institutional building. Applications: (Self Learning) 							
 Mapping Technologies, Advancements in Spatial Analytics – Geo Intelligence, Future Trends, Geospatial Technology - Way Forward. Laboratory Sessions/ Experimental learning: (Self Learning) Identify various materials used in the residential building and institutional building. Applications: (Self Learning) Select sustainable and alternative materials according to the requirement. 							
 Mapping Technologies, Advancements in Spatial Analytics – Geo Intelligence, Future Trends, Geospatial Technology - Way Forward. Laboratory Sessions/ Experimental learning: (Self Learning) Identify various materials used in the residential building and institutional building. Applications: (Self Learning) 							

Course	Course Outcomes: After completing the course, the students will be able to							
CO1	Comprehend different geospatial techniques in the Construction Industry							
CO2	Understand the application of geospatial equipment like Total Station, GNSS, LIDAR, UAV							
	(Drones), etc.,							
CO3	Evaluate the various spatial analysis operations by using GIS Environment							

CO4	Create a map layout with all essential cartographic elements in GIS Environment.
CO5	Illustrate the various geospatial emerging trends of GIS in Industry.

Refe	rence Books
9.	T. P. Kanetkar and S. V. Kulkarni, Surveying and Levelling, Parts 1 & 2, Pune Vidyarthi Griha
	Prakashan, Pune, 2010, 24th edition.
10.	James M. Anderson and Edward M. Mikhail, Surveying, Theory and Practice, Seventh Edition,
	McGraw Hill 2001
3.	Satheesh Gopi, R. Sathikumar, N. Madhu, - Advanced Surveying, Total Station GPS and
	Remote Sensing — Pearson education, 2nd Edition, 2017.
4.	George Joseph and C. Jeganathan, Fundamentals of Remote Sensing, Third Edition Universities
	Press (India) Private limited, Hyderabad, 2018
5.	M. Anij Reddy. Textbook of Remote Sensing and Geographical Information systems. BS
	Publications, 2012.

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	-	-	1	-	-	-	-	1	-	1	1
CO2	3	-	-	1	-	-	-	-	1	-	1	1
CO3	3	2	-	1	-	-	-	-	1	-	1	1
CO4	3	2	2	1	-	-	-	-	1	-	1	1
CO5	3	-	-	1	-	-	1	1	1	-	1	1

	Semester: III						
Sustainable Design Concept for Building Services							
(Theory)							
Cou	Course Code: MVJ22CV363 CIE Marks: 50						
Cre	Credits: L:T:P: 3:0:0 SEE Marks: 50						
Hou	Hours: 40L SEE Duration: 3 Hrs.						
Cou	rse Learning Objectives: The students wi	ll be able to					
To facilitate learners to understand sustainable building designs and its parameters such							
1	energy and water efficiency, Comfort in buildi	ngs, and waste management.					
2	2 To expose the learners to shading systems, thermal and visual comfort						
2	To impart fundamental knowledge on Life cycle assessment and Green ratings and						
3	certifications.						

UNIT-I	L1,L2,L3
Introduction to Sustainability and Climatology: Overview of Sustainability	
- Global energy scenario, carbon footprint and climate action, Net zero in	
carbon offsetting, Water neutral, Sustainable construction and resource	
management. Green buildings - Selection of site – preservation and planning, Influence of climate on buildings, Basics of climatology, Earth – Sun	
relationship, Solar angles and sun path diagram, Design of shading systems.	
relationship, Solar angles and sun paur diagram, Design of shading systems.	
Laboratory Sessions/ Experimental learning: (Self Learning)	8 Hrs
• Verification of dimensions of different types of brick	8 Hrs
• Determination of water absorption of brick	
• Determination of efflorescence of brick	
• Find the soundness and hardness of brick	
Applications: (Self Learning)	
• Assess quality of bricks	
Video link / Additional online information: (Self Learning)	
• Masonry materials: <u>https://nptel.ac.in/courses/105102088/</u>	
UNIT-II	L1,L2,L3
Comfort in Buildings: Thermal comfort – Basics of Thermodynamics,	8 Hrs
Convection/radiation heat transfer, Heat gain through various elements of a	
building, Thermal comfort models and case studies Acoustics – Building acoustics, measures, defects and prevention of sound transmission Indoor Air	
Quality – Effects, design consideration and integrated approach for IAQ	
management Visual comfort – Enhancement strategies for Daylighting and	
Artificial lighting.	
Laboratory Sessions/ Experimental learning: (Self Learning)	
• Arrange bricks according to different bonds- Header, stretcher,	
English and Flemish. Identify various types of stone masonry in	
the campus.	
Applications: (Self Learning)	
• Select suitable masonry for a structure.	
Video link / Additional online information: (Self Learning)	
 <u>https://nptel.ac.in/courses/105102088/</u> 	
UNIT-III	III)
Energy, water efficiency and waste management in buildings: Energy	L1,L2 8 Hrs
Energy, water enterency and waste management in bunungs. Energy	0 1115

efficiency – Energy efficiency in building envelope and energy efficient HVAC and Lighting as per Energy conservation building code (ECBC) 2017, Energy simulation, Energy management system – Renewable energy and Energy Audit. Water Efficiency – Planning and design of water management system, Rain water harvesting, Water efficient design and fixtures, Treatment and reuse and Water efficient landscape system.	
Laboratory Sessions/ Experimental learning: (Self Learning)	
• Identify the defects in plastering	
Applications: (Self Learning)	
• Measure the condition of painting against water proofing Video link / Additional online information: (Self Learning)	
 https://nptel.ac.in/courses/105102088/ 	
UNIT-IV	L1,L2,L3
Life Cycle Assessment of Buildings and Green project management:	8 Hrs
Materials – Green product certifications, features of sustainable building	
materials and sustainable alternatives for structural, envelope and finishing	
materials. Low carbon cement, Zero emission bricks and lean construction	
practices. Life cycle assessment and its types - Modelling and Analysis,	
Greenhouse gas emission. Different phases of Green building project	
management.	
 Laboratory Sessions/ Experimental learning: (Self Learning) Diagnose causes of dampness in a building Applications:(SelfLea rning) 	
 Take suitable measures to improve functional performance and durability of structure. Video link / Additional online information: (Self Learning) https://nptel.ac.in/courses/105102088/ 	
UNIT-V	L1,L2,L3
Sustainable rating systems: Green building rating systems- LEED, BREEAM and others, Indian Green building rating systems – IGBC & GRIHA. IGBC criteria for certification -site selection credits, pre-design credits, detailed design credits, pre-construction credits, construction credits, post construction credits.	8 Hrs
 Laboratory Sessions/ Experimental learning: (Self Learning) Identify various materials used in the residential building and institutional building. Applications: (Self Learning) Select sustainable and alternative materials according to the requirement. Video link / Additional online information: (Self Learning) https://nptel.ac.in/courses/105102088/ 	

	mechanism in buildings.
CO2	Assess the design considerations and parameters for thermal comfort, visual comfort, indoor
	air quality and acoustics
CO3	Develop solutions for energy efficiency, water efficiency and waste management in buildings
CO4	Adopt green project management methodology and evaluate building life cycle assessment
CO5	Implement green practices during construction and operation phase of the buildings for
	achieving green rating.

Refe	Reference Books							
11.	HarharaIyer G, Green Building Fundamentals, Notion Press							
12.	Dr. Adv. HarshulSavla, Green Building: Principles & Practices							
3.	IGBC Green new building rating system - version 3.0 - Abridged reference guide							
4.	The Sustainable Habitat Handbook (6 Volume Set), GRIHA Version 2019							
5.	National Building Code – 2016, Volume 1&2, Bureau of Indian Standards							

Continuous Internal Evaluation (CIE): Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	-	-	1	-	-	-	-	1	-	1	1
CO2	3	-	-	1	-	-	-	-	1	-	1	1
CO3	3	2	-	1	-	-	-	-	1	-	1	1
CO4	3	2	2	1	-	-	-	-	1	-	1	1
CO5	3	-	-	1	-	-	1	1	1	-	1	1

	Semester: III								
	Fire Safety in Buildings								
	(Theory)								
Course Code: CIE Marks: 50									
MV	J22CV364								
Cree	Credits: L:T:P: 3:0:0 SEE Marks: 50								
Hou	Hours: 40L SEE Duration: 3 Hrs.								
Cou	rse Learning Objectives: The stude	nts will be able to							
1	To understand the importance fire sa	fety							
2	To understand various techniques in	volved in fire safety							
3	3 To design fire resistant buildings using proper materials and methods								
4	To understand components of electrical system								
5	To understand non-destructive testing								

UNIT-I	L1,L2,L3
Fire: Introduction, Basic concepts of fire protection, Fire as a process of	8Hrs
combustion, planning for fire protection, fire resistance Ventilation and fuel	
controlled fire, process of combustion: flash over condition, effect of fire on	
construction material, design of fire resistance steel structure, concrete	
structure	
UNIT-II	L1,L2,L3
Fire safety: urban planning, escape and refuge, internal planning, detection	8 Hrs
and suppression Introduction to lift design, design of lift system, expected	
stop and floor of reversal, different cases, simulation, arrangements and escalators	
UNIT-III	L1,L2,L3
Introduction to flow system: water supply, constant demand, variable	8 Hrs
demand and diversity factor, control systems Flow in pipe networks and	
fixture units, design of water supply distribution system, flow in waste water	
pipes	
UNIT-IV	L1,L2,L3
Introduction to HVAC: governing equations to HVAC process, numerical	8 Hrs
problem on HVAC system, psychometric chart, equation based approach	
Electrical systems: design of electrical systems, intelligent building, life cycle	
cost and basics of building maintenance, stages of maintenance management,	
planning for building maintenance, periodicity of maintenance management,	
estimation of repair cycle, cost profile of maintenance, lamp replacement,	
building inspection, planned and Ad-hoc maintenance	
UNIT-V	L1,L2,L3
Condition survey and health evaluation of buildings: diagnosis of	8 Hrs
building by visual survey, case studies of visual survey, effect of corrosion	
and alkali aggregate reaction, sampling and choice of test location Non-	
destructive testing, core strength test, carbonation and chloride measurement,	
electrical method of progress measurement Repair, rehabilitation, retrofit,	
periodicity and economics of condition survey, interpretation of test results	

Course	Outcomes: After completing the course, the students will be able to
CO1	Understand types of fire, combustion process and fire resistance

CO2	Plan for fire safety and design of lifts				
CO3	Design flow network in buildings				
CO4	Design of electrical systems and maintenance				
CO5	Perform health evaluation of buildings and suggest remedies				

Refe	rence Books						
13.	J A Purkiss, Fire Safety Engineering: Design of Structures, ISBN 13 978-8131220085,						
	Elsevier, 2009						
14.	V K Jain, Fire Safety in Buildings, ISBN-13 978-938980219, New Age International						
	Private Limited;						
	Third edition, 2020						
3.	Fire protection, services and maintenance management of building, NPTEL video						
	lecture, IIT, Delhi						
4.	Bureau of Indian Standards, " HAND BOOK OF FUNCTIONAL REQUIREMENTS						
	OF BUILDINGS, (SP-41 & SP- 32)", BIS 1987 and 1989.						
5.	Markus, T.A. & Morris, E.N., "BUILDING CLIMATE AND ENERGY" Pitman						
	publishing limited. 1980.						
6.	Croome, J.D .& Roberts, B.M., "AIR CONDITIONING AND VENTILATION OF						
	BUILDINGS, VOL-1".Pergamon press.						
7.	Building Services Design - T.W.MEVER						

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marksare executed by means of an examination.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2												
CO3												
CO4												

CO5

SOCIAL CONNECT & RESPONSIBILITIES							
Course Code	21SCR36 CIE Marks 50						
Teaching Hours week (L:T:P:S)	1: 0: 0	1: 0: 0 SEE Marks 50					
Total Hours of Pedagogy	15Total Marks1001Exam Hours03						
Credits							
Department	Management Studies / Engineering Department						
Offered for	3 rd Semester						
Prerequisite	Nil						
Trerequisite		1111					

Objectives: The Course will

- Enable the student to do a deep drive into societal challenges being addressed by NGO(s), social enterprises & The government and build solutions to alleviate these complex social problems through immersion, design & technology.
- Provide a formal platform for students to communicate and connect with their surroundings.
- Enable to create of a responsible connection with society.

Learning Outcomes: The students are expected to have the ability to :

- 1. Understand social responsibility
- 2. Practice sustainability and creativity
- 3. Showcase planning and organizational skills

Contents:

The course is mainly activity-based that will offer a set of activities for the student that enables them to connect with fellow human beings, nature, society, and the world at large. The course will engage studentsinr interactive sessions, open mic, reading groups, storytelling sessions, and semester-long activities conducted by faculty mentors. In the following a set of activities planned for the course have been listed :

Module-I

Plantation and adoption of a tree: Plantation of a tree that will be adopted for four years by a group of B.Tech. students. They will also make an excerpt either as a documentary or a photoblog describing the plant's origin, its usage in daily life, and its appearance in folklore and literature.

Module-II

Heritage walk and crafts corner: Heritage tour, knowing the history and culture of the city, connecting to people around through their history, knowing the city and its craftsman, photoblog and documentary on evolution and practice of various craft forms.

Module-III

Organic farming and waste management: usefulness of organic farming, wet waste managementin neighboring villages, and implementation in the campus.

Module-IV

	Water	Conservation:	knowing	the	present	practices	in	the	surrounding	villages	and
--	-------	----------------------	---------	-----	---------	-----------	----	-----	-------------	----------	-----

implementation in the campus, documentary or photo blog presenting the current practices.

 Module-V

 Food Walk City's culinary practices, food lore, and indigenous materials of the region used in cooking.

 Activities

Jamming session, open mic, and poetry: Platform to connect to others. Share the stories with others. Share the experience of Social Connect. Exhibit the talent like playing instruments, singing, one-act play, art-painting, and fine art.

PEDAGOGY

The pedagogy will include interactive lectures, inspiring guest talks, field visits, social immersion, and a course project. Applying and synthesizing information from these sources to define the social problem to address and take up the solution as the course project, with your group. Social immersionwith NGOs/social sections will be a key part of the course. Will all lead to the course project that will address the needs of the social sector?

COURSE TOPICS:

The course will introduce social context and various players in the social space, and present approaches to discovering and understanding social needs. Social immersion and inspiring conversional will culminate in developing an actual, idea for problem-based intervention, based on an in-depth understanding of a key social problem.

A total of 14-20 hrs engagement per semester is required for the 3rd semester of the B.E. /B.Tech. program. The students will be divided into 10 groups of 35 each. Each group will be handled by two **faculty mentors**. Faculty mentors will design the activities (particularly Jammingsessions open mic ,and poetry)

Faculty mentors has to design the evaluation system.

Continuous Internal Evaluation (CIE)

After completion of, the social connect, the student shall prepare, with daily **diary** as reference, a comprehensive report in consultation with the mentor/s to indicate what he has observed and learned in the social connect period. The report should be signed by the mentor. The report shall be evaluated on the basis of the following criteria and/or other relevant criteria pertaining to the activity completed.

Marks allotted for the diary are out of 50.

Planning and scheduling the social connect

Information/Data collected during the social connect

Analysis of the information/data and report writing

Considering all above points allotting the marks as mentioned below-

Excellent	80 to 100
Good	60 to 79
Satisfactory	40 to 59
Unsatisfactory and fail	<39

Semester End Examination (SEE)

This Jamming session will be conducted at the end of the course for 50 marks

Jamming session includes -Platform to connect to others. Share the stories with others. Share the experience of Social Connect. Exhibit the talent like playing instruments, singing, one-act play, art painting, and fine art.

Faculty mentor has to design the evaluation system for the Jamming session.

	Semester: III								
	Additional Mathematics-I								
	(Common to all branches)								
Cou	Irse Code: MVJ22MATDIP-1 CIE Marks:50								
Cred	Credits: L:T:P:S: 3:0:0:0 SEE Marks: 50								
Hou	Hours: 30L SEE Duration: 3 Hrs								
Cou	Course Learning Objectives: The students will be able to								
1	To familiarize the important and introductory concepts of Differential calculus								
2	Aims to provide essential concepts integral calculus.								
3	To gain knowledge of vector differentiation								
4	To learn basic study of probability.								
5	Ordinary differentia	l equations of first order and	analyze the engineering problems.						

UNIT-I	
Differential calculus: Recapitulation of successive differentiation -nth derivative	8 Hrs
-Leibnitz theorem (without proof) and Problems, Polar curves - angle between	
the radius vector and tangent, angle between two curves, pedal equation, Taylor's	
and Maclaurin's series expansions- Illustrative examples.	
UNIT-II	

Integral Calculus: Statement of reduction formulae for the integrals of $\sin^n(x)$, $\cos^n(x)$, $\sin^n(x)\cos^n(n)$ and evaluation of these integrals with standard limits-problems. Double and triple integrals-Simple examples. UNIT-III

 Vector Differentiation:
 Scalar and Vector point functions, Gradient,
 8Hrs

 Divergence, Curl, Solenoidal and Irrotational vector fields.
 8

Vector identities - $div(\phi \overrightarrow{A})$, $curl(\phi \overrightarrow{A})$, $curl(grad(\phi))$, $div(curl \overrightarrow{A})$.

UNIT-IV						
Probability: Basic terminology, Sample space and events. Axioms of probability. Conditional probability – illustrative examples. Bayes theorem-examples.	8Hrs					
UNIT-V						
Ordinary Differential Equations of First Order: Introduction – Formation of differential equation, solutions of first order and first degree differential equations: variable separable form, homogeneous, exact, linear differential equations.	8Hrs					

Cours	Course Outcomes: After completing the course, the students will be able to					
CO1	Apply the knowledge of calculus to solve problems related to polar curves and its					
	applications					
CO2	Apply the concept of integration and variables to evaluate multiple integrals and their					
	usage in computing the area and volumes.					
CO3	Illustrate the applications of multivariate calculus to understand the solenoidal and					
	irrotational vectors and also exhibit the inter dependence of line, surface and volume					
	integrals.					
CO4	Understand the basic Concepts of Probability					
CO5	Recognize and solve first-order ordinary differential equations occurring in different					
	branches of engineering.					

Refe	ence Books
15.	B.S. Grewal, "Higher Engineering Mathematics" Khanna Publishers, 43 rd Edition, 2013.

16.	Erwin Kreyszig, "Advanced Engineering Mathematics", Wiley-India publishers, 10						
	edition,2014.						
3.	Ramana B. V., "Higher Engineering Mathematics", Tata Mc Graw-Hill, 2006.						
4.	Bali N. P. & Manish Goyal, "A text book of Engineering Mathematics", Laxn						
	Publications, 8 th Edition.						

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	0	2	0	0	0	0	0	0	0	1
CO2	3	3	0	2	0	0	0	0	0	0	0	1
CO3	3	3	0	3	0	0	0	0	0	0	0	1
CO4	3	2	0	3	0	0	0	0	0	0	0	1
CO5	3	2	0	2	0	0	0	0	0	0	0	1

	Semester: IV						
	Analysis of Structures						
	(Theory)						
Cou	Course Code: MVJ22CV41 CIE Marks: 50						
Cred	Credits: L:T:P: 3:0:0 SEE Marks: 50						
Hou	Hours: 40L SEE Duration: 3 Hrs.						
Cou	rse Learning Objectives: The students	s will be able to					
1	1 Understand the Different Forms of Structural Systems.						
2	Determine the Strain Energy and Slope and Deflection of Beams, Trusses and Frames.						
3	3 Analyse arches and cable structures.						
4	4 Analyse different types of beams and frames using slope deflection method.						
5	Analyse different types of beams and frames using moment distribution method.						

UNIT-I	L1,L2,L3
Equilibrium: Conditions of equilibrium, Compatibility conditions, Degree of	8 Hrs
freedom, Static and kinematic indeterminacies of structural systems	
Deflection of beams: Moment area method: Derivation, Mohr's theorems,	
sign convention; Application of moment area method to determinate	
prismatic beams, beams of varying cross section; Use of moment diagram by	
parts.	
Video link / Additional online information: (Self Learning)	
 https://nptel.ac.in/courses/105102088/ 	
UNIT-II	L1,L2,L3
Slope Deflection Method: Introduction, sign convention, development of	8 Hrs
slope deflection equation; Analysis of continuous beams including settlement	
of supports; Analysis of orthogonal rigid plane frames including sway frames	
with kinematic indeterminacy up to 3.	
Video link / Additional online information: (Self Learning)	
 https://nptel.ac.in/courses/105102088/ 	
UNIT-III	L1,L2,L3
Moment Distribution Method: Introduction, Definition of terms,	8 Hrs
Development of method, Analysis of continuous beams with support	
yielding, Analysis of orthogonal rigid plane frames including sway frames	
with kinematic indeterminacy up to 3.	
Video link / Additional online information: (Self Learning)	
 https://nptel.ac.in/courses/105102088/ 	
UNIT-IV	L1,L2,L3
Matrix Method of Analysis (Stiffness Method): Introduction, Stiffness	8 Hrs
matrix, Analysis of continuous beams and plane trusses using system	
approach, Analysis of simple orthogonal rigid frames using system approach	
with kinematic indeterminacy ≤ 3 .	
Video link / Additional online information: (Self-Learning)	
 https://archive.nptel.ac.in/courses/105/105/105105/09/ 	
 https://www.vssut.ac.in/lecture_notes/lecture1428730889.pdf 	

UNIT-V	L1,L2,L3
Matrix Method of Analysis (Flexibility Method): Introduction, Axes and coordinates, Flexibility matrix, Analysis of continuous beams and plane trusses using system approach, Analysis of simple orthogonal rigid frames using system approach with static indeterminacy ≤3.	8 Hrs
 Laboratory Sessions/ Experimental learning: (Self-Learning) Modelling and software analysis of multi-storey frames with lateral loads. Applications: (Self-Learning) Analysis of continuous beams and plane trusses using system approach by stiffness method. 	
 Analysis of continuous beams using system approach by flexibility method. 	
Video link / Additional online information: (Self-Learning)	
 https://archive.nptel.ac.in/courses/105/105/105105109/ 	
 https://www.vssut.ac.in/lecture_notes/lecture1428730889.pdf 	

Course	Course Outcomes: After completing the course, the students will be able to				
CO1	Identify the different forms of structural systems and analyse the trusses.				
CO2	Evaluate the slope and deflections in beams, frames and trusses by using moment				
	area method and energy principle.				
CO3	Analyse and determine the stress resultants in arches and cables.				
CO4	Analyse the indeterminate structures and construct BMD AND SFD using slope				
	deflection methods.				
CO5	Analyse the indeterminate structures and construct BMD AND SFD using moment				
	distribution method.				

Refe	rence Books
1.	Reddy, C.S., Basic Structural Analysis, 3 rd. ed., Tata McGraw-Hill Education Pvt. Ltd.,
	New Delhi, 2011.
2.	Hibbeler, R.C., Structural Analysis, 9 th edition., Pearson publications., New Delhi,
	2012.
3.	Thandavamoorthy, T.S., Structural Analysis, 6 th edition., Oxford University press.,
	New Delhi,2015.
4.	L S Negi and R S Jangid, "Structural Analysis", Tata McGraw-Hill Publishing Company
	Ltd.
5.	D S Prakash Rao, "Structural Analysis: A Unified Approach", Universities Press 4
6.	K.U. Muthu and H. Narendra, "Indeterminate Structural Analysis", IK International
	Publishing Pvt. Ltd.
7.	Gupta S P, G S Pundit and R Gupta, "Theory of Structures", Vol II, Tata McGraw Hill
	Publications company
8.	V N Vazirani and M M Ratwani, "Analysis of Structures", Vol. 2, Khanna Publishers
9.	Wang C K, "Intermediate Structural Analysis", McGraw Hill, International Students
	Edition. S. Rajashekhara and G. Sankarasubramanian, "Computational Structural
	Mechanics", PHI Learning Pvt. Ltd.,
10.	S S Bhavikatti, structural analysis, vikas publishing house pvt.ltd., new Delhi

11.	S Ramamrutham and R Narayanan, Theory of structures , Dhanpat Rai Publishing
	Company.

Continuous Internal Evaluation (CIE): Theory for 50 Marks

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

	Semester: IV					
	Water Supply and Waste water Engineering					
	(Theory)					
Coui	se Code: MVJ22CV42	CIE Marks: 50				
Cred	its: L:T:P: 3:0:0	SEE Marks: 50				
Hou	Hours: 40L SEE Duration: 3 Hrs.					
Coui	se Learning Objectives: The students will be able to					
1	Analyze the variation of water demand and to estimate water requirement for a					
1	community.					
2	Study drinking water quality standards and to illustrate qualitative analysis of water.					
3	Analysis of physical and chemical characteristics of water and wastewater.					
4	Understand and design of different unit operations and unit process involved in water					
	and wastewater treatment process					
5	Design various oxidation processes.					

UNIT-I	L1,L2
INTRODUCTION: Water: Need for protected water supply, Demand of	8 Hrs
Water: Types of water demands - domestic demand, industrial,	
institutional and commercial demand, public use and fire demand	
estimation, factors affecting per capita demand, Variations in demand of water, Peak factor.	
Design period and factors governing design period. Methods of population	
forecasting and numerical problems. Physico chemical characteristics of water Sampling.	
 Video link / Additional online information: (Self Learning) https://nptel.ac.in/courses/105102088/ 	
UNIT-II	L1,L2,L3
WATER TREATMENT: Objectives, Unit flow diagrams – Significance of each unit, Aeration process Limitations and types.	8 Hrs
SEDIMENTATION: Theory, settling tanks, types and design with numerical, Coagulation and flocculation, types of coagulants.	
 FILTRATION: Mechanism, theory of filtration, types of filters: slow sand, rapid sand and pressure filters. Operation and cleaning. Design of slow and rapid sand filter without under drainage system, Numericals. Video link / Additional online information: (Self Learning) https://nptel.ac.in/courses/105102088/ 	
UNIT-III	L1,L2,L3
DISINFECTION : Methods of disinfection with merits and demerits. Breakpoint	8 Hrs
chlorination, Softening: Lime soda and Zeolite process.	
WASTEWATER: Need for sanitation, methods of sewage disposal, types of	

sewerage systems, Treatment of municipal waste water: Waste water	
characteristics sampling, significance and techniques, physical, chemical and	l
biological characteristics, Numerical on BOD.	1
 Video link / Additional online information: (Self Learning) 	1
https://nptel.ac.in/courses/105102088/	
UNIT-IV	L1,L2
TREATMENT PROCESS: flow diagram for municipal waste water Treatment	8 Hrs
unit operations and process Screens: types, disposal. Grit chamber, oil and	l
grease removal. Primary and secondary settling tanks,	l
SUSPENDED GROWTH SYSTEM -conventional activated sludge process and its modifications, numerical.	
 Video link / Additional online information: (Self Learning) 	1
https://nptel.ac.in/courses/105102088/	l
UNIT-V	L1,L2,L3
ATTACHED GROWTH SYSTEM – Trickling filter, numerical on Trickling filters,	8 Hrs
bio-towers and rotating biological contactors. Principle of stabilization	1
ponds, oxidation ditch. Sludge digesters (aerobic and anaerobic),	1
Equalization. Thickeners and drying beds.	l
 Video link / Additional online information: (Self Learning) 	l
https://nptel.ac.in/courses/105102088/	l
	1

Course	Course Outcomes: After completing the course, the students will be able to		
CO1	Estimate the average and peak water demand for a community.		
CO2	Evaluate water quality and environmental significance of various parameters and		
	plan suitable treatment system.		
CO3	Design the different units of water treatment plant.		
CO4	Design the various units of wastewater treatment plant.		
CO5	Design of various AOPs and low cost treatment units.		

Refe	Reference Books	
1.	Howard S. Peavy, Donald R. Rowe, George T, "Environmental Engineering" - Tata	
	McGraw Hill, New York, Indian Edition, 2013	
2.	S. K. Garg, Environmental Engineering Volume-I, Water supply Engineering – M/s	
	Khanna Publishers, New Delhi2010	
3.	B.C. Punmia and Ashok Jain, Environmental Engineering I-Water Supply Engineering,	
	Laxmi Publications (P) Ltd., New Delhi2010.	
4.	S.K.Garg, "Environmental Engineering vol-II, Water supply Engineering", Khanna	
	Publishers, – New Delhi, 28th edition and 2017	

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three).

The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Semester: IV Geotechnical Engineering	
Course Code: MVJ22CV43	CIE Marks: 50
Credits: L:T:P: 3:0:2	SEE Marks: 50
Hours: 40L + 26P SEE Duration: 3 Hrs.	
Course Learning Objectives: The student	s will be able to
1 Appreciate basic concepts of soil m	echanics as an integral part in civil engineering.
2 Comprehend basic engineering and	mechanical properties of different types of soil.
Become broadly familiar with geot	echnical engineering requirements, such as, flow
³ of water through soil medium and c	compaction characteristics.
4 Model and measure strength & sett soils.	tlement characteristics and bearing capacity of
`	

UNIT-I	L2,L3
INDEX PROPERTIES AND IS CLASSIFICATION	8 Hrs
Index Properties: Phase Diagram, definitions, and their interrelationships.	
Determination of Index properties, Types of soil structures and Clay	
Minerals, IS soil classification of Soil.	
UNIT-II	L2,L4
SOIL WATER-EFFECTIVE STRESS ANALYSIS	8 Hrs
Soil Water: Permeability, Darcy's law-assumption and validity, coefficient of permeability and its determination (only laboratory method), permeability of stratified soils. Capillary phenomenon, Flow net characteristics and applications	
Effective Stress Analysis: Effective stress concept-total stress, effective stress and Neutral stress.	
UNIT-III	L2,L4
COMPACTION AND CONSOLIDATION	8 Hrs
Compaction: Principle of compaction, Standard and Modified proctor's compaction tests, factors affecting compaction, effect of compaction on soil properties, Field compaction control	
Mass-spring analogy, Terzaghi's one dimensional consolidation theory (No derivation). Consolidation characteristics of soil (Cc, av, mv and Cv). Laboratory one dimensional consolidation test, Pre-consolidation pressure and its determination by Casagrande's method.	
UNIT-IV	L2,L4
SHEAR STRENGTH	8 Hrs
Concept of shear strength, Mohr–Coulomb Failure Criterion, Modified Mohr– Coulomb Criterion Total and effective shear strength parameters, Measurement of shear strength parameters - Direct shear test, unconfined compression test, triaxial compression test and field Vane shear test, Factors affecting shear strength of soils.	
UNIT-V	L2,L4
BEARING CAPACITY AND SETTLEMENT	8 Hrs

Bearing Capacity: Types of foundations, Determination of bearing capacity by Terzaghi's and BIS methods (IS: 6403), Modes of shear failure, Factors affecting Bearing capacity of soil. Effect of water table and load eccentricity on bearing capacity of soil, Field methods of determining bearing capacity of soil (SPT and plate load test). Settlement: Types of settlements and importance, Computation of immediate and consolidation settlement, permissible differential and total settlements (IS 8009 Part 1). SI.NO Experiments Water content determination by oven drying, Rapid moisture meter method 1 Grain size analysis (Sieve analysis of soil) 2 In-situ density tests i) Core-cutter method ii) Sand replacement method 3 Consistency limits i) Liquid limit test (by Casagrande's and cone penetration method) & 4 ii) Plastic limit test Co-efficient of permeability test i) Constant head test ii). Variable head test 5 Standard compaction test (light compaction only) 6 Direct shear test 7 Unconfined compression test & Laboratory vane shear test 8 Triaxial test (unconsolidated undrained test only) 9 Demonstration of Standard penetration test & Boring equipment 10 Demonstration of Proctors Needle 11 Demonstration of Vane shear test 12

Course	Course Outcomes: After completing the course, the students will be able to		
CO1	Comprehend the fundamentals of Soil mechanics and identify and classify the soil		
CO2	Apply the knowledge to determine MDD and OMC and compute consolidation properties and shear parameters of soil and compute the settlement and bearing capacity of soil		

CO3	Apply the knowledge to determine shear parameters of soil and compute the settlement and bearing capacity of soil
CO4	Carry out experiments to assess the index properties of soil and determine Compaction, Permeability and Shear Strength characteristics of soil.

Refe	Reference Books	
1.	T.W. Lambe and R.V. Whitman, Soil Mechanics-, John Wiley & Sons. 1991	
2.	Shashi K. Gulathi & Manoj Datta, Geotechnical Engineering-Tata McGraw Hill Publications. 2010	
3.	Bowles J E, Foundation analysis and design, McGraw- Hill Publications 5th edition 2001	
4.	Malcolm D Bolton, "A Guide to soil mechanics", Universities Press., 2003	
5.	Donald P Coduto, Geotechnical Engineering- Phi Learning Private Limited, New Delhi. 2010	
6.	Manual of Soil Laboratory Testing- Head K.H., (1986)- Vol. I, II, III, Princeton Press, London 2006	

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Laboratory- 50 Marks

The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are awarded 10 marks. Total marks for the laboratory is 50.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B

Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

Semester: IV		
	BUILDING MATERIALS LABORATORY	
	(Practice)	
Cour	rse Code: MVJ22CVL44	CIE Marks: 50
Cred	Credits: L:T:P: 0:0:2 SEE Marks: 50	
Hou	Hours: 26P SEE Duration: 3 Hrs.	
Course Learning Objectives: The students will be able to		
1	Ability to apply knowledge of mathematics and engineering in calculating the	
T	mechanical properties of structural materials.	
2	Ability to function on multi-disciplinary teams in the area c	of materials testing.
2	Ability to use the techniques, skills and modern engine	ering tools necessary for
3	engineering.	
4	Understanding of professional and ethical responsibility	in the areas of material
4	testing.	
5	Ability to communicate effectively the mechanical properti	es of materials.
5	Ability to communicate effectively the mechanical properti	es of materials.

SI.NO	Experiments	L3,L4	
1	Tests on Bricks, Tiles, Cement Concrete blocks (Weight & Dimen	isionality, Water	
1	Absorption, Strength)		
2	Tests on Fine aggregates - Sieve Analysis, Moisture content, Spec	ific gravity, Bulk	
Z	density, Bulking and Silt Content		
3	Tests on Coarse aggregates- Sieve Analysis, Water absorption, M	oisture content,	
5	specific gravity and Bulk density		
4	Tests on Coarse aggregates- Crushing Strength Test, Los Angele	es abrasion test,	
4	Impact test and Shape tests (combined index and angularity numb	er)	
5	Compression test on mild steel, cast iron and wood.		
6	Tension test on mild steel and HYSD bars		
7	Bending Test on Wood Under two-point loading.		
8	Shear Test on Mild steel- single and double shear.		
9	Impact test on Mild Steel (Charpy & Izod).		
10	Demonstration of Hardness tests on ferrous and non-ferrous r	netals- Brinell's,	
10	Rockwell and Vicker's.		
11	Demonstration of Strain gauges and Strain indicators.		
NOTE: A	NOTE: All tests to be carried out as per relevant latest BIS Codes		

Course	Course Outcomes: After completing the course, the students will be able to		
CO1	Analyze the physical characteristics, and behavior of common building materials.		
CO2	Reproduce the basic knowledge of mathematics and engineering in finding the		
	strength in tension, compression, shear and torsion for steel		
CO3	Recognize the importance of ethical conduct, integrity, and accuracy in materials		
	testing and reporting.		

Vide	Video Link	
1.	https://sm-nitk.vlabs.ac.in/exp/tensile-test-mild-steel/	
2.	https://eerc01-iiith.vlabs.ac.in/List%20of%20experiments.html	
3.	https://archive.nptel.ac.in/courses/105/104/105104030/	

Refe	Reference Books			
1.	Davis, Troxell and Hawk, "Testing of Engineering Materials", International Student			
	Edition – McGraw Hill Book Co. New Delhi.			
2.	M L Gambhir and Neha Jamwal, "Building and construction materials-Testing and			
	quality control", McGraw Hill education (India)Pvt. Ltd.,2014.			
3.	Kukreja C B, Kishore K. and Ravi Chawla "Material Testing Laboratory Manual", Standard			
	Publishers & Distributors1996.			

Laboratory- 50 Marks

The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are awarded 10 marks. Total marks for the laboratory is 50.

Semester End Examination (SEE):

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

Semester: IV		
Building Information Modelling in Civil Engineering		
(Theory)		
Course Code: MVJ22CV451 CIE Marks: 50		
Credits: L:T:P: 3:0:0		SEE Marks: 50
Hours: 40L		SEE Duration: 3 Hrs.
Course Learning Objectives: The students will be able to		
1	Understand the concept of Building Information Modelling	
2	Create the workflow followed in industry during creation of BIM 3D model which	
2	includes	

3	Building the discipline-based model and create the federated models
4	Design the process of creating the 4D & 5D BIM model

	1112
UNIT-I Evolution of Engineering, Introduction to BIM Concepts and Design Authoring: Evolution of Engineering from 2D drawings to BIM Model, Isometric View, Limitation of Isometric views and concept of 3D-Modeling, Building Information Modelling – Introduction & Process, Design Authoring – Concepts and workflow, Fundamentals of Discipline Based Modelling, Introduction to stages of BIM Modelling process as per ISO 19650, Federated model- concepts and demonstrations, workflow of design coordination, Engineering Analysis – Concept and types of analysis, Process and workflow of Design Review in BIM.	L1,L2 8 Hrs L1,L2
Visualization and Interference/Clash check: Views in BIM Model, Visualization Modes, Walkthrough of the Model, Fly through the model, Layers & Properties, Concept of viewpoints, Sectioning and Visualization through Tablet and Mobile, Concept of BIM Kiosk & BIM Rooms, Visualization through Augment Reality (AR), Virtual Reality (VR) & Mixed Reality (MR) Clash Check – Types, Clash avoidance process, Clash Detection Process, Clash Detection Priority Matrix and Report generation, Clash Detection Rules, Report, Grouping, Clash Detection Process – Demo.	8 Hrs
UNIT-III Documentation & CDE & Level of Development: Documentation and CDE (Common Data Environment) -2D drawings generation from BIM Model, Computer Network types, Concept of Cloud Computing, Concept and Application of CDE: Traditional Information Sharing, Definition, Reference, and Concept, Setting up the workflow and process for CDE- File naming convention, Roles and Responsibilities, Request for Information and Review Process Concept of LOD (Level of Development), preparation of LOD matrix and Progression matrixDefinition of LOD, Level of Detail and Information, LOD- Wall foundation, Precast Structural Inverted T-Beam, Domestic Water Piping, Plumbing Fixture, Packaged Generator Assembly, LOD- Chart, Matrix and Model Progression Matrix	L1,L2 8 Hrs
UNIT-IV	L1,L2
4D / Field BIM & Its Applications: Introduction to 4D / Field BIM: Concept of 4D, Introduction to construction sequence and project schedule, Project scheduling using Gantt Chart and its limitation, 4D BIM ModelingProject demo and workflow, Synchronization of 4D BIM Model with project schedule, Reviewing project progress w.r.t planned dates and actual dates, Generation of Reports Application of Field BIM/ 4D BIM: Understanding concept and usage of BIM in field for coordination- 3D Coordination and Visual Communication, Site utilization planning and Construction analysis, Application of wearables in coordination. 3D Control and planning Other Applications of Field BIM/ 4D BIM: Concept and usages of BIM in field for safety, disaster and risk analysis, digital fabrication and scan to BIM, Existing Condition Modeling, Phase Planning, As-built/ Record Models	8 Hrs

UNIT-V	L1,L2
5D BIM, AIM & Beyond BIM - Emerging Trends: 5D BIM: Introduction	8 Hrs
concepts of 5D BIM, Quantity take off with UoM, Concept of QTO with	
UoM, 5D BIM with UoM with cost, Quantity take off exercise, Demo of	
Quantity take off: Understanding QTO for Wall, Plaster & Tile, BIM Maturity	
LOD and General Practice of QTO, Cost Breakup structures, 5D BIM and cost	
control AIM: Introduction to Asset Information Model (AIM), COBie	
structures and Asset Information Deliverables, Space Attributes and Asset	
Attributes- Examples with data, Asset requirementDiscipline wise	
Infrastructure System, Classification code and Information Exchange,	
Information Exchange with Facility Management Beyond BIM: Emerging	
Trends- Concepts of Industrialisation, IoT, Big Data, Data Analytics and their	
applications in BIM: Industrialisation of Construction through BIM- DfMA,	
IoT in BIM, BIM and Big data, Data Analytics using AI & ML Future scope of	
BIM Applications: Smart Infrastructure and the need for connected	
infrastructure, Digital twins- Concepts and benefits, National Digital Twin or	
a City level Digital Twin in a Smart City, Fundamental requirements for the	
success of a Digital Twin and its uses, Digital Twin applications in diverse	
industries.	

Course	Course Outcomes: After completing the course, the students will be able to		
CO1	Interpret the basic principles of BIM evolution and concept of BIM in lifecycle of project		
CO2	Understand the workflows of Design authoring followed in industry during creation of		
	3D model		
CO3	Analyze the engineering analysis and the process followed in industry to check and		
	resolve clashes		
CO4	Evaluate the integration of schedule and cost in 3D model using 4D and 5D BIM		
CO5	Illustrate the various emerging trends of BIM & concept of digital twin		

Reference Books		
1.	ISO 19650 - Building Information Modelling (BIM)	
2.	BIM Handbook – Chuck Eastman, Paul Teicholz, Rafael Sacks, Kathleen Liston	

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the entire syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Semester: IV				
	Construction Equipment, Plants and Machinery			
	(Theory)			
Cour	Course Code:MVJ22CV452 CIE Marks: 50			
Credits: L:T:P: 3:0:0 SEE Marks: 50		SEE Marks: 50		
Hours: 40L SEE Duration: 3 Hrs.		SEE Duration: 3 Hrs.		
Course Learning Objectives: The students will be able to				
1	To provide insight on the different functions and operations of different equipment and			
T	techniques during construction			
2 To impart knowledge on the various maintenance and safe		aintenance and safety to be considered during		
2	construction			
3	To acquire knowledge on the life cycle of a construction equipment			
4	To adopt mechanization in the Construction industry			

UNIT-I	L1,L2
Basics and Hydraulics of Construction Equipment: Introduction to ConstructionEquipment- Functions, Operations of Construction Equipment-Introduction to Four& Two Stroke Engine and their components- Introduction and Components toAutomobiles. Introduction to Principles of Hydraulic- Calculation of Pressure, Force& Flow- Components of a Hydraulic System- Basic layout of Hydraulic System-Applications of Hydraulics- Strand Jack OperationVideo link / Additional online information: (Self Learning)• Constructionmethodsandequipmentmanagement:	8Hrs
https://nptel.ac.in/courses/105103206/	
UNIT-II	L1,L2
Concreting, Earth Moving, Road Making and Quarry/Mining Equipment: Operations of a Batching Plant - Introduction and Components of Concrete Pump & Placer- Concrete Pipeline- Laying and Cleaning- Bulldozer- Classification and Components- Classification, Components and Attachments of Excavator- Backhoe Loader- Classification & components- Introduction and classification to Hot mix Plant Process of Asphalt Paver-PQC Paver- Classification & Components- Motor Grader Classification & Components- Horizontal Movement Vehicles- Quarry/Mining	8 Hrs
UNIT-III	L1,L2
Equipment Life Cycle Management: Life Cycle of an Equipment- Equipment Performance Parameters - Introduction to Maintenance- Types of Maintenance- Maintenance Practices	8 Hrs
UNIT-IV	L1,L2
Tunnelling Equipment / Piling Equipment: Introduction to Tunnel Boring Machines- Details and Operation of a Hard-Rock TBM Details of Earth Pressure Balance (EPB) TBM- Details and operation of Slurry TBM & Components- Hydraulic Grabs- Piling Rig	8 Hrs
UNIT-V	L1,L2
Mechanization and Digitalization in Construction and Safety in Construction	8 Hrs

Equipment: Importance of Digital Analytics- Digital Solution in Construction Projects- Importance of Mechanization - Railway Track Construction- Rebar Processing Machine- Operation of Mechanized Equipment- Introduction to 3D Concrete Printer- Importance of Safety- Various PPE & Purpose- Safety of Men & Machines at Work- Safety During Construction Activities Safety with Tools & Tackles

Course Outcomes: After completing the course, the students will be able to		
CO1	Evaluate equipment and techniques required during construction	
CO2	Understand the operation of a batching plant.	
CO3	Analyze the equipment life cycle management.	
CO4	Demonstrate basic knowledge about Construction equipment and machinery.	
CO5	Comprehend mechanization and digitalization in construction	

Reference Books

1.	Velumani. P, "Construction Techniques and Practices", SIA Publishers & Distributers Pvt	
	Ltd, 2020.	
2.	Dr. Manoranjan Samal, "Advanced Construction Techniques and Equipment" S.K. Kataria	
	& Sons	
3.	S.C.Sharma, "Construction Equipment and management" E-Book .2019	
4.	Mahesh varma, , "Construction Equipment and its Palnningand Applications", 5th	
	edition, Metroplolitan Book Co. Publishers,, 2005.	
5.	S.Seetharaman, "Construction Engineering and Management", 4 th Edition, Umesh	
	publications, New Delhi, 1999.	

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marksare executed by means of an examination.

The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Semester: IV			
	CONCRETING TECHNIQUES AND PRACTICES		
	(Theory)		
Cour	Course Code: MVJ22CV453 CIE Marks: 50		
Credits: L:T:P: 3:0:0		SEE Marks: 50	
Hours: 40L SEE Duration: 3 Hrs.		SEE Duration: 3 Hrs.	
Course Learning Objectives: The students will be able to			
1	To present the basics of concrete and different materials used in it.		
2	To impart knowledge on materials used in concrete, relevant Indian standard codes,		
Z	and practical aspects on concreting activities at projects.		
3	To explain the importance of making good quality concrete to build durable structures.		
4	To introduce the Design of concrete mixes from	the Industrial experiences at Sites and	
4	optimization of higher grades of Concrete.		
5	To learn the best practices in concrete cons	struction from industry's decades of	
5	experiences, thumb rules, mitigation of concreti	ng issues at Sites	

UNIT-I	L1,L2
Introduction to concrete, overview of materials- cement, low carbon cement,	8 Hrs
coarse aggregate and fine aggregate, and mineral admixture:- fly ash, GGBS,	
micro silica / silica fume, metakaolin / rice husk ash, composite cement and	
ultrafine materials, lab test - fineness of fly ash, recycled aggregate	
UNIT-II	L1,L2,L3
Water and chemical admixture: source, requirements, limits and testing	8 Hrs
Blending of aggregate -: Blending of fine and coarse aggregate, gradation for optimization and practical aspects.	
UNIT-III	L1,L2,L3
Mix design - Volumetric mix design, mix design by absolute volume method,	8 Hrs
worked out practical examples based on industries experience at project	
sites over several decades, higher grades of concrete, high performance	
concrete, test on concrete: workability of concrete, flexural and compressive	
strength tests.	
UNIT-IV	L1,L2,L3
Production of concrete-: batching plant, calibration, mixing and	8 Hrs
transportation of concrete handling of concrete at construction, ready-mix	
concrete, pumping, placing of concrete with boom placers, levelling,	
vibration and compaction, cold joints, finishing and curing and protection of concrete	
UNIT-V	L1,L2,L3
Special types of concrete: self-compacting concrete, mass concrete, dry lean	8 Hrs
concrete, geopolymer concrete, pavement quality concrete, fiber reinforced	
concrete, composite concrete, lightweight concrete, ferrocement,	
shotcreteing, guniting, grouting, challenges faced at sites: plastic shrinkage	
cracks, plastic settlement, honey comb, bug holes, cover to concrete, do's	
and don'ts in concrete construction, site shoot, introduction on 3D printing.	

Course Outcomes: After completing the course, the students will be able to

CO1	Evaluate the properties of concrete by conducting test on cement, aggregate and
	concrete (with & without admixtures) for using the data for Mix design procedures
CO2	Understand to Select and proportionate different materials used in a concrete mix
	including admixtures
CO3	Design a concrete mix as per requirement of construction project
CO4	Apply the best practices in concrete construction from industry's requirement,
	thumb rules, mitigation of concreting issues at Sites.

Refe	Reference Books				
1.	Concrete Technology by M. S. Shetty, S Chand, New Delhi-110055.				
2.	Concrete Technology by M. L. Gambhir, Tata McGraw-Hill.				
3.	IS 456, IS 269, IS 516, IS 1786, IS 1893, IS 12269, IS 9103, IS 8112				

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	Se	emester: IV	
	Watersh	hed Management	
		(Theory)	
Cou	rse Code: MVJ22CV454		CIE Marks: 50
Credits: L:T:P: 3:0:0 SEE Marks: 50			
Hours: 40L SEE Duration: 3 Hrs		SEE Duration: 3 Hrs.	
Cou	rse Learning Objectives: The studen	ts will be able to	
1	To understand Watershed Hydrology		
2	To estimate water demand and learn, water conservation methods		
3	To estimate water demand and learn, water conservation methods		
4	To estimate water demand and learn, water conservation methods		

UNIT-I	L1,L2
Principles of Watershed Management: Basics concepts, hydrology and	8 Hrs
water availability, surface water, ground water, conjunctive use, human	
influences in the water resources system.	
UNIT-II	L1,L2
Conservation of Water: Perspective on recycle and reuse, wastewater reclamation, social aspects of watershed management and community participation, private sector participation, institutional issues, socio-economy, integrated development, water legislation and implementations, case studies.	8 Hrs
UNIT-III	L1,L2
Water Harvesting: Rainwater management, conservation, storage and effective utilization of rainwater, structures for rainwater harvesting, roof catchments system, check dams, aquifer storage.	8 Hrs
UNIT-IV	L1,L2
Sustainable Watershed Approach: Sustainable integrated watershed management, natural resources management, agricultural practices, integrated farming, soil erosion and conservation	8 Hrs
UNIT-V	L1,L2
Applications of RS and GIS in Watershed management: Role of decision support system in watershed management, watershed characteristics of coastal regions, coastal aquifer tor management, uniqueness of coastal water resources.	8 Hrs

Course	Course Outcomes: After completing the course, the students will be able to							
CO1	Discuss surface and ground water resources system and, human influences							
CO2	Integrate water resources system in arid and semi-arid regions and explain							
	watershed aquifer for management.							
CO3	Analyze water resources related issues for conservation and synthesize							
	augmentation of water resources							
CO4	Design integrated watershed management system							
CO5	Apply modern tools in watershed management							

Reference Books

1.	Murthy, J. V. S., "Watershed Management in India", New Age Publishers, New Delhi.							
	2nd Edition, 2017.							
2.	Singh Vir, Raj., "Watershed Planning and Management", Yash Publishing House,							
	Bikaner.3rd Revised Edition, 2016							
3.	"Decision Support System for Integrated Watershed Management", Colorad State							
	University. 2012.							
4.	"Decision Support System for Integrated Watershed Management", Colorad State							
	University. 2012.							

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	Semester: IV					
	Universal human values course					
		(Theory)				
Cou	rse Code: MVJ22UHV48		CIE Marks: 50			
Cred	lits: L:T:P: 1:0:0		SEE Marks: 50			
Hou	rs: 15L		SEE Duration: 3 Hrs.			
Cou	se Learning Objectives: The students	s will be able to				
1	Appreciate the essential complementarily between 'VALUES' and 'SKILLS' to ensure sustained happiness and prosperity which are the core aspirations of all human beings.					
2	Facilitate the development of a Holistic perspective among students towards life and profession as well as towards happiness and prosperity based on a correct understanding of the Human reality and the rest of existence. Such a holistic perspective forms the basis of Universal Human Values and movement towards value-based living in a natural way.					
3			rstanding in terms of ethical human r and mutually enriching interaction			

UNIT-I	L1,L2
Introduction to Value Education: Right Understanding, Relationship and Physical	3 Hrs
Facility (Holistic Development and the Role of Education), Understanding Value	2 112
Education, Self-exploration as the Process for Value Education, Continuous	
Happiness and Prosperity – the Basic Human Aspirations, Happiness and Prosperity –	
Current Scenario, Method to Fulfill the Basic Human Aspirations.	
Practical Sessions: (1) Sharing about Oneself (2) Exploring Human Consciousness (3)	
Exploring Natural Acceptance.	
Video link:	
 https://www.youtube.com/watch?v=85XCw8SU084 	
 https://www.youtube.com/watch?v=E1STJoXCXUU&list=PLWDeKF97v9SP_Kt6jq 	
zA3p Z3yA7g_OAQz	
 https://www.youtube.com/channel/UCQxWr5QB_eZUnwxSwxXEkQw 	
UNIT-II	L1,L2
Harmony in the Human Being: Understanding Human being as the Co-existence of	3 Hrs
the Self and the Body, Distinguishing between the Needs of the Self and the Body, The	
Body as an Instrument of the Self, Understanding Harmony in the Self, Harmony of	
the Self with the Body, Programme to ensure self-regulation and Health.	
Practical Sessions : (4) Exploring the difference of Needs of Self and Body (5) Exploring	
Sources of Imagination in the Self (6) Exploring Harmony of Self with the Body	
Video link:	
 https://www.youtube.com/watch?v=GpuZo495F24 	
 https://www.youtube.com/channel/UCQxWr5QB_eZUnwxSwxXEkQw 	
UNIT-III	L1,L2
Harmony in the Family and Society: Harmony in the Family – the Basic Unit of Human	3 Hrs
Interaction, 'Trust' – the Foundational Value in Relationship, 'Respect' – as the Right	
Evaluation, Other Feelings, Justice in Human-to-Human Relationship, Understanding	
Harmony in the Society, Vision for the Universal Human Order.	
Practical Sessions: (7) Exploring the Feeling of Trust (8) Exploring the Feeling of	

Respect (9) Exploring Systems to fulfill Human Goal	
Respect (5) Exploring Systems to fullin Human Goal	
Video link:	l
 https://www.youtube.com/watch?v=F2KVW4WNnS 	
 https://www.youtube.com/channel/UCQxWr5QB_eZUnwxSwxXEkQw 	
	L1,L2
Harmony in the Nature/Existence: Understanding Harmony in the Nature,	3 Hrs
Interconnectedness, self-regulation and Mutual Fulfillment among the Four Orders of	
Nature, Realizing Existence as Co-existence at All Levels, The Holistic Perception of	1
Harmony in Existence.	1
Practical Sessions : (10) Exploring the Four Orders of Nature (11) Exploring Co-	1
existence in Existence	l
	1
Video link:	l
 https://www.youtube.com/watch?v=1HR-QB2mCF0 	l
 https://www.youtube.com/watch?v=lfN8q0xUSpw 	
 https://www.youtube.com/channel/UCQxWr5QB_eZUnwxSwxXEkQw 	
UNIT-V	L1,L2
Implications of the Holistic Understanding – a Look at Professional Ethics: Natural	3 Hrs
Acceptance of Human Values, Definitiveness of (Ethical) Human Conduct, A Basis for	1
Humanistic Education, Humanistic Constitution and Universal Human Order,	1
Competence in Professional Ethics, Holistic Technologies, Production Systems and	1
Management Models-Typical Case Studies, Strategies for Transition towards Value-	l
based Life and Profession	1
Practical Sessions: (12) Exploring Ethical Human Conduct (13) Exploring Humanistic	l
Models in Education (14) Exploring Steps of Transition towards Universal Human	1
Order	l
	1
Video link:	1
 https://www.youtube.com/watch?v=BikdYub6RY0 	l
 https://www.youtube.com/channel/UCQxWr5QB_eZUnwxSwxXEkQw 	

Course	Course Outcomes: After completing the course, the students will be able to				
CO1	Explore themselves, get comfortable with each other and with the teacher				
CO2	Enlist their desires and the desires are not vague.				
CO3	Restate that the natural acceptance (intention) is always for living in harmony, only				
	competence is lacking				
CO4	Differentiate between the characteristics and activities of different orders and study the				
	mutual fulfillment among them				
CO5	Present sustainable solutions to the problems in society and nature				

Reference Books									
1.	AICTE	SIP	UHV-I	Teaching	Material,	https://fdp-s	si.aicte	india.org	/ AicteSipUHV
	_download.php								
2.	A Foun	datio	n Course	in Human	Values and	Professional	Ethics, F	R R Gaur,	R Asthana, G P

	Bagaria, 2nd Revised Edition, Excel Books, New Delhi, 2019. ISBN 978-93-87034-47-1
3.	Teachers' Manual for A Foundation Course in Human Values and Professional Ethics, R R
	Gaur, R Asthana, G P Bagaria, 2nd Revised Edition, Excel Books, New Delhi, 2019. ISBN 978-
	93-87034-53-2
4.	Human Values and Professional Ethics by R R Gaur, R Sangal, G P Bagaria, Excel Books, New
	Delhi, 2010

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Semester: IV			
	Additional Mathematics-II		
	(Comn	non to all branches)	
Cour	rse Code:	MVJ22MATDIP-2	CIE Marks:50
Cred	Credits: L:T:P:S: 3:0:0:0 SEE Marks: 50		SEE Marks: 50
Hou	Hours: 30L SEE Duration: 3 Hrs		
Cour	se Learning Objectives: The stude	nts will be able to	
1	1 To familiarize the important concepts of linear algebra.		
2	2 Aims to provide essential concepts differential calculus, beta and gamma functions.		
3	Introductory concepts of three-dimensional geometry along with methods to solve		along with methods to solve
5	them.		
4	4 Linear differential equations		
5	5 Formation of partial differential equations.		

UNIT-I

Linear Algebra: Introduction - Rank of matrix by elementary row operations -	8 Hrs
Echelon form. Consistency of system of linear equations - Gauss elimination	
Echelon form. Consistency of system of inical equations Gauss chirination	
weither de Finnen all an and air an anterna of a second state. Disconding the offer	
method. Eigen values and eigen vectors of a square matrix. Diagonalization of a	
5 5	
square matrix of order two.	
square matrix of order two.	

UNIT-II	
Differential calculus: Indeterminate forms: L-Hospital rule (without proof), Total derivatives, and Composite functions. Maxima and minima for a function of two variables. Beta and Gamma functions: Beta and Gamma functions, Relation between Beta	8Hrs
and Gamma function-simple problems.	
UNIT-III	
Analytical solid geometry : Introduction –Directional cosine and Directional ratio of a line, Equation of line in space- different forms, Angle between two line, shortest distance between two line, plane and equation of plane in different forms and problems.	8Hrs
UNIT-IV	
Differential Equations of higher order: Linear differential equations of second and higher order equations with constant coefficients. Inverse Differential operator, Operators methods for finding particular integrals, and Euler – Cauchy equation.	8 Hrs
UNIT-V	
Partial differential equation: Introduction- Classification of partial differential equations, formation of partial differential equations. Method of elimination of arbitrary constants and functions. Solutions of non-homogeneous partial differential equations by direct integration. Solution of Lagrange's linear PDE.	8 Hrs

Course	Course Outcomes: After completing the course, the students will be able to	
CO1	Make use of matrix theory for solving system of linear equations and compute	
	eigenvalues and eigen vectors required for matrix diagonalization process.	
CO2	Learn the notion of partial differentiation to calculate rates of change of	
	multivariate functions and solve problems related to composite functions and	
	Jacobians.	
CO3	Understand the Three-Dimensional geometry basic, Equation of line in space-	
	different	
	forms, Angle between two line and studying the shortest distance .	
CO4	Demonstrate various physical models through higher order differential equations	
	and solve such linear ordinary differential equations.	
CO5	Construct a variety of partial differential equations and solution by exact methods.	

Ref	erence Books
1	B.S. Grewal, "Higher Engineering Mathematics" Khanna Publishers, 43rd Edition, 2013.
2.	Erwin Kreyszig, "Advanced Engineering Mathematics", Wiley-India publishers, 10th
	edition,2014.
3.	Ramana B. V., "Higher Engineering Mathematics", Tata Mc Graw-Hill, 2006.
4.	Bali N. P. & Manish Goyal, "A text book of Engineering Mathematics", Laxmi
	Publications, 8th Edition.

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The

number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

presence

Semester: V				
Construction Management and				
	Entrep	reneurs	nip	
	Ē,	Sheory)	-	
Co	ourse		CIE Mark	5:
Co	ode:MVJ22CV51		50	
Cr	edits: L:T:P:		SEE Mark	s:
3:	0:0		50	
H	ours: 40L		SEE	
			Duration: 3	3
			Hrs.	
	ourse Learning Ob	jectives: T	he students	6
XX	ill be able to			
To understand the concept of Schedulin		-		
1 and cost management in construction		ion		
	project			
2 To go throu			•	and
	regulatory requirements in construction			
3 To explain the concept of pr		f procurem	ent	
	and contract management			
4	To understand Quality and Safety during			
	construction.			
5	To identify	the ris	ks and	its

4
management

	UNIT-	Ľ		L1,L 2
Planning	and	Sch	eduling:	SH r
Construction	1 project	formu	lation –	s
construction	manag	ement,	define	
scope – scop	e manago	ement,	types of	
project plann	ing and i	ts mana	igement,	
Statutory	and	re	gulatory	
requirement	s- layout	and	building	
plan approv	al, cont	ract, F	ire and	
Safety, Qu	ality, l	Enviror	ımental,	
commencem	ent certif	ficate, lo	egal and	
public policie	es.			
Schedule ma	anagemei	1t – W)	BS, Bar	
Charts, Sequ	encing a	nd Depe	endency,	
Network	Diagra	n,	Activity	
Duration,	Critical	Path	Method,	
PERT , Cases	study.			
Cost Mana	agement	-	Creating	
schedules,	Assignin	lg Re	sources,	
Cost, Evalua	ation, Op	timizat	ion and	

Tracking.	
 Video link / Additional online information: (Self Learning) Construction planning and management: nptel.ac.in/courses/105/103/1051 03093/ 	
UNIT-II	L1,L 2
Resourcemanagement:Basicconceptsofresourcemanagement,classoflabour,Wages & statutoryrequirement,LaborProductionrateorProductivity,Factorsaffectinglabouroutputorproductivity.ConstructionEquipment-classificationofconstructionequipment,estimationofproductivityfor:excavator,dozer,compactors,graders,andmaintenancecost,operationalandmaintenanceconstructionequipmentandbasicconcept on equipmentandbasicconcept on equipmentandbasicconcept on equipmentandbasicconcept on equipmentandbasicconcept on equipmentandbasicconcept on equipmentandbasicconstructionmaintenanceVideolink/Additionalonlineinformation:(Self Learning)•Principles of constructionmanagement:nptel.ac.in/courses/105/103/105103093/	8 Hrs
UNIT-III	L1,L 2
Contract and Procurement	8
management: Procurement –	Hrs
procurement types, planning, stages – procurement execution – sustainable	
procurement execution – sustainable procurement management	
Construction contract –formation,	
types, essential elements, contract	
law – tendering process- contract award – Documentation – contractor and sub-contractor management –	

claims – disputes- compensation – breach of contract – project completion and project closure	
UNIT-IV	L1,L 2
Quality,SafetyandRiskManagement:QualityManagement -OccupationalHealth,SafetyandEnvironment,Barriers,QualityManagementSystem -Chartandtools.Safetymanagement -safetyrequirements,SafetyandHealthcodes.SafetyandHealthcodes.Identification,AnalysisandResponseStrategyCompletioncertificate,occupancycertificate,Facilitiesmanagement	8 Hrs
UNIT-Y	L1,L 2
Introduction to Entrepreneurship: Characteristics of a Successful Entrepreneur, Understand the entrepreneurial journey, different entrepreneurial styles, personality traits, strengths, and weaknesses. 5M Model, Communication skills: communication breakdown- miscommunication and poor listening, rectification. Business Planning Process: Business planning process; marketing plan, financial plan, project report and feasibility study, guidelines for preparation of model project report for starting a new venture. Introduction to international entrepreneurship opportunities, entry into international business, exporting, direct foreign investment, venture capital.	8 Hrs

information: (Self Learning)

 Entrepreneurship: nptel.ac.in/courses/110/106/110 106141/

	Course Outcomes: After completing the course, the students will be able to	
CO1	Develop WBS and estimate the resource requirements	
CO 2	Analyse the cost control monitoring and accounting methods for a project	
CO3	Understand the Statutory and legal requirements for a construction	
CO4	Prepare the plan for procurement management and Risk mitigation.	
CO 5	Understand the concept of entrepreneurship and business planning.	

Re	ference Books
1.	Chitkara, K.K, "Construction Project Management: Planning Scheduling and Control", Tata McGraw Hill Publishing Company, New Delhi.
2.	Dr. U.K. Shrivastava "Construction Planning and Management", Galgotia Publications Pvt. Ltd. New Delhi
3.	EngineeringEconomics,RPanneerselvam,EasternEconomyEdition 2001, PHI, ISBN - 81- 203-1743-2.
4.	Cost Accounting, Khan M Y, 2nd Edition, 2000, Tata McGraw-Hill, ISBN 0070402248
5.	Mechanical Estimating & Costing, T.R.Banga, S.C.Sharma, 16th Edition, 2011, Khanna Publishers, ISBN 8174091009
6.	PoornimaM.Charantimath,"EntrepreneurshipDevelopmentandSmallBusinessEnterprise",DorlingKindersley (India)Pvt. Ltd., Licensees ofPearson education.

Continuous Internal Evaluation (CIE): Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marksare executed by means of an examination.

The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomylevel.

	Semester: V		
Engineering Geology and Geo-			
	Informatics		
	(Theory and Practic	e)	
C	Course Code: MVJ22CV52 CIE Marks		
		50	
Credits: L:T:P: 3:0:2 SEE		SEE	
		Marks: 50	
Hours: 40L+26P		SEE	
		Duration: 3	
		Hrs.	
	ourse Learning Objectives: Th	ne students	
XX.	ill be able to		
	To inculcate the important		
1	interior and application of		
	civil engineering in G		
	mitigation and management		
	To create awareness a	U	
2	engineers regarding the r earth	resources oi	
	To provide knowledge of Geology and its importance:	-	
	the physical character of		
З	cause rocks suitable or u		
	different civil engineering		
	as Dams, bridges, tunnels an	-	
		and water	
	management regarding		
4	geological formations, . To		
	concept of rain water harves		
	To understand the application	on of Remote	
	Sensing and GIS, Natural		
5		vironmental	
	awareness. To under		
	subsurface using geospatial		
	To provide decision sup		
e	nature of the basic raw mate		
6	construction. To provid support on Lithological cha		
	support on Lithological cha subsurface conditions	arautrs and	
	To describe various geologic	cal mans and	
7	interpretation of geologic		
-	mining and subsurface inves		
L			

UNIT-I	L1,L2,L3
Introduction, the scope of earth	8 Hrs

science in Engineering. Earth's	
internal structure and	
composition, internal dynamics	
and Plate tectonics, Earthquakes -	
types, causes, so-seismic lines,	
seismic zonation, seismic proof	
structures. Volcanic eruption -	
types, causes. Landslides-causes	
types, preventive measures;	
Tsunami – causes, consequences,	
mitigation. Cyclones - causes and	
management.	
UNIT-II	L1,L2,L3
Earth Materials in Construction	8 Hrs
Minerals -Industrial, rock-	
forming and ore minerals.	
Physical properties, composition.	
Rocks Types, structure/Texture,	
mineral composition occurrence,	
properties. Decorative	
(facing/polishing), railway	
ballast, rocks for masonry work,	
monumental/architecture,	
Dressing of stones, Requirement	
Dressing of stones, Requirement	L1,L2,L3
Dressing of stones, Requirement of good building stones.	L1,L2,L3 8 Hrs
Dressing of stones, Requirement of good building stones. UNIT-III	
Dressing of stones, Requirement of good building stones. UNIT-III Earth Surface process and	
Dressing of stones, Requirement of good building stones. UNIT-III Earth Surface process and Resources Weathering, type,	
Dressing of stones, Requirement of good building stones. UNIT-III Earth Surface process and Resources Weathering, type, causes, soil insitu, drifted soil,	
Dressing of stones, Requirement of good building stones. UNIT-III Earth Surface process and Resources Weathering, type, causes, soil insitu, drifted soil, soil profile, soil mineralogy,	
Dressing of stones, Requirement of good building stones. UNIT-III Earth Surface process and Resources Weathering, type, causes, soil insitu, drifted soil, soil profile, soil mineralogy, structure, types of soil, Black	
Dressing of stones, Requirement of good building stones. UNIT-III Earth Surface process and Resources Weathering, type, causes, soil insitu, drifted soil, soil profile, soil mineralogy, structure, types of soil, Black cotton soil v/s Lateritic soil;	
Dressing of stones, Requirement of good building stones. UNIT-III Earth Surface process and Resources Weathering, type, causes, soil insitu, drifted soil, soil profile, soil mineralogy, structure, types of soil, Black cotton soil v/s Lateritic soil; effects of weathering on	
Dressing of stones, Requirement of good building stones. UNIT-III Earth Surface process and Resources Weathering, type, causes, soil insitu, drifted soil, soil profile, soil mineralogy, structure, types of soil, Black cotton soil v/s Lateritic soil; effects of weathering on monumental rocks. Soil Horizon,	
Dressing of stones, Requirement of good building stones. UNIT-III Earth Surface process and Resources Weathering, type, causes, soil insitu, drifted soil, soil profile, soil mineralogy, structure, types of soil, Black cotton soil v/s Lateritic soil; effects of weathering on monumental rocks. Soil Horizon, Soil Classification by Grain Size.	8 Hrs
Dressing of stones, Requirement of good building stones. UNIT-III Earth Surface process and Resources Weathering, type, causes, soil insitu, drifted soil, soil profile, soil mineralogy, structure, types of soil, Black cotton soil v/s Lateritic soil; effects of weathering on monumental rocks. Soil Horizon, Soil Classification by Grain Size. UNIT-IY	8 Hrs L1,L2,L3
Dressing of stones, Requirement of good building stones. UNIT-III Earth Surface process and Resources Weathering, type, causes, soil insitu, drifted soil, soil profile, soil mineralogy, structure, types of soil, Black cotton soil v/s Lateritic soil; effects of weathering on monumental rocks. Soil Horizon, Soil Classification by Grain Size. UNIT-IY Surface and sub investigation	8 Hrs L1,L2,L3
Dressing of stones, Requirement of good building stones. UNIT-III Earth Surface process and Resources Weathering, type, causes, soil insitu, drifted soil, soil profile, soil mineralogy, structure, types of soil, Black cotton soil v/s Lateritic soil; effects of weathering on monumental rocks. Soil Horizon, Soil Classification by Grain Size. UNIT-IV Surface and sub investigation for deep foundation, Dip and	8 Hrs L1,L2,L3
Dressing of stones, Requirement of good building stones. UNIT-III Earth Surface process and Resources Weathering, type, causes, soil insitu, drifted soil, soil profile, soil mineralogy, structure, types of soil, Black cotton soil v/s Lateritic soil; effects of weathering on monumental rocks. Soil Horizon, Soil Classification by Grain Size. UNIT-IV Surface and sub investigation for deep foundation, Dip and strike, and outcrop problems	8 Hrs L1,L2,L3
Dressing of stones, Requirement of good building stones. UNIT-III Earth Surface process and Resources Weathering, type, causes, soil insitu, drifted soil, soil profile, soil mineralogy, structure, types of soil, Black cotton soil v/s Lateritic soil; effects of weathering on monumental rocks. Soil Horizon, Soil Classification by Grain Size. UNIT-IV Surface and sub investigation for deep foundation, Dip and strike, and outcrop problems (numerical problem	8 Hrs L1,L2,L3
Dressing of stones, Requirement of good building stones. UNIT-III Earth Surface process and Resources Weathering, type, causes, soil insitu, drifted soil, soil profile, soil mineralogy, structure, types of soil, Black cotton soil v/s Lateritic soil; effects of weathering on monumental rocks. Soil Horizon, Soil Classification by Grain Size. UNIT-IY Surface and sub investigation for deep foundation, Dip and strike, and outcrop problems (numerical problem geometrical/ simple	8 Hrs L1,L2,L3
Dressing of stones, Requirement of good building stones. UNIT-III Earth Surface process and Resources Weathering, type, causes, soil insitu, drifted soil, soil profile, soil mineralogy, structure, types of soil, Black cotton soil v/s Lateritic soil; effects of weathering on monumental rocks. Soil Horizon, Soil Classification by Grain Size. UNIT-IV Surface and sub investigation for deep foundation, Dip and strike, and outcrop problems (numerical problem geometrical/ simple trigonometry based), Borehole	8 Hrs L1,L2,L3
Dressing of stones, Requirement of good building stones. UNIT-III Earth Surface process and Resources Weathering, type, causes, soil insitu, drifted soil, soil profile, soil mineralogy, structure, types of soil, Black cotton soil v/s Lateritic soil; effects of weathering on monumental rocks. Soil Horizon, Soil Classification by Grain Size. UNIT-IV Surface and sub investigation for deep foundation, Dip and strike, and outcrop problems (numerical problem geometrical/ simple trigonometry based), Borehole data(and problems), Faults,	8 Hrs L1,L2,L3
Dressing of stones, Requirement of good building stones. UNIT-III Earth Surface process and Resources Weathering, type, causes, soil insitu, drifted soil, soil profile, soil mineralogy, structure, types of soil, Black cotton soil v/s Lateritic soil; effects of weathering on monumental rocks. Soil Horizon, Soil Classification by Grain Size. UNIT-IV Surface and sub investigation for deep foundation, Dip and strike, and outcrop problems (numerical problem geometrical/ simple trigonometry based), Borehole data(and problems), Faults, folds, unconformity, joints,	8 Hrs L1,L2,L3

maios	ta lilza turnal project dam	
	ts like tunnel project, dam	
projec	ct, Reservoir site.	
	UNIT-Y	L1,L2,L3
	ce and sub investigation for	S Hrs
-	oundation Dip and strike,	
and or	tcrop problems(numerical	
problem geometrical/ simple		
trigon	ometry based), Borehole	
data(a	nd problems), Faults,	
folds,	unconformity, joints, types,	
recogn	ition and their	
signifi	cance in Civil engineering	
	ts like tunnel project, dam	
	t, Reservoir site,.	
	· · · · · · · · · · · · · · · · · · ·	
Sl.NO	Experiments	
1	Identification of common	minerals
	based on Physical Properties	
	Identification of rocks used	in building
2	construction based on	Physical
	properties	
3	Solving Geological maps for	suitability
	for aqua duct	
4	Geological maps with incl	ined beds,
_	suitability for tunnels/ Dams	
5	5 Geological maps with folds,	in tunnels/
	Dams	
6	Geological maps with unconf	ormity , in
	tunnel/dam project	0 14
7	3 1	faults in
	Dams/tunnels project	
8	One Day Nearest Field	eld Visit
	Investigation.	

	Course Outcomes: After completing the course, the students will be able to		
CO1	Apply geological knowledge in different civil engineering practice.		
CO 2	Acquire knowledge on durability and competence of foundation rocks, and will be able to use the best building materials.		
CO3	Students will become competent enough for the safety, stability, economy and life of the structures that they construct		
CO4	Able to solve various issues related to ground water exploration, build up dams, bridges, tunnels which are often confronted with ground water problems		

CO 5	Students will become Intelligent enough to
	apply GIS, GPS and remote sensing as a
	latest tool in different civil engineering for
	safe and solid construction.

Re	ference Books
З.	Engineering Geology, by Parthasarathy et al, Wiley publications
4.	A textbook of Engineering Geology by ChennaKesavulu, Mac Millan India Ltd
З.	Principle of Engineering Geology, by K.M. Bangar, Standard publishers
4.	Physical and Engineering Geology, by S.K. Garg, Khanna publishers
5.	Principles of Engineering Geology, by KVGK Gokhale, BS Publications
6.	Introduction to Environmental Geology by Edward A Keller, Pearson publications.
7.	Engineering Geology and Rock Mechanics B. P. Verma, Khanna publishers
8.	Principles of Engineering Geology and Geotechnics, Krynine and Judd, CBS Publications

Continuous Internal Evaluation (CIE): Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional guizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Laboratory- 50 Marks

The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of weeks is considered for **30** marks. At the end of the semester a test is conducted for **10** marks. The students are encouraged to implement additional innovative experiments in the lab and are awarded **10** marks. Total marks for the laboratory is **50**.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomylevel.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

	Semester: V	
Concrete Technology		
(Theory and Practice)		
C	ourse Code: MVJ22CV53	CIE Marks:
		50
C	redits: L:T:P: 3:0:2	SEE
Marks: 50		Marks: 50
Hours: 40L+26P SEE		SEE
		Duration: 3
		Hrs.
	ourse Learning Objectives: 7 ill be able to	The students
	To recognize material char	acterization
1	of ingredients of concrete a	nd its
	influence on properties of c	concrete
2	To study the properties of fresh concrete	
	and hardened concrete	

	and hat der	ieu conci e			
	Proportion	n ingredier	nts of Co	ncre	ete to
З	arrive at m	ost desira	ble mec	hani	cal
	properties	of Concret	te.		
	Ascertain	various	types	of	specia

4 Ascertain various types of special concrete with their properties.

UNIT-I	L1,L2,L 3
Concrete Ingredients	8 Hrs
Cement manufacturing process,	
chemical composition and their	
importance, hydration of cement,	
types of cement. Testing of cement,	
steps to reduce carbon footprint.	
Fine aggregate: Functions,	
requirement, Alternatives to River	
sand, M-sand introduction, and	
manufacturing. Coarse aggregate:	
Importance of size, shape and	
texture. Grading and blending of	
aggregate. Testing on aggregate,	
requirement. Recycled aggregates	
Water – qualities of water.	
Chemical admixtures –	
plasticizers, accelerators,	
retarders, and air entraining	
agents. Mineral admixtures –	
Pozzolanic and cementitious	
materials, Fly ash, GGBS, silica	

fumes, Metakaolin and rice husk	
ash.	
https://nptel.ac.in/courses/105102 012	
UNIT-II	L1,L2,L
	3
Fresh Concrete	8 Hrs
Factors affecting workability.	
Measurement of workability-	
slump, Compaction factor and Vee-	
Bee Consistometer tests, flow tests. Segregation and bleeding. Process	
of manufacturing of concrete-	
Batching, Mixing, Transporting,	
Placing and Compaction. Curing -	
Methods of curing – Water curing,	
membrane curing, steam curing,	
accelerated curing, self- curing.	
Good and Bad practices of making	
and using fresh concrete and Effect	
of heat of hydration during mass	
concreting at project sites. UNIT-III	TITOT
UNIT-III	L1,L2,L 3
Hardened Concrete	S Hrs
Hardened Concrete Factors influencing strength, W/C	8 Hrs
Hardened Concrete Factors influencing strength, W/C ratio, gel/space ratio, Maturity	S Hrs
Factors influencing strength, W/C	8 Hrs
Factors influencing strength, W/C ratio, gel/space ratio, Maturity concept, testing of hardened concrete, Creep –factors affecting	8 Hrs
Factors influencing strength, W/C ratio, gel/space ratio, Maturity concept, testing of hardened concrete, Creep –factors affecting creep. Shrinkage of concrete –	S Hrs
Factors influencing strength, W/C ratio, gel/space ratio, Maturity concept, testing of hardened concrete, Creep –factors affecting creep. Shrinkage of concrete – plastic shrinking and drying	8 Hrs
Factors influencing strength, W/C ratio, gel/space ratio, Maturity concept, testing of hardened concrete, Creep –factors affecting creep. Shrinkage of concrete – plastic shrinking and drying shrinkage, Factors affecting	8 Hrs
Factors influencing strength, W/C ratio, gel/space ratio, Maturity concept, testing of hardened concrete, Creep –factors affecting creep. Shrinkage of concrete – plastic shrinking and drying shrinkage, Factors affecting shrinkage. Definition and	8 Hrs
Factors influencing strength, W/C ratio, gel/space ratio, Maturity concept, testing of hardened concrete, Creep –factors affecting creep. Shrinkage of concrete – plastic shrinking and drying shrinkage, Factors affecting shrinkage. Definition and significance of durability. Internal	8 Hrs
Factors influencing strength, W/C ratio, gel/space ratio, Maturity concept, testing of hardened concrete, Creep –factors affecting creep. Shrinkage of concrete – plastic shrinking and drying shrinkage, Factors affecting shrinkage. Definition and significance of durability. Internal and external factors influencing	8 Hrs
Factors influencing strength, W/C ratio, gel/space ratio, Maturity concept, testing of hardened concrete, Creep –factors affecting creep. Shrinkage of concrete – plastic shrinking and drying shrinkage, Factors affecting shrinkage. Definition and significance of durability. Internal	8 Hrs
Factors influencing strength, W/C ratio, gel/space ratio, Maturity concept, testing of hardened concrete, Creep –factors affecting creep. Shrinkage of concrete – plastic shrinking and drying shrinkage, Factors affecting shrinkage. Definition and significance of durability. Internal and external factors influencing durability, Mechanisms- Sulphate	8 Hrs
Factors influencing strength, W/C ratio, gel/space ratio, Maturity concept, testing of hardened concrete, Creep -factors affecting creep. Shrinkage of concrete – plastic shrinking and drying shrinkage, Factors affecting shrinkage. Definition and significance of durability. Internal and external factors influencing durability, Mechanisms- Sulphate attack – chloride attack, carbonation, freezing and thawing. Corrosion, Durability	8 Hrs
Factors influencing strength, W/C ratio, gel/space ratio, Maturity concept, testing of hardened concrete, Creep -factors affecting creep. Shrinkage of concrete – plastic shrinking and drying shrinkage, Factors affecting shrinkage. Definition and significance of durability. Internal and external factors influencing durability, Mechanisms- Sulphate attack – chloride attack, carbonation, freezing and thawing. Corrosion, Durability requirements as per IS-456, In	8 Hrs
Factors influencing strength, W/C ratio, gel/space ratio, Maturity concept, testing of hardened concrete, Creep –factors affecting creep. Shrinkage of concrete – plastic shrinking and drying shrinkage, Factors affecting shrinkage. Definition and significance of durability. Internal and external factors influencing durability, Mechanisms- Sulphate attack – chloride attack, carbonation, freezing and thawing. Corrosion, Durability requirements as per IS-456, In situ testing of concrete-	8 Hrs
Factors influencing strength, W/C ratio, gel/space ratio, Maturity concept, testing of hardened concrete, Creep -factors affecting creep. Shrinkage of concrete – plastic shrinking and drying shrinkage, Factors affecting shrinkage. Definition and significance of durability. Internal and external factors influencing durability, Mechanisms- Sulphate attack – chloride attack, carbonation, freezing and thawing. Corrosion, Durability requirements as per IS-456, In situ testing of concrete- Penetration and pull-out test,	8 Hrs
Factors influencing strength, W/C ratio, gel/space ratio, Maturity concept, testing of hardened concrete, Creep -factors affecting creep. Shrinkage of concrete – plastic shrinking and drying shrinkage, Factors affecting shrinkage. Definition and significance of durability. Internal and external factors influencing durability, Mechanisms- Sulphate attack – chloride attack, carbonation, freezing and thawing. Corrosion, Durability requirements as per IS-456, In situ testing of concrete- Penetration and pull-out test, rebound hammer test, ultrasonic	8 Hrs
Factors influencing strength, W/C ratio, gel/space ratio, Maturity concept, testing of hardened concrete, Creep -factors affecting creep. Shrinkage of concrete – plastic shrinking and drying shrinkage, Factors affecting shrinkage. Definition and significance of durability. Internal and external factors influencing durability, Mechanisms- Sulphate attack – chloride attack, carbonation, freezing and thawing. Corrosion, Durability requirements as per IS-456, In situ testing of concrete- Penetration and pull-out test, rebound hammer test, ultrasonic pulse velocity, core extraction –	8 Hrs
Factors influencing strength, W/C ratio, gel/space ratio, Maturity concept, testing of hardened concrete, Creep -factors affecting creep. Shrinkage of concrete – plastic shrinking and drying shrinkage, Factors affecting shrinkage. Definition and significance of durability. Internal and external factors influencing durability, Mechanisms- Sulphate attack – chloride attack, carbonation, freezing and thawing. Corrosion, Durability requirements as per IS-456, In situ testing of concrete- Penetration and pull-out test, rebound hammer test, ultrasonic pulse velocity, core extraction – Principal, applications and	8 Hrs
Factors influencing strength, W/C ratio, gel/space ratio, Maturity concept, testing of hardened concrete, Creep -factors affecting creep. Shrinkage of concrete – plastic shrinking and drying shrinkage, Factors affecting shrinkage. Definition and significance of durability. Internal and external factors influencing durability, Mechanisms- Sulphate attack – chloride attack, carbonation, freezing and thawing. Corrosion, Durability requirements as per IS-456, In situ testing of concrete- Penetration and pull-out test, rebound hammer test, ultrasonic pulse velocity, core extraction –	8 Hrs 1,12,1

		3	
Prince Parati influe of Mi admit prope condi ingre Proce Nume	rete Mix Design ciples of concrete mix design, meters and factors encing mix design, Concept ix Design with and without xtures, variables in ortioning and Exposure tions, Selection criteria of dients used for mix design, edure of mix proportioning. erical Examples of Mix	3 S Hrs	
_	ortioning using IS- 2:2 019 .		
	<u>UNIT-Y</u>	L1,L2,L 3	
RMC requi RMC and Comp mater applie reinfe fibres FRC. mater Typic prope mater prope	3Special ConcretesS HrsRMC-manufactureandrequirementasperQCI-RMCPCS, properties, advantages,anddisadvantages.Self-Compactingconcrete-compactingconcrete-compactingconcrete-gplicationand typical mix Fiberreinforcedconcrete -typesoffibres, properties, application ofFRC.Lightweightconcrete-materialpropertiesandapplications,materials,requirements,proportionandapplications,materials,requirements,proportion andproperties ofgootymerConcrete,HighStrengthConcreteandHigh-Performance		
Sl.N	Experiments		
0	Tosting of concerts Com		
1	fineness, setting time,	sistency,	
2	Specific Gravity, Soundnestrength of cement		
3	Testing of fine aggregate: Gravity, sieve analysis and bulking of fine	l zoning,	
4	aggregate, bulk density, silt co	ntent.	

5	Testing of coarse aggregate: Specific Gravity, sieve analysis, bulk density, flakiness index,	
6	elongation index, water absorption & moisture content, soundness of aggregate.	
7	Concrete Mix design by IS code method as per 10262- 2019 & 456- 2000, DOE method.	
8	Demonstration of Testing of concrete cube of specified strength	
9	Demonstration of Testing of concrete beam for pure bending	

Course Outcomes: After completing the course, the students will be able to

course, the students will be able to		
CO1	Relate material characteristics and their influence on microstructure of concrete.	
CO 2	Distinguish concrete behaviour based on its fresh and hardened properties.	
CO3	Illustrate proportioning of different types of concrete mixes for required fresh and hardened properties using professional codes.	
CO4	Select a suitable type of concrete based on specific application.	

Reference Books

1.	M.S. Shetty, Concrete Technology - Theory and Practice Published by S. Chand and Company, New Delhi.	
2.	A.R. Santha Kumar, "Concrete Technology", Oxford Un iversity Press, New Delhi (NewEdition).	
З.	Neville A.M. "Properties of Concrete"-4th Ed., Longman.	
4.	Kumar Mehta. P and Paulo J.M. Monteiro "Concrete-Microstructure, Property and Materials", 4th Edition, McGraw Hill Education, 2014	

Continuous Internal Evaluation (CIE): Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Laboratory- 50 Marks

The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of weeks is considered for **30** marks. At the end of the semester a test is conducted for **10** marks. The students are encouraged to implement additional innovative experiments in the lab and are awarded **10** marks. Total marks for the laboratory is **50**.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory-50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

Semester: V		
Environmental Engineering Lab		
(Practice)		
Course Code: MVJ22CVL54	CIE Marks :	
	50	
Credits: L:T:P: 0:0:2	SEE	
	Marks: 50	
Hours: 26P	SEE	
	Duration: 3	
	Hrs.	

Course Learning Objectives: The students will be able to

1	To learn different methods of water &			
	waste water quality			
	To conduct own oning onto to determine the			

To conduct experiments to dete			eterm	ermine the		
	2	concentrations	of	water	and	waste
		water				

9	То	determine atment	the	degree	and	type	of
5	trea	atment					

To understand the environmental4significance and application inenvironmental engineering practice.

S1.NO	Experiments L3,L4	
1	Determination of Ph and Turbidity.	
2	Determination of Acidity and Alkalinity	
3	Determination of Calcium, Magnesium and Total Hardness	
4	Determination of Dissolved Oxygen	
5	Determination of BOD.	
6	Determination of Chlorides	
7	Determination of percentage of % of available chlorine in bleaching powder sample, Determination of Residual Chlorine and chlorine demand.	
8	Determination of Solids in Sewage: i) Total Solids, ii) Suspended Solids, iii) Dissolved Solids, iv) Volatile Solids, Fixed Solids v) Settleable Solids.	
9	Determination of optimum coagulant dosage using Jar test apparatus	
10	Determination Nitrates and Iron by spectrophotometer	
11	D etermination of	

	COD (Demonstration)			
12	Air Quality Monitoring			
	(Demonstration)			
	Determination of Sound by Sound			
13	level meter at different locations			
	(Demonstration)			

	Course Outcomes: After completing the course, the students will be able to			
CO1	Acquire capability to conduct experiments and estimate the concentration of different parameters.			
CO 2	Compare the result with standards and discuss based on the purpose of analysis.			
CO3	Determine type of treatment, degree of treatment for water and waste water.			
CO4	Identify the parameter to be analysed for the student project work in environmental stream.			

R	eference Books
1.	Garg, S.K., Sewage Disposal and Air Pollution Engineering, Khanna Publishers, 2008.
2	Wastewater Engineering Treatment and reuse, Metcalf and Eddy, Fourth edition, 2007, Tata McGraw-Hill Edition,
3	Environmental Engineering, Peavy, H.S., Rowe, D.R. and Tchobanoglous, G, 2013 McGraw Hill.

Continuous Internal Evaluation (CIE):

Laboratory- 50 Marks

The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of weeks is considered for **30** marks. At the end of the semester a test is conducted for **10** marks. The students are encouraged to implement additional innovative experiments in the lab and are awarded **10** marks. Total marks for the laboratory is **50**.

Semester End Examination (SEE):

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

Seme	ester: Y		
Numerical M	ethods in Civil		
Engir	neering		
(Th	eory)		
Course Code:	CIE		
MVJ21CV551 Marks:50			
Credits: L:T:P: SEE Marks:			
3:0:0 50			
Hours: 40L SEE			
	Duration: 03		
	Hrs		
Course Learning Objectives: The students will be able to			
1 To learn various n	1 To learn various numerical techniques.		
	2 To solve Numerical differentiation and integration problems.		
	echniques to solve civil		

a engineering problems.

UNIT-I	Ll,L
	2,L3
Historical development of Numerical	8
techniques:	Hrs
Role in investigations, research and	
design in the field of civil engineering	
development of algorithm/ flow charts	
for following methods for the solution of	
linear simultaneous equation- Gaussian	
elimination method, Gauss-Jordan	
matrix inversion method, Gauss-Siedel	
method and Factorization method.	
UNIT-II	L1,L
	2,L3
Development of algorithm for Bisection	8
method:	Hrs
Newton-Raphson method and its	
applications for solution of nonlinear	
algebraic and transcendental equations	
algebraic and transcendental equations from problems in hydraulics, irrigation	
algebraic and transcendental equations	
algebraic and transcendental equations from problems in hydraulics, irrigation	
algebraic and transcendental equations from problems in hydraulics, irrigation engineering, structural engineering and	Ll,L
algebraic and transcendental equations from problems in hydraulics, irrigation engineering, structural engineering and environmental engineering. UNIT-III	L1,L 2,L3
algebraic and transcendental equations from problems in hydraulics, irrigation engineering, structural engineering and environmental engineering. UNIT-III	-

Approximation of derivatives using interpolation polynomials – Numerical integration using Trapezoidal, Simpson's 1/3 rule – Romberg's Method – Two-point and three-point Gaussian quadrature formulae – Evaluation of double integrals by Trapezoidal and Simpson's 1/3 rules.	
Trapezoidal rule, Simpson's one-third	
and their application for computation of	
area of BMD drawn for statically	
determinate beams. 1/3rules.	
UNIT-IY	L1,L 2,L3
Development of algorithms and	8
differential equations:	Hrs
New Marks method for computation of	
slopes and deflections in statically	
determinate beams. Development of	
algorithm and application of solution of	
ordinary differential equation to civil	
engineering problems by Euler's method,	
Runge Kutta 4th order method	
UNIT-Y	L1,L 2,L3
Expression of derivatives by finite difference:	8 Hrs
Introduction, backward differences,	
forward differences, and central	
differences. Application of finite	
difference method for analysis of	
statically determinate beams, statically	
indeterminate beams, Buckling of columns, Beams on elastic foundation.	

Course Outcomes: After completing the course, the students will be able to				
CO1	To learn various numerical techniques.			
CO2	To solve Numerical differentiation and integration problems.			
CO3	Apply numerical techniques to solve civil engineering problems.			
CO4	To develop algorithms and differential equations to civil engineering problems.			

_

Ē

CO 5	Apply finite	difference	method for
	analysis of	statically	determinate
	structures.		

Re	ference Books
1.	Grewal. B.S. and Grewal. J.S., "Numerical methods in Engineering and Science", Khanna Publishers, 9th Edition, New Delhi
2.	Gerald. C. F., and Wheatley. P. O., "Applied Numerical Analysis", Pearson Education, Asia, 6th Edition, New Delhi.
З.	Chapra. S.C. and Canale. R. P., "Numerical Methods for Engineers, Tata McGraw Hill, New Delhi.
4.	Brian Bradie. "A friendly introduction to Numerical analysis", Pearson Education, Asia, New Delhi.
5.	Sankara Rao. K., "Numerical methods for Scientists and Engineers", Prentice Hall of India Private, New Delhi.

Continuous Internal Evaluation (CIE): Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional guizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE): Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	Semester: V		
	Occupational Safety and Health		
	Monitoring		
	(Theory)		
	Course Code: CIE Marks:		
	MVJ22CV552 50		
	redits: L:T:P: 0:0	SEE Marks: 50	
	ours: 40L	SEE	
		Duration: 3	
		Hrs.	
C	ourse Learning Ob	jectives: The students	
	ill be able to		
		rds in the workplace that	
1		threat to their safety or	
	health.		
		fe or unhealthy hazards	
2 and propose methods to		thods to eliminate the	
	hazard.		
З	3 To analysis a potential safety or health hazard		
	To Discuss role of health and safety in the		
_		ertaining to the	
4	-	of workers, managers,	
	supervisors.		
		ons required to maintain	
5	protection of the environment, workplace		
	as well as persona	l health and safety	

UNIT-I	L1,L2,L3
Occupational Hazard and	SHrs
Control Principles:	
Safety, History and development,	
National Safety Policy.	
Occupational safety and Health	
Act (OSHA), Occupational Health	
and Safety administration - Laws	
governing OSHA and right to	
know. Accident – causation,	
investigation, investigation plan,	
Methods of acquiring accident	
facts, Supervisory role in	
accident investigation.	
UNIT-II	L1,L2,L3
Ergonomics at Work Place:	8 Hrs
Ergonomics Task analysis,	

	-
Preventing Ergonomic Hazards ,	
Work space Envelops, Visual	
Ergonomics, Ergonomic	
Standards, Ergonomic	
Programs. Hazard cognition and	
Analysis, Human Error Analysis	
- Fault Tree Analysis -	
Emergency Response - Decision	
for action – purpose and	
considerations.	
considerations.	
UNIT-III	L1,L2,L3
Fire Prevention and Protection:	S Hrs
Fire Triangle, Fire Development	
and its severity, Effect of	
Enclosures, early detection of	
Fire, Classification of fire and	
Fire Extinguishers.	
Electrical Safety, Product Safety:	
Technical Requirements of	
Product safety.	
V	L1,L2,L3
UNIT-IV Health Considerations at Work	
Health Considerations at Work	
Health Considerations at Work Place:	
Health Considerations at Work Place: Types of diseases and their	
Health Considerations at Work Place: Types of diseases and their spread, Health Emergency.	
Health Considerations at Work Place: Types of diseases and their spread, Health Emergency. Personal Protective Equipment	
Health Considerations at Work Place: Types of diseases and their spread, Health Emergency. Personal Protective Equipment (PPE) – types and advantages,	
Health Considerations at Work Place: Types of diseases and their spread, Health Emergency. Personal Protective Equipment (PPE) – types and advantages, effects of exposure and treatment	
Health Considerations at Work Place: Types of diseases and their spread, Health Emergency. Personal Protective Equipment (PPE) – types and advantages, effects of exposure and treatment for engineering industries,	
Health Considerations at Work Place: Types of diseases and their spread, Health Emergency. Personal Protective Equipment (PPE) – types and advantages, effects of exposure and treatment for engineering industries, municipal solid waste.	
Health Considerations at Work Place: Types of diseases and their spread, Health Emergency. Personal Protective Equipment (PPE) – types and advantages, effects of exposure and treatment for engineering industries, municipal solid waste. Environment management plans	
Health Considerations at Work Place: Types of diseases and their spread, Health Emergency. Personal Protective Equipment (PPE) – types and advantages, effects of exposure and treatment for engineering industries, municipal solid waste. Environment management plans (EMP) for safety and	
Health Considerations at Work Place: Types of diseases and their spread, Health Emergency. Personal Protective Equipment (PPE) – types and advantages, effects of exposure and treatment for engineering industries, municipal solid waste. Environment management plans (EMP) for safety and sustainability.	8 Hrs
Health Considerations at Work Place: Types of diseases and their spread, Health Emergency. Personal Protective Equipment (PPE) – types and advantages, effects of exposure and treatment for engineering industries, municipal solid waste. Environment management plans (EMP) for safety and	
Health Considerations at Work Place: Types of diseases and their spread, Health Emergency. Personal Protective Equipment (PPE) – types and advantages, effects of exposure and treatment for engineering industries, municipal solid waste. Environment management plans (EMP) for safety and sustainability.	8 Hrs L1,L2,L3
Health Considerations at WorkPlace:Types of diseases and theirspread, Health Emergency.Personal Protective Equipment(PPE) - types and advantages,effects of exposure and treatmentfor engineering industries,municipal solid waste.Environment management plans(EMP) for safety andsustainability.	8 Hrs L1,L2,L3
Health Considerations at WorkPlace:Types of diseases and theirspread, Health Emergency.Personal Protective Equipment(PPE) - types and advantages,effects of exposure and treatmentfor engineering industries,municipal solid waste.Environment management plans(EMP) for safety andsustainability.UNIT-YOccupational Health and Safety	8 Hrs L1,L2,L3
Health Considerations at WorkPlace:Types of diseases and theirspread, Health Emergency.Personal Protective Equipment(PPE) - types and advantages,effects of exposure and treatmentfor engineering industries,municipal solid waste.Environment management plans(EMP) for safety andsustainability.UNIT-YOccupational Health and SafetyConsiderations:	8 Hrs L1,L2,L3
Health Considerations at WorkPlace:Types of diseases and theirspread, Health Emergency.Personal Protective Equipment(PPE) - types and advantages,effects of exposure and treatmentfor engineering industries,municipal solid waste.Environment management plans(EMP) for safety andsustainability.UNIT-YOccupational Health and SafetyConsiderations:Water and wastewater treatmentplants, Handling of chemical and	8 Hrs L1,L2,L3
Health Considerations at WorkPlace:Types of diseases and theirspread, Health Emergency.Personal Protective Equipment(PPE) - types and advantages,effects of exposure and treatmentfor engineering industries,municipal solid waste.Environment management plans(EMP) for safety andsustainability.UNIT-YOccupational Health and SafetyConsiderations:Water and wastewater treatmentplants, Handling of chemical andsafety measures in water and	8 Hrs L1,L2,L3
Health Considerations at WorkPlace:Types of diseases and theirspread, Health Emergency.Personal Protective Equipment(PPE) - types and advantages,effects of exposure and treatmentfor engineering industries,municipal solid waste.Environment management plans(EMP) for safety andsustainability.UNIT-YOccupational Health and SafetyConsiderations:Water and wastewater treatmentplants, Handling of chemical andsafety measures in water andwastewater treatment plants and	8 Hrs L1,L2,L3
Health Considerations at WorkPlace:Types of diseases and theirspread, Health Emergency.Personal Protective Equipment(PPE) - types and advantages,effects of exposure and treatmentfor engineering industries,municipal solid waste.Environment management plans(EMP) for safety andsustainability.UNIT-YOccupational Health and SafetyConsiderations:Water and wastewater treatmentplants, Handling of chemical andsafety measures in water andwastewater treatment plants andlabs, Construction material	8 Hrs L1,L2,L3
Health Considerations at WorkPlace:Types of diseases and theirspread, Health Emergency.Personal Protective Equipment(PPE) - types and advantages,effects of exposure and treatmentfor engineering industries,municipal solid waste.Environment management plans(EMP) for safety andsustainability.UNIT-YOccupational Health and SafetyConsiderations:Water and wastewater treatmentplants, Handling of chemical andsafety measures in water andwastewater treatment plants andlabs, Construction materialmanufacturing industries like	8 Hrs L1,L2,L3
Health Considerations at WorkPlace:Types of diseases and theirspread, Health Emergency.Personal Protective Equipment(PPE) - types and advantages,effects of exposure and treatmentfor engineering industries,municipal solid waste.Environment management plans(EMP) for safety andsustainability.UNIT-YOccupational Health and SafetyConsiderations:Water and wastewater treatmentplants, Handling of chemical andsafety measures in water andwastewater treatment plants andlabs, Construction materialmanufacturing industries likecement plants, RMC Plants,	8 Hrs L1,L2,L3
Health Considerations at WorkPlace:Types of diseases and theirspread, Health Emergency.Personal Protective Equipment(PPE) - types and advantages,effects of exposure and treatmentfor engineering industries,municipal solid waste.Environment management plans(EMP) for safety andsustainability.UNIT-YOccupational Health and SafetyConsiderations:Water and wastewater treatmentplants, Handling of chemical andsafety measures in water andwastewater treatment plants andlabs, Construction materialmanufacturing industries like	8 Hrs L1,L2,L3

responsibilities	of	workers,	
managers and supervisors.			

	Course Outcomes: After completing the course, the students will be able to	
CO1	Identify hazards in the workplace that pose a danger or threat to their safety or health.	
CO2	Control unsafe or unhealthy hazards and propose methods to eliminate the hazard.	
CO3	P resent a coherent analysis of a potential safety or health hazard	
CO4	Discuss the role of health and safety in the workplace pertaining to the responsibilities of workers, managers, supervisors.	
CO 5	Identify the decisions required to maintain protection of the environment, workplace as well as personal health and safety.	

Re	ference Books
1.	Goetsch D. L.,(1999), "Occupational
	Safety and Health for Technologists,
	Engineers and Managers", Prentice Hall.
2.	Heinrich H.W.,(2007),"Industrial
	Accident Prevention-A Scientific
	Approach",McGraw-Hill Book Company
	National Safety Council and Associate
	(Data) Publishers Pvt. Ltd., (1991),
З.	"Industrial Safety and Pollution Control
	Handbook.
4.	Colling D.A.,(1990),"Industrial Safety
	Management and Technology", Prentice
	Hall,New Delhi.
5.	Della D.E., and Giustina, (1996), "Safety
	and Environmental Management", Van
	Nostrand Reinhold International
	Thomson Publishing Inc.

Continuous Internal Evaluation (CIE): Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marksare executed by means of an examination.

The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Semester: V Solid Waste Management		
		(Theory)
Course Code:	CIE Marks:	
MVJ22CV553	50	
Credits: L:T:P:	SEE Marks:	
3:0:0	50	
Hours: 40L	SEE	
	Duration: 3	
	Hrs.	

Course Learning Objectives: The students will be able to

To facilitate the learners to understand
 fundamentals of key elements in solid
 waste management and governance.
 To impart knowledge to arrive strategies

2 for waste management and selection of technologies for processing, treatment, and disposal

3 To examine and plan designs for material recovery facility, micro composting units, incinerators, biodigesters, and landfills

UNIT-I	L1,L2
Introduction to Solid waste	8 Hrs
management	
Definition, Classification, need and	
Global perspective of solid waste	
management. Policies and legislative	
frameworks, Government initiatives	
on Solid waste management.	
Integrated solid waste management	
and concept of 3R's, Role of	
stakeholders.	
UNIT-II	L1,L2
	-
Waste generation and	8 Hrs
characterization	8 Hrs
characterization Factors affecting waste generation	8 Hrs
characterization Factors affecting waste generation and methods to estimate the quantity	8 Hrs
characterization Factors affecting waste generation and methods to estimate the quantity of waste generated. Physical,	8 Hrs
characterization Factors affecting waste generation and methods to estimate the quantity of waste generated. Physical, chemical, and biological methods of	8 Hrs
characterization Factors affecting waste generation and methods to estimate the quantity of waste generated. Physical, chemical, and biological methods of waste characterization.	
characterization Factors affecting waste generation and methods to estimate the quantity of waste generated. Physical, chemical, and biological methods of waste characterization. UNIT-III	L1,L2
characterization Factors affecting waste generation and methods to estimate the quantity of waste generated. Physical, chemical, and biological methods of waste characterization.	

Methods of storage, Storage	
container types and materials, onsite	
processing. Methods of collection and	
collection vehicles, Analysis, and	
design of Hauled and Stationary	
container systems with case studies.	
Transfer stations – feasibility and	
economic analysis.	
UNIT-IY	L1,L2
Waste processing and Disposal	SHrs
Waste processing facilities- MRFs	
Landfills – Selection of liners,	
Design, Closure and Leachate	
management, Composting, Waste to	
Energy concepts – Incineration ,	
Biogas recovery and Refuse derived	
fuels RDFs.	
fuels RDFs. UNIT-Y	L1,L2
UNIT-Y	Ll,L2 8 Hrs
UNIT-Y Special Waste and Smart Solid Waste	
UNIT-Y Special Waste and Smart Solid Waste Management	
UNIT-Y Special Waste and Smart Solid Waste Management Definition, Classification, Effects,	
UNIT-Y Special Waste and Smart Solid Waste Management Definition, Classification, Effects, treatment, disposal, Legislation and	
UNIT-Y Special Waste and Smart Solid Waste Management Definition, Classification, Effects, treatment, disposal, Legislation and case studies of Hazardous waste,	
UNIT-Y Special Waste and Smart Solid Waste Management Definition, Classification, Effects, treatment, disposal, Legislation and case studies of Hazardous waste, Construction and demolition waste,	
UNIT-Y Special Waste and Smart Solid Waste Management Definition, Classification, Effects, treatment, disposal, Legislation and case studies of Hazardous waste, Construction and demolition waste, Electronic waste, Plastic,	
UNIT-Y Special Waste and Smart Solid Waste Management Definition, Classification, Effects, treatment, disposal, Legislation and case studies of Hazardous waste, Construction and demolition waste, Electronic waste, Plastic, Biomedical waste and Radioactive	
UNIT-Y Special Waste and Smart Solid Waste Management Definition, Classification, Effects, treatment, disposal, Legislation and case studies of Hazardous waste, Construction and demolition waste, Electronic waste, Plastic, Biomedical waste and Radioactive waste. Life cycle assessment of solid	
UNIT-Y Special Waste and Smart Solid Waste Management Definition, Classification, Effects, treatment, disposal, Legislation and case studies of Hazardous waste, Construction and demolition waste, Electronic waste, Plastic, Biomedical waste and Radioactive waste. Life cycle assessment of solid waste management, Automation and	
UNIT-Y Special Waste and Smart Solid Waste Management Definition, Classification, Effects, treatment, disposal, Legislation and case studies of Hazardous waste, Construction and demolition waste, Electronic waste, Plastic, Biomedical waste and Radioactive waste. Life cycle assessment of solid waste management, Automation and IOT in storage, collection and	
UNIT-Y Special Waste and Smart Solid Waste Management Definition, Classification, Effects, treatment, disposal, Legislation and case studies of Hazardous waste, Construction and demolition waste, Electronic waste, Plastic, Biomedical waste and Radioactive waste. Life cycle assessment of solid waste management, Automation and IOT in storage, collection and treatment of solid waste. Case	
UNIT-Y Special Waste and Smart Solid Waste Management Definition, Classification, Effects, treatment, disposal, Legislation and case studies of Hazardous waste, Construction and demolition waste, Electronic waste, Plastic, Biomedical waste and Radioactive waste. Life cycle assessment of solid waste management, Automation and IOT in storage, collection and	

	Course Outcomes: After completing the course, the students will be able to		
CO1	Articulate the elements of solid waste management and categorize the waste based on physical, chemical, and biological characteristics.		
CO2	Design a waste collection system for onsite collection, storage and demonstrate waste transfer and transport operations.		
CO3	Evaluate and develop waste processing and treatment methods for solid and hazardous waste with sustainable practices.		

CO4	Select appropriate disposal methods
	such as landfills, waste to energy plants
	and its handling in an efficient way.
CO5	Develop reduce, reuse, and recycling
	methods for special waste and prepare
	smart solutions for solid waste
	management.

Reference Books1.Handbook of Solid Waste Management by
Frank Kreith, George Tchobanoglous
19942.Management of Municipal Solid waste by
T.V. Ramachandra 20093.Hazardous Waste management by

э.	Hazardous	vyasie	man	agement	ЮУ
	Michael	D LaGr	ega,	Philip.	L.
	Buckinghar	n, Jeffery	C. Eva	ins 2001	

Continuous Internal Evaluation (CIE): Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional guizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Semester: V				
Remote Sensing and GIS				
(Theory)				
Course Code: CIE Marks:				
MYJ22CY554 50				
Credits: L:T:P: SEE Marks:			larks:	
3:0:0 50				
Hours: 40L SEE				
		Durati	i on: 3	
		Hrs.		
Course Learning	Objectives: 1	he stu	dents	
will be able to				
Understand			using	
1 photographic d	ata to deter	mine	relative	
positions of poi				
2 Study the meth				
data using Terrestrial and Aerial camera.				
Analyze the da	_			
3 sensors and	interpret	for	various	
applications.				
4 Apply the princ				
in various scopes of Civil Engineering				

UNIT-I	L1,L2,L3
Remote Sensing - D efinition,	8 Hrs
types of remote sensing,	
components of remote sensing,	
electromagnetic spectrum, Black	
body, Atmospheric windows,	
energy interaction with earth	
surface features. Spectral	
reflectance curve. Platforms and	
sensors. Sensor resolutions.	
Types of satellites Indian and	
other remote sensing satellites	
(IRS, IKONS and Landsat).	
Principle of visual	
interpretation - key elements.	
Video link / Additional online	
information: (Self Learning)	
NPTEL lecture videos	
UNIT-II	L1,L2,L3
Photogrammetry: Introduction	S Hrs
types of Photogrammetry,	
Advantages Photogrammetry,	
Introduction to digital	

Photogrammetry. Aerial	
Photogrammetry: Advantages	
over ground survey methods-	
geometry of vertical photographs,	
scales of vertical photograph.	
Ground coordination relief	
displacement, scale ground	
coordinates – flight planning	
UNIT-III	L1,L2,L3
Geographic Information System -	8 Hrs
Introduction, Functions and	
advantages, sources of data for	
GIS. Database – Types,	
advantages, and disadvantages.	
Data Analysis - overlay	
operations, network analysis,	
spatial analysis. Outputs and map	
generation. GPS - components and	
working principles.	
UNIT-IY	L1,L2,L3
Applications of GIS, Remote	S Hrs
Sensing and GPS: (1) Water	
Resources engineering and	
management- prioritization of	
river basins, water perspective	
zones and its mapping, Highway,	
and transportation -highway	
alignment, Optimization of	
alignment, Optimization of routes, accident analysis,	
alignment, Optimization of	
alignment, Optimization of routes, accident analysis,	
alignment, Optimization of routes, accident analysis, Environmental Engineering-	
alignment, Optimization of routes, accident analysis, Environmental Engineering- Geostatistical analysis of water	L1,L2,L3
alignment, Optimization of routes, accident analysis, Environmental Engineering- Geostatistical analysis of water quality, rainfall	L1,L2,L3 8 Hrs
alignment, Optimization of routes, accident analysis, Environmental Engineering- Geostatistical analysis of water quality, rainfall UNIT-Y	
alignment, Optimization of routes, accident analysis, Environmental Engineering- Geostatistical analysis of water quality, rainfall UNIT-Y Applications of GIS, Remote	
alignment, Optimization of routes, accident analysis, Environmental Engineering- Geostatistical analysis of water quality, rainfall UNIT-Y Applications of GIS, Remote Sensing and GPS: (2) Urban Planning & Management, urban	
alignment, Optimization of routes, accident analysis, Environmental Engineering- Geostatistical analysis of water quality, rainfall UNIT-Y Applications of GIS, Remote Sensing and GPS: (2) Urban	
alignment, Optimization of routes, accident analysis, Environmental Engineering- Geostatistical analysis of water quality, rainfall UNIT-Y Applications of GIS, Remote Sensing and GPS: (2) Urban Planning & Management, urban sprawl, Change detection studies,	
alignment, Optimization of routes, accident analysis, Environmental Engineering- Geostatistical analysis of water quality, rainfall <u>UNIT-Y</u> Applications of GIS, Remote Sensing and GPS: (2) Urban Planning & Management, urban sprawl, Change detection studies, forests and urban area, agriculture, Disaster	
alignment, Optimization of routes, accident analysis, Environmental Engineering- Geostatistical analysis of water quality, rainfall <u>UNIT-Y</u> Applications of GIS, Remote Sensing and GPS: (2) Urban Planning & Management, urban sprawl, Change detection studies, forests and urban area, agriculture, Disaster Management. Layouts: Dead end,	
alignment, Optimization of routes, accident analysis, Environmental Engineering- Geostatistical analysis of water quality, rainfall UNIT-Y Applications of GIS, Remote Sensing and GPS: (2) Urban Planning & Management, urban sprawl, Change detection studies, forests and urban area, agriculture, Disaster	

Cour	se Outcomes: A	After co	mpleting the	
cour	se, the students	s will be	able to	
CO1	Understand	and	remember	the

	principle of Remote Sensing (RS) and Geographical Information Systems (GIS) data acquisition and its applications
CO2	Apply RS and GIS technologies in various fields of engineering and social needs
CO3	Analyze and evaluate the information obtained by applying RS and GIS technologies.
CO4	Create a feasible solution in the different fields of application of RS and GIS

Higher Surveying, Chandra A.M, 2015, Brd Edition, New age international (P) Ltd, ISBN: 8122438121 Remote Sensing and GIS, Bhatta B, 2011, Oxford University Press, New Delhi, ISBN-0198072392
Ltd, ISBN: 8122438121 Remote Sensing and GIS, Bhatta B, 2011, Oxford University Press, New Delhi, ISBN - 0198072392
Remote Sensing and GIS, Bhatta B, 2011, Oxford University Press, New Delhi, ISBN - 0198072392
Oxford University Press, New Delhi, SBN-0198072392
SBN-0198072392
Principles of Remote sensing and Image
Interpretation, Lillesand and Kiefer,
2011, 6th Edition, John Wiley Publishers,
New Delhi, ISBN - 8126532238.
Geographic Information System-An
Introduction, Tor Bernharadsen, 2009,
Brd Edition, Wiley India Pyt. Ltd. New
Delhi, ISBN - 9788126511389
Remote Sensing, Robert A.
Schowengerdt, 2009, 3rd Edition,
Elsevier India Pyt Ltd, New Delhi

Continuous Internal Evaluation (CIE): Theory for 50 Marks

CIE is executed by way of quizzes (**Q**), tests (**T**) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE): Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	Semester: Y		
	Research Methodology and IPR		
	(Theory)		
C	Course Code: CIE Marks:		
M	MVJ22RM157 50		
C	Credits: L:T:P: SEE Marks:		
2:	2:2:0 50		
H	ours: 40L	SEE	
		Duration: 3	
		Hrs.	
C	ourse Learning Obj	ectives: The students	
W	ill be able to		
1	To Understand the knowledge on basics of		
-	research and its types.		
	To Learn the concept of Literature		
2	-		
	and Citations.		
3	To learn Ethics in	Engineering Research.	
	To Discuss the concepts of Intellectual		
4	Property Rights in engineering.		

UNIT-I	L1,L2,L3
Introduction:	8 Hrs
Meaning of Research, Objectives	
of Engineering Research, and	

Motivation in Engineering	
Research, Types of Engineering	
Research, Finding and Solving a	
Worthwhile Problem. Ethics in	
Engineering Research, Ethics in	
Engineering Research Practice,	
Types of Research Misconduct,	
Ethical Issues Related to	
Authorship.	
UNIT-II	TITOTO
	L1,L2,L3
Literature Review and Technical	S Hrs
Reading	
New and Existing Knowledge,	
Analysis and Synthesis of Prior	
Art Bibliographic Databases,	
Web of Science, Google and	
Google Scholar, Effective	
Search: The Way Forward	
Introduction to Technical	
Reading Conceptualizing	
Research, Critical and Creative	
-	
Reading, Taking Notes While	
Reading, Reading Mathematics	
and Algorithms, Reading a	
Datasheet.	
Attributions and Citations:	
Giving Credit Wherever Due,	
Citations: Functions and	
Attributes, Impact of Title and	
· —	
Keywords on Citations,	
Knowledge Flow through	
Citation, Citing Datasets, Styles	
Citation, Citing Datasets, Styles for Citations, Acknowledgments	
Citation, Citing Datasets, Styles	
Citation, Citing Datasets, Styles for Citations, Acknowledgments and Attributions, What Should Be	
Citation, Citing Datasets, Styles for Citations, Acknowledgments and Attributions, What Should Be Acknowledged,	
Citation, Citing Datasets, Styles for Citations, Acknowledgments and Attributions, What Should Be Acknowledged, Acknowledgments in, Books	
Citation, Citing Datasets, Styles for Citations, Acknowledgments and Attributions, What Should Be Acknowledged, Acknowledgments in, Books Dissertations, Dedication or	
Citation, Citing Datasets, Styles for Citations, Acknowledgments and Attributions, What Should Be Acknowledged, Acknowledgments in, Books	
Citation, Citing Datasets, Styles for Citations, Acknowledgments and Attributions, What Should Be Acknowledged, Acknowledgments in, Books Dissertations, Dedication or	L1,L2.L3
Citation, Citing Datasets, Styles for Citations, Acknowledgments and Attributions, What Should Be Acknowledged, Acknowledgments in, Books Dissertations, Dedication or Acknowledgments	L1,L2,L3 8 Hrs
Citation, Citing Datasets, Styles for Citations, Acknowledgments and Attributions, What Should Be Acknowledged, Acknowledgments in, Books Dissertations, Dedication or Acknowledgments UNIT-III	L1,L2,L3 8 Hrs
Citation, Citing Datasets, Styles for Citations, Acknowledgments and Attributions, What Should Be Acknowledged, Acknowledgments in, Books Dissertations, Dedication or Acknowledgments UNIT-III Building Intellectual Property	
Citation, Citing Datasets, Styles for Citations, Acknowledgments and Attributions, What Should Be Acknowledged, Acknowledgments in, Books Dissertations, Dedication or Acknowledgments UNIT-III	
Citation, Citing Datasets, Styles for Citations, Acknowledgments and Attributions, What Should Be Acknowledged, Acknowledgments in, Books Dissertations, Dedication or Acknowledgments UNIT-III Building Intellectual Property	
Citation, Citing Datasets, Styles for Citations, Acknowledgments and Attributions, What Should Be Acknowledged, Acknowledgments in, Books Dissertations, Dedication or Acknowledgments UNIT-III Building Intellectual Property Rights, Law of Patents, Fundamentals of Patent Law -	
Citation, Citing Datasets, Styles for Citations, Acknowledgments and Attributions, What Should Be Acknowledged, Acknowledgments in, Books Dissertations, Dedication or Acknowledgments <u>UNIT-III</u> Building Intellectual Property Rights, Law of Patents, Fundamentals of Patent Law - Evolution of the patent system,	
Citation, Citing Datasets, Styles for Citations, Acknowledgments and Attributions, What Should Be Acknowledged, Acknowledgments in, Books Dissertations, Dedication or Acknowledgments UNIT-III Building Intellectual Property Rights, Law of Patents, Fundamentals of Patent Law - Evolution of the patent system, Patentability Requirements;	
Citation, Citing Datasets, Styles for Citations, Acknowledgments and Attributions, What Should Be Acknowledged, Acknowledgments in, Books Dissertations, Dedication or Acknowledgments <u>UNIT-III</u> Building Intellectual Property Rights, Law of Patents, Fundamentals of Patent Law - Evolution of the patent system,	
Citation, Citing Datasets, Styles for Citations, Acknowledgments and Attributions, What Should Be Acknowledged, Acknowledgments in, Books Dissertations, Dedication or Acknowledgments UNIT-III Building Intellectual Property Rights, Law of Patents, Fundamentals of Patent Law - Evolution of the patent system, Patentability Requirements;	

Novelty; Anticipation by	
publication; Anticipation by	
public knowledge and public use;	
Anticipation by public display;	
Anticipation by sale; Inventive	
Step/Non-Obviousness; Novelty	
Assessment; Inventive Step	
Assessment; Specification,	
Specification - Introduction	
Patent Specification;	
Provisional Specification	
Complete Specification, Parts of	
the complete specification;	
Patent Procedure in India -	
PATENT PROCEDURE;	
Registration and Renewal fee	
payment; Patent Infringement -	
Infringement of a patent; Literal	
Infringement; Equivalence	
Infringement; Indirect	
Infringement; Defenses -	
Education - Bolar Exemption-	
Government use- Patent	
Exhaustion Patent Misuse-	
Inequitable Conduct - Remedies-	
Injunction- Account of profits-	
Costs: International Patent	
Porimon Internetional	
Instruments; Paris Convention;	
TRIPS AGREEMENT; PCT;	
BUDAPEST TREATY,	
,	
Inventions - Unique nature of	
Biotechnology; Patentability	
Requirements and	
RequirementsandBiotechnologyInventions;	
Requirements and	
RequirementsandBiotechnologyInventions;PatentableSubjectMatter-USA-	
RequirementsandBiotechnologyInventions;Patentable Subject Matter- USA-Europe- India;Patentability of	
RequirementsandBiotechnologyInventions;PatentableSubjectEurope-India;PatentabilityofSoftwareInventions-	
RequirementsandBiotechnologyInventions;Patentable Subject Matter- USA-Europe- India;Patentability ofSoftwareInventionsPatentabilityofSoftwareSoftware	
RequirementsandBiotechnologyInventions;PatentableSubjectEurope-India;PatentabilityofSoftwareInventions-	
RequirementsandBiotechnologyInventions;Patentable Subject Matter- USA-Europe- India;Patentability ofSoftwareInventionsPatentabilityofSoftwareSoftwareInventionsInventions	
RequirementsandBiotechnologyInventions;Patentable Subject Matter- USA-Europe- India;Patentability ofSoftwareInventionsPatentabilityofSoftwareSoftwareInventions in USA;Patentabilityofsoftwareinventions	
RequirementsandBiotechnologyInventions;Patentable Subject Matter-USA-Europe- India;Patentability ofSoftwareInventionsPatentabilityofSoftwareSoftwareInventions in USA;Patentabilityofsoftwareinventions in VSA;PatentabilityofsoftwareinventionsinEurope;Patentabilityofsoftware	
RequirementsandBiotechnologyInventions;Patentable Subject Matter- USA-Europe- India;Patentability ofSoftwareInventionsPatentabilityofSoftwareSoftwareInventions in USA;Patentabilityofsoftwareinventions	
RequirementsandBiotechnologyInventions;PatentableSubject Matter-USA-Europe-India;PatentabilityofSoftwareInventionsPatentabilityofSoftwareSoftwareInventionsin USA;PatentabilityinSoftwareinventionsInventionsinEurope;PatentabilityOfsoftwareSoftwareinventionsSoftwareinv	L1,L2,L3

Law of Copyright and Designs,	8 Hrs
Understanding Copyright Law -	
Historical Overview –	
Justification For	
Copyright Law - The Natural Law	
Justification - The Economic	
Rationale of Copyright Clause,	
Basic Concepts Underlying	
copyright Law - Idea - Expression	
Dichotomy Originality /	
Creativity – Fixation Term of	
Protection, Subject - Matter of	
Copyright - Literary Works -	
Dramatic Works - Musical Work -	
Artistic Works - Cinematograph	
Films and Sound recordings,	
Acquisition of Copyright in India,	
Rights of the Copyright Owner -	
Economic Rights - Moral Right or	
Droid Moral Right of Authorship	
or Paternity	
Rights - Rights against Distortion	
or Mutilation of the Original	
Works or Integrity Rights -	
Limitations -Limitations set	
under International Regime -	
Berne Convention - Rome	
Convention - Trips Agreement -	
Three Step Test, Infringement of	
Copyright -Transfer of copyright -	
License and Assignment – License	
License Form and Content -	
Disputes in Respect of Licence -	
Types of Licenses- Exclusive and	
Non-Exclusive Licenses.	
UNIT-V	L1,L2,L3
Basic Principles of Design	S Hrs
Rights - Justification for	
Protecting Designs - Historical	
Perspective -Features of Shape,	
configuration, Pattern or	
Ornament - or Composition of	
lines or colour - New or Original -	
Applied to an Article, Excluded	
Subject - Matter - Method or	
Principle of Construction -	
- rincipie of construction -	

Features Dictated Solely by	
Function - Mechanical Device -	
Trademark, or Property Mark, or	
Artistic Work - immoral Designs	
and Designs Contrary to Public	
order-Rights of the Owner of	
Designs and Tests for	
Infringement. Assignment of	
Design Rights, Infringement of	
Designs.	

	se Outcomes: After completing the se, the students will be able to
CO1	Know the meaning of engineering research.
CO 2	Know the procedure of Literature Review and Technical Reading.
CO3	Know the fundamentals of patent law and drafting procedure.
CO4	Understanding the copyright laws and subject matters of copyrights and designs rights

Re	Reference Books			
1.	"Research Methodology Methods and			
	Techniques", C.R Kothari, New Age			
	International Publishers,2004, 2 nd			
	Edition, ISBN (13): 978-81-224-2488-1			
2.	Dipankar Deb · Rajeeb Dey, Valentina E.			
	Balas "Engineering Research			
	Methodology", ISSN 1868-4394 ISSN			
	1868-4408 (electronic), Intelligent			
	Systems Reference Library			
З.	David V. Thiel "Research Methods for			
	Engineers" Cambridge University Press,			
	978-1-107-03488-4.			

Continuous Internal Evaluation (CIE): Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomylevel.

Semester: V		
Environmental Studies		
T)	heory)	
Course Code:	CIE Marks:	
MYJ22ENV58	50	
Credits: L:T:P:	SEE Marks:	
2:0:0	50	
Hours: 30L	SEE	
	Duration: 3	
	Hrs.	

Course Learning Objectives: The students will be able to

Relate interdisciplinary approach to
complex environmental problems using
basic tools of the natural and social
sciences including geo-systems, biology,
chemistry, economics, political science
and international processes

Study drinking water quality standards
and to illustrate qualitative analysis of water.

3 Critically evaluate the science and policy ramifications of diverse energy portfolios on air and water quality, climate, weapons proliferation and societal stability.

UNIT-I	L1, L2
Introduction to environmental studies, Multidisciplinary nature of environmental studies; Scope and importance; Concept of sustainability and sustainable development. Ecosystems (Structure and Function): Forest, Desert, Rivers, Ocean Biodiversity: Types, Hot spots; Threats and Conservation of biodiversity, Deforestation.	
Video link: https://nptel.ac.in/courses/127/106/1 27106004/	
UNIT-II	L1, L2
Advances in EnergySystems (Merits,Demerits,GlobalStatusand	6 Hrs

Applications): Hydrogen, Solar, Tidal	
and Wind.	
Natural Resource Management	
(Concept and case-study): Disaster	
Management, Sustainable Mining and	
Carbon Trading.	
Video link:	
https://nptel.ac.in/courses/121/106/12 1106014/	
UNIT-III	Ll,
	L2
Environmental Pollution: Surface and	6
Ground Water Pollution, Noise	Hrs
pollution, Soil Pollution and Air	
Pollution.	
Waste Management & Public Health	
Aspects: Bio-medical Waste, Solid	
waste, Hazardous waste and E-waste.	
Video link:	
• https://nptel.ac.in/courses/122/10	
6/122106030/	
• https://nptel.ac.in/courses/105/10	
3/105103205/	
 https://nptel.ac.in/courses/120/10 	
8/120108005/	
• https://nptel.ac.in/courses/105/10	
5/105105160/	
UNIT-IV	L1, L2
Global Environmental Concerns	6
(Concept, policies, and case-studies):	Hrs
Global Warming, Climate Change, Acid	
Rain, Ozone Depletion and Fluoride	
· •	
problem in drinking water.	
Video link:	
 https://nptel.ac.in/courses/122/106 /122106030/ 	
 https://nptel.ac.in/courses/120108 004/ 	
 https://onlinecourses.nptel.ac.in/no 	
cl9_ge23/preview	
UNIT-Y	L1 ,
VALA-X	L1, L2

LatestDevelopmentsinEnvironmentalPollutionMitigationTools(ConceptandApplications):G.I.S. & Remote Sensing, EnvironmentImpactAssessment, Environmental	6 Hrs
Management Systems.	
Video link:	
 https://nptel.ac.in/courses/105/10 2/105102015/ 	
 https://nptel.ac.in/courses/120/10 	

8/120108004/

Course Outcomes: After completing the course, the students will be able to		
CO1	Describe the principles of ecology and environmental issues that apply to air, land, and water issues on a global scale.	
CO 2	Develop critical thinking and/or observation skills, and apply them to the analysis of a problem or question related to the environment.	
CO3	Demonstrate ecology knowledge of a complex relationship between biotic and Abiotic components.	
CO4	Apply their ecological knowledge to illustrate and graph a problem	
CO 5	Describe the realities that managers face when dealing with complex issues.	

Re	Reference Books		
1.	Principals of Environmental Science and		
	Engineering, Raman Siva kumar,		
	Cengage learning, Singapur, 2nd Edition, 2005 .		
2.	Environmental Science – working with the Earth G.Tyler Miller Jr. Thomson Brooks/Cole, 11 th Edition, 2006		
3	Textbook of Environmental and Ecology, Pratiba Singh, Anoop Singh & Piyush Malaviya, ACME Learning Pvt. Ltd. New Delhi, 1 st Edition.		

Continuous Internal Evaluation (CIE): Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Semester: VI			
	Design of RCC Structures		
	(Theory and Practice)		
Course Code: MVJ22CV61 CIE Marks: 50			
Credits: L:T:P: 3:0:2 SEE Marks: 50			
Hours: 40L + 26P SEE Duration: 3 Hrs.			
Course Learning Objectives: The students will be able to			
Identify, formulate and solve engineering problems of RC elements s		RC elements subjected to	
1	different kinds of loading.		
2	2 Follow a procedural knowledge in designing various structural RC elements.		
3	3 Impart the usage of codes for strength, serviceability and durability.		
4	Acquire knowledge in analysis and design of RC elements.		

Introduction to working stress and limit State Design: Introduction to working stress method, Difference between Working stress and Limit State Method of design. Philosophy and principle of limit state design with assumptions. Partial Safety factors, Characteristic load and strength. Stress block parameters, concept of balanced section, under reinforced and over reinforced section. Limiting deflection of singly reinforced beam only. L1,L2,L3 Limit State Analysis of Beams: Analysis of singly reinforced, doubly reinforced and flanged beams for flexure and shear. 8 Hrs Design of singly reinforced beams with check for shear, check for development length and other checks. Design of doubly reinforced beams and flanged sections without checks. 8 Hrs Limit State Design of Slabs and Stairs: Introduction to one way and two way slabs, Design of Cantilever, simply supported and one way continuous slab. Design of two way slabs for different boundary conditions. Design of dog legged and open well staircases 8 Hrs Limit State Deign of Columns and Footings: Analysis and design of short axially loaded RC column. Design of columns with uniaxial and biaxial moments, Design concepts of the footings. Design of Rectangular and square column footings with axial load. 8 Hrs SLNO Experiments 1 Calculation of deflection of singly reinforced beam using Excel and draw the reinforcement details 2 Design of a simply supported RCC doubly reinforced beam using Excel and draw the reinforcement details 3		UNIT-I	L1,L2,L3	
Method of design. Philosophy and principle of limit state design with assumptions. Partial Safety factors, Characteristic load and strength. Stress block parameters, concept of balanced section, under reinforced and over reinforced section. Limiting deflection, short term deflection, long term deflection, Calculation of deflection of singly reinforced beam only. UNIT-II L1,L2,L3 Limit State Analysis of Beams: Analysis of singly reinforced, doubly reinforced and flanged beams for flexure and shear. UNIT-II L1,L2,L3 Limit State Design of Beams: Design of singly reinforced beams with check for shear, check for development length and other checks. Design of doubly reinforced beams and flanged sections without checks. UNIT-IV L1,L2,L3 Limit State Design of Slabs and Stairs: Introduction to one way and two way slabs, Design of Cantilever, simply supported and one way continuous slab. Design of two way slabs for different boundary conditions. Design of dog legged and open well staircases 8 Hrs UNIT-V L1,L2,L3 Limit State Deign of Columns and Footings: Analysis and design of short axially loaded RC column. Design of columns with uniaxial and biaxial moments, Design concepts of the footings. Design of Rectangular and square column footings with axial load. 8 Hrs SLNO Experiments 1 Calculation of deflection of singly reinforced beam using Excel and draw	0		8 Hrs	
assumptions. Partial Safety factors, Characteristic load and strength. Stress block parameters, concept of balanced section, under reinforced and over reinforced section. Limiting deflection, short term deflection, long term deflection, Calculation of deflection of singly reinforced beam only. L1,L2,L3 Limit State Analysis of Beams: Analysis of singly reinforced, doubly reinforced and flanged beams for flexure and shear. L1,L2,L3 Limit State Analysis of Beams: Analysis of singly reinforced, doubly reinforced and flanged beams for flexure and shear. L1,L2,L3 Limit State Design of Beams: UNIT-III L1,L2,L3 Limit State Design of Beams: Design of singly reinforced beams with check for shear, check for development length and other checks. Design of doubly reinforced beams and flanged sections without checks. UNIT-IV L1,L2,L3 Limit State Design of Slabs and Stairs: Introduction to one way and two way slabs, Design of Cantilever, simply supported and one way continuous slab. Design of two way slabs for different boundary conditions. Design of dog legged and open well staircases 8 Hrs UNIT-V L1,L2,L3 Limit State Deign of Columns and Footings: Analysis and design of short axially loaded RC column. Design of columns with uniaxial and biaxial moments, Design concepts of the footings. Design of Rectangular and square column footings with axial				
block parameters, concept of balanced section, under reinforced and over reinforced section. Limiting deflection, short term deflection, long term deflection, Calculation of deflection of singly reinforced beam only. L1,L2,L3 Limit State Analysis of Beams: Analysis of singly reinforced, doubly reinforced and flanged beams for flexure and shear. L1,L2,L3 Limit State Design of Beams: Analysis of singly reinforced, doubly reinforced and flanged beams for flexure and shear. B Hrs Limit State Design of Beams: Design of singly reinforced beams with check for shear, check for development length and other checks. Design of doubly reinforced beams and flanged sections without checks. B Hrs Limit State Design of Slabs and Stairs: Introduction to one way and two way slabs, Design of Cantilever, simply supported and one way continuous slab. Design of two way slabs for different boundary conditions. Design of dog legged and open well staircases B Hrs Limit State Deign of Columns and Footings: Analysis and design of short axially loaded RC column. Design of columns with uniaxial and biaxial moments, Design concepts of the footings. Design of Rectangular and square column footings with axial load. B Hrs SLNO Experiments 1 1 Calculation of deflection of singly reinforced beam using Excel Design of a simply supported RCC singly reinforced beam using Excel and draw the reinforcement details 2 Design of a simply supported RCC doubly reinforced beam using Excel and draw				
reinforced section. Limiting deflection, short term deflection, long term deflection, Calculation of deflection of singly reinforced beam only. L1,L2,L3 Limit State Analysis of Beams: Analysis of singly reinforced, doubly reinforced and flanged beams for flexure and shear. L1,L2,L3 Limit State Analysis of Beams: Nalysis of singly reinforced, doubly reinforced and flanged beams for flexure and shear. L1,L2,L3 Limit State Design of Beams: UNIT-III L1,L2,L3 Design of singly reinforced beams with check for shear, check for development length and other checks. Design of doubly reinforced beams and flanged sections without checks. 8 Hrs Limit State Design of Slabs and Stairs: Introduction to one way and two way slabs, Design of Cantilever, simply supported and one way continuous slab. Design of two way slabs for different boundary conditions. Design of dog legged and open well staircases 8 Hrs Limit State Design of Columns and Footings: Analysis and design of short axially loaded RC column. Design of columns with uniaxial and biaxial moments, Design concepts of the footings. Design of Rectangular and square column footings with axial load. 8 Hrs SLNO Experiments 1 1 Calculation of deflection of singly reinforced beam using Excel 2 2 Design of a simply supported RCC singly reinforced beam using Excel and draw the reinforcement details 2 2 Design of a simply supported RCC doubly reinforced beam using Excel and draw				
deflection, Calculation of deflection of singly reinforced beam only. UNIT-II L1,L2,L3 Limit State Analysis of Beams: Analysis of singly reinforced, doubly reinforced and flanged beams for flexure and shear. L1,L2,L3 Limit State Design of Beams: UNIT-III L1,L2,L3 Limit State Design of Beams: 8 Hrs Design of singly reinforced beams with check for shear, check for development length and other checks. Design of doubly reinforced beams and flanged sections without checks. L1,L2,L3 Limit State Design of Slabs and Stairs: Introduction to one way and two way slabs, Design of Cantilever, simply supported and one way continuous slab. Design of two way slabs for different boundary conditions. Design of dog legged and open well staircases L1,L2,L3 Limit State Deign of Columns and Footings: Analysis and design of short axially loaded RC column. Design of columns with uniaxial and biaxial moments, Design concepts of the footings. Design of Rectangular and square column footings with axial load. 8 Hrs SLNO Experiments 1 Calculation of deflection of singly reinforced beam using Excel 2 2 Design of a simply supported RCC singly reinforced beam using Excel and draw the reinforcement details 2 Design of a simply supported RCC doubly reinforced beam using Excel and draw				
UNIT-IIL1,L2,L3Limit State Analysis of Beams: Analysis of singly reinforced, doubly reinforced and flanged beams for flexure and shear.8 HrsUNIT-IIIL1,L2,L3Limit State Design of Beams: Design of singly reinforced beams with check for shear, check for development length and other checks. Design of doubly reinforced beams and flanged sections without checks.8 HrsUNIT-IVL1,L2,L3Limit State Design of Slabs and Stairs: Introduction to one way and two way slabs, Design of Cantilever, simply supported and one way continuous slab. Design of two way slabs for different boundary conditions. Design of dog legged and open well staircases11,L2,L3Limit State Deign of Columns and Footings: Analysis and design of short axially loaded RC column. Design of columns with uniaxial and biaxial moments, Design concepts of the footings. Design of Rectangular and square column footings with axial load.8 HrsSLNOExperiments1Calculation of deflection of singly reinforced beam using Excel Design of a simply supported RCC singly reinforced beam using Excel and draw the reinforcement details2Design of a simply supported RCC doubly reinforced beam using Excel and draw the reinforcement details				
Limit State Analysis of Beams: Analysis of singly reinforced, doubly reinforced and flanged beams for flexure and shear.8 HrsUNIT-IIIL1,L2,L3Limit State Design of Beams: Design of singly reinforced beams with check for shear, check for development length and other checks. Design of doubly reinforced beams and flanged sections without checks.8 HrsLimit State Design of Slabs and Stairs: Introduction to one way and two way slabs, Design of Cantilever, simply supported and one way continuous slab. Design of two way slabs for different boundary conditions. Design of dog legged and open well staircasesL1,L2,L3Limit State Deign of Columns and Footings: Analysis and design of short axially loaded RC column. Design of columns with uniaxial and biaxial moments, Design concepts of the footings. Design of Rectangular and square column footings with axial load.8 HrsSLNOExperiments 1Calculation of deflection of singly reinforced beam using Excel 22Design of a simply supported RCC singly reinforced beam using Excel and draw the reinforcement details2Design of a simply supported RCC doubly reinforced beam using Excel and draw the reinforcement details	deflection			
reinforced and flanged beams for flexure and shear. UNIT-III L1,L2,L3 Limit State Design of Beams: 8 Hrs Design of singly reinforced beams with check for shear, check for development length and other checks. Design of doubly reinforced beams and flanged sections without checks. 8 Hrs UNIT-IV L1,L2,L3 Limit State Design of Slabs and Stairs: Introduction to one way and two way slabs, Design of Cantilever, simply supported and one way continuous slab. Design of two way slabs for different boundary conditions. Design of dog legged and open well staircases 8 Hrs UNIT-V L1,L2,L3 Limit State Design of Columns and Footings: Analysis and design of short axially loaded RC column. Design of columns with uniaxial and biaxial moments, Design concepts of the footings. Design of Rectangular and square column footings with axial load. SI.NO Experiments 1 Calculation of deflection of singly reinforced beam using Excel 2 Design of a simply supported RCC singly reinforced beam using Excel and draw the reinforcement details 2 Design of a simply supported RCC doubly reinforced beam using Excel and draw			, ,	
UNIT-IIIL1,L2,L3Limit State Design of Beams: Design of singly reinforced beams with check for shear, check for development length and other checks. Design of doubly reinforced beams and flanged sections without checks.8 HrsUNIT-IVL1,L2,L3Limit State Design of Slabs and Stairs: Introduction to one way and two way slabs, Design of Cantilever, simply supported and one way continuous slab. Design of two way slabs for different boundary conditions. Design of dog legged and open well staircases8 HrsUNIT-VL1,L2,L3Limit State Deign of Columns and Footings: Analysis and design of short axially loaded RC column. Design of columns with uniaxial and biaxial moments, Design concepts of the footings. Design of Rectangular and square column footings with axial load.8 HrsSI.NOExperiments1Calculation of deflection of singly reinforced beam using Excel a besign of a simply supported RCC singly reinforced beam using Excel and draw the reinforcement details22Design of a simply supported RCC doubly reinforced beam using Excel and draw			8 Hrs	
Limit State Design of Beams: 8 Hrs Design of singly reinforced beams with check for shear, check for development length and other checks. Design of doubly reinforced beams and flanged sections without checks. 1 Limit State Design of Slabs and Stairs: Introduction to one way and two way slabs, Design of Cantilever, simply supported and one way continuous slab. Design of two way slabs for different boundary conditions. Design of dog legged and open well staircases 8 Hrs Limit State Deign of Columns and Footings: Analysis and design of short axially loaded RC column. Design of columns with uniaxial and biaxial moments, Design concepts of the footings. Design of Rectangular and square column footings with axial load. 8 Hrs SI.NO Experiments 1 Calculation of deflection of singly reinforced beam using Excel and draw the reinforcement details 2 Design of a simply supported RCC doubly reinforced beam using Excel and draw	reinforce	d and flanged beams for flexure and shear.		
Design of singly reinforced beams with check for shear, check for development length and other checks. Design of doubly reinforced beams and flanged sections without checks. L1,L2,L3 Limit State Design of Slabs and Stairs: Introduction to one way and two way slabs, Design of Cantilever, simply supported and one way continuous slab. Design of two way slabs for different boundary conditions. Design of dog legged and open well staircases 8 Hrs UNIT-V L1,L2,L3 Limit State Deign of Columns and Footings: Analysis and design of short axially loaded RC column. Design of columns with uniaxial and biaxial moments, Design concepts of the footings. Design of Rectangular and square column footings with axial load. 8 Hrs SLNO Experiments 1 Calculation of deflection of singly reinforced beam using Excel 2 Design of a simply supported RCC singly reinforced beam using Excel and draw the reinforcement details 2 Design of a simply supported RCC doubly reinforced beam using Excel and draw		UNIT-III	L1,L2,L3	
development length and other checks. Design of doubly reinforced beams and flanged sections without checks. UNIT-IV L1,L2,L3 Limit State Design of Slabs and Stairs: Introduction to one way and two way slabs, Design of Cantilever, simply supported and one way continuous slab. Design of two way slabs for different boundary conditions. Design of dog legged and open well staircases L1,L2,L3 UNIT-V L1,L2,L3 Limit State Deign of Columns and Footings: Analysis and design of short axially loaded RC column. Design of columns with uniaxial and biaxial moments, Design concepts of the footings. Design of Rectangular and square column footings with axial load. SI.NO Experiments 1 Calculation of deflection of singly reinforced beam using Excel 2 Design of a simply supported RCC singly reinforced beam using Excel and draw the reinforcement details 2 Design of a simply supported RCC doubly reinforced beam using Excel and draw	Limit St	tate Design of Beams:	8 Hrs	
flanged sections without checks. UNIT-IV L1,L2,L3 Limit State Design of Slabs and Stairs: Introduction to one way and two way slabs, Design of Cantilever, simply supported and one way continuous slab. Design of two way slabs for different boundary conditions. Design of dog legged and open well staircases B Hrs UNIT-V L1,L2,L3 Limit State Design of Columns and Footings: Analysis and design of short axially loaded RC column. Design of columns with uniaxial and biaxial moments, Design concepts of the footings. Design of Rectangular and square column footings with axial load. SI.NO Experiments 1 Calculation of deflection of singly reinforced beam using Excel 2 Design of a simply supported RCC singly reinforced beam using Excel and draw the reinforcement details 3 Design of a simply supported RCC doubly reinforced beam using Excel and draw				
UNIT-IVL1,L2,L3Limit State Design of Slabs and Stairs: Introduction to one way and two way slabs, Design of Cantilever, simply supported and one way continuous slab. Design of two way slabs for different boundary conditions. Design of dog legged and open well staircases8 HrsUNIT-VL1,L2,L3Limit State Deign of Columns and Footings: Analysis and design of short axially loaded RC column. Design of columns with uniaxial and biaxial moments, Design concepts of the footings. Design of Rectangular and square column footings with axial load.8 HrsSI.NOExperiments 11Calculation of deflection of singly reinforced beam using Excel 2 besign of a simply supported RCC doubly reinforced beam using Excel and draw the reinforcement details2	developn	nent length and other checks. Design of doubly reinforced beams and		
Limit State Design of Slabs and Stairs: Introduction to one way and two way slabs, Design of Cantilever, simply supported and one way continuous slab. Design of two way slabs for different boundary conditions. Design of dog legged and open well staircases 8 Hrs UNIT-V L1,L2,L3 Limit State Deign of Columns and Footings: Analysis and design of short axially loaded RC column. Design of columns with uniaxial and biaxial moments, Design concepts of the footings. Design of Rectangular and square column footings with axial load. 8 Hrs SI.NO Experiments 1 Calculation of deflection of singly reinforced beam using Excel 2 Design of a simply supported RCC doubly reinforced beam using Excel and draw the reinforcement details 3 Design of a simply supported RCC doubly reinforced beam using Excel and draw	flanged s	ections without checks.		
way slabs, Design of Cantilever, simply supported and one way continuous slab. Design of two way slabs for different boundary conditions. Design of dog legged and open well staircases UNIT-V L1,L2,L3 Limit State Deign of Columns and Footings: Analysis and design of short axially loaded RC column. Design of columns with uniaxial and biaxial moments, Design concepts of the footings. Design of Rectangular and square column footings with axial load. SI.NO Experiments 1 Calculation of deflection of singly reinforced beam using Excel 2 Design of a simply supported RCC singly reinforced beam using Excel and draw the reinforcement details 2 Design of a simply supported RCC doubly reinforced beam using Excel and draw		UNIT-IV	L1,L2,L3	
slab. Design of two way slabs for different boundary conditions. Design of dog legged and open well staircases L1,L2,L3 Limit State Deign of Columns and Footings: Analysis and design of short axially loaded RC column. Design of columns with uniaxial and biaxial moments, Design concepts of the footings. Design of Rectangular and square column footings with axial load. 8 Hrs SI.NO Experiments 1 1 Calculation of deflection of singly reinforced beam using Excel 2 2 Design of a simply supported RCC singly reinforced beam using Excel and draw the reinforcement details 3 Design of a simply supported RCC doubly reinforced beam using Excel and draw	Limit State Design of Slabs and Stairs: Introduction to one way and two		8 Hrs	
dog legged and open well staircases UNIT-V L1,L2,L3 Limit State Deign of Columns and Footings: Analysis and design of short axially loaded RC column. Design of columns with uniaxial and biaxial moments, Design concepts of the footings. Design of Rectangular and square column footings with axial load. SHNO Experiments 1 Calculation of deflection of singly reinforced beam using Excel 2 Design of a simply supported RCC singly reinforced beam using Excel and draw the reinforcement details 2 Design of a simply supported RCC doubly reinforced beam using Excel and draw	way slat	os, Design of Cantilever, simply supported and one way continuous		
UNIT-V L1,L2,L3 Limit State Deign of Columns and Footings: Analysis and design of short axially loaded RC column. Design of columns with uniaxial and biaxial moments, Design concepts of the footings. Design of Rectangular and square column footings with axial load. 8 Hrs SI.NO Experiments 1 Calculation of deflection of singly reinforced beam using Excel 2 Design of a simply supported RCC singly reinforced beam using Excel and draw the reinforcement details 3 Design of a simply supported RCC doubly reinforced beam using Excel and draw	slab. De	sign of two way slabs for different boundary conditions. Design of		
Limit State Deign of Columns and Footings: Analysis and design of short axially loaded RC column. Design of columns with uniaxial and biaxial moments, Design concepts of the footings. Design of Rectangular and square column footings with axial load. 8 Hrs SI.NO Experiments 1 Calculation of deflection of singly reinforced beam using Excel 2 Design of a simply supported RCC singly reinforced beam using Excel and draw the reinforcement details 3 Design of a simply supported RCC doubly reinforced beam using Excel and draw	dog legg	ged and open well staircases		
axially loaded RC column. Design of columns with uniaxial and biaxial moments, Design concepts of the footings. Design of Rectangular and square column footings with axial load. SI.NO Experiments 1 Calculation of deflection of singly reinforced beam using Excel 2 Design of a simply supported RCC singly reinforced beam using Excel and draw the reinforcement details 3 Design of a simply supported RCC doubly reinforced beam using Excel and draw	UNIT-V		L1,L2,L3	
moments, Design concepts of the footings. Design of Rectangular and square column footings with axial load. SI.NO Experiments 1 Calculation of deflection of singly reinforced beam using Excel 2 Design of a simply supported RCC singly reinforced beam using Excel and draw the reinforcement details 3 Design of a simply supported RCC doubly reinforced beam using Excel and draw	Limit S	tate Deign of Columns and Footings: Analysis and design of short	8 Hrs	
square column footings with axial load. SI.NO Experiments 1 Calculation of deflection of singly reinforced beam using Excel 2 Design of a simply supported RCC singly reinforced beam using Excel and draw the reinforcement details 3 Design of a simply supported RCC doubly reinforced beam using Excel and draw	axially	loaded RC column. Design of columns with uniaxial and biaxial		
Sl.NO Experiments 1 Calculation of deflection of singly reinforced beam using Excel 2 Design of a simply supported RCC singly reinforced beam using Excel and draw the reinforcement details 3 Design of a simply supported RCC doubly reinforced beam using Excel and draw	moment	s, Design concepts of the footings. Design of Rectangular and		
1Calculation of deflection of singly reinforced beam using Excel2Design of a simply supported RCC singly reinforced beam using Excel and draw the reinforcement details3Design of a simply supported RCC doubly reinforced beam using Excel and draw	square c	column footings with axial load.		
1Calculation of deflection of singly reinforced beam using Excel2Design of a simply supported RCC singly reinforced beam using Excel and draw the reinforcement details3Design of a simply supported RCC doubly reinforced beam using Excel and draw				
2 Design of a simply supported RCC singly reinforced beam using Excel and draw the reinforcement details 2 Design of a simply supported RCC doubly reinforced beam using Excel and draw	Sl.NO	Sl.NO Experiments		
 the reinforcement details Design of a simply supported RCC doubly reinforced beam using Excel and draw 	1	1		
Design of a simply supported RCC doubly reinforced beam using Excel and draw	Design of a simply supported BCC singly reinforced beam using Ex		xcel and draw	
	2	Design of a simply supported RCC doubly reinforced beam using Exc		
the reinforcement details	the reinforcement details			
Design of singly reinforced beams with check for shear, check for development	Design of singly reinforced beams with check for shear, check for		development	
⁴ length and other checks using Excel.			-	
5 Design of a cantilever beam using Excel and draw the reinforcement				

6	Design a simply supported RCC one way slab with intermediate support and draw the reinforcement details
7	Design a two-way slab for the given data and prepare Bar bending schedule
8	Design a short axially loaded RC column using Excel
9	Design the reinforcement for RCC square column with isolated square footing
10	Design the reinforcement for RCC circular column with isolated square footing
11	Creation of models related to RC Structural elements. (Demonstration)
12	

Course Outcomes: After completing the course, the students will be able to		
CO1	Understand the design philosophy and principles.	
CO2	Solve problems of RC elements subjected to flexure, shear and torsion.	
CO3	Demonstrate the procedure in designs of RC structural elements such as slabs,	
	columns and footings	
CO4	Owns professional and ethical responsibility.	

Refe	Reference Books	
1.	N Subramanian, "Design of Concrete Structures", Oxford university Press	
2.	. Unnikrishnan Pillai and Devdas Menon, "Reinforced Concrete Design", McGraw Hill,	
	New Delhi	
3.	H J Shah, "Reinforced Concrete Vol. 1 (Elementary Reinforced Concrete)", Charotar	
	Publishing House Pvt. Ltd.	
4	P C Varghese, "Limit State design of reinforced concrete", PHI, New Delhi	

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Laboratory- 50 Marks

The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are awarded 10 marks. Total marks for the laboratory is 50.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the entire syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

	Semester: VI		
	Irrigation Engineering and Hydraulic Structures		
	(Theory)		
Cou	Course Code: MVJ22CV62 CIE Marks: 50		
Credits: L:T:P: 3:0:0		SEE Marks: 50	
Hours: 40L SEE Durat		SEE Duration: 3 Hrs.	
Cou	Course Learning Objectives: The students will be able to		
1	1 Analyse and design gravity dams.		
2	2 Find the cross-section of earth dam and estimate the seepage loss		
3	Design spillways and aprons for dive	ersion works.	
4	Design CD works and chose appropr	riate canal regulation works.	

UNIT-I	L1,L2,L3
Storage Works-	8 Hrs
Reservoirs - Types of reservoirs, selection of site for reservoir, zones of	
storage of a reservoir, reservoir yield, estimation of capacity of reservoir	
using mass curve- Reservoir Sedimentation	
Life of Reservoir. Types of dams, factors affecting selection of type of dam,	
factors governing selection of site for a dam.	
UNIT-II	L1,L2,L3
Gravity dams:	8 Hrs
Forces acting on a gravity dam, causes of failure of a gravity dam, elementary	
profile, and practical profile of a gravity dam, limiting height of a low gravity	
dam, Factors of Safety – Stability Analysis, Foundation for a Gravity Dam,	
drainage and inspection galleries.	
UNIT-III	L1,L2,L3
Earth dams:	8 Hrs
Types of Earth dams, causes of failure of earth dam, criteria for safe design of	
earth dam, seepage through earth dam-graphical method, measures for control	
of seepage. Spillways: types of spillways, Design principles of Ogee spillways	
- Spillway gates. Energy Dissipaters and Stilling Basins Significance of Jump	
Height Curve and Tail Water Rating Curve - USBR and Indian types of	
Stilling Basins.	
UNIT-IV	L1,L2,L3
Diversion Head works:	8 Hrs
Types of Diversion head works- weirs and barrages, layout of diversion head	
work - components. Causes and failure of Weirs and Barrages on permeable	
foundations, -Silt Ejectors and Silt Excluders, Weirs on Permeable	
Foundations - Creep Theories - Bligh's, Lane's and Khosla's theories,	
Determination of uplift pressure- Various Correction Factors - Design	
principles of weirs on permeable foundations using Creep theories - exit	
gradient, U/s and D/s Sheet Piles – Launching Apron.	
UNIT-V	L1,L2,L3
Canal Falls :	8 Hrs
Types of falls and their location, Design principles of Notch Fall and Sarada	
type Fall. Canal regulation works, principles of design of cross and	
distributary head regulators, types of Canal escapes – types of canal modules,	
proportionality, sensitivity, setting and flexibility. Cross Drainage works:	
types, selection of suitable type, various types, design considerations for	

cross drainage works.

Course	Course Outcomes: After completing the course, the students will be able to	
CO1	Know types of water retaining structures for multiple purposes and its key parameters	
	considered for planning and designing	
CO2	2 Understand details in any Irrigation System and its requirements	
CO3	Analyse and Design of a irrigation system components	

Refe	Reference Books	
1.	Irrigation Engineering and Hydraulic structures by Santhosh kumar Garg, Khanna	
	Publishers	
2.	Irrigation engineering by K. R. Arora Standard Publishers	
3.	Irrigation and water power engineering by Punmia & Lal, Laxmi publications Pvt. Ltd.,	
	New Delhi	
4.	Theory and Design of Hydraulic structures by Varshney, Gupta & Gupta	

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the entire syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	Semester: VI		
	Design of Bridges		
	(Theory)		
Cou	Course Code: MVJ22CV631 CIE Marks: 50		
Credits: L:T:P: 3:0:0 SEE Marks: 50		SEE Marks: 50	
Hours: 40L SEE Duration: 3 Hrs.		SEE Duration: 3 Hrs.	
Course Learning Objectives: The students will be able to			
1	Introduce students to various aspects	s of Bridge structures, its components.	
2	Understand the hydraulic design con	cepts of Bridges, various IRC loading standards.	
3	Design small span bridges like culve	erts, slab decks, and T-beam decks and post	
	tensioned slab		
4	Understand various types of bearings	s, analysis of substructures, and foundations.	
5	Understand super structure construct	tion methods and practices	

UNIT-I	L1,L2,L3
Introduction and Conceptual Design of Bridges	8 Hrs
Introduction, components of a bridge and their functions, Site investigations	
prior to bridge construction, classification of bridges, IRC loading	
standards, IRC A, AA, and 70 R. Hydraulic design of bridges, natural and	
artificial water ways, afflux, Economical span, problems.	
UNIT-II	L1,L2,L3
Pipe culverts. Hydraulic design and structural design, IRC standards.	8 Hrs
Design problems. Design of Box culverts, general procedure of design for	
all the conditions of culvert, reinforcement details, Design example (
students should be given to design the culvert for any one condition of	
loading)	
UNIT-III	L1,L2,L3
Design of Deck slab (Limit state method):	8 Hrs
Introduction, Design of deck slab. Effective dispersion of wheel load along	
the span and effective width concept, Arrangement of wheel loads of IRC A	
for obtaining maximum bending moment and shear force. Design example,	
Arrangement of IRC class AA obtaining maximum bending moment and	
shear force. Design example. Arrangement of IRC 70R loading for obtaining	
maximum bending moment and shear force. Design example.	
UNIT-IV	L1,L2,L3
Introduction to T-beam bridges:	8 Hrs
Code provisions, typical arrangement of longitudinal and cross girders,	
Pigeaud's method, design of interior panel (for IRC class AA & amp; 70R),	
methods for finding load distribution among longitudinal girders (Courbon's,	
Hednry Jaguer's method), general steps of design (only design concepts).	
UNIT-V	L1,L2,L3
Bridge substructures, abutments and Piers:	8 Hrs
Types of abutments and piers, stability analysis of piers and abutments, base	
pressure distribution. Bridge bearings, types and their suitability.	

Course Outcomes: After completing the course, the students will be able to		
CO1	Select the type of the bridge based on the site investigation inputs and be able to	
	compute design discharge, linear water way, economic span and depth of scour	
CO2	Design pipe culverts.	

CO3	Design deck slabs for critical loads
CO4	Analyse the stability of bridge piers and abutments.
CO5	Recommend suitable bearings for the given type of bridge and support condition

Refe	Reference Books		
1.	Krishna Raju N, Design of Bridges, Oxford-IBH publishing, 5 th edition, New Delhi		
2.	Rajagopalan, Bridge Super Structures, Narosa Publishing House, 2013, ISBN :817-31-964-78		
3.	D. Johmson Victor, Essentials of Bridge Engineering, 6 th edition, Oxford IBH publications, New Delhi, 2019, ISBN:978-81-204-1717-5		
4.	T.R.Jagadeesh & amp; M A Jayaram, Design of Bridge Structures, 3 rd edition, PHI, New Delhi, 2020, ISBN:978-81-203-3385-29		
5.	IRC : 112- 2020: Code of Practice for Concrete Bridges, July 2020, New Delhi		

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

	Semester: VI			
	Design of Formwork and Scaffolding			
	(Theor	y)		
Cou	Course Code: MVJ22CV632 CIE Marks: 50			
Credits: L:T:P: 3:0:0 SEE Marks: 50		SEE Marks: 50		
Hours: 40L SEE Duration: 3 Hrs.		SEE Duration: 3 Hrs.		
Course Learning Objectives: The students will be able to				
1	To select the appropriate formwork system			
2	To design the formwork system			
3	To compute the bill of quantity for the formwork system			
4	To incorporate safer design and construction	n aspects including assembling and		
4	dismantling to prevent formwork failures			
5	To comprehend plan, layout and detailed drawing for formwork systems			

UNIT-I	L1,L2,L3
Introduction to Formwork	8 Hrs
Classification, benefits, objectives, areas of competitiveness, selection of	
Formwork, formwork materials, accessories and consumables, application	
of Tools. Formwork for Foundation, Wall, Columns, Slab and Beam.	
Conventional drawings. Vertical Application of Conventional Foundation	
Formwork, Formwork components, Components, assembly and de-	
shuttering of formwork System, Flex System, Heavy Duty Tower System,	
safety of work, Formwork for stairs, Load Bearing Tower.	
UNIT-II	L1,L2,L3
Planning and Design of formwork	8 Hrs
Formwork planning and monitoring, basics of formwork design, design	
assumptions and design methods. Design of wall formwork, slab formwork	
and checks. Formwork drawing Concept and Preparation Guidelines, BOQ	
Calculation and Checklist.	
UNIT-III	L1,L2,L3
Formwork cost estimation and optimization	8 Hrs
Schedule of formwork, Mobilization distribution, BOQ, Quantity Calculation,	
Cost optimization	
UNIT-IV	L1,L2,L3
Modular and Special formwork, scaffolding	8 Hrs
Modular and Special formwork: Advantages and Limitations, Shuttering and	
de-shuttering, applications, Aluminium formwork - Drawings & Components,	
Activities, High rise construction, Table lifting system.	
Scaffolding: Modular scaffold Installation sequence, Tie and material	
specification, Ladder safety, Loading Classification, application, Components	
of L&T Modular Scaffolding system, Access scaffold Do's and Don'ts.	
Innovation and Global practices.	
UNIT-V	L1,L2,L3
Formwork building and erection, Formwork Failures	8 Hrs
Formwork assembly for Wall & Column Panels, Equipment and Layout,	
Plant and Machinery, Formwork erection and safety, Inspection and	
Corrections, Plant and Machinery, Code and Contractual Requirements.	
Formwork Failures: Causes, design deficiency, safety in formwork,	
prevention of formwork failures.	

Course Outcomes: After completing the course, the students will be able to			
CO1	Analyse the project, and decide appropriate formwork materials and suitable		
	formwork system		
CO2	Design formwork systems as per Industrial requirement		
CO3	Estimate the bill of quantity and optimize the formwork cost		
CO4	Prepare the layout and detailed drawing for the formwork system		

Refe	Reference Books		
1.	Jha, K.N., Formwork for Concrete Structures, First Edition, McGraw Hill. 2012		
2.	Robert L. Peurifoy and Garold D. Oberiender, Formwork for Concrete Structures,		
	McGraw-Hill, 1996		
3.	IS 14687 -Guidelines for falsework for concrete structures		

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

		nester: VI	
	Applied Geote	chnical Engineering	
		Theory)	
	rse Code: MVJ22CV633	CIE Marks: 50	
	dits: L:T:P: 3:0:0	SEE Marks: 50	
Hours: 40L SEE Duration: 3 H		3 Hrs.	
	rse Learning Objectives: The studen		
1	Appreciate basic concepts of soil mec	<u> </u>	
2	Learn concepts of Geotechnical inves	tigations required for civil engineering	ng projects
	emphasizing in situ investigations		
2	Conceptually learn various theories re	• • •	
3	application in the design of shallow for	oundations and estimation of load car	rying
	capacity of pile foundation		
4	Estimate internal stresses in the soil n		ge in
5	proportioning of shallow and deep for Study about assessing stability of slop	ě	na atmiatimaa
5	Study about assessing stability of slop	bes and earth pressure on right retain	ing structures.
	UNIT-I		L1,L2,L3
So	il Exploration:		<u> </u>
	oduction, Objectives and Importance, S	Stages and Methods of exploration-	
	pits, Borings, stabilization of l		
Undisturbed, disturbed and representative samples, sample disturbance and			
Bore	e hole log.		
	UNIT-I	Ι	L1,L2,L3
	inage and Dewatering:		8 Hrs
Drai	nage and Dewatering methods, estimat	tion of depth of GWT (Hvorslev's	
	nod). Flownets: Importance, properties	and applications, Phreatic Lines,	
Seep	bage in earth dams (with and without		
	UNIT-II	I	L1,L2,L3
	eral Earth Pressure:		8 Hrs
	ve, Passive and earth pressure at rest,		
	cohesive soils, Factors influencing la	-	
desi	gn of gravity and cantilever retaining w		
	LINIT_I		I1I7I3

design of gravity and cantilever retaining walls.	
UNIT-IV	L1,L2,L3
Stability of Slopes:	8 Hrs
Assumptions, infinite and finite slopes, factor of safety, Swedish slip circle	
method for C and C-ø (Method of slices) soils, Fellineous method for critical	
slip circle, use of Taylor's stability charts. Causes for slope instability,	
Methods of stabilisation of slopes	
UNIT-V	L1,L2,L3
Stresses in Soil:	8 Hrs
Geodesic stress and Stress due to structures, Boussinesq's Stress distribution	
in ground for point load, line load and uniformly distributed loads,	
Newmark's Chart, Contact Pressure, Pressure bulbs.	
Types of settlements and importance, Computation of immediate and	
consolidation settlement, permissible differential and total settlements (IS	
8009 part 1).	

Course Outcomes: After completing the course, the students will be able to

CO1	Ability to plan and execute geotechnical site investigation program for different civil	
	engineering projects	
CO2	Understanding of stress distribution and resulting settlement beneath the loaded	
	footings on sand and clayey soils	
CO3	Ability to estimate factor of safety against failure of slopes and to compute lateral	
	pressure distribution behind earth retaining structures	
CO4	Ability to determine settlement in footing.	

Reference Books

Ittle	Kelefence Dooks				
1.	Murthy V.N.S., Principles of Soil Mechanics and Foundation Engineering, UBS				
	PublishersandDistribu tors, NewDelhi.				
2.	K.R.Arora, Soil Mechanics and Foundation Engineering, Standard Publisher				
	Distributors, NewDelhi.				
3.	PC Varghese, Foundation Engineering, PHI India Learning Private Limited, NewDelhi.				
4.	Punmia BC, Soil Mechanics and Foundation Engineering (2017), 16th edition,				
	LaxmiPublicationsco., New Delhi.				

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

	Semester: VI		
	Design and Construction of Highway Pavements		
	(Theory)	-	
Course Code: MVJ22CV634 CIE Marks: 50			
Cre	dits: L:T:P: 3:0:0	SEE Marks: 50	
Hou	Hours: 40L SEE Duration: 3 Hrs.		
Cou	Course Learning Objectives: The students will be able to		
1	To impart a fundamental understanding to the b	basics of highway geometric design	
1	features		
2	To introduce the evaluation of pavement mater	rial characteristics to identify their	
² suitability for construction			
3	To study the principles and design of flexible an	d rigid pavements according to IRC	
5	specifications		
4	To skill up for executing pavement construction	with quality control and assurance	
4	along with Plants and Machinery selection		

UNIT-I	L1,L2,L3
Introduction and Subgrade materials: Overview of highway -	8 Hrs
Classification of roads, Pavement Layers - Components and Functions,	
Highway alignment and Survey, road development in India, Components and	
Geometric Standards of Highway Design	
Pavement subgrade material: Soils, Soil Characteristic Evaluation,	
desirable properties, tests (Virtual) - Liquid Limit, Plastic limit, Shrinkage	
Limit, Grain size analysis - Wet sieve and Hydrometer analysis, Water	
Content, Specific gravity, Free swell index, Relative density, Heavy	
compaction, California Bearing Ratio.	
UNIT-II	L1,L2
Pavement Materials	8 Hrs
Stone aggregates: Desirable properties, tests (Virtual) - Sieve analysis,	
Specific gravity, Water absorption, Bulk density, Wet Sieve analysis,	
Aggregate crushing value, Aggregate impact value, Combined Flakiness and	
Elongation index, Aggregate abrasion value, Soundness of aggregate,	
Characteristic evaluation	
Bituminous binders: Desirable properties, tests (Virtual) - Specific gravity,	
Penetration, Softening Point, Ductility, Elastic recovery, Flash point,	
Separation, Loss on heating, Matter soluble in trichloro ethylene, Absolute,	
Kinematic and Rotational Viscosity, Aging of Bitumen, Characteristic	
evaluation.	
Bituminous paving mix: Desirable properties, tests (Virtual) - Stripping	
value of coarse aggregate, Stone polishing value of coarse aggregate, Maximum specific gravity of bituminous mix, Marshall stability & flow,	
Binder content, Bulk specific gravity and density, Indirect tensile strength,	
Resilient Modulus (indirect tension test), Resistance of compacted asphalt	
mixtures to moisture-induced damage, Characteristic evaluation	
Cement: Desirable properties, tests (Virtual) - Consistency, Initial Setting	
Time, Final Setting Time, Mortar Cube compressive strength, Fineness of	
cement, Specific gravity of cement, Soundness of cement, Characteristic	
evaluation	
Concrete: Desirable properties, requirements, tests (Virtual) - Workability,	
concrete. Desnuste properties, requirements, tests (virtual) - workdonity,	

Compressive Strength, Flexural strength, Characteristic evaluation	
UNIT-III	L1,L2,L3
Principles and Design of Pavements	8 Hrs
Flexible Pavement: Introduction, composition, factors governing design,	
design of flexible pavements as per IRC; Bituminous mix design (Marshall	
method), IIT Pave Software; Case study - Design Problem	
Rigid pavement: Introduction, composition, factors governing design, DLC	
and PQC mix design; design of concrete pavements as per IRC; Joints; Case	
study – Design Problem	
UNIT-IV	L1,L2
Plants and Machinery: Introduction; Asphalt Hot Mix Plant, Concrete	8 Hrs
Batching Plant, Wet Mix Macadam Plant, Earthmoving and Excavation	
Equipment, Paving Equipment, Slipform Paver, Paver Milling and Road	
Marking Equipment; Factors affecting output of Plant & Equipment;	
Initiatives to improve quality.	
Construction Planning: Concept of Highways, Planning; Schedules in	
Planning; Monitoring; Software in Planning	
UNIT-V	L1,L2,L3
Subgrade and Base Layer: Construction Practices and Quality Control;	8 Hrs
Granular Sub-base Construction Activities; Cement Treated Sub-base	
Construction Activities	
Flexible Layers: Wet Mix Macadam; Construction Practices of Wet Mix	
Macadam; Hot Mix Asphalt; Construction Practices of Hot Mix Asphalt	
Layer, Quality Control of Flexible Layers	
Rigid Layers: Dry Lean Concrete; Construction Practices of Dry Lean	
Concrete; Pavement Quality Concrete; Construction Practices of Pavement	
Quality Concrete, Quality Control of Rigid Layers	
Pavement Evaluation: Introduction, Pavement Condition Survey, Pavement	
Evaluation Functional and Structural, Distresses - Flexible and Rigid	
Pavement, Overlay Design of Flexible Pavement.	

Course	Course Outcomes: After completing the course, the students will be able to		
CO1	Develop an understanding of the fundamentals of pavement layer behaviour.		
CO2	Comprehend the material specifications by interpreting the relationship between material properties and pavement behaviour.		
CO3	Conduct different tests on road construction materials to evaluate their characteristics		
CO4	Carry out the design of flexible and rigid pavements		
CO5	Acquire skillful knowledge of pavement construction practices, plant and machinery selection and quality control		

Refe	Reference Books		
1.	Khanna, S.K., Justo, C.E.G and Veeraragavan, A, 'Highway Engineering', Revised 10th		
	Edition, Nem Chand & Bros, 2017		
2.	Partha Chakraborty, "Principles of Transportation Engineering", PHI Learning,		
3.	Principles and Practices of Highway Engineering by Kadiyali L.R and Dr.Lal N.B.,		
	Khanna Publishers, New Delhi, 2003		

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

Semester: VI			
Water conservation and Rainwater Harvesting			
	(Theory)		
Course Code: MVJ22CV641 CIE Marks: 50			
Credits: L:T:P: 3:0:0 SEE Marks: 50			
Hours: 40L SEE Duration: 3 Hrs.			
Course Learning Objectives: The students will be able to			
1 Appreciate basic concepts of Water and its importance.			
2	2 Learn elementary knowledge of ground water.		
2	2 Conceptually learn various theories related to Groundwater recharge and Groundwater		
3	recharge		
4	4 Study about Subsurface investigation of Ground water		

UNIT-I	L1,L2,L3
Water and its importance.	8 Hrs
Monsoon- types and behavior in India, rainfall - characteristics and	
distribution, onset and withdrawal of effective rains, dry spells and wet spells,	
critical dry spells, water loss from the soil, measurement and factors,	
hydrological cycle, Importance and issues relating water status Scenario of	
water in Karnataka: sources, geographical distribution, quality. Water	
(hydrological) cycle, influence of human activity on the water cycle, Surface	
water resources.	
UNIT-II	L1,L2,L3
Elementary knowledge of ground water:	8 Hrs
general aquifer. Water quality and its impact on human beings. Water	
harvesting: need, principles of water harvesting, general water harvesting	
methods - rain water harvesting - methods, classes, benefits, approach, rooftop	
rainwater harvesting, subsurface barrier/dykes, farm ponding, etc mostly used	
in rural areas.	
UNIT-III	L1,L2,L3
Groundwater recharge.	8 Hrs
Factors affecting groundwater recharge, Revival of traditional techniques for	
water harvesting. Calculation of available rain water for harvesting.	
Preparation of suitable technical drawing and design of rain water harvesting	
structure	
UNIT-IV	L1,L2,L3
Elementary conservation of water:	8 Hrs
importance, knowledge regarding conservation/saving of water in daily use,	
in agriculture, in industries. Water Conservation strategies- Limiting the	
consumption, Reuse and recycling, Elimination of losses, Pollution prevention	
UNIT-V	L1,L2,L3
Subsurface investigation of Ground water: General, geophysical methods	8 Hrs
and its importance. Present law regarding water management	
Water footprints- Blue water footprint, green water footprint, grey water footprint. Sustainability assessment	

Course Outcomes: After completing the course, the students will be able to		
CO1	Learn Water and its importance	
CO2	Analyze and Design of RCC composite Girder	

CO3	Design of Substructure and Auxiliary components
CO4	Design of different types of foundations for bridges.
CO5	Concept of different types of execution methods of Bridges and Inspection,
	Monitoring & Maintenance of Bridges

Refe	Reference Books		
1.	Indian Road Congress (IRC) codes and Ministry of Road Transport & Highway		
	(MORT) Specifications		
2.	Concrete Bridge practice by V.K. Raina		
3.	Essentials of Bridge Engineering by D. Johnson Victor		

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

	Semester: VI		
	Geographic Information System		
	(Theory)		
Cou	Course Code: MVJ22CV642 CIE Marks: 50		
Cree	Credits: L:T:P: 3:0:0 SEE Marks: 50		E Marks: 50
Hou	Hours: 40L SEE Duration: 3 Hrs.		E Duration: 3 Hrs.
Course Learning Objectives: The students will be able to			
1	1 To introduce the fundamentals and components of Geographic Information System		
2	2 To provide details of spatial data structures, input and Processes		
3	3 To provide details of spatial data structure management		
4	4 To provide details of spatial data structure Applications		

UNIT-I	L1,L2,L3
Fundamentals of GIS:	8 Hrs
Introduction to GIS - Basic spatial concepts - Coordinate Systems - GIS	
and Information Systems - Definitions- History of GIS - Components of a	
GIS - Hardware, Software, Data, People, Methods - Proprietary and open-	
source Software - Types of data - Spatial, Attribute data- types of attributes	
- scales/ levels of measurements	
Video link / Additional online information: (Self Learning)	
• NPTEL VIDEOS.	
UNIT-II	L1,L2,L3
Spatial Data Models; Database Structures – Relational, Object Oriented –	8 Hrs
Entities – ER diagram - data models - conceptual, logical and physical models	
- spatial data models - Raster Data Structures - Raster Data Compression -	
Vector Data Structures - Raster vs Vector Models- TIN and GRID data	
models.	
UNIT-III	L1,L2,L3
Data Input and Topology: Scanner - Raster Data Input - Raster Data File	8 Hrs
Formats – Georeferencing – Vector Data Input –Digitizer – Datum Projection	
and reprojection -Coordinate Transformation - Topology - Adjacency,	
connectivity, and containment - Topological Consistency - Non topological	
file formats - Attribute Data linking – Linking External Databases – GPS Data	
Integration	
UNIT-IV	L1,L2,L3
Data Quality and Standards: Data quality - Basic aspects - completeness,	8 Hrs
logical consistency, positional accuracy, temporal accuracy, thematic	
accuracy, and lineage - Metadata - GIS Standards - Interoperability - OGC -	
Spatial Data Infrastructure.	
UNIT-V	L1,L2,L3
Data Management and Output: Import/Export – Data Management	8 Hrs
functions- Raster to Vector and Vector to Raster Conversion - Data Output -	
Map Compilation - Chart/Graphs - Multimedia - Enterprise Vs. Desktop	
GIS distributed GIS.	

Course Outcomes: After completing the course, the students will be able to		
CO1	Have basic idea about the fundamentals of GIS	
CO2	Understand the types of data models	

CO3	Get knowledge about data input and topology.
CO4	Gain knowledge on data quality and standards.
CO5	Understand data management functions and data output

Refe	Reference Books			
1.	Kang - Tsung Chang, Introduction to Geographic Information Systems, McGraw Hill			
	Publishing, 2nd Edition, 2011.			
2.	Ian Heywood, Sarah Cornelius, Steve Carver, Srinivasa Raju, "An Introduction			
	Geographical Information Systems, Pearson Education, 2nd Edition, 2007			
3.	Lo.C.P., Albert K.W. Yeung, Concepts and Techniques of Geographic Information			
	Systems, Prentice-Hall India Publishers, 2006			

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

Semester: VI			
Integrated Waste Management for a Smart City			
(Theory)			
Cou	Course Code: MVJ22CV643 CIE Marks: 50		
Cree	Credits: L:T:P: 3:0:0 SEE Marks: 50		
Hou	Hours: 40L SEE Duration: 3 Hrs.		
Course Learning Objectives: The students will be able to			
1	1 To introduce the fundamentals of Solid Waste Management		
2	2 To provide details of Sustainable Cities		
3	3 Understand the Sustainable Development Goals.		

UNIT-I	L1,L2,L3
Introduction to Solid Waste Management	8 Hrs
Municipal Solid Waste Characteristics and Quantities generation rates and	
waste composition; Integrated waste management issues, collection, recovery,	
reuse, recycling, energy-from-waste, and landfilling;	
UNIT-II	L1,L2,L3
Biological treatment of the organic waste fraction ;	8 Hrs
Direct land application, composting, and anaerobic digestion.	
MSW Rules 2016, Swachh Bharat Mission and Smart Cities Program	
UNIT-III	L1,L2,L3
Biochemical Processes and Composting	8 Hrs
Energy Recovery from Municipal Solid Waste.	
Current Issues in Solid Waste Management and Review of MSW	
Management Status in First List of 20 Smart Cities in the Country	
UNIT-IV	L1,L2,L3
Construction and Demolition (C&D) Waste	8 Hrs
Management - Overview	
C&D Waste – Regulation, Beneficial Reuse of C&D Waste Materials	
UNIT-V	L1,L2,L3
Electronic Waste (E-Waste)	8 Hrs
Management - Issues and Status in India and Globally, E-Waste	
Management Rules 2016 and Management Challenges.	

Course Outcomes: After completing the course, the students will be able to		
CO1	Understand basic idea about Sustainable Development.	
CO2	Get knowledge about Sustainable Cities.	
CO3	Gain knowledge on Saving Biodiversity.	
CO4	Understand Sustainable Development Goals.	

Reference Books

1.	George Tchobanoglous, Hilary Theisen and Samuel A Vigil, Integrated Solid Waste		
	management, Tata McGraw Hill		
2.	Manual on Solid Waste Management, prepared by The Central Public Health and		
	Environmental Engineering Organization(CPHEEO), India		
3.	William A Worrell and P. Aarne Veslind Solid Waste Engineering, 2nd Edition (SI		
	Edition) Cengage Learning, 2012 (ISBN-13: 978-1-4390-6217-3)		

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

	Semester: VI			
	Sustainable Development Goals			
	(Theory)			
Cou	Course Code: MVJ22CV644 CIE Marks: 50			
Cree	Credits: L:T:P: 3:0:0 SEE Marks: 50			
Hou	Hours: 40L SEE Duration: 3 Hrs.			
Course Learning Objectives: The students will be able to				
1	1 To introduce the fundamentals and components of Sustainable Development			
2	To provide details of Sustainable Cities			
3	3 To Understand the Sustainable Development Goals.			
4	To Understand the concept of biodiversity.			
5	5 To explain the Feasibility of Sustainable Development.			

UNIT-I	L1,L2
Sustainable Development:	8Hrs
Introduction to Sustainable Development	
Economic Growth and Progress, Continuing Poverty, Environmental Threats,	
Business as Usual Versus Sustainable Development	
UNIT-II	L1,L2
Sustainable Cities:	8 Hrs
The Patterns of Urbanization Around the World, development of Sustainable	
city, Smart Infrastructure, Urban Resilience, Planning for Sustainable	
Development.	
UNIT-III	L1,L2
urbing Climate Change	8 Hrs
The Basic Science of Climate Change, Consequences, Mitigation,	
Adaptation, Mitigation Policies:	
UNIT-IV	L1,L2,L3
Saving Biodiversity:	8 Hrs
Concept of Biodiversity, Biodiversity Under Threat, Oceans and Fisheries,	
Deforestation International Dynamics.	
UNIT-V	L1,L2,L3
Sustainable Development Goals	8 Hrs
Introduction to Sustainable Development Goals, Goal-Based Development,	
Financing for Sustainable Development, Principles of Good Governance,	
Feasibility of Sustainable Development.	

Course Outcomes: After completing the course, the students will be able to		
CO1	Understand basic idea about Sustainable Development.	
CO2	Get knowledge about Sustainable Cities.	
CO3	Gain knowledge on Saving Biodiversity.	
CO4	Understand Sustainable Development Goals.	
CO5	Understand the feasibility of Sustainable Development.	

Reference Books			
1.	Ram Kumar Mishra, Ch Lakshmi Kumari, Sandeep Chachra, P.S. Janaki Krishna "Smart		
	Cities for Sustainable Development" Springer, 2022 Edition		

2.	The Sustainable Development Goals Report 2020 Kindle Edition, Department of			
	Economic and Social Affairs			
3.	'The Sustainable Development Goals' Hardcover – December 4, 2018 United Nations.			

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marksare executed by means of an examination.

Semester: VI			
	Software Application Lab		
	(Practice)		
Course Code: MVJ22CVL66 CIE Marks: 50			
Cre	Credits: L:T:P: 0:0:2 SEE Marks: 50		
Hou	Hours: 26P SEE Duration: 3 Hrs.		
Course Learning Objectives: The students will be able to			
1	1 Use industry standard software in a professional set up.		
2	Understand the elements of finite element modelling, spe	ecification of loads and	
2	boundary condition, performing analysis and interpretation of results for final design.		
3	3 Develop customized automation tools		

Sl.NO	Experiments	L3,L4
1	Analysis of plane trusses, continuous beams using software	
2	Analysis of portal frames using software	
3	Understanding basic features of Project management software. Constructing Project: create WBS, Activities, and tasks and Computation Time using Excel spread sheet and transferring the same to Project management software.	
4	Identification of Predecessor and Successor activities with constrain. Constructing Network diagram (AON Diagram) and analyzing for Critical path,	
5	 Critical activities and Other non-Critical paths, Project duration, Floats. Study on various View options available Basic understanding about Resource Creation and allocation g. Understanding about Splitting the activity, Linking multiple activity, assigning Constrains, Merging Multiple projects, Creating Baseline Project 	
6		
7	GIS applications using open source software: To create shape files for point, line and polygon features with a map as reference. To create decision maps for specific purpose.	
8	Computation of earthwork, Design of horizontal curve by offset method, Design of super elevation Using Excel	
9	Demonstration Experiments (For CIE)	
10	Creating structural model and analysis of high rise structures	
11	Creating a model of building and the effect of earth quake	
12	Create a model of large span roof and analyse	

Course Outcomes: After completing the course, the students will be able to		
CO1	Use software for analysis and design of structural elements.	
CO2	Design using excel spread sheet	
CO3 Modelling of structural elements of buildings		

Laboratory- 50 Marks

The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of weeks is

considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are awarded 10 marks. Total marks for the laboratory is 50.

Semester End Examination (SEE):

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

Semester: VII	
Design of Steel Structures	
(Theory and Practice)	
Course Code: MVJ22CV71	CIE Marks :
	50
Credits: L:T:P: 3:0:2	SEE
	Marks: 50
Hours: 40L+26P	SEE
	Duration: 3
	Hrs.

Course Learning Objectives: The students will be able to

Understand the behaviour of structural elements in steel structures and well

1 versed with Steel design principles

according to the guidelines of IS: 800-2007.

2	Apply their knowledge of Structural mechanics to analyse and design the steel		
	structures.		
	Design the steel structural elements of		
_			

3 different forms and connections under different stresses.

UNIT-I	L1,L2,L3
Introduction: Advantages and	8 Hrs
Disadvantages of Steel	
Structures, Limit state method	
Limit State of Strength,	
Structural Stability,	
Serviceability Limit states,	
Failure Criteria of steel, Design	
Consideration, Loading and	
load combinations, IS code	
provisions, Specification and	
Section classification.	
Plastic Behavior of Structural	
Steel: Introduction, Plastic	
theory, Plastic Hinge Concept,	
Plastic collapse load, load factor,	
Shape factor, Theorem of plastic	
collapse, Methods of Plastic	
analysis	
UNIT-II	L1,L2,L3
Bolted Connections:	S Hrs
Introduction, Types of Bolts,	

	1	
Behavior of bolted joints,		
Design of High Strength		
friction Grip (HSFG) bolts,		
Design of Simple bolted		
Connections (Lap and Butt		
joints) and bracket connections		
both types		
UNIT-III	L1,L2,L3	
Welded Connections:	8 Hrs	
Introduction, Types and		
properties of welds, Effective		
areas of welds, Weld Defects,		
Simple welded joints for truss		
member and Bracket		
connections both types.		
Advantages and Disadvantages		
of Bolted and Welded		
Connections.		
UNIT-IV	L1,L2,L3	
Design of Tension Members:	8 Hrs	
Introduction, Types of Tension		
members, Slenderness ratio,		
Modes of Failure, Factors		
affecting the strength of		
tension members, Design of		
Tension members with Lug		
angles.		
Design of Column Bases: Design		
of Simple Slab Base and		
Gusseted Base.		
UNIT-Y	L1,L2,L3	
Design of Compression	8 Hrs	
Members: Introduction,		
Failure modes, Behavior of		
compression members,		
Sections used for compression		
members, Effective length of		
compression members, Design		
of compression members, Design		
members, Design of Laced and		
Battened Systems.		
Sl.NO Experiments	•	
Design a Bolted Connection	ns using M	
SExcel		

2	Design a welded Connections using M S Excel	
З	Design of Tension members using M S Excel	
	Design of Compression Members	
4	using MS Excel	
	Design of Simple Slab Base using M	
5	Sexcel	
	Design of Gusseted Base using M S	
6 Excel		
	Draw the following using AutoCAD .	
7	Column bases and Gusseted bases	
-	with bolted and welded connections.	
	Draw the following using AutoCAD.	
8	Roof Truss - Welded and Bolted	
	D raw the following using	
	AutoCAD.	
9	Connections – Beam to beam, Beam	
	to Column by Bolted and Welded	
	Connections.	
	Draw the following using AutoCAD.	
10	Built-up Columns with lacings and	
	battens.	
	Drawing of Gantry Girder for the	
11	given data using AutoCAD.	
	Drawing of Welded Plate girder for	
12	the given data using Auto CAD.	
L	the Brith uata using Auto CAD.	

Course Outcomes: After completing the		
cour	course, the students will be able to	
CO1	Explain: the engineering properties and	
	the behaviour of steel structural	
	elements according to the guidelines.	
CO2	2 Analyse and design: Structural connection of Steel Elements.	
CO 3	Analyse and design: the steel structural elements of different forms under different stresses.	

R	eference Books
1.	N Subramanian, "Design of Steel
	Structures", Oxford University Press,
	New Delhi, India
2.	S K Duggal, "Limit State Design of Steel
	Structures" McGraw Hill Publications
	Chennai.

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Laboratory- 50 Marks

The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of weeks is considered for **30** marks. At the end of the semester a test is conducted for **10** marks. The students are encouraged to implement additional innovative experiments in the lab and are awarded **10** marks. Total marks for the laboratory is **50**.

Semester End Examination (SEE): Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

Laboratory-50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

	Semester: VII		
E	Estimation and Contract Management (Theory)		
	ourse Code: VJ22CV72	CIE Marks: 50	
	redits: L:T:P: 2:0	SEE Marks: 50	
Hours: 40L+10T		SEE Duration: 3 Hrs.	
	Course Learning Objectives: The students will be able to		
1	-	ntities of work, develop es, and arrive at the eering Project	
2	Understand and	apply the concept of	

2 Understand and apply the co Valuation for Properties

3 Understand, Apply and Create the Tender and Contract document

UNIT-I	L1,L2,L3
Quantity Estimation for	8 Hrs
Building: study of various	
drawing attached with estimates,	
important terms, units of	
measurements, abstract, Types	
of estimates. Estimation of	
building by Short wall and long	
wall method - centre line method.	
• Estimate of R.C.C structures	
including Slab, beam, column,	
footings.	
UNIT-II	L1,L2,L3
Estimate of Steel truss, manhole	8 Hrs
and septic tanks and slab culvert.	
Quantity Estimation for Roads:	
Computation of volume of	
Computation of volume of	
Computation of volume of earthwork fully in banking,	
Computation of volume of earthwork fully in banking, cutting, partly cutting and partly	
Computation of volume of earthwork fully in banking, cutting, partly cutting and partly Filling by mid-section, trapezoidal and Prismoidal Methods. UNIT-III	L1,L2,L3
Computationofvolumeofearthworkfullyinbanking,cutting, partly cutting and partlyFilling by mid-section, trapezoidaland Prismoidal Methods.UNIT-IIISpecificationforCivil	8 Hrs
Computationofvolumeofearthworkfullyinbanking,cutting, partly cutting and partlyFilling by mid-section, trapezoidaland Prismoidal Methods.UNIT-IIISpecificationforCivilEngineering Works:Objective of	8 Hrs
Computationofvolumeofearthworkfullyinbanking,cutting, partlycutting andpartlyFilling by mid-section, trapezoidaland Prismoidal Methods.UNIT-IIISpecificationforCivil	8 Hrs

detail specifications of different	
items of works in buildings and	
roads.	
Analysis of Rates : Factors	
Affecting Cost of Civil Works ,	
Concept of Direct Cost , Indirect	
Cost and Project Cost	
Rate analysis and preparation of	
bills, Data analysis of rates for	
various items of Works, Sub-	
structure components, Rate	
analysis for R.C.C. slabs,	
columns and beams.	
UNIT-IV	L1,L2,L3
Contract Management-Tender	8 Hrs
and its Process: Invitation to	
tender, Prequalification,	
administrative approval &	
Technical sanction. Bid	
submission and Evaluation	
process. Contract Formulation:	
Letter of intent, Award of	
contract, letter of acceptance and	
notice to proceed. Features /	
elements of standard Tender	
document (source: PWD / CPWD	
/ International Competitive	
Bidding – NHAI / NHEPC /	
_	
NPC). Law of Contract as new Indian	
Law of Contract as per Indian	
Law of Contract as per Indian Contract act 1872, Types of	
Law of Contract as per Indian	
Law of Contract as per Indian Contract act 1872, Types of	
Law of Contract as per Indian Contract act 1872, Types of Contract, Joint venture. Contract Forms: FIDIC contract	
Law of Contract as per Indian Contract act 1872, Types of Contract, Joint venture. Contract Forms: FIDIC contract Forms, CPWD, NHAI, NTPC,	
Law of Contract as per Indian Contract act 1872, Types of Contract, Joint venture. Contract Forms: FIDIC contract Forms, CPWD, NHAI, NTPC, NHEPC	
Law of Contract as per Indian Contract act 1872, Types of Contract, Joint venture. Contract Forms: FIDIC contract Forms, CPWD, NHAI, NTPC, NHEPC UNIT-Y	L1,L2,L3
Law of Contract as per Indian Contract act 1872, Types of Contract, Joint venture. Contract Forms: FIDIC contract Forms, CPWD, NHAI, NTPC, NHEPC	L1,L2,L3 8 Hrs
Law of Contract as per Indian Contract act 1872, Types of Contract, Joint venture. Contract Forms: FIDIC contract Forms, CPWD, NHAI, NTPC, NHEPC UNIT-Y	
Law of Contract as per Indian Contract act 1872, Types of Contract, Joint venture. Contract Forms: FIDIC contract Forms, CPWD, NHAI, NTPC, NHEPC UNIT-Y Contract Management-Post award :Basic understanding on	
Law of Contract as per Indian Contract act 1872, Types of Contract, Joint venture. Contract Forms: FIDIC contract Forms, CPWD, NHAI, NTPC, NHEPC UNIT-Y Contract Management-Post award :Basic understanding on definitions, Performance	
Law of Contract as per Indian Contract act 1872, Types of Contract, Joint venture. Contract Forms: FIDIC contract Forms, CPWD, NHAI, NTPC, NHEPC UNIT-Y Contract Management-Post award :Basic understanding on definitions, Performance security, Mobilization and	
Law of Contract as per Indian Contract act 1872, Types of Contract, Joint venture. Contract Forms: FIDIC contract Forms, CPWD, NHAI, NTPC, NHEPC UNIT-Y Contract Management-Post award :Basic understanding on definitions, Performance security, Mobilization and equipment advances, Secured	
Law of Contract as per Indian Contract act 1872, Types of Contract, Joint venture. Contract Forms: FIDIC contract Forms, CPWD, NHAI, NTPC, NHEPC UNIT-Y Contract Management-Post award :Basic understanding on definitions, Performance security, Mobilization and	
Law of Contract as per Indian Contract act 1872, Types of Contract, Joint venture. Contract Forms: FIDIC contract Forms, CPWD, NHAI, NTPC, NHEPC UNIT-Y Contract Management-Post award :Basic understanding on definitions, Performance security, Mobilization and equipment advances, Secured Advance, Suspension of work,	
Law of Contract as per Indian Contract act 1872, Types of Contract, Joint venture. Contract Forms: FIDIC contract Forms, CPWD, NHAI, NTPC, NHEPC UNIT-Y Contract Management-Post award :Basic understanding on definitions, Performance security, Mobilization and equipment advances, Secured Advance, Suspension of work, Time limit for completion,	
Law of Contract as per Indian Contract act 1872, Types of Contract, Joint venture. Contract Forms: FIDIC contract Forms, CPWD, NHAI, NTPC, NHEPC UNIT-Y Contract Management-Post award :Basic understanding on definitions, Performance security, Mobilization and equipment advances, Secured Advance, Suspension of work, Time limit for completion, Liquidated damages and bonus,	
Law of Contract as per Indian Contract act 1872, Types of Contract, Joint venture. Contract Forms: FIDIC contract Forms, CPWD, NHAI, NTPC, NHEPC UNIT-V Contract Management-Post award :Basic understanding on definitions, Performance security, Mobilization and equipment advances, Secured Advance, Suspension of work, Time limit for completion, Liquidated damages and bonus, measurement and payment,	
Law of Contract as per Indian Contract act 1872, Types of Contract, Joint venture. Contract Forms: FIDIC contract Forms, CPWD, NHAI, NTPC, NHEPC UNIT-Y Contract Management-Post award :Basic understanding on definitions, Performance security, Mobilization and equipment advances, Secured Advance, Suspension of work, Time limit for completion, Liquidated damages and bonus, measurement and payment, additions and alterations or	
Law of Contract as per Indian Contract act 1872, Types of Contract, Joint venture. Contract Forms: FIDIC contract Forms, CPWD, NHAI, NTPC, NHEPC UNIT-Y Contract Management-Post award :Basic understanding on definitions, Performance security, Mobilization and equipment advances, Secured Advance, Suspension of work, Time limit for completion, Liquidated damages and bonus, measurement and payment,	

of Escalation. contract, settlement of account or final payment, claims, Delay's and **Compensation**, **Disputes &** its resolution mechanism, Contract management and administration. **Valuation:** Definitions of terms used in valuation process, Purpose of valuation, Cost, Value Estimate, and its relationship, Capitalized value. Freehold and lease hold and easement, Sinking fund. depreciation-methods of estimating depreciation, **Outgoings, Process and methods** valuation: fixation. of Rent valuation for mortgage, valuation of land.

Course Outcomes: After completing the course, the students will be able to		
CO1	Taking out quantities and work out	
	the cost and preparation of abstract	
	for the estimated cost for various	
	civil engineering works.	
CO2	Prepare detailed and abstract	
	estimates for various road works,	
	structural works and water supply	
	and sanitary works.	
СОЗ	Prepare the specifications and analyze	
	the rates for various items of work	
CO4	Assess contract and tender documents	
	for various construction works.	
CO 5	Prepare valuation reports of buildings	

Re	Reference Books				
1.	Datta B.N., "Estimating and costing", UBSPD Publishing House, New Delhi.				
2.	B.S. Patil, "Civil Engineering Contracts and Estimates", Universities Press.				
3.	M. Chakraborthi; "Estimation, Costing and Specifications", Laxmi Publications.				

4.	MORTH Specification for Roads and Bridge Works – IRC New Delhi					
5.	Kohli D.D and Kohli R.C, "Estimating and Costing", 12 th Edition, S.Chand					
	Publishers, 2014.					
6.	Vazirani V.N and Chandola S.P, "Estimating and costing", Khanna Publishers, 2015.					
7.	Rangwala, C. "Estimating, Costing and Valuation", Charotar Publishing House Pyt. Ltd., 2015.					

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE): Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

Semester: VII					
	Prestressed Concrete				
	(T	heory)			
Course Code:CIE Marks:MVJ22CV7350					
Credits: L:T:P:SEE Marks:3:2:050					
H	ours: 40L+10T	SEE			
		Duration: 3			
		Hrs.			
	Course Learning Objectives: The students will be able to				
1	1 Use the basics of prestressing to concrete elements.				
2	2 Restate the basic principle of prestressing including losses.				
3 Interpret the deflections in a prestressed concrete member.					
	Analyze the section for flexure, shear				

mary ze the section for mexale, shear
under limit state of serviceability and design the pre-stressed beam under
 design the pre-stressed beam under

	perm	155	lble	str	ess	cona	tion.	
_		• •		1	•	•	-	

5 Describe the design of anchorage zones.

UNIT-I	L1,L2 ,L3
Introduction to pre-stressed concrete structures: High strength concrete and steel, stress-strain characteristics and properties, fundamentals, load balancing concept, stress concept, center of thrust. Pre-tensioning and post- tensioning systems, tensioning methods, and end anchorages.	,
 Video link / Additional online information: (Self Learning) <u>https://nptel.ac.in/courses/105/1</u>06/105106117/ 	
UNIT-II	L1,L2 ,L3
Losses of Prestress: Stresses in concrete due to prestress and loads, stresses in steel due to loads, cable profiles, various losses encountered	8 Hrs

in pre-tensioning and post-tensioning	
methods, determination of jacking	
force.	
Video link / Additional online	
information: (Self Learning)	
 https://nptel.ac.in/courses/105/ 	
106/105106117/	
UNIT-III	TITO
	L1,L2
	, L 3
Deflection of a pre-stressed member –	8 Hrs
Short term and long-term deflections,	
Elastic deflections under transfer	
loads and due to different cable	
profiles. Deflection limits as per IS	
1343. Effect of creep on deflection,	
load verses deflection curve, methods	
of reducing deflection.	
Video link / Additional online	
information: (Self Learning)	
 https://nptel.ac.in/courses/105/ 	
106/105106117/	
UNIT-IV	
	L1,L2
	L1,L2 ,L3
Flexure -Types of flexural failure, IS	, L 3
Flexure -Types of flexural failure, IS Code recommendations . Ultimate	, L 3
Code recommendations . Ultimate	, L 3
Code recommendations . Ultimate flexural strength of sections.	, L 3
Code recommendations . Ultimate flexural strength of sections. Shear - IS Code recommendations,	, L 3
Code recommendations . Ultimate flexural strength of sections. Shear - IS Code recommendations, shear resistance of sections, shear	, L 3
Code recommendations . Ultimate flexural strength of sections. Shear - IS Code recommendations, shear resistance of sections, shear reinforcement. Limit state of	, L 3
Code recommendations . Ultimate flexural strength of sections. Shear - IS Code recommendations, shear resistance of sections, shear reinforcement. Limit state of serviceability – control of deflections	, L 3
Code recommendations . Ultimate flexural strength of sections. Shear - IS Code recommendations, shear resistance of sections, shear reinforcement. Limit state of serviceability – control of deflections and cracking.	, L 3
Code recommendations . Ultimate flexural strength of sections. Shear - IS Code recommendations, shear resistance of sections, shear reinforcement. Limit state of serviceability – control of deflections and cracking. Design of Beams: Design of pre-	, L 3
Code recommendations . Ultimate flexural strength of sections. Shear - IS Code recommendations, shear resistance of sections, shear reinforcement. Limit state of serviceability – control of deflections and cracking.	, L 3
Code recommendations . Ultimate flexural strength of sections. Shear - IS Code recommendations, shear resistance of sections, shear reinforcement. Limit state of serviceability – control of deflections and cracking. Design of Beams: Design of pre-	, L 3
Code recommendations . Ultimate flexural strength of sections. Shear - IS Code recommendations, shear resistance of sections, shear reinforcement. Limit state of serviceability – control of deflections and cracking. Design of Beams: Design of pre- tensioned and post-tensioned	, L 3
Code recommendations . Ultimate flexural strength of sections. Shear - IS Code recommendations, shear resistance of sections, shear reinforcement. Limit state of serviceability – control of deflections and cracking. Design of Beams: Design of pre- tensioned and post-tensioned symmetrical and asymmetrical	, L 3
Code recommendations . Ultimate flexural strength of sections. Shear - IS Code recommendations, shear resistance of sections, shear reinforcement. Limit state of serviceability – control of deflections and cracking. Design of Beams: Design of pre- tensioned and post-tensioned symmetrical and asymmetrical sections.	, L 3
Code recommendations . Ultimate flexural strength of sections. Shear - IS Code recommendations, shear resistance of sections, shear reinforcement. Limit state of serviceability – control of deflections and cracking. Design of Beams: Design of pre- tensioned and post-tensioned symmetrical and asymmetrical sections. Video link / Additional online	, L 3
Code recommendations . Ultimate flexural strength of sections. Shear - IS Code recommendations, shear resistance of sections, shear reinforcement. Limit state of serviceability – control of deflections and cracking. Design of Beams: Design of pre- tensioned and post-tensioned symmetrical and asymmetrical sections. Video link / Additional online information: (Self Learning)	, L 3
Code recommendations . Ultimate flexural strength of sections. Shear - IS Code recommendations, shear resistance of sections, shear reinforcement. Limit state of serviceability – control of deflections and cracking. Design of Beams: Design of pre- tensioned and post-tensioned symmetrical and asymmetrical sections. Video link / Additional online information: (Self Learning) . https://nptel.ac.in/courses/105/	, L 3
Code recommendations . Ultimate flexural strength of sections. Shear - IS Code recommendations, shear resistance of sections, shear reinforcement. Limit state of serviceability – control of deflections and cracking. Design of Beams: Design of pre- tensioned and post-tensioned symmetrical and asymmetrical sections. Video link / Additional online information: (Self Learning) . https://nptel.ac.in/courses/105/ 106/105106117/	, L 3 8 Hrs
Code recommendations . Ultimate flexural strength of sections. Shear - IS Code recommendations, shear resistance of sections, shear reinforcement. Limit state of serviceability – control of deflections and cracking. Design of Beams: Design of pre- tensioned and post-tensioned symmetrical and asymmetrical sections. Video link / Additional online information: (Self Learning) . https://nptel.ac.in/courses/105/	,L3 8 Hrs
Code recommendations . Ultimate flexural strength of sections. Shear - IS Code recommendations, shear resistance of sections, shear reinforcement. Limit state of serviceability – control of deflections and cracking. Design of Beams: Design of pre- tensioned and post-tensioned symmetrical and asymmetrical sections. Video link / Additional online information: (Self Learning) • https://nptel.ac.in/courses/105/ 106/105106117/ UNIT-Y	,L3 8 Hrs
Code recommendations . Ultimate flexural strength of sections. Shear - IS Code recommendations, shear resistance of sections, shear reinforcement. Limit state of serviceability – control of deflections and cracking. Design of Beams: Design of pre- tensioned and post-tensioned symmetrical and asymmetrical sections. Video link / Additional online information: (Self Learning) . https://nptel.ac.in/courses/105/ 106/105106117/	,L3 8 Hrs

transmission length, Anchorage stress in post-tensioned members. Bearing stress and bursting tensile force stresses in end blocks-Methods, I.S. code provision for the design of end block reinforcement.

Video link / Additional online information: (Self Learning)

 https://nptel.ac.in/courses/105/ 106/105106117/

Course Outcomes: After completing the course, the students will be able to

	course, the students will be able to				
CO1	Restate the basic concept of pre- stressing and understand the requirement of PSC members for present scenario.				
CO2	Examine the stresses encountered in PSC element during transfer and at working.				
CO3	Interpret the effectiveness of the design of PSC after studying losses.				
CO4	Investigating the PSC element and finding its efficiency and design PSC beam for different requirements.				
CO 5	Design the end blocks in PSC using codal provisions.				

Re	Reference Books				
1.	Prestressed Concrete Structure by T.Y.				
	Lin, Ned H. Burns				
2.	Prestressed Concrete by N. Krishna Raju				
З.	Prestressed Concrete by G.S.Pandit and				
	S.P.Gupta				
4.	IRC 112 and IS 1343 codes				

Continuous Internal Evaluation (CIE): Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

Semeste	r: VII		
Intelligent Transportation Systems (Theory)			
			Course Code: CIE Marks:
MYJ22CV741	50		
Credits: L:T:P:	SEE Marks:		
3:0:0	50		
Hours: 40L	SEE		
Duration: 3			
Hrs.			
Course Learning Objectives: The students			
will be able to			
1 To learn the fundamentals of ITS.			

2 To study the ITS functional areas

- 3 To have an overview of ITS
 - ³ implementation in developing countries

UNIT-I	L1,L2
Introduction to Intelligent Transport	8 Hrs
System: Introduction to Intelligent	
Transportation Systems (ITS) -	
Definition – Role and	
Responsibilities – Advanced	
Traveller Information System – Fleet	
Oriented ITS Services – Electronic	
Toll Collection – Critical issues –	
Security – Safety	
UNIT-II	L1,L2
ITS Architecture and Hardware:	8 Hrs
Architecture – ITS Architecture	
Framework – Hardware Sensors –	
Vehicle Detection – Techniques –	
Dynamic Message Sign – GPRS –	
GPS – Toll Collection	
UNIT-III	L1,L2
Advanced Transport Management	8 Hrs
System: Video Detection – Virtual	
Loop - Cameras - ANPR – IR Lighting	
- Integrated Traffic Management -	
Control Centre – Junction	
Management Strategies- ATMS -	
Advanced Traveler Information	
Systems (ATIS)- Route Guidance -	
Issues - Historical – Current –	
Predictive Guidance – Data	
Collection – Analysis – Dynamic	

Traffic Assignment (DTA) –	
Components – Algorithm.	
UNIT-IY	L1,L2
Advanced Traveller and Information	8 Hrs
System: Travel Information – Pre	
Trip and Enroute Methods- Basic	
ATIS Concepts – Smart Route	
System – Data Collection – Process –	
Dissemination to Travelers –	
Evaluation of Information – Value of	
Information – Business	
O pportunities	
UNIT-Y	L1,L2
Case Studies: Automated Highway	8 Hrs
Systems - Vehicles in Platoons –	
Integration of Automated Highway	
Systems. ITS Programs in the World	
- Overview of ITS implementations	
in developed countries, ITS in	
developing countries.	

Course Outcomes: After completing the course, the students will be able to				
CO1	Understand the sensor and communication technologies.			
CO2	Apply the various ITS methodologies			
CO3	Define the significance of ITS under			
	Indian conditions			

Re	Reference Books				
1.	Intelligent Transport Systems, Intelligent Transportation Primer, Washington, US, 2001.				
2.	Henry F. Korth, and Abraham Siberschatz, Data Base System Concepts, McGraw Hill, 1992.				
З.	Turban E.,"Decision Support and Export Systems Management Support Systems", Maxwell Macmillan, 1998.				
4.	Sitausu S. Mittra, "Decision Support Systems – Tools and Techniques", John Wiley, New York, 1986.				
5.	CycleW.HalsappleandAndrewB.Winston, "Decision Support Systems –Theory and Application", Springer Verlog,				

	New York, 1987
6.	ITS Hand Book 2000: Recommendations
	for World Road Association (PIARC) by
	Kan Paul Chen, John Miles.

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

Seme	ster: VII			
Precast Members - Systems &				
Construction				
(Th	neory)			
Course Code: CIE Marks:				
MVJ22CV742	50			
Credits: L:T:P:	SEE Marks:			
3:0:0	50			
Hours: 40L	SEE			
	Duration: 3			
	Hrs.			
Course Learning Obje	ctives: The students			
will be able to				
1 Impart concepts building design	Impart concepts of precast concrete building design			
Comprehend va	rious aspects like			
-	anning of structural			
	system and its components, significance,			
plant and p	roduction methods,			
	transportation and erection sequence of			
	precast elements			
	loads, integrating			
	architectural and services requirements, structural modelling & analysis of a			
	precast building			
Design and detail	ling of precast multi-			
4	storeyed building using software.			
Design and detail	ling of precast multi-			
5 storeyed building u	<u> </u>			

|--|

UNIT-I	L1,L 2,L3
Introduction to Precast and its	8
elements: tractors, end users) and	Hrs
Limitations, Residential,	
Commercial & Industrial	
Applications of precast, Materials	
used, Code provisions and clauses.	
Major elements (Beam, slab, wall,	
column, foundation, staircase, roof	
elements, façade) : Classification,	
Types and shapes, selection,	
application, erection, advantages,	
Infra works - Pipes & drains, duct	
bank, baggage handling tunnel,	
culvert and sleeper, facia element,	

]
pavement and channel	
Video link / Additional online	
information: (Self Learning)	
 https://youtu.be/eWdxA5L5lOs?s 	
i=m5m5a42mH9LsnUAD	
UNIT-II	Ll,L
	2, L 3
Precast Structural Systems,	8
Production, Storage, & Logistics:	Hrs
Structural System: Skeletal System,	
Portal Frame system, Large Panel	
system, Cell Block system and	
hollow block system, Guide lines of	
selection – Residential & office	
buildings, Industrial Buildings,	
Commercial buildings, Structural	
Stability and Structural Behaviour.	
Plant and Production: Introduction -	
Types & Process, Production -	
Design and shop drawings, check	
lists, Moulding, Casting and its types,	
Concreting, Curing, Demoulding and	
inspection.	
Storage, Delivery, Handling-	
introduction and types of equipment,	
lifting devices, Erection and	
installation - Horizontal components,	
vertical components, special	
elements, Quality Inspection and	
Tolerance	
Video link / Additional online	
information: (Self Learning)	
• https://youtu.be/9bInahMLTdM?	
si=aJ1rvCd600Xpvdri	
UNIT-III	L1,L
	2,L3
Modelling, Analysis and design of	8
Wall system: Design Basis Criteria:	Hrs
Geometric parameters and	
Occupancy, Location and Associated	
Parameters, Systems and material	
specifications, analysis tools, Loads	
and Load Combinations – gravity	

loads, lateral loads (seismic and wind) ETABS software, Modelling,	
Analysis and Design of structural	
elements for RC Wall system: Design	
of RC wall, beam, slab & staircase,	
Design for stripping, stacking,	
transportation and erection for all	
elements	
elements	
Video link / Additional online	
information: (Self Learning)	
• https://youtu.be/9bInahMLTdM?	
si=aJ1rvCd600Xpvdri	
UNIT-IV	L1,L
	2,L3
Joints Connections for RC Wall	8
system, Modelling, Analysis, Design	Hrs
of the Frame system: Joints	
connections for RC wall system – Wall	
to foundation, wall to wall horizontal	
connection, wall to wall vertical	
connection, beam to wall connection,	
beam to beam connection, slab to wall –	
progressive collapse, diaphragm	
action & slab to beam connection,	
staircase to beam or wall connection.	
Modelling, Analysis and design for	
Frame system and its connections:	
ETABS Modelling, Analysis and	
Design for frame system (foundation,	
column, beam, slab etc.)	
Video link / Additional online	
information: (Self Learning)	
• https://youtu.be/9bInahMLTdM?	
si=aJ1rvCd600Xpvdri	
UNIT-Y	Ll,L
	2,L3
Prestressed concrete and Preventive	8
Measures and case studies:	Hrs
Prestressed Concrete, Various types	
of slab design and its check, Slab to	
beam connection Preventive	
Measures – Testing requirements,	
U	
water tightness, temporary supports,	
MEP related preventive measures,	

progressive collapse – introduction and design, common defects and remedies.	
Case Studies - Residential Project, Commercial Project	
Video link / Additional online information: (Self Learning) • https://youtu.be/9bInahMLTdM? si=aJ1rvCd600Xpvdri	

Course Outcomes: After completing the course, the students will be able to	
CO1	Comprehend the necessity of precast construction
CO2	Adopt the appropriate mould and method for casting, transportation, and erection
CO3	Precast Concrete Structures Paperback - 12 June 2019 by Kim S. Elliott
CO4	Create and analyze a precast building model using ETABS software
CO 5	Design of precast building including connections, adhering to the code requirements & functional aspects

Re	Reference Books	
1.	IS 15916, Building Design and Erectio	
	Using Prefabricated Concrete	
2.	IS 13920, Ductile Design and Detailing of	
	Reinforced Concrete Structures	
	Subjected to Seismic Forces	
З.	Precast Concrete Structures – 2018 by	
	Hubert Bachmann and Alfred Steinle	
	Specifications	

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

	Semest	er: VII	
	Earthquake Resi (The		
	ourse Code: VJ22CV743	CIE Marks:50	
	redits: L:T:P: 0:0	SEE Marks: 50	
H	Hours: 40L SEE Duration: 03 Hrs		
Course Learning Objectives: The students willbe able to1Fundamentals of structural dynamics			
2	2 Fundamentals of engineering seismology		
3	3 Irregularities in building which are detrimental to its earthquake performance		
4	Different methods of computation seismic 4 lateral forces for framed and masonry structures.		
5	for RCC and Mas Relevant clauses of	t design requirements sonry structures and IS codes of practice ake resistant design of	

UNIT-I	Ll,L 2,L 3
Introduction to structural dynamics:	8
Basic Definitions, Concept of degrees of freedom, D'Alembert's principle, principle of virtual displacement and energy principles, Types of Vibrations, Damping and its types, Analytical Model of dynamic system, Free vibration of damped and undamped system having single degree of freedom. Concept of equivalent spring, Numerical problems on determining natural period, natural frequency, mass, stiffness, amplitude, and acceleration for undamped free vibration systems.	
UNIT-II	L1,L 2,L 3
Engineering Seismology:	8
Terminologies (Focus, Focal depth,	Hrs

Epicenter, etc.); Causes of Earthquakes; Theory of plate tectonics; Types and characteristics faults; Classification of Earthquakes; Types and characteristics of seismic waves; Magnitude and intensity of earthquakes; local site effects; Earthquake ground motion characteristics: Amplitude, frequency and duration; Seismic zoning map of India, Earthquake measuring	
instruments-Seismoscope, Seismograph	
and accelerograph. UNIT-III	Ll,L
	2,L
	3
Seismic Performance of Buildings and	8Hr
Over View of IS-1893 (Part-1):	5
Types of damages to building observed	
during past earthquakes; Plan	
irregularities; mass irregularity;	
stiffness irregularity; Concept of soft	
and weak storey; Torsional irregularity	
and its consequences; configuration	
problems; continuous load path;	
Architectural aspects of earthquake	
resistant buildings; Lateral load	
resistant systems. Seismic design	
philosophy; Structural modeling; Code	
based seismic design methods.	
UNIT-IY	L1,L
	2,L
	3
Determination of Design Lateral Forces:	8
Equivalent lateral force procedure and	Hrs
dynamic analysis procedure. Step by	
step procedures for seismic analysis of	
RC buildings using Equivalent static	
lateral force method and response	
spectrum methods (maximum of 4	
storeys and without infill walls).	
Numerical problems.	• • •
UNIT-Y	Ll,L
	2,L
	3
Ductility considerations: Factor	
affecting ductility, ductile detailing of	h rs

flexural members, columns and frame
members as per IS13920. Design of
Ductile Reinforced Concrete Beams,
Seismic Design of Ductile Reinforced
Concrete column
Earthquake Resistant Design of
Masonry Buildings: Performance of
Unreinforced, Reinforced, Infill
Masonry Walls, Box Action, Lintel and
sill Bands, elastic properties of
structural masonry, lateral load
analysis, Recommendations for
Improving performance of Masonry
Buildings during earthquakes;
Retrofitting of Masonry buildings
Course Outcomes: After completing the
course, the students will be able to
C Relates to structural idealization studies
O1 on properties of real structures
C Understand the principal of Seismology.
02
C Analyse earthquake characteristics and
O3 associated effects.
C Apply the concepts of earthquake design
04 and concept of lateral load distribution on
buildings.
C Apply the concepts of earthquake design
05 on masonry buildings.
Reference Books
1. Earthquake Resistant design of
Structures, Duggal S K, 5 th Edition, 2017,
Oxford University Press.
2. Earthquake Resistant Design of
Structures, Pakaj Agarwal & Manish
Shrikande, 4 th Edition, 2016, PHI India.
3 Earthquake resistant design of Building
. Structures, Vinod Hosur, 3 rd Edition, 2016,
Wiley(india).
4 Theory and Application to Earthquake
. Engineering, 7 th edition, 2018, Pearson
Education.
Continuous Internal Evaluation (CIE):
wulled a line fille fyrlur di ULF/j.

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE): Total marks: 50+50=100

Sen	nester: VII
1	ent and Reinforced Earth Theory)
Course Code: MVJ22CV744	CIE Marks: 50
Credits: L:T:P: 3:0:0	SEE Marks: 50
Hours: 40L SEE Duration: 3 Hrs.	
Course Learning O will be able to	bjectives: The students
<u> </u>	ering behavior of natural s methods adopted for oil conditions
2 Science and Geo solve problem modification by	adopting Mechanical and nethods for construction
Explain the techniques and methods adopted for dewatering and grouting methods	
4 Apply the knowl soils.	edge on stabilization of
	various reinforcement pted for stabilization of

UNIT-I	L1,L2,L3
Rock cycle: classification of	8 Hrs
rocks and rocks forming	
minerals; Weathering process	
and formation of soil; Role of	
ground improvement in	
foundation Engineering;	
Methods of Ground	
improvement – Geotechnical	
Problems in alluvial, lateritic,	
and black cotton soils.	
Selection of Suitable ground	
improvement techniques based	
on soil conditions- In situ and	
laboratory tests to characterize	
problematic soils; Mechanical,	

Hydraulic, Physico-chemical,	
Electrical, Thermal methods, etc.	
and their applications	
UNIT-II	L1,L2,L3
Mechanical Modification -	S Hrs
Principles of soil densification –	
Properties of Compacted soil ,	
Compaction control tests,	
Specification of compaction	
requirements, Blasting, Vibro-	
compaction, Dynamic Tamping	
and Compaction piles.	
Geo-synthetics – Types - general	
applications - types of geotextiles	
and geo-grids - physical and	
strength properties of geotextiles	
and geo-grids - behavior of soils	
on reinforcing with geotextiles	
and geo-grids - design aspects	
with geotextiles and geo-grid.	
UNIT-III	L1,L2,L3
Hydraulic Modification –	8 Hrs
	ЭЛГВ
Objectives and techniques,	
traditional dewatering methods	
and their choice, Design of	
dewatering system, Electro-	
osmosis, Filtration, Drainage	
and seepage control with Geo-	
synthetics, Preloading and	
vertical drains, Electro-kinetic	
dewatering, capacity of pumps	
and pumps design, installation	
and operation of dewatering	
systems – single line, two-line,	
flow to a single well, multiple	
well systems	
Grouting: Introduction, effect on	
properties of soils, Grouting -	
types - desirable characteristics	
of grouts - grouting methods -	
grouting pressure - grouting	
materials - grouting technology; -	
permeation grouting - compaction	
F	
grouting - soil fracture grouting -	
grouting - soil fracture grouting -	
grouting - soil fracture grouting - jet grouting - application and	
grouting - soil fracture grouting -	

UNIT-IV	L1,L2,L3
Stabilization of soils: Mechanical	S Hrs
Stabilization -Soil aggregate	
mixtures, properties and	
proportioning techniques, soft	
aggregate stabilization,	
compaction, field compaction	
control; Cement Stabilization-	
Mechanism, factors affecting	
and properties, use of additives,	
design of soil cement mixtures,	
construction techniques; Lime	
and Bituminous Stabilization-	
Type of admixtures, mechanism,	
factors affecting, design of	
mixtures, construction methods	
UNIT-Y	L1,L2,L3
Soil improvement by using	S Hrs
Reinforcing Elements -	
Introduction to Reinforced	
Earth - Load Transfer	
Mechanism and Strength	
Development - Soil Types -	
Reinforcing Materials -	
Reinforced Earth Retaining	
walls - Reinforced	
Embankments - Soil Nailing.	
Ground Improvement	
Techniques for Geotechnical	
Earthquake Engineering, Case	
studies on ground improvement	
techniques	

Course Outcomes: After completing the course, the students will be able to		
CO1	Restate the natural processes involved in the formation of soil as well as find out the suitable method for stabilization of soils.	
CO 2	Address the mechanical modifications and geo-synthesis effects on soil	
CO3	Implement the various dewatering methods and grouting methods	
CO4	Analysis the various chemical methods adopted for Stabilization of soils	
CO 5	Select the suitable method for	

stabilization of soil by Reinforcement
techniques.

Re	ference Books
1.	Purushothama Raj P, "Ground Improvement Techniques", Laxmi
	Publications, New Delhi.
2.	Manfred Hausmann , "Engineering principles of ground modification", Mc Graw Hill Pub. Co.
3.	Koerner R.M, "Construction and Geotechnical Method in Foundation Engineering", Mc Graw Hill Pub. Co.
4.	Bell, F.G., "Methods of treatment of unstable ground", Butterworths, London
5.	Ingles. C.G. and Metcalf J.B , "Soil Stabilization; Principles and Practice", Butterworths
6.	Principles and Practice of Ground Improvement, Jie Han (Indian Edition), Wiley Publishers

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

	Seme	ster: VII	
	Design and Execution of Pile		
	Foun	dations	
	(T)	neory)	
Co	ourse Code:	CIE Marks:	
M	VJ22CV745	50	
Cr	redits: L:T:P:	SEE Marks:	
	0:0	50	
Hours: 40L SEE		~	
		Duration: 3	
		Hrs.	
		ectives: The students	
will be able to			
1	design requirements for a pile		
	Elaborate the construction procedures		
2	which are involved	d in different pile	
	foundations		
З	-	ent load test which	
	needs to be conducted on the piles.		
		nvironmental, Health	
4			
	place for the handling of the pile works		
5		bill of quantities of	
	various Pile found	lations	

UNIT-I	L1,L2,L3
Introduction to piles, Design and construction of Bored Cast insitu piles and Driven Cast insitu piles: Overview of Pile foundations, Selection Criteria, Common Design considerations, General Terminologies and Indian standard codes. Materials and Equipment, Construction procedures, workmanship, Vertical and Lateral Capacity calculations, Load tests, Case Studies of Bored cast insitu piles and Driven cast insitu piles	
UNIT-II	L1,L2,L3
Introduction, design and construction of precast driven and under reamed piles: Materials and Equipment, Construction	8 Hrs

	se Outcomes: After completing the se, the students will be able to
CO1	Comprehend Basic design concepts, of pile foundations
CO 2	Compute capacity of piles and select suitable type of pile foundation based on soil conditions
CO3	Applydifferentconstructionprocedures of pile foundation
CO4	Design and execute different load testing on piles
CO 5	Compute bill of quantities for pile foundations

Reference Books

1.	IS 2911- Indian standard code driven cast	
	insitu, bored cast insitu, Driven precast	
	piles	
2.	IS 14593-Indian standard code for bored	
	cast insitu piles founded on rocks –	
	Guidelines	

Continuous Internal Evaluation (CIE): Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

Semes	ter: VII
Retrofitting and	Rehabilitation of
Struc	tures
(The	eory)
Course Code:	CIE Marks:
MYJ22CY746	50
Credits: L:T:P:	SEE Marks:
3:0:0	50
Hours: 40L SEE	
	Duration: 3
	Hrs.
Course Learning Object	tives: The students
will be able to	
1 To introduce the co Strengthening and r	oncept of Retrofitting,

	Strengthening and renabilitation		
2	To provide details of Damage Assessment.		
З	To Understand the concept of influence on		
3	Serviceability and Durability		
	To Understand the concept of		
4	To Understand the concept of maintenance and Retrofitting Techniques		
F	To explain the details about Artificial		
5	To explain the details about Artificial fibre reinforced polymer		

ler
]

UNIT-I	L1,L2
General: Introduction and Definition for Repair, Retrofitting, Strengthening and rehabilitation. Physical and Chemical Causes of deterioration of concrete structures, Evaluation of structural damages to the concrete structural elements due to earthquake.	SHrs
UNIT-II	L1,L2
Damage Assessment:Purpose ofassessment,Rapid assessment,Investigationofdamage,Evaluationofstructuralcracks,Damageassessmentprocedure,destructive,non-destructive andsemi destructive testing systems	8 Hrs
UNIT-III	L1,L2
Influence on Serviceability and Durability: Effects due to climate,	8 Hrs

temperature, chemicals, wear and	
erosion, Design and construction	
errors, corrosion mechanism,	
Effects of cover thickness and	
cracking, methods of corrosion	
protection, corrosion inhibitors,	
corrosion resistant steels,	
coatings, and cathodic protection.	
UNIT-IV	L1,L2,L3
Maintenance and Retrofitting	8 Hrs
Techniques: Definitions:	
Maintenance, Facts of	
Maintenance and importance of	
Maintenance Need for	
retrofitting, retrofitting of	
structural members i.e., column	
and beams by Jacketing	
technique, Externally	
bonding(ERB) technique, near	
surface mounted (NSM)	
technique, External post-	
tensioning, Section enlargement	
and guidelines for seismic	
rehabilitation of existing building	
UNIT-Y	L1.L2.L3
	L1,L2,L3 8 Hrs
Materials for Repair and	L1,L2,L3 8 Hrs
Materials for Repair and Retrofitting:	
Materials for Repair and Retrofitting: Artificial fibre reinforced	
Materials for Repair and Retrofitting: Artificial fibre reinforced polymer like CFRP, GFRP,	
Materials for Repair and Retrofitting: Artificial fibre reinforced polymer like CFRP, GFRP, AFRP and natural fiber like Sisal	
Materials for Repair and Retrofitting: Artificial fibre reinforced polymer like CFRP, GFRP, AFRP and natural fiber like Sisal and Jute. Adhesive like, Epoxy	
Materials for Repair and Retrofitting: Artificial fibre reinforced polymer like CFRP, GFRP, AFRP and natural fiber like Sisal and Jute. Adhesive like, Epoxy Resin, Special concretes and	
Materials for Repair and Retrofitting: Artificial fibre reinforced polymer like CFRP, GFRP, AFRP and natural fiber like Sisal and Jute. Adhesive like, Epoxy Resin, Special concretes and mortars, concrete chemicals,	
Materials for Repair and Retrofitting: Artificial fibre reinforced polymer like CFRP, GFRP, AFRP and natural fiber like Sisal and Jute. Adhesive like, Epoxy Resin, Special concretes and mortars, concrete chemicals, special elements for accelerated	
Materials for Repair and Retrofitting: Artificial fibre reinforced polymer like CFRP, GFRP, AFRP and natural fiber like Sisal and Jute. Adhesive like, Epoxy Resin, Special concretes and mortars, concrete chemicals, special elements for accelerated strength gain, Techniques for	
Materials for Repair and Retrofitting: Artificial fibre reinforced polymer like CFRP, GFRP, AFRP and natural fiber like Sisal and Jute. Adhesive like, Epoxy Resin, Special concretes and mortars, concrete chemicals, special elements for accelerated strength gain, Techniques for Repair: Rust eliminators and	
Materials for Repair and Retrofitting: Artificial fibre reinforced polymer like CFRP, GFRP, AFRP and natural fiber like Sisal and Jute. Adhesive like, Epoxy Resin, Special concretes and mortars, concrete chemicals, special elements for accelerated strength gain, Techniques for Repair: Rust eliminators and polymers coating for rebar during	
Materials for Repair and Retrofitting: Artificial fibre reinforced polymer like CFRP, GFRP, AFRP and natural fiber like Sisal and Jute. Adhesive like, Epoxy Resin, Special concretes and mortars, concrete chemicals, special elements for accelerated strength gain, Techniques for Repair: Rust eliminators and polymers coating for rebar during repair foamed concrete, mortar	
Materials for Repair and Retrofitting: Artificial fibre reinforced polymer like CFRP, GFRP, AFRP and natural fiber like Sisal and Jute. Adhesive like, Epoxy Resin, Special concretes and mortars, concrete chemicals, special elements for accelerated strength gain, Techniques for Repair: Rust eliminators and polymers coating for rebar during repair foamed concrete, mortar and dry pack, vacuum concrete,	
Materials for Repair and Retrofitting: Artificial fibre reinforced polymer like CFRP, GFRP, AFRP and natural fiber like Sisal and Jute. Adhesive like, Epoxy Resin, Special concretes and mortars, concrete chemicals, special elements for accelerated strength gain, Techniques for Repair: Rust eliminators and polymers coating for rebar during repair foamed concrete, mortar and dry pack, vacuum concrete, Gunite and Shot Crete Epoxy	
Materials for Repair and Retrofitting: Artificial fibre reinforced polymer like CFRP, GFRP, AFRP and natural fiber like Sisal and Jute. Adhesive like, Epoxy Resin, Special concretes and mortars, concrete chemicals, special elements for accelerated strength gain, Techniques for Repair: Rust eliminators and polymers coating for rebar during repair foamed concrete, mortar and dry pack, vacuum concrete, Gunite and Shot Crete Epoxy injection, Mortar repair for	
Materials for Repair and Retrofitting: Artificial fibre reinforced polymer like CFRP, GFRP, AFRP and natural fiber like Sisal and Jute. Adhesive like, Epoxy Resin, Special concretes and mortars, concrete chemicals, special elements for accelerated strength gain, Techniques for Repair: Rust eliminators and polymers coating for rebar during repair foamed concrete, mortar and dry pack, vacuum concrete, Gunite and Shot Crete Epoxy injection, Mortar repair for cracks, shoring and	
Materials for Repair and Retrofitting: Artificial fibre reinforced polymer like CFRP, GFRP, AFRP and natural fiber like Sisal and Jute. Adhesive like, Epoxy Resin, Special concretes and mortars, concrete chemicals, special elements for accelerated strength gain, Techniques for Repair: Rust eliminators and polymers coating for rebar during repair foamed concrete, mortar and dry pack, vacuum concrete, Gunite and Shot Crete Epoxy injection, Mortar repair for cracks, shoring and underpinning.	S Hrs
Materials for Repair and Retrofitting: Artificial fibre reinforced polymer like CFRP, GFRP, AFRP and natural fiber like Sisal and Jute. Adhesive like, Epoxy Resin, Special concretes and mortars, concrete chemicals, special elements for accelerated strength gain, Techniques for Repair: Rust eliminators and polymers coating for rebar during repair foamed concrete, mortar and dry pack, vacuum concrete, Gunite and Shot Crete Epoxy injection, Mortar repair for cracks, shoring and underpinning. Course Outcomes: After completing	S Hrs
Materials for Repair and Retrofitting: Artificial fibre reinforced polymer like CFRP, GFRP, AFRP and natural fiber like Sisal and Jute. Adhesive like, Epoxy Resin, Special concretes and mortars, concrete chemicals, special elements for accelerated strength gain, Techniques for Repair: Rust eliminators and polymers coating for rebar during repair foamed concrete, mortar and dry pack, vacuum concrete, Gunite and Shot Crete Epoxy injection, Mortar repair for cracks, shoring and underpinning.	8 Hrs g the

	Strengthening and rehabilitation
CO2	Get knowledge about details of Damage
	Assessment
CO3	Gain knowledge on concept of influence
	on Serviceability and Durability
CO4	Understand the concept of maintenance
	and Retrofitting Techniques
CO5	Understand about Artificial fibre
	reinforced polymer

Re	Reference Books		
1.	"Innovative Bridge Design Handbook:		
	Construction, Rehabilitation and		
	Maintenance" by Alessio Pipinato		
2.	"Traditional Details: For Building		
	Restoration, Renovation, and		
	Rehabilitation" by Charles George		
	Ramsey and Harold Reeve Sleeper		
З.	"Repair and Rehabilitation of Reinforced		
	Concrete Structures" by Walter F. Silva		

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marksare executed by means of an examination.

Semester: VII		
Road Safety Engineering		
(Theor	·y)	
Course Code:	CIE Marks :	
MYJ22CY751	50	
Credits: L:T:P:	SEE Marks :	
3:0:0	50	
Hours: 40L	SEE	
	Duration: 3	
	Hrs.	

Course Learning Objectives: The students will be able to

To provide students with a comprehensive				
understanding	of	the	princip	
strategies, and	tech	niques	related	to
ensuring safety o	n roa	dways.		
To equip students	s with	the kno	owledge a	nd
- <u>-</u>	4	-		

2 skills necessary to analyze road safety issues
 To design effective road safety measures
 3 and contribute to the improvement of road

3 and contribute to the improvement of road safety practices.

UNIT-I	L1,L2
Accident Investigations and Risk	8 Hrs
Management: Collection of	
Accident Data, Assessment of	
Road Safety, Methods to Identify	
and Prioritize Hazardous	
Locations and Elements,	
Determine Possible Causes of	
Crashes, Crash Reduction	
Capabilities and	
Countermeasures, Effectiveness	
of Safety Design Features,	
Accident Reconstruction,	
Condition and Collision Diagram.	
UNIT-II	L1,L2
Traffic Engineering Studies:	8 Hrs
Statistical Methods In Traffic	
Safety Analysis – Regression	
Methods, Poisson Distribution,	
Chi-Squared Distribution,	
Statistical Comparisons- Traffic	
Management Measures And Their	
Influence On Accident	

Prevention.	
UNIT-III	L1,L2,L3
Road Safety in Transport	8 Hrs
Planning and Geometric Design:	
Yehicle and Human	
Characteristics, Road Design and	
Safety Elements, Redesigning	
Junctions, Cross Section	
Improvements, Traffic Control,	
Traffic Calming Measures, Road	
Safety Furniture.	
UNIT-IV	L1,L2
Role of Signs and Markings in	8 Hrs
safety: Types Of Signs – Design	
Specifications – Guidelines For	
Installation – Role Of Signs In	
Safety; Types Of Road Markings –	
Design Specifications – Role Of	
Road Markings In Safety.	
UNIT-V	L1,L2
Traffic Management Systems for	8 Hrs
safety: Road Safety Audits and	
Tools for Safety Management	
Systems, Road Safety Audit	
Process, Road Safety	
Improvement Strategies, ITS and	
Safety.	

Course Outcomes: After completing the course, the students will be able to		
	Analyse road safety data, identify hazardous locations, and assess safety risks on roadways.	
CO2	Evaluate the effectiveness of road safety interventions and conduct post-implementation analysis.	
CO 3	Utilize modelling and simulation techniques to predict and assess the impact of road safety measures.	
CO4	Demonstrate knowledge of traffic control devices, traffic management strategies, and their role in enhancing road safety.	
CO 5	Comprehend the legal and policy framework related to road safety engineering and contribute to policy	

development.

Re	ference Books
1.	Traffic Engineering and Transportation Planning – L.R. Kadiyali, Khanna Publishers
2.	Fundamentals of Transportation Engineering - C.S. Papacostas, Prentice Hall India.
3.	Transportation Engineering – An Introduction, C. Jotin Khisty, B. Kent Lall
4.	Fundamentals of Traffic Engineering, Richardo G Sigua
5.	Handbook of Road Safety Measures, Second Edition, Rune Elvik, Alena Hoye, Truls Vaa, Michael Sorenson
6.	Road Safety By NCHRP
7.	Traffic Engineering and Transportation Planning – L.R. Kadiyali, Khanna Publishers

Continuous Internal Evaluation (CIE): Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional guizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

ester: VII		
Conservation of Natural Resources		
Sheory)		
CIE Marks:		
50		
SEE Marks:		
50		
SEE		
Duration: 3		
Hrs.		

Course Learning Objectives: The students will be able to

1	Learn types of land forms, soil conservation and sustainable land use planning
2	Apprehend water resources, types, distribution, planning and conservation. Water pollution and types of uses.
З	Know the types of minerals and rocks.
4	Know the atmospheric composition of air, pollution and effects on human beings, animals and plants. Air pollution control
5	Apprehend basics of biodiversity and ecosystems.

UNIT-I	L1,L 2,L3
Land: Land as a resource, types of lands, conservation of land forms, deforestation, effect of land use changes. Soil health, ecological and economic importance of soil, impact of soil degradation on agriculture and food security, need for soil conservation, sustainable land use planning.	8 Hrs
Video link / Additional online information: (Self Learning) • https://youtu.be/gimg8449uaU?s i=d5zRKpAbxpriVHex	
UNIT-II	L1,L 2,L3
Water: Global water resources, Indian water resources, Resources system planning. Water use sectors-domestic,	8 Hrs

air pollution. Control of air pollution by equipment, smoke and its control. Ozone depletion -impacts, photochemical changes. Video link / Additional online information: (Self Learning) • https://youtu.be/gimg8449uaU?s i=d5zRKpAbxpriVHex UNIT-IV L1,L 2,L3 Biodiversity: Introduction, Flora and Fauna, Importance of biodiversity, Economic values-medicinal plants, drugs, fisheries biogeochemical cycling. Threat to biodiversity, natural & anthropogenic disturbance, habitat loss. Conservation of	industrial, agriculture. Water deficit and water surplus basins in India, equitable distribution, Inter-basin water transfers, Interlinking of rivers – Himalayan component, peninsular component, issues involved. Ground water, its potential in India, conjunctive use, recharge of ground water. Contamination of ground water, sea water ingress, problems and solutions. Video link / Additional online information: (Self Learning) • https://youtu.be/gimg8449uaU?s i=d5zRKpAbxpriVHex UNIT-III Air: Introduction, composition, sources and classification of air pollutants, National Ambient Air quality standards (NAAQS), Air quality index, effects of air pollution on human health. Economic effects of	L1,L 2,L3 8 Hrs
Videolink/ Additionalonlineinformation: (Self Learning)https://youtu.be/gimg8449uaU?s.i=d5zRKpAbxpriVHexL1,LUNIT-IVL1,L2,L3Biodiversity: Introduction, Flora and Fauna, Importance of biodiversity, Economic values-medicinal plants, drugs, fisheries biogeochemical cycling. Threat to biodiversity, natural & anthropogenic disturbance,Hrs	air pollution. Control of air pollution by equipment, smoke and its control. Ozone depletion -impacts,	
Biodiversity: Introduction, Flora and Fauna, Importance of biodiversity, Economic values-medicinal plants, drugs, fisheries biogeochemical cycling. Threat to biodiversity, natural & anthropogenic disturbance, 2,L3	Video link / Additional online information: (Self Learning) • https://youtu.be/gimg8449uaU?s	
Fauna, Importance of biodiversity, Economic values-medicinal plants, drugs, fisheries biogeochemical cycling. Threat to biodiversity, natural & anthropogenic disturbance,	UNIT-IV	-
biodiversity, National parks, wild life sanctuaries, zoological gardens, gene banks, pollen culture, ecological	Fauna, Importance of biodiversity, Economic values-medicinal plants, drugs, fisheries biogeochemical	8

Ecosystem: Definition, Types: forest, grass land, marine, desert, wetlands, estuarine, lotic, lentic. Abiotic & biotic components of ecosystem. Video link / Additional online	
information: (Self Learning)	
 https://youtu.be/gimg8449uaU?s i=d5zRKpAbxpriVHex 	
UNIT-Y	L1,L 2,L3
Global warming: concept, indicators, factor and effects. Global climate change-indicators, health impacts, effect on biodiversity. Introduction to global efforts in conservation of biodiversityEIA regulations in India, status of EIA in India, list of projects needing environmental clearance under EIA notifications. Case study of hydro power/ thermal power projects	8 Hrs
Video link / Additional online information: (Self Learning) • https://youtu.be/gimg8449uaU?s i=d5zRKpAbxpriVHex	

Course Outcomes: After completing the course, the students will be able to		
CO1	Apprehend various components of land as a natural resource and land use planning.	
CO2	Know availability and demand for water resources as applied to India.	
CO3	Analyse the components of air as resource and its pollution	
CO4	Discuss biodiversity & its role in ecosystem functioning.	
CO 5	Critically appreciate the environmental concerns of today.	

Reference Books			
1.	P.Jaya Rami Reddy, "A Textbook of		
	Hydrology", University Science Press,		
New Delhi, 2011			

_

-

2.	Singh J.S, Singh S.P & Gupta, S.R., "Ecology, environment and resource conservation", Anamaya publications, 2006
З.	Krishnamurthy K.V., "An advanced textbook of Biodiversity- principle & practices." Oxford and IBH publications Co.Pvt ltd, New Delhi. 2004.

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional guizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

	Semester:	VII		
	Energy Efficiency, Acoustics and			
	Daylighting In			
	(Theory			
Cou	Course CIE Marks:			
Cod	e:MVJ22CV753	50		
Cre	Credits: L:T:P: 3:0:0 SEE Marks			
		50		
Ηοτ	Hours: 40L SEE			
		Duration: 3		
Hrs.		Hrs.		
Cou	rse Learning Objective	es: The students		
will	be able to			
	To facilitate learne	rs to understand		
1	l climatology, heat ingress in building and energy			
2	To expose the learners to building acoustics, indoor air quality and day lighting.			

To impart fundamental knowledge on3Life cycle assessment and Energy
efficiency in buildings.

UNIT-I			
2Introduction to Climatology and heatSHringress in building: Basics ofsclimatology, Earth - Sunsunrelationship, Solar angles and sun			
UNIT-II	L1,L 2		
Building acoustics, Indoor air quality and Lighting in buildings: Basics of sound and Building acoustics – Acoustic defects, prevention of sound transmission and acoustic measure for office building. Indoor Air Quality – Effects, control of	8 Hrs		

environment, Integrated approach	
for IAQ management. Fundamentals	
of lighting- Day lighting and its	
metrics – Strategies for day lighting	
and its control. Artificial lighting -	
Design and control strategies – Visual	
comfort enhancement.	
comfort ennancement.	
Video link / Additional online	
information: (Self Learning)	
-	
 Energy efficiency, Acoustics and 	
day lighting in building :	
nptel.ac.in/courses/105/102/105	
102175/	
	T T T
UNIT-III	L1,L
	2
Energy efficient buildings, Water and	8
Waste management in buildings:	Hrs
Energy efficiency – Energy	
efficiency in building envelope and	
energy efficient HVAC and Lighting	
as per Energy conservation building	
code (ECBC) 2017, Energy	
simulation, Energy management	
system – Renewable energy and	
Energy Audit. (demand control	
ventilation) Water Efficiency –	
-	
Planning and design of water	
management system, Rain water	
harvesting, Water efficient design	
and fixtures, Treatment and reuse	
and Water efficient landscape	
system.	
Waste management – Types of waste	
and its treatment methods,	
Construction and demolition waste	
management, Waste management in	
residential, commercial buildings,	
healthcare facilities.	
UNIT-IV	Ll,L
	2
Life Cycle Assessment of Buildings	8
and Green project management:	Hrs
Materials – Green product	
▲ · · · · · · · · · · · · · · · · · · ·	
certifications, features of sustainable	
building materials and sustainable	
0	

alternatives for structural, envelope and finishing materials. Low carbon cement, Zero emission bricks and lean construction practices. Life cycle assessment and its types – Modelling and Analysis, Greenhouse gas emission. Different phases of Green building project management. Video link / Additional online information: (Self Learning) • Life cycle assessment: nptel/courses/video/105105157/ L01	
UNIT-Y	L1,L 2
Energy Efficient rating: Energy efficiency rating for distribution transformers, diesel generator set, motors, pumps, electrical appliances, lighting fixtures and lifts as per Bureau of Energy Efficiency (BEE). Energy efficiency in HVAC system – Variable Frequency Drive (VFD), Air volume drive. Roof top solar installations and solar water heaters, Heat recovery system in buildings, Building Management System (BMS) – Occupancy sensors and energy efficient lighting controls, Smart Buildings.	8 Hrs

Course Outcomes: After completing the course, the students will be able to			
CO1	Comprehend climatology, shading system and analyze heat transfer mechanism in buildings.		
CO 2	Assess the design considerations and parameters for lighting, acoustics and indoor air quality.		
CO3	Develop solutions for energy efficiency, water efficiency and waste management in buildings.		
CO4	Adopt green project management methodology and evaluate building life		

	cycle assessment		
CO 5	Understand	energy	efficiency
	measures in a building.		

Re	Reference Books			
1.	Energy Conservation Building Code –			
	2017 (with amendments up to 2020),			
	Bureau of Energy Efficiency.			
2.	The Sustainable Habitat Handbook (6			
	Volume Set), GRIHA Version 2019			
З.	National Building Code – 2016, Volume			
	1&2, Bureau of Indian Standards			
4.	HarharaIyer G, Green Building			
	Fundamentals, Notion Press			
5.	Dr. Adv. HarshulSavla, Green Building:			
	Principles & Practices			

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marksare executed by means of an examination.

The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	Semester: \	VII (III)		
Env	rironmental Protection (Theory)			
Cou Cod	rse e:MVJ22CV754	CIE Marks: 50		
Cre	dits: L:T:P: 3:0:0	SEE Marks: 50		
Hou	Irs: 40L	SEE Duration: 3 Hrs.		
	rse Learning Objective be able to	s: The students		
1	Study the facts of environmental pollution and conservation of natural resources.			
2	Study the elements of corporateenvironmental management systemscomplyingwithinternationalstandards.			
3	Learn to lead the environmental assessment team and implement waste minimization options.			
4	Study the application management systems organizations.			

UNIT-I				L1,L2
Introduction:	Iı	mportance	of	SHrs
Environmental				
for Environme				
Environmental				
Standards: Unio				
Environmental				
approach	to	Corpo	orate	
environmental	r	nanagement	-	
Classification	of	Environme	ental	

Impact Reduction Efforts -Business Charter for Sustainable Production and Consumption – Tools, Business strategy drivers and Barriers -Evolution of Environmental Stewardship. Environmental **Management Principles - National** policies on environment, abatement of pollution and conservation of resources - Charter on Corporate responsibility for Environmental protection.

UNIT-II	L1,L2				
Environmental quality: Objectives,	8 Hrs				
Rationale of Environmental					
standards, Concentration and Mass					
standards, Effluent and stream					
standards, Emission and ambient					
standards, Minimum national					
standards, environmental					
performance evaluation: Indicators,					
benchmarking. Pollution control Vs					
Pollution Prevention - Opportunities					
and Barriers – Cleaner production					
and Clean technology, closing the					
loops, zero discharge technologies.					
UNIT-III	L1,L2				
Environmental Management	8 Hrs				
System: EMAS, ISO 14000 - EMS as					
per ISO 14001– benefits and barriers					
of EMS – Concept of continual					
improvement and pollution					

prevention – environmental policy –	
initial environmental review -	
environmental aspect and impact	
analysis – legal and other	
requirements- objectives and targets -	
environmental management	
programs – structure and	
responsibility – training awareness	
and competence- communication -	
documentation and document control	
- operational control - monitoring	
and measurement – management	
review.	
UNIT-IV Environmental Audit:	L1,L2
Environmental Audit:	ð h rs
Environmental management system	
audits as per ISO 19011 – Roles and	
qualifications of auditors -	
Environmental performance	
indicators and their evaluation – Non-	
conformance – Corrective and	
conformance-Correctiveandpreventiveactions-compliance	
preventive actions -compliance	
preventive actions -compliance audits – waste audits and waste	
preventive actions –compliance audits – waste audits and waste minimization planning –	
preventive actions -compliance audits - waste audits and waste minimization planning - Environmental statement (form V) -	L1,L2
preventive actions -compliance audits - waste audits and waste minimization planning - Environmental statement (form V) - Due diligence audit. UNIT-Y	L1,L2 S Hrs
preventive actions -compliance audits - waste audits and waste minimization planning - Environmental statement (form V) - Due diligence audit. UNIT-V	,
preventive actions -compliance audits - waste audits and waste minimization planning - Environmental statement (form V) - Due diligence audit. <u>UNIT-V</u> Applications: Applications of EMS,	,
preventiveactions-complianceaudits-wasteauditsandwasteminimizationplanning-Environmental statement (form V) -Due diligence audit.UNIT-VApplications:Applications of EMS,WasteAuditsandPollution	,

Chemical	industries,	etc.	
Transboundar	y movement, d	lisposal,	
procedures of	hazardous was	tes.	

Course Outcomes: After completing the			
course, the students will be able to			
CO1	Gain the knowledge about		
	environmental issues and an approach		
	to corporate environmental		
	management systems for conservation		
	of resources and environmental		
	protection.		
CO2	Appreciate the elements of Corporate		
	Environmental Management systems		
	complying to international		
	environmental management system		
	standards		
CO3	Lead pollution prevention assessment		
	team and implement waste		
	minimization options		
CO4	Gain the knowledge about		
	environmental management system		
	audits		
CO 5	Develop, Implement, maintain and		
	Audit Environmental Management		
	systems for industries		

Reference Books

Christopher Sheldon and Mark Yoxon,"Installing Environmental managementSystems – a step by step guide" EarthscanPublications Ltd, London, 1999.

	ISO 14001/14004: Environmental
2.	management systems – Requirements and
_	Guidelines – International Organisation
	for Standardisation, 2004
	ISO 19011: 2002, "Guidelines for quality
З.	and/or Environmental Management
З.	System auditing, Bureau of Indian
	Standards, New Delhi, 2002
	Paul L Bishop "Pollution Prevention:
4.	Fundamentals and Practice", McGraw-
	Hill International, Boston,2000.
	Environmental Management Systems: An
	Implementation Guide for Small and
5.	Medium-Sized Organizations, Second
	Edition, NSF International, Ann Arbor,
	Michigan, January 2001.

Continuous Internal Evaluation (CIE): Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marksare executed by means of an examination.

The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomylevel.

Semester: VIII			
Deep Excavation and Tunnels			
	(Theory)		
Cour	Course Code: MVJ22CV811 CIE Marks: 50		
Cred	lits: L:T:P: 3:0:0	SEE Marks: 50	
Hou	Hours: 40L SEE Duration: 3 Hrs.		
Cour	rse Learning Objectives: The studer	nts will be able to	
1	Introduce various underground structures such as tunnels, caverns, shafts, and stations		
2	Explain the construction methodology, support systems and challenges in the construction of Tunnels, caverns, shafts, and stations		
3	Explain design aspects in the field on geotechnical/rock engineering and tunnelling, Instrumentation, and monitoring of tunnels		
4	Impart knowledge on the field challenges to the students through introduction of		
5		nallenges to the students through introduction of dule and to assess the comprehension of course ork	

UNIT-I	L1,L2,L3
Introduction to underground constructions and tunnelling: General	8 Hrs
Description of Various Tunnels and other underground structures,	
Components of a tunnel, Stress around an underground opening, Methods	
of excavations, Subsurface investigation	
Surface investigation, Sampling Techniques, Laboratory and in-situ testing of	
soil and rock, Indian standard codes	
Video link / Additional online information: (Self Learning)	
 https://youtu.be/MfkIm7qBiPk?si=bGahyKtpOzQitxjt 	
UNIT-II	L1,L2,L3
Construction, challenges and solutions for Caverns, shaft and underground	8 Hrs
stations: Factors affecting the choice of method of tunnel construction, Cut	
and cover method, Bored method, Drill and blast method, Sequential	
excavation method and shaft method, Norwegian tunnel boring method	
(NTM), New Austrian tunnel boring method (NATM), Methods of construction	
of caverns and shafts and underground stations, Challenges and solutions for	
execution of these methods, Different types of Tunnel boring machines.	
Video link / Additional online information: (Self Learning)	
 https://youtu.be/MfkIm7qBiPk?si=bGahyKtpOzQitxjt 	
UNIT-III	L1,L2,L3
Design methodology, Instrumentation and monitoring for tunnels: Rock	8 Hrs
mass classification, Geotechnical and geological inputs for design, Empirical,	
semi empirical and joint set analysis, Numerical 2D modelling and final support	

recommendations, Need for Instrumentation and monitoring in tunnels, Types	
of Instruments - Planning and execution	
Video link / Additional online information: (Self Learning)	
 https://youtu.be/MfkIm7qBiPk?si=bGahyKtpOzQitxjt 	
UNIT-IV	L1,L2,L3
Support systems and design software for tunnels: Need for pre-excavation	8 Hrs
support system, Fore piling, Bolts and Anchors, Shotcrete, wire meshes, lattice	
girders and integrated support systems, Different types of retaining structures	
and their applicability. Secant piles, Sheet piles, contiguous piles and soldier	
piles and D wall. Requirement of investigation to be carried out for	
underground structure, Preparation geotechnical interpretation report for	
design of retaining structure, Numerical analysis to be performed for	
temporary / permanent retaining system, Introduction to software to be used	
in embedded retaining system, Case studies.	
Video link / Additional online information: (Self Learning)	
 https://youtu.be/MfkIm7qBiPk?si=bGahyKtpOzQitxjt 	
	L1,L2,L3
	8 Hrs
Indian and International Code provisions: Introduction to interpretation	0 11 5
using Rock data, Introduction to Wallap, Introduction to Plaxis Introduction	
to RS-2, Introduction to CIRIA 143, Wallap and their application Practical	
application & case studies	
Video link (Additional culing informations (Calf Learning)	
Video link / Additional online information: (Self Learning)	
 https://youtu.be/MfkIm7qBiPk?si=bGahyKtpOzQitxjt 	

Course	Course Outcomes: After completing the course, the students will be able to		
CO1	Comprehend the different soil investigation techniques, rock mass classifications,		
	components of different underground structures and their functions.		
CO2	Design and apply different construction methodologies for tunnels, Caverns and shafts		
	in different soil and rock conditions		
CO3	Evaluate the suitability of different excavation supports such as sheet piles, soldier		
	piles, diaphragm walls and tunnel support for different soil and rock conditions		
CO4	Create an instrumentation monitoring plan for tunnel construction		
CO5	Comprehend the use of different software tools in deep excavations and apply code		
	provisions for mitigating water ingress and seepage in excavations and tunnels		

Refe	Reference Books		
1.	David Chapman, Nicole Metje, Alfred Stark "Introduction to Tunnel Construction "2017		
	, CRC Press		
2.	CIRIA -C760 "Guidance on Embedded retaining wall design"		

Continuous Internal Evaluation (CIE): Theory for 50 Marks CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Semester: VIII			
Pre-Engineered Buildings			
	(Theory)		
Cour	Course Code: MVJ22CV812 CIE Marks:50		
Cred	lits: L:T:P: 3:0:0	SEE Marks: 50	
Hou	rs: 40L	SEE Duration: 03 Hrs	
Cour	rse Learning Objectives: The student	s will be able to	
1	1 To describe the specifications of various types of steel members used in Pre-engineered Buildings		
2	To explain the calculation of loads that are applicable for steel buildings, and unique only to PEB like crane loads, mezzanine loads, pipe rack loads, etc.		
3	To understand the various steps for carrying out the analysis & optimized design of an		
4	4 To go through the design procedure of cold-formed elements that constitute the secondary framing of a Pre-engineered building		
5	To get an idea of fabrication and er Engineered building	rection aspects in the design and construction of a Pre-	

UNIT-I	L1,L2,L3
Introduction to PEB, Materials used in PEB and its specifications:	8 Hrs
Introduction to PEB, Materials used in PEB and its specifications, Built-up Tapered	
sections - Cold-formed Steel sections - Bracings in PEB - Cladding & Roofing -	
Additional components in a PEB – Insulation, Ventilation, Drainage, Expansion,	
Acoustics – Coatings of elements of a PEB – Accessories in a PEB.	
UNIT-II	L1,L2,L3
Components and Loads on a PEB: Layout of a PEB – Load flow path – Primary	8 Hrs
framing : Column and Rafter frame – Secondary framing: Purlins and girts – Bracing	
configurations and selection – Special structural systems – Jack beams and Jack	
portals – Lattice girders – Soldier columns – Cabletrays and Pipe racks – Types of	
Crane systems and configurations Mezzanine floors, joists and Decking sheets -	
Roof sheeting types and variants – Wall cladding and panel types – Openings in PEB	
in Roofs and walls Loads acting on a PEB – Dead Loads, Live loads, Snow loads,	
Collateral loads, Wind loads, Seismic loads – Crane loads and Mezzanine loads –	
Loads due to temperature and its consideration in design.	
UNIT-III	L1,L2,L3
Connections in PEB and Codes of Practice:	8Hrs
Various types of connections in PEB – Rafter to column connections – Beam to	
Beam/Column connections – Splices – Base connections, Anchor bolts and base	
plates – Gantry Girder Connections – Optional connections. Codes practiced for the	
design of a PEB – Indian Standards, IS:800 - American Standards, AISC 360 – MBMA	
practices – Cold-formed Steel design code, IS:801 & AISI S100	
UNIT-IV	L1,L2,L3
Design of a PEB warehouse and Industrial PEB structure:	8 Hrs
Study of inputs from the client – Modelling of a PEB warehouse structure –	
Calculation and application of loads and load combinations into the software -	

Analysis and Design parameters for the structure – Design of Primary and Secondary members – Deflection & Drift checks – Design of Connections . Design of Industrial PEB structure – Modelling, Loads, Analysis and Design of the structure using software – Additional scope of Industrial structures in comparison with Warehouse structures – Design of Gantry girders – Special Connections Design	
UNIT-V	L1,L2,L3
Design of base connections:	8 Hrs
Base connection, Drawings in a PEB, Stakeholders of a PEB & Fabrication, Erection	
and Execution aspects ,Column reactions and Base connection design: Base plates	
and Anchor Bolts – Overview of Footing, Pedestal, Tie beams and Grade slab, Anchor Bolt (AB) & General Assembly (GA) drawings – Good for Construction (GFC)	
Drawings – Fabrication & Erection drawings – Bill of Quantities (BOQ) and Material	
Planning Sheet (MPS) – As-Built drawings ,Stakeholders of a PEB – Role of Design	
Engineers & Manufacturers responsibilities – Pre-Bid and Post-bid conditions –	
Shop fabrication – Methods of rolling – Quality tests – Scheme and Sequence of	
Erection – Good Engineering practices	

Course	Course Outcomes: After completing the course, the students will be able to		
CO1	Understand the specifications of hot-rolled and coldformed steel members used in Pre-		
	Engineered buildings		
CO2	Compute various loads acting on pre-engineered buildings and select the proper framing		
	configuration and lateral load resisting systems		
CO3	Carry out the analysis & optimized design of an industrial pre-engineered building and		
	its connections, using a modelling software		
CO4	Design cold-formed elements that constitute the secondary framing of a Pre-engineered		
	building Integrate the practical fabrication and erection aspects in the design and		
	construction of a Pre-Engineered building Understand the principal of Seismology.		
CO5	Integrate the practical fabrication and erection aspects in the design and construction		
	of a Pre-Engineered building Understand the principal of Seismology.		

Refe	Reference Books	
1.	IS 800:2007, IS 1893, IS 875 (Part 1-5), SP6, NBC (Part 1 & 2): 2016.	
2.	N. Subramanian, Steel Structures: Design and Practice, Oxford Publications.	
3.	K S Vivek, P Vyshnavi , Pre - Engineered Steel Building, Lambert publications.	

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	Semester: VIII		
	Advanced RCC Structures		
	(Theory)		
Cou	rse Code: MVJ22CV813	CIE Marks: 50	
Crec	lits: L:T:P: 3:0:0	SEE Marks: 50	
Hours: 40L		SEE Duration: 3 Hrs.	
Cou	Course Learning Objectives: The students will be able to		
1	1 To make students to learn principles of Structural Design,		
2	2 To design different types of structures and to detail the structures.		
3	To evaluate performance of the str	uctures	

UNIT-I	L1,L2,L3
Design of R C slabs by yield line method.	8 Hrs
Design of RCC overhead circular and rectangular water tanks with supporting	
towers	
UNIT-II	L1,L2,L3
Design of grid or coffered floors.	8 Hrs
Design of flat slabs	
UNIT-III	L1,L2,L3
Design of R C Chimneys.	8 Hrs
Design of continuous beams with redistribution of Moments	
UNIT-IV	L1,L2,L3
Design of R C bunkers	8 Hrs
Design of R C silos	
UNIT-V	L1,L2,L3
Formwork: Introduction, Requirements of good formwork, Materials for	8 Hrs
forms, choice of formwork, loads on formwork, Permissible stresses for	
timber, Design of formwork, shuttering for columns, Shuttering for slabs and	
beams, Erection of Formwork, Action prior to and during concreting, Striking	
of forms. Recent developments in form work	

Course Outcomes: After completing the course, the students will be able to		
CO1	Achieve Knowledge of design and development of problem-solving skills	
CO2	Understand the principles of Structural Design.	
CO3	Design and develop analytical skills.	
CO4	CO4 Summarize the principles of Structural Design and detailin	
CO5	Understands the structural performance	

Refe	Reference Books	
1.	Krishna Raju. N., "Advanced Reinforced Concrete Design", CBS Publishers &	
	Distributors	
2.	Punmia B.C, Ashok Kumar Jain and Arun Kumar Jain, "Comprehensive RCC Design",	
	Laxmi Publications, New Delhi	
3.	Pillai S. U. and Menon D., "Reinforced Concrete Design", Tata McGraw-Hill, 3rd Ed, 1999	

4.	Shah.H.J, "Reinforced Concrete", Vol-1 and Vol-2, Charotar, 8th Edition –2009 and 6th
	Edition – 2012 respectively. 5. Gambhir.M.L, "Design of Reinforced Concrete Structures",
	PHI Pvt. Ltd, NewDelhi, 2008
5.	IS Code Books

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	Semester: VIII		
	Project Management and Finance		
	(Theory)		
Cour	Course Code:MVJ22CV814 CIE Marks: 50		
Credits: L:T:P: 3:0:0 SEE Marks: 50		SEE Marks: 50	
Hours: 40L SEE Duration: 3 Hrs.		SEE Duration: 3 Hrs.	
Cou	Course Learning Objectives: The students will be able to		
1	To understand what are the objectives of project management		
2	To outline the principles followed in carrying out a project.		
2	To demonstrate knowledge and understanding of engineering and management		
3	principles.		
4	4 To function effectively as an individual, and as a member or leader in diverse teams.		
5	To understand the concepts of finance	ce and accounts carried out in project	
	management.		

UNIT-I	L1,L2
Project Implementation, Monitoring and Control: Project representation-	8Hrs
Role of project managers , relevance with objective of organization,	
preliminary manipulations , Basic Scheduling concepts : Resource leveling ,	
Resource allocation ,Setting a base line, Project management information	
system: Importance of contracts in projects: Team work in Project	
Management: Formation of Effective terms	
UNIT-II	L1,L2
Project planning and time management:Purpose, Project scheduling, activity definition, activity sequencing, activity duration estimating, schedule development, schedule control, project management using CPM\PERT- Network basics, Network development, PERT analysis, advantages. Computerized network analysis- features of PM software, capabilities of PM software, multi project analysis.Video link / Additional online information: (Self Learning)Video link / Additional online information: (Self Learning)• Projectplanningandcontrol: nptel.ac.in/courses/105/106/105106149/	8 Hrs
UNIT-III	L1,L2
 Project Evaluation, Auditing and Other Related Topics in Project: Management Project Evaluation: Project auditing: Phase of project audit Project closure reports, computers, e-markets in Project Management Video link / Additional online information: (Self Learning) Project management- Planning Execution, Evaluation And Control: https://onlinecourses.nptel.ac.in/noc23_mg124/ 	8 Hrs
UNIT-IV	L1,L2
Project appraisal: Objectives, essentials of a project methodology – Market appraisal – Technical appraisal – Financial appraisal – Socio – economic appraisal – Management appraisal	8 Hrs
UNIT-V	L1,L2

Finance and Accounting: Source of finance- Term Loans - Capital Structure -	8 Hrs
Financial Institution Accounting Principles - Preparation and	
Interpretation of balance sheets, profit and loss statements , Fixed Assets,	
Current assets, Depreciation methods - Break even analysis	
Video link / Additional online information: (Self Learning)	
Financing infrastructure projects:	
https://pptel.ac.in/courses/105103133	

Course Outcomes: After completing the course, the students will be able to		
Ability to prepare project feasibility reports.		
Ability to implement the project effectively meeting government norms and		
conditions.		
Ability to understand the role and responsibility of the Professional Engineer.		
Be able to assess social, health, safety issues based on the reasoning received from		
the contextual knowledge.		
Ability to choose projects which benefit the society and organization		

Reference Books

nen	
1.	Project Management Institute A Guide to the Project Management Body of Knowledge PMBOK Guide (Sixth Edition), Sept 2017
2.	ames C.Van Horne, Fundamentals of Financial Management, Person Education 2004.
3.	Kuster J., Huber, E., Lippmann, R., Schmid, A., Schneider, E., Witschi, U., Wust, R. Project Management Handbook,2015
4.	Prasanna Chandra, Financial Management, Tata McGraw-Hill,2008.
5.	Зу Carl S. Warren, James M. Reeve, Jonathan Duchac.Financial and Managerial Accounting,2016
6.	PaneerSelvam, R., and Senthilkumar, P., Project Management, PHI, 2011.
7	Channa R.B. Project Management PHI 2011

7. Khanna, R.B., Project Management, PHI 2011.

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marksare executed by means of an examination.

The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to

answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	Semester: VIII		
	Metros and Seaports Engineering		
		(Theory)	
Cour	rse Code: MVJ22CV815	CIE Marks: 50	
Cred	lits: L:T:P: 3:0:0	SEE Marks: 50	
Hours: 40L SEE Duration: 3 Hrs.			
Cour	Course Learning Objectives: The students will be able to		
1	Elaborate on the salient features and types of Transit oriented development and its		
Т	significance		
2 Explain the planning, Analysis, design and execution of elevated and ur		sign and execution of elevated and underground	
	Metro viaducts, tunnels including n	nonitoring systems and stations	
3	3 Explain the design and Analysis of Earth retaining structures used in Metro systems		
4	4 Introduce the future trends and technologies in Transportation systems.		
5	5 Introduce the salient features of seaports		
6	Explain the different permanent an	d enabling structures in seaports	

UNIT-I	L1,L2
Introduction to Mass Rapid Transit System (MRTS) and Planning of Metros:	8 Hrs
Overview of Metro, Transit Oriented Development, Feasibility Study for MRTS	
Project, Sustainable and Smart Technologies, Recent Advancements & Future	
Technologies (High Speed Rail Technology, 'Maglev & Ground Effect Trains	
etc.). Basic Interfacing Principles – Alignment, Urban level planning,	
constraints and restrictions, Building Information Modelling in Metros, HVAC	
Systems, Tunnel Ventilation System, Public Health Engineering, Fire Alarm	
System etc.	
UNIT-II	L1,L2
Design, Construction and Quality Control: Introduction to Contracts,	8 Hrs
Overview of FIDIC standards, Introduction to Quality Systems, Precasting Yard	
Development, Types of Precast Super Structure, Precast Mould development,	
Formwork System Overview, introduction to Precast Erection, Superstructure	
launching Methods, Obligatory Spans, substructure and foundation	
Construction Methodology, Challenges in Foundation Construction Alignment	
/ Span configuration of elevated structures, Soil condition and type of	
foundations, Substructure system, Choosing type of Pier based on alignment	
profile, Rail / Over Head Equipment mast, Station overall layout, Pier arm -	
spine wing / cantilever and Platform- precast/cast-in-situ system. Erection	
methods and case studies Overview of Elevated station, Analysis and Design,	
Spine beam method, Design of station components, Loads and introduction to	
IRC/IRS Codes, 'Analysis and Design of superstructure, Substructure and	
foundation, 'Introduction to Modelling Software - STAAD Pro.	
UNIT-III	L1,L2
Earth Retaining systems, Underground Metro Stations, Tunnels and	8 Hrs
monitoring systems: Underground Stations and its configurations, Shoring	
Systems, supporting systems, Construction Methodology (Bottom Up	
method/ Top Down method), Tunnelling methods and monitoring systems,	
Earth retaining structures, Secant pile wall design, Guide walls, Introduction to	

Loads, Load combinations, Fire resistant criteria and Floatation check, 2D & 3D		
model generation, SOD restrictions & Element sizing for UG Stations, Design		
of all the components of UG station.		
UNIT-IV	L1,L2	
Introduction to Seaports: Introduction and evolution of Ports and Harbors,	8 Hrs	
Terminologies, Overview of Marine Structures, Operation and components of		
Ports, Site investigation and survey, Approach facilities and navigational aids.		
Design considerations and functional requirements of typical port structures,		
Breakwater Structures, berthing structures, Piers, Wharfs, Jetties, Quays,		
Dolphins, Fenders, Dredging facilities, Shipyard structures (dry dock and		
floating dock), Shore protection and Reclamation		
UNIT-V	L1,L2	
Enabling structures: Cofferdams and Dewatering – Case study, Load Out Jetty	8 Hrs	
(LOJ) – Design of retaining structure, Elevated platform and Hydraulic ramp.		
Casting Yard Planning and Mould Optimization. Piling Gantry – Layout,		
Loading. Rock Works – Breakwater construction, Revetment. Floating		
Stability/Caisson launching – Casting bed, Ballasting. Modular Construction –		
Modularization, Erection.		

Course	Course Outcomes: After completing the course, the students will be able to		
CO1	Create the basic layout of elevated and underground metro stations as per laid down		
	codes and regulations		
CO2	Interpret design recommendations and Codes of Practice for Elevated and		
	Underground Metros and select suitable construction practices		
CO3	Design the earth retaining systems for the excavations of underground stations		
CO4	Comprehend the different permanent and enabling structures of seaports and		
	harbors		
CO5	Design Enabling structures of Ports and Harbors		

Refe	Reference Books		
1.	Indian Standard code - IS 456, Guidance on embedded retaining wall design CIRIAC760		
2.	David Chapman, Nicole Metje, Alfred Stark "Introduction to Tunnel Construction" 2017,		
	CRC Press		
3.	M. Ramachandran, "Metro Rail Projects in India- A Study in Project Planning" 2011,		
	Oxford University Press		
4.	Srinivasan, R., Harbour, Dock & Tunnel Engineering, Charotar Publishing House		
5.	Bindra, S.P., A course in Docks and Harbour Engineering, Dhanpat Rai & Sons		
6.	Port Design - Guidelines and recommendations by C. A. Thoresen, Tapir Publications		

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated

for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three subdivisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	Semester: VIII			
	Advanced Concrete Technology			
	(Theory)			
Cou	Course Code: MVJ22CV816 CIE Marks: 50			
Crea	Credits: L:T:P: 3:0:0 SEE Marks: 50			
Hou	Hours: 40L SEE Duration: 3 Hrs.			
Course Learning Objectives: The students will be able to				
1	To learn the fundamentals of properties of concrete materials, its testing procedures,			
2	To study various types of concretes, NDT of concrete and mix design.			
3	To know the special types of concrete.			
4	To know the Durability & NDT of concrete			
5	To learn the Special Topics in Conc	rete Technology:		

UNIT-I	L1,L2,L3
Concrete materials:	8 Hrs
Cement -Review of manufacturing process- chemical composition, Bogue's	
compounds, mechanism of hydration-heat of hydration, - Chemical	
Admixtures- types, uses, mechanism of action - effects on properties of	
concrete – Mineral admixtures- types, chemical composition - physical	
characteristics - effects on properties of concrete - Rheology – basic concepts	
– Bingham model	
Video link / Additional online information: (Self Learning)	
 https://youtu.be/SdWh05agJtg?si=cKPdNJnenGnBS4_ 	
UNIT-II	L1,L2,L3
Mix proportioning:	8 Hrs
Mix design - nominal mix- design mix – concept of mix design - variables of	
proportioning - general considerations -factors considered in the design of	
concrete mix- various methods of mix design - design of concrete mix as per IS	
10262-2019 - Statistical quality control of concrete – mean strength – standard	
deviation – coefficient of variation –sampling - testing - acceptance criteria	
Video link / Additional online information: (Self Learning)	
 https://youtu.be/SdWh05agJtg?si=cKPdNJnenGnBS4_ 	
UNIT-III	L1,L2,L3
Properties of fresh and hardened Concrete:	8 Hrs
Properties of fresh concrete- workability-factors affecting workability - slump	
test, compaction factor test- Vee Bee consistometer test- Properties of	
hardened concrete - modulus of elasticity, compressive strength, split tensile	
strength, flexural strength- effect of water cement ratio – maturity concept-	
Creep - factors affecting creep - effect of creep Shrinkage- factors affecting	
shrinkage - plastic shrinkage, drying shrinkage, autogenous shrinkage,	
carbonation shrinkage	
Video link / Additional online information: (Self Learning)	
 https://youtu.be/SdWh05agJtg?si=cKPdNJnenGnBS4_ 	

UNIT-IV	L1,L2,L3
Durability & NDT of concrete:	8 Hrs
Durability of concrete- Factors affecting durability - permeability- cracking- reinforcement corrosion; carbonation, chloride penetration, sulphate attack,	
acid attack, fire resistance; frost damage, alkali silica reaction, concrete in sea water - Non- destructive testing of concrete surface hardness test- ultrasonic	
pulse velocity method - penetration resistance- pull-out test core cutting - measuring reinforcement cover	
Video link / Additional online information: (Self Learning)	
 https://youtu.be/SdWh05agJtg?si=cKPdNJnenGnBS4_ 	
UNIT-V	L1,L2,L3
Special Topics in Concrete Technology:	8 Hrs
Special concretes - lightweight concrete-heavy weight concrete - high strength	
concrete – high performance concrete - self compacting concrete -roller	
compacted concrete- fibre reinforced concrete - polymer concrete-pumped	
concrete - ready mix concrete - green concrete. Special processes and	
technology - sprayed concrete; underwater concrete, mass concrete; slip form	
construction, prefabrication technology- 3D concrete printing	
construction, prefabrication technology- 3D concrete printing Video link / Additional online information: (Self Learning)	

Course	Course Outcomes: After completing the course, the students will be able to		
CO1	To understand the properties and testing procedure of concrete materials as per IS		
	cod		
CO2	To design concrete mix using IS Code Methods.		
CO3	To describe the procedure of determining the properties of fresh and hardened		
	concrete		
CO4	To explain non destructive testing of concrete		
CO5	To describe the various special types of concretes.		

Refe	Reference Books		
1.	Neville A. M. and Brooks J. J., Concrete Technology, Pearson Education, 2019		
2.	Shetty M. S., Concrete Technology", S. Chand & Co., 2018		
3.	R. Santhakumar " Concrete Technology", Oxford Universities Press, 2018		
4.	Mehta and Monteiro, Concrete-Micro structure, Properties and Materials ``, McGraw Hill Professional 2017		
5.	Neville A.M., "Properties of Concrete", Trans-Atlantic Publications, Inc.; 5e, 2016		

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for

10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	Semester: VIII			
	Energy Conservation in Buildings			
	(Theory)			
Cou	Course Code: MVJ22CV821 CIE Marks: 50			
Crec	lits: L:T:P: 3:0:0	SEE Marks: 50		
Hou	Hours: 40L SEE Duration: 3 Hrs.			
Course Learning Objectives: The students will be able to				
1	To facilitate learners to understand climatology, heat ingress in building and energy			
	efficiency.			
2	To expose the learners to comfort in buildings.			
3	3 To impart fundamental knowledge on Life cycle assessment and Energy conservation.			
4	4 To understand the concept of Life Cycle Assessment of Buildings			
5	To understand the concept of Ener	rgy conservation		

UNIT-I	L1,L2
Introduction to Climatology and heat ingress in building: Basics of	8Hrs
climatology, Earth – Sun relationship, Solar angles and sun path diagram,	
Design of shading systems. Basics of Thermodynamics, Convection/radiation	
heat transfer, Heat gain through various elements of a building, Thermal	
comfort models and case studies.	
UNIT-II	L1,L2
Building acoustics, Indoor air quality and Lighting in buildings: Basics of	8 Hrs
sound and Building acoustics – Acoustic defects, prevention of sound	
transmission and acoustic measure for office building. Indoor Air Quality –	
Effects, control of contaminants and moisture in indoor environment,	
Integrated approach for IAQ management. Fundamentals of lighting-	
Daylighting and its metrics – Strategies for daylighting and its control. Artificial	
lighting – Design and control strategies – Visual comfort enhancement.	
UNIT-III	L1,L2.L3
Energy efficient buildings, Water and Waste management in buildings:	8 Hrs
Energy efficiency – Energy efficiency in building envelope and energy	
efficient HVAC and Lighting as per Energy conservation building code (ECBC)	
2017, Energy simulation, Energy management system – Renewable energy	
and Energy Audit. (demand control ventilation) Water Efficiency – Planning	
and design of water management system, Rain water harvesting, Water	
efficient design and fixtures, Treatment and reuse and Water efficient	
landscape system.	
Waste management – Types of waste and its treatment methods,	
Construction and demolition waste management, Waste management in	
residential, commercial buildings, healthcare facilities.	
UNIT-IV	L1,L2,L3
Life Cycle Assessment of Buildings and Green project management: Materials	8 Hrs
- Green product certifications, features of sustainable building materials and	
sustainable alternatives for structural, envelope and finishing materials. Low	
carbon cement, Zero emission bricks and lean construction practices. Life cycle	

assessment and its types – Modelling and Analysis, Greenhouse gas emission. Different phases of Green building project management.	
UNIT-V	L1,L2,L3
Energy conservation: Energy efficiency rating for distribution transformers, diesel generator set, motors, pumps, electrical appliances, lighting fixtures and lifts as per Bureau of Energy Efficiency (BEE). Energy efficiency in HVAC system – Variable Frequency Drive (VFD), Air volume drive. Roof top solar installations and solar water heaters, Heat recovery system in buildings, Building Management System (BMS) – Occupancy sensors and energy efficient lighting controls, Smart Buildings	8 Hrs

Course	Course Outcomes: After completing the course, the students will be able to		
CO1	Comprehend climatology, shading system and analyze heat transfer mechanism in		
	buildings.		
CO2	Assess the design considerations and parameters for lighting, acoustics and indoor air		
	quality.		
CO3	Develop solutions for energy efficiency, water efficiency and waste management in		
	buildings.		
CO4	Adopt green project management methodology and evaluate building life cycle		
	assessment.		
CO5	Implement energy conservation measures in buildings.		

Refe	Reference Books		
1.	Harharalyer G, Green Building Fundamentals, Notion Press		
2.	Dr. Adv. HarshulSavla, Green Building: Principles & Practices		
3.	The Sustainable Habitat Handbook (6 Volume Set), GRIHA Version 2019		
4.	National Building Code – 2016, Volume 1&2, Bureau of Indian Standards		

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marksare executed by means of an examination.

The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to

answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	Semester: VIII		
	Occupational Health and Safety		
	(Theory)		
Course Code: MVJ22CV822 CIE Marks: 50			
Cred	Credits: L:T:P: 3:0:0 SEE Marks: 50		
Hou	Hours: 40L SEE Duration: 3 Hrs.		
Course Learning Objectives: The students will be able to			
1	Gain an historical, economic, and organizational perspective of occupational safety		
	and health		
2	Investigate current occupational safety and health problems and solutions		
3	Identify the forces that influence occupational safety and health		
4	Demonstrate the knowledge and	skills needed to identify workplace problems and	
4	safe work practice		

UNIT-I	L1,L2,L3
Occupational Hazard and Control Principles: Safety, History and development, National Safety Policy. Occupational safety and Health Act (OSHA), Occupational Health and Safety administration - Laws governing OSHA and right to know. Accident – causation, investigation, investigation plan, Methods of acquiring accident facts, Supervisory role in accident investigation	8 Hrs
UNIT-II	L1,L2,L3
Ergonomics at Work Place: Ergonomics Task analysis, Preventing Ergonomic Hazards, Work space Envelops, Visual Ergonomics, Ergonomic Standards, Ergonomic Programs. Hazard cognition and Analysis, Human Error Analysis, Fault Tree Analysis – Emergency Response - Decision for action – purpose and considerations	8 Hrs
UNIT-III	L1,L2,L3
Fire Prevention and Protection: Fire Triangle, Fire Development and its severity, Effect of Enclosures, early detection of Fire, Classification of fire and Fire Extinguishers. Electrical Safety, Product Safety: Technical Requirements of Product safety.	8 Hrs
UNIT-IV	L1,L2,L3
Health Considerations at Work Place: types of diseases and their spread, Health Emergency. Personal Protective Equipment (PPE) – types and advantages, effects of exposure and treatment for engineering industries, municipal solid waste. Environment management plans (EMP) for safety and sustainability	8 Hrs
UNIT-V	L1,L2,L3
Occupational Health and Safety Considerations: Water and wastewater treatment plants, Handling of chemical and safety measures in water and wastewater treatment plants and labs, Construction material manufacturing industries like cement plants, RMC Plants, precast plants and construction sites. Policies, roles and responsibilities of workers, managers and supervisors	8 Hrs

Course	Course Outcomes: After completing the course, the students will be able to		
CO1	Identify hazards in the workplace that pose a danger or threat to their safety or health,		
	or that of others.		
CO2	Control unsafe or unhealthy hazards and propose methods to eliminate the hazard.		
CO3	Present a coherent analysis of a potential safety or health hazard both verbally and in		
	writing, citing the occupational Health and Safety Regulations as well as supported		
	legislation		
CO4	Discuss the role of health and safety in the workplace pertaining to the responsibilities		
	of workers, managers, supervisors.		
CO5	Identify the decisions required to maintain protection of the environment, workplace		
	as well as personal health and safety.		

Refe	Reference Books		
1.	Goetsch D.L., (1999), "Occupational Safety and Heal th for Technologists, Engineers and		
	Managers", Pren tice Hall.		
2.	Heinrich H.W., (2007), "Industrial Accident Prevent ion - A Scientific Approach", McGraw-		
	Hill Book Company		
3.	National Safety Council and Associate (Data) Publishers Pvt. Ltd., (1991), "Industrial		
	Safety and Poll ution Control Handbook		
4.	Colling D.A., (1990), "Industrial Safety Management and Technology", Prentice Hall, New		
	Delhi.		

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Semester: VIII

	Green Buildings (Theory)		
Course Code: MVJ22CV823 CIE Marks: 50			
Crec	Credits: L:T:P: 3:0:0 SEE Marks: 50		
Hou	Hours: 40L SEE Duration: 3 Hrs.		
Course Learning Objectives: The students will be able to			
1	Understand the Definition, Concept & Objectives of the terms cost effective construction and green building		
2	Apply cost effective techniques in construction		
3	3 Apply cost effective Technologies and Methods in Construction		
4	Understand the Problems due to Global Warming		
5	State the Concept of Green Building 6. Understand Green Buildings		

UNIT-I	L1,L2,L3
Introduction to the concept of cost effective construction -Uses of different	8 Hrs
types of materials and their availability -Stone and Laterite blocks- Burned	
Bricks- Concrete Blocks- Stabilized Mud Blocks Lime Poszolana Cement-	
Gypsum Board- Light Weight Beams- Fiber Reinforced Cement Components	
Fiber Reinforced Polymer Composite- Bamboo- Availability of different	
materials-Recycling of building materials – Brick- Concrete- Steel- Plastics -	
Environmental issues related to quarrying of building materials	
Video link / Additional online information: (Self Learning)	
 https://youtu.be/nFBvLlfFFql?si=vMLjWzELQjGnUF2Q 	
UNIT-II	L1,L2,L3
Environment friendly and cost effective Building Technologies - Different	8 Hrs
substitute for wall construction Flemish Bond - Rat Trap Bond – Arches –	
Panels - Cavity Wall - Ferro Cement and Ferro Concrete constructions -	
different pre cast members using these materials - Wall and Roof Panels -	
Beams – columns - Door and Window frames - Water tanks - Septic Tanks -	
Alternate roofing systems - Filler Slab - Composite Beam and Panel Roof -Pre-	
engineered and ready to use building elements - wood products - steel and	
plastic - Contributions of agencies - Costford - Nirmithi Kendra - Habitat	
Video link / Additional online information: (Self Learning)	
 https://youtu.be/nFBvLIfFFqI?si=vMLjWzELQjGnUF2Q 	
UNIT-III	L1,L2,L3
Global Warming – Definition - Causes and Effects - Contribution of Buildings	8 Hrs
towards Global Warming - Carbon Footprint – Global Efforts to reduce carbon	
Emissions Green Buildings – Definition – Features Necessity – Environmental	
benefit - Economical benefits - Health and Social benefits - Major Energy	
efficient areas for buildings – Embodied Energy in Materials Green Materials -	
Comparison of Initial cost of Green V/s Conventional Building - Life cycle cost	
of Buildings.	
Video link / Additional online information: (Self Learning)	

 https://youtu.be/nFBvLlfFFql?si=vMLjWzELQjGnUF2Q 	
UNIT-IV	L1,L2,L3
Green Building rating Systems- BREEAM – LEED - GREEN STAR -GRIHA (Green	8 Hrs
Rating for Integrated Habitat Assessment) for new buildings – Purpose - Key	
highlights - Point System with Differential weight age. Green Design -	
Definition - Principles of sustainable development in Building Design -	
Characteristics of Sustainable Buildings – Sustainably managed Materials -	
Integrated Lifecycle design of Materials and Structures (Concepts only)	
Video link / Additional online information: (Self Learning)	
 https://youtu.be/nFBvLlfFFqI?si=vMLjWzELQjGnUF2Q 	
UNIT-V	L1,L2,L3
Utility of Solar Energy in Buildings Utility of Solar energy in buildings	8 Hrs
concepts of Solar Passive Cooling and Heating of Buildings. Low Energy	
Cooling. Case studies of Solar Passive Cooled and Heated Buildings.	
Green Composites for Buildings Concepts of Green Composites. Water	
Utilisation in Buildings, Low Energy Approaches to Water Management.	
Management of Solid Wastes. Management of Sullage Water and Sewage.	
Management of Solid Wastes. Management of Sullage Water and Sewage. Urban Environment and Green Buildings. Green Cover and Built Environment	
Management of Solid Wastes. Management of Sullage Water and Sewage.	

Course	Course Outcomes: After completing the course, the students will be able to		
CO1	Understand cost effective building materials		
CO2	Choose environment friendly construction procedure		
CO3	Design eco-friendly buildings to reduce global warming		
CO4	Understand the different green rating of buildings		
CO5	Estimate energy saving in construction		

Reference Books

1 Harhara Iyer G, Green Building Fundamentals, Notion Press 2. Dr. Adv. Harshul Savla, Green Building: Principles & Practices

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Semester: VIII			
	Integrated Building Services		
	(Theory)		
Course Code: MVJ22CV824 CIE Marks:50			
Cred	Credits: L:T:P: 3:0:0 SEE Marks: 50		
Hou	Hours: 40L SEE Duration: 03 Hrs		
Course Learning Objectives: The students will be able to			
1	1 Understand Electrical System along with substation for a building infrastructure		
2	Learn ELV System and its interface with other allied services		
3	3 Design and implement HVAC System		
4	4 Learn and implement Fire Alarm System (PAS)		
5	Understand and implement importance of Public Health Services		

UNIT-I	L1,L2,L3
Advanced Electrical System Design for Buildings:	8 Hrs
Basics of Electrical System, Electrical terminologies, Major Electrical equipment,	
Building power distribution and its schemes, Fundamentals of Power& distribution	
transformers, HT, LT, DG Sets, Cables & Wires, UPS and its importance, Introduction	
of HT, LT switchgears systems, Importance of Lighting design & different Light	
fixtures used in buildings – Interior, external, street & offices, RMU, HT consumer,	
Substation Building in Master plan - Space planning for RMU, HT, DG set, HSD yard,	
Space provision for Electrical Equipment including Substation, Various equipment	
clearance requirements, HVAC, PHE, FPS service-electrical load input for designing	
electrical power distribution, Pedestals & ceiling support requirement for all	
Electrical equipment.	
UNIT-II	L1,L2,L3
Extra Low Voltage System for Infrastructure:	8 Hrs
Introduction & Brief of ELV Systems, Concept of Building Management System	
(BMS) & Fire Alarm System, Interface with Architecture/ Structure, Access control,	
CCTV & Public address system - Brief and purpose, BMS - Brief and purpose, BMS	
interfaces with Electrical, HVAC, Fire & Life Safety and PHE, BMS interfaces with	
airport systems.	
UNIT-III	L1,L2,L3
Heating, Ventilation & Air conditioning systems:	8Hrs
Basics of HVAC - Psychrometry and its importance - Major Components of Air	
conditioning System - Fundamental concepts of Heat transfer, Air-conditioning	
system, Ventilation system, Pressurization Systems and their importance to Life	
safety, Chilled water system, Cooling towers and major HVAC equipment, Pumping	
system in HVAC, Importance of Thermal and Acoustic Insulation, Introduction and	
basics of Variable Refrigerant Flow (VRF) systems, Radiant cooling, Underfloor	
distribution, Chilled beams – Space planning - Importance of Static weight /	
Operating weights of mechanical equipment - Importance of Floor slab and Terrace	
roof slab openings / cut-outs	
UNIT-IV	L1,L2,L3
Fire Protection and Life Safety System:	8 Hrs

Basics of Fire Protection System - Active Fire protection system - Passive Fire protection system - Basics of Smoke Control and Fire Stop Systems - Codes & Standards and Statutory Compliance - Fire and its Classes - Hazard Classification based on building occupancy - Means of Egress and its components - Importance of Life Safety - Refuge Area, Fire Tower and Fire Lift - Occupant Load and Capacity factors - Fire Stopping Materials - Compartmentation in a building - Smoke control & management in Fire Zoning - Components of Fire Compartments.	
UNIT-V	L1,L2,L3
Public Health Engineering:	8 Hrs
Scope of works in Public Health Engineering - Sanitary fixtures and types - Water supply and treatment - Rain water drainage system - Landscape irrigation features – Water demand calculation based on building occupancy – Piping for different plumbing systems in buildings – Pump selection – Plant room sizing - Sewage treatment process - External water supply, storm drainage & sewerage system - Solid waste management - Interfacing PHE system with Architect and Structural	

Course Outcomes: After completing the course, the students will be able to		
CO1	Understand Electrical System along with substation for a building infrastructure	
CO2	Learn ELV System and its interface with other allied services.	
CO3	Design and implement HVAC Systems	
CO4	Learn and implement Fire Alarm System (PAS)	
CO5	Understand and implement importance of Public Health Services	

Reference Books		
1.	P K Barton, Barry G Fryer, David Highfield, Building Services Integration, 1983, SPON	
	Press.	
2.	Fred Hall, Roger Greeno, Building Services Handbook, 7 th edition, 2017, Routledge	
	Publications.	

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of

three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.