	Semester III							
	Strength of Materials							
	(Theory)							
Cou	rse Code: MVJ22CV31	CIE Marks: 50						
Cre	dits: L:T:P: 3:0:0	SEE Marks: 50						
Hou	rs: 40L	SEE Duration: 3 Hrs.						
Cou	rse Learning Objectives: The studen	ts will be able to						
1	Understand the simple stresses, strains, and compound stresses in various structural							
1	components.							
2	Understand the bending moments ar	nd shear forces in different types of beams under						
	various loading conditions							
3		ss, and torsional stress in beams and shafts with						
<i>J</i>	different cross sections							
4	Understand the deflection in beams a	nd the stability of columns under different loading						
conditions.								
5	1	gth of structural elements subjected to compound						
	stresses and stresses in thin and thick	cylinders.						

UNIT-I	
Simple Stresses and Strains: Introduction, Properties of Materials, Stress, Strain, Hooke's law, Poisson's Ratio, Stress – Strain Diagram for structural steel, Principles of superposition, Total elongation of tapering bars of circular and rectangular cross sections. Composite section, Volumetric strain, expression for volumetric strain, Elastic constants, relationship among elastic constants. Thermal stresses and strains, Compound bars subjected to thermal stresses, state of simple shear.	8 Hrs
UNIT-II	
Bending moment and shear force diagrams in beams: Introduction to types of beams, supports and loadings. Definition of shear force and bending moment, sign convention, Relationship between loading, shear force and bending moment equations, development of Shear Force Diagram(SFD) and Bending Moment Diagram (BMD) with salient values for cantilever, simply supported and overhanging beams for point loads, UDL (Uniformly Distributed Load), UVL (Uniformly Varying Load), Couple and their combinations	8 Hrs
UNIT-III	
Bending and Shear Stresses in Beams: Introduction, pure bending theory, Assumptions, derivation of bending equation, modulus of rupture, section modulus, flexural rigidity. Expression for transverse shear stress in beams, Bending and shear stress distribution diagrams for circular, rectangular, 'I', and 'T' sections. Torsion in Circular Shaft: Introduction, pure torsion, Assumptions,	8 Hrs
derivation of torsion equation for circular shafts, torsional rigidity and polar modulus Power transmitted by a shaft.	
UNIT-IV	_
Deflection of Beams: Definition of slope, Deflection and curvature, Sign conventions, Derivation of moment- curvature equation. Double integration method and Macaulay's method: Slope and deflection for standard loading	8 Hrs

cases and for determinate prismatic beams subjected to point loads, UDL, UVL and couple. Columns and Struts: Introduction, short and long columns. Euler's theory; Assumptions, Derivation for Euler's Buckling load for different end conditions, Limitations of Euler's theory. Rankine-Gordon's formula for columns	
UNIT-V	
Compound Stresses:	8 Hrs
Introduction, state of stress at a point, General two dimensional stress system, Principal stresses and principal planes. Mohr's circle of stresses	
Thin and Thick Cylinders: Introduction, Thin cylinders subjected to internal pressure; Hoop stresses, Longitudinal stress and change in volume. Thick cylinders subjected to both internal and external pressure; Lame's equation, radial and hoop stress distribution.	

Course	Course Outcomes: After completing the course, the students will be able to							
CO1	Evaluate the simple stresses, strains and compound stresses							
CO2	Calculate the Bending moments, shear force and draw BMD, SFD for various types of							
	beams and loadings							
CO3	Analyse the bending stress, shear stress and torsional stress in beams and shafts with							
	different cross sections							
CO4	Evaluate the deflection in beams and determine the stability of the columns.							
CO5	Evaluate the behaviour and strength of structural elements under the action of							
	compound stresses and stresses in thin and thick cylinders.							

Refe	erence Books
1.	B.C Punmia Ashok Jain, Arun Jain, "Strength of Materials", 10th Edition, Laxmi
	Publications, New Delhi.
2.	R K Bansal, "A Textbook of Strength of Materials", 4th Edition, Laxmi Publications, New
	Delhi.
3.	S.S. Rattan "Strength of Materials", 2nd Edition, McGraw Hill Education (India) Pvt.
	Ltd., New Delhi.
4.	Vazirani, V N, Ratwani M M. and S K Duggal "Analysis of Structures Vol. I", 17th
	Edition, Khanna Publishers, New Delhi.
5.	R.K. Rajput, "Strength of materials", 6th Edition, S. Chand Publishing, New Delhi.
6.	S S Bhavikatti, "Strength of Materials", 5th Edition, Vikas Publishing, New Delhi.
7.	B.S. Basavarajaiah, P. Mahadevappa "Strength of Materials" 3rd Edition, University
	Press (India) Pvt. Ltd., New Delhi.

Continuous Internal Evaluation (CIE): Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	1	2	-	-	-	-	-	-	-	-
CO2	3	-	2	-	2	-	-	-	-	-	-	-
CO3	3	3	1	-	-	-	-	-	-	-	-	-
CO4	3	-	1	-	-	-	-	1	-	-	-	-
CO5	3	2	1	1	-	2	-	-	-	-	-	-

Semester III							
Engineering Survey							
	(Theory and Practice)						
Cou	rse Code: MVJ22CV32	CIE Marks: 50					
Cre	dits: L:T:P: 3:0:2	SEE Marks: 50					
Hou	rrs: 40L + 26P	SEE Duration: 3 Hrs.					
Cou	rse Learning Objectives: The students will be able to						
1	Ability to understand principles of both traditional and modern surveying applying						
	knowledge of mathematics.						
Ability to handle surveying equipment's and software tools to carry out field surveying, plot topographical Drawings and construction drawing							
3 Ability to use Total station for data capture, data storage, data transfer.							
4 Ability to prepare construction drawing and setting out							
	TINITE T						

UNIT-I	
Engineering surveying – Definition & importance of surveying for Civil Engineers. Surveying types- Control survey, Topographical surveying, Construction Survey, Cadastral survey, Hydrographic survey and Underground Survey. Surveying through the ages- Chain surveying, Compass surveying and Plane Table Surveying (concepts and limitations only). Measurement of Distance- Various types of tapes, Laser distance meter, Distance measuring wheel, Electronic Distance measurement, GPS.	8 Hrs
UNIT-II	
Vertical Control- Concepts of various types of Datum – Mean Sea level, Bench marks – Temporary and Permanent. Levelling- Terms used in levelling, Setting up of Dumpy level. Differential levelling by plane of collimation method using Dumpy level. Theodolite Surveying – Terms used in Theodolite surveying. Setting up a Theodolite. Measurement of horizontal and vertical angles with Theodolite. Total Station Surveying – Features, parts, accessories and advantages of Total Station. Surveying with total station – Measurement of Horizontal angle, vertical angle, distance, slope, vertical distance, multiple angles with Total station. Using Total station for Area measurement and Volume calculation	8 Hrs
UNIT-III	
Contours - Definition, terms used, characteristics of contours and applications of contours in civil engineering practice. Contouring using level, theodolite and total station. Plotting of contours in CAD. Longitudinal and cross sectioning – Definition, importance of L/S & C/S. L/S & C/S using level, theodolite and Total station. Plotting of L/S & C/S in CAD. Coordinate survey with Total station - Measurement of coordinates using total station. Creating Job files, importance of back sight data, coordinate data recording. Data transferring, data refinement and plotting in CAD. UNIT-IV	8 Hrs
	O IIma
Curves –Types of Curves- Application of curves in civil engineering. Setting out of Horizontal curve by Theodolite (Rankine's method) and using Total Station. Components of Compound, Reverse curve. Transition Curve and Combined curve. Various types of vertical curves and its applications.	8 Hrs

Areas and Volumes- Methods of determining areas by trapezoidal and Simpsons' rule. Measurement of volume by prismoidal and trapezoidal formula. Earthwork volume calculations from spot levels and from contour maps; Earthwork calculation in Embankments.

Construction Surveying - Setting out works using Total Station, Setting out buildings by Centre line method

UNIT-V

8 Hrs

GPS Surveying – Introduction. Overview of GPS system- space, control and user segments. Reference co- ordinate systems. Absolute and Differential positioning with GPS. Gagan system in India. Types of GPS Receivers. Engineering survey using Differential GPS.

Surveying with Drone – Introduction, applications and advantages. Features of photogrammetric mapping method. Drone surveying requirements- Drone platform, Flight planning software, Sensor DGPS equipment and Image processing software. Types of drones and sensors. Process of drone surveying – flight planning, DGPS markers, capturing images, post processing of images using photogrammetry software and output maps.

Application and uses of Remote sensing and GIS in engineering surveying.

Sl.NO	Experiments			
1	Use of Various types of tapes, Laser distance meter, Distance measuring wheel.			
2	Differential levelling by Dumpy level by plane of collimation method			
3	Measurement of horizontal and vertical angles by Theodolite. Method of repetition			
4	Setting out simple curve using Rankine's method using Theodolite			
5	Setting out central line of a small residential building.			
6	Setting up of Total station. Features and components of Total station			
7	Measurement of Distance, slope, vertical distance, horizontal and vertical angles			
,	using Total station			
8	Coordinate measurement with Total station			
9	Longitudinal sectioning and cross sectioning using Total station			
10	Contouring and plotting with Total station			
11	Demonstration of Equipment's used for chain, compass and plane table surveying			
12	Visit to railway station/ large construction site to understand the importance of datum			
12	and benchmark.			

Course	Course Outcomes: After completing the course, the students will be able to							
CO1	CO1 Summarize various types of surveying and carry out distance measurement using							
	various equipment's							
CO2	Illustrate the use and applications of levelling and theodolite							
CO3	Plot contours, longitudinal and cross sections for construction projects.							
CO4	CO4 Set curves for construction works and carry out estimation of areas and volumes.							
CO5	Demonstrate the necessary skills to carry out GPS and DRONE Surveying							

Reference Books

- 1. Punmia BC, & Jain Ashok Kumar. "Surveying ", 17th ed. Vol. 1., Laxmi Publications, New Delhi.
- 2. Dr. K.R. Arora., "Surveying", 17th ed., Vol. 1. Standard Book House, New Delhi.

3. Charles D. Ghilani. "Elementary surveying: an introduction to geomatics",13 th ed., Prentice Hall, New Delhi.

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Laboratory- 50 Marks

The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are awarded 10 marks. Total marks for the laboratory is 50.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	-	2	_	-	1	-	-	1	-	-	-
CO2	2	-	-	-	2	-	-	-	-	-	-	-
CO3	-	-	3	_	2	-	-	-	-	1	-	-
CO4	-	3	2	-	-	-	-	-	1	-	-	-
CO5	-	-	-	_	2	-	-	-	1	-	-	-

	Semester III							
Fluid Mechanics and Hydraulics								
(Theory and Practice)								
Course Code: MVJ22CV33 CIE Marks: 50								
Cre	Credits: L:T:P: 3:0:2 SEE Marks: 50							
Hours: 40L + 26P SEE Duration: 3 Hrs.								
Cou	rse Learning Objectives: The students will be able to							
Understand the Fundamentals of properties of fluids, fluid pressure measure								
1	hydrostatic law							
2	Learn the Principles of kinematics, hydrodynamics and its	s applications						
3	3 Study the Flow measurements and design of pipes							
4	Understand the design of open channels and energy concepts							
5	Understand the Working principles of hydraulic turbines and pumps							

	UNIT-I								
Fluids a	nd their properties – compressibility, surface tension, capillarity, Pascal's	8 Hrs							
	w, hydrostatic law, fluid pressure measurement using simple and differential								
manometers, Total pressure and center of pressure on vertical and inclined plane									
surfaces									
	UNIT-II								
Kinema	tics- Types of flow, continuity equation in Cartesian coordinates, velocity	8 Hrs							
potential	l, stream function, flow nets, Dynamics-Euler's equation of motion,								
	li's equation, Application Venturimeter, Orifice meter, Pitot tube.								
	UNIT-III								
Classific	eation of orifice and mouthpiece, hydraulic coefficients, discharge over	8 Hrs							
rectangu	lar, triangular and Cipoletti notch, Flow through pipes- major and minor								
losses, p	ipes in series and parallel, equivalent pipe, concept of water hammer and								
surge tai	nks.								
	UNIT-IV								
Open cl	nannel hydraulics- classification of flow, Most economical channel	8 Hrs							
sections-	-rectangular, triangular, trapezoidal, circular, Uniform flow, specific energy-								
rectangu	lar channels, on-uniform flow, hydraulic jump-equation and applications,								
GVF equ	uation-types.								
	UNIT-V								
Moment	rum equation, impact of jet on stationary and moving curved vanes Turbines-	8 Hrs							
types, Pe	elton wheel-working proportions, velocity triangles Francis turbine- working								
proportion	ons, velocity triangles Centrifugal pumps-work done, efficiency, multi-stage								
pumps.									
CLNO	E								
Sl.NO	Experiments Varification of Permaulli's equation								
1 2	Verification of Bernoulli's equation								
3	Calibration of Venturimeter/Orifice meter								
4	Determination of hydraulic coefficients of small vertical orifice								
4	Calibration of triangular notch	O-1\ :							
5	Determination of minor losses (Sudden Enlargement, Bends and Contraction Only) in								
	pipes								
6	Determination of major losses in pipes								
7	Determination of Cd for ogee/broad crested weir								

8	Determination of efficiency of jet on flat and curved vanes
9	Determination of Cd of Venturiflume
10	Demo of determination of efficiency of centrifugal pump
11	Demo of determination of efficiency of Francis/Kaplan turbine
12	Demo of determination of efficiency of Pelton wheel

Course	Outcomes: After completing the course, the students will be able to
CO1	Explain the fundamental properties of fluids and solve problems on fluid pressure and
	hydrostatics.
CO2	Apply the principles of kinematics and dynamics of fluid flow to solve problems on
	velocity and pressure.
CO3	Compute the discharge through pipes, notches and weirs.
CO4	Design the turbines and open channels of different sections and to estimate the energy
	loss in hydraulic jump.
CO5	Able to interpret the experimental results of discharge, efficiency based on the test
	conducted in the laboratory.

Refe	erence Books
1.	P.N. Modi and S.M. Seth, "Hydraulics and Fluid Mechanics, including Hydraulic
	machines", 21st Edition, standard Book House, New Delhi
2.	K Subramanya, "Fluid Mechanics and Hydraulic Machines", 1st edition, Tata McGraw-
	Hill, New Delhi
3.	R.K. Bansal, "A text book of Fluid Mechanics and Hydraulic Machines", 9th edition,
	Laxmi Publications, New Delhi
4.	Victor L. Streeter, Benjamin Wyile E and Keith W. Bedford, "Fluid Mechanics", Tata
	McGraw Hill publishing Co Ltd, New Delhi
5.	J.F. Douglas. M. Gastric, John Warfield, Lynne Jack, "Fluid Mechanics", 5 th edition,
	Pearson Publications, New Delhi.
7.	S K SOM and G.Bis was, "Introduction to Fluid Mechanics and Fluid Machines, 2014,
	Tata Mcg raw Hill, New Delhi.

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Laboratory- 50 Marks

The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are awarded 10 marks. Total marks for the laboratory is 50.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the entire syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

CO/PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO	PO 11	PO 12
										10		
CO 1	3	3	3	1	-		-	-	-	1	-	-
CO 2	3	3	3	1		2	-	-	-	1	-	-
CO 3	3	3	3	1	2	2				1		
CO 4	3	3	3	1	2	2				1		
CO 5	3	3	3	1	3	2				1		

	Semester: III							
	TRANSPORTATION ENGINEERING							
	(Theory)							
Cou	Course Code: MVJ22CV34 CIE Marks: 50							
Cre	dits: L:T:P: 3:0:0	SEE Marks: 50						
Hou	Hours: 40L SEE Duration: 3 Hrs.							
Cou	rse Learning Objectives: The students will be able to							
1	Gain knowledge of different modes of transportation systems and to lea							
	introductory concepts on Highway Engineering.							
Get insight to different highway materials and pavement design elements of								
	network.							
3	Realize the significance of road safety by incorporating the concepts of Traffic							
3	Engineering.							
4	Understand to different aspects of geometric elements of ra	ailway system and evaluate						
4	the material quantity required for track laying							
5	Gain knowledge about various components of an Airport and	d its runway design.						

UNIT-I					
TRANSPORTATION ENGINEERING: Introduction, Different Modes of	8 Hrs				
Transportation, M R Jayakar Committee recommendations, Road					
Classifications and Road Patterns.					
Highway Alignment: Factors affecting highway alignment, Engineering					
surveys for alignment-conventional and modern methods.					
Highway Geometric Design: Factors affecting geometric design of roads, Cross					
Sectional Elements, Sight distances, Horizontal alignment- Transition curve,					
superelevation, Extra widening, Vertical alignment–gradients, summit and					
valley curves. (No derivations)					
Problems on Sight distance, Super elevation, extra widening of curves, Length of transition curve, Length of summit and valley curve.					
UNIT-II					
Highway Materials and Pavements: Desirable properties of aggregates, soil	8 Hrs				
subgrade & Bitumen, Application of bituminous emulsion, Desirable properties					
of Bituminous Mixes					
Pavement Design: Factors Controlling design of highway pavements,					
Pavement types, component parts of pavements and their functions; types of					
joints used in rigid pavement. Critical stresses in flexible and rigid pavement.					
Highway Drainage: Significance and requirements, Surface drainage system					
and design-Examples, sub surface drainage system, Types of cross drainage					
structures their choice and location.					
Problems on design of Longitudinal drain.					
UNIT-III					
Traffic Engineering: Objectives and scope of Traffic Engineering. Traffic	8 Hrs				
Characteristics: Road user characteristics, vehicular characteristics – static and					
dynamic characteristics, Reaction time of driver and PIEV theory, Types of					
traffic engineering studies-volume, spot speed, speed and delay, parking,					
accident, origin & destination, objectives of studies and data collection, method					
of study, analysis. PCU concept, factors affecting and PCU at different					
locations and applications. Traffic signs, Signal design by IRC method; Types					
of intersections.					

Problems on Spot speed studies, Speed and delay studies, accident studies,				
Signal design by IRC method.				
UNIT-IV				
Railway Engineering: Permanent way and its requirements, Gauges and types, Typical cross sections single and double-line BG track, Coning of wheels and tilting of rails, Rails-Functions-requirements, types and defects of rails. Sleepers and Ballast: Functions, requirements, Track fitting and fasteners, Calculation of quantity of materials required for laying a track, Points & crossings, Railway Station and Yards. Metro train & highspeed train- Design factors considered. Problem on Quantity calculation for laying railway track. Super-elevation	8 Hrs			
UNIT-V				
Airport Engineering: Layout of an airport with component parts and functions, Site selection for airport, Aircraft characteristics affecting the design and planning of airport, Airport classification, Runway orientation using wind rose with examples. RUNWAY-Basic runway length-Corrections and examples, Runway geometrics, Taxiway-Factors affecting the layout - geometrics of taxiway-Comparison between Runway and Highway, Design of exit taxiway with examples. Problems on Runway orientation, Basic Runway length, Exit taxiway design.	8 Hrs			

Course	Course Outcomes: After completing the course, the students will be able to							
CO1	Explain the basic principles of geometric design in the context of transportation							
	engineering and planning.							
CO2	Select the appropriate pavement materials for construction and design the pavement							
	as per standard practices.							
CO3	Conduct traffic studies and analyse traffic data for practical applications.							
CO4	Identify the Components parts of Railway Track and design the suitable runway for an							
	Airport.							
CO5	Able to interpret the experimental results of highway materials based on laboratory tests							
	and design the pavement as per IRC guidelines.							

Refe	erence Books
1.	S K Khanna and C E G Justo, "Highway Engineering", 10th edition, Nem Chand Bros,
	Roorkee.
2.	L R Kadiyali, "Highway Engineering", 2023, Khanna Publishers, New Delhi.
3.	S C Saxena and S P Arora, "Railway Engineering", 2010, Dhanpath Rai Publications,
	New Delhi.
4.	S C Saxena and S P Arora, "Airport Engineering", 2020, CBS Publications, New Delhi.
6.	B L Gupta, Amit Gupta, "Roads, Railways, Bridges, Tunnels and Harbour Dock
	Engineering",.
7.	S K Khanna, C E G Justo and A Veeraragavan, "Highway Materials Testing Laboratory
	Manual", Nem Chand Bros, Roorkee.

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

СО/РО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	2	2	1	1	1	ı	1	-	1	1	-
CO2	-	3	3	2	2	1	1	1	-	1	1	-
CO3	1	3	2	3	2	-	ı	ı	-	1	1	-
CO4	_	2	3	1	1	1	1	-	_	-	-	-
CO5	-	3	3	3	3	1	1	-	-	-	-	_

	Semester III						
	Computer Aided Building Planning and Drawing						
	(Practice)						
Co	urse Code: MVJ22CVL35	CIE Marks: 50					
Cre	Credits: L:T:P: 0:0:2 SEE Marks: 50						
Ho	Hours: 26P SEE Duration: 3 Hrs.						
Co	urse Learning Objectives: The students will be able to						
1	Gain skill set to prepare Computer Aided Engineering Drawings using a software						
2	Understanding the details of construction of different building elements						
Visualize the completed form of the building and the intricacies of construction based							
3	engineering drawings						
4	Get familiarization of practices used in Industry						

Sl.NO	Experiments					
1	Drawing Basics: Selection of scales for various drawings, thickness of lines, dimensioning, abbreviations and conventional representations as per IS:962.					
2	Drawing Tools: Lines Circle, Arc, Poly line, Multiline, Polygon, Rectangle, Spline, Ellipse, Modify tools: Erase, Copy, Mirror, Offset, Array, Move, Rotate, Scale, Stretch, Lengthen, Trim, Extend, Break, Chamfer and Fillet,					
3	Using Text: Single line text, Multiline text, Spelling, Edit text					
4	Special Features: View tools, Layers concept, Dimension tools, Hatching, Customizing Toolbars, Working with multiple drawings.					
	Drawings of Different Building Elements: Refer NBC before practice					
	 Footing/ Foundation – Foundation dimension for Isolated, combined footing, Standard dimension and cross section of footing 					
5	• Size stone Masonry – Size of single and double bond stone, Sections at wall foundation					
	 Brick Masonry – Size of standard Burnt Brick, Solid Cement Block, Hollow Cement block, Other bricks used in current practice 					
6	Principles of planning, Planning regulations and building bye-laws, factors affecting site selection, Functional planning of residential and public buildings, design aspects for different public buildings. Recommendations of NBC.					
7	Draw a building plan for single and double bed room accommodation for a given site dimension. Students have to go through Building Bye Laws and regulations					
8	Prepare the Centre line drawing for marking the single and double bedroom house as in in exercise 6					
9	Prepare a complete sanction plan for exercise 6 as per the bye law. Also study the requirements to plan Residential Building, School building, Hospital Building, Offices					
10	Drawing of plan with electrical, plumbing and sanitary services using CAD software					
11	Drawing standard sections for Lintel and chajja, RCC Slabs, Columns and beams.					
12	Drawing different types of staircases – Dog legged, Open well – plan and section					

Course	Course Outcomes: After completing the course, the students will be able to						
CO1	Prepare, read and interpret the drawings in a professional set up.						
CO2	Know the procedures of submission of drawings and Develop working and submission drawings for building						
CO3	Plan of residential or public building as per the given requirements						

Refe	erence Books
1.	MG Shah, CM Kale, SY Patki, "Building drawing with an integrated approach to Built
	Environment Drawing", Tata McGraw Hill Publishing co. Ltd, New Delhi.
2.	Gurucharan Singh, "Building Construction", Standard Publishers, & distributors, New Delhi.
3.	Malik RS and a Meo GS, "Civil Engineering Drawing", Asian Publishers/Computech
	Publication Pvt Ltd

Laboratory- 50 Marks

The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are awarded 10 marks. Total marks for the laboratory is 50.

Semester End Examination (SEE):

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	-	-	-	1	-	-	-	2	-	-
CO2	-	-	3	-	-	-	-	1	-	-	2	-
CO3	-	-	2	3	-	-	-	-	1	-	-	-

	Se	emester III							
	Rural, Urban Planning and Architecture								
	(Theory)								
Cou	Course Code: MVJ22CV361 CIE Marks: 50								
Cred	Credits: L:T:P: 3:0:0 SEE Marks: 50								
Hou	Hours: 40L SEE Duration: 3 Hrs.								
Cou	rse Learning Objectives: The stude	nts will be able to							
1	To make the student understand about the past and present architecture of different								
1	parts of the world								
2	Rural and urban planning and growth and circulation of patterns and effect of increase								
4	in urbanization								
2	The basic planning required for urba	n and rural centres with	respect to physical and						
3	social aspects								
1	Student s to visit the different place	Student's to visit the different place of architecture monuments to understand the							
4	concept								
5	To understand different types of arch	nitecture and planning							

UNIT-I Introduction: Aim and importance of Architecture, Architecture as a fine art. Role of an architect and an engineer. Essential principles and qualities of architecture with examples	8 Hrs
Role of an architect and an engineer.	0 II
Essential principles and qualities of architecture with examples	
	опіѕ
Factors of architecture: Mass, Form, Colour, Solids, and Voids, Uniformity,	
Balance and Symmetry, Painting with examples.	
UNIT-II	
Architectural influence of the following: Association, Tradition, Climate, Materials, Topography, Religion social customs and aspiration of time.	8 Hrs
Architectural characteristics of the following architecture with examples. 1.	
Egyptian, 2. Greek, 3. Roman, 4. Buddhist, 5. Hindu, 6. Jain, 7. Chalukyan, 8.	
Modern architecture. Factors that have influenced present day Modern	
Architecture, Aesthetic difference between the past and present Architecture.	
UNIT-III	
Human settlements, Rural and urban pattern of growth, Factors that promote	8 Hrs
growth and development of Rural and urban areas	
Ancient Town Planning in India: Principles of town planning and circulation pattern with examples	
UNIT-IV	
Industrialization: Impact on town planning, Urbanization causes, its effect on town and cities, remedial measures both in urban and rural planning	8 Hrs
Circulation pattern in cities: Urban roads and streets, their functional	
classification, traffic survey data and its use in town planning	
UNIT-V	
CITE	
Contemporary objectives and methods of planning of town: Development plans	8 Hrs
	8 Hrs

Course	Course Outcomes: After completing the course, the students will be able to						
CO1	Understand importance of architecture in rural and urban planning						
CO2	Understand Influence of architecture						
CO3	Design infrastructure for rural and urban region						
CO4	Plan and design rural and urban roads						

Refe	erence Books
1.	Fletcher, "History of Architecture", 1st Edition, CB Publishers, New Delhi.
2.	Gallion A. B., "he Urban Pattern City Planning And Design", 5th Edition, CBS Publishers,
	New Delhi
3.	Perey Brown, "Indian architecture", 2 nd Edition, Read Book Publishers, New Delhi.
4.	Lewis Keeble,"Principle of town and country planning", 4th Edition, Estates Gazette Ltd,
	New Delhi.
5.	Ramachandran R,, "Urbanization and Urban Syatems in India", Oxford University Press,
	New Delhi.
6.	Rangwala, "Town planning", 32 nd Edition, Charritor Publication, New Delhi

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	-	-	1	-	-	-	-	1	-	1	1
CO2	-	-	-	1	-	-	-	-	1	-	1	1
CO3	-	2	-	1	-	-	-	-	1	-	1	1
CO4	-	2	2	1	-	-	-	-	1	-	1	1
CO5	-	-	-	1	-	-	1	1	1	-	1	1

	Semester III							
	Geospatial Techniques in Practice							
		(Theory)						
Cou	rrse Code: MVJ22CV362	CIE Marks: 50						
Credits: L:T:P: 3:0:0 SEE Marks: 50								
Hot	Hours: 40L SEE Duration: 3 Hrs.							
Cou	rse Learning Objectives: The stude	nts will be able to						
1	Introduce the concept of various geospatial technologies used in the industry							
2	Help to acquire basic idea about the processing and mapping with modern surveying							
2	equipment.							
2	Elaborate proven concepts, business practices and applications of geospatial							
3	technology.							
4	Explain learners understand how ged	ospatial concepts are leveraged in handling real						
4	world business challenges of engineering and construction industry.							

UNIT-I	
Need of Geospatial technology in Industry: Geospatial in Day to Day Life, Spatial thinking, Evolution of location technology and importance of geography and maps. Need for spatial information, Terminologies, logic, language and formats of spatial technology. Location perspective of construction industry, Overview of Geospatial technology in tenders, Design and execution and Construction lifecycle management. Fundamentals and components of Geospatial Engineering, Surveying and Conventional survey equipment Vs Modern surveying equipment Components. Digital Land Surveying Needs.	8 Hrs
UNIT-II	
Total Station and Global Navigation Satellite System (GNSS): Basics of Surveying, Introduction to Survey and Mapping, Geospatial Surveying Equipment, Demo of Total Station Equipment, Setting out and mapping, Advanced geospatial solutions, GNSS Overview of components, working and signal structure of Global navigation System.	8 Hrs
UNIT-III	
Geospatial Engineering and technology: Remote Sensing Technologies, Types of remote sensing, Sensors and its types, Application of sensors & platforms, Image Acquisition, Applications of Remote Sensing. 3D scanning, Principles and the science behind photogrammetry, LiDAR, RADAR and SONAR. Introduction to Platforms and working.	8 Hrs
UNIT-IV	
Geographical Information System: Basics of GIS, Vector & Raster data models, Types and components of a Map. Hardware for GIS, DEM and TIN Data products, Attribute Data Types. Basic GIS data conversions, conversions from non-spatial formats to spatial formats. Demo of Conversion of Excel to GIS, Demo of Conversion of CAD TO GIS, Demo of Downloading and Geo-referencing Topo sheets and Raster files	8 Hrs
UNIT-V	
Applications and Future trends of Geospatial Technologies: Application of GIS - Spatial Analysis, Catchment Area delineation, Overlay Analysis, Cluster Analysis, Hotspot Analysis and View shed Analysis. Future Trends of Geospatial Technologies. Case Study 1 -Benefit Realization - Case Study 2 Advancements in Modern Survey & Mapping Technologies, Advancements in Spatial Analytics –	8 Hrs

Geo Intelligence, Future Trends, Geospatial Technology - Way Forward.	
---	--

Course	Course Outcomes: After completing the course, the students will be able to				
CO1	Comprehend different geospatial techniques in the Construction Industry				
CO2	Understand the application of geospatial equipment like Total Station, GNSS, LIDAR,				
	UAV (Drones), etc.,				
CO3	Evaluate the various spatial analysis operations by using GIS Environment				
CO4	Create a map layout with all essential cartographic elements in GIS Environment.				
CO5	Illustrate the various geospatial emerging trends of GIS in Industry.				

Refe	erence Books
3.	T. P. Kanetkar and S. V. Kulkarni, "Surveying and Levelling, Parts 1 & 2", 24th edition,
	Pune Vidyarthi Griha Prakashan, Pune.
4.	James M. Anderson and Edward M. Mikhail, Surveying, Theory and Practice, Seventh
	Edition, McGraw Hill, New Delhi.
3.	Satheesh Gopi, R. Sathikumar, N. Madhu, "Advanced Surveying, Total Station GPS and
	Remote Sensing", 2nd Edition, Pearson education, New Delhi.
4.	George Joseph and C. Jeganathan, "Fundamentals of Remote Sensing", Third Edition
	Universities Press (India) Private limited, Hyderabad.
5.	M. Anij Reddy. T"extbook of Remote Sensing and Geographical Information systems",
	2012, BS Publications, Hyderabad.

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	-	-	1	-	-	-	-	1	-	1	1
CO2	-	-	-	1	-	-	-	-	1	-	1	1
CO3	-	2	-	1	-	-	-	-	1	-	1	1
CO4	-	2	2	1	-	-	-	-	1	-	1	1
CO5	-	-	-	1	-	-	1	1	1	-	1	1

	Semester III						
	Sustainable Design Concept for Building Services						
	(Theory)						
Cou	Course Code: MVJ22CV363 CIE Marks: 50						
Cre	Credits: L:T:P: 3:0:0 SEE Marks: 50						
Hot	Hours: 40L SEE Duration: 3 Hrs.						
Course Learning Objectives: The students will be able to							
1	To facilitate learners to understand sustainable building designs and its parameters						
1	such as energy and water efficiency, Comfort in buildings, and waste management.						
2	To expose the learners to shading systems, thermal and visual comfort						
2	To impart fundamental knowledge on L	ife cycle assessment and Green ratings and					
3	certifications.						

UNIT-I	
Introduction to Sustainability and Climatology: Overview of	
Sustainability – Global energy scenario, carbon footprint and climate	
action, Net zero in carbon offsetting, Water neutral, Sustainable	8 Hrs
construction and resource management. Green buildings - Selection of	
site – preservation and planning, Influence of climate on buildings, Basics	
of climatology, Earth – Sun relationship, Solar angles and sun path	
diagram, Design of shading systems.	
UNIT-II	
Comfort in Buildings: Thermal comfort – Basics of Thermodynamics,	8 Hrs
Convection/radiation heat transfer, Heat gain through various elements of	
a building, Thermal comfort models and case studies Acoustics – Building	
acoustics, measures, defects and prevention of sound transmission Indoor	
Air Quality – Effects, design consideration and integrated approach for	
IAQ management Visual comfort – Enhancement strategies for	
Daylighting and Artificial lighting.	
UNIT-III	
Energy, water efficiency and waste management in buildings: Energy	8 Hrs
efficiency – Energy efficiency in building envelope and energy efficient	
HVAC and Lighting as per Energy conservation building code (ECBC)	
2017, Energy simulation, Energy management system – Renewable	
energy and Energy Audit. Water Efficiency – Planning and design of	
water management system, Rain water harvesting, Water efficient design	
and fixtures, Treatment and reuse and Water efficient landscape system.	
UNIT-IV	
Life Cycle Assessment of Buildings and Green project management:	8 Hrs
Materials – Green product certifications, features of sustainable building	
materials and sustainable alternatives for structural, envelope and finishing	
materials. Low carbon cement, Zero emission bricks and lean construction	
practices. Life cycle assessment and its types – Modelling and Analysis,	
Greenhouse gas emission. Different phases of Green building project	
management.	
UNIT-V	
Sustainable rating systems: Green building rating systems- LEED,	8 Hrs
BREEAM and others, Indian Green building rating systems – IGBC &	
GRIHA. IGBC criteria for certification -site selection credits, pre-design	

credits, detailed design credits, pre-construction credits, construction credits, post construction credits.

Course	Outcomes: After completing the course, the students will be able to
CO1	Comprehend sustainable design, climatology, shading system and analyze heat transfer
	mechanism in buildings.
CO2	Assess the design considerations and parameters for thermal comfort, visual comfort,
	indoor air quality and acoustics
CO3	Develop solutions for energy efficiency, water efficiency and waste management in
	buildings
CO4	Adopt green project management methodology and evaluate building life cycle
	assessment
CO5	Implement green practices during construction and operation phase of the buildings for
	achieving green rating.

Refe	Reference Books				
1.	HarharaIyer G, "Green Building Fundamentals", Notion Press, New Delhi, 2022.				
2.	Dr. Adv. HarshulSavla, "Green Building: Principles & Practices", Notion Press, New Delhi, 2021.				
3.	IGBC Green new building rating system - version 3.0 - Abridged reference guide				
4.	The Sustainable Habitat Handbook (6 Volume Set), GRIHA Version 2019				
5.	National Building Code – 2016, Volume 1&2, Bureau of Indian Standards				

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	-	-	1	-	-	-	-	1	-	1	1
CO2	-	-	-	1	-	-	-	-	1	-	1	1
CO3	-	2	-	1	-	-	-	-	1	-	1	1
CO4	-	2	2	1	-	-	-	-	1	-	1	1
CO5	-	-	-	1	-	-	1	1	1	-	1	1

	Semester III						
	Fire Safety in Buildings						
	(Theory)						
Cou	Course Code:MVJ22CV364 CIE Marks: 50						
Cre	Credits: L:T:P: 3:0:0 SEE Marks: 50						
Hou	Hours: 40L SEE Duration: 3 Hrs.						
Cou	rse Learning Objectives: The students wil	be able to					
1	To understand the importance fire safety						
2	To understand various techniques involved in fire safety						
3	3 To design fire resistant buildings using proper materials and methods						
4	4 To understand components of electrical system						
5	To understand non-destructive testing						

UNIT-I	
Fire: Introduction, Basic concepts of fire protection, Fire as a process of	8Hrs
combustion, planning for fire protection, fire resistance Ventilation and fuel	
controlled fire, process of combustion: flash over condition, effect of fire on	
construction material, design of fire resistance steel structure, concrete	
structure	
UNIT-II	
Fire safety : urban planning, escape and refuge, internal planning, detection and	8 Hrs
suppression Introduction to lift design, design of lift system, expected stop and	
floor of reversal, different cases, simulation, arrangements and escalators	
UNIT-III	
Introduction to flow system: water supply, constant demand, variable demand	8 Hrs
and diversity factor, control systems Flow in pipe networks and fixture units,	
design of water supply distribution system, flow in waste water pipes	
UNIT-IV	
Introduction to HVAC: governing equations to HVAC process, numerical	8 Hrs
problem on HVAC system, psychometric chart, equation based approach	
Electrical systems: design of electrical systems, intelligent building, life cycle	
cost and basics of building maintenance, stages of maintenance management,	
planning for building maintenance, periodicity of maintenance management,	
estimation of repair cycle, cost profile of maintenance, lamp replacement,	
building inspection, planned and Ad-hoc maintenance	
UNIT-V	
Condition survey and health evaluation of buildings: diagnosis of building	8 Hrs
by visual survey, case studies of visual survey, effect of corrosion and alkali	
aggregate reaction, sampling and choice of test location Non-destructive	
testing, core strength test, carbonation and chloride measurement, electrical	
method of progress measurement Repair, rehabilitation, retrofit, periodicity	
and economics of condition survey, interpretation of test results	

Course	Course Outcomes: After completing the course, the students will be able to				
CO1	Understand types of fire, combustion process and fire resistance				
CO2	Plan for fire safety and design of lifts				
CO3	Design flow network in buildings				
CO4	Design of electrical systems and maintenance				
CO5	Perform health evaluation of buildings and suggest remedies				

Refe	erence Books
5.	J A Purkiss, "Fire Safety Engineering: Design of Structures", Third Edition, Taylor &
	Franscis Publications, New Delhi.
6.	V K Jain, "Fire Safety in Buildings", Third edition, New Age International Private
	Limited; New Delhi.
3.	Fire protection, services and maintenance management of building, NPTEL video lecture,
	IIT, Delhi
4.	Bureau of Indian Standards, " Hand Book Of Functional Requirements Of Buildings, (Sp
	41 & Sp- 32)", Bureau of Indian Standards, New Delhi.
5.	Markus, T.A. & Morris, E.N., "Building Climate And Energy" Pitman publishing limited.
	1980.
6.	Croome, J.D . & Roberts, B.M., "AIR CONDITIONING AND VENTILATION OF
	BUILDINGS, VOL-1".Pergamon press.
7.	Building Services Design - T.W.MEVER

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marksare executed by means of an examination.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	-	-	1	-	-	-	-	1	-	1	1
CO2	-	-	-	1	-	-	-	-	1	-	1	1
CO3	-	2	-	1	-	-	-	-	1	-	1	1
CO4	-	2	2	1	-	-	-	-	1	-	1	1
CO5	-	-	-	1	-	-	1	1	1	-	1	1

SOCIAL CONNECT & RESPONSIBILITIES						
Course Code:MVJ22SCRXX		CIE Marks: 50				
Credits: L:T:P: 3:0:0		SEE Marks: 50				
Hours: 40L		SEE Duration: 3 Hrs.				

Objectives: The Course will

- Enable the student to do a deep drive into societal challenges being addressed by NGO(s), social enterprises & The government and build solutions to alleviate these complex social problems through immersion, design & technology.
- Provide a formal platform for students to communicate and connect with their surroundings.
- Enable to create of a responsible connection with society.

Learning Outcomes: The students are expected to have the ability to:

- 1. Understand social responsibility
- 2. Practice sustainability and creativity
- 3. Showcase planning and organizational skills

Contents:

The course is mainly activity-based on offering a set of activities for the student that enables them to connect with fellow human beings, nature, society, and the world at large. The course will engage students in interactive sessions, open mic, reading groups, storytelling sessions, and semester-long activities conducted by faculty mentors. In the following a set of activities planned for the course have been listed:

Unit I

Plantation and adoption of a tree: Plantation of a tree that will be adopted for four years by a group of B.Tech. students. They will also make an excerpt either as a documentary or a photoblog describing the plant's origin, its usage in daily life, and its appearance in folklore and literature.

Unit II

Heritage walk and crafts corner: Heritage tour, knowing the history and culture of the city, connecting to people around through their history, knowing the city and its craftsman, photoblog and documentary on evolution and practice of various craft forms.

UNIT III

Organic farming and waste management: usefulness of organic farming, wet waste management in neighboring villages, and implementation in the campus.

Unit IV

Water Conservation: knowing the present practices in the surrounding villages and

implementation in the campus, documentary or photo blog presenting the current practices.

Module-V

Food Walk City's culinary practices, food lore, and indigenous materials of the region used in cooking.

Activities

Jamming session, open mic, and poetry: Platform to connect to others. Share the stories with others. **Share the experience of Social Connect**. Exhibit the talent like playing instruments, singing, one-act play, art-painting, and fine art.

PEDAGOGY

The pedagogy will include interactive lectures, inspiring guest talks, field visits, social immersion, and a course project. Applying and synthesizing information from these sources to define the social problem to address and take up the solution as the course project, with your group. Social immersion with NGOs/social sections will be a key part of the course. Will all lead to the course project that will address the needs of the social sector?

COURSE TOPICS:

The course will introduce social context and various players in the social space, and present approaches to discovering and understanding social needs. Social immersion and inspiring conversional will culminate in developing an actual, idea for problem-based intervention, based on an in-depth understanding of a key social problem.

A total of 14-20 hrs engagement per semester is required for the 3rd semester of the B.E. /B.Tech. program. The students will be divided into 10 groups of 35 each. Each group will be handled by two **faculty mentors**. Faculty mentors will design the activities (particularly Jammingsessions open mic ,and poetry)

Faculty mentors has to design the evaluation system.

Continuous Internal Evaluation (CIE)

After completion of, the social connect, the student shall prepare, with daily **diary** as reference, a comprehensive report in consultation with the mentor/s to indicate what he has observed and learned in the social connect period. The report should be signed by the mentor. The report shall be evaluated on the basis of the following criteria and/or other relevant criteria pertaining to the activity completed.

Marks allotted for the diary are out of 50.

Planning and scheduling the social connect

Information/Data collected during the social connect

Analysis of the information/data and report writing

Considering all above points allotting the marks as mentioned below-

Excellent	80 to
	100
Good	60 to 79
Satisfactory	40 to 59
Unsatisfactory and	<39
fail	

Semester End Examination (SEE)

This Jamming session will be conducted at the end of the course for **50 marks**

Jamming session includes -Platform to connect to others. Share the stories with others. **Share the experience of Social Connect**. Exhibit the talent like playing instruments, singing, one-act play, art painting, and fine art.

Faculty mentor has to design the evaluation system for the Jamming session.

	Semester: III								
	Additional Mathematics-I								
	(Common to all branches)								
Cou	rse Code:	MVJ22MATDIP-1	CIE Marks:50						
Cred	dits:	L:T:P:S: 3:0:0:0	SEE Marks: 50						
Hou	irs:	30L	SEE Duration: 3 Hrs						
Cou	Course Learning Objectives: The students will be able to								
1	To familiarize the important and introductory concepts of Differential calculus								
2	Aims to provide essential concepts integral calculus.								
3	To gain knowledge of vector differentiation								
4	To learn basic study of probability.								
5	Ordinary differential equations of first order and analyze the engineering								
<i>J</i>	problems.								

UNIT-I	
Differential calculus: Recapitulation of successive differentiation -nth	8 Hrs
derivative -Leibnitz theorem (without proof) and Problems, Polar curves	
- angle between the radius vector and tangent, angle between two curves,	
pedal equation, Taylor's and Maclaurin's series expansions- Illustrative	
examples.	
UNIT-II	
Integral Calculus: Statement of reduction formulae for the integrals of	8 Hrs
$\sin^n(x)$, $\cos^n(x)$, $\sin^n(x)\cos^n(n)$ and evaluation of these integrals with	
standard limits-problems. Double and triple integrals-Simple examples.	
UNIT-III	
Vector Differentiation: Scalar and Vector point functions, Gradient,	8Hrs
Divergence, Curl, Solenoidal and Irrotational vector fields.	
Vector identities - $div(\phi \stackrel{\rightarrow}{A})$, $curl(\phi \stackrel{\rightarrow}{A})$, $curl(grad(\phi))$, $div(curl \stackrel{\rightarrow}{A})$.	
UNIT-IV	
Probability: Basic terminology, Sample space and events. Axioms of	8Hrs
probability. Conditional probability – illustrative examples. Bayes	
theorem-examples.	
UNIT-V	
Ordinary Differential Equations of First Order: Introduction –	8Hrs
Formation of differential equation, solutions of first order and first degree	
differential equations: variable separable form, homogeneous, exact,	
linear differential equations.	

Cours	Course Outcomes: After completing the course, the students will be able to						
CO1	Apply the knowledge of calculus to solve problems related to polar curves						
	and its applications						
CO2	Apply the concept of integration and variables to evaluate multiple integrals						
	and their usage in computing the area and volumes.						
CO3	Illustrate the applications of multivariate calculus to understand the						
	solenoidal and irrotational vectors and also exhibit the inter dependence of						
	line, surface and volume integrals.						
CO4	Understand the basic Concepts of Probability						

CO5	Recognize and solve first-order ordinary differential equations occurring in
	different branches of engineering.

Ref	erence Books
7.	B.S. Grewal, "Higher Engineering Mathematics" Khanna Publishers, 43 rd
	Edition, 2013.
8.	Erwin Kreyszig, "Advanced Engineering Mathematics", Wiley-India publisher
	10th edition,2014.
3.	Ramana B. V., "Higher Engineering Mathematics", Tata Mc Graw-Hill, 2006.
4.	Bali N. P. & Manish Goyal, "A text book of Engineering Mathematics", Laxm
	Publications, 8 th Edition.

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	0	2	0	0	0	0	0	0	0	1
CO2	3	3	0	2	0	0	0	0	0	0	0	1
CO3	3	3	0	3	0	0	0	0	0	0	0	1
CO4	3	2	0	3	0	0	0	0	0	0	0	1
CO5	3	2	0	2	0	0	0	0	0	0	0	1

	Semester IV							
	Analysis of Structures							
	(Theory)							
Cou	rse Code: MVJ22CV41	CIE Marks: 50						
Cre	Credits: L:T:P: 3:0:0 SEE Marks: 50							
Hours: 40L SEE Duration: 3 Hrs.								
Cou	rse Learning Objectives: The students wi	ill be able to						
1	Understand the Different Forms of Structural Systems.							
2	Determine the Strain Energy and Slope and Deflection of Beams, Trusses and Frames.							
3	3 Analyse arches and cable structures.							
4	Analyse different types of beams and frames using slope deflection method.							
5	Analyse different types of beams and fram	es using moment distribution method.						

UNIT-I	
Equilibrium: Conditions of equilibrium, Compatibility conditions, Degree of	8 Hrs
freedom, Static and kinematic indeterminacies of structural systems	
Deflection of beams: Moment area method: Derivation, Mohr's theorems, sign	
convention; Application of moment area method to determinate prismatic	
beams, beams of varying cross section; Use of moment diagram by parts.	
UNIT-II	
Slope Deflection Method: Introduction, sign convention, development of	8 Hrs
slope deflection equation; Analysis of continuous beams including settlement	
of supports; Analysis of orthogonal rigid plane frames including sway frames	
with kinematic indeterminacy up to 3.	
UNIT-III	
Moment Distribution Method: Introduction, Definition of terms,	8 Hrs
Development of method, Analysis of continuous beams with support yielding,	
Analysis of orthogonal rigid plane frames including sway frames with	
kinematic indeterminacy up to 3.	
UNIT-IV	
Matrix Method of Analysis (Stiffness Method): Introduction, Stiffness	8 Hrs
matrix, Analysis of continuous beams and plane trusses using system approach,	
Analysis of simple orthogonal rigid frames using system approach with	
kinematic indeterminacy ≤ 3 .	
UNIT-V	
Matrix Method of Analysis (Flexibility Method): Introduction, Axes and	8 Hrs
coordinates, Flexibility matrix, Analysis of continuous beams and plane	
trusses using system approach, Analysis of simple orthogonal rigid frames	
using system approach with static indeterminacy ≤3.	

Course	Course Outcomes: After completing the course, the students will be able to						
CO1	Identify the different forms of structural systems and analyse the trusses.						
CO2	Evaluate the slope and deflections in beams, frames and trusses by using moment area						
	method and energy principle.						
CO3	Analyse and determine the stress resultants in arches and cables.						
CO4	Analyse the indeterminate structures and construct BMD AND SFD using slope						
	deflection methods.						
CO5	Analyse the indeterminate structures and construct BMD AND SFD using moment						
	distribution method.						

Refe	erence Books
1.	Reddy, C.S., Basic Structural Analysis, 3 rd. ed., Tata McGraw-Hill Education Pvt. Ltd.,
	New Delhi, 2011.
2.	Hibbeler, R.C., Structural Analysis, 9 th edition., Pearson publications., New Delhi,
	2012.
3.	Thandavamoorthy, T.S., Structural Analysis, 6 th edition., Oxford University press.,
	New Delhi,2015.
4.	L S Negi and R S Jangid, "Structural Analysis", Tata McGraw-Hill Publishing Company
	Ltd.
5.	D S Prakash Rao, "Structural Analysis: A Unified Approach", Universities Press 4
6.	K.U. Muthu and H. Narendra, "Indeterminate Structural Analysis", IK International
	Publishing Pvt. Ltd.
7.	Gupta S P, G S Pundit and R Gupta, "Theory of Structures", Vol II, Tata McGraw Hill
	Publications company
8.	V N Vazirani and M M Ratwani, "Analysis of Structures", Vol. 2, Khanna Publishers
9.	Wang C K, "Intermediate Structural Analysis", McGraw Hill, International Students
	Edition. S. Rajashekhara and G. Sankarasubramanian, "Computational Structural
	Mechanics", PHI Learning Pvt. Ltd.,
10.	S S Bhavikatti, structural analysis, vikas publishing house pvt.ltd., new Delhi
11.	S Ramamrutham and R Narayanan, Theory of structures, Dhanpat Rai Publishing
	Company.

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	-	-	2	ı	-	-	-	1	-	_	-
CO2	-	3	-	2	-	-	-	-	-	-	-	1
CO3	-	3	-	2	-	-	-	-	1	ı	-	1
CO4	-	3	-	2	-	-	-	-	1	-	-	1
CO5	-	3	-	2	-	-	-	-	1	-	-	1

	Semester IV						
	Water Supply and Wastewater Engineering						
	(Theory)						
Cou	rrse Code: MVJ22CV42	CIE Marks: 50					
Cre	dits: L:T:P: 3:0:0	SEE Marks: 50					
Hou	Hours: 40L SEE Duration: 3 Hrs.						
Cou	rrse Learning Objectives: The students will be able to						
1	Analyze the variation of water demand and to estimate water requirement for a community.						
2	Study drinking water quality standards and to illustrate qualitative analysis of water.						
3	Analysis of physical and chemical characteristics of water and wastewater.						
4	Understand and design of different unit operations and unit process involved in water and wastewater treatment process						
5	Design various oxidation processes.						

UNIT-I	
Introduction: Water: Need for protected water supply, Demand of Water: Types of water demands - domestic demand, industrial, institutional and commercial demand, public use and fire demand estimation, factors affecting per capita demand, Variations in demand of water, Peak factor. Design period and factors governing design period. Methods of population forecasting and numerical problems. Physico chemical characteristics of water Sampling.	8 Hrs
UNIT-II	
Water Treatment: Objectives, Unit flow diagrams – Significance of each unit, Aeration process Limitations and types.	8 Hrs
Sedimentation: Theory, settling tanks, types and design with numerical, Coagulation and flocculation, types of coagulants.	
Filtration: Mechanism, theory of filtration, types of filters: slow sand, rapid sand and pressure filters. Operation and cleaning. Design of slow and rapid sand filter without under drainage system, Numerical Problems.	
UNIT-III	
Disinfection : Methods of disinfection with merits and demerits. Breakpoint chlorination, Softening: Lime soda and Zeolite process.	8 Hrs
Wastewater: Need for sanitation, methods of sewage disposal, types of sewerage systems, Treatment of municipal wastewater: Wastewater characteristics sampling, significance and techniques, physical, chemical and biological characteristics, Numerical on BOD.	
UNIT-IV	
Treatment Process: flow diagram for municipal waste water Treatment unit operations and process Screens: types, disposal. Grit chamber, oil and grease removal. Primary and secondary settling tanks,	8 Hrs
Suspended Growth System -conventional activated sludge process and its modifications, numerical.	

UNIT-V	
Attached Growth System – Trickling filter, numerical on Trickling filters,	8 Hrs
bio-towers and rotating biological contactors. Principle of stabilization ponds,	
oxidation ditch. Sludge digesters (aerobic and anaerobic), Equalization.	
Thickeners and drying beds.	

Course	Course Outcomes: After completing the course, the students will be able to				
CO1	Estimate the average and peak water demand for a community.				
CO2	Evaluate water quality and environmental significance of various parameters and plan				
	suitable treatment system.				
CO3	Design the different units of water treatment plant.				
CO4	Design the various units of wastewater treatment plant.				
CO5	Design of various AOPs and low cost treatment units.				

Refe	erence Books
1.	Howard S. Peavy, Donald R. Rowe, George T, "Environmental Engineering" - Tata
	McGraw Hill, New York, Indian Edition, 2013
2.	S. K. Garg, Environmental Engineering Volume-I, Water supply Engineering – M/s
	Khanna Publishers, New Delhi2010
3.	B.C. Punmia and Ashok Jain, Environmental Engineering I-Water Supply Engineering,
	Laxmi Publications (P) Ltd., New Delhi2010.
4.	S.K.Garg, "Environmental Engineering vol-II, Water supply Engineering", Khanna
	Publishers, – New Delhi, 28th edition and 2017

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	2	1	-	-	1	2	-	-	-	-	1
CO2	1	3	1	-	-	1	2	-	-	-	-	1
CO3	-	2	1	-	-	1	2	-	-	-	-	1
CO4	-	3	1	-	-	1	2	-	1	1	-	1

	Semester IV						
	Geotechnical Engineering						
	(Theory and Practice)						
Cou	rrse Code: MVJ22CV43	CIE Marks: 50					
Cre	dits: L:T:P: 3:0:2	SEE Marks: 50					
Hou	Hours: 40L + 26P SEE Duration: 3 Hrs.						
Cou	Course Learning Objectives: The students will be able to						
1	Appreciate basic concepts of soil mechanics as an integral part in civil engineering.						
2	Comprehend basic engineering and mechanical properties of different types of soil.						
3	Become broadly familiar with geotechnical engineering requirements, such as, flow of water through soil medium and compaction characteristics.						
4	Model and measure strength & settlement characteristics soils.	and bearing capacity of					

UNIT-I	
Index Properties and it's Classification	8 Hrs
Index Properties: Phase Diagram, definitions, and their interrelationships.	
Determination of Index properties, Types of soil structures and Clay Minerals,	
IS soil classification of Soil.	
UNIT-II	
Soil Water-Effective Stress Analysis	8 Hrs
Soil Water: Permeability, Darcy's law-assumption and validity, coefficient of	
permeability and its determination (only laboratory method), permeability of	
stratified soils. Capillary phenomenon, Flow net characteristics and	
applications	
Effective Stress Analysis: Effective stress concept-total stress, effective stress	
and Neutral stress.	
UNIT-III	
Compaction and Consolidation	8 Hrs
Compaction: Principle of compaction, Standard and Modified proctor's	
compaction tests, factors affecting compaction, effect of compaction on soil	
properties, Field compaction control	
Mass-spring analogy, Terzaghi's one dimensional consolidation theory (No	
derivation). Consolidation characteristics of soil (Cc, av, mv and Cv).	
Laboratory one dimensional consolidation test, Pre-consolidation pressure and	
its determination by Casagrande's method.	
UNIT-IV	
Shear Strength	8 Hrs
Concept of shear strength, Mohr–Coulomb Failure Criterion, Modified Mohr–	
Coulomb Criterion Total and effective shear strength parameters, Measurement	
of shear strength parameters - Direct shear test, unconfined compression test,	
triaxial compression test and field Vane shear test, Factors affecting shear	
strength of soils.	
UNIT-V	0.77
Bearing Capacity and Settlement	8 Hrs
Bearing Capacity: Types of foundations, Determination of bearing capacity	

by Terzaghi's and BIS methods (IS: 6403), Modes of shear failure, Factors affecting Bearing capacity of soil. Effect of water table and load eccentricity on bearing capacity of soil, Field methods of determining bearing capacity of soil (SPT and plate load test).

Settlement: Types of settlements and importance, Computation of immediate and consolidation settlement, permissible differential and total settlements (IS 8009 Part 1).

Sl.NO	Experiments
1	Water content determination by oven drying, Rapid moisture meter method
2	Grain size analysis (Sieve analysis of soil)
3	In-situ density tests i) Core-cutter method ii) Sand replacement method
4	Consistency limits i) Liquid limit test (by Casagrande's and cone penetration method) & ii) Plastic limit test
5	Co-efficient of permeability test i) Constant head test ii). Variable head test
6	Standard compaction test (light compaction only)
7	Direct shear test
8	Unconfined compression test & Laboratory vane shear test
9	Triaxial test (unconsolidated undrained test only)
10	Demonstration of Standard penetration test & Boring equipment
11	Demonstration of Proctors Needle
12	Demonstration of Vane shear test

Course	Outcomes: After completing the course, the students will be able to
CO1	Comprehend the fundamentals of Soil mechanics and identify and classify the soil
CO2	Apply the knowledge to determine MDD and OMC and compute consolidation properties and shear parameters of soil and compute the settlement and bearing capacity of soil
CO3	Apply the knowledge to determine shear parameters of soil and compute the settlement and bearing capacity of soil
CO4	Carry out experiments to assess the index properties of soil and determine Compaction, Permeability and Shear Strength characteristics of soil.

Reference Books								
1.	T.W. Lambe and R.V. Whitman, Soil Mechanics-, John Wiley & Sons. 1991							
2.	Shashi K. Gulathi & Manoj Datta, Geotechnical Engineering-Tata McGraw Hill Publications. 2010							
3.	Bowles J E, Foundation analysis and design, McGraw- Hill Publications 5th edition 2001							
4.	Malcolm D Bolton, "A Guide to soil mechanics", Universities Press., 2003							
5.	Donald P Coduto, Geotechnical Engineering- Phi Learning Private Limited, New Delhi. 2010							
6.	Manual of Soil Laboratory Testing- Head K.H., (1986)- Vol. I, II, III, Princeton Press, London 2006							

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Laboratory- 50 Marks

The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are awarded 10 marks. Total marks for the laboratory is 50.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 MarksExperiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	3	1	i	-	1	1	1	-	-	-
CO2	1	2	2	-	-	-	-	-	1	1	-	-
CO3	1	-	2	2	-	-	-	-	1	-	-	-
CO4	-	-	-	2	1	-	-	-	-	-	1	-

	Semester IV								
	Building Materials Laboratory								
	(Practice)								
Cou	rse Code: MVJ22CVL44	CIE Marks: 50							
Cre	dits: L:T:P: 0:0:2	SEE Marks: 50							
Hou	Hours: 26P SEE Duration: 3 Hrs.								
Cou	rse Learning Objectives: The students will be able to								
1	Ability to apply knowledge of mathematics and engineering in calculating the								
	mechanical properties of structural materials.								
2	Ability to function on multi-disciplinary teams in the area of materials testing.								
3	Ability to use the techniques, skills and modern engineering tools necessary for								
	engineering.								
4	Understanding of professional and ethical responsibility in the areas of material testing.								
5	Ability to communicate effectively the mechanical properties of materials.								

Sl.NO	Experiments						
1	Tests on Bricks, Tiles, Cement Concrete blocks (Weight &Dimensionality, Water						
1	Absorption, Strength)						
2	Tests on Fine aggregates - Sieve Analysis, Moisture content, Speci	fic gravity, Bulk					
	density, Bulking and Silt Content						
3	Tests on Coarse aggregates- Sieve Analysis, Water absorption, M	Ioisture content,					
3	specific gravity and Bulk density						
4	Tests on Coarse aggregates- Crushing Strength Test, Los Angeles abrasion test,						
4	Impact test and Shape tests (combined index and angularity number	r)					
5	Compression test on mild steel, cast iron and wood.						
6	Tension test on mild steel and HYSD bars						
7	Bending Test on Wood Under two-point loading.						
8	Shear Test on Mild steel- single and double shear.						
9	Impact test on Mild Steel (Charpy & Izod).						
10	Demonstration of Hardness tests on ferrous and non-ferrous n	netals- Brinell's,					
10	Rockwell and Vicker's.						
11	Demonstration of Strain gauges and Strain indicators.						
NOTE: A	All tests to be carried out as per relevant latest BIS Codes						

Course	Course Outcomes: After completing the course, the students will be able to								
CO1	Analyze the physical characteristics, and behavior of common building materials.								
CO2	Reproduce the basic knowledge of mathematics and engineering in finding the strength								
	in tension, compression, shear and torsion for steel								
CO3	Recognize the importance of ethical conduct, integrity, and accuracy in materials								
	testing and reporting.								

Refe	erence Books
1.	Davis, Troxell and Hawk, "Testing of Engineering Materials", International Student
	Edition – McGraw Hill Book Co. New Delhi.
2.	M L Gambhir and Neha Jamwal, "Building and construction materials-Testing and quality
	control", McGraw Hill education (India)Pvt. Ltd.,2014.
3.	Kukreja C B, Kishore K. and Ravi Chawla "Material Testing Laboratory Manual",
	Standard Publishers & Distributors1996.

Laboratory- 50 Marks

The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are awarded 10 marks. Total marks for the laboratory is 50.

Semester End Examination (SEE):

Laboratory- 50 Marks

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	3	2	1	-	-	1	1	ı	-	-
CO2	1	-	-	2	-	_	2	-	-	-	-	-
CO3	-	-	-	_	1	-	-	2	-	1	-	-

	Semester IV								
	Building Information Modelling in Civil Engineering								
	(Theory)								
Cou	Course Code: MVJ22CV451 CIE Marks: 50								
Cre	Credits: L:T:P: 3:0:0 SEE Marks: 50								
Hou	Hours: 40L SEE Duration: 3 Hrs.								
Cou	Course Learning Objectives: The students will be able to								
1	Understand the concept of Building Information Modelling								
2	Create the workflow followed in industry during creation of BIM 3D model which								
4	includes								
3	Building the discipline-based model and create the federated models								
4	Design the process of creating the 4D & 5D BIM model								

UNIT-I	_
Evolution of Engineering: Introduction to BIM Concepts and Design	8 Hrs
Authoring: Evolution of Engineering from 2D drawings to BIM Model,	
Isometric View, Limitation of Isometric views and concept of 3D-Modeling,	
Building Information Modelling – Introduction & Process, Design Authoring –	
Concepts and workflow, Fundamentals of Discipline Based Modelling,	
Introduction to stages of BIM Modelling process as per ISO 19650, Federated	
model- concepts and demonstrations, workflow of design coordination,	
Engineering Analysis – Concept and types of analysis, Process and workflow	
of Design Review in BIM.	
UNIT-II	
Visualization and Interference/Clash check: Views in BIM Model,	8 Hrs
Visualization Modes, Walkthrough of the Model, Fly through the model,	
Layers & Properties, Concept of viewpoints, Sectioning and Visualization	
through Tablet and Mobile, Concept of BIM Kiosk & BIM Rooms,	
Visualization through Augment Reality (AR), Virtual Reality (VR) & Mixed	
Reality (MR) Clash Check – Types, Clash avoidance process, Clash Detection	
Process, Clash Detection Priority Matrix and Report generation, Clash	
Detection Rules, Report, Grouping, Clash Detection Process – Demo.	
UNIT-III	0.11
Documentation & CDE & Level of Development: Documentation and CDE	8 Hrs
(Common Data Environment) -2D drawings generation from BIM Model,	
Computer Network types, Concept of Cloud Computing, Concept and Application of CDE: Traditional Information Sharing, Definition, Reference,	
and Concept, Setting up the workflow and process for CDE- File naming	
convention, Roles and Responsibilities, Request for Information and Review	
Process Concept of LOD (Level of Development), preparation of LOD matrix	
and Progression matrixDefinition of LOD, Level of Detail and Information,	
LOD- Wall foundation, Precast Structural Inverted T-Beam, Domestic Water	
Piping, Plumbing Fixture, Packaged Generator Assembly, LOD- Chart, Matrix	
and Model Progression Matrix	
UNIT-IV	
4D / Field BIM & Its Applications: Introduction to 4D / Field BIM: Concept	8 Hrs
of 4D, Introduction to construction sequence and project schedule, Project	1
scheduling using Gantt Chart and its limitation, 4D BIM ModelingProject demo	
and workflow, Synchronization of 4D BIM Model with project schedule,	

Reviewing project progress w.r.t planned dates and actual dates, Generation of	
Reports Application of Field BIM/ 4D BIM: Understanding concept and usage	
of BIM in field for coordination- 3D Coordination and Visual Communication,	
Site utilization planning and Construction analysis, Application of wearables in	
coordination. 3D Control and planning Other Applications of Field BIM/ 4D	
BIM: Concept and usages of BIM in field for safety, disaster and risk analysis,	
digital fabrication and scan to BIM, Existing Condition Modeling, Phase	
Planning, As-built/ Record Models	
UNIT-V	
5D BIM, AIM & Beyond BIM - Emerging Trends: 5D BIM: Introduction	8 Hrs
concepts of 5D BIM, Quantity take off with UoM, Concept of QTO with UoM,	
5D BIM with UoM with cost, Quantity take off exercise, Demo of Quantity	
take off: Understanding QTO for Wall, Plaster & Tile, BIM Maturity LOD	
and General Practice of QTO, Cost Breakup structures, 5D BIM and cost	
control AIM: Introduction to Asset Information Model (AIM), COBie	
structures and Asset Information Deliverables, Space Attributes and Asset	
Attributes- Examples with data, Asset requirementDiscipline wise	
Infrastructure System, Classification code and Information Exchange,	
Information Exchange with Facility Management Beyond BIM: Emerging	
Trends- Concepts of Industrialisation, IoT, Big Data, Data Analytics and their	
applications in BIM: Industrialisation of Construction through BIM- DfMA,	
IoT in BIM, BIM and Big data, Data Analytics using AI & ML Future scope	
of BIM Applications: Smart Infrastructure and the need for connected	
infrastructure, Digital twins- Concepts and benefits, National Digital Twin or	
a City level Digital Twin in a Smart City, Fundamental requirements for the	
· · · · · · · · · · · · · · · · · · ·	
success of a Digital Twin and its uses, Digital Twin applications in diverse industries.	
mustres.	

Cours	Course Outcomes: After completing the course, the students will be able to								
CO1	Interpret the basic principles of BIM evolution and concept of BIM in lifecycle of project								
CO2	Understand the workflows of Design authoring followed in industry during creation of								
	3D model								
CO3	Analyze the engineering analysis and the process followed in industry to check and								
	resolve clashes								
CO4	Evaluate the integration of schedule and cost in 3D model using 4D and 5D BIM								
CO5	Illustrate the various emerging trends of BIM & concept of digital twin								

R	Reference Books							
1	1.	ISO 19650 - Building Information Modelling (BIM)						
2	2.	BIM Handbook – Chuck Eastman, Paul Teicholz, Rafael Sacks, Kathleen Liston						

${\bf Continuous\ Internal\ Evaluation\ (CIE):}$

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50.

The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	2	-	-	-	2	-	1	-	-	-
CO2	1	-	3	-	-	_	-	-	-	1	-	-
CO3	2	-	-	1	-	-	-	-	1	-	-	-
CO 4	1		2								1	
CO 5	1	-	-	-	2	1	-	-	-	-	-	-

	Semester IV							
	Construction Equipment, Plants and Machinery							
	(Theor	ry)						
Cou	rse Code:MVJ22CV452	CIE Marks: 50						
Cre	redits: L:T:P: 3:0:0 SEE Marks: 50							
Hou	Hours: 40L SEE Duration: 3 Hrs.							
Cou	rse Learning Objectives: The students will b	oe able to						
1	To provide insight on the different functions and operations of different equipment and							
1	techniques during construction							
2	To impart knowledge on the various maintenance and safety to be considered during							
	construction							
3	To acquire knowledge on the life cycle of a construction equipment							
4	To adopt mechanization in the Construction industry							

UNIT-I					
Basics and Hydraulics of Construction Equipment: Introduction to Construction	8Hrs				
Equipment- Functions, Operations of Construction Equipment-Introduction to Four					
& Two Stroke Engine and their components- Introduction and Components to					
Automobiles. Introduction to Principles of Hydraulic- Calculation of Pressure, Force					
& Flow- Components of a Hydraulic System- Basic layout of Hydraulic System-					
Applications of Hydraulics- Strand Jack Operation					
Video link / Additional online information: (Self Learning)					
• Construction methods and equipment management:					
https://nptel.ac.in/courses/105103206/					
UNIT-II					
Concreting, Earth Moving, Road Making and Quarry/Mining Equipment:	8 Hrs				
Operations of a Batching Plant - Introduction and Components of Concrete Pump &					
Placer- Concrete Pipeline- Laying and Cleaning- Bulldozer- Classification and					
Components- Classification, Components and Attachments of Excavator- Backhoe					
Loader- Classification & components- Introduction and classification to Hot mix					
Plant Process of Asphalt Paver-PQC Paver- Classification & Components- Motor					
Grader Classification & Components- Horizontal Movement Vehicles-					
Quarry/Mining					
UNIT-III					
Equipment Life Cycle Management: Life Cycle of an Equipment- Equipment	8 Hrs				
Performance Parameters - Introduction to Maintenance- Types of Maintenance-					
Maintenance Practices					
UNIT-IV					
Tunnelling Equipment / Piling Equipment: Introduction to Tunnel Boring	8 Hrs				
Machines- Details and Operation of a Hard-Rock TBM Details of Earth Pressure					
Balance (EPB) TBM- Details and operation of Slurry TBM & Components-					
Hydraulic Grabs- Piling Rig					
UNIT-V					
Mechanization and Digitalization in Construction and Safety in Construction	8 Hrs				
Equipment: Importance of Digital Analytics- Digital Solution in Construction					
Projects- Importance of Mechanization - Railway Track Construction- Rebar					
Processing Machine- Operation of Mechanized Equipment- Introduction to 3D					
Concrete Printer- Importance of Safety- Various PPE & Purpose- Safety of Men &					

Machines at Work- Safety During Construct	Activities Safety with Tools &
Tackles	

Course	Course Outcomes: After completing the course, the students will be able to						
CO1	Evaluate equipment and techniques required during construction						
CO2	Understand the operation of a batching plant.						
CO3	Analyze the equipment life cycle management.						
CO4	Demonstrate basic knowledge about Construction equipment and machinery.						
CO5	Comprehend mechanization and digitalization in construction						

Refe	rence Books
1.	Velumani. P, "Construction Techniques and Practices", SIA Publishers & Distributers Pvt
	Ltd, 2020.
2.	Dr. Manoranjan Samal, "Advanced Construction Techniques and Equipment" S.K. Kataria
	& Sons
3.	S.C.Sharma, "Construction Equipment and management" E-Book .2019
4.	Mahesh varma, , "Construction Equipment and its Palnningand Applications", 5th edition,
	Metroplolitan Book Co. Publishers,, 2005.
5.	S.Seetharaman, "Construction Engineering and Management", 4 th Edition , Umesh
	publications, New Delhi, 1999.

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marksare executed by means of an examination.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	ı	3	-	-	-	-	1	1	-	1	-
CO2	1	-	-	2	-	-	-	-	-	2	1	-
CO3	2	-	-	-	-	-	-	-	-	ı	2	1
CO 4	1	ı	3	-	-	-	-	ı	1	ı	ı	-
CO 5	1	ı	-	-	2	-	1	ı	1	ı	ı	-

	Semester IV							
Concreting Techniques and Practices								
	(Theory)							
Course Code: MVJ22CV453 CIE Marks: 50								
Credits: L:T:P: 3:0:0 SEE Marks: 50								
Hou	Hours: 40L SEE Duration: 3 Hrs.							
Cou	Course Learning Objectives: The students will be able to							
1	To present the basics of concrete and different materials used in it.							
To impart knowledge on materials used in concrete, relevant Indian standard code								
	and practical aspects on concreting	and practical aspects on concreting activities at projects.						
3	To explain the importance of making good quality concrete to build durable							
3	structures.							
1	To introduce the Design of concrete mixes from the Industrial experiences at Sites and							
optimization of higher grades of Concrete.								
5	To learn the best practices in co	oncrete construction from industry's decades of						
5	experiences, thumb rules, mitigation of concreting issues at Sites							

UNIT-I	
Introduction to concrete, overview of materials- cement, low carbon cement,	8 Hrs
coarse aggregate and fine aggregate, and mineral admixture:- fly ash, GGBS,	
micro silica / silica fume, metakaolin / rice husk ash, composite cement and	
ultrafine materials, lab test - fineness of fly ash, recycled aggregate	
UNIT-II	
Water and chemical admixture: source, requirements, limits and testing	8 Hrs
Blending of aggregate -: Blending of fine and coarse aggregate, gradation for	
optimization and practical aspects.	
UNIT-III	
Mix design - Volumetric mix design, mix design by absolute volume method,	8 Hrs
worked out practical examples based on industries experience at project sites	
over several decades, higher grades of concrete, high performance concrete, test	
on concrete: workability of concrete, flexural and compressive strength tests.	
UNIT-IV	
Production of concrete-: batching plant, calibration, mixing and transportation	8 Hrs
of concrete handling of concrete at construction, ready-mix concrete, pumping,	
placing of concrete with boom placers, levelling, vibration and compaction,	
cold joints, finishing and curing and protection of concrete	
UNIT-V	
Special types of concrete: self-compacting concrete, mass concrete, dry lean	8 Hrs
concrete, geopolymer concrete, pavement quality concrete, fiber reinforced	
concrete, composite concrete, lightweight concrete, ferrocement, shotcreteing,	
guniting, grouting, challenges faced at sites: plastic shrinkage cracks, plastic	
settlement, honey comb, bug holes, cover to concrete, do's and don'ts in	
concrete construction, site shoot, introduction on 3D printing.	_

Course	Course Outcomes: After completing the course, the students will be able to							
CO1	Evaluate the properties of concrete by conducting test on cement, aggregate and							
	concrete (with & without admixtures) for using the data for Mix design procedures							
CO2	Understand to Select and proportionate different materials used in a concrete mix							
	including admixtures							

CO3	Design a concrete mix as per requirement of construction project
CO4	Apply the best practices in concrete construction from industry's requirement, thumb
	rules, mitigation of concreting issues at Sites.

Refe	Reference Books							
1.	Concrete Technology by M. S. Shetty, S Chand, New Delhi-110055.							
2.	Concrete Technology by M. L. Gambhir, Tata McGraw-Hill.							
3.	IS 456, IS 269, IS 516, IS 1786, IS 1893, IS 12269, IS 9103, IS 8112							

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	-	2	-	1	-	-	-	-	-	-
CO2	1	-	2	-	-	-	-	-	-		-	-
CO3	1		3	-	-	_	-	-	-	-	1	-
CO 4	1	-	_	-	-	_	2	-	-	-	-	-

	Semester IV							
	Watershed Management							
	(Theory)							
Cou	Course Code: MVJ22CV454 CIE Marks: 50							
Cred	Credits: L:T:P: 3:0:0 SEE Marks: 50							
Hou	Hours: 40L SEE Duration: 3 Hrs.							
Cou	Course Learning Objectives: The students will be able to							
1	To understand Watershed Hydrology							
2	To estimate water demand and learn, water conservation methods							
3	To estimate water demand and learn, water conservation methods							
4	To estimate water demand and learn, water conservation methods							

UNIT-I	
Principles of Watershed Management: Basics concepts, hydrology and	8 Hrs
water availability, surface water, ground water, conjunctive use, human	
influences in the water resources system.	
UNIT-II	
Conservation of Water: Perspective on recycle and reuse, wastewater	8 Hrs
reclamation, social aspects of watershed management and community	
participation, private sector participation, institutional issues, socio-economy,	
integrated development, water legislation and implementations, case studies.	
UNIT-III	
Water Harvesting: Rainwater management, conservation, storage and	8 Hrs
effective utilization of rainwater, structures for rainwater harvesting, roof	
catchments system, check dams, aquifer storage.	
UNIT-IV	
Sustainable Watershed Approach: Sustainable integrated watershed	8 Hrs
management, natural resources management, agricultural practices, integrated	
farming, soil erosion and conservation	
UNIT-V	
Applications of RS and GIS in Watershed management: Role of decision	8 Hrs
support system in watershed management, watershed characteristics of coastal	
regions, coastal aquifer tor management, uniqueness of coastal water	
resources.	

Course	Course Outcomes: After completing the course, the students will be able to					
CO1	Discuss surface and ground water resources system and, human influences					
CO2	Integrate water resources system in arid and semi-arid regions and explain watershed					
	aquifer for management.					
CO3	Analyze water resources related issues for conservation and synthesize augmentation					
	of water resources					
CO4	Design integrated watershed management system					
CO5	Apply modern tools in watershed management					

Refe	erence Books
1.	Murthy, J. V. S., "Watershed Management in India", New Age Publishers, New Delhi.
	2nd Edition, 2017.
2.	Singh Vir, Raj., "Watershed Planning and Management", Yash Publishing House,
	Bikaner.3rd Revised Edition, 2016

- "Decision Support System for Integrated Watershed Management", Colorad State University. 2012.
 "Decision Support System for Integrated Watershed Management", Colorad State
- 4. "Decision Support System for Integrated Watershed Management", Colorad State University. 2012.

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	-	-	i	2	1	-	-	-	-	-
CO2	1	-	2	-	-	-	2	-	-	-	1	-
CO3	2	-	-	2	-	-	-	-	-	-	1	-
CO 4	1	-	2	-	1	-	-	-	-	1	1	1
CO 5	1	-	-	-	2	-	-	-	-	1	-	-

	Semester IV							
	Universal Human Values Course							
	(Theory)							
Cou	rse Code: MVJ22UHV48		CIE Marks: 50					
Cred	dits: L:T:P: 1:0:0		SEE Marks: 50					
Hou	rs: 15L		SEE Duration: 3 Hrs.					
Cou	Course Learning Objectives: The students will be able to							
1	Appreciate the essential complem	entarily between 'V	/ALUES' and 'SKILLS' to ensure					
1	sustained happiness and prosperity v	which are the core as	pirations of all human beings.					
Facilitate the development of a Holistic perspective among students towards 1								
2	profession as well as towards happiness and prosperity based on a correct understanding of the							
2	Human reality and the rest of existence. Such a holistic perspective forms the basis of							
	Universal Human Values and movement towards value-based living in a natural way.							
	Highlight plausible implications of	such a Holistic unde	erstanding in terms of ethical human					
3	conduct, trustful and mutually fulfil	lling human behavio	r and mutually enriching interaction					
	with Nature.		_					

UNIT-I	
Introduction to Value Education: Right Understanding, Relationship and Physical Facility (Holistic Development and the Role of Education), Understanding Value Education, Self-exploration as the Process for Value Education, Continuous Happiness and Prosperity – the Basic Human Aspirations, Happiness and Prosperity – Current	3 Hrs
Scenario, Method to Fulfill the Basic Human Aspirations. Practical Sessions : (1) Sharing about Oneself (2) Exploring Human Consciousness (3)	
Exploring Natural Acceptance.	
UNIT-II	
Harmony in the Human Being: Understanding Human being as the Co-existence of the Self and the Body, Distinguishing between the Needs of the Self and the Body, The Body as an Instrument of the Self, Understanding Harmony in the Self, Harmony of the Self with the Body, Programme to ensure self-regulation and Health. Practical Sessions: (4) Exploring the difference of Needs of Self and Body (5) Exploring Sources of Imagination in the Self (6) Exploring Harmony of Self with the Body	3 Hrs
UNIT-III	2 11
Harmony in the Family and Society: Harmony in the Family – the Basic Unit of Human Interaction, 'Trust' – the Foundational Value in Relationship, 'Respect' – as the Right Evaluation, Other Feelings, Justice in Human-to-Human Relationship, Understanding Harmony in the Society, Vision for the Universal Human Order. Practical Sessions: (7) Exploring the Feeling of Trust (8) Exploring the Feeling of Respect (9) Exploring Systems to fulfill Human Goal	3 Hrs
UNIT-IV	
Harmony in the Nature/Existence: Understanding Harmony in the Nature, Interconnectedness, self-regulation and Mutual Fulfillment among the Four Orders of Nature, Realizing Existence as Co-existence at All Levels, The Holistic Perception of Harmony in Existence. Practical Sessions: (10) Exploring the Four Orders of Nature (11) Exploring Co-	3 Hrs
existence in Existence	
UNIT-V	
Implications of the Holistic Understanding – a Look at Professional Ethics: Natural Acceptance of Human Values, Definitiveness of (Ethical) Human Conduct, A Basis for	3 Hrs

Humanistic Education, Humanistic Constitution and Universal Human Order, Competence in Professional Ethics, Holistic Technologies, Production Systems and Management Models-Typical Case Studies, Strategies for Transition towards Valuebased Life and Profession

Practical Sessions: (12) Exploring Ethical Human Conduct (13) Exploring Humanistic Models in Education (14) Exploring Steps of Transition towards Universal Human Order

Course	Course Outcomes: After completing the course, the students will be able to					
CO1	Explore themselves, get comfortable with each other and with the teacher					
CO2	Enlist their desires and the desires are not vague.					
CO3	Restate that the natural acceptance (intention) is always for living in harmony, only					
	competence is lacking					
CO4	Differentiate between the characteristics and activities of different orders and study the					
	mutual fulfillment among them					
CO5	Present sustainable solutions to the problems in society and nature					

Refe	erence Books						
1.	AICTE SIP UHV-I Teaching Material, https://fdp-si.aicte india.org/ AicteSipUHV						
	_download.php						
2.	A Foundation Course in Human Values and Professional Ethics, R R Gaur, R Asthana, G P						
	Bagaria, 2nd Revised Edition, Excel Books, New Delhi, 2019. ISBN 978-93-87034-47-1						
3.	Teachers' Manual for A Foundation Course in Human Values and Professional Ethics, R R						
	Gaur, R Asthana, G P Bagaria, 2nd Revised Edition, Excel Books, New Delhi, 2019. ISBN						
	978-93-87034-53-2						
4.	Human Values and Professional Ethics by R R Gaur, R Sangal, G P Bagaria, Excel Books,						
	New Delhi, 2010						

${\bf Continuous\ Internal\ Evaluation\ (CIE):}$

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	-	-	-	-	-	-	-	3	2	_	-
CO2	-	-	-	-	-	-	-	-	2	2	1	-
CO3	1	-	-	-	-	1	-	1	-	ı	-	-
CO 4	-	-	-	-	-	2	-	-	1	-	-	-
CO 5	-	-	_	-	-	-	1	-	-	-	1	-

	Semester IV							
	Additional Mathematics-II							
	(Common to all branches)							
Cou	rse Code:	MVJ22MATDIP-	CIE Marks:50					
		2						
Cred	Credits: L:T:P:S: 3:0:0:0 SEE Marks: 50							
Hou	Hours: 30L SEE Duration: 3 Hrs							
Cou	rse Learning Objectives: The st	udents will be able to						
1	To familiarize the important concepts of linear algebra.							
2	Aims to provide essential concepts differential calculus, beta and gamma functions.							
3	Introductory concepts of three-dimensional geometry along with methods to solv							
them.								
4	Linear differential equations							
5	Formation of partial differential	equations.						

UNIT-I	
Linear Algebra: Introduction - Rank of matrix by elementary row operations -	8 Hrs
Echelon form. Consistency of system of linear equations - Gauss elimination	
method. Eigen values and eigen vectors of a square matrix. Diagonalization of	
a square matrix of order two.	
UNIT-II	
Differential calculus: Indeterminate forms: L-Hospital rule (without proof),	8Hrs
Total derivatives, and Composite functions. Maxima and minima for a function	
of two variables.	
Beta and Gamma functions: Beta and Gamma functions, Relation between Beta	
and Gamma function-simple problems.	
UNIT-III	
Analytical solid geometry: Introduction –Directional cosine and Directional	8Hrs
ratio of a line, Equation of line in space- different forms, Angle between two	
line, shortest distance between two line, plane and equation of plane in different	
forms and problems.	
UNIT-IV	
Differential Equations of higher order: Linear differential equations of	8 Hrs
second and higher order equations with constant coefficients. Inverse	
Differential operator, Operators methods for finding particular integrals, and	
Euler – Cauchy equation.	
UNIT-V	
Partial differential equation: Introduction- Classification of partial differential	8 Hrs
equations, formation of partial differential equations. Method of elimination of	
arbitrary constants and functions. Solutions of non-homogeneous partial	
differential equations by direct integration. Solution of Lagrange's linear PDE.	

Course	Course Outcomes: After completing the course, the students will be able to					
CO1	Make use of matrix theory for solving system of linear equations and compute					
	eigenvalues and eigen vectors required for matrix diagonalization process.					
CO2	Learn the notion of partial differentiation to calculate rates of change of					
	multivariate functions and solve problems related to composite functions and					
	Jacobians.					

CO3	Understand the Three-Dimensional geometry basic, Equation of line in space-
	different
	forms, Angle between two line and studying the shortest distance.
CO4	Demonstrate various physical models through higher order differential equations
	and solve such linear ordinary differential equations.
CO5	Construct a variety of partial differential equations and solution by exact methods.

Ref	Ference Books
1	B.S. Grewal, "Higher Engineering Mathematics" Khanna Publishers, 43rd Edition,
	2013.
2.	Erwin Kreyszig, "Advanced Engineering Mathematics", Wiley-India publishers, 10th
	edition,2014.
3.	Ramana B. V., "Higher Engineering Mathematics", Tata Mc Graw-Hill, 2006.
4.	Bali N. P. & Manish Goyal, "A text book of Engineering Mathematics", Laxmi
	Publications, 8th Edition.

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

	Semester V						
	Construction Management and Entrepreneurship						
	(Theory)						
Cou	Course Code:MVJ22CV51 CIE Marks: 50						
Cre	Credits: L:T:P: 3:0:0 SEE Marks: 50						
Hot	Hours: 40L SEE Duration: 3 Hrs.						
Cou	Course Learning Objectives: The students will be able to						
1	To understand the concept of Scheduling and cost management in construction						
1	project						
2	To go through the Statutory and regulatory requirements in construction						
3	To explain the concept of procurement and contract management						
4	To understand Quality and Safety during construction.						
5	To identify the risks and its management.						

UNIT-I	
Planning and Scheduling: Construction project formulation – construction	8Hrs
management, define scope – scope management, types of project planning	
and its management, Statutory and regulatory requirements- layout and	
building plan approval, contract, Fire and Safety, Quality, Environmental,	
commencement certificate, legal and public policies.	
Schedule management – WBS, Bar Charts, Sequencing and Dependency,	
Network Diagram, Activity Duration, Critical Path Method, PERT, Case	
study.	
Cost Management - Creating schedules, Assigning Resources, Cost,	
Evaluation, Optimization and Tracking.	
UNIT-II	
Resource management: Basic concepts of resource management, class of	8 Hrs
labour, Wages & statutory requirement, Labor Production rate or	
Productivity, Factors affecting labour output or productivity.	
Construction Equipment - classification of construction equipment,	
estimation of productivity for: excavator, dozer, compactors, graders, and	
dumpers. Estimation of ownership cost, operational and maintenance cost of	
construction equipment. Selection of construction equipment and basic	
concept on equipment maintenance	
UNIT-III	
Contract and Procurement management: Procurement – procurement	8 Hrs
types, planning, stages – procurement execution – sustainable procurement	
management	
Construction contract –formation, types, essential elements, contract law –	
tendering process- contract award – Documentation – contractor and sub-	
contractor management -claims - disputes- compensation - breach of	
contract – project completion and project closure	
UNIT-IV	
Quality, Safety and Risk Management: Quality Management -	8 Hrs
Occupational Health, Safety and Environment, Barriers, Quality	
Management System – Chart and tools.	
Safety management - safety requirements, Safety and Health codes.	
Risk management - Process, Terminology, Identification, Analysis and	

Response Strategy Completion certificate, occupancy certificate, Facilities	
management	
UNIT-V	
Introduction to Entrepreneurship: Characteristics of a Successful	8 Hrs
Entrepreneur, Understand the entrepreneurial journey, different	
entrepreneurial styles, personality traits, strengths, and weaknesses. 5M	
Model, Communication skills: communication breakdown-	
miscommunication and poor listening, rectification.	
Business Planning Process: Business planning process, marketing plan,	
financial plan, project report and feasibility study, guidelines for preparation	
of model project report for starting a new venture. Introduction to	
international entrepreneurship opportunities, entry into international	
business, exporting, direct foreign investment, venture capital.	

Course	Course Outcomes: After completing the course, the students will be able to				
CO1	Develop WBS and estimate the resource requirements				
CO2	Analyse the cost control monitoring and accounting methods for a project				
CO3	Understand the Statutory and legal requirements for a construction				
CO4	Prepare the plan for procurement management and Risk mitigation.				
CO5	Understand the concept of entrepreneurship and business planning.				

Text	Books			
1.	Chitkara, K.K. Construction Project Management: Planning, Scheduling and Control, 15 th			
	edition, Tata McGrawHill Publishing Company, New Delhi.			
2.	Dr. U.K. Shrivastava "Construction Planning and Management", Galgotia Publications			
	Pvt. Ltd.2000.			
3.	R Panneerselvam, "Engineering Economics", 13 th edition, PHI Learning Pvt. Limited.,			
	New Delhi.			
4.	Khan M Y, "Cost Accounting", 2 nd edition, Tata McGraw-Hill, New Delhi.			
5.	T.R.Banga, S.C.Sharma, "Mechanical Estimating & Costing", 16 th edition, Khanna			
	Publishers, New Delhi.			
6.	Poornima M. Charantimath, "Entrepreneurship Development and Small Business			
	Enterprise", 5 th edition, Pearson education, New Delhi.			

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

CO/PO	PO 11	PO										
	1	2	3	4	5	6	7	8	9	10		12
CO 1	3	2	-	1	-	3	2	1	-	-	2	-
CO 2	3	2	1	-	-	-	-	-	-	-	2	-
CO 3	3	1	1	-	-	-	-	1	-	-	3	-
CO 4	2	2	1	2	-	-	2	-	-	-	-	_
CO 5	1	1	1	2	_	_	_	_	_	-	2	-

	Semester V					
	Engineering Geology and Geo-Informatics					
	(Theory and Practice)					
Cou	Course Code: MVJ22CV52 CIE Marks: 50					
Cre	Credits: L:T:P: 3:0:2 SEE Marks: 50					
Hou	Hours: 40L + 26P SEE Duration: 3 Hrs					
Cou	Course Learning Objectives: The students will be able to					
1	To inculcate the importance of earth's interior and applic	cation of Geology in civil				
1	engineering in Geo Hazard mitigation and management					
2	To create awareness among Civil engineers regarding the resources of earth					
	To provide knowledge on dynamic Geology and its imp	To provide knowledge on dynamic Geology and its importance in modifying the				
3	physical character of rocks which cause rocks suitable or unsuitable in different civil					
	engineering projects such as Dams, bridges, tunnels and highways.					
To educate the ground water management regarding diversified geological formation of the state o		fied geological formations,				
. To highlight the concept of rain water harvesting.						
To understand the application of Remote Sensing and GIS, Natural disaste		GIS, Natural disaster and				
5	management and environmental awareness. To understand the subsurface using					
	geospatial data					
	To provide decision support on the nature of the basis					
6	construction. To provide decision support on Lithological	characters and subsurface				
	conditions					
7	To describe various geological maps and interpretation of	geological data for mining				
′	and subsurface investigations.					

UNIT-I	
Introduction: The scope of earth science in Engineering. Earth's	8 Hrs
internal structure and composition, internal dynamics and Plate	
tectonics, Earthquakes - types, causes, so-seismic lines, seismic	
zonation, seismic proof structures. Volcanic eruption - types, causes.	
Landslides-causes types, preventive measures; Tsunami – causes,	
consequences, mitigation. Cyclones - causes and management.	
UNIT-II	
Earth Materials in Construction Minerals -Industrial, rock-forming	8 Hrs
and ore minerals. Physical properties, composition. Rocks Types,	
structure/Texture, mineral composition occurrence, properties.	
Decorative (facing/polishing), railway ballast, rocks for masonry work,	
monumental/architecture, Dressing of stones, Requirement of good	
building stones.	
UNIT-III	
Earth Surface process and Resources: Weathering, type, causes, soil	8 Hrs
insitu, drifted soil, soil profile, soil mineralogy, structure, types of soil,	
Black cotton soil v/s Lateritic soil; effects of weathering on	
monumental rocks. Soil Horizon, Soil Classification by Grain Size.	
UNIT-IV	
Surface and sub surface investigation for deep foundation: Dip	8 Hrs
and strike, and outcrop problems (numerical problem geometrical/	
simple trigonometry based), Borehole data(and problems), Faults,	
folds, unconformity, joints, types, recognition and their significance	

Sl.NO	Experiments				
1	Identification of common minerals based on Physical Properties				
2	Identification of rocks used in building construction based on Physical				
	properties				
3	Solving Geological maps for suitability for aqua duct				
4	Geological maps with inclined beds, suitability for tunnels/ Dams				
5	5 Geological maps with folds, in tunnels/ Dams				
6	Geological maps with unconformity, in tunnel/dam project				
7	Geological maps with faults in Dams/tunnels project				
8	One Day Nearest Field Visit Investigation.				

Course	Outcomes: After completing the course, the students will be able to
CO1	Apply geological knowledge in different civil engineering practice.
CO2	Acquire knowledge on durability and competence of foundation rocks, and will be
	able to use the best building materials.
CO3	Students will become competent enough for the safety, stability, economy and life of
	the structures that they construct
CO4	Able to solve various issues related to ground water exploration, build up dams, bridges,
	tunnels which are often confronted with ground water problems
CO5	Students will become Intelligent enough to apply GIS, GPS and remote sensing as a
	latest tool in different civil engineering for safe and solid construction.

Refe	erence Books
1.	Parthasarathy, V Panchapakesan, R Nagarajan, "Engineering Geology", Wiley
	publications, 2013.
2.	Chenna Kesavulu, "Engineering Geology", Mac Millan India Ltd, 2 nd edition, 1993.
3.	K.M. Bangar, "Principle of Engineering Geology", 3 rd Edition, Standard publishers, New
	Delhi.
4.	S.K. Garg, "Physical and Engineering Geology", Khanna publishers, 1983.
5.	KVGK Gokhale, "Principles of Engineering Geology", BS Publications, 2019.
6.	Edward A Keller, "Introduction to Environmental Geology", 5th edition, Pearson
	publications, New Delhi.
7.	B. P. Verma, "Engineering Geology and Rock Mechanics", 4th edition, Khanna
	publishers, New Delhi.
8.	Krynine and Judd, "Principles of Engineering Geology and Geotechnics", CBS
	Publications, 2018.

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Laboratory- 50 Marks

The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are awarded 10 marks. Total marks for the laboratory is 50.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

CO/PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO	PO 11	PO 12
										10		
CO 1	1	2	-	-	2	1	1	-	-	-	1	-
CO 2	1	3	1	-	1	-	-	-	-	-	-	-
CO 3	1	3	1	1	1	-	-	-	-	-	-	-
CO 4	-	2	3	1	1	-	1	-	-	_	-	-
CO5	-	3	2	1	1	-	1	-	-	_	_	-

	Semester V						
	Concrete Technology						
	(Theory and Practice))					
Co	urse Code: MVJ22CV53	CIE Marks: 50					
Cro	edits: L:T:P: 3:0:2	SEE Marks: 50					
Ho	Hours: 40L + 20P SEE Duration: 3 Hrs.						
Course Learning Objectives: The students will be able to							
To recognize material characterization of ingredients of concrete and its i		ts of concrete and its influence on					
properties of concrete							
2	To study the properties of fresh concrete and hardened concrete						
2	Proportion ingredients of Concrete to arrive at most	desirable mechanical properties					
3	of Concrete.						
4	Ascertain various types of special concrete with the	ir properties.					

UNIT-I	
Concrete Ingredients Cement manufacturing process, chemical composition and their importance, hydration of cement, types of cement. Testing of cement, steps to reduce carbon footprint. Fine aggregate: Functions, requirement, Alternatives to River sand, M-sand introduction, and manufacturing. Coarse aggregate: Importance of size, shape and texture. Grading and blending of aggregate. Testing on aggregate, requirement. Recycled aggregates Water – qualities of water. Chemical admixtures – plasticizers, accelerators, retarders, and air entraining agents. Mineral admixtures – Pozzolanic and cementitious materials, Fly ash, GGBS, silica fumes, Metakaolin and rice husk ash.	8 Hrs
UNIT-II	
Fresh Concrete Factors affecting workability. Measurement of workability–slump, Compaction factor and Vee-Bee Consistometer tests, flow tests. Segregation and bleeding. Process of manufacturing of concrete-Batching, Mixing, Transporting, Placing and Compaction. Curing – Methods of curing – Water curing, membrane curing, steam curing, accelerated curing, self- curing. Good and Bad practices of making and using fresh concrete and Effect of heat of hydration during mass concreting at project sites.	8 Hrs
UNIT-III	
Hardened Concrete Factors influencing strength, W/C ratio, gel/space ratio, Maturity concept, testing of hardened concrete, Creep –factors affecting creep. Shrinkage of concrete – plastic shrinking and drying shrinkage, Factors affecting shrinkage. Definition and significance of durability. Internal and external factors influencing durability, Mechanisms- Sulphate attack – chloride attack, carbonation, freezing and thawing. Corrosion, Durability requirements as per IS-456, In situ testing of concrete- Penetration and pull-out test, rebound hammer test, ultrasonic pulse velocity, core extraction – Principal, applications and limitations	8 Hrs

	UNIT-IV						
Concrete Mix Design Principles of concrete mix design, Parameters and factors influencing mix							
_	design, Concept of Mix Design with and without admixtures, variables in						
	oning and Exposure conditions, Selection criteria of ingredients used						
	design, Procedure of mix proportioning. Numerical Examples of Mix						
	oning using IS-10262:2019.						
	UNIT-V						
Special	Concretes	8 Hrs					
RMC-m advanta material concrete concrete proporti properti Perform							
Sl.NO	Experiments						
1	Testing of cement: Consistency, fineness, setting time,						
2	Specific Gravity, Soundness and strength of cement						
3	Testing of fine aggregate: Specific Gravity, sieve analysis and zonin fine	ng, bulking of					
4	aggregate, bulk density, silt content.						
5	Testing of coarse aggregate: Specific Gravity, sieve analysis, bulk density, flakiness index,						
6	elongation index, water absorption & moisture content, soundness of aggregate.						
7	Concrete Mix design by IS code method as per 10262- 2019 & 45 method.						
8	Demonstration of Testing of concrete cube of specified strength						
9	Demonstration of Testing of concrete beam for pure bending						

Course	Course Outcomes: After completing the course, the students will be able to					
CO1	Relate material characteristics and their influence on microstructure of concrete.					
CO2	Distinguish concrete behaviour based on its fresh and hardened properties.					
CO3	Illustrate proportioning of different types of concrete mixes for required fresh and					
	hardened properties using professional codes.					
CO4	Select a suitable type of concrete based on specific application.					

Refe	erence Books
1.	M.S. Shetty, "Concrete Technology - Theory and Practice", 8th edition, S. Chand and
	Company, New Delhi.
2.	A.R. Santha Kumar, "Concrete Technology", 2 nd edition, Oxford University Press, New
	Delhi .
3.	Neville A.M. "Properties of Concrete", 4 th edition, Pearson Publishers, New Delhi.
4.	Kumar Mehta. P and Paulo J.M. Monteiro, "Concrete-Microstructure, Property and
	Materials", 4 th edition, McGraw Hill Education, New Delhi.

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the project based learning is 20, which includes 10 m for project evaluation done periodically, 10 m for project viva and submission. The marks obtained in test, quiz and project based learning are added to get marks out of 100 and report CIE for 50 marks.

Laboratory- 50 Marks

The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are awarded 10 marks. Total marks for the laboratory is 50.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

CO/PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO	PO 11	PO 12
										10		
CO 1	1	-	1	-	-	-	-	-	-	-	-	1
CO 2	1	2	2	2	-	2	1	-	-	-	-	-
CO 3	1	1	3	-	-	-	-	-	-	-	-	-
CO 4	-	1	3	-	-	1	-	-	-	-	-	_

	Semester V						
	Environmental Engineering Lab						
	(Practice)						
Cou	ırse Code: MVJ22CVL54	CIE Marks: 50					
Cre	Credits: L:T:P: 0:0:2 SEE Marks: 50						
Hou	Hours: 20P SEE Duration: 3 Hrs.						
Cou	ırse Learning Objectives: The students will be able t	0					
1	To learn different methods of water & waste water qu	ality					
2	To conduct experiments to determine the concentrations of water and waste water						
3	To determine the degree and type of treatment						
4	To understand the environmental significance and engineering practice.	application in environmental					

Sl.NO	Experiments	
1	Determination of Ph and Turbidity.	
2	Determination of Acidity and Alkalinity	
3	Determination of Calcium, Magnesium and Total Hardness	
4	Determination of Dissolved Oxygen	
5	Determination of BOD.	
6	Determination of Chlorides	
7	Determination of percentage of % of available chlorine in bleaching	g powder sample,
/	Determination of Residual Chlorine and chlorine demand.	
8	Determination of Solids in Sewage: i) Total Solids, ii) Susper	nded Solids, iii)
8	Dissolved Solids, iv) Volatile Solids, Fixed Solids v) Settleable Sol	lids.
9	Determination of optimum coagulant dosage using Jar test apparatu	ıs
10	Determination Nitrates and Iron by spectrophotometer	
11	Determination of COD (Demonstration)	
12	Air Quality Monitoring (Demonstration)	
13	Determination of Sound by Sound level meter at different locations ((Demonstration)

Course	Course Outcomes: After completing the course, the students will be able to					
CO1	Acquire capability to conduct experiments and estimate the concentration of different					
	parameters.					
CO2	Compare the result with standards and discuss based on the purpose of analysis.					
CO3	Determine type of treatment, degree of treatment for water and wastewater.					
CO4	Identify the parameter to be analyzed for the student project work in environmental					
	stream.					

Refe	erence Books
1.	Garg, S.K., "Sewage Disposal and Air Pollution Engineering", 25th edition, Khanna
	Publishers, New Delhi.
2.	Metcalf and Eddy, "Wastewater Engineering Treatment and reuse", 4th edition, Tata
	McGraw-Hill, New Delhi.
3.	Peavy, H.S., Rowe, D.R. and George Tchobanoglous, "Environmental Engineering", 1st
	edition,McGraw Hill, New Delhi.

Laboratory- 50 Marks

The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are awarded 10 marks. Total marks for the laboratory is 50.

Semester End Examination (SEE):

Laboratory- 50 Marks

CO-PO Mapping												
CO/P	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	2	1	-	-	-	2	-	1	1	-	1
CO2	1	3	1	1	-	2	2	-	1	1	-	1
CO3	1	2	1	-	-	-	2	-	1	-	-	1
CO4	1	3	1	2	1	-	2	-	1	-	-	1

	Semester V									
	Numerical Methods in Civil Engineering									
	(Theory)									
Cou	Course Code: MVJ22CV551 CIE Marks:50									
Cre	Credits: L:T:P: 3:0:0 SEE Marks: 50									
Hou	Hours: 40L SEE Duration: 03 Hrs									
Cou	rse Learning Objectives: The stude	ents will be able to								
1	1 To learn various numerical techniques.									
2	To solve Numerical differentiation and integration problems.									
3	Apply numerical techniques to solv	re civil engineering problems.								

UNIT-I	
Historical development of Numerical techniques:	8 Hrs
Role in investigations, research and design in the field of civil engineering development	
of algorithm/ flow charts for following methods for the solution of linear simultaneous	
equation- Gaussian elimination method, Gauss-Jordan matrix inversion method,	
Gauss-Siedel method and Factorization method.	
UNIT-II	
Development of algorithm for Bisection method:	8 Hrs
Newton-Raphson method and its applications for solution of nonlinear algebraic and	
transcendental equations from problems in hydraulics, irrigation engineering, structural	
engineering and environmental engineering.	
UNIT-III	
Numerical differentiation and integration:	8Hrs
Approximation of derivatives using interpolation polynomials – Numerical	
integration using Trapezoidal, Simpson's 1/3 rule – Romberg's Method – Two-point	
and three-point Gaussian quadrature formulae – Evaluation of double integrals by	
Trapezoidal and Simpson's 1/3 rules. Trapezoidal rule, Simpson's one-third and their	
application for computation of area of BMD drawn for statically determinate beams.	
1/3rules.	
UNIT-IV	
Development of algorithms and differential equations:	8 Hrs
New Marks method for computation of slopes and deflections in statically determinate	
beams. Development of algorithm and application of solution of ordinary differential	
equation to civil engineering problems by Euler's method, Runge Kutta 4th order	
method	
UNIT-V	
Expression of derivatives by finite difference:	8 Hrs
Introduction, backward differences, forward differences, and central differences.	
Application of finite difference method for analysis of statically determinate beams,	
statically indeterminate beams, Buckling of columns, Beams on elastic foundation.	

Course	Course Outcomes: After completing the course, the students will be able to								
CO1	To learn various numerical techniques.								
CO2	To solve Numerical differentiation and integration problems.								
CO3	Apply numerical techniques to solve civil engineering problems.								
CO4	To develop algorithms and differential equations to civil engineering problems.								
CO5	Apply finite difference method for analysis of statically determinate structures.								

Refe	Reference Books								
1.	Grewal. B.S. and Grewal. J.S., "Numerical methods in Engineering and Science", 10 th								
	Edition, Khanna Publishers, New Delhi.								
2.	Gerald. C. F., and Wheatley. P. O., "Applied Numerical Analysis", 7 th Edition, Pearson								
	Education, Asia, New Delhi.								
3.	Chapra. S.C. and Canale. R. P., "Numerical Methods for Engineers", 7 th Edition, Tata								
	McGraw Hill, New Delhi.								
4.	Brian Bradie. "A friendly introduction to Numerical analysis", Pearson Education, Asia,								
	New Delhi.								
5.	Sankara Rao. K., "Numerical methods for Scientists and Engineers", 3 rd edition, Prentice								
	Hall of India Private, New Delhi.								

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

CO/PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO	PO 11	PO 12
										10		
CO 1	1	1	1	-	-	-	-	-	-	-	-	-
CO 2	3	3	3	2	2	-	-	-	-	-	-	-
CO 3	3	3	3	3	2							
CO 4	3	3	1	2	2							
CO 5	3	3	2	2	3							

	Semester V									
	Occupational Safety and Health Monitoring									
	(Theory)									
Course Code: MVJ22CV552 CIE Marks: 50										
Credits: L:T:P: 3:0:0 SEE Marks: 50										
Hours: 40L SEE Duration: 3 Hrs.										
Cou	rse Learning Objectives: The students wi	ll be able to								
1	To Identify hazards in the workplace that	lace that pose a danger or threat to their safety or								
1	health.									
2	To Control unsafe or unhealthy hazards and	d propose methods to eliminate the hazard.								
3	To analysis a potential safety or health haz	ard								
1	To Discuss role of health and safety in the	workplace pertaining to the responsibilities								
4	of workers, managers, supervisors.									
5	To Identify decisions required to maintain p	protection of the environment, workplace as								
5	well as personal health and safety									

UNIT-I	
Occupational Hazard and Control Principles:	8Hrs
Safety, History and development, National Safety Policy. Occupational safety	
and Health Act (OSHA), Occupational Health and Safety administration -	
Laws governing OSHA and right to know. Accident – causation, investigation,	
investigation plan, Methods of acquiring accident facts, Supervisory role in	
accident investigation.	
UNIT-II	
Ergonomics at Work Place:	8 Hrs
Ergonomics Task analysis, Preventing Ergonomic Hazards, Work space	
Envelops, Visual Ergonomics, Ergonomic Standards, Ergonomic Programs.	
Hazard cognition and Analysis, Human Error Analysis – Fault Tree Analysis	
– Emergency Response - Decision for action – purpose and considerations.	
UNIT-III	
Fire Prevention and Protection:	8 Hrs
Fire Triangle, Fire Development and its severity, Effect of Enclosures, early	
detection of Fire, Classification of fire and Fire Extinguishers.	
Electrical Safety, Product Safety: Technical Requirements of Product safety.	
UNIT-IV	L1,L2,L3
Health Considerations at Work Place:	8 Hrs
Types of diseases and their spread, Health Emergency. Personal Protective	
Equipment (PPE) – types and advantages, effects of exposure and treatment for	
engineering industries, municipal solid waste. Environment management plans	
(EMP) for safety and sustainability.	
UNIT-V	
Occupational Health and Safety Considerations:	8 Hrs
Water and wastewater treatment plants, Handling of chemical and safety	
measures in water and wastewater treatment plants and labs, Construction	
material manufacturing industries like cement plants, RMC Plants, precast	
plants, and construction sites. Policies, roles and responsibilities of workers,	
managers and supervisors.	

Course	Course Outcomes: After completing the course, the students will be able to								
CO1	Identify hazards in the workplace that pose a danger or threat to their safety or health.								
CO2	Control unsafe or unhealthy hazards and propose methods to eliminate the hazard.								
CO3	Present a coherent analysis of a potential safety or health hazard								
CO4	Discuss the role of health and safety in the workplace pertaining to the responsibilities								
	of workers, managers, supervisors.								
CO5	Identify the decisions required to maintain protection of the environment, workplace as								
	well as personal health and safety.								

Refe	erence Books
1.	Goetsch D. L., "Occupational Safety and Health for Technologists, Engineers and
	Managers", Prentice Hall, 9th edition, New Delhi.
2.	Heinrich H.W., "Industrial Accident Prevention-A Scientific Approach", McGraw-Hill
	Publications, 1 st edition, New Delhi.
3.	"Industrial Safety and Pollution Control Handbook", Associate (Data) Publishers Pvt.,
	1992, Secunderabad.
4.	Colling D.A., "Industrial Safety Management and Technology", Prentice Hall, New
	Delhi.
5.	Della D.E., and Giustina, "Safety and Environmental Management", Van Nostrand
	Reinhold International Thomson Publishing Inc., 1996, New Delhi

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marksare executed by means of an examination.

CO/PO	PO	PO2	PO3	PO4	PO	PO6	PO7	PO	PO9	PO10	PO1	PO1
	1				5			8			1	2
CO1	2	1	1	-	-	2	1	-	-	1	-	1
CO2	2	1	1	1	1	2	1	-	-	-	-	1
CO3	2	1	1	-	-	2	1	-	-	1	-	1
CO4	1	1	1	-	1	2	1	-	-	_	-	1
CO5	1	1	1	-	1	2	1	-	-	1	-	1

	Semester V								
	Solid Waste Management								
	(The	ory)							
Cou	rse Code: MVJ22CV553	CIE Marks: 50							
Cre	redits: L:T:P: 3:0:0 SEE Marks: 50								
Hou	Hours: 40L SEE Duration: 3 Hrs.								
Cou	rse Learning Objectives: The students v	will be able to							
To facilitate the learners to understand fundamentals of key elements in solid was									
1	management and governance.								
To impart knowledge to arrive strategies for waste management and so									
	technologies for processing, treatment, and disposal								
2	To examine and plan designs for materi	al recovery facility, micro composting units,							
3	incinerators, biodigesters, and landfills								

UNIT-I					
Introduction to Solid waste management					
Definition, Classification, need and Global perspective of solid waste					
management. Policies and legislative frameworks, Government initiatives on					
Solid waste management. Integrated solid waste management and concept of					
3R's, Role of stakeholders.					
UNIT-II					
Waste generation and characterization	8 Hrs				
Factors affecting waste generation and methods to estimate the quantity of					
waste generated. Physical, chemical, and biological methods of waste					
characterization.					
UNIT-III					
Storage, collection, and Transportation of waste	8 Hrs				
Methods of storage, Storage container types and materials, onsite processing.					
Methods of collection and collection vehicles, Analysis, and design of Hauled					
and Stationary container systems with case studies. Transfer stations –					
feasibility and economic analysis.					
UNIT-IV					
Waste processing and Disposal	8 Hrs				
Waste processing facilities- MRFs Landfills - Selection of liners, Design,					
Closure and Leachate management, Composting, Waste to Energy concepts –					
Incineration, Biogas recovery and Refuse derived fuels RDFs.					
UNIT-V	8 Hrs				
Special Waste and Smart Solid Waste Management					
Definition, Classification, Effects, treatment, disposal, Legislation and case					
studies of Hazardous waste, Construction and demolition waste, Electronic					
waste, Plastic, Biomedical waste and Radioactive waste. Life cycle assessment					
of solid waste management, Automation and IOT in storage, collection and					
treatment of solid waste. Case studies.					

Course	Course Outcomes: After completing the course, the students will be able to							
CO1	Articulate the elements of solid waste management and categorize the waste based on							
	physical, chemical, and biological characteristics.							
CO2	Design a waste collection system for onsite collection, storage and demonstrate waste							
	transfer and transport operations.							

CO3	Evaluate and develop waste processing and treatment methods for solid and hazardous
	waste with sustainable practices.
CO4	Select appropriate disposal methods such as landfills, waste to energy plants and its
	handling in an efficient way.
CO5	Develop reduce, reuse, and recycling methods for special waste and prepare smart
	solutions for solid waste management.
	Evaluate the Life cycle of solid waste from source to disposal

Refe	erence Books
1.	George Tchobanoglous & Frank Kreith, "Handbook of Solid Waste Management",
	Second Edition, Mc.Graw-Hill Publications, New Delhi.
2.	T.V. Ramachandra, "Management of Municipal Solid waste", 1st Edition, TERI Press,
	New Delhi.
3.	Michael D LaGrega, Philip. L. Buckingham, Jeffery C. Evans, "Hazardous Waste
	management", 1st Edition, Waveland Pr Inc , New Delhi.

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

CO/PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO	PO 11	PO 12
										10		
CO 1	3	2	2	2	2	2	2	2	-	-	-	-
CO 2	3	3	3	2	2	2	2	-	-	2	2	2
CO 3	3	3	3	3	3	2	3	-	-	2	2	2
CO 4	3	3	3	3	3	2	3	-	-	2	2	2
CO 5	3	2	3	2	2	2	3	2	_	2	2	2

	Semester V							
	Remote Sensing and GIS							
		(Theory)						
Cou	rse Code: MVJ22CV554	CIE Marks: 50						
Cre	Credits: L:T:P: 3:0:0 SEE Marks: 50							
Hou	Hours: 40L SEE Duration: 3 Hrs.							
Cou	rse Learning Objectives: The stud	ents will be able to						
1	Understand concept of using photographic data to determine relative positions o							
1	points.							
2	2 Study the methods of collection of land data using Terrestrial and Aerial camera.							
3	Analyze the data gathered from various sensors and interpret for various applications.							
4	Apply the principles of RS, GIS and GPS in various scopes of Civil Engineering							

UNIT-I	
Remote Sensing - Definition, types of remote sensing, components of remote	8 Hrs
sensing, electromagnetic spectrum, Black body, Atmospheric windows,	
energy interaction with earth surface features. Spectral reflectance curve.	
Platforms and sensors. Sensor resolutions. Types of satellites Indian and other	
remote sensing satellites (IRS, IKONS and Landsat). Principle of visual	
interpretation - key elements.	
UNIT-II	
Photogrammetry: Introduction types of Photogrammetry, Advantages	8 Hrs
Photogrammetry, Introduction to digital Photogrammetry. Aerial	
Photogrammetry: Advantages over ground survey methods- geometry of	
vertical photographs, scales of vertical photograph. Ground coordination relief	
displacement, scale ground coordinates – flight planning	
UNIT-III	
Geographic Information System - Introduction, Functions and advantages,	8 Hrs
sources of data for GIS. Database – Types, advantages, and disadvantages. Data	
Analysis - overlay operations, network analysis, spatial analysis. Outputs and	
map generation. GPS- components and working principles.	
UNIT-IV	
Applications of GIS, Remote Sensing and GPS: (1) Water Resources	8 Hrs
engineering and management- prioritization of river basins, water perspective	
zones and its mapping, Highway, and transportation -highway alignment,	
Optimization of routes, accident analysis, Environmental Engineering-	
Geostatistical analysis of water quality, rainfall	
UNIT-V	
Applications of GIS, Remote Sensing and GPS: (2) Urban Planning &	8 Hrs
Management, urban sprawl, Change detection studies, forests and urban area,	
agriculture, Disaster Management. Layouts: Dead end, Radial, Grid iron,	
Circular system.	

Course	Course Outcomes: After completing the course, the students will be able to							
CO1	Understand and remember the principle of Remote Sensing (RS) and Geographical							
	Information Systems (GIS) data acquisition and its applications							
CO2	Apply RS and GIS technologies in various fields of engineering and social needs							
CO3	Analyze and evaluate the information obtained by applying RS and GIS technologies.							
CO4	Create a feasible solution in the different fields of application of RS and GIS							

Refe	erence Books
1.	Chandra A.M, "Higher Surveying", 3rd Edition, New age international (P) Ltd, New
	Delhi.
2.	Bhatta B, "Remote Sensing and GIS", 3 rd edition, Oxford University Press, New Delhi.
3.	Lillesand and Kiefer, "Principles of Remote sensing and Image Interpretation", 6th
	Edition, John Wiley Publishers, New Delhi.
4.	Tor Bernharadsen, "Geographic Information System-An Introduction", 3rd Edition,
	Wiley India Pvt. Ltd. New Delhi.
5.	Robert A. Schowengerdt, "Remote Sensing", 3rd Edition, Elsevier India Pvt Ltd, New
	Delhi.

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

CO/PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO	PO 11	PO 12
										10		
CO 1	2	1	1	-	-	1	2	-	-	-	-	-
CO 2	2	2	1	1	-	-	-	-	-	-	-	-
CO 3	1	-	3	-	-	1	1	-	-	-	-	-
CO 4	1	2	1	1	1	-	-	-	-	-	-	-

	Semester V						
Research Methodology and IPR							
		(Theory)					
Cou	rse Code: MVJ22RM157	CIE Marks: 50					
Cre	dits: L:T:P: 2:2:0	SEE Marks: 50					
Hou	Hours: 40L SEE Duration: 3 Hrs.						
Cou	rse Learning Objectives: The stude	ents will be able to					
1	To Understand the knowledge on basics of research and its types.						
2	To I earn the concept of Literature Review Technical Reading Attributions and						
4	2 Citations.						
3	To learn Ethics in Engineering Research.						
4	To Discuss the concepts of Intellectual Property Rights in engineering.						

UNIT-I	
Introduction: Meaning of Research, Objectives of Engineering Research, and Motivation in Engineering Research, Types of Engineering Research, Finding and	8 Hrs
Solving a Worthwhile Problem. Ethics in Engineering Research, Ethics in Engineering Research Practice, Types of Research Misconduct, Ethical Issues Related to Authorship.	
UNIT-II	
Literature Review and Technical Reading New and Existing Knowledge, Analysis and Synthesis of Prior Art Bibliographic Databases, Web of Science, Google and Google Scholar, Effective Search: The Way Forward Introduction to Technical Reading Conceptualizing Research, Critical and Creative Reading, Taking Notes While Reading, Reading Mathematics and Algorithms, Reading a Datasheet. Attributions and Citations: Giving Credit Wherever Due, Citations: Functions and Attributes, Impact of Title and Keywords on Citations, Knowledge Flow through Citation, Citing Datasets, Styles for Citations, Acknowledgments and Attributions, What Should Be Acknowledged, Acknowledgments in, Books Dissertations, Dedication or Acknowledgments	8 Hrs
UNIT-III	
Building Intellectual Property Rights, Law of Patents, Fundamentals of Patent Law - Evolution of the patent system, Patentability Requirements; Patentable Subject Matter; Industrial Applicability/Utility; Novelty; Anticipation by publication; Anticipation by public knowledge and public use; Anticipation by public display; Anticipation by sale; Inventive Step/Non-Obviousness; Novelty Assessment; Inventive Step Assessment; Specification, Drafting of A Patent Specification - Introduction Patent Specification; Provisional Specification Complete Specification, Parts of the complete specification; Patent Procedure in India - PATENT PROCEDURE; Registration and Renewal fee payment; Patent Infringement - Infringement of a patent; Literal Infringement; Equivalence Infringement; Indirect Infringement; Defenses - Experiment - Research or Education - Bolar Exemption- Government use- Patent Exhaustion Patent Misuse- Inequitable Conduct - Remedies- Injunction- Account of profits- Costs; International	8 Hrs

Patent Regimes - International Instruments; Paris Convention; TRIPS	
agreement; pct; budapest treaty, Patenting Biotechnology Inventions -	
Unique nature of Biotechnology; Patentability Requirements and	
Biotechnology Inventions; Patentable Subject Matter- USA- Europe- India;	
Patentability of Software Inventions - Patentability of Software Inventions in	
USA; Patentability of software inventions in Europe; Patentability of	
Software Inventions in India.	
UNIT-IV	
Law of Copyright and Designs, Understanding Copyright Law - Historical	8 Hrs
Overview – Justification For copyright Law - The Natural Law Justification -	
The Economic Rationale of Copyright Clause, Basic Concepts Underlying	
copyright Law - Idea – Expression Dichotomy Originality / Creativity –	
Fixation Term of Protection, Subject - Matter of Copyright - Literary Works -	
Dramatic Works - Musical Work - Artistic Works - Cinematograph Films and	
Sound recordings, Acquisition of Copyright in India, Rights of the Copyright	
Owner - Economic Rights - Moral Right or Droid Moral Right of Authorship	
or Paternity	
Rights - Rights against Distortion or Mutilation of the Original Works or	
Integrity Rights - Limitations -Limitations set under International Regime –	
Berne Convention - Rome Convention - Trips Agreement -Three Step Test,	
Infringement of Copyright -Transfer of copyright - License and Assignment -	
License and consent -Duration of a License Form and Content - Disputes in	
Respect of Licence - Types of Licenses - Exclusive and Non-Exclusive Licenses.	
UNIT-V	
Basic Principles of Design Rights - Justification for Protecting Designs -	8 Hrs
Historical Perspective -Features of Shape, configuration, Pattern or Ornament	
- or Composition of lines or colour - New or Original - Applied to an Article,	
Excluded Subject - Matter - Method or Principle of Construction -Features	
Dictated Solely by Function - Mechanical Device - Trademark, or Property	
Mark, or Artistic Work - immoral Designs and Designs Contrary to Public	
order–Rights of the Owner of Designs and Tests for Infringement. Assignment	
of Design Rights, Infringement of Designs.	

Course	Course Outcomes: After completing the course, the students will be able to					
CO1	Know the meaning of engineering research.					
CO2	Know the procedure of Literature Review and Technical Reading.					
CO3	Know the fundamentals of patent law and drafting procedure.					
CO4	Understanding the copyright laws and subject matters of copyrights and designs rights					

Refe	erence Books
1.	C.R Kothari, "Research Methodology Methods and Techniques", , 2 nd Edition, New Age
	International Publishers, New Delhi.
2.	Dipankar Deb, Rajeeb Dey, Valentina E. Balas "Engineering Research Methodology",
	Intelligent Systems Reference Library, https://doi.org/10.1007/978-981-13-2947-0.
3.	David V. Thiel, "Research Methods for Engineers" 1st edition, Cambridge University
	Press, Australia.

${\bf Continuous\ Internal\ Evaluation\ (CIE):}$

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

CO/PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO	PO 11	PO 12
										10		
CO 1	2	-	-	2	-	-	-	-	-	1	-	-
CO 2	1	-	-	-	-	3	-	-	-	2	-	-
CO 3	-	-	-	3	-	-	-	2	-	-	1	-
CO 4	-	-	-	-	-	1	-	2	2	-	-	-

	Semester V							
	Environmental Studies							
	(Theory)							
Cou	Course Code: MVJ22ENV58 CIE Marks: 50							
Cre	Credits: L:T:P: 2:0:0 SEE Marks: 50							
Hou	Hours: 30L SEE Duration: 3 Hrs.							
Cou	rse Learning Objectives: The stude	ents will be able to						
1	Relate interdisciplinary approach to complex environmental problems using basic tools of the natural and social sciences including geo-systems, biology, chemistry, economics, political science and international processes							
2	2 Study drinking water quality standards and to illustrate qualitative analysis of water.							
3	Critically evaluate the science and policy ramifications of diverse energy portfolios on air and water quality, climate, weapons proliferation and societal stability.							

UNIT-I	
Introduction to environmental studies, Multidisciplinary nature of	6 Hrs
environmental studies; Scope and importance; Concept of sustainability and	OIIIS
sustainable development.	
Ecosystems (Structure and Function): Forest, Desert, Rivers, Ocean	
· · · · · · · · · · · · · · · · · · ·	
Biodiversity: Types, Hot spots; Threats and Conservation of biodiversity,	
Deforestation.	
UNIT-II	
Advances in Energy Systems (Merits, Demerits, Global Status and	6 Hrs
Applications): Hydrogen, Solar, Tidal and Wind.	
Natural Resource Management (Concept and case-study): Disaster	
Management, Sustainable Mining and Carbon Trading.	
UNIT-III	
Environmental Pollution: Surface and Ground Water Pollution, Noise	6 Hrs
pollution, Soil Pollution and Air Pollution.	
Waste Management & Public Health Aspects: Bio-medical Waste, Solid	
waste, Hazardous waste and E-waste.	
UNIT-IV	
Global Environmental Concerns (Concept, policies, and case-studies):	6 Hrs
Global Warming, Climate Change, Acid Rain, Ozone Depletion and Fluoride	0 1115
problem in drinking water.	
UNIT-V	
	(II
Latest Developments in Environmental Pollution Mitigation Tools	6 Hrs
(Concept and Applications): G.I.S. & Remote Sensing, Environment Impact	
Assessment, Environmental Management Systems.	

Course	Outcomes: After completing the course, the students will be able to
CO1	Describe the principles of ecology and environmental issues that apply to air, land,
	and water issues on a global scale.
CO2	Develop critical thinking and/or observation skills, and apply them to the analysis of a
	problem or question related to the environment.
CO3	Demonstrate ecology knowledge of a complex relationship between biotic and
	Abiotic components.
CO4	Apply their ecological knowledge to illustrate and graph a problem
CO5	Describe the realities that managers face when dealing with complex issues.

Refe	Reference Books					
1.	Raman Siva kumar, "Principals of Environmental Science and Engineering", 2 nd					
	Edition, Cengage learning, Singapur.					
2.	G.Tyler Miller, "Environmental Science – working with the Earth", 11 th Edition, Jr.					
	Thomson Brooks /Cole publications, California.					
3	Pratiba Singh, Anoop Singh & Piyush Malaviya, "Environmental and Ecology", 1st					
	Edition, ACME Learning Pvt. Ltd. New Delhi.					

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

CO/PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO	PO 11	PO 12
										10		
CO 1	1	-	-	-	-	-	2	-	-	-	1-	-
CO 2	-	2	-	2	-	-	-	-	1	-	-	-
CO 3	2				3					1		
CO 4	-	-	3	-	-	2	-	-	-	-	1	-
CO 5	1	-	-	-	-	-	-	-	2	-	1	-

	Semester VI							
	Design of RCC Structures							
	(Theory and Practice)							
Cou	rse Code: MVJ22CV61	CIE Marks: 50						
Cre	Credits: L:T:P: 3:0:2 SEE Marks: 50							
Hou	Hours: 40L + 26P SEE Duration: 3 Hrs.							
Cou	rse Learning Objectives: The students will be able to							
1	Identify, formulate and solve engineering problems of RC elements subjected to different							
1	kinds of loading.							
2	2 Follow a procedural knowledge in designing various structural RC elements.							
3	3 Impart the usage of codes for strength, serviceability and durability.							
4	Acquire knowledge in analysis and design of RC elements.							

Introduction to working stress and limit State Design: Introduction to working stress method, Difference between Working stress and Limit State Method of design. Philosophy and principle of limit state design with assumptions. Partial Safety factors, Characteristic load and strength. Stress block parameters, concept of balanced section, under reinforced and over reinforced section. Limiting deflection, short term deflection, long term deflection, Calculation of deflection of singly reinforced beam only. UNIT-II Limit State Analysis of Beams: Analysis of singly reinforced, doubly reinforced and flanged beams for flexure and shear. UNIT-III Limit State Design of Beams: Design of singly reinforced beams with check for shear, check for development length and other checks. Design of doubly reinforced beams and flanged sections without checks. UNIT-IV Limit State Design of Slabs and Stairs: Introduction to one way and two way slabs, Design of two way slabs for differentboundary conditions. Design of dog legged staircases. UNIT-V Limit State Deign of Columns and Footings: Analysis and design of short axially loaded RC column. Design of columns with uniaxial and biaxial moments, Design concepts of the footings. Design of Rectangular and square column footings with axial load. SLNO Experiments 1 Calculation of deflection of singly reinforced beam using Excel and draw the reinforcement details. 2 Design of a simply supported RCC doubly reinforced beam using Excel and draw the reinforcement details. 3 Design of a simply supported RCC doubly reinforced beam using Excel and draw the reinforcement details. 4 Design of a cantilever beam using Excel and draw the reinforcement details. Design of a cantilever beam using Excel and draw the reinforcement.		UNIT-I									
Method of design. Philosophy and principle of limit state design with assumptions. Partial Safety factors, Characteristic load and strength. Stress block parameters, concept of balanced section, under reinforced and over reinforced section. Limiting deflection, short term deflection, long term deflection, Calculation of deflection of singly reinforced beam only. UNIT-II	Introduc	etion to working stress and limit State Design: Introduction to	8 Hrs								
assumptions. Partial Safety factors, Characteristic load and strength. Stress block parameters, concept of balanced section, under reinforced and over reinforced section. Limiting deflection, short term deflection, long term deflection, Calculation of deflection of singly reinforced beam only. UNIT-II	working										
block parameters, concept of balanced section, under reinforced and over reinforced section. Limiting deflection, short term deflection, long term deflection, Calculation of deflection of singly reinforced beam only. UNIT-II	Method										
reinforced section. Limiting deflection, short term deflection, long term deflection, Calculation of deflection of singly reinforced beam only. UNIT-II Limit State Analysis of Beams: Analysis of singly reinforced, doubly reinforced and flanged beams for flexure and shear. UNIT-III Limit State Design of Beams: Design of singly reinforced beams with check for shear, check for development length and other checks. Design of doubly reinforced beams and flanged sections without checks. UNIT-IV Limit State Design of Slabs and Stairs: Introduction to one way and two way slabs, Design of Cantilever, simply supported and one way continuous slab. Design of two way slabs for differentboundary conditions. Design of dog legged staircases. UNIT-V Limit State Deign of Columns and Footings: Analysis and design of short axially loaded RC column. Design of columns with uniaxial and biaxial moments, Design concepts of the footings. Design of Rectangular and square column footings with axial load. SI.NO Experiments 1 Calculation of deflection of singly reinforced beam using Excel and draw the reinforcement details. 2 Design of a simply supported RCC doubly reinforced beam using Excel and draw the reinforcement details. 3 Design of singly reinforced beams with check for shear, check for development length and other checks using Excel.	assumpti										
Limit State Design of Slabs and Stairs: Introduction to one way and two way slabs, Design of Cantilever, simply supported and one way continuous slab. Design of Columns and Footings: Analysis and design of short axially loaded RC column. Design of columns with uniaxial and biaxial moments, Design concepts of the footings. Design of Rectangular and square column footings with axial load. SI.NO Experiments	block pa	rameters, concept of balanced section, under reinforced and over									
Limit State Design of Slabs and Stairs: Introduction to one way and two way slabs, Design of Cantilever, simply supported and one way continuous slab. Design of Columns and Footings: Analysis and design of short axially loaded RC column. Design of columns with uniaxial and biaxial moments, Design concepts of the footings. Design of Rectangular and square column footings with axial load. SI.NO Experiments 1 Calculation of deflection of singly reinforced beam using Excel and draw the reinforcement details. 2 Design of a simply supported RCC doubly reinforced beam using Excel and draw the reinforcement details. 3 Design of singly reinforced beams with check for shear, check for development length and other checks using Excel.	reinforce	d section. Limiting deflection, short term deflection, long term									
Limit State Design of Beams: Analysis of singly reinforced, doubly reinforced and flanged beams for flexure and shear. UNIT-III	deflection	n, Calculation of deflection of singly reinforced beam only.									
reinforced and flanged beams for flexure and shear. UNIT-III Limit State Design of Beams: Design of singly reinforced beams with check for shear, check for development length and other checks. Design of doubly reinforced beams and flanged sections without checks. UNIT-IV Limit State Design of Slabs and Stairs: Introduction to one way and two way slabs, Design of Cantilever, simply supported and one way continuous slab. Design of two way slabs for differentboundary conditions. Design of dog legged staircases. UNIT-V Limit State Deign of Columns and Footings: Analysis and design of short axially loaded RC column. Design of columns with uniaxial and biaxial moments, Design concepts of the footings. Design of Rectangular and square column footings with axial load. SI.NO Experiments 1 Calculation of deflection of singly reinforced beam using Excel. Design of a simply supported RCC singly reinforced beam using Excel and draw the reinforcement details. 3 Design of singly reinforced beams with check for shear, check for development length and other checks using Excel.		UNIT-II									
Limit State Design of Beams: Design of singly reinforced beams with check for shear, check for development length and other checks. Design of doubly reinforced beams and flanged sections without checks. UNIT-IV Limit State Design of Slabs and Stairs: Introduction to one way and two way slabs, Design of Cantilever, simply supported and one way continuous slab. Design of two way slabs for differentboundary conditions. Design of dog legged staircases. UNIT-V Limit State Deign of Columns and Footings: Analysis and design of short axially loaded RC column. Design of columns with uniaxial and biaxial moments, Design concepts of the footings. Design of Rectangular and square column footings with axial load. SI.NO Experiments 1 Calculation of deflection of singly reinforced beam using Excel. Design of a simply supported RCC singly reinforced beam using Excel and draw the reinforcement details. 3 Design of a simply supported RCC doubly reinforced beam using Excel and draw the reinforcement details. Design of singly reinforced beams with check for shear, check for development length and other checks using Excel.	Limit S	tate Analysis of Beams: Analysis of singly reinforced, doubly	8 Hrs								
Limit State Design of Beams: Design of singly reinforced beams with check for shear, check for development length and other checks. Design of doubly reinforced beams and flanged sections without checks. UNIT-IV	reinforce	d and flanged beams for flexure and shear.									
for shear, check for development length and other checks. Design of doubly reinforced beams and flanged sections without checks. VINIT-IV		UNIT-III									
Timit State Design of Slabs and Stairs: Introduction to one way and two way slabs, Design of Cantilever, simply supported and one way continuous slab. Design of two way slabs for differentboundary conditions. Design of dog legged staircases. UNIT-V Limit State Deign of Columns and Footings: Analysis and design of short axially loaded RC column. Design of columns with uniaxial and biaxial moments, Design concepts of the footings. Design of Rectangular and square column footings with axial load. SI.NO Experiments 1 Calculation of deflection of singly reinforced beam using Excel. 2 Design of a simply supported RCC singly reinforced beam using Excel and draw the reinforcement details. 3 Design of a simply supported RCC doubly reinforced beam using Excel and draw the reinforcement details. 4 Design of singly reinforced beams with check for shear, check for development length and other checks using Excel.	Limit St	ate Design of Beams: Design of singly reinforced beams with check	8 Hrs								
Limit State Design of Slabs and Stairs: Introduction to one way and two way slabs, Design of Cantilever, simply supported and one way continuous slab. Design of two way slabs for differentboundary conditions. Design of dog legged staircases. UNIT-V Limit State Deign of Columns and Footings: Analysis and design of short axially loaded RC column. Design of columns with uniaxial and biaxial moments, Design concepts of the footings. Design of Rectangular and square column footings with axial load. SI.NO Experiments 1 Calculation of deflection of singly reinforced beam using Excel. 2 Design of a simply supported RCC singly reinforced beam using Excel and draw the reinforcement details. 3 Design of a simply supported RCC doubly reinforced beam using Excel and draw the reinforcement details. 4 Design of singly reinforced beams with check for shear, check for development length and other checks using Excel.	for shear	, check for development length and other checks. Design of doubly									
Limit State Design of Slabs and Stairs: Introduction to one way and two way slabs, Design of Cantilever, simply supported and one way continuous slab. Design of two way slabs for differentboundary conditions. Design of dog legged staircases. UNIT-V Limit State Deign of Columns and Footings: Analysis and design of short axially loaded RC column. Design of columns with uniaxial and biaxial moments, Design concepts of the footings. Design of Rectangular and square column footings with axial load. SI.NO Experiments 1 Calculation of deflection of singly reinforced beam using Excel. Design of a simply supported RCC singly reinforced beam using Excel and draw the reinforcement details. Design of a simply supported RCC doubly reinforced beam using Excel and draw the reinforcement details. Design of singly reinforced beams with check for shear, check for development length and other checks using Excel.	reinforce	d beams and flanged sections without checks.									
way slabs, Design of Cantilever, simply supported and one way continuous slab. Design of two way slabs for differentboundary conditions. Design of dog legged staircases. UNIT-V Limit State Deign of Columns and Footings: Analysis and design of short axially loaded RC column. Design of columns with uniaxial and biaxial moments, Design concepts of the footings. Design of Rectangular and square column footings with axial load. SI.NO Experiments 1 Calculation of deflection of singly reinforced beam using Excel. 2 Design of a simply supported RCC singly reinforced beam using Excel and draw the reinforcement details. 3 Design of a simply supported RCC doubly reinforced beam using Excel and draw the reinforcement details. 4 Design of singly reinforced beams with check for shear, check for development length and other checks using Excel.		UNIT-IV									
slab. Design of two way slabs for differentboundary conditions. Design of dog legged staircases. UNIT-V Limit State Deign of Columns and Footings: Analysis and design of short axially loaded RC column. Design of columns with uniaxial and biaxial moments, Design concepts of the footings. Design of Rectangular and square column footings with axial load. Sl.NO Experiments 1 Calculation of deflection of singly reinforced beam using Excel. Design of a simply supported RCC singly reinforced beam using Excel and draw the reinforcement details. Design of a simply supported RCC doubly reinforced beam using Excel and draw the reinforcement details. Design of singly reinforced beams with check for shear, check for development length and other checks using Excel.	Limit St	ate Design of Slabs and Stairs: Introduction to one way and two	8 Hrs								
slab. Design of two way slabs for differentboundary conditions. Design of dog legged staircases. UNIT-V Limit State Deign of Columns and Footings: Analysis and design of short axially loaded RC column. Design of columns with uniaxial and biaxial moments, Design concepts of the footings. Design of Rectangular and square column footings with axial load. Sl.NO Experiments 1 Calculation of deflection of singly reinforced beam using Excel. Design of a simply supported RCC singly reinforced beam using Excel and draw the reinforcement details. Design of a simply supported RCC doubly reinforced beam using Excel and draw the reinforcement details. Design of singly reinforced beams with check for shear, check for development length and other checks using Excel.	way slab	s, Design of Cantilever, simply supported and one way continuous									
Limit State Deign of Columns and Footings: Analysis and design of short axially loaded RC column. Design of columns with uniaxial and biaxial moments, Design concepts of the footings. Design of Rectangular and square column footings with axial load. SI.NO Experiments 1 Calculation of deflection of singly reinforced beam using Excel. 2 Design of a simply supported RCC singly reinforced beam using Excel and draw the reinforcement details. 3 Design of a simply supported RCC doubly reinforced beam using Excel and draw the reinforcement details. 4 Design of singly reinforced beams with check for shear, check for development length and other checks using Excel.											
Limit State Deign of Columns and Footings: Analysis and design of short axially loaded RC column. Design of columns with uniaxial and biaxial moments, Design concepts of the footings. Design of Rectangular and square column footings with axial load. SI.NO Experiments 1 Calculation of deflection of singly reinforced beam using Excel. Design of a simply supported RCC singly reinforced beam using Excel and draw the reinforcement details. Design of a simply supported RCC doubly reinforced beam using Excel and draw the reinforcement details. Design of singly reinforced beams with check for shear, check for development length and other checks using Excel.	legged st	aircases.									
axially loaded RC column. Design of columns with uniaxial and biaxial moments, Design concepts of the footings. Design of Rectangular and square column footings with axial load. SI.NO Experiments Calculation of deflection of singly reinforced beam using Excel. Design of a simply supported RCC singly reinforced beam using Excel and draw the reinforcement details. Design of a simply supported RCC doubly reinforced beam using Excel and draw the reinforcement details. Design of singly reinforced beams with check for shear, check for development length and other checks using Excel.		UNIT-V									
moments, Design concepts of the footings. Design of Rectangular and square column footings with axial load. SI.NO Experiments Calculation of deflection of singly reinforced beam using Excel. Design of a simply supported RCC singly reinforced beam using Excel and draw the reinforcement details. Design of a simply supported RCC doubly reinforced beam using Excel and draw the reinforcement details. Design of singly reinforced beams with check for shear, check for development length and other checks using Excel.	Limit St	ate Deign of Columns and Footings: Analysis and design of short	8 Hrs								
SI.NO SI.NO Experiments Calculation of deflection of singly reinforced beam using Excel. Design of a simply supported RCC singly reinforced beam using Excel and draw the reinforcement details. Design of a simply supported RCC doubly reinforced beam using Excel and draw the reinforcement details. Design of a simply supported RCC doubly reinforced beam using Excel and draw the reinforcement details. Design of singly reinforced beams with check for shear, check for development length and other checks using Excel.	axially le	paded RC column. Design of columns with uniaxial and biaxial									
Sl.NO Experiments Calculation of deflection of singly reinforced beam using Excel. Design of a simply supported RCC singly reinforced beam using Excel and draw the reinforcement details. Design of a simply supported RCC doubly reinforced beam using Excel and draw the reinforcement details. Design of singly reinforced beams with check for shear, check for development length and other checks using Excel.	moments	, Design concepts of the footings. Design of Rectangular and square									
Calculation of deflection of singly reinforced beam using Excel. Design of a simply supported RCC singly reinforced beam using Excel and draw the reinforcement details. Design of a simply supported RCC doubly reinforced beam using Excel and draw the reinforcement details. Design of singly reinforced beams with check for shear, check for development length and other checks using Excel.	column f	ootings with axial load.									
Calculation of deflection of singly reinforced beam using Excel. Design of a simply supported RCC singly reinforced beam using Excel and draw the reinforcement details. Design of a simply supported RCC doubly reinforced beam using Excel and draw the reinforcement details. Design of singly reinforced beams with check for shear, check for development length and other checks using Excel.											
Design of a simply supported RCC singly reinforced beam using Excel and draw the reinforcement details. Design of a simply supported RCC doubly reinforced beam using Excel and draw the reinforcement details. Design of singly reinforced beams with check for shear, check for development length and other checks using Excel.	Sl.NO										
reinforcement details. Design of a simply supported RCC doubly reinforced beam using Excel and draw the reinforcement details. Design of singly reinforced beams with check for shear, check for development length and other checks using Excel.	1										
Design of a simply supported RCC doubly reinforced beam using Excel and draw the reinforcement details. Design of singly reinforced beams with check for shear, check for development length and other checks using Excel.	Design of a simply supported RCC singly reinforced beam using Eyeel and draw										
the reinforcement details. Design of singly reinforced beams with check for shear, check for development length and other checks using Excel.	reinforcement details.										
Design of singly reinforced beams with check for shear, check for development length and other checks using Excel.	2	Design of a simply supported RCC doubly reinforced beam using Ex	xcel and draw								
length and other checks using Excel.	the reinforcement details.										
length and other checks using Excel.	4	Design of singly reinforced beams with check for shear, check for	development								
ů ě	4										
	5	Design of a cantilever beam using Excel and draw the reinforcement.									

6	Design a simply supported RCC one way slab with intermediate support and draw
6	the reinforcement details.
7	Design a two-way slab for the given data and prepare Bar bending schedule.
8	Design a short axially loaded RC column using Excel.
9	Design the reinforcement for RCC square column with isolated square footing.
10	Design the reinforcement for RCC circular column with isolated square footing.
11	Creation of models related to RC Structural elements. (Demonstration)

Course	Course Outcomes: After completing the course, the students will be able to				
CO1	Recognize the design philosophy of reinforced concrete structures.				
CO2	Solve problems of RC elements subjected to flexure, shear and torsion.				
CO3	Demonstrate the procedure in designs of RC structural elements such as slabs, columns				
	and footings.				

Refe	erence Books
1.	N Subramanian, "Design of Concrete Structures", 1st edition, Oxford university Press,
	New Delhi.
2.	Unnikrishnan Pillai and Devdas Menon, "Reinforced Concrete Design", 4th edition,
	McGraw Hill, New Delhi.
3.	H J Shah, "Reinforced Concrete Vol. 1 (Elementary Reinforced Concrete)", 8th Edition,
	Charotar Publishing House Pvt. Ltd., New Delhi.
4	P C Varghese, "Limit State design of reinforced concrete", 2 nd edition, PHI, New Delhi.

Continuous Internal Evaluation (CIE): Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Laboratory- 50 Marks

The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are awarded 10 marks. Total marks for the laboratory is 50.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the entire syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in

which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

CO/PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO 1	3	2	-	-	-	-	-	-	-	-	-	1
CO 2	3	2	-	-	1	-	-	2	-	-	ı	1
CO 3	3	3	-	-	1	-	1	2	-	-	-	2

	Semester VI					
	Irrigation Engineering and HydraulicStructures					
		(Theory)				
Cou	rse Code: MVJ22CV62	CIE Marks: 50				
Cree	Credits: L:T:P: 3:0:0 SEE Marks: 50					
Hou	Hours: 40L SEE Duration: 3 Hrs.					
Cou	Course Learning Objectives: The students will be able to					
1	Analyse and design gravity dams.					
2						
3	3 Design spillways and aprons for diversion works.					
4	Design CD works and chose appropriate canal regulation works.					

UNIT-I					
Storage Works: Reservoirs – Types of reservoirs, selection of site for	8 Hrs				
reservoir, zones of storage of a reservoir, reservoir yield, estimation of					
capacity of reservoir using mass curve- Reservoir Sedimentation. Life of					
Reservoir.					
Dams- Types of dams, factors affecting selection of type of dam, factors					
governing selection of site for a dam.					
UNIT-II					
Gravity dams: Forces acting on a gravity dam, causes of failure of a gravity	8 Hrs				
dam, elementary profile, and practical profile of a gravity dam, limiting height					
of a low gravity dam, Factors of Safety – Stability Analysis, Foundation for a					
Gravity Dam, drainage and inspection galleries.					
UNIT-III					
Earth dams: Types of Earth dams, causes of failure of earth dam, criteria for	8 Hrs				
safe design of earth dam, seepage through earth dam-graphical method,					
measures for control of seepage.					
Spillways: Types of spillways, Design principles of Ogee spillways – Spillway					
gates. Energy Dissipaters and Stilling Basins Significance of Jump Height					
Curve and Tail Water Rating Curve – USBR and Indian types of Stilling Basins.					
UNIT-IV					
Diversion Head works: Types of Diversion head works- weirs and barrages,	8 Hrs				
layout of diversion head work – components. Causes and failure of Weirs and					
Barrages on permeable foundations, -Silt Ejectors and Silt Excluders, Weirs on					
Permeable Foundations - Creep Theories - Bligh's, Lane's and Khosla's					
theories, Determination of uplift pressure- Various Correction Factors – Design					
principles of weirs on permeable foundations using Creep theories – exit					
gradient, U/s and D/s Sheet Piles – Launching Apron.					
UNIT-V					
Canal Falls: Types of falls and their location, Design principles of Notch Fall	8 Hrs				
and Sarada type Fall. Canal regulation works, principles of design of cross and					
distributary head regulators, types of Canal escapes – types of canal modules,					
proportionality, sensitivity, setting and flexibility. Cross Drainage works:					
types, selection of suitable type, various types, design considerations for cross					
drainage works.					

Course	Course Outcomes: After completing the course, the students will be able to				
CO1	Know types of water retaining structures for multiple purposes and its key parameters				
	considered for planning and designing.				
CO2	Understand details in any Irrigation System and its requirements.				
CO3	Analyse and Design of a irrigation system components.				

Refe	erence Books
1.	Santhosh kumar Garg, "Irrigation Engineering and Hydraulic structures", 38th edition,
	Khanna Publishers, New Delhi.
2.	K. R. Arora, "Irrigation Engineering", Standard Publishers.
3.	Dr. B C Punmia, Dr. Pande B B Lal, Ashok Kumar jain& Arun Kumar Jain, "Irrigation
	and Water Power Engineering", 16 th edition, Laxmi publications Pvt. Ltd., New Delhi.
4.	Varshney, Gupta & Gupta, "Theory and Design of Hydraulic structures", 1st Edition, Nem
	Chand & B Publishers, New Delhi.

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marksare executed by means of an examination.

CO/PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO 1	2	2	2	1	-	-	-	-	-	-	-	-
CO 2	-	2	-	2	-	2	-	-	1	-	-	1
CO 3	3	3	2	2	-	-	-	-	-	-	2	1

	Semester VI					
	Design of Bridges					
		(Theory)				
Cou	rse Code: MVJ22CV631	CIE Marks: 50				
Cre	Credits: L:T:P: 3:0:0 SEE Marks: 50					
Hou	Hours: 40L SEE Duration: 3 Hrs.					
Cou	Course Learning Objectives: The students will be able to					
1	1 Introduce students to various aspects of Bridge structures, its components.					
2	Understand the hydraulic design concepts of Bridges, various IRC loading standards.					
3	Design small span bridges like culverts, slab decks, and T-beam decks and post					
4	tensioned slab.					
	4 Understand various types of bearings, analysis of substructures, and foundations.					
5	5 Understand super structure construction methods and practices.					

UNIT-I	
Introduction and Conceptual Design of Bridges	8 Hrs
Introduction, components of a bridge and their functions, Site investigations	
prior to bridge construction, classification of bridges, IRC loading standards,	
IRC A, AA, and 70 R. Hydraulic design of bridges, natural and artificial water	
ways, afflux, Economical span, problems.	
UNIT-II	
Pipe culverts: Hydraulic design and structural design, IRC standards. Design	8 Hrs
problems. Design of Box culverts, general procedure of design for all the	
conditions of culvert, reinforcement details, Design example	
(students should be given to design the culvert for any one condition of	
loading).	
UNIT-III	
Design of Deck slab (Limit state method): Introduction, Design of deck slab.	8 Hrs
Effective dispersion of wheel load along the span and effective width concept,	
Arrangement of wheel loads of IRC A for obtaining maximum bending	
moment and shear force. Design example, Arrangement of IRC class AA	
obtaining maximum bending moment and shear force. Design example.	
Arrangement of IRC 70R loading for obtaining maximum bending moment	
and shear force. Design example.	
UNIT-IV	
Introduction to T-beam bridges: Code provisions, typical arrangement of	8 Hrs
longitudinal and cross girders, Pigeaud's method, design of interior panel (for	
IRC class AA & amp; 70R), methods for finding load distribution among	
longitudinal girders (Courbon's, Hednry Jaguer's method), general steps of	
design (only design concepts).	
UNIT-V	
Bridge substructures, abutments and Piers: Types of abutments and piers,	8 Hrs
stability analysis of piers and abutments, base pressure distribution. Bridge	
bearings, types and their suitability.	

Course	Course Outcomes: After completing the course, the students will be able to					
CO1	Select the type of the bridge based on the site investigation inputs and be able to					
	compute design discharge, linear water way, economic span and depth of scour.					
CO2	Design pipe culverts.					

CO3	Design deck slabs for critical loads.
CO4	Analyse the stability of bridge piers and abutments.
CO5	Recommend suitable bearings for the given type of bridge and support condition.

Refe	erence Books
1.	Krishna Raju N, "Design of Bridges", 5 th edition, Oxford-IBH publishing, New Delhi.
2.	Rajagopalan, Bridge Super Structures, Narosa Publishing House, New Delhi.
3.	D. Johmson Victor, "Essentials of Bridge Engineering", 6 th edition, Oxford IBH
	publications, New Delhi.
4.	T.R.Jagadeesh& M A Jayaram, "Design of Bridge Structures", 3 rd edition, PHI,
	New Delhi.
5.	IRC: 112- 2020: Code of Practice for Concrete Bridges, Bureau of Indian standars, New
	Delhi.

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marksare executed by means of an examination.

CO/PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO 1	3	2	3	3	3	2	-	-	-	-	-	2
CO 2	2	2	3	3	3	-	-	-	-	-	2	2
CO 3	1	1	2	2	3	-	-	-	-	-	2	2
CO 4	2	3	2	3	3	ı	-	-	-	1	-	1
CO 5	1	1	2	2	2	-	-	-	-	-	1	2

	Semester VI						
	Design of Formwork and Scaffolding						
	(Theo	ory)					
Cou	rrse Code: MVJ22CV632	CIE Marks: 50					
Cre	Credits: L:T:P: 3:0:0 SEE Marks: 50						
Hou	Hours: 40L SEE Duration: 3 Hrs.						
Cou	rse Learning Objectives: The students w	vill be able to					
1	To select the appropriate formwork system.						
2	To design the formwork system.						
3	To compute the bill of quantity for the formwork system.						
1	To incorporate safer design and construction aspects including assembling and						
4	dismantling to prevent formwork failures.						
5	To comprehend plan, layout and detailed drawing for formwork systems.						

UNIT-I	
Introduction to Formwork: Classification, benefits, objectives, areas of	8 Hrs
competitiveness, selection of Formwork, formwork materials, accessories and	
consumables, application of Tools. Formwork for Foundation, Wall,	
Columns, Slab and Beam. Conventional drawings. Vertical Application of	
Conventional Foundation Formwork, Formwork components, Components,	
assembly and de-shuttering of formwork System, Flex System, Heavy Duty	
Tower System, safety of work, Formwork for stairs, Load Bearing Tower.	
UNIT-II	
Planning and Design of formwork: Formwork planning and monitoring,	8 Hrs
basics of formwork design, design assumptions and design methods. Design	
of wall formwork, slab formwork and checks. Formwork drawing Concept	
and Preparation Guidelines, BOQ Calculation and Checklist.	
UNIT-III	
Formwork cost estimation and optimization: Schedule of formwork,	8 Hrs
Mobilization distribution, BOQ, Quantity Calculation, Cost optimization.	
UNIT-IV	
Modular and Special formwork, scaffolding: Modular and Special	8 Hrs
formwork: Advantages and Limitations, Shuttering and de-shuttering,	
applications, Aluminium formwork - Drawings & Components, Activities,	
High rise construction, Table lifting system.	
Scaffolding: Modular scaffold Installation sequence, Tie and material	
specification, Ladder safety, Loading Classification, application, Components	
of L&T Modular Scaffolding system, Access scaffold Do's and Don'ts.	
Innovation and Global practices.	
UNIT-V	
Formwork building and erection, Formwork Failures: Formwork assembly	8 Hrs
for Wall & Column Panels, Equipment and Layout, Plant and Machinery,	
Formwork erection and safety, Inspection and Corrections, Plant and	
Machinery, Code and Contractual Requirements.	
Formwork Failures- Causes, design deficiency, safety in formwork,	
prevention of formwork failures.	

Course	Outcomes: After completing the course, the students will be able to
CO1	Analyse the project, and decide appropriate formwork materials and suitable formwork
	system.
CO2	Design formwork systems as per Industrial requirement.
CO3	Estimate the bill of quantity and optimize the formwork cost.
CO4	Prepare the layout and detailed drawing for the formwork system.

Refe	erence Books
1.	Jha, K.N., "Formwork for Concrete Structures", First Edition, McGraw Hill, New Delhi.
2.	Robert L. Peurifoy and Garold D. Oberiender, "Formwork for Concrete Structures", 4th
	edition, McGraw-Hill, New Delhi.
3.	IS 14687 -Guidelines for falsework for concrete structures, Bureau of Indain Standards,
	New Delhi.

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marksare executed by means of an examination.

СО/РО	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO 1	3	-	2	-	2	-	1	-	-	-	-	-
CO 2	2	2	1	-	1	-	1	-	-	-	1	-
CO 3	2	2	-	-	-	-	-	-	-	-	1	-
CO 4	1	1	-	-	-	-	-	-	1	ı	-	-

	Semester VI					
	Applied Geotechnical Engineering					
	(Theory)				
Cor	ırse Code: MVJ22CV633	CIE Marks: 50				
Cre	edits: L:T:P: 3:0:0	SEE Marks: 50				
Ho	urs: 40L	SEE Duration: 3 Hrs.				
Cou	rse Learning Objectives: The students will	be able to				
1	Appreciate basic concepts of soil mechanics	applied in the design of foundations.				
2	Learn concepts of Geotechnical investigatio	Learn concepts of Geotechnical investigations required for civil engineering projects				
	emphasizing in situ investigations.					
	Conceptually learn various theories related t	o bearing capacity of soil and their				
3	application in the design of shallow foundations and estimation of load carrying					
	capacity of pile foundation.					
4	Estimate internal stresses in the soil mass an	d application of this knowledge in				
T	proportioning of shallow and deep foundation fulfilling settlement criteria.					
5	Study about assessing stability of slopes	and earth pressure on rigid retaining				
J	structures.					

UNIT-I	
Soil Exploration: Introduction, Objectives and Importance, Stages and	8 Hrs
Methods of exploration- Test pits, Borings, stabilization of boreholes,	
Sampling techniques, Undisturbed, disturbed and representative samples,	
sample disturbance and Bore hole log.	
UNIT-II	
Drainage and Dewatering: Drainage and Dewatering methods, estimation of	8 Hrs
depth of GWT (Hvorslev's method). Flow nets: Importance, properties and	
applications, Phreatic Lines, Seepage in earth dams (with and without filters).	
UNIT-III	
Lateral Earth Pressure: Active, Passive and earth pressure at rest, Rankine's	8 Hrs
theory for cohesionless and cohesive soils, Factors influencing lateral earth	
pressure, Geotechnical design of gravity and cantilever retaining walls.	
UNIT-IV	
Stability of Slopes: Assumptions, infinite and finite slopes, factor of safety,	8 Hrs
Swedish slip circle method for C and C-ø (Method of slices) soils, Fellineous	
method for critical slip circle, use of Taylor's stability charts. Causes for slope	
instability, Methods of stabilization of slopes.	
UNIT-V	
Stresses in Soil: Geodesic stress and Stress due to structures, Boussinesq's	8 Hrs
Stress distribution in ground for point load, line load and uniformly distributed	
loads, Newmark's Chart, Contact Pressure, Pressure bulbs.	
Types of settlements and importance, Computation of immediate and	
consolidation settlement, permissible differential and total settlements (IS	
8009 part 1).	

Course	Course Outcomes: After completing the course, the students will be able to					
CO1	Ability to plan and execute geotechnical site investigation program for different civil					
	engineering projects.					
CO2	Understanding of stress distribution and resulting settlement beneath the loaded					
	footings on sand and clayey soils.					

CO3	Ability to estimate factor of safety against failure of slopes and to compute lateral
	pressure distribution behind earth retaining structures.
CO4	Ability to determine settlement in footing.

Refe	Reference Books					
1.	Murthy V.N.S., "Principles of Soil Mechanics and Foundation Engineering", 4 th edition, UBS Publishers, NewDelhi.					
2.	K.R.Arora, "Soil Mechanics and Foundation Engineering", 6 th edition, Standard Publisher Distributors, NewDelhi.					
3.	PC Varghese, "Foundation Engineering", 9 th edition, PHI India Learning Private Limited, NewDelhi.					
4.	Punmia BC, "Soil Mechanics and Foundation Engineering", 16 th edition, LaxmiPublications., New Delhi.					

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marksare executed by means of an examination.

CO/PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO 1	3	2	2	1	-	-	-	-	-	-	-	-
CO 2	3	2	1	1	-	-	-	-	-	-	-	-
CO 3	3	2	1	1	-	-	-	-	-	-	-	-
CO 4	3	2	2	1	-	-	-	-	-	-	-	-

	Semester	VI							
	Design and Construction of Highway Pavements								
(Theory)									
Cou	rrse Code: MVJ22CV634	CIE Marks: 50							
Credits: L:T:P: 3:0:0 SEE Marks: 50									
Hou	Hours: 40L SEE Duration: 3 Hrs.								
Course Learning Objectives: The students will be able to									
1	To impart a fundamental understanding to	the basics of highway geometric design							
1	features.								
2	To introduce the evaluation of pavement	material characteristics to identify their							
	suitability for construction.								
3	To study the principles and design of flexi	ble and rigid pavements according to IRC							
3	specifications.								
4	To skill up for executing pavement constr	uction with quality control and assurance							
4	along with Plants and Machinery selection.								

UNIT-I	
Introduction and Subgrade materials: Overview of highway - Classification	8 Hrs
of roads, Pavement Layers – Components and Functions, Highway alignment	
and Survey, road development in India, Components and Geometric Standards	
of Highway Design.	
Pavement subgrade material: Soils, Soil Characteristic Evaluation, desirable	
properties, tests (Virtual) - Liquid Limit, Plastic limit, Shrinkage Limit, Grain	
size analysis - Wet sieve and Hydrometer analysis, Water Content, Specific	
gravity, Free swell index, Relative density, Heavy compaction, California	
Bearing Ratio.	
UNIT-II	
Pavement Materials	8 Hrs
Stone aggregates: Desirable properties, tests (Virtual) - Sieve analysis,	
Specific gravity, Water absorption, Bulk density, Wet Sieve analysis,	
Aggregate crushing value, Aggregate impact value, Combined Flakiness and	
Elongation index, Aggregate abrasion value, Soundness of aggregate,	
Characteristic evaluation.	
Bituminous binders: Desirable properties, tests (Virtual) - Specific gravity,	
Penetration, Softening Point, Ductility, Elastic recovery, Flash point,	
Separation, Loss on heating, Matter soluble in trichloro ethylene, Absolute,	
Kinematic and Rotational Viscosity, Aging of Bitumen, Characteristic	
evaluation.	
Bituminous paving mix: Desirable properties, tests (Virtual) - Stripping value	
of coarse aggregate, Stone polishing value of coarse aggregate, Maximum	
specific gravity of bituminous mix, Marshall stability & flow, Binder content,	
Bulk specific gravity and density, Indirect tensile strength, Resilient Modulus	
(indirect tension test), Resistance of compacted asphalt mixtures to moisture-	
induced damage, Characteristic evaluation	
Cement: Desirable properties, tests (Virtual) - Consistency, Initial Setting	
Time, Final Setting Time, Mortar Cube compressive strength, Fineness of	
cement, Specific gravity of cement, Soundness of cement, Characteristic	
evaluation.	
Concrete: Desirable properties, requirements, tests (Virtual) - Workability,	
Compressive Strength, Flexural strength, Characteristic evaluation.	

UNIT-III	
Principles and Design of Pavements	8 Hrs
Flexible Pavement: Introduction, composition, factors governing design,	
design of flexible pavements as per IRC; Bituminous mix design (Marshall	
method), IIT Pave Software; Case study - Design Problem.	
Rigid pavement: Introduction, composition, factors governing design, DLC	
and PQC mix design; design of concrete pavements as per IRC; Joints; Case	
study – Design Problem.	
UNIT-IV	
Plants and Machinery: Introduction; Asphalt Hot Mix Plant, Concrete Batching Plant, Wet Mix Macadam Plant, Earthmoving and Excavation	8 Hrs
Equipment, Paving Equipment, Slipform Paver, Paver Milling and Road	
Marking Equipment; Factors affecting output of Plant & Equipment; Initiatives	
to improve quality.	
Construction Planning: Concept of Highways, Planning; Schedules in	
Planning; Monitoring; Software in Planning. UNIT-V	
9-1, ,	8 Hrs
Subgrade and Base Layer: Construction Practices and Quality Control; Granular Sub-base Construction Activities; Cement Treated Sub-base	8 Hrs
Construction Activities.	
Flexible Layers: Wet Mix Macadam; Construction Practices of Wet Mix	
Macadam; Hot Mix Asphalt; Construction Practices of Hot Mix Asphalt	
Layer, Quality Control of Flexible Layers.	
Rigid Layers: Dry Lean Concrete; Construction Practices of Dry Lean	
Concrete; Pavement Quality Concrete; Construction Practices of Pavement	
Quality Concrete, Quality Control of Rigid Layers.	
Pavement Evaluation: Introduction, Pavement Condition Survey, Pavement	
Evaluation Functional and Structural, Distresses - Flexible and Rigid	
Pavement, Overlay Design of Flexible Pavement.	

Course	Course Outcomes: After completing the course, the students will be able to										
CO1	Develop an understanding of the fundamentals of pavement layer behavior.										
CO2	Comprehend the material specifications by interpreting the relationship between material properties and pavement behavior.										
CO3	Conduct different tests on road construction materials to evaluate their characteristics.										
CO4	Carry out the design of flexible and rigid pavements.										
CO5	Acquire skillful knowledge of pavement construction practices, plant and machinery selection and quality control.										

Refe	rence Books								
1.	Khanna, S.K., Justo, C.E.G and Veeraragavan, A, "Highway Engineering", Revised 10th								
	Edition, Nem Chand & Bros, New Delhi.								
2.	Partha Chakraborty, "Principles of Transportation Engineering", 2 nd edition, PHI								
	Learning, New Delhi.								
3.	KadiyaliL.R and Dr.Lal N.B., "Principles and Practices of Highway Engineering", 4th								
	edition, Khanna Publishers, New Delhi.								
4.	Relevant IRC and IS Codes of Practices, MoRTH Specification.								

Continuous Internal Evaluation (CIE): Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marksare executed by means of an examination.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	2	2	-	-	-	-	-	-	-
CO2	3	3	2	3	2	-	-	-	-	-	-	-
CO3	2	2	2	3	3	-	-	-	-	2	-	2
CO4	3	3	3	3	3	2	2		2	2	2	2
CO5	3	2	3	2	2	2	2	2	2	2	3	2

	Semeste	er VI				
	Water conservation and l	Rainwater Harvesting				
	(Theor	ry)				
Cou	rrse Code: MVJ22CV641	CIE Marks: 50				
Cre	Credits: L:T:P: 3:0:0 SEE Marks: 50					
Hou	Hours: 40L SEE Duration: 3 Hrs.					
Cot	rse Learning Objectives: The students w	ill be able to				
1	Appreciate basic concepts of Water and its	s importance.				
2	Learn elementary knowledge of ground w	ater.				
3	Conceptually learn various theories related to Groundwater recharge and					
י	Groundwater recharge.					
4	Study about Subsurface investigation of G	round water.				

UNIT-I	
Water and its importance: Monsoon– types and behavior in India, rainfall –	8 Hrs
characteristics and distribution, onset and withdrawal of effective rains, dry	
spells and wet spells, critical dry spells, water loss from the soil, measurement	
and factors, hydrological cycle.	
Importance and issues relating water status Scenario of water in	
Karnataka: sources, geographical distribution, quality. Water (hydrological)	
cycle, influence of human activity on the water cycle, Surface water resources.	
UNIT-II	
Elementary knowledge of ground water: General aquifer. Water quality and	8 Hrs
its impact on human beings.	
Water harvesting: need, principles of water harvesting, general water	
harvesting methods - rain water harvesting - methods, classes, benefits,	
approach, rooftop rainwater harvesting, subsurface barrier/dykes, farm	
ponding, etc mostly used in rural areas.	
UNIT-III	
Groundwater recharge: Factors affecting groundwater recharge, Revival of	8 Hrs
traditional techniques for water harvesting. Calculation of available rain water	
for harvesting. Preparation of suitable technical drawing and design of rain	
water harvesting structure.	
UNIT-IV	
Elementary conservation of water: Importance, knowledge regarding	8 Hrs
conservation/saving of water in daily use, agriculture & industries. Water	
Conservation strategies - Limiting the consumption, Reuse and recycling,	
Elimination of losses, Pollution prevention.	
UNIT-V	
Subsurface investigation of Ground water: General, geophysical methods	8 Hrs
and its importance. Present law regarding water management.	
Water footprints- Blue water footprint, green water footprint, grey water	
footprint. Sustainability assessment.	

Course	Course Outcomes: After completing the course, the students will be able to									
CO1	Learn Water and its importance									
CO2	Learn general techniques of water harvesting									
CO3	Analyze different techniques of rain water harvesting									
CO4	Understand the water conservation strategies									

CO:	5 Understand the concepts of water foot prints							
Reference Books								
1.	A S Patel & DL Shah, "Water Management - Conservation, Harvesting and Artificial							
	Recharge" 2nd edition New Age International Private Limited New Delhi							

2. "Rain water harvesting and conservation manual 2019", CPWD, NewDelhi.

3. Cole Gray, "Water Conservation and Management", latest edition, Larsen and Keller Education, UK.

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marksare executed by means of an examination.

CO/PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO 1	2	-	2	-	-	-	-	-	1	-	1	1
CO 2	3	1	2	1	-	1	-	-	1	-	1	1
CO 3	2	1	2	-	-	1	-	-	1	-	-	1
CO 4	3	1	2	1	-	1	-	-	1	-	-	1
CO5	2	-	2	-	-	-	-	-	1	-	-	1

	Semester VI								
	Geographic Information System								
		(Theory)							
Cou	rse Code: MVJ22CV642		CIE Marks: 50						
Credits: L:T:P: 3:0:0 SEE Marks: 50									
Hou	Hours: 40L SEE Duration: 3 Hrs.								
Cou	rse Learning Objectives: The stude	ents will be able to							
1	1 To introduce the fundamentals and components of Geographic Information System.								
2	To provide details of spatial data structures, input and Processes.								
3	3 To provide details of spatial data structure management.								
4	*								

UNIT-I	
Introduction to GIS - Basic spatial concepts - Coordinate Systems - GIS and	8 Hrs
Information Systems – Definitions– History of GIS - Components of a GIS –	
Hardware, Software, Data, People, Methods – Proprietary and open-source	
Software - Types of data – Spatial, Attribute data- types of attributes – scales/	
levels of measurements.	
UNIT-II	
Spatial Data Models: Database Structures – Relational, Object Oriented –	8 Hrs
Entities – ER diagram - data models - conceptual, logical and physical models	
- spatial data models – Raster Data Structures – Raster Data Compression -	
Vector Data Structures - Raster vs Vector Models- TIN and GRID data models.	
UNIT-III	
Data Input and Topology: Scanner - Raster Data Input - Raster Data File	8 Hrs
Formats – Georeferencing – Vector Data Input –Digitizer – Datum Projection	
and reprojection -Coordinate Transformation - Topology - Adjacency,	
connectivity, and containment – Topological Consistency – Non topological	
file formats - Attribute Data linking – Linking External Databases – GPS Data	
Integration.	
UNIT-IV	
Data Quality and Standards: Data quality - Basic aspects - completeness,	8 Hrs
logical consistency, positional accuracy, temporal accuracy, thematic accuracy,	
and lineage – Metadata – GIS Standards –Interoperability - OGC - Spatial Data	
Infrastructure.	
UNIT-V	
Data Management and Output: Import/Export – Data Management	8 Hrs
functions- Raster to Vector and Vector to Raster Conversion - Data Output -	
Map Compilation – Chart/Graphs – Multimedia – Enterprise Vs. Desktop GIS	
distributed GIS.	

Course	Course Outcomes: After completing the course, the students will be able to					
CO1	Have basic idea about the fundamentals of GIS.					
CO2	Understand the types of data models.					
CO3	Get knowledge about data input and topology.					
CO4	Gain knowledge on data quality and standards.					
CO5	Understand data management functions and data output.					

Refe	erence Books
1.	Kang - Tsung Chang, Introduction to Geographic Information Systems, 2nd Edition,
	McGraw Hill Publishing, New Delhi.
2.	Ian Heywood, Sarah Cornelius, Steve Carver, Srinivasa Raju, "An Introduction
	Geographical Information Systems",2nd Edition, Pearson Education, New Delhi.
3.	Lo.C.P., Albert K.W. Yeung, "Concepts and Techniques of Geographic Information
	Systems", 2 nd edition, Prentice-Hall India Publishers, New Delhi.

${\bf Continuous\ Internal\ Evaluation\ (CIE):}$

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marksare executed by means of an examination.

CO/PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO 1	3	2	-	-	2	1	1	-	-	-	-	-
CO 2	2	3	1	-	1	-	-	-	-	-	-	-
CO 3	2	3	1	1	1	-	-	-	-	-	-	-
CO 4	2	2	3	1	1	-	1	-	-	-	-	-
CO5	2	3	2	1	1	-	1	-	-	-	-	-

	Semester VI							
	Integrated Waste Management for a Smart City							
		(Theory)						
Cou	Course Code: MVJ22CV643 CIE Marks: 50							
Cre	Credits: L:T:P: 3:0:0 SEE Marks: 50							
Hou	Hours: 40L SEE Duration: 3 Hrs.							
Cou	rse Learning Objectives: The stude	ents will be able to						
1	1 To introduce the fundamentals of Solid Waste Management.							
2	2 To provide details of Sustainable Cities.							
3	3 Understand the Sustainable Development Goals.							

UNIT-I					
Introduction to Solid Waste Management: Municipal Solid Waste	8 Hrs				
Characteristics and Quantities generation rates and waste composition;					
Integrated waste management issues, collection, recovery, reuse, recycling,					
energy-from-waste, and land filling.					
UNIT-II					
Biological treatment of the organic waste fraction: Direct land application,	8 Hrs				
composting, and anaerobic digestion. MSW Rules 2016, Swachh Bharat					
Mission and Smart Cities Program.					
UNIT-III					
Biochemical Processes and Composting: Energy Recovery from Municipal	8 Hrs				
Solid Waste. Current Issues in Solid Waste Management and Review of MSW					
Management Status in First List of 20 Smart Cities in the Country.					
UNIT-IV					
Construction and Demolition (C&D) Waste: Management – Overview,	8 Hrs				
C&D Waste – Regulation, Beneficial Reuse of C&D Waste Materials.					
UNIT-V					
Electronic Waste (E-Waste): Management – Issues and Status in India and	8 Hrs				
Globally, E-Waste Management Rules 2016 and Management Challenges.					

Course	Course Outcomes: After completing the course, the students will be able to						
CO1	Understand basic idea about Sustainable Development.						
CO2	Get knowledge about Sustainable Cities.						
CO3	Gain knowledge on Saving Biodiversity.						
CO4	Understand Sustainable Development Goals.						

Refe	erence Books
1.	George Tchobanoglous, Hilary Theisen and Samuel A Vigil, "Integrated Solid Waste
	management", 2 nd edition, Tata McGraw Hill, New Delhi.
2.	"Manual on Solid Waste Management", prepared by The Central Public Health and
	Environmental Engineering Organization(CPHEEO), India.
3.	William A Worrell and P. Aarne Veslind"Solid Waste Engineering", 2nd Edition,
	Cengage Learning, New Delhi.

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for

10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marksare executed by means of an examination.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	1	-	-	2	3	-	-	-	-	1
~~	-	4	4			2	-					4
CO2	2	l	1	1	-	2	3	-	-	-	-	1
CO3	2	1	1	-	-	2	3	-	-	-	-	1

	Semester VI							
	Sustainable Development Goals							
	(Theo	ry)						
Cou	rse Code:MVJ22CV644	CIE Marks: 50						
Cre	dits: L:T:P: 3:0:0	SEE Marks: 50						
Hou	Hours: 40L SEE Duration: 3 Hrs.							
Cou	rse Learning Objectives: The students wi	ll be able to						
1	To introduce the fundamentals and comport	nents of Sustainable Development.						
2	To provide details of Sustainable Cities.							
3	3 To Understand the Sustainable Development Goals.							
4	4 To Understand the concept of biodiversity.							
5	To explain the Feasibility of Sustainable Development.							

UNIT-I	
Sustainable Development: Introduction to Sustainable Development,	8Hrs
Economic Growth and Progress, Continuing Poverty, Environmental Threats,	
Business as Usual Versus Sustainable Development.	
UNIT-II	
Sustainable Cities: The Patterns of Urbanization Around the World,	8 Hrs
development of Sustainable city, Smart Infrastructure, Urban Resilience,	
Planning for Sustainable Development.	
UNIT-III	
Urging Climate Change: The Basic Science of Climate Change,	8 Hrs
Consequences, Mitigation, Adaptation, Mitigation Policies.	
UNIT-IV	
Saving Biodiversity: Concept of Biodiversity, Biodiversity Under Threat,	8 Hrs
Oceans and Fisheries, Deforestation International Dynamics.	
UNIT-V	
Sustainable Development Goals: Introduction to Sustainable Development	8 Hrs
Goals, Goal-Based Development, Financing for Sustainable Development,	
Principles of Good Governance, Feasibility of Sustainable Development.	

Course	Course Outcomes: After completing the course, the students will be able to								
CO1	Understand basic idea about Sustainable Development.								
CO2	Get knowledge about Sustainable Cities.								
CO3	Gain knowledge on Saving Biodiversity.								
CO4	Understand Sustainable Development Goals.								
CO5	Understand the feasibility of Sustainable Development.								

Refe	Reference Books											
1.	Ram Kumar Mishra, Ch Lakshmi Kumari, Sandeep Chachra, P.S. Janaki Krishna "Smart											
	Cities for Sustainable Development", 1st edition, Springer, Singapore.											
2.	Dr. Kajalbaran Jana, "The Sustainable Development Goals In India: Few Issues &											
	Contexts", 1st edition, Redshine Publication, New Delhi.											
3.	The Sustainable Development Goals Report 2020, Kindle Edition, Department of											
	Economic and Social Affairs, United Nations.											

Continuous Internal Evaluation (CIE): Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

CO/PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO 1	-	-	1	-	-	1	2	-	-	-	-	-
CO 2	-	-	-	-	-	1	2	-	-	-	-	-
CO 3	-	-	-	-	-	1	2	-	-	-	-	1
CO 4	-	-	-	-	-	1	1	-	-	-	-	1
CO5	-	-	-	-	-	1	2	-	-	-	-	1

	Semester: VI						
	Software Application Lab						
	(Practice)						
Cou	rse Code: MVJ22CVL66	CIE Marks: 50					
Credits: L:T:P: 0:0:2 SEE Marks: 50							
Hours: 26P SEE Duration: 3 Hrs.							
Cou	rrse Learning Objectives: The students will be able to						
1	Use industry standard software in a professional set up.						
2	2 Understand the elements of finite element modelling, specification of loads and						
2	boundary condition, performing analysis and interpretation of results for final design.						
3	Develop customized automation tools.						

Sl.NO	Experiments	L3,L4						
1	Analysis of plane trusses, continuous beams using software.							
2	Analysis of portal frames using software.							
3	Understanding basic features of Project management software. Constructing Project: create WBS, Activities, and tasks and Computation Time using Excel spread sheet and transferring the same to Project management software.							
4	Identification of Predecessor and Successor activities with constrain. Constructing Network diagram (AON Diagram) and analyzing for Critical path.							
5	Critical activities and Other non-Critical paths, Project duration, F various available View options.	Floats. Study on						
6	Basic understanding about Resource Creation and allocation g. Understanding about Splitting the activity, Linking multiple activities, assigning Constrains, Merging Multiple projects, Creating Baseline Project.							
7	GIS applications using open source software: To create shape file and polygon features with a map as reference. To create decision r purpose.	*						
8	Computation of earthwork, Design of horizontal curve by offset me super elevation Using Excel.	ethod, Design of						
	Demonstration Experiments (For CIE)							
9	Creating structural model and analysis of high rise structures.							
10	Creating a model of building and the effect of earth quake.							
11	Create a model of large span roof and analyze.							

Course	Course Outcomes: After completing the course, the students will be able to									
CO1	Use software for analysis and design of structural elements.									
CO2	Design using excel spread sheet.									
CO3	Modelling of structural elements of buildings.									

Continuous Internal Evaluation (CIE): Laboratory- 50 Marks

The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are awarded 10 marks. Total marks for the laboratory is 50.

Semester End Examination (SEE):

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

CO/PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO 1	2	2	3	3	3	-	-	-	-	-	3	3
CO 2	2	2	3	3	3	-	-	-	-	-	2	-
CO 3	3	3	3	3	3	-	-	-	-	-	-	3

	Semester: VI									
	INDIA	N KNOWLEGE								
	S	SYSTEMS								
Cou	ırse Code: MVJ22CGIKK68	CIE Marks: 50								
Cre	edits: L:T:P: 1:0:0	SEE Marks: 50								
Hou	ırs: 40L	SEE Duration: 3 Hrs.								
Cou	rse Learning Objectives: The stude	ents will be able to								
1	Develop a comprehensive underst	tanding of Kalpa Shastra and its significance in								
1	preserving and transmitting Vedic t	traditions, rituals, ceremonies, and social codes.								
	Identify and differentiate between	n the various types of Kalpa Shastra, including								
2	Shrautsutra, Grihyasutra, Dharma	sutra, Sulvasutra, and understand their distinct								
	purposes and subject matters.									
3	Explain importance of holistic healt	th care system through Ayurveda.								
	Gain insights into Grihastha Yag	gya Vidhan and its relevance in the context of								
4	household rituals and duties, including the ethical and social obligations o									
	householders.									
	Explain the contribution of charak i	in an area of health care. Develop a comprehensive								
5	understanding of the concept and n	meaning of rhythm(Chhanda) within the context of								
	Chhanda Shastra.	·								

UNIT-I								
Definiti	on and Meaning of Kalpa Shastra Different types of Kalpa Shastra	8Hrs						
Introdu								
types of	Yaag system in Kalpa Shastra Grihastha Yagya Vidhan.							
	UNIT-II							
	ction to Dharmashutra Description of Streedharma and Rajdharma Daya	8 Hrs						
	tha Introduction to Sulvasutra Available texts of Sulvasutrain present							
time To	pics of Sulvasutra.							
	UNIT-III							
	daasasub system of Athrvaved and Rugveda, Definition and meaning	8 Hrs						
	veda, Charak sahita, the concept of tridosha and its effect on body.							
	ncept of wholistic health care, Psychosometic aspects and health. Brief							
on Diag	nosis and treatment in Ayurveda.							
	UNIT-IV							
Lifestyle management through Ayurveda, Water, food, and system of digestion 8								
	aspects: Satva, Rajas, Tamas, and qualities of a person. Health care							
through	Ayurveda, Contribution of vaghbhatt and madhav in brief.							
	UNIT-V							
	ction to Rhythm(Chhanda) Explanation and Meaning of Rhythm	8 Hrs						
	on of Chhanda Shastra Types of Chhanda Shastra Acharyas of Chhanda							
	Description of Rhythmin ChhandaShastra (Vedic Chhanda and Laukik							
	a) Introduction to Vedic Chhanda Types of Vedic Chhanda.							
Course	Outcomes: The students will be able to							
CO 1	Understand preserving and transmitting Vedic traditions, rituals, cer	emonies, and						
	social codes.							
CO 2	Identify and differentiate between the various types of Kalpa Shastra.							
CO 3	Describe the importance of holistic health care system through Ayurvec	da.						
CO 4	Obtain awareness of Grihastha Yagya Vidhan and its relevance.							
CO5	Develop a comprehensive understanding of the concept and	meaning of						

rhythm(Chhanda) wi	thin the contex	xt of Chhanda	Shastra.
--------------------	-----------------	---------------	----------

Refe	Reference Books									
1.	"Kalpa: TheRituals and Mantras: Sacramental Instructions and Prayers in the									
	Veda" by Frits Staal.									
2.	The Dharmasutras: The Law Codes of Ancient India" by Patrick Olivelle.									
3.	The Rituals and Forms of Worship in the Shrauta Sutras: An Introduction" by									
	Michael Witzel.									
4.	"Nritya: The Art of Indian Classical Dance" by Sunil Kothari.									
5.	The Art of Music: A Comprehensive Guide to Western and Eastern Musical									
	Styles"by John Powell.									

- 1. Three Unit Tests each of 20 Marks
- 2. Two assignments each of 10 Marks or one Skill Development Activity of 40 marks to attain the COs and POs

The sum of three tests, two assignments/skill Development Activities, will be scaled down to 50 marks CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination (SEE):

- 1. The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.
- 2. The question paper will have ten full questions carrying equal marks.
- 3. Each full question is for 20 marks. There will be two full questions (with a maximum of four sub-questions) from each module.
- 4. Each full question will have a sub-question covering all the topics under a module.
- 5. The students will have to answer five full questions, selecting one full question from each module.

CO/PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO 1	2	-	2	-	2	_	-	-	1	2	-	1
CO 2	2	-	1	-	1	_	-	-	1	1	-	-
CO 3	2	1	1	1	2	-	-	-	2	2	-	1
CO 4	2	2	1	-	2	-	-	-	2	1	-	1
CO 5	3	2	1	-	2	-	-	-	2	2	-	2

	Semester VII									
	Design of Steel Structures									
	(Theory and Practice)									
Cou	Course Code: MVJ22CV71 CIE Marks: 50									
Cre	Credits: L:T:P: 3:0:2 SEE Marks: 50									
Hou	Hours: 40L + 26P SEE Duration: 3 Hrs.									
Cou	rse Learning Objectives: The students will be able to									
1	Understand the behavior of structural elements in steel stru	actures and well versed with								
1	Steel design principles according to the guidelines of IS: 800-2007.									
2										
3	Design the steel structural elements of different forms a	and connections under different								
3	stresses.									

	UNIT-I	
method Failure IS code Plastic Concep	uction: Advantages and Disadvantages of Steel Structures, Limit state I Limit State of Strength, Structural Stability, Serviceability Limit states, Criteria of steel, Design Consideration, Loading and load combinations, e provisions, Specification and Section classification. Behavior of Structural Steel: Introduction, Plastic theory, Plastic Hinge ot, Plastic collapse load, load factor, Shape factor, Theorem of plastic e, Methods of Plastic analysis. UNIT-II	8 Hrs
Design	Connections: Introduction, Types of Bolts, Behavior of bolted joints, of High Strength friction Grip (HSFG) bolts, Design of Simple bolted ctions (Lap and Butt joints) and bracket connections both types.	8 Hrs
	UNIT-III	
areas o	d Connections: Introduction, Types and properties of welds, Effective of welds, Weld Defects, Simple welded joints for truss members and a connections both types. Advantages and Disadvantages of Bolted and Connections.	8 Hrs
	UNIT-IV	
Slende	of Tension Members: Introduction, Types of Tension members, rness ratio, Modes of Failure, Factors affecting the strength of tension ers, Design of Tension members with Lug angles. of Column Bases: Design of Simple Slab Base and Gusseted Base. UNIT-V	8 Hrs
compre	of Compression Members: Introduction, Failure modes, Behavior of ession members, Sections used for compression members, Effective of compression members, Design of compression members and built-up ession members, Design of laced and battened systems.	8 Hrs
Sl.No	Experiments	
	•	
1	Design a Bolted Connections using AutoCAD.	
2	Design a welded Connections using AutoCAD.	

3	Design of Tension members using AutoCAD.
4	Design of Compression Members using AutoCAD.
5	Design of Simple Slab Base using AutoCAD.
6	Design of Gusseted Base using AutoCAD.
7	Draw the following using AutoCAD. Column bases and Gusseted bases with bolted and welded connections.
8	Draw the following using AutoCAD. Roof Truss – Welded and Bolted
9	Draw the following using AutoCAD. Connections—Beam to beam, Beam to Column by Bolted and Welded Connections.
10	Draw the following using AutoCAD. Built-up Columns with lacings and battens.
11	Drawing of Gantry Girder for the given data using AutoCAD.
12	Drawing of Welded Plate girder for the given data using Auto CAD.

Course	Course Outcomes: After completing the course, the students will be able to								
CO1	Explain the engineering properties and the behavior of steel structural elements								
	according to the guidelines.								
CO2	Analyze and design structural connection of steel elements.								
CO3	Analyze and design the steel structural elements of different forms under different								
	stresses.								

Refe	erence Books
1.	N Subramanian, "Design of Steel Structures", 1stedition, Oxford University Press, New
	Delhi, India
2.	S K Duggal, "Limit State Design of Steel Structures", 5th edition, McGraw Hill
	Publications, New Delhi.

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Laboratory- 50 Marks

The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are awarded 10 marks. Total marks for the laboratory is 50.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marksare executed by means of an examination.

The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have toanswer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

СО/РО	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO 1	3	2	1	-	-	-	-	-	-	-	-	-
CO 2	3	2	2	-	-	-	1	-	1	-	1	1
CO 3	3	2	2	-	-	-	1	-	1	-	1	1

	Semester VII									
	Estimation and Contract Management									
	(Theory)									
Course Code: MVJ22CV72 CIE Marks: 50										
Cre	Credits: L:T:P: 3:2:0 SEE Marks: 50									
Hou	Hours: 40L + 10 T SEE Duration: 3 Hrs.									
Cou	rse Learning Objectives: The stude	ents will be able to								
1	Estimate the quantities of work, dev	velop the bill of qua	ntities, and arrive at the Cost							
1	of civil engineering Project.									
2	2 Understand and apply the concept of Valuation for Properties.									
3	Understand, Apply and Create the Tender and Contract document.									

UNIT-I	
Quantity Estimation for Building: Study of various drawing attached with	8 Hrs
estimates, important terms, units of measurements, abstract, Types of	
estimates. Estimation of building by Short wall and long wall method - centre	
line method.	
Estimate- R.C.C structures including Slab, beam, column, footings.	
UNIT-II	
Estimate: Steel truss, manhole and septic tanks and slab culvert.	8 Hrs
Quantity Estimation for Roads: Computation of volume of earthwork fully	
in banking, cutting, partly cutting and partly Filling by mid-section, trapezoidal	
and Prismoidal Methods.	
UNIT-III	
Specification for Civil Engineering Works: Objective of writing	8 Hrs
specifications essentials in specifications, general and detail specifications of	
different items of works in buildings and roads.	
Analysis of Rates: Factors affecting cost of civil works, Concept of direct cost,	
Indirect cost and Project cost.	
Rate analysis and preparation of bills, Data analysis of rates for various items	
of works, Sub-structure components, Rate analysis for R.C.C. slabs, columns	
and beams.	
UNIT-IV	
Contract Management-	8 Hrs
Tender and its Process: Invitation to tender, Prequalification, administrative	
approval & Technical sanction. Bid submission and Evaluation process.	
Contract Formulation: Letter of intent, Award of contract, letter of acceptance	
and notice to proceed. Features / elements of standard Tender document	
(source: PWD / CPWD / International Competitive Bidding – NHAI / NHEPC	
/ NPC).	
Law of Contract as per Indian Contract act 1872, Types of Contract, Joint	
venture.	
Contract Forms: FIDIC contract Forms, CPWD, NHAI, NTPC, NHEPC	
UNIT-V	
Contract Management-	8 Hrs
Post Award: Basic understanding on definitions, Performance security,	
Mobilization and equipment advances, Secured Advance, Suspension of work,	
Time limit for completion, Liquidated damages and bonus, measurement and	
payment, additions and alterations or variations and deviations, breach of	

contract, Escalation, settlement of account or final payment, claims, Delay's and Compensation, Disputes & its resolution mechanism, Contract management and administration.

Valuation: Definitions of terms used in valuation process, Purpose of valuation, Cost, Estimate, Value and its relationship, Capitalized value. Freehold and lease hold and easement, Sinking fund, Depreciation—Methods of estimating depreciation, Outgoings, Process and methods of valuation: Rent fixation, valuation for mortgage, valuation of land.

Course	Course Outcomes: After completing the course, the students will be able to								
CO1	Taking out quantities and work out the cost and preparation of abstract for the								
	estimated cost for various civil engineering works.								
CO2	Prepare detailed and abstract estimates for various road works, structural								
	works and water supply and sanitary works.								
CO3	Prepare the specifications and analyze the rates for various items of work.								
CO4	Assess contract and tender documents for various construction works.								
CO5	Prepare valuation reports of buildings.								

Refe	Reference Books								
1.	Datta B.N., "Estimating and costing", 24th edition, CBS Publishing House, New								
	Delhi.								
2.	B.S. Patil, "Civil Engineering Contracts and Estimates", 3 rd edition, Universities								
	Press, New Delhi.								
3.	M. Chakraborthi; "Estimation, Costing and Specifications", Laxmi Publications,								
	New Delhi.								
4.	MORTH Specification for Roads and Bridge Works – IRC, Bureau of Indian								
	Standards, New Delhi.								
5.	Kohli D.D and Kohli R.C, "Estimating and Costing", 12 th Edition, S.Chand								
	Publishers, New Delhi.								

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marksare executed by means of an examination.

CO/PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO 1	2	2	1	-	-	-	-	-	-	1	1	-
CO 2	2	2	1	-	-	-	-	-	-	-	-	-
CO 3	2	2	1	-	-	-	-	-	-	ı	ı	-
CO 4	1	1	-	-	-	-	-	-	-	-	-	1
CO5	2	2	1	-	-	-	-	-	-	-	-	-

Semester VII										
Prestressed Concrete										
	(Theory)									
Cou	rse Code: MVJ22CV73	CIE Marks: 50								
Cre	Credits: L:T:P: 3:2:0 SEE Marks: 50									
Hours: 40L + 10 T SEE Duration: 3 Hrs.										
Cou	rse Learning Objectives: The studen	ts will be able to								
1	Use the basics of prestressing to conc	rete elements.								
2	Restate the basic principle of prestres	sing including losses.								
3	Interpret the deflections in a prestress	ed concrete member.								
1		under limit state of serviceability and design								
4	the pre- stressed beam under permissible stress condition.									
5	Describe the design of anchorage zones.									

UNIT-I	
Introduction to pre-stressed concrete structures: Concept of Pre stressing - Types of Pre stressing - Advantages - Limitations —Pre stressing systems - Anchoring devices - Materials - Mechanical Properties of high strength concrete - high strength steel - Stress-Strain curve for High strength concrete. Comparison between RCC & PSC. Analysis of members at transfer - Stress concept - Force concept - Load balancing concept - Kern point -Pressure line. (More problems on stress concept).	8 Hrs
UNIT-II	
Losses of Prestress: Loss of Pre stress due to Elastic shortening, Friction, Anchorage slip, Creep of concrete, Shrinkage of concrete and Relaxation of steel - Total Loss.	8 Hrs
UNIT-III	
Deflection of a pre-stressed member – Deflection due to gravity loads - Deflection due to prestressing force -Total deflection - Limits of deflection - Limits of span-to-effective depth ratio.	8 Hrs
UNIT-IV	
Flexure -Types of flexural failure, IS Code recommendations. Ultimate flexural strength of sections. Shear - IS Code recommendations, shear resistance of sections, shear reinforcement. Limit state of serviceability – control of deflections and cracking.	8 Hrs
UNIT-V	
Design of End block: Transmission of Prestress in pretension members, transmission length, Anchorage stress in post-tensioned members. Bearing stress and bursting tensile force stresses in end blocks- Methods, I.S. code provision for the design of end block reinforcement.	8 Hrs

Course	Course Outcomes: After completing the course, the students will be able to									
CO1 Restate the basic concept of pre-stressing and understand the requirement of PSC										
	members for present scenario.									
CO2	Examine the stresses encountered in PSC element during transfer and at working.									
CO3	Interpret the effectiveness of the design of PSC after studying losses.									

CO4	Investigating the PSC element and finding its efficiency and design PSC beam for different requirements.
CO5	Design the end blocks in PSC using codal provisions.

Refer	rence Books
1.	T.Y. Lin, Ned H. Burns, "Prestressed Concrete Structure", 3 rd Edition, John Wiley &
	Sons Inc., USA.
2.	N. Krishna Raju, "Prestressed Concrete", 6th edition, McGrawhill Publications, New
	Delhi.
3.	G.S.Pandit and S.P.Gupta, "Prestressed Concrete", CBS Publishers & Distributors, New
	Delhi.
4.	IS 1343-2012, "Prestressed Concrete — Code of Practice" Bureau of Indian Standards,
	New Delhi.

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marksare executed by means of an examination.

The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO/PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO 1	3	2	2	-	-	-	-	-	-	-	-	1
CO 2	3	2	2	-	-	-	-	-	-	-	-	1
CO 3	3	2	2	-	-	-	-	2	-	-	-	1
CO 4	3	2	2	-	-	-	-	2	-	-	-	1
CO5	3	2	2	-	-	-	-	2	-	-	-	2

	Semester VII									
	Intelligent Transportation Systems (Theory)									
Cou	Course Code: MVJ22CV741 CIE Marks: 50									
Cre	Credits: L:T:P: 3:0:0 SEE Marks: 50									
Hou	Hours: 40L SEE Duration: 3 Hrs.									
Cou	rse Learning Objectives: The stude	ents will be able to								
1	To learn the fundamentals of ITS.									
2	2 To study the ITS functional areas.									
3	To have an overview of ITS implementation in developing countries.									

UNIT-I	
Introduction to Intelligent Transport System: Introduction to Intelligent	8 Hrs
Transportation Systems (ITS) -Definition – Role and Responsibilities –	
Advanced Traveller Information System – Fleet Oriented ITS Services –	
Electronic Toll Collection – Critical issues – Security – Safety.	
UNIT-II	
ITS Architecture and Hardware: Architecture – ITS Architecture	8 Hrs
Framework – Hardware Sensors – Vehicle Detection – Techniques – Dynamic	
Message Sign – GPRS – GPS – Toll Collection.	
UNIT-III	
Advanced Transport Management System: Video Detection – Virtual Loop	8 Hrs
- Cameras - ANPR – IR Lighting – Integrated Traffic Management – Control	
Centre – Junction Management Strategies- ATMS – Advanced Traveler	
Information Systems (ATIS)- Route Guidance – Issues - Historical – Current –	
Predictive Guidance – Data Collection – Analysis – Dynamic Traffic	
Assignment (DTA) – Components – Algorithm.	
UNIT-IV	
Advanced Traveller and Information System: Travel Information – Pre Trip	8 Hrs
and Enroute Methods- Basic ATIS Concepts - Smart Route System - Data	
Collection – Process – Dissemination to Travelers – Evaluation of Information	
 Value of Information – Business Opportunities. 	
UNIT-V	
Case Studies: Automated Highway Systems - Vehicles in Platoons -	8 Hrs
Integration of Automated Highway Systems. ITS Programs in the World –	
Overview of ITS implementations in developed countries, ITS in developing	
countries.	

Course	Course Outcomes: After completing the course, the students will be able to								
CO1	CO1 Understand the sensor and communication technologies.								
CO2	Apply the various ITS methodologies								
CO3	Define the significance of ITS under Indian conditions								

Refe	Reference Books									
1.	Intelligent Transport Systems, Intelligent Transportation Primer, Washington, US, 2001.									
2.	Henry F. Korth, and Abraham Siberschatz, Data Base System Concepts, McGraw Hill, 1992.									

3.	Turban E., "Decision Support and Export Systems Management Support Systems",
	Maxwell Macmillan, 1998.
4.	Sitausu S. Mittra, "Decision Support Systems – Tools and Techniques", John Wiley, New
	York, 1986.
5.	Cycle W.Halsapple and Andrew B.Winston, "Decision Support Systems – Theory and
	Application", Springer Verlog, New York, 1987.
6.	ITS Hand Book 2000: Recommendations for World Road Association (PIARC) by Kan
	Paul Chen, John Miles.

Continuous Internal Evaluation (CIE): Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of CO's and Bloom's taxonomy level.

СО/РО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2		1	-	-	-	-	-	-	-	-	-
CO2	-	2	2	-	-	-	-	-	-	1	1	-
CO3	-	-	-	1	2	-	-	-	-	-	1	1

	Semester VII							
Precast Members - Systems & Construction								
(Theory)								
Cou	Course Code:MVJ22CV742 CIE Marks: 50							
Cre	redits: L:T:P: 3:0:0 SEE Marks: 50							
Hou	Hours: 40L SEE Duration: 3 Hrs.							
Cou	rse Learning Objectives: The stud	ents will be able to						
1	Impart concepts of precast concrete building design.							
	Comprehend various aspects like selection and planning of structural system and							
2 components, significance, plant and production methods, transportation								
	sequence of precast elements.							
3	Evaluate actual loads integrating architectural and services requirements structural							
3	modelling & analysis of a precast building.							
4	Design and detailing of precast multi-storeyed building using software.							

UNIT-I						
Introduction to Precast and its elements: tractors, end users) and Limitations,	8 Hrs					
Residential, Commercial & Industrial Applications of precast, Materials used,						
Code provisions and clauses.						
Major elements (Beam, slab, wall, column, foundation, staircase, roof						
elements, façade): Classification, Types and shapes, selection, application,						
erection, advantages, Infra works - Pipes & drains, duct bank, baggage handling						
tunnel, culvert and sleeper, facia element, pavement and channel.						
UNIT-II						
Precast Structural Systems, Production, Storage, & Logistics: Structural	8 Hrs					
System: Skeletal System, Portal Frame system, Large Panel system, Cell						
Block system and hollow block system, Guide lines of selection – Residential						
& office buildings, Industrial Buildings, Commercial buildings, Structural						
Stability and Structural Behaviour.						
Plant and Production: Introduction -Types & Process, Production – Design						
and shop drawings, check lists, Moulding, Casting and its types, Concreting,						
Curing, Demoulding and inspection.						
Storage, Delivery, Handling- introduction and types of equipment, lifting						
devices, Erection and installation - Horizontal components, vertical						
components, special elements, Quality Inspection and Tolerance.						
UNIT-III						
Modelling, Analysis and Design of Wall System-	8 Hrs					
Design Basis Criteria: Geometric parameters and Occupancy, Location and						
Associated Parameters, Systems and material specifications, analysis tools,						
Loads and Load Combinations – gravity loads, lateral loads (seismic and						
wind).						
ETABS software-Modelling, Analysis and Design of structural elements for						
RC Wall system-Design of RC wall, beam, slab & staircase, Design for						
stripping, stacking, transportation and erection for all elements.						
UNIT-IV	8 Hrs					
Joints Connections for RC Wall system, Modelling, Analysis, Design of the						
Frame system: Joints connections for RC wall system – Wall to foundation,						
wall to wall horizontal connection, wall to wall vertical connection, beam to						
wall connection, beam to beam connection, slab to wall – progressive collapse,						

diaphragm action & slab to beam connection, staircase to beam or wall connection.						
Modelling, Analysis and design for Frame system and its connections: ETABS						
Modelling, Analysis and Design for frame system (foundation, column, beam,						
slab etc.)						
UNIT-V						
Prestressed concrete and Preventive Measures and case studies: Prestressed 8 Hrs						
Concrete, Various types of slab design and its check, Slab to beam connection						
Concrete, Various types of slab design and its check, Slab to beam connection Preventive Measures – Testing requirements, water tightness, temporary						
, ,,						
Preventive Measures – Testing requirements, water tightness, temporary						

Course	Course Outcomes: After completing the course, the students will be able to							
CO1	Comprehend the necessity of precast construction							
CO2	Adopt the appropriate mould and method for casting, transportation, and erection							
CO3	Precast Concrete Structures Paperback – 12 June 2019 by Kim S. Elliott							
CO4	Create and analyze a precast building model using ETABS software							
CO5	Design of precast building including connections, adhering to the code requirements & functional aspects							

Refe	erence Books
1.	Hubert Bachmann and Alfred Steinle, "Precast Concrete Structures", 1st edition, Wiley
	India Pvt. Ltd., New Delhi.
2.	Kim S. Elliott, "Precast Concrete Structures", 2 nd edition, CRC Press, New Delhi.
	TO 15016 D. TH. D. C. L. D. D. C. L. D. C. D. C. D. C. L. D. C. D. C. L. D.
3.	IS 15916, Building Design and Erection Using Prefabricated Concrete, Bureau of
	Indian Standards, New Delhi.
4.	IS 13920, Ductile Design and Detailing of Reinforced Concrete Structures Subjected to
	Seismic Forces, Bureau of Indian Standards, New Delhi.

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marksare executed by means of an examination.

The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the entire syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in

which both questions cover entire unit having same complexity in terms of CO's and Bloom's taxonomy level.

CO/PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO 1	2	-	-	-	1	1	1	-	1	-	-	1
CO 2	2	-	1	-	1	1	-	-	-	-	-	1
CO 3	3	2	-	-	1	1	-	-	1	-	-	-
CO 4	2	-	1	-	1	-	-	-	1	-	-	1
CO 5	2	-	1	-	-	1	-	-	1	-	-	1

	Semester VII								
	Earthquake Resistant Structures								
	(Theory)								
Cou	Course Code: MVJ22CV743 CIE Marks:50								
Cre	Credits: L:T:P: 3:0:0 SEE Marks: 50								
Hou	Hours: 40L SEE Duration: 03 Hrs								
Cou	Course Learning Objectives: The students will be able to								
1	Fundamentals of structural dynamics.								
2	Fundamentals of engineering seismology.								
3	3 Irregularities in building which are detrimental to its earthquake performance.								
4	4 Different methods of computation seismic lateral forces for framed and masonry structures.								
Earthquake resistant design requirements for RCC and Masonry structures and Rel									
3	clauses of IS codes of practice pertinent to e	arthquake resistant design of structures.							

TIMITE T						
UNIT-I	8 Hrs					
Introduction to structural dynamics: Basic Definitions, Concept of degrees of						
freedom, D'Alembert's principle, principle of virtual displacement and energy						
principles, Types of Vibrations, Damping and its types, Analytical Model of dynamic						
system, Free vibration of damped and undamped system having single degree of						
freedom. Concept of equivalent spring, Numerical problems on determining natural						
period, natural frequency, mass, stiffness, amplitude, and acceleration for undamped						
free vibration systems.						
UNIT-II						
Engineering Seismology: Terminologies (Focus, Focal depth, Epicenter, etc.),	8 Hrs					
Causes of Earthquakes, Theory of plate tectonics, Types and characteristics faults,						
Classification of Earthquakes, Types and characteristics of seismic waves, Magnitude						
and intensity of earthquakes, local site effects.						
Earthquake ground motion characteristics: Amplitude, frequency and duration,						
Seismic zoning map of India, Earthquake measuring instruments-Seismoscope,						
Seismograph and accelerograph.						
UNIT-III						
Seismic Performance of Buildings and Over View of IS-1893 (Part-1): Types of						
damages to building observed during past earthquakes, Plan irregularities, mass						
irregularity, stiffness irregularity, Concept of soft and weak storey, Torsional						
irregularity and its consequences, configuration problems, continuous load path,						
Architectural aspects of earthquake resistant buildings, Lateral load resistant systems.						
Seismic design philosophy, Structural modeling, Code based seismic design methods.						
UNIT-IV						
Determination of Design Lateral Forces: Equivalent lateral force procedure and	8 Hrs					
dynamic analysis procedure. Step by step procedures for seismic analysis of RC						
buildings using Equivalent static lateral force method and response spectrum methods						
(maximum of 4 storeys and without infill walls). Numerical problems.						
UNIT-V						
Ductility considerations: Factor affecting ductility, ductile detailing of flexural						
members, columns and frame members as per IS13920. Design of Ductile Reinforced						
Concrete Beams, Seismic Design of Ductile Reinforced Concrete column.						
Earthquake Resistant Design of Masonry Buildings: Performance of Unreinforced,						
Reinforced, Infill Masonry Walls, Box Action, Lintel and sill Bands, elastic properties						
of structural masonry, lateral load analysis, Recommendations for Improving						

performance of Masonry Buildings during earthquakes, Retrofitting of Masonry buildings.

Course	Course Outcomes: After completing the course, the students will be able to							
CO1	Relates to structural idealization studies on properties of real structures.							
CO2	Understand the principal of Seismology.							
CO3	Analyze earthquake characteristics and associated effects.							
CO4	Apply the concepts of earthquake design and concept of lateral load distribution on							
	buildings.							
CO5	Apply the concepts of earthquake design on masonry buildings.							

Refe	Reference Books								
1.	Duggal S K, Earthquake Resistant design of Structures, 5 th Edition, 2017, Oxford University								
	Press, New Delhi.								
2.	Pakaj Agarwal & Manish Shrikande, Pakaj Agarwal & Manish Shrikande, Earthquake								
	Resistant Design of Structures, 4 th Edition, PHI India, New Delhi.								
3.	Vinod Hosur, Earthquake resistant design of Building Structures, 3 rd Edition,								
	Wiley(India),NewDelhi.								
4.	Anil K Chopra, Theory and Application to Earthquake Engineering, 7 th edition, 2018,								
	Pearson Education, New Delhi.								

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of CO's and Bloom's taxonomy level.

CO/PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO 1	3	1	1	-	-	-	-	-	-	-	-	1
CO 2	3	1	1	-	-	-	-	-	-	-	-	1
CO 3	3	2	2	-	-	-	-	1	-	-	-	3
CO 4	3	2	2	-	-	-	-	1	-	-	-	3
CO5	3	2	2	-	-	-	-	1	-	-	-	3

	Semester VII							
Ground Improvement and Reinforced Earth								
(Theory)								
Course Code: MVJ22CV744 CIE Marks: 50								
Cre	Credits: L:T:P: 3:0:0 SEE Marks: 50							
Hou	Hours: 40L SEE Duration: 3 Hrs.							
Course Learning Objectives: The students will be able to								
1	State the engineering behavior of natural soils & various methods adopted for							
1	Evaluation of soil conditions.							
	Apply knowledge of mathematics, Science a	nd Geotechnical Engineering to solve						
2	problems in the field of modification by ad	opting Mechanical and Geo-synthesis						
	methods for construction of civil engineering structures.							
3	Explain the techniques and methods adopted for dewatering and grouting methods.							
4	Apply the knowledge on stabilization of soils.							
5	Illustrate the various reinforcement techniques adopted for stabilization of soils.							

Y TN TYPE Y	
UNIT-I	
Rock cycle: Classification of rocks and rocks forming minerals; Weathering	8 Hrs
process and formation of soil, Role of ground improvement in foundation	
Engineering, Methods of Ground improvement – Geotechnical Problems in	
alluvial, lateritic, and black cotton soils.	
Selection of Suitable ground improvement techniques based on soil	
conditions- In situ and laboratory tests to characterize problematic soils,	
Mechanical, Hydraulic, Physico-chemical, Electrical, Thermal methods, etc.	
and their applications.	
UNIT-II	
Mechanical Modification – Principles of soil densification – Properties of	8 Hrs
Compacted soil, Compaction control tests, Specification of compaction	
requirements, Blasting, Vibro-compaction, Dynamic Tamping and	
Compaction piles.	
Geo-synthetics – Types - general applications - types of geotextiles and geo-	
grids - physical and strength properties of geotextiles and geo-grids - behavior	
of soils on reinforcing with geotextiles and geo-grids - design aspects with	
geotextiles and geo-grid.	
UNIT-III	
Hydraulic Modification – Objectives and techniques, traditional dewatering	8 Hrs
methods and their choice, Design of dewatering system, Electro-osmosis,	
Filtration, Drainage and seepage control with Geo-synthetics, Preloading and	
vertical drains, Electro-kinetic dewatering, capacity of pumps and pumps	
design, installation and operation of dewatering systems – single line, two-	
line, flow to a single well, multiple well systems.	
Grouting : Introduction, effect on properties of soils, Grouting – types -	
desirable characteristics of grouts - grouting methods - grouting pressure -	
grouting materials - grouting technology; - permeation grouting - compaction	
grouting - soil fracture grouting - jet grouting - application and limitations - slab	
jacking, grouted columns - application to dams.	
UNIT-IV	
Stabilization of soils: Mechanical Stabilization -Soil aggregate mixtures,	8 Hrs
properties and proportioning techniques, soft aggregate stabilization,	

compaction, field compaction control, Cement Stabilization- Mechanism, factors affecting and properties, use of additives, design of soil cement mixtures, construction techniques, Lime and Bituminous Stabilization-Type of admixtures, mechanism, factors affecting, design of mixtures, construction methods.	
UNIT-V	
Soil improvement by using Reinforcing Elements - Introduction to	8 Hrs
Reinforced Earth - Load Transfer Mechanism and Strength Development -	
Soil Types - Reinforcing Materials - Reinforced Earth Retaining walls -	
Reinforced Embankments - Soil Nailing.	
Ground Improvement Techniques for Geotechnical Earthquake Engineering,	
Case studies on ground improvement techniques.	

Course	Course Outcomes: After completing the course, the students will be able to						
CO1	Restate the natural processes involved in the formation of soil as well as find out the						
	suitable method for stabilization of soils.						
CO2	Address the mechanical modifications and geo-synthesis effects on soil.						
CO3	Implement the various dewatering methods and grouting methods.						
CO4	Analysis the various chemical methods adopted for Stabilization of soils.						
CO5	Select the suitable method for stabilization of soil by Reinforcement techniques.						

Refe	erence Books
1.	Purushothama Raj P, "Ground Improvement Techniques", 2 nd edition, Laxmi
	Publications, New Delhi.
2.	Manfred Hausmann, "Engineering principles of ground modification", Mc Graw Hill
	Pub. Co., New Delhi.
3.	Koerner R.M, "Construction and Geotechnical Method in Foundation Engineering", Mc
	Graw Hill Pub. Co., New Delhi.
4.	Bell, F.G., "Methods of treatment of unstable ground", Butterworths, London.
5.	Ingles. C.G. and Metcalf J.B, "Soil Stabilization; Principles and Practice", Butterworths.
6.	Principles and Practice of Ground Improvement, Jie Han, Wiley Publishers, New Delhi.

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marksare executed by means of an examination.

The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the entire syllabus. Part - B Students have to

answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO/PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO 1	1	1	-	-	-	-	-	-	2	-	-	-
CO 2	-	-	2	2	-	-	-	-	-	1	1	-
CO 3	-	3	1	1	-	3	-	-	-	-	-	-
CO 4	1	-	1	-	3	-	-	-	3	-	-	-
CO5	-	-	3	1	-	-	-	-	-	3	-	-

	Semester VII							
	Design and Execution of Pile Foundations							
	(The	ory)						
Cou	rse Code: MVJ22CV745	CIE Marks: 50						
Cre	dits: L:T:P: 3:0:0	SEE Marks: 50						
Hou	rs: 40L	SEE Duration: 3 Hrs.						
Cou	rse Learning Objectives: The students v	vill be able to						
1	Introduce the concept of Piling works and	d design requirements for a pile.						
2	Elaborate the construction procedures wh	nich are involved in different pile						
4	foundations.							
3	3 Explain the different load test which needs to be conducted on the piles.							
1	Understand the Environmental, Health and Safety standards which need to be in							
4	place for the handling of the pile works.							
5	Elaborate on the bill of quantities of various Pile foundations.							

UNIT-I	
Introduction to piles, Design and construction of Bored Cast in-situ piles	8 Hrs
and Driven Cast in-situ piles: Overview of Pile foundations, Selection	
Criteria, Common Design considerations, General Terminologies and Indian	
standard codes. Materials and Equipment, Construction procedures,	
workmanship, Vertical and Lateral Capacity calculations, Load tests, Case	
Studies of Bored cast insitu piles and Driven cast insitu piles.	
UNIT-II	
Introduction, design and construction of precast driven and under reamed	8 Hrs
piles: Materials and Equipment, Construction procedures, workmanship,	
Vertical and Lateral Capacity calculations, Load tests, Case Studies of precast	
driven piles, precast driven piles in pre-bored holes and Under reamed piles.	
UNIT-III	
Grouping and settlement of piles and testing: Introduction to Grouping and	8 Hrs
Settlement of piles, Pile Group efficiency and Spacing, Capacity of Pile group,	
Settlement of Pile group, Case studies Introduction & Types of testing on piles	
and General requirements for testing, Pile Integrity tests - introduction &	
Equipment Types of Pile Integrity test, Data Recording & Interpretation of	
results, Introduction to quality assurance of piles, General requirement.	
UNIT-IV	
Quality control and Special Types of piles: Quality Control of BCIS, DCIS	8 Hrs
piles, Quality records and checklists. Materials, Equipment, manufacturing	
procedure, Design and installation, suitability and application and failure	
modes of spun piles and helical piles.	
UNIT-V	
Software and Bill of quantities, Construction challenges: Introduction to	8 Hrs
Bill of quantities for Bored cast insitu, Driven Cast insitu, Precast driven and	
Precast driven piles in pre-bored holes and undreamed piles. Challenges in	
bored and driven piles, Introduction to types of piling software, Software	
demonstrations (e.g., PLAXIS) and step-by-step design techniques for deep	
foundations. Modelling in Plaxis 2D.	

Course	Course Outcomes: After completing the course, the students will be able to						
CO1	Comprehend Basic design concepts, of pile foundations.						
CO2	Compute capacity of piles and select suitable type of pile foundation based on soil						
	conditions.						
CO3	Apply different construction procedures of pile foundation.						
CO4	Design and execute different load testing on piles.						
CO5	Compute bill of quantities for pile foundations.						

Refe	erence Books
1.	Satyendra Mittal, "Pile Foundation Design And Construction", 2nd edition, CBS
	Publishers, New Delhi.
2.	Samsher Prakash, Hari D Sharma, "Pile Foundations in Engineering Practice", John Wiley
	& Sons, Inc., New Delhi.
3.	Robert Wade Brown, "Practical Foundation Engineering Handbook", 2 nd edition, Mc.
	Grawhill Publications, New Delhi.
4.	IS 2911- Indian standard code driven cast insitu, bored cast insitu, Driven precast piles,
	Bureau of Indian Standards, New Delhi.
5.	IS 14593-Indian standard code for bored cast insitu piles founded on rocks – Guidelines,
	Bureau of Indian Standards, New Delhi.

Continuous Internal Evaluation (CIE): Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marksare executed by means of an examination.

The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO/PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO 1	3	3	3	2	-	-	-	-	-	-	-	-
CO 2	3	3	3	1	-	2	-	-	2	-	-	-
CO 3	3	2	2	2	-	-	-	-	2	-	2	2
CO 4	-	3	2	3	1	2	-	-	3	-	3	2
CO 5	1	1	-	-	-	-	-	-	3	-	3	3

	Semester VII						
	Retrofitting and Rehabilitation of Structures						
		(Theory)					
Cou	rse Code: MVJ22CV746	CIE Marks: 50					
Cre	Credits: L:T:P: 3:0:0 SEE Marks: 50						
Hou	Hours: 40L SEE Duration: 3 Hrs.						
Cou	rse Learning Objectives: The stud	ents will be able to					
1	To introduce the concept of Retrofitting, Strengthening and Rehabilitation.						
2	To provide details of Damage Assessment.						
3	To Understand the concept of influence on Serviceability and Durability.						
4	To Understand the concept of maintenance and Retrofitting Techniques.						
5	To explain the details about Artific	ial fibre reinforced polymer.					

UNIT-I					
General: Introduction and Definition for Repair, Retrofitting, Strengthening	8Hrs				
and rehabilitation. Physical and Chemical Causes of deterioration of concrete					
structures, Evaluation of structural damages to the concrete structural elements					
due to earthquake.					
UNIT-II					
Damage Assessment: Purpose of assessment, Rapid assessment, Investigation	8 Hrs				
of damage, Evaluation of surface and structural cracks, Damage assessment					
procedure, destructive, non-destructive and semi destructive testing systems.					
UNIT-III					
Influence on Serviceability and Durability:	8 Hrs				
Effects due to climate, temperature, chemicals, wear and erosion, Design and					
construction errors, corrosion mechanism, Effects of cover thickness and					
cracking, methods of corrosion protection, corrosion inhibitors, corrosion					
resistant steels, coatings, and cathodic protection.					
UNIT-IV					
Maintenance and Retrofitting Techniques: Definitions: Maintenance, Facts	8 Hrs				
of Maintenance and importance of Maintenance Need for retrofitting,					
retrofitting of structural members i.e., column and beams by Jacketing					
technique, Externally bonding(ERB) technique, near surface mounted (NSM)					
technique, External post- tensioning, Section enlargement and guidelines for					
seismic rehabilitation of existing building.					
UNIT-V					
Materials for Repair and Retrofitting: Artificial fibre reinforced polymer	8 Hrs				
like CFRP, GFRP, AFRP and natural fiber like Sisal and Jute. Adhesive like,					
Epoxy Resin, Special concretes and mortars, concrete chemicals, special					
elements for accelerated strength gain, Techniques for Repair: Rust eliminators					
and polymers coating for rebar during repair foamed concrete, mortar and dry					
pack, vacuum concrete, Gunite and Shot Crete Epoxy injection, Mortar repair					
for cracks, shoring and underpinning.					

Course Outcomes: After completing the course, the students will be able to							
CO1	Understand concept of Retrofitting, Strengthening and rehabilitation.						
CO2	Get knowledge about details of Damage Assessment.						
CO3	Gain knowledge on concept of influence on Serviceability and Durability.						
CO4	Understand the concept of maintenance and Retrofitting Techniques.						

CO5	Understand about Artificial fibre reinforced	polymer.
-----	--	----------

Refe	Reference Books						
1.	Alessio Pipinato, "Innovative Bridge Design Handbook: Construction, Rehabilitation and						
	Maintenance", 2 nd edition, Elesvier Publications.						
2.	Charles George Ramsey and Harold Reeve Sleeper, "Traditional Details: For Building						
	Restoration, Renovation, and Rehabilitation", Wiley Publications, New Delhi.						
3.	G. Nandini Devi, "Maintenance, Repair, Rehabilitation, and Retrofitting of Structures",						
	Wiley Publications, 2021, New Delhi.						

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of CO's and Bloom's taxonomy level.

CO/PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO 1	2	2	-	-	-	-	-	-	-	-	-	2
CO 2	2	2	-	-	-	-	-	-	-	-	-	2
CO 3	2	2	1	-	-	-	-	-	-	-	-	2
CO 4	2	2	2	-	-	-	2	-	-	-	-	2
CO5	2	2	2	-	-	-	2	-	-	-	-	2

	Semester VII									
	Road Safety Engineering									
	(Theory)									
Cou	rse Code: MVJ22CV751	CIE Marks: 50								
Cre	Credits: L:T:P: 3:0:0 SEE Marks: 50									
Hou	Hours: 40L SEE Duration: 3 Hrs.									
Cou	rse Learning Objectives: The stud	lents will be able to								
1	To provide students with a compre	hensive understanding of the principles, strategies,								
1	and techniques related to ensuring safety on roadways.									
2	To equip students with the know	ledge and skills necessary to analyze road safety								
	issues.									
3	To design effective road safety me	easures and contribute to the improvement of road								
3	safety practices.									

UNIT-I	
Accident Investigations and Risk Management: Collection of Accident	8 Hrs
Data, Assessment of Road Safety, Methods to Identify and Prioritize Hazardous	
Locations and Elements, Determine Possible Causes of Crashes, Crash	
Reduction Capabilities and Countermeasures, Effectiveness of Safety Design	
Features, Accident Reconstruction, Condition and Collision Diagram.	
UNIT-II	
Traffic Engineering Studies: Statistical Methods In Traffic Safety Analysis –	8 Hrs
Regression Methods, Poisson Distribution, Chi-Squared Distribution,	
Statistical Comparisons- Traffic Management Measures And Their Influence	
On Accident Prevention.	
UNIT-III	
Road Safety in Transport Planning and Geometric Design: Vehicle and	8 Hrs
Human Characteristics, Road Design and Safety Elements, Redesigning	
Junctions, Cross Section Improvements, Traffic Control, Traffic Calming	
Measures, Road Safety Furniture.	
UNIT-IV	
Role of Signs and Markings in safety: Types Of Signs – Design	8 Hrs
Specifications – Guidelines For Installation – Role Of Signs In Safety; Types	
Of Road Markings – Design Specifications – Role Of Road Markings In	
Safety.	
UNIT-V	
Traffic Management Systems for safety: Road Safety Audits and Tools for	8 Hrs
Safety Management Systems, Road Safety Audit Process, Road Safety	
Improvement Strategies, ITS and Safety.	

Course	Course Outcomes: After completing the course, the students will be able to							
CO1	Analyze road safety data, identify hazardous locations, and assess safety risks on							
	roadways.							
CO2	Evaluate the effectiveness of road safety interventions and conduct post-							
	implementation analysis.							
CO3	Utilize modeling and simulation techniques to predict and assess the impact of road							
	safety measures.							
CO4	Demonstrate knowledge of traffic control devices, traffic management strategies, and							
	their role in enhancing road safety.							

CO5	Comprehend the legal and policy framework related to road safety engineering and	l
	contribute to policy development.	

Refe	Reference Books							
1.	L.R. Kadiyali, "Traffic Engineering and Transportation Planning", Khanna Publishers,							
	1999, New Delhi.							
2.	C.S. Papacostas, "Fundamentals of Transportation Engineering", Prentice Hall India,							
	1987, New Delhi.							
3.	C. JotinKhisty, B. Kent Lall, "Transportation Engineering – An Introduction", 3 rd edition,							
	Pearson Publication, New Delhi.							
4.	Richardo G Sigua, "Fundamentals of Traffic Engineering", The University of Philippines							
	Press, 2008, Philippines.							
5.	Rune Elvik, Alena Hoye, TrulsVaa, Michael Sorenson, "Handbook of Road Safety							
	Measures", Second Edition, Emerald Group Publishing Limited, New Delhi							

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marksare executed by means of an examination.

The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students must answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three subdivisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

СО/РО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	1	-	-	-	-	-
CO2	-	-	2	1	-	2	-	-	-	-	1	-
CO3	-	-	1	-	2	-	-	-	-	-	1	-
CO4	1	-	-	-	-	2	-	-	-	1	-	-
CO5	-	1	-	-	-	-	2	-	2	1	-	-

	Semester VII							
	Conservation of Natural Resources							
		(Theory)						
Cou	rse Code:MVJ22CV752	CIE Marks: 50						
Cre	dits: L:T:P: 3:0:0	SEE Marks: 50						
Hou	rs: 40L	SEE Duration: 3 Hrs.						
Cou	rse Learning Objectives: The stude	ents will be able to						
1	Learn types of land forms, soil cons	servation and sustainable land use planning.						
2	Apprehend water resources, types, distribution, planning and conservation. Water							
	pollution and types of uses.							
3	Know the types of minerals and roc	ks.						
1	Know the atmospheric composition of air, pollution and effects on human beings							
4	animals and plants. Air pollution control.							
5	Apprehend basics of biodiversity and ecosystems.							

UNIT-I	
Land: Land as a resource, types of lands, conservation of land forms, deforestation, effect of land use changes. Soil health, ecological and economic	8 Hrs
importance of soil, impact of soil degradation on agriculture and food security,	
need for soil conservation, sustainable land use planning.	
UNIT-II	
Water: Global water resources, Indian water resources, Resources system planning. Water use sectors- domestic, industrial, agriculture. Water deficit and water surplus basins in India, equitable distribution, Inter-basin water transfers, Interlinking of rivers — Himalayan component, peninsular component, issues involved. Ground water, its potential in India, conjunctive use, recharge of ground water. Contamination of ground water, sea water ingress, problems and solutions.	8 Hrs
UNIT-III	
Air: Introduction, composition, sources and classification of air pollutants, National Ambient Air quality standards (NAAQS), Air quality index, effects of air pollution on human health. Economic effects of air pollution. Control of air pollution by equipment, smoke and its control. Ozone depletion –impacts, photochemical changes.	8 Hrs
UNIT-IV	
Biodiversity: Introduction, Flora and Fauna, Importance of biodiversity, Economic values-medicinal plants, drugs, fisheries biogeochemical cycling. Threat to biodiversity, natural & anthropogenic disturbance, habitat loss. Conservation of biodiversity, National parks, wild life sanctuaries, zoological gardens, gene banks, pollen culture, ecological restoration, social forestry. Ecosystem: Definition, Types: forest, grass land, marine, desert, wetlands, estuarine, lotic, lentic. Abiotic & biotic components of ecosystem.	8 Hrs
UNIT-V	
Global warming: concept, indicators, factor and effects. Global climate change-indicators, health impacts, effect on biodiversity. Introduction to global efforts in conservation of biodiversity. EIA regulations in India, status of EIA in India, list of projects needing environmental clearance under EIA notifications. Case study of hydro power/ thermal power projects.	8 Hrs

Course	Course Outcomes: After completing the course, the students will be able to					
CO1	Apprehend various components of land as a natural resource and land use planning.					
CO2	Know availability and demand for water resources as applied to India.					
CO3	Analyze the components of air as resource and its pollution.					
CO4	Discuss biodiversity & its role in ecosystem functioning.					
CO5	Critically appreciate the environmental concerns of today.					

Refe	Reference Books					
1.	P.Jaya Rami Reddy, "A Textbook of Hydrology", University Science Press, 2011, New					
	Delhi.					
2.	Singh J.S, Singh S.P & Gupta, S.R., "Ecology, environment and resource conservation",					
	2006, Anamaya publications, New Delhi.					
3.	Krishnamurthy K.V., "An advanced textbook of Biodiversity- principle & practices."					
	Oxford and IBH publications Co.Pvt ltd, 2004, New Delhi.					

Continuous Internal Evaluation (CIE): Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO/PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO 1	-	1	-	2	-	1	3	-	1	-	-	3
CO 2	-	1	-	2	-	1	3	-	1	-	-	3
CO 3	-	1	-	2	-	1	3	-	1	-	-	2
CO 4	2	1	-	2	-	1	2	-	1	-	-	3
CO5	-	1	-	2	-	1	3	-	1	-	-	2

	Semester VII						
	Energy Efficiency, Acoustics and Daylighting in Building						
		(Theory)					
Cou	Course Code:MVJ22CV753 CIE Marks: 50						
Cred	Credits: L:T:P: 3:0:0 SEE Marks: 50						
Hou	Hours: 40L SEE Duration: 3 Hrs.						
Cou	rse Learning Objectives: The stude	ents will be able to					
1	To facilitate learners to understand climatology, heat ingress in building and energy.						
2	To expose the learners to building acoustics, indoor air quality and day lighting.						
3	To impart fundamental knowledge on Life cycle assessment and Energy efficiency in buildings.						

UNIT-I	
Introduction to Climatology and heat ingress in building: Basics of	8Hrs
climatology, Earth - Sun relationship, Solar angles and sun path diagram,	
Design of shading systems. Basics of Thermodynamics, Convection/radiation	
heat transfer, Heat gain through various elements of a building, Thermal	
comfort models and case studies.	
UNIT-II	
Building acoustics, Indoor air quality and Lighting in buildings: Basics of	8 Hrs
sound and Building acoustics - Acoustic defects, prevention of sound	
transmission and acoustic measure for office building. Indoor Air Quality –	
Effects, control of contaminants and moisture in indoor environment,	
Integrated approach for IAQ management. Fundamentals of lighting- Day	
lighting and its metrics – Strategies for day lighting and its control. Artificial	
lighting – Design and control strategies – Visual comfort enhancement.	
UNIT-III	
Energy efficient buildings, Water and Waste management in buildings:	8 Hrs
Energy efficiency – Energy efficiency in building envelope and energy	
efficient HVAC and Lighting as per Energy conservation building code	
(ECBC) 2017, Energy simulation, Energy management system – Renewable	
energy and Energy Audit. (demand control ventilation) Water Efficiency –	
Planning and design of water management system, Rain water harvesting,	
Water efficient design and fixtures, Treatment and reuse and Water efficient	
landscape system.	
Waste management – Types of waste and its treatment methods,	
Construction and demolition waste management, Waste management in	
residential, commercial buildings, healthcare facilities.	
UNIT-IV	
Life Cycle Assessment of Buildings and Green project management:	8 Hrs
Materials – Green product certifications, features of sustainable building	
materials and sustainable alternatives for structural, envelope and finishing	
materials. Low carbon cement, Zero emission bricks and lean construction	
practices.	
Life cycle assessment and its types – Modelling and Analysis, Greenhouse	
gas emission. Different phases of Green building project management.	
UNIT-V	
Energy Efficient rating: Energy efficiency rating for distribution	8 Hrs
transformers, diesel generator set, motors, pumps, electrical appliances,	

lighting fixtures and lifts as per Bureau of Energy Efficiency (BEE). Energy efficiency in HVAC system – Variable Frequency Drive (VFD), Air volume drive. Roof top solar installations and solar water heaters, Heat recovery system in buildings, Building Management System (BMS) – Occupancy sensors and energy efficient lighting controls, Smart Buildings.

Cour	Course Outcomes: After completing the course, the students will be able to				
CO1	Comprehend climatology, shading system and analyze heat transfer mechanism in				
	buildings.				
CO2	Assess the design considerations and parameters for lighting, acoustics and indoor air				
	quality.				
CO3	Develop solutions for energy efficiency, water efficiency and waste management in				
	buildings.				
CO4	Adopt green project management methodology and evaluate building life cycle				
	assessment.				
CO5	Understand energy efficiency measures in a building.				

Refe	Reference Books				
1.	Energy Conservation Building Code – 2017 (with amendments up to 2020), Bureau of				
	Energy Efficiency.				
2.	The Sustainable Habitat Handbook (6 Volume Set), GRIHA Version 2019.				
3.	National Building Code – 2016, Volume 1&2, Bureau of Indian Standards.				
4.	HarharaIyer G, Green Building Fundamentals, Notion Press.				
5.	Dr. Adv. HarshulSavla, Green Building: Principles & Practices.				

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the entire syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO/PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO 1	1	-	-	-	-	3	2	-	-	-	-	-
CO 2	-	-	-	-	-	2	2	-	-	-	1	-
CO 3	-	2	-	-	-	3	3	-	-	-	-	2
CO 4	1	-	2	-	-	-	3	-	-	-	2	-
CO 5	1	-	-	2	-	-	2	-	-	-	-	-

	Semester VII							
	Environmental Protection and Management							
	(Theor	y)						
Cou	rrse Code:MVJ22CV754	CIE Marks: 50						
Cre	dits: L:T:P: 3:0:0	SEE Marks: 50						
Hours: 40L SEE Duration: 3 Hrs.								
Course Learning Objectives: The students will be able to								
1	Study the facts of environmental pollution and conservation of natural resources.							
2	Study the elements of corporate environmental management systems complying with							
2	international standards.							
2	Learn to lead the environmental assessment	team and implement waste minimization						
options.								
1	Study the application of environmental mana	agement systems audit for various						
4	organizations.							

UNIT-I					
Introduction: Importance of Environmental protection and need for	8Hrs				
Environmental management.					
Environmental Management Standards: Unique Characteristics of					
Environmental Problems - Systems approach to Corporate environmental					
management - Classification of Environmental Impact Reduction Efforts -					
Business Charter for Sustainable Production and Consumption - Tools,					
Business strategy drivers and Barriers - Evolution of Environmental					
Stewardship. Environmental Management Principles – National policies on					
environment, abatement of pollution and conservation of resources - Charter on					
Corporate responsibility for Environmental protection.					
UNIT-II					
Environmental quality: Objectives, Rationale of Environmental standards,	8 Hrs				
Concentration and Mass standards, Effluent and stream standards, Emission					
and ambient standards, Minimum national standards, environmental					
performance evaluation: Indicators, benchmarking. Pollution control Vs					
Pollution Prevention - Opportunities and Barriers - Cleaner production and					
Clean technology, closing the loops, zero discharge technologies.					
UNIT-III					
Environmental Management System: EMAS, ISO 14000 - EMS as per ISO	8 Hrs				
14001 – benefits and barriers of EMS – Concept of continual improvement and					
pollution prevention – environmental policy – initial environmental review –					
environmental aspect and impact analysis – legal and other requirements-					
objectives and targets – environmental management programs – structure and					
responsibility - training awareness and competence- communication -					
documentation and document control – operational control – monitoring and					
measurement – management review.					
UNIT-IV					
Environmental Audit: Environmental management system audits as per ISO	8 Hrs				
19011 – Roles and qualifications of auditors - Environmental performance					
indicators and their evaluation – Non-conformance – Corrective and preventive					
actions –compliance audits – waste audits and waste minimization planning –					
Environmental statement (form V) - Due diligence audit.					

UNIT-V	
Applications: Applications of EMS, Waste Audits and Pollution Prevention	8 Hrs
opportunities in Textile, Sugar, Pulp & Paper, Electroplating, Tanning industry,	
Dairy, Cement, Chemical industries, etc. Transboundary movement, disposal,	
procedures of hazardous wastes.	

Course	Course Outcomes: After completing the course, the students will be able to					
CO1	Gain the knowledge about environmental issues and an approach to corporate					
	environmental management systems for conservation of resources and environmental protection.					
CO2	Appreciate the elements of Corporate Environmental Management systems					
	complying with international environmental management system standards.					
CO3	Lead pollution prevention assessment team and implement waste minimization					
	options.					
CO4	Gain the knowledge about environmental management system audits.					
CO5	Develop, Implement, maintain and Audit Environmental Management systems for					
	industries.					

Reference Books							
1.	Christopher Sheldon and Mark Yoxon, "Installing Environmental management Systems – a step by step guide" Earthscan Publications Ltd, London, 1999.						
	– a step by step guide" Earthscan Publications Ltd, London, 1999.						
2.	ISO 14001/14004: Environmental management systems – Requirements and Guidelines						
	– International Organization for Standardisation, 2004.						
3.	ISO 19011: 2002, "Guidelines for quality and/or Environmental Management System						
	auditing, Bureau of Indian Standards, New Delhi, 2002.						
4.	Paul L Bishop "Pollution Prevention: Fundamentals and Practice", McGraw-Hill						
	International, Boston, 2000.						
5.	Environmental Management Systems: An Implementation Guide for Small and						
	Medium-Sized Organizations, Second Edition, NSF International, Ann Arbor, Michigan,						
	January 2001.						

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the entire syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in

which both questions cover entire unit having same complexity in terms of CO's and Bloom's taxonomy level.

CO/PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO 1	1	-	-	-	-	-	2	-	-	-	2	-
CO 2	1	-	3	-	1	-	-	-	-	1	-	-
CO 3	-	2	-	-	2	-	-	1	-	-	-	1
CO 4	-	-	-	1	-	2	-	1	-	1	-	-
CO 5	1	-	2	-	-	-	-	-	-	-	2	-