

MVJCE CURRICULUM for Department of Information Science and Engineering (2022 Scheme) 5th semester to 7th semester syllabus

V Semester

Course Title	Software Engineering	Semester	V
	and Project		
	Management		
Course code	MVJ22IS51	CIE	50
Total No.of Contact	40	SEE	50
Hours			
No.Of Contact	3(L:T:P:S::3:0:0:0)	Total	100
Hours/week			
Credits	3	Exam Duration	3 hours

Course Objective : This course will enable students to

1. Outline software engineering principles and activities involved in building large software programs and identify ethical and professional issues faced by Software Engineers.

2. Describe the process of requirement gathering, requirement classification, requirement specification and requirements validation.

3. Infer the fundamentals of object-oriented concepts, differentiate system models, use UML diagrams, apply design patterns and explain the role of DevOps in Agile Implementation.

4. Discuss various types of software testing practices and software evolution processes. Recognize the importance of Project Management with its methods and methodologies and identify software quality parameters and quantify software using measurements and metrics. List software quality standards and outline the practices involved.

MODULE 1					
Introduction: The evolving role of software, Software, The changing nature of software	re, Software				
engineering, A Process Framework, Process Patterns, Process Assessment, Personal and To	eam Process				
Models, Process Technology, Product and Process.					

Process Models: Prescriptive models, Waterfall model, Incremental process models, Evolutionary. process models, Specialized process models.

Requirements Engineering: Requirements Engineering Task, Initiating the Requirements Engineering process, Eliciting Requirements, Developing use cases, Building the analysis model, Negotiating Requirements, Validating Requirements, Software Requirement Document.

MODULE 2	8 HRS				
Introduction, Modelling Concepts and Class Modelling: What is Object orientation?	What is OO				
development? OO Themes; Evidence for usefulness of OO development; OO modelling history.					
Modelling as Design technique: Modelling, abstraction, The Three models. Class Modelling: Object and					
Class Concept, Link and associations concepts, Generalization and Inheritance, A sample	class model,				
Navigation of class models, Introduction to RUP and UML diagrams.					
Building the Analysis Models: Requirement Analysis, Analysis Model Approaches, Dat	ta modelling				
Concepts, Object Oriented Analysis, Scenario-Based modelling, Flow-Oriented Modelling, class Based					
modelling, Creating a Behavioural Model.					
MODULE 3	QUDC				
MODULES	<u>о пкэ</u>				
Software Testing: A Strategic Approach to Software Testing, Strategic Issues, Test S	trategies for				
Software Testing: A Strategic Approach to Software Testing, Strategic Issues, Test S Conventional Software, Test Strategies for Object -Oriented Software, Validation Test	trategies for ting, System				
Software Testing: A Strategic Approach to Software Testing, Strategic Issues, Test S Conventional Software, Test Strategies for Object -Oriented Software, Validation Test Testing, The Art of Debugging. Agile Methodology & DevOps: Before Agile – Wat	trategies for ting, System terfall, Agile				
Software Testing: A Strategic Approach to Software Testing, Strategic Issues, Test S Conventional Software, Test Strategies for Object -Oriented Software, Validation Test Testing, The Art of Debugging. Agile Methodology & DevOps: Before Agile – Wat Development. What is DevOps? DevOps Importance and Benefits, DevOps Principles and	trategies for ting, System terfall, Agile Practices, 7				
Software Testing: A Strategic Approach to Software Testing, Strategic Issues, Test S Conventional Software, Test Strategies for Object -Oriented Software, Validation Test Testing, The Art of Debugging. Agile Methodology & DevOps: Before Agile – Wat Development. What is DevOps? DevOps Importance and Benefits, DevOps Principles and C's of DevOps Lifecycle for Business Agility, DevOps and Continuous Testing, How to C	trategies for ting, System terfall, Agile Practices, 7 Choose Right				
Software Testing: A Strategic Approach to Software Testing, Strategic Issues, Test S Conventional Software, Test Strategies for Object -Oriented Software, Validation Test Testing, The Art of Debugging. Agile Methodology & DevOps: Before Agile – Wat Development. What is DevOps? DevOps Importance and Benefits, DevOps Principles and C's of DevOps Lifecycle for Business Agility, DevOps and Continuous Testing, How to C DevOps Tools?, Challenges with DevOps Implementation	trategies for ting, System terfall, Agile Practices, 7 Choose Right				
Software Testing: A Strategic Approach to Software Testing, Strategic Issues, Test S Conventional Software, Test Strategies for Object -Oriented Software, Validation Test Testing, The Art of Debugging. Agile Methodology & DevOps: Before Agile – Wat Development. What is DevOps? DevOps Importance and Benefits, DevOps Principles and C's of DevOps Lifecycle for Business Agility, DevOps and Continuous Testing, How to C DevOps Tools?, Challenges with DevOps Implementation MODULE 4	8 HRS trategies for ting, System terfall, Agile Practices, 7 Choose Right 8 HRS				

Contract Management, Activities Covered by Software Project Management, Plans, Methods and Methodologies, Some ways of categorizing Software Projects, Stakeholders, Setting Objectives, Business Case, Project Success and Failure, Management and Management Control, Project Management life cycle, Traditional versus Modern Project Management Practices.

MODULE 58 HRSActivity Planning: Objectives of Activity Planning, When to Plan, Project Schedules, Sequencing and
Scheduling Activities, Network Planning Models, Forward Pass– Backward Pass, Identifying critical
path, Activity Float, Shortening Project Duration, Activity on Arrow Networks.Software Economics: Evolution of Software Economics, Improving Software Economics, The old way
and the new way. Life-Cycle Phases and Process artifacts.

Course Outcome: students will be able to

CO1	Understand the activities involved in software engineering and analyze the role of various
	process models
CO2	Explain the basics of object-oriented concepts and build a suitable class model using modelling.
	Techniques.
CO3	Describe various software testing methods and to understand the importance of agile
	methodology and DevOps.
CO4	Illustrate the role of project planning and quality management in software development
CO5	Understand the importance of activity planning and different planning models

Textbooks :

1	Roger S. Pressman: Software Engineering-A Practitioners approach, 7th Edition, Tata McGraw								
2	Michael Blaha, James Rumbaugh: Object Oriented Modelling and Design with UML, 2nd								
	Edition, Pearson Education, 2005.								
3	Bob Hughes, Mike Cotterell, Rajib Mall: Software Project Management, 6th Edition, McGraw								
	Hill Education, 2018								
4	Deepak Gaikwad, Viral Thakkar, DevOps Tools from Practitioner's Viewpoint, Wiley								
5	Ian Sommerville: Software Engineering, 9th Edition, Pearson Education, 2012.								
6	Management and Entrepreneurship, N V R Naidu, T Krishna Rao 4th reprint Willey Publications.								
7	Schaum's outline oftheory and problems ofsoftware engineering, David A. Gustafson,								
	McGrawHill's								

References:

1	Principles of Management, P C Tripathi, P N Reddy, 5th edition, Tata Mc Graw Hill, 2012
2	Dynamics of Entrepreneurial Development & Management, Vasant Desai, Himalaya publishing
	house, 2009

CIE Marks:

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

SEE Assessment:

Question paper for the SEE consists of two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus. Part B also covers the entire syllabus consisting of five questions having

choices and may contain sub-divisions, each carrying 16 marks. Students must answer five full questions.

One question must be set from each unit. The duration of examination is 3 hours.

CO-PO Mapping :	ping :	Mar	CO-PO
------------------------	--------	-----	-------

0010	coronaphing.											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	3	2	3					2	3	3
CO2	1	3	3	2	2					2	3	3
CO3	2	3	2	2	3					2	3	3
CO4	2	2	2	2	2					3	3	3
CO5	1	2	3	2	2					2	3	3

3-HIGH 2-MODERATE 1-LOW

Course Title	Computer Networks	Semester	V
Course Code	MVJ22IS52	CIE	50
Total No. Of Contact	40T+26P	SEE	50
Hours			
No.of Contact	5(L:T:P:S::3:0:2:0)	Total	100
Hours/week			
Credits	4	Exam Duration	3
			-

Course Objectives : This course will enable students to

1. To develop an understanding of modern network architectures from a design and performance perspective.

2. To introduce the student to the major concepts involved in network protocols.

3. Get details about Functions of Network layer, Router and delivery of data to host network.

4. Learn the function of mobile networking and switching. 5. Multimedia data transmission in network.

Module 18 hrsData communication Components: Representation of data and its flow Networks, Various Connection
Topology, Protocols and Standards, OSI model, Transmission Media, LAN: Wired LAN, Wireless
LANs, Techniques for Bandwidth utilization: Multiplexing - Frequency division, Time division and
Wave division.

Module 28 hrsData Link Layer: Error Detection and Error Correction - Fundamentals, Block coding, Hamming
Distance, CRC; Flow Control and Error control protocols - Stop and Wait, Go back – N ARQ, Selective
Repeat ARQ. Medium Access Sub Layer: Switching, Random Access, Multiple access protocols - Pure
ALOHA, Slotted ALOHA, CSMA/CD, CDMA/CA, IEEE802 standard protocol

Module 3

The Network Layer: Network layer design issues, Logical Addressing: IPV4, IPV6; Address mapping, routing algorithms, Congestion control algorithms, Internetworking, the network layer in the internet (IPv4 and IPv6), Quality of Service.

Module 4

8 hrs

8 hrs

8 hrs

Transport Layer: Elements of Transport protocols: Addressing, Connection establishment, Connection release, Crash recovery, User Datagram Protocol (UDP), Transmission Control Protocol (TCP), TCP Congestion Control; Quality of Service, QoS improving techniques: Leaky Bucket and Token Bucket algorithm.

Module 5

Application Layer: Domain Name Space (DNS), DDNS, TELNET, EMAIL, File Transfer Protocol (FTP), WWW, HTTP, SNMP, Bluetooth, Firewalls; AI in network infrastructure, Self-Healing Networks.

LABORATORY EXPERIMENTS

1. Learn to use commands like tcpdump, netstat, ifconfig, lookup and trace route. Capture ping and trace route PDUs using a network protocol analyzer and examine. Screen effectiveness studies.

2. Write a program for error detecting code using CRC-CCITT (16- bits).

3. Write a program to find the shortest path between vertices using the Bellman-ford algorithm.

4. Applications using TCP and UDP sockets like: a) Chat b) File Transfer

5. Simulation of DNS using UDP sockets.

6. Write a code for simulating ARP /RARP protocols.

7. Implementation of Stop and Wait Protocol and Sliding Window Protocol.

8. Write a program for congestion control using leaky bucket algorithm.

9. Implement three nodes point – to- point networks with duplex links between them. Set the queue size, vary the bandwidth and find the number of packets dropped using NS 2.

10. Simulate the transmission of ping messages/trace route over a network topology consisting of 6 nodes and find the number of packets dropped due to congestion using NS 2.

11. Simulate an Ethernet LAN using n nodes and set multiple traffic nodes and plot congestion window for different source / destination using NS 2.

12. Simulate simple ESS and with transmitting nodes in wireless LAN by simulation and determine the performance with respect to transmission of packets using NS 2

Course Outcome : At the end of the course students will be able to						
CO1	Analyze and compare different methods of bandwidth utilization to optimize data transfer					
	efficiency.					
CO2	Select the specific IEEE 802 standard protocols to be implemented in the network					
	environment.					
CO3	Apply theoretical knowledge of network layer design issues to real-world networking					
	scenarios and troubleshoot network problems effectively.					
CO4	Analyze metrics such as throughput, delay, and packet loss rate to see how the protocols					
	behave in each scenario.					
CO5	create a user-friendly website that meets modern standards in terms of navigation, design, and					
	performance.					

Textbooks :

1. Computer Networks:5th ed by Andrew. S. Tanenbaum PHI Publication.

2. Data Communications and Networks: 3 rd ed byBehrouz A. Forouzan. TataMcGraw Hill publication.

References :

1. William Stallings, Data and Computer Communication, Tenth Edition, Pearson Education, 2013.

2. James F. Kurose and Keith W. Ross: Computer Networking: A Top-Down Approach Featuring the Internet, 3 rd Edition

CIE Assessment:

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

SEE Assessment:

Question paper for the SEE consists of two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus. Part B also covers the entire syllabus consisting of five questions having choices and may contain sub-divisions, each carrying 16 marks. Students must answer five full questions.

One question must be set from each unit. The duration of examination is 3 hours.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	1	2						1	2
CO2	1	1	2	2	3						2	2
CO3	2	2	2	2	2						2	2
CO4	3	2	2	3	3						2	2
CO5	2	2	2	3	3						1	2

3-High 2-Moderate 1-low

Cour	se Title	Theory of Computation	Semester	V					
Cour	se Code	MVJ22IS53	CIE	50					
Total	No. Of Contact Hours	40	SEE	50					
No. C	of Contact Hours/week	4(L:T:P:S::4:0:0:0)	Total	100					
Cred	its	3	Exam Duration	3 hours					
Cour	se Objectives : This Cours	e will enable the students to							
1. Ac	quire knowledge of Automat	ta Theory as the basis of all computer s	cience languages d	esign.					
2. Un	derstand the concept of Con	text Free Grammars and Languages.							
3. Un	derstand the concepts of Tur	ing Machine and Chomskian Language	es.						
4. AC	quire knowledge of Decidab	a phagog of commiler ant its use							
J. En	rich the knowledge in variou	s phases of complier ant its use.		0 II.uc					
Finito	Automata: Mathamatiaal	proliminarias and notations Car	stral concenta of	опго					
Finite	Automata: Mathematical	preliminaries and notations – Cer	Nondeterministic						
Finite	Automata – Equivalence	of DEA and NEA _Finite Automata	ata with Ensilon						
transi	tions - Application of FA	of DIA and WIA -Time Autom	ata with Epsiton						
Mod	ile 2			8 Hrs					
Regul	lar Expressions: Regular	languages: Regular Expressions –	Finite Automata	and Regular					
Expre	essions – Applications of Re	gular Expressions - Regular Grammar	s. Problems on CF	G, pushdown					
auton	nata			· 1					
Modu	ıle 3								
Regul	lar Languages: Properties o	f regular languages: Pumping lemma	for regular languag	ges – Closure					
prope	rties of regular languages	-Equivalence and Minimization of F	inite Automata. C	Problems on					
Turin	g Machine, Halting Problem	L							
Modu	ile 4			8Hrs					
Conte	ext Free Grammar: Context	Free languages: Context Free Gramma	ars – Parse Trees -	Ambiguity in					
Gram	mars and languages– Appl	ications of Context Free Grammars -	- Pushdown auton	nata (PDA) –					
Langu	lages of a PDA -Equivalence	ce of PDA's and CFG's, Conversion	of PDA -CFG and	a CFG - PDA					
Mod	alo 5	plexity		QUre					
Conte	ne 5 Nt Free Languages: Properti	es of Context Free Languages: Normal	Forms (CNF GNI	ONIS E) for Context					
Eree (Grammars - Pumping lemma	for CEL 's - Closure properties of CE	[
Turin	σ Machines. Turing Machin	es- Programming Techniques for Turi	L ng Machines – Mu	ltitane Turing					
Mach	ines. Problems on lexical an	alvsis		intupe runng					
Course Outcomes: At the end of the course students will be able to									
CO1	Construct finite automata f	or given pattern and find its equivalent	regular expression	s.					
CO2	Design and simplify contended	ext free grammar and find equivalen	t pushdown autom	ata for given					
	language	-	-	-					
CO3	CO3 Design Turing Machines for any languages								
CO4	Derive whether a problem	is decidable or not							
CO5	Understand the basic conce	pts of compiler Design							
Texth	books:								
1.Hop	ocroft J E, MotwaniR and	l Ullman J D, Introduction to Aut	omata Theory, La	anguages and					
Comp	outations, Second Edition, Pe	earson Education, 2012.							
2.Ric	h Eiane—Automata Compu	itability and Complexity: Theory and	d Applications, Se	cond Edition,					
PHI, 2003.									

References:

1. Padma Reddy.A, —Finite Automata and Formal Languages: A Simple Approach.

2. Raghavan V, Principles of Compiler Design, Third Edition, Tata Mc-Graw Hill Education Pvt. Ltd., New Delhi, 2009

CIE Assessment:

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

SEE Assessment:

Question paper for the SEE consists of two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus. Part B also covers the entire syllabus consisting of five questions having choices and may contain sub-divisions, each carrying 16 marks. Students must answer five full questions.

One question must be set from each unit. The duration of examination is 3 hours.

	Ionning											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	3	3	2	3	100	107	100	107	1010	1011	1012
CO2	2	2	2	2	3							
CO3	1	3	3	2	3							
CO4	2	3	2	2	3							
CO5	2	3	1	2	3							

3-High

2-Moderate 1-low

Course Title		Data Visualization Lab	Semester	V			
Course	e Code	MVJ22ISL54	CIE	50			
Total I	No. Of Contact Hours	26	SEE	50			
No. Of	f Contact Hours/week	2(L:T:P:S::0:0:2:0)	Total	100			
Credit	S	1	Exam Duration	3 hours			
Course	e Objectives : This Cou	rse will enable the students to					
1. Ef	fective use of Business I	ntelligence (BI) technology (Tableau) to	o apply data visualiza	ation			
2. Di	scern patterns and relation	onships in the data.					
3. Bu	uild Dashboard application	ons.					
4. Co	ommunicate the results c	learly and concisely.					
5. W	ork with different formation	ts of data sets.					
Sl no		LIST OF PROGRAMS					
1	Understanding Data	, what is data, where to find data,	Foundations for b	uilding Data			
	Visualizations, Creat	ing Your First visualization?					
2	Getting started with	Tableau Software using Data file format	s, connecting				
	your Data to Tableau	i, creating basic charts (line, bar charts,	Tree maps), Using	the Show me			
	panel.						
3	3 Tableau Calculations, Overview of SUM, AVR, and Aggregate features, Creating custo						
	calculations and fields.						
4	Applying new data c	alculations to your visualizations, Form	natting Visualizations	s, Formatting			
	Tools and Menus, Fo	rmatting specific parts of the view	1 51 1 55 11				
5	Editing and Formatti	ng Axes, Manipulating Data in Tableau	data, Pivoting Table	au data.			
6	Structuring your data	, Sorting and filtering Tableau data, Piv	oting Tableau data	~ 1			
7	Advanced Visualizat	ion Tools: Using Filters, Using the De	tail panel, using the	Size panels,			
0	customizing filters, U	Jsing and Customizing tooltips, Formati	ing your data with co	olors.			
8	Creating Dashboard	s & Storytelling, creating your first d	lashboard and Story	r, Design for			
	Visualization.						
9	Tableau file types, publishing to Tableau Online, Sharing your visualizations, printing, and						
	Exporting.						
10	0 Creating custom charts, cyclical data and circular area charts, Dual Axis charts						
Course	ourse Outcomes: At the end of the course students will be able to						
CO1	Understand How to import data into Tableau						
CO2	Understand Tableau cor	cepts of Dimensions and Measures.					
CO3	Develop Programs and understand how to map Visual Layouts and Graphical Properties						
CO4	Create a Dashboard that	links multiple visualizations					
CO5	Use graphical user inter	faces to create Frames for providing sol	utions to real world p	problems.			
Textbo	ooks:						
1.Micro	osoft Power BI cookboo	k, Brett Powell, 2nd edition					
2.R Pro	ogramming for Data Scie	ence by Roger D. Peng (References)					
3. The	Art of R Programming b	y Norman Matloff Cengage Learning In	ndia				

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	2	3							
CO2	2	2	3	2	3							
CO3	2	3	3	2	3							
CO4	2	3	3	2	3							
CO5	2	3	3	2	3							

Course Title	Computer Vision	semester	V
Course Code	MVJ22IS551	CIE	50
Total No. Of Contact	40	SEE	50
Hours			
No. Of Contact	3 (L: T : P :S:: 3: 0: 0 : 0)	Total	100
Hours/week			
Credits	3	Exam	3 hours
		Duration	

Course Objectives : This Course will enable the students to

1. Understanding of the fundamental concepts related to multi-dimensional signal processing, feature extraction, pattern analysis visual geometric modeling, stochastic optimization

2. Knowledge of these concepts is necessary in this field, to explore and contribute to research and further developments in the field of computer vision

3. Applications range from Biometrics, Medical diagnosis, document processing, mining of visual content, to surveillance, advanced rendering etc.

Module 1

Overview of computer vision and its applications: Image Formation and Representation: Imaging geometry, radiometry, digitization, cameras and Projections, rigid and affine transformation Image Processing: Pixel transforms, color transforms, histogram processing, histogram equalization, filtering, convolution, Fourier transformation and its applications in sharpening, blurring and noise removal

Module 2

Feature detection: edge detection, corner detection, line and curve detection, active contours, SIFT and HOG descriptors, shape context descriptors, Morphological operations.

Segmentation: Active contours, split & merge, watershed, region splitting, region merging, graphbased segmentation, mean shift and model finding, Normalized cut

Module 3

Camera calibration: camera models; intrinsic and extrinsic parameters; radial lens distortion; direct parameter calibration; camera parameters from projection matrices; orthographic, weak perspective, affine, and perspective camera models.

Module 4

Motion representation: the motion field of rigid objects; motion parallax; optical flow, the image brightness ,constancy equation, affine flow; differential techniques; feature-based techniques; regularization and robust estimation

Motion tracking: statistical filtering; iterated estimation; observability and linear systems; the Kalman filter

Module 5

Object recognition and shape representation: alignment, appearance-based methods, invariants, image eigenspaces

Cours	se Outcome
CO1	Learn fundamentals of computer vision and its applications
CO2	Understand the basic image processing operations to enhance, segment the images.
CO3	Understand the analyzing and extraction of relevant features of the concerned domain
	problem

CO4	Understand and apply the motion concepts and its relevance in real time applications											
CO5	Apply the knowledge in solving high level vision problems like object recognition, image											
	classific	ation etc										
Textb	ooks:											
1	Compu	ter Visio	n: Algor	ithms ar	nd Appl	ications	, R. Szel	liski, Sp	ringer, 2	2011		
2	Introdu	ctory tec	hniques	for 3D c	compute	er vision	, E. Tru	cco and	A. Verr	i, Prentic	e Hall, 1	998
CIE A	Assessmei	nt:										
CIE is o	executed by	way of qu	izzes (Q)	, tests (T)	and assig	gnments.	A minimu	m of three	e quizzes	are conduc	cted along	with
tests. T	Test portion	is evaluate	ed for 50 r	narks and	quiz is e	valuated	for 10 mai	ks. Facult	y may ac	lopt innova	tive meth	ods for
conduc	ting quizzes	effectivel	y. The nu	mber of q	uizzes m	ay be mo	re than thr	ee (condu	ct additio	nal quizze	s and take	best
three).	i ne three te	sts are $control control cont$	iducted Ic	or 50 mark	s each ar	$\frac{10}{10}$ the ave	erage of al	I the tests	are calcu	lated for 5	0. The ma	rks for
get mai	rks out of 1	$10\ 20\ (2\ as$	ort CIE fo	or 50 mark	aiks caul	<i>i</i>). The m	arks obtai	neu in tes	i, quiz aii	u assigiiii		ided to
SEE /	Assessme	nt:		<u>, , , , , , , , , , , , , , , , , , , </u>								
Ouest	tion paper	for the	SEE co	nsists of	f two pa	arts i.e.	Part A	and Par	t B. Par	t A is co	ompulso	rv and
consig	sts of obj	ective tv	ne or sh	ort answ	ver type	auestic	ons of 1	or 2 ma	irks eac	h for tot	al of 20	marks
cover	ing the wi	ole svlla	abus.	ore unov	, er type	4.0000		01 2 1110			ai oi 20	mumb
Part F	B also cov	ers the e	ntire svl	labus co	nsistino	of five	question	ns havin	o choice	es and ma	av conta	n sub-
divisi	sions, each carrying 16 marks. Students must answer five full questions											
One c	The question must be set from each unit. The duration of examination is 3 hours											
						iurution	or exam	mation	15 5 1100	15.		
					20 5							
					CO-P	O Maj	oping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	2	3							2
CO2	2	2	3	2	3							2
CO3	2	3	3	2	3							2
CO4	2	3	3	2	3							2
												-

 CO5
 2
 3
 3
 2
 3

 3-High
 2-Moderate
 1-Low
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3

Course Title	Artificial Intelligence	semester	
Course Code	MVJ22IS552	CIE	50
Total No. Of Contact Hours	40	SEE	50
No. Of Contact Hours/week	3 (L: T : P :S:: 3: 0: 0 : 0)	Total	100
Credits	3	Exam Duration	3 hours
Course Objectives : This Cou	rse will enable the students to		
1.Understand fundamental con	cepts in Artificial Intelligence.	1 1	
2. Understand and analyze the p	problem-solving techniques and know	vledge representation.	
3.Design intelligent component	ts or programs to meet desired needs.		
5 Understand fundemental con	apprentise Artificial Intelligence		
S.Onderstand fundamental com	cepts in Artificial intelligence.		9 hms
Introduction: AI problems f	Coundation of AI and history of	AI Intelligent agenta	o III s
Environments The concent of	f rationality. The nature of anyirony	AI, Interrigent agents.	Ageins and
solving agents. Problem formul	lation	ments, subclure of age	
Module 2			8 hrs
Knowledge Representation & 1	Reasons: Knowledge – Based Agents	s The Wumpus world	Proposition
Logic: Reasoning patterns in	propositional logic - Resolution.	. Forward & Backwa	rd Chaining
Inference in First order logic:	Propositional vs. first order infere	nce. Unification & lift	ting. Forwar
chaining, Backward chaining, I	Resolution		
Module 3			8 hrs
Searching: Searching for soluti	ons, uniformed search strategies – B	readth first search, dept	h first search
Depth limited search, Iterative	deepening depth first search bi-direct	ction search, Comparing	g uninformed
search strategies. Search with r	partial information (Heuristic search)	, Greedy best first searc	h, A* search
Memory bounded heuristic sea	rch, Heuristic functions.	ý j	,
Local search Algorithms: Hil	ll climbing, Simulated annealing so	earch, Local beam sea	arch, Geneti
algorithms			
Module 4			8 hrs
Constrain satisfaction problem	s: Backtracking search for CSPs loo	cal search for constrain	nt satisfactio
problems.			
Game Playing: Games, Mini	max algorithm, Optimal decisions	in multiplayer games	, Alpha-Bet
pruning, Evaluation functions,	Cutting of search.		
Module 5			8 hrs
Planning: Classical planning p	roblem, Language of planning probl	lems, Expressiveness a	nd extensior
planning with state – space sea	arch, Forward state spare search, Bac	kward state space sear	ch, Heuristic
for state space search, Partial o	rder planning Graphs, Planning graph	ns	
Learning: what is learning, For	ms of learning, Inductive learning, L	earning Decision Trees	•
Course Outcome			
Conse Outcome	types and working units of an averat	systems	
CO2 Evaluate the logic helie	types and working units of an expert	oyoutillo d knowladge remagente	tion
CO2 Evaluate the logic benir	niques to design intelligent agents	a knowledge representa	uion
CO4 Implement verious Cor	inques to design internigent agents	Diaxing toohniques to y	in nomin
intelligent system design	isuanii Sausiacuon Problem, Game	r laying techniques to t	ise ili variou
CO5 Apply suitable learning	methodology while designing system	as based on their annia	ations
Textbooks.	memodology while designing system	ns based on men applic	a110118
I LALUUURS.			
1 Stuart Russel Peter N	orvig. (2009). Artificial Intelligence	– A Modern Approach	n.3rd Editior

	Pearson Education.
2	E.Rich and K.Knight, (2008), Artificial Intelligence, 3rd Edition, Tata McGraw Hill
3	
Ref	erences:
1	Patterson, (2009), Artificial Intelligence and Expert Systems, 2nd Edition, PHI.
2	Ivan Bratka, (2000), PROLOG Programming for Artificial Intelligence. 3rdEdition – Pearson
	Education.

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

SEE Assessment:

Question paper for the SEE consists of two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.

Part B also covers the entire syllabus consisting of five questions having choices and may contain subdivisions, each carrying 16 marks. Students must answer five full questions.

One question must be set from each unit. The duration of examination is 3 hours.

CO-PO MAPPING

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	2	3	2			1.00	1.03	1010		1
CO2	2	3	3	2	3							1
CO3	3	3	2	2	2							2
CO4	2	3	3	3	3							1
CO5	2	3	2	2	2							1

3-High 2- Moderate 1- Low

Course Title	Unix System Programming	semester	V
Course Code	MVJ22IS553	CIE	50
Total No. Of Contact Hours	40	SEE	50
No. Of Contact Hours/week	3(L:T:P:S::3:0:0:0)	Total	100
Credits	3	Exam Duration	3 hours

Course Objectives : This Course will enable the students to

1. Understand fundamental concepts in Unix Programming.

2.Understand the problem solving techniques and knowledge representation.

3.Design intelligent components or programs to meet desired needs.

4. Ability to understand and reason out the working of Unix Systems

5. Build an application/service over a Unix system.

Module 1

UNIX and ANSI Standards: The ANSI C Standard, The ANSI/ISO C++ Standards, Difference between ANSI C and C++, The POSIX Standards, The POSIX.1 FIPS Standard, The X/Open Standards. UNIX and POSIX APIs: The POSIX APIs, The UNIX and POSIX Development Environment, API Common Characteristics.

Introduction to UNIX - Introduction, History, Architecture, Experience the Unix environment, Basic commands ls, cat, cal, date, calendar, who, printf, tty, sty, uname, passwd, echo, tput, and bc.

Module 2

UNIX Files and APIs : File Types, The UNIX and POSIX File System, The UNIX and POSIX File Attributes, Inodes in UNIX System V, Application Program Interface to Files, UNIX Kernel Support for Files, Relationship of C Stream Pointers and File Descriptors, Directory Files, Hard and Symbolic Links. UNIX File APIs.

Module 3

UNIX Processes and Process Control: The Environment of a UNIX Process: Introduction, main function, Process Termination, Command-Line Arguments, Environment List, Memory Layout of a C Program, Shared Libraries, Memory Allocation, Environment Variables, setjimp and longjimp Functions, getrlimit, setrlimit Functions, UNIX Kernel Support for Processes.

Process Control: Introduction, Process Identifiers, fork, vfork, exit, wait, waitpid, wait3, wait4 Functions, Race Conditions, exec Functions, Changing User IDs and Group IDs, Interpreter Files, system Function, Process Accounting, User Identification, Process Times, I/O Redirection.

Module 4

Signals and Daemon Processes: Signals: The UNIX Kernel Support for Signals, signal, Signal Mask, sigaction, The SIGCHLD Signal and the waitpid Function, The sigsetjmp and siglongjmp Functions, Kill, Alarm, Interval Timers, POSIX.lb Timers. Daemon Processes: Introduction, Daemon Characteristics, Coding Rules, Error Logging, Client- Server Model

Module 5

Interprocess Communication : Overview of IPC Methods, Pipes, popen, pclose Functions, Coprocesses, FIFOs, System V IPC, Message Queues, Semaphores. Shared Memory, Client-Server Properties, Stream Pipes, Passing File Descriptors, An Open Server-Version 1, Client-Server Connection Functions.

Cours	se Outcomes:At the end of the course the students will be able to
CO1	Learn fundamentals of Unix system and its applications
CO2	Understand the basic image processing operations to enhance, segment the images
CO3	Understand the analyzing and extraction of relevant features of the concerned domain
	problem

CO4Understand and apply the motion concepts and its relevance in real time applicationsCO5Apply the knowledge in solving high level unix system problems.Textbooks:

1	Charlie jacob. "Unix Programming System: An Introduction". Springer-Verlag
-	ennene juees, ennenegemenning ejeenneren en e
2	Hassan K Khalil, Unix Systems, Prentice - Hall International (US), 2006.
Refere	ences:
1	V R Ganapthi, "Interprocess Communication", Prentice-Hall, India, 1991, 2. Shankar
	Sastry, "Nonlinear System Analysis, Stability and Control", Springer, 1999

CIE Assessment :

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

SEE Assessment:

Question paper for the SEE consists of two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.

Part B also covers the entire syllabus consisting of five questions having choices and may contain subdivisions, each carrying 16 marks. Students must answer five full questions.

One question must be set from each unit. The duration of examination is 3 hours.

CO-PO MAPPING

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	3	3	3							
CO2	2	3	3	2	3							
CO3	2	2	3	2	3							
CO4	2	2	3	2	3							
CO5	2	2	2	2	3							

Cours	e Title	Distributed Systems	semester	V								
Cours	e Code	MVJ22IS554	CIE	50								
Total	No. Of Contact Hours	40	SEE	50								
No. O	f Contact Hours/week	3(L:T:P:S::3:0:0:0)	Total	100								
Credi	ts	3	Exam Duration	3 hours								
Cours	Course Objectives : This Course will enable the students to											
Under	stand fundamental concep	ts in Distributed systems										
Under	stand the problem-solving	techniques and knowledge representation	n.									
Design	n intelligent components o	r programs to meet desired needs.										
	nent, and evaluate a comp	uter-based distributed systems.										
Under	stand fundamental concep	ts in Distributed systems.		0.11								
Modu				8 Hrs								
Distrit	outed Systems: Characteriz	zation of Distributed Systems: Introducti	ion, Examples of DS	, Resource								
sharin	g and the Web, Challenges	s System Models: Architectural Models,	Fundamental Models	<u>6 11</u>								
Modu		11 1 1 1, 1 , 1 , 1 1	1 1 1 1 1 0	8 Hrs								
Files a 1°	ind APIs: For complete sy	llabus and results, class timetable and m	ore pls download 1Si	tudy. It's a								
light w	Veight, easy to use, no ima	ges, no pdfs platform to make students li	ie easier.	0.11								
Nioau	le s	hat The OS large Destantion Des		ð Hrs								
Opera	ting System Support: Intro	oduction, The OS layer, Protection, Proce	esses and Threads,									
Eilo S	numeration and invocation,	, Operating system architecture Distribu	ted Flie Systems: In	roduction,								
File Se Modu	lo 4	etwork rife System		9 Uma								
Time	ie 4 and Clabal Statas: Intradu	ation Cloaks avants and process status	aumohronizing nhugi									
	and Global States. Introdu	Clobal states Coordination and A grass	synchronizing physic monty Introduction I	Cal Clocks,								
Logica	a unite and logical clocks	, Giobal states Cooldination and Agreen	ment. Introduction, I	Jistituted								
Modu				8 Hrs								
Inter_r	ncess Communication: I	atroduction The API for the Internet Pro	tocols External Data	01115								
Repres	sentation and Marshalling	Client-Server Communication Group	Communication C	ase Study								
IPC in	UNIX	", chent Server Communication, Group	Communication, Co	use Study.								
II C III												
Cours	e Outcome: At the end o	f the course the students will be able to	0									
CO1	Illustrate the mechanism	of IPC between distributed objects	<u> </u>									
CO2	Describe the distributed f	ile service architecture and the importan	t characteristics of SI	UN								
001	NFS.											
CO3	Discuss concurrency con-	trol algorithms applied in distributed trar	nsactions									
CO4	Apply logical time and lo	gical clocks to order events correctly in	a distributed system									
CO5	Design and implement	communication systems between pro	ocesses in various	computing								
	environments.	, , , , , , , , , , , , , , , , , , ,		1 0								
Textb	ooks:											
1	George Coulouris, Jean	Dollimore and Tim Kindberg: Distrib	outed Systems - Con	ncepts and								
	Design, 5th Edition, Pea	rson Publications, 2009	•	1								
Refer	ences:											
1	T Andrew S Tanenbaum	: Distributed Operating Systems, 3rd edi	tion, Pearson publica	tion, 2007								
2	AjayD. Kshemkalyani a	nd MukeshSinghal, Distributed Computi	ing: Principles, Algor	rithms and								
	Systems, Cambridge Uni	iversity Press, 2008										
3	Sunita Mahajan, Seema	Shan, Distributed Computing, Oxford Un	niversity Press,2015									
	• ·	<u> </u>	- · · · ·									
CIE A	Assessment:											

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks

SEE Assessment:

Question paper for the SEE consists of two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.

Part B also covers the entire syllabus consisting of five questions having choices and may contain subdivisions, each carrying 16 marks. Students must answer five full questions.

One question must be set from each unit. The duration of examination is 3 hours.

CO-PO Mapping

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	2	3							3	3
CO2	2	2	3	3							2	3
CO3	2	2	2	3							3	2
CO4	3	2	3	2							2	3
CO5	2	3	3	2							3	2

3-High 2- Moderate 1-low

VI SEMESTER (2022 SCHEME)

Course Title	Full Stack Development	Semester	VI
Course code	MVJ22IS61	CIE	50
Total No. of Contact Hours	3:0:1	SEE	50
No. of Contact Hours/week	40 L+26 P	Total	100
Credits	4	Exam. Duration	3
	•	•	

COURSE OBJECTIVES: This course will enable students to

- 1. Explain the use of learning full stack web development.
- 2. Make use of rapid application development in the design of responsive web pages.
- 3. Illustrate Models, Views and Templates with their connectivity in Django for full stack web development.
- 4. Demonstrate the use of state management and admin interfaces automation in Django.Module 18hrs

The Modern Web: Rise of the web, Mobile web, The state of HTML, Applications vs web sites

Planning your Work: Identifying Requirements, Defining the work, Tracking the work, Continuous Improvements

User Experience: Information Architecture, Getting the user Experience, Polishing the user Experience, Implementing The user Experience.

MODULE-II

8hrs

8hrs

Front End: HTML, From Server to browser, Styling, Components, Responsive design, Progressive Enhancement, search engine Optimization.

Javascript: Asynchronicity, Javascript in the browser, Offline First Development, Document object Model, Server side javascript, Javascript Modules, Structuring your javascript, javascript types, Functional Programming, Connecting components together, communication between components

MODULE-III

Accessibility : working with Assistive Technologies, Dealing with interative UI, Testing for Accessibility, Avoiding common mistakes

API: API responsibilities, Designing REST API, Securing Your API, Event Based APIs, Discovering APIs, Using APIs, API testing – postman

MODULE-IV8hrsDeployment: Twelve Factor Apps, Developer Machines, Production Environments, Moving
code into Production, Infrastructure, Immutable infrastructure, Continuous Delivery and
Continuous Deployment

MODULE-V

8hrs

Introduction to React JS: Introduction, understanding Components and Props, State and Lifecycle, React Hooks, handling Events, Working with Forms, Conditional Rendering, List and Keys, Styling in React JS.

LABORATORY EXPERIMENTS

Programs:

- 1. Write a program to create a simple webpage using HTML.
- 2. Write a program to create a website using HTML CSS and JavaScript
- 3. Write a program to build a Chat module using HTML CSS and JavaScript
- 4. Write a program to create a simple calculator Application using React JS
- 5. Write a program to create a voting application using React JS
- 6. Write a program to create and Build a Password Strength Check using JQuery
- 7. Write a program to create and Build a star rating system using JQuery
- 8. Create a Simple Login form using React JS
- 9. Using the CMS users must be able to design a web page using the drag and drop method
- 10. Create a project on Grocery delivery application
- 11. Connecting our TODO React js Project with Firebase

Cours	e outcomes: Students will able to
CO1	Understand the basics of Web Application Development
CO2	Learn the Front End Developing Tools.
CO3	Develop the REST APIs for Real time Applications
CO4	Apply different Deployment strategies for Producing products
CO5	Create Applications using React JS
Textb	ooks:
1	The Full Stack Developer Your Essential Guide to the Everyday Skills Expected of a
	Modern Full Stack Web Developer, Chris Northwood
	nttps://doi.org/10.1007/978-1-4842-4152-3
2	Learning React JavaScript Library From Scratch eBook : Sidelnikov, Greg.

CIE Assessment:

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

SEE Assessment:

Question paper for the SEE consists of two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	2	3	3						3	3
CO2	2	2	3	3	3						2	3
CO3	2	2	2	3	3						3	2
CO4	3	2	3	2	3						2	3
CO5	2	3	3	2	3						3	2

3- High 2- Moderate 1- Low

Course Title	Machine Learning	Semester	VI
Course code	MVJ22I862	CIE	50
Total No. of Contact Hours :	3:0:0:0(L:T:P:S::3:0:0:0)	SEE	50
No. of Contact Hours/week	40	Total	100
Credits	3	Exam. Duration	3

Course objectives: The course will enable the students to

1.Understand fundamentals of machine learning, including the types of learning, data pre-processing techniques, and design principles, to enable them to develop effective learning systems that can tackle real-world problems.

2. Implement and evaluate regression and classification models, including linear and polynomial regression, logistic regression, and decision trees, to solve real-world problems and make informed decisions.

3.Understand classification techniques, including decision trees, random forests, naive Bayes, K-NN, SVM, and evaluation metrics, to develop robust and accurate classification models that can handle complex data sets and real-world applications.

4. Understand the concepts and techniques of clustering and artificial neural networks, enabling them to apply clustering algorithms and design neural networks to solve real-world problems, including data clustering, classification, and prediction.

5. Understand the fundamentals of reinforcement learning and deep learning, enabling them to understand the concepts of learning from feedback and building deep neural networks to solve complex problems in artificial intelligence, such as decision-making and pattern recognition.

problems in artificial intempence, such as decision-making and pattern recognition.									
Module 1 81	hrs								
Introduction: Well-Posed learning problems, Basic concepts, Designing a learning system, Issues in									
machine learning. Types of machine learning: Learning associations, Supervised	learning,								
Unsupervised learning, and Reinforcement learning.									
Data Pre-processing: Need of Data Pre-processing, Data Pre-processing Methods: Data Clear	ning, Data								
Integration, Data Transformation, Data Reduction; Feature Scaling (Normaliza	ation and								
Standardization), Splitting dataset into Training and Testing set.									
Association Rules Learning: Need and Application of Association Rules Learning, Basic co	oncepts of								
Association Rule Mining, Naïve algorithm, Apriori algorithm.									
Module 2	8hrs								
Regression: Linear Regression, Multiple Linear Regression and Polynomial Regression, Evaluation Regression Model's Performance (RMSE, Mean Absolute Error, Correlation,RSquare),Regularization Methods Classification: Need and Applications of Classification, Logistic Regression, Decision tree.									
Module 3	8hrs								
Advanced Classification: Tree induction algorithm – split algorithm based on information theory									

split algorithm based on Gini index; Random Forest classification, Naïve Bayes algorithm; K-Nearest Neighbors (K-NN), Support Vector Machine (SVM), Evaluating Classification Model's Performance (Sensitivity, Specificity, Precision, Recall, etc.)

	Module 4	8hrs
Clustering: N	eed and Applications of Clustering, Partitioned methods, Hierarchical methods,	Density-
based method	s. Artificial Neural Networks: Introduction, Neural Network representation, Ap	propriate
problems, Per	ceptron, Backpropagation algorithm	
	Module 5	8hrs
Reinforcemen	t Learning: Introduction, Learning Task, Q Learning. Deep Learning: Introdu	uction to
Deep Learning	g-Reasons to go Deep Learning.	
Course outco	mes: Students will able to	
CO1	Identify the issues in machine learning and Algorithms for solving it.	
CO2	Explain theory of probability and statistics related to machine learning.	
CO3	Investigate concept learning, ANN, Bayes classifier, k nearest	
	neighbor.	
004		

CO4	Describe protocols of resource constraint network.
CO5	Explain the concepts of deep learning.
Textbooks:	
1	Tom M. Mitchell, Machine Learning, India Edition 2013, McGraw Hill E

Tom M. Mitchell, Machine Learning, India Edition 2013, McGraw Hill Education.
 Alpaydin E., Introduction to Machine Learning, MIT Press (2014) 3rd Edition.
 Vijayvargia Abhishek, Machine Learning with Python, BPB Publication (2018)

Reference Books:

Reference Do	JOKS:
1	Trevor Hastie, Robert Tibshirani, Jerome Friedman, h The Elements of Statistical Learning, 2nd edition, springer series in statistics.
2	Ethem Alpaydin, Introduction to Machine learning, 2nd Edition, MIT Press.

CIE Assessment:

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

SEE Assessment:

Question paper for the SEE consists of two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.

Part B also covers the entire syllabus consisting of five questions having choices and may contain subdivisions, each carrying 16 marks. Students must answer five full questions.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	2	3	3						3	3
CO2	2	2	3	3	3						2	3
CO3	2	2	2	3	3						3	2
CO4	3	2	3	2	3						2	3
CO5	2	3	3	2	3						3	2

One question must be set from each unit. The duration of examination is 3 hours.

Course Title	Blockchain Technology	Semester	VI
Course code	MVJ22IS631	CIE	50+50
Total No. of Contact Hours	3:0: 0:0 (L:T:P:S)	SEE	50+50
No. of Contact Hours/week	40	Total	100
Credits	3	Exam. Duration	3

COURSE OBJECTIVES: This course will enable students to

- 1. Familiarise the functional/operational aspects of cryptocurrency ecosystem.
- 2. Understand emerging abstract models for Blockchain Technology.
- 3. Understand how blockchain systems (mainly Bitcoin and Ethereum) work and how to securely interact with them.
- 4. Identify major research challenges and technical gaps existing between theory and practice in cryptocurrency domain.
- 5. Design, build, and deploy smart contracts and distributed applications.

Module 1		8hrs
IN Basics: Distributed Database, Two General Problem, Byzantin	ne General problem a	nd Fault
Tolerance, Hadoop Distributed File System, Distributed Hash Ta	able, ASIC resistance.	Turing

Complete. Cryptography: Hash function, Digital Signature - ECDSA, Memory Hard Algorithm, Zero Knowledge Proof.

Module 2	8hrs

Blockchain: Introduction, Advantage over conventional distributed database, Blockchain Network, Mining Mechanism, Distributed Consensus, Merkle Patricia Tree, Gas Limit, Transactions and Fee, Anonymity, Reward, Chain Policy, Life of Blockchain application, Soft & Hard Fork, Private and Public blockchain.

Module 3		8hrs						
Distributed Consensus: Nakamoto consensus, Proof of Work, Proof of Stake, Proof of Burn,								
Difficulty Level, Sybil Attack, Energy utilization and alternate.								
Module 4		8hrs						
Cryptocurrency: History, Distributed Ledger, Bitcoin protocols -	Mining strategy and	rewards,						
Ethereum - Construction, DAO, Smart Contract, GHOST, Vulr	erability, Attacks, Si	dechain,						
Namecoin								
Module 5		8hrs						

Cryptocurrency Regulation: Stakeholders, Roots of Bit coin, Legal Aspects- Crypto currency Exchange, Black Market and Global Economy. Applications: Internet of Things, Medical Record Management System, Domain Name Service and future of Blockchain.

Course outcomes: Students will able to

CO1 | Basic Cryptographic primitives used in Blockchain – Secure, Collison-resistant hash

CO2 | functions, digital signature, public key cryptosystems, zero-knowledge proof systems.

CO3 | Policies and applications of Blockchain in Distributed databases.

CO4 | Explain the Nakamoto consensus, List and describe differences between proof-of-

CO5 work and proof-of-stake consensus.

Textbooks:

- 1 Arvind Narayanan, Joseph Bonneau, Edward Felten, Andrew Miller and Steven Goldfeder, Bitcoin and Cryptocurrency Technologies: A Comprehensive Introduction, Princeton University Press (July 19, 2016).
- 2 Antonopoulos, Mastering Bitcoin: Unlocking Digital Cryptocurrencies.

Reference Books:

|--|

- 2 DR. Gavin Wood, "ETHEREUM: A Secure Decentralized Transaction Ledger,"Yellow paper.2014.
- **3** Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli, A survey of attacks on Ethereum smart contracts

CIE Assessment:

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

SEE Assessment:

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the entire syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO MAPPING												
COPO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	1	-	-	-	-	-	-	-	-	3	
CO2	3	3	1	-	-	-	-	-	-	-	-	3	
CO3	3	3	1	2	-	-	-	-	-	1	-	3	
CO4	3	3	3	3	-	-	-	2	2	2	-	3	
CO 5	3	3	3	3	-	-	2	2	3	2	-	3	

Course Title	Internet of Things	Semester	VI							
Course code	MVJ22IS632 CIE									
Total No. of Contact Hours L:T:P:S	: 3:0:0:0	SEE	50							
No. of Contact Hours/week	40	Total	100							
Credits	3	Exam. Duration	3							
Course Objective : This course wi	l enable the students to									
1.Assess the genesis and impact of 2.Illustrate diverse methods of dep 3.Compare different Application p	 Assess the genesis and impact of IoT applications, architectures in real world Illustrate diverse methods of deploying smart objects and connect them to network. Compare different Application protocols for IoT. 									
	Module 1		8hrs							
What is IoT, Genesis of IoT, Ic Challenges, IoT Network Archit Comparing IoT Architectures, A S Management and Compute Stack.	T and Digitization, IoT Impact, ecture and Design, Drivers Be Simplified IoT Architecture, The C	, Convergence of IT hind New Network Core IoT Functional S	and IoT, IoT Architectures, tack, IoT Data							
	Module 2		8hrs							
Smart Objects: The "Things" in IoT, Sensors, Actuators, and Smart Objects, Sensor Networks, Connecting Smart Objects, Communications Criteria, IoT Access Technologies, IP as the IoT Network Layer, The Business Case for IP, the need for Optimization, Optimizing IP for IoT, Profiles and Compliances.										
	Module 3		8hrs							
Application Protocols for IoT: Analytics for IoT, An Introduction Tools and Technology, Edge Streat IOT Security	The Transport Layer, IoT Applic n to Data Analytics for IoT, Ma ming Analytics, Network Analyti	ation Transport Meth chine Learning, Big I cs, Securing IoT, A B	ods, Data and Data Analytics rief History of							
	Module 4		8hrs							
Common Challenges in OT Security, How IT and OT Security Practices and Systems Vary, Formal Risk Analysis Structures: OCTAVE and FAIR, The Phased Application of Security in an Operational Environment, IoT Physical Devices and Endpoints - Arduino UNO: Introduction to Arduino, Arduino UNO, Installing the Software, Fundamentals of Arduino Programming. IoT Physical Devices and Endpoints.										
	Module 5		8hrs							
RaspberryPi: Introduction to RaspberryPi, About the RaspberryPi Board: Hardware Layout, Operating Systems on RaspberryPi, Configuring RaspberryPi, Programming RaspberryPi with Python, Wireless Temperature Monitoring System Using Pi, DS18B20 Temperature Sensor, Connecting Raspberry Pi via SSH, Accessing Temperature from DS18B20 sensors, Remote access to RaspberryPi, Smart and Connected Cities, An IoT Strategy for Smarter Cities, Smart City IoT Architecture, Smart City Security Architecture, Smart City Use-Case Examples.										
Course outcomes: Students will	able to	a victore								
CO2 Interfacing Sensor and	atuator with Ardving development	system								
CO3 Implementing IoT devic	 Interfacing Sensor and Actuator with Arduino development board. Implementing IoT device by interfacing communication module and cloud Describe protocols of resource constraint network 									

CO5	Elaborate the need for Data Analytics and Security in IoT.
Textboo	ks:
1	"IoTFundamentals: Networking Technologies, Protocols, and Use Cases for the Internet
	ofThings", David Hanes, Gonzalo Salgueiro, Patrick Grossetete, Robert Barton, Jerome
	Henry, 1stEdition, Pearson Education (Cisco Press Indian Reprint). (ISBN: 978-9386873743
2	"Internet of Things", Srinivasa K G,CENGAGE Leaning India,2017

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

SEE Assessment:

Question paper for the SEE consists of two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.

Part B also covers the entire syllabus consisting of five questions having choices and may contain subdivisions, each carrying 16 marks. Students must answer five full questions.

One question must be set from each unit. The duration of examination is 3 hours.

	CO-PO MAPPING											
COPO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	0	3	0	0	0	0	0	0	1	1
CO2	2	3	0	3	0	0	0	0	0	0	1	1
CO3	2	3	0	3	0	0	0	0	0	0	1	1
CO4	3	3	0	3	0	0	0	0	0	0	1	1
C05	3	3	0	3	0	0	0	0	0	0	1	1

Course Thee	VI		
Course code	MVJ22IS633	CIE	50
Total No. of Contact Hours :	3:0:0:0(L:T:P:S)	SEE	50
No. of Contact Hours/week	40	Total	100
Credits	3	Exam. Duration	3
COURSE OBJECTIVES: This c	ourse will enable students t	<i></i>	
 Learn the various parsing to Learn how to obtain specifi Learn how to optimize the 	echniques and different leve ic object code from source la code and schedule for optim	els of translation. anguage. nal performance.	
	Module 1		8hrs
FRONT END OF COMPILER	S: The Structure of Comp	iler – Lexical Analysis: R	ole of Lexical
Analyzer, Specification and Reco	ognition of Tokens, Syntax	Analysis: Top Down Parsi	ng, Bottom up
Parsing, LR Parsers: SLR, CLR, a	and LALR.		
	Module 2		8hrs
INTERMEDIATE CODE GEI	NERATION: Syntax Direct	cted Definitions, Evaluati	on Orders for
Syntax Directed Definitions, Syn	tax Directed Translation Sc	chemes, Intermediate Lang	guages: Syntax
Tree, Three Address Code, Post	fix Code, Declarations, Trai	nslation of Expressions, T	ype Checking,
Back Patching.			
	Module 3		
	Moune 5		8hrs
RUNTIME AND OBJECT CO	DE GENERATION: Stora	ge Organization, Stack All	8hrs ocation Space,
RUNTIME AND OBJECT CO Access to Non-local Data on the	DE GENERATION: Storag Stack, Heap Management	ge Organization, Stack All - Issues in Code Generati	8hrs ocation Space, on - Design of
RUNTIME AND OBJECT CO Access to Non-local Data on the Code Generator - Register Alloc	DE GENERATION: Storag Stack, Heap Management sation and Assignment – In	ge Organization, Stack All - Issues in Code Generati struction Selection by Tre	8hrs ocation Space, on - Design of ee Rewriting –
RUNTIME AND OBJECT CO Access to Non-local Data on the Code Generator - Register Alloc Optimal Code Generation for Exp	DE GENERATION: Storag Stack, Heap Management ation and Assignment – In pressions – Dynamic Program	ge Organization, Stack All - Issues in Code Generati struction Selection by Tre mming Code Generation.	8hrs ocation Space, on - Design of ee Rewriting –
RUNTIME AND OBJECT CO Access to Non-local Data on the Code Generator - Register Alloc Optimal Code Generation for Exp	DE GENERATION: Storag Stack, Heap Management ation and Assignment – In pressions – Dynamic Program Module 4	ge Organization, Stack All - Issues in Code Generati struction Selection by Tre mming Code Generation.	8hrs ocation Space, on - Design of ee Rewriting – 8hrs
RUNTIME AND OBJECT CO Access to Non-local Data on the Code Generator - Register Alloc Optimal Code Generation for Exp CODE OPTIMIZATION: Ba	DE GENERATION: Stora Stack, Heap Management ation and Assignment – In pressions – Dynamic Program Module 4	ge Organization, Stack All - Issues in Code Generati struction Selection by Tro mming Code Generation.	8hrs ocation Space, on - Design of ce Rewriting – 8hrs asic Blocks –
RUNTIME AND OBJECT CO Access to Non-local Data on the Code Generator - Register Alloc Optimal Code Generation for Exp CODE OPTIMIZATION: Ba Principal Sources of Optimization	DE GENERATION: Stora Stack, Heap Management ation and Assignment – In pressions – Dynamic Prograt Module 4 sic Blocks and Flow Gray	ge Organization, Stack All - Issues in Code Generati struction Selection by Tre mming Code Generation. phs – Optimization of B ysis – Constant Propaga	8hrs ocation Space, on - Design of ce Rewriting – 8hrs asic Blocks – tion – Partial
RUNTIME AND OBJECT CO Access to Non-local Data on the Code Generator - Register Alloc Optimal Code Generation for Exp CODE OPTIMIZATION: Ba Principal Sources of Optimizat Redundancy Elimination – Peeph	DE GENERATION: Stora Stack, Heap Management ation and Assignment – In pressions – Dynamic Program Module 4 sic Blocks and Flow Grap tions – Data Flow Analy ole Optimizations.	ge Organization, Stack All - Issues in Code Generati struction Selection by Tre mming Code Generation. phs – Optimization of B vsis – Constant Propaga	8hrs ocation Space, on - Design of ee Rewriting – 8hrs asic Blocks – tion – Partial
RUNTIME AND OBJECT CO Access to Non-local Data on the Code Generator - Register Alloc Optimal Code Generation for Exp CODE OPTIMIZATION: Ba Principal Sources of Optimizat Redundancy Elimination – Peeph	DE GENERATION: Storag Stack, Heap Management ation and Assignment – In pressions – Dynamic Program Module 4 sic Blocks and Flow Gray tions – Data Flow Analy ole Optimizations. Module 5	ge Organization, Stack All - Issues in Code Generation struction Selection by Tro mming Code Generation. phs – Optimization of B vsis – Constant Propaga	8hrs ocation Space, on - Design of ee Rewriting – 8hrs asic Blocks – tion – Partial 8hrs
RUNTIME AND OBJECT COL Access to Non-local Data on the Code Generator - Register Alloc Optimal Code Generation for Exp CODE OPTIMIZATION: Ba Principal Sources of Optimizat Redundancy Elimination – Peeph SCHEDULING AND OPTI	DE GENERATION: Stora Stack, Heap Management ation and Assignment – In pressions – Dynamic Prograt Module 4 sic Blocks and Flow Gray tions – Data Flow Analy ole Optimizations. Module 5 MIZING FOR PARAL	ge Organization, Stack All - Issues in Code Generation struction Selection by Tro- mming Code Generation. phs – Optimization of B vsis – Constant Propaga	8hrs ocation Space, on - Design of ee Rewriting – 8hrs asic Blocks – tion – Partial 8hrs
RUNTIME AND OBJECT COL Access to Non-local Data on the Code Generator - Register Alloc Optimal Code Generation for Exp CODE OPTIMIZATION: Ba Principal Sources of Optimizat Redundancy Elimination – Peeph SCHEDULING AND OPTI Scheduling Constraints – Basic	DE GENERATION: Stora; Stack, Heap Management ation and Assignment – In pressions – Dynamic Program Module 4 sic Blocks and Flow Gray tions – Data Flow Analy ole Optimizations. Module 5 MIZING FOR PARAI Block Scheduling – Globa	ge Organization, Stack All - Issues in Code Generation struction Selection by Tro- mming Code Generation. phs – Optimization of B vsis – Constant Propaga LLELISM: Code 1 Code Scheduling - Basi	8hrs ocation Space, on - Design of ee Rewriting – 8hrs asic Blocks – tion – Partial 8hrs ic Concepts in
RUNTIME AND OBJECT COL Access to Non-local Data on the Code Generator - Register Alloc Optimal Code Generation for Exp CODE OPTIMIZATION: Ba Principal Sources of Optimizat Redundancy Elimination – Peeph SCHEDULING AND OPTI Scheduling Constraints – Basic Parallelization – Parallelizing Ma	DE GENERATION: Storag Stack, Heap Management sation and Assignment – In pressions – Dynamic Program Module 4 sic Blocks and Flow Gray tions – Data Flow Analy ole Optimizations. Module 5 MIZING FOR PARAI Block Scheduling – Globa trix Multiplication – Iteratic	ge Organization, Stack All - Issues in Code Generation struction Selection by Tra- mming Code Generation. phs – Optimization of B vsis – Constant Propaga LELISM: Code 1 Code Scheduling - Basis on Spaces – Affine Array I	8hrs ocation Space, on - Design of ee Rewriting – 8hrs asic Blocks – tion – Partial 8hrs ic Concepts in ndexes.

CO1	Design compiler phases from language specification.
CO2	Design code generators for the specified machine.
CO3	Analyze Object Code Generation techniques.
CO4	Apply the various optimization techniques.
CO5	Understand the Optimizing for Parallelism
Textboo	ks:
1	Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffrey D. Ullman, -Compilers: Principles,
	Techniques and ToolsI, Second Edition, Pearson Education, 2009.
2	Randy Allen, Ken Kennedy, —Optimizing Compilers for Modern Architectures: A
	Dependence based Approach ^{II} , Morgan Kaufmann Publishers, 2002.
3	Keith D Cooper and Linda Torczon, —Engineering a Compiler, Morgan Kaufmann
	Publishers Elsevier Science, 2004
4	V. Raghavan, —Principles of Compiler Design ^I , Tata McGraw Hill Education
	Publishers, 2010.
5	Allen I. Holub, —Compiler Design in CI, Prentice-Hall Software Series, 1993.
6	Steven S. Muchnick, —Advanced Compiler Design and Implementation, Morgan
	Kaufmann Publishers - Elsevier Science, India, Indian Reprint 2003.
7	Keith D Cooper and Linda Torczon, —Engineering a Compiler, Morgan Kaufmann
	Publishers Elsevier Science, 2004

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

SEE Assessment:

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the entire syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO MAPPING											
СОРО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	1	2	-	-	-	-	-	-	-	2
CO2	3	3	2	3	1	-	-	-	-	-	-	2
CO3	3	3	2	3	1	-	-	-	-	-	-	2
CO4	3	3	2	3	2	-	-	-	-	-	-	2
C05	3	3	2	3	2	-	-	-	-	-	-	2

Course Title	Cloud Computing	Semester	VI							
Course code	MVJ22IS634	CIE	50							
Total No. of Contact Hou	rs: 3:0:0:0(L:T:P:S)	SEE	50							
No. of Contact Hours/wee	ek 40	Total	100							
Credits	3	Exam. Duration	3							
COURSE OBJECTIVES: This course will enable students to										
 To explain the function To illustrate the closes To Contrast difference 	amentals of cloud computing ud application programming and nt cloud platforms used in industr	aneka platform ry								
Module 1			8hrs							
Introduction, Cloud Infras Ethical issues, Cloud vul perspective, Microsoft Win	tructure: Cloud computing, Clou nerabilities, Cloud computing a ndows Azure and online services	Id computing delivery mod at Amazon, Cloud compu	els and services, ting the Google							
Module 2			8hrs							
cloud computing: Appli cloud computing, Workf machine model: The Zoc Web application, Cloud for Module 3	lows: Coordination of multiple keeper, The Map Reduce progra	activities, Coordination b amming model, A case stud- performance computing on	actorial styles of based on a state dy: The Gre The a cloud. 8hrs							
Cloud Resource Virtualiza Virtual Machines, Perform Case Study: Xen a VMM Performance comparison o	tion: Virtualization, Layering and ance and Security Isolation, Full based paravirtualization, Optim f virtual machines, The dark side	l virtualization, Virtual mac virtualization and paravirtua nization of network virtual of virtualization, Exercises	hine monitors, alization ization, vBlades, and problems							
Module 4			Shrs							
Cloud Resource Managem Application of control theo architecture, Feedback con performance managers, A Combinatorial auctions for Exercises and problems.	ent and Scheduling: Policies and ry to task scheduling on a cloud, trol based on dynamic thresholds, utility-based model for cloud-base cloud resources, Scheduling algo	mechanisms for resource m Stability of a two-level reso , Coordination of specialize ed Web services, Resourcin prithms for computing cloud	anagement, ource allocation d autonomic g bundling: ls,							
Module 5			8hrs							
Cloud Security, Cloud Application Development: Cloud security risks, Security: The top concern for cloud users, Privacy and privacy impact assessment, Trust, Operating system security, Virtual machine Security, Security of virtualization, Security risks posed by shared images, Security risks posed by a management OS, A trusted virtual machine monitor, A trust management service, A cloud service for adaptive data streaming, Cloud based optimal FPGA synthesis .Exercises and problems.										
Course outcomes: Students will able to										
CO1 Compare the strengths and limitations of cloud computing										
O2 Identify the architecture, infrastructure and delivery models of cloud computing										

CO4	Choose the appropriate cloud player						
CO5	Address the core issues of cloud computing such as security, privacy and interoperability (can						
Textbooks:							
1	Cloud Computing Theory and Practice, Dan C Marinescu ,Elsevier(MK) 2013.						
2	Computing Principles and Paradigms, Rajkumar Buyya , James Broberg, Andrzej Goscinski						
	Willey 2014.						
3	Cloud Computing Implementation, Management and Security, John W Rittinghouse, James F						
	Ransome CRC Press						
	2013						
CIE A aa							

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

SEE Assessment:

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the entire syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO MAPPING												
СОРО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	-	-	-	2	2	-	-	-	-	-	
CO2	3	3	-	-	3	-	2	-	-	-	-	-	
CO3	3	3	3	-	3	-	-	-	-	-	-	-	
CO4	3	3	-	-	-	-	2	-	-	-	2	-	
CO5	3	3	-	3	-	2	-	2	-	2	2	2	

Course	Fitle	Introduction To Data Structures	Semester	VI							
Course	code	MVJ22IS641	CIE	50							
Total No	o. of Contact Hours :	3:0:0:0(L:T:P:S)	SEE	50							
No. of C	ontact Hours/week	40	Total	100							
Credits		3	Exam. Duration	3							
COURS	COURSE OBJECTIVES: This course will enable students to										
1. Discu	uss the fundamental concept	ots and principles of data structur	es.	1 .							
2. Unde	erstand the importance of d	ata structures in computer progra	imming and problem	solving.							
3. A CO	mpressive overview of val	nous data structures such as arra	ys, miked lists, stacks	s, queues, trees							
4. Prepa	are the students for advanc	ed courses in algorithms, data and	alvsis.								
		Module 1		8hrs							
Introdu	rtion : Data Structures def	inition classification of data stru	ctures Arrays – Def	inition.							
Declarat	ion, Types of arrays, Stru	ctures, Pointers.	iotaros, mirays Dor								
Module 2											
Stacks-	definition, implementation	of stacks using arrays, operation	s of stacks.								
Queues- queue. L	Introduction, Types of qu imitation of linear queue, l	eues, Linear queue using arrays, Linear Queue vs circular queue.	operations on linear	queue, circular							
	· · · ·	Module 3		8hrs							
Linked Applicat	L ist - Linked-list and its typ ions of Linear Data Structu	bes- singly linked lists- doubly-lin ares.	nked lists- circular lin	ked lists,							
		Module 4		8hrs							
Non Li	near Data Structures: Tr	ees – Introduction, Terminologie	es, Representation of t	trees, Types of							
Tree Co	pplication of trees, Binar	Application of Binary search t	al techniques, Binary	Search trees –							
	istruction, Expression rec	Module 5		8hrs							
Graphs: techniqu Hashing	Graphs: Introduction, terminologies, Representation of graphs, Connected graph, graph traversal techniques, Application of graphs in data structures. Hashing- Hash Functions – Separate Chaining – Open Addressing – Rehashing – Extensible Hashing										
Course outcomes: Students will able to											
CO1	Evaluate the performance and efficiency of different operations on arrays, stacks, queues, and circular queues.										
CO2	Understand the different	types of linked list.									
CO3	Implement basic operation	ons on trees.									
CO4	Demonstrate the represer	tation and traversal techniques of	f graphs and their app	lications.							

CO5	Use the concepts of Hashing in storing data.							
Textbool	ks:							
1	Mark Allen Weiss, "Data Structures and Algorithm Analysis in C", 2nd Edition, Pearson							
	Education, 2011							
2	Fundamentals of Data structures, Ellis Horowitz, sartaj sahni,							
3	Alfred V. Aho, John E. Hopcroft and Jeffry D. Ullman, Data Structures & Algorithms,							
	Pearson Education, New Delhi, 2006							

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks

SEE Assessment:

Question paper for the SEE consists of two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.

Part B also covers the entire syllabus consisting of five questions having choices and may contain subdivisions, each carrying 16 marks. Students must answer five full questions.

One question must be set from each unit. The duration of examination is 3 hours.

	CO-PO MAPPING												
СОРО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	2	3	3	3							2	
CO2	3	2	2	3	3							2	
CO3	3	2	2	3	3							2	
CO4	3	2	3	3	3							2	
C05	3	2	3	3	3							2	

Course	Title	Fundamentals of Operating	Semester	VI						
Course	code	MVJ22IS642	CIE	50						
Total N L:T:P:S	o. of Contact Hours :	3:0:0:0	SEE	50						
No. of C	ontact Hours/week	40	Total	100						
Credits		3	Exam. Duration	3						
 COURSE OBJECTIVES: <i>This course will enable students to</i> 1. understanding the fundamental concepts of operating systems. 2. Analyse the exchanging data between different process. 3. Discuss the deadlock mechanism in operating systems. 4. Recognize the importance of process and memory management. 5. Outline the features of files and file management systems. 										
		Module 1		8hrs						
The Bas Evolution	The Basics: An overview: Introduction to operating systems, components of an operating systems, Evolution of operating system, architecture of operating system, Functions of operating system.									
Module 2										
system structure, Process: Introduction, Process management, OS view of processes. Process states. Interrupts: Interrupts in operating systems, Interprocess communication, types of interprocess communications										
		Module 3		8hrs						
Deadloc	ks: what is Deadlock, Dead	llock Characteristics, resource n	nanagement, conditio	ns of deadlock						
– Handli	ng Deadlocks, deadlock avo	bidance, Deadlock Detection, De	adlock Recovery.	01						
Process	scheduling: Concept of Pr	NIGAULE 4	Processes scheduling	Scheduling						
criteria.	senerating. Concept of T	seess senedaning, operation on r	iocesses seneduling,	Seneduling						
Memory	Management: Memory	organization in operating syst	tem, Memory Hierar	rchy, Memory						
Manager	nent Strategies. Contiguous	Memory Allocation, Non-contig	guous Memory Alloca	ation.						
		Module 5		anrs						
File and Protectio	Database Systems : File co on, File System Structure. Fi	ncept, Access methods, Data Hi le access control.	erarchy, Directory Str	ucture, File						
Course	outcomes: Students will al	ole to								
CO1	Demonstrate need for OS	and different types of OS								
CO2	Understand the process an	d interprocess communication								
CO3	Apply suitable methods to	handle and avoid deadlock								
CO4	Analyze and solve problem	ns related to process managemen	nt, memory managem	ent						
CO5	create, modify, and delete files and directories within an operating system.									
Textboo	ks:		Z							
1	"Operating System Concepts" by Abraham Silberschatz, Peter B. Galvin, and Greg Gagne.									

- 10th ed. "Modern Operating Systems" by Andrew S. Tanenbaum and Herbert Bos,5th ed.

3 "Operating Systems: Internals and Design Principles" by William Stallings,7th ed

CIE Assessment:

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks

SEE Assessment:

Question paper for the SEE consists of two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.

Part B also covers the entire syllabus consisting of five questions having choices and may contain subdivisions, each carrying 16 marks. Students must answer five full questions.

One question must be set from each unit. The duration of examination is 3 hours.

	CO-PO MAPPING											
СОРО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	3	2	3							
CO2	2	3	3	3	3							
CO3	2	3	3	2	3							
CO4	2	3	2	3	3							
CO5	2	3	2	2	2							

Course 7	Fitle	Mobile Application	Semester	VI						
Course o	code	Development MV 12218643	CIE	50						
Total No	of Contact Hours ·	3.0.0.0(L.T.P.S)	SFF	50						
		5.0.0.0(L.1.1.5)		30						
No. of C	ontact Hours/week	40	Total	100						
Credits		3	Exam. Duration	3						
COURS 1.Unders	COURSE OBJECTIVES: <i>This course will enable students to</i> 1.Understand system requirements for mobile applications.									
2.Genera 3.Implem	te suitable design using spe	cific mobile development france	meworks. works.							
	6 6 1	1								
4.Deploy	the mobile applications in	marketplace for distribution.		9h mg						
				onrs						
Introd	uction: Introduction to mo	oile application - Market valu	es for mobile application	s System						
require	ements for mobile application	on,Mobile application develop	oment architecture.	_						
		Module 2		8hrs						
Design	ing Applications using An	droid: Developing user inter	faces -Layout -Input Con	trols and						
Events	- Menus - Dialogs, Notifica	tions and Toasts								
		Module 3		8hrs						
Multin video.	nedia & Services: Lifecycl	e of a Service - Managing Se	rvicesGPS API Play	ing audio,						
		Module 4		8hrs						
Techn enviror SQLite	nment, Android architec Packaging and deploymen	Introduction Establishing the ture Activities and views Inte	development racting with UI Persistin	g data using						
		Module 5		8hrs						
Technology II IOS: Introduction to Objective C IOS features UI implementation Touch frameworks Data persistence using Core Data and SQLite.										
CO1	Demonstrate knowledge o	n basics of mobile application	1.							
CO2	Understand the frameworl	of mobile application and de	esion simple interfaces							
CO2	Create an application using multimedia components									
CO4	Develop and deploy appli	cation with server side connec	ctivity.							
CO5	Understand basic concept	s of IOS								

Textboo	ks:
1	James Dovey and Ash Furrow, "Beginning objective C", Apress, 20212
2	
	Android in Practice", Dream Tech, 2012 Charlie Collins, Michael Galpin and Matthias Kappler.

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks

SEE Assessment:

Question paper for the SEE consists of two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.

Part B also covers the entire syllabus consisting of five questions having choices and may contain subdivisions, each carrying 16 marks. Students must answer five full questions.

One question must be set from each unit. The duration of examination is 3 hours.

	CO-PO MAPPING												
СОРО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	1	-	-	-	-	-	-	-	-	3	
CO2	3	3	1	-	-	-	-	-	-	-	-	3	
CO3	3	3	1	2	-	-	-	-	-	1	-	3	
CO4	3	3	3	3	-	-	-	2	2	2	-	3	
C05	3	3	3	3	-	-	2	2	3	2	-	3	

Course	Fitle	Introduction to AI	SEMESTER	VI						
Course	code	MVJ22IS644	CIE	50						
Total N L:T:P:S	o. of Contact Hours :	3:0:0:0	SEE	50						
No. of C	ontact Hours/week	40	Total	100						
Credits		3	Exam. Duration	3						
COURSE OBJECTIVES: This course will enable students to 1. Identify the problems where AI is required and the different methods available 2. Compare and contrast different AI techniques available. 3. Define and explain learning algorithms Module 1 8hrs										
		Module 2		8hrs						
Knowled	lge Representation Issues, U	Jsing Predicate Logic, Rep	resenting knowledge using	g Rules.						
Module 3 8hrs										
Symboli	c Reasoning under Uncertai	nty, Statistical reasoning								
		Module 4		8hrs						
Heurist	ic search techniques: Gene	erate and test, Hill Climbir	ng, Best First Search, Prol	olemReduction,						
Constrai	nt Satisfaction, Means-ends	Analysis.								
		Module 5		8hrs						
Learning	Expert Systems.									
Course	wtaamaa Studanta will ak	.l.								
Course o	Identify the AThead and									
	Identify the AI based pro	blems.								
C02	Apply techniques to solve	problems	196							
CO4	Implement projects using	different AI learning techni	aues.							
C05	Discuss Expert system.	g								
Textboo	ks:									
1	E. Rich, K. Knight & S. H	3. Nair - Artificial Intelliger	nce, 3/e, McGraw Hill.							
2	Stuart Russel, Peter Nor	vig, "Artificial Intelligence	e: A Modern Approach"	, 2nd Edition,						
	Pearson Education, 2003.									
3	Dan W. Patterson, Introdu Prentice Hal of India.	ction to Artificial Intelliger	nce and Expert Systems –							
CIF Ass	assmant.									

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50

marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks

SEE Assessment:

Question paper for the SEE consists of two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.

Part B also covers the entire syllabus consisting of five questions having choices and may contain subdivisions, each carrying 16 marks. Students must answer five full questions.

One question must be set from each unit. The duration of examination is 3 hours.

	CO-PO MAPPING												
СОРО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	2	2	3	3	2							2	
CO2	2	3	3	3	2							2	
CO3	3	2	2	2	3							2	
CO4	3	2	2	3	3							2	
CO5	3	3	3	3	3							2	

SEMESTER -6 th MACHINE LEARNING LAB										
Course code	MVJ22ISL66	CIE	50							
Total No. of Contact Hours : L:T:P:S	0:0:2:0	SEE	50							
No. of Contact Hours/week	20	Total	100							
Credits	1	Exam. Duration	3							

COURSE OBJECTIVES: This course will enable students to

1. Make use of Data sets in implementing the machine learning algorithms

2.Implement the machine learning concepts and algorithms in any suitable language of choice.

LIST O	OF PROGRAMS
1	Implement and demonstrate the FIND-S algorithm for finding the most specific hypothesis
	based on a given set of training data samples. Read the training data from a
	.CSV file.
2	Implement and demonstrate the FIND-S algorithm for finding the most specific hypothesis
	based on a given set of training data samples. Read the training data from a
	.CSV file.
3	Develop a program to demonstrate the prediction of values of a given dataset using Linear regression.
4	Write a program to demonstrate the working of the decision tree based ID3 algorithm. Use an appropriate data set for building the decision tree and apply this knowledge to classify a new sample.
5	Build an Artificial Neural Network by implementing the Backpropagation algorithm and test the same using appropriate data sets.
6	Write a program to implement the naïve Bayesian classifier for a sample training data set
	stored as a .CSV file. Compute the accuracy of the classifier, considering
	few test data sets.
7	Assuming a set of documents that need to be classified, use the naïve Bayesian Classifier
	model to perform this task. Built-in Java classes/API can be used to write the program.
	Calculate the accuracy, precision, and recall for
	your data set.
8	Write a program to construct a Bayesian network considering medical data. Use this model
	to demonstrate the diagnosis of heart patients using standard Heart Disease Data Set. You
	can use Java/Python ML library
	classes/API.

9 Apply EM algorithm to cluster a set of data stored in a .CSV file. Use the same dataset for clustering using k- Means algorithm. Compare the result of these two algorithms and comment on the quality of clustering. You can add Java/Pytho ML library classes/API in the program. 10 Write a program to implement k-Nearest Neighbour algorithm to classify the iris data see Print both correct and wrong predictions. Java/Python ML library classes 11 Implement the non-parametric Locally Weighted Regression algorithm i order to fit data points. Select appropriate data set for your experiment and draw graphs Course outcomes: Students will able to CO1 CO2 Implement and evaluate logistic regression models. CO3 Implement and evaluate logistic regression models. CO4 Perform dimensionality reduction using PCA and understand its impact on the dataset. to implement and evaluate ensemble methods and understand their advantages over individual models CO5 To implement and evaluate ensemble methods and understand their advantages over individual models CO4 Perform dimensionality reduction using PCA and understand their advantages over individual models CO5 To implement and evaluate ensemble methods and understand their advantages over individual models Cut and evaluate for machine Learning, India Edition 2013, McGraw Hill Education. 2 Tervor Hastie, Robert Tibshirani, Jerome Friedman, h The Elements of Statistical Learning, 2nd edition, spr										
.CSV file. Use the same dataset for clustering using k- Means algorithm. Compare the result of these two algorithms and comment on the quality of clustering. You can add Java/Pytho ML library classes/API in the program. 10 Write a program to implement k-Nearest Neighbour algorithm to classify the iris data se Print both correct and wrong predictions. Java/Python ML library classes can be used for this problem. 11 Implement the non-parametric Locally Weighted Regression algorithm i order to fit data points. Select appropriate data set for your experiment and draw graphs Course outcomes: Students will able to CO1 CO2 Implement and evaluate logistic regression models. CO3 Implement and evaluate logistic regression models. CO4 Perform dimensionality reduction using PCA and understand its impact on the dataset. to implement and evaluate K-Means clustering and determine the optimal number of clusters. CO5 To implement and evaluate ensemble methods and understand their advantages over individual models Textbooks: 1 1 Tom M. Mitchell, Machine Learning, India Edition 2013, McGraw Hill Education. 2 Trevor Hastie, Robert Tibshirani, Jerome Friedman, h The Elements of Statistical Learning, 2nd edition, springer series in statistics. Cut between the series of the avery session. The average of the marks over number of the student is revery usession is held every week as per the time table and the performance of the student is revery macon fill avery session. The average of the mar	9	Apply EM algorithm to cluster a set of data stored in a								
of these two algorithms and comment on the quality of clustering. You can add Java/Pytho ML library classes/API in the program. 10 Write a program to implement k-Nearest Neighbour algorithm to classify the iris data se Print both correct and wrong predictions. Java/Python ML library classes can be used for this problem. 11 Implement the non-parametric Locally Weighted Regression algorithm i order to fit data points. Select appropriate data set for your experiment and draw graphs Course outcomes: Students will able to C01 Preprocess raw data for machine learning algorithms. to implement andevaluate linear regression models. C02 Implement and evaluate logistic regression models. C03 Implement and evaluate SVM models for both classification and regression tasks. To implement and evaluate SVM models with different kernels C04 Perform dimensionality reduction using PCA and understand its impact on the dataset, to implement and evaluate K-Means clustering and determine the optimal number of clusters. C05 To implement and evaluate learning, India Edition 2013, McGraw Hill Education. 1 Tom M. Mitchell, Machine Learning, India Edition 2013, McGraw Hill Education. 2 Trevor Hastie, Robert Tibshirani, Jerome Friedman, h The Elements of Statistical Learning, 2nd edition, springer seris in statistics.		.CSV file. Use the same dataset for clustering using k- Means algorithm. Compare the results								
ML library classes/API in the program. 10 Write a program to implement k-Nearest Neighbour algorithm to classify the iris data se Print both correct and wrong predictions. Java/Python ML library classes can be used for this problem. 11 Implement the non-parametric Locally Weighted Regression algorithm i order to fit data points. Select appropriate data set for your experiment and draw graphs Course outcomes: Students will able to CO1 Preprocess raw data for machine learning algorithms. to implement andevaluate linear regression models. CO2 Implement and evaluate logistic regression models. CO3 Implement and evaluate KNN models for both classification and regression tasks. To implement and evaluate SVM models with different kernels CO4 Perform dimensionality reduction using PCA and understand its impact on the dataset. to implement and evaluate clustering and determine the optimal number of clusters. CO5 To implement and evaluate clustering india Edition 2013, McGraw Hill Education. 1 Tom M. Mitchell, Machine Learning, India Edition 2013, McGraw Hill Education. 2 Trevor Hastie, Robert Tibshirani, Jerome Friedman, h The Elements of Statistical Learning, 2nd edition, springer series in statistics. Cotinuous Internal Evaluation (CIE): Laboratory session is held every week a		of these two algorithms and comment on the quality of clustering. You can add Java/Python								
ML library classes/API in the program. 10 Write a program to implement k-Nearest Neighbour algorithm to classify the iris data se Print both correct and wrong predictions. Java/Python ML library classes can be used for this problem. 11 Implement the non-parametric Locally Weighted Regression algorithm i order to fit data points. Select appropriate data set for your experiment and draw graphs Course outcomes: Students will able to CO1 C01 Preprocess raw data for machine learning algorithms. to implement andevaluate linear regression models. C02 Implement and evaluate logistic regression models. C03 Implement and evaluate SVM models for both classification and regression tasks. To implement and evaluate SVM models with different kernels C04 Perform dimensionality reduction using PCA and understand its impact on the dataset. to implement and evaluate ensemble methods and understand their advantages over individual models Textbooks: I 1 Tom M. Mitchell, Machine Learning, India Edition 2013, McGraw Hill Education. 2 Trevor Hastie, Robert Tibshirani, Jerome Friedman, h The Elements of Statistical Learning, 2nd edition, springer series in statistics. CIE Assessment: Continuous Internal Evaluation (CIE): Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of <th></th> <th colspan="8">of these two algorithms and comment on the quality of clustering. You can add Java/Python</th>		of these two algorithms and comment on the quality of clustering. You can add Java/Python								
program. 10 Write a program to implement k-Nearest Neighbour algorithm to classify the iris data se Print both correct and wrong predictions. Java/Python ML library classes can be used for this problem. 11 Implement the non-parametric Locally Weighted Regression algorithm i order to fit data points. Select appropriate data set for your experiment and draw graphs Course outcomes: Students will able to CO1 Preprocess raw data for machine learning algorithms. to implement andevaluate linear regression models. CO2 Implement and evaluate logistic regression models. CO3 Implement and evaluate SVM models for both classification and regression tasks. To implement and evaluate SVM models for both classification is impact on the dataset. to implement and evaluate K-Means clustering and determine the optimal number of clusters. CO5 To implement and evaluate ensemble methods and understand their advantages over individual models Textbooks: I 1 Tom M. Mitchell, Machine Learning, India Edition 2013, McGraw Hill Education. 2 Trevor Hastic, Robert Tibshirani, Jerome Friedman, h The Elements of Statistical Learning, 2nd edition, springer series in statistics. CIE Assessment: Continuous Internal Evaluation (CIE): Laboratory session is held every week as per the time table and the perform		ML library classes/API in the								
 10 Write a program to implement k-Nearest Neighbour algorithm to classify the iris data se Print both correct and wrong predictions. Java/Python ML library classes can be used for this problem. 11 Implement the non-parametric Locally Weighted Regression algorithm i order to fit data points. Select appropriate data set for your experiment and draw graphs Course outcomes: Students will able to CO1 Preprocess raw data for machine learning algorithms. to implement andevaluate linear regression models. CO2 Implement and evaluate logistic regression models. CO3 Implement and evaluate SVM models for both classification and regression tasks. To implement and evaluate SVM models for both classification and regression tasks. To implement and evaluate KNN models for both classification and regression tasks. To implement and evaluate KNN models for both classification and regression tasks. To implement and evaluate KNN models and understand its impact on the dataset. to implement and evaluate K-Means clustering and determine the optimal number of clusters. CO5 To implement and evaluate ensemble methods and understand their advantages over individual models Textbooks: 1 Tom M. Mitchell, Machine Learning, India Edition 2013, McGraw Hill Education. 2 Trevor Hastie, Robert Tibshirani, Jerome Friedman, h The Elements of Statistical Learning, 2nd edition, springer series in statistics. CIE Assessment: Continuous Internal Evaluation (CIE): Laboratory- 50 Marks The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of 		program.								
 Print both correct and wrong predictions. Java/Python ML library classes can be used for this problem. Implement the non-parametric Locally Weighted Regression algorithm i order to fit data points. Select 	10	Write a program to implement k-Nearest Neighbour algorithm to classify the iris data set.								
can be used for this problem. 11 Implement the non-parametric Locally Weighted Regression algorithm i order to fit data points. Select appropriate data set for your experiment and draw graphs Course outcomes: Students will able to CO1 Preprocess raw data for machine learning algorithms. to implement andevaluate linear regression models. CO2 Implement and evaluate logistic regression models. CO3 Implement and evaluate SVM models for both classification and regression tasks. To implement and evaluate SVM models with different kernels CO4 Perform dimensionality reduction using PCA and understand its impact on the dataset. to implement and evaluate K-Means clustering and determine the optimal number of clusters. CO5 To implement and evaluate ensemble methods and understand their advantages over individual models Textbooks: 1 1 Tom M. Mitchell, Machine Learning, India Edition 2013, McGraw Hill Education. 2 Trevor Hastie, Robert Tibshirani, Jerome Friedman, h The Elements of Statistical Learning, 2nd edition, springer series in statistics. CIE Assessment: Continuous Internal Evaluation (CIE): Laboratory. 50 Marks The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of		Print both correct and wrong predictions. Java/Python ML library classes								
 Implement the non-parametric Locally Weighted Regression algorithm i order to fit data points. Select appropriate data set for your experiment and draw graphs Course outcomes: Students will able to CO1 Preprocess raw data for machine learning algorithms. to implement andevaluate linear regression models. CO2 Implement and evaluate logistic regression models. CO3 Implement and evaluate KNN models for both classification and regression tasks. To implement and evaluate SVM models with different kernels CO4 Perform dimensionality reduction using PCA and understand its impact on the dataset. to implement and evaluate K-Means clustering and determine the optimal number of clusters. CO5 To implement and evaluate ensemble methods and understand their advantages over individual models Textbooks: 1 Tom M. Mitchell, Machine Learning, India Edition 2013, McGraw Hill Education. 2 Trevor Hastie, Robert Tibshirani, Jerome Friedman, h The Elements of Statistical Learning, 2nd edition, springer series in statistics. CIE Assessment: Continuous Internal Evaluation (CIE): Laboratory- 50 Marks The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of		can be used for this problem.								
order to fit data points. Select appropriate data set for your experiment and draw graphs Course → tcomes: Students will able to CO1 Preprocess raw data for machine learning algorithms. to implement andevaluate linear regression models. CO2 Implement and evaluate logistic regression models. CO3 Implement and evaluate SVM models for both classification and regression tasks. To implement and evaluate SVM models with different kernels CO4 Perform dimensionality reduction using PCA and understand its impact on the dataset. to implement and evaluate K-Means clustering and determine the optimal number of clusters. CO5 To implement and evaluate ensemble methods and understand their advantages over individual models Textbooks: I 1 Tom M. Mitchell, Machine Learning, India Edition 2013, McGraw Hill Education. 2 Trevor Hastie, Robert Tibshirani, Jerome Friedman, h The Elements of Statistical Learning, 2nd edition, springer series in statistics. CIEE Assessment: Continuous Internal Evaluation (CIE): Laboratory- 50 Marks The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of	11	Implement the non-parametric Locally Weighted Regression algorithm in								
appropriate data set for your experiment and draw graphs Course outcomes: Students will able to CO1 Preprocess raw data for machine learning algorithms. to implement andevaluate linear regression models. CO2 Implement and evaluate logistic regression models. CO3 Implement and evaluate SVM models for both classification and regression tasks. To implement and evaluate SVM models with different kernels CO4 Perform dimensionality reduction using PCA and understand its impact on the dataset. to implement and evaluate K-Means clustering and determine the optimal number of clusters. CO5 To implement and evaluate ensemble methods and understand their advantages over individual models Textbooks: 1 1 Tom M. Mitchell, Machine Learning, India Edition 2013, McGraw Hill Education. 2 Trevor Hastie, Robert Tibshirani, Jerome Friedman, h The Elements of Statistical Learning, 2nd edition, springer series in statistics. CIE Assessment: Continuous Internal Evaluation (CIE): Laboratory- 50 Marks The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of		order to fit data points. Select								
Course outcomes: Students will able to CO1 Preprocess raw data for machine learning algorithms. to implement andevaluate linear regression models. CO2 Implement and evaluate logistic regression models. CO3 Implement and evaluate SVM models for both classification and regression tasks. To implement and evaluate SVM models with different kernels CO4 Perform dimensionality reduction using PCA and understand its impact on the dataset. to implement and evaluate K-Means clustering and determine the optimal number of clusters. CO5 To implement and evaluate ensemble methods and understand their advantages over individual models Textbooks: 1 1 Tom M. Mitchell, Machine Learning, India Edition 2013, McGraw Hill Education. 2 Trevor Hastie, Robert Tibshirani, Jerome Friedman, h The Elements of Statistical Learning, 2nd edition, springer series in statistics. CIE Assessment: Continuous Internal Evaluation (CIE): Laboratory- 50 Marks The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of		appropriate data set for your experiment and draw graphs								
Course outcomes: Students will able to CO1 Preprocess raw data for machine learning algorithms. to implement andevaluate linear regression models. CO2 Implement and evaluate logistic regression models. CO3 Implement and evaluate KNN models for both classification and regression tasks. To implement and evaluate SVM models with different kernels CO4 Perform dimensionality reduction using PCA and understand its impact on the dataset. to implement and evaluate K-Means clustering and determine the optimal number of clusters. CO5 To implement and evaluate ensemble methods and understand their advantages over individual models Textbooks: 1 1 Tom M. Mitchell, Machine Learning, India Edition 2013, McGraw Hill Education. 2 Trevor Hastie, Robert Tibshirani, Jerome Friedman, h The Elements of Statistical Learning, 2nd edition, springer series in statistics. CIE Assessment: Continuous Internal Evaluation (CIE): Laboratory- 50 Marks The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of	0									
 CO1 Preprocess raw data for machine learning algorithms, to implement andevaluate linear regression models. CO2 Implement and evaluate logistic regression models. CO3 Implement and evaluate KNN models for both classification and regression tasks. To implement and evaluate SVM models with different kernels CO4 Perform dimensionality reduction using PCA and understand its impact on the dataset, to implement and evaluate K-Means clustering and determine the optimal number of clusters. CO5 To implement and evaluate ensemble methods and understand their advantages over individual models Textbooks: 1 Tom M. Mitchell, Machine Learning, India Edition 2013, McGraw Hill Education. 2 Trevor Hastie, Robert Tibshirani, Jerome Friedman, h The Elements of Statistical Learning, 2nd edition, springer series in statistics. CO5 Continuous Internal Evaluation (CIE): Laboratory 50 Marks The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of the student is evaluated in every session. 	Course	outcomes: Students will able to								
CO2 Implement and evaluate logistic regression models. CO3 Implement and evaluate KNN models for both classification and regression tasks. To implement and evaluate SVM models with different kernels CO4 Perform dimensionality reduction using PCA and understand its impact on the dataset. to implement and evaluate K-Means clustering and determine the optimal number of clusters. CO5 To implement and evaluate ensemble methods and understand their advantages over individual models Textbooks: 1 1 Tom M. Mitchell, Machine Learning, India Edition 2013, McGraw Hill Education. 2 Trevor Hastie, Robert Tibshirani, Jerome Friedman, h The Elements of Statistical Learning, 2nd edition, springer series in statistics. CIE Assessment: Continuous Internal Evaluation (CIE): Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of the student is evaluated in every session.	COI	Preprocess raw data for machine learning algorithms, to implement andevaluate linear								
 CO2 Implement and evaluate logistic regression models. CO3 Implement and evaluate KNN models for both classification and regression tasks. To implement and evaluate SVM models with different kernels CO4 Perform dimensionality reduction using PCA and understand its impact on the dataset. to implement and evaluate K-Means clustering and determine the optimal number of clusters. CO5 To implement and evaluate ensemble methods and understand their advantages over individual models Textbooks: 1 Tom M. Mitchell, Machine Learning, India Edition 2013, McGraw Hill Education. 2 Trevor Hastie, Robert Tibshirani, Jerome Friedman, h The Elements of Statistical Learning, 2nd edition, springer series in statistics. CIE Assessment: Continuous Internal Evaluation (CIE): Laboratory 50 Marks The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of the student is evaluated in every session. 	CO2	regression models.								
 CO3 Implement and evaluate KNN models for both classification and regression tasks. To implement and evaluate SVM models with different kernels CO4 Perform dimensionality reduction using PCA and understand its impact on the dataset. to implement and evaluate K-Means clustering and determine the optimal number of clusters. CO5 To implement and evaluate ensemble methods and understand their advantages over individual models Textbooks: 1 Tom M. Mitchell, Machine Learning, India Edition 2013, McGraw Hill Education. 2 Trevor Hastie, Robert Tibshirani, Jerome Friedman, h The Elements of Statistical Learning, 2nd edition, springer series in statistics. CIE Assessment: Continuous Internal Evaluation (CIE): Laboratory- 50 Marks The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of the student is evaluated in every session. 	C02	Implement and evaluate KNN models for both classification and regression tasks. To								
CO4 Perform dimensionality reduction using PCA and understand its impact on the dataset. to implement and evaluate K-Means clustering and determine the optimal number of clusters. CO5 To implement and evaluate ensemble methods and understand their advantages over individual models Textbooks: 1 1 Tom M. Mitchell, Machine Learning, India Edition 2013, McGraw Hill Education. 2 Trevor Hastie, Robert Tibshirani, Jerome Friedman, h The Elements of Statistical Learning, 2nd edition, springer series in statistics. CIE Assessment: Continuous Internal Evaluation (CIE): Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of the student is evaluated in every session.	05	implement and evaluate KINN models for both classification and regression tasks. To implement and evaluate SVM models with different kernels								
implement and evaluate K-Means clustering and determine the optimal number of clusters. CO5 To implement and evaluate ensemble methods and understand their advantages over individual models Textbooks: 1 1 Tom M. Mitchell, Machine Learning, India Edition 2013, McGraw Hill Education. 2 Trevor Hastie, Robert Tibshirani, Jerome Friedman, h The Elements of Statistical Learning, 2nd edition, springer series in statistics. CIE Assessment: Continuous Internal Evaluation (CIE): Laboratory- 50 Marks The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of	CO4	Perform dimensionality reduction using PCA and understand its impact on the dataset. to								
CO5 To implement and evaluate ensemble methods and understand their advantages over individual models Textbooks: 1 1 Tom M. Mitchell, Machine Learning, India Edition 2013, McGraw Hill Education. 2 Trevor Hastie, Robert Tibshirani, Jerome Friedman, h The Elements of Statistical Learning, 2nd edition, springer series in statistics. CIE Assessment: Continuous Internal Evaluation (CIE): Laboratory- 50 Marks The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of		implement and evaluate K-Means clustering and determine the optimal number of clusters.								
individual models Textbooks: 1 Tom M. Mitchell, Machine Learning, India Edition 2013, McGraw Hill Education. 2 Trevor Hastie, Robert Tibshirani, Jerome Friedman, h The Elements of Statistical Learning, 2nd edition, springer series in statistics. CIE Assessment: Continuous Internal Evaluation (CIE): Laboratory - 50 Marks The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of	CO5	To implement and evaluate ensemble methods and understand their advantages over								
Textbooks: 1 Tom M. Mitchell, Machine Learning, India Edition 2013, McGraw Hill Education. 2 Trevor Hastie, Robert Tibshirani, Jerome Friedman, h The Elements of Statistical Learning, 2nd edition, springer series in statistics. CIE Assessment: Continuous Internal Evaluation (CIE): Laboratory- 50 Marks The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of		individual models								
1 Tom M. Mitchell, Machine Learning, India Edition 2013, McGraw Hill Education. 2 Trevor Hastie, Robert Tibshirani, Jerome Friedman, h The Elements of Statistical Learning, 2nd edition, springer series in statistics. CIE Assessment: Continuous Internal Evaluation (CIE): Laboratory- 50 Marks The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of	Textboo	oks:								
 Trevor Hastie, Robert Tibshirani, Jerome Friedman, h The Elements of Statistical Learning, 2nd edition, springer series in statistics. CIE Assessment: Continuous Internal Evaluation (CIE): Laboratory- 50 Marks The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of 	1	Tom M. Mitchell, Machine Learning, India Edition 2013, McGraw Hill Education.								
CIE Assessment: Continuous Internal Evaluation (CIE): Laboratory- 50 Marks The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of	2	Trevor Hastie, Robert Tibshirani, Jerome Friedman, h The Elements of Statistical Learning,								
CIE Assessment: Continuous Internal Evaluation (CIE): Laboratory- 50 Marks The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of		2nd edition, springer series in statistics.								
CIE Assessment: Continuous Internal Evaluation (CIE): Laboratory- 50 Marks The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of										
Continuous Internal Evaluation (CIE): Laboratory- 50 Marks The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of	CIE Ass	sessment:								
Laboratory- 50 Marks The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of	Continu	uous Internal Evaluation (CIE):								
The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of	Labora	tory- 50 Marks								
the student is evaluated in every session. The average of the marks over number of	The lab	poratory session is held every week as per the time table and the performance of								
ine statent is evaluated in every session. The average of the marks ever number of	the stu	the student is evaluated in every session. The average of the marks over number of								
weeks is considered for 30 marks. At the end of the semester a test is conducted for 10	weeks	is considered for 30 marks. At the end of the semester a test is conducted for 10								
marks. The students are encouraged to implement additional innovative experiments in	marks.	The students are encouraged to implement additional innovative experiments in								
the lab and are awarded 10 marks. Total marks for the laboratory is 50	the lab	and are awarded 10 marks. Total marks for the laboratory is 50.								
	-									

SEE Assessment:

SEE for 50 marks are executed by means of an examination.

	CO-PO MAPPING												
COPO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	2	1	1	-	-	-	-	-	-	2	-	1	
CO2	2	1	1	-	-	-	-	-	-	2	-	1	

CO3	2	1	1	-	-	-	-	-	-	2	-	1	
CO4	2	1	1	-	-	-	-	-	-	2	-	1	
CO5	2	1	1	-	-	-	-	-	-	2	-	1	

VII SEMESTER (2022 SCHEME)

Course Title	Big Data Analytics	Semester	VII
Course code	MVJ22IS71	CIE	50+50
Total No. of Contact Hours	3:0:1	SEE	50+50
No. of Contact Hours/week	40 L+26 P	Total	100
Credits	4	Exam. Duration	3

COURSE OBJECTIVES: *This course will enable students to*

- 1. Understand the Big Data Platform and its Use cases
- 2. Provide an overview of Apache Hadoop
- 3. Provide HDFS Concepts and Interfacing with HDFS
- 4. Understand Map Reduce Jobs
- 5. Provide hands on Hadoop Eco System.
- 6. Explain different approaches for text analysis and big data. Module 1

8hrs

Introduction To Big Data :Types of Digital Data, Introduction to Big Data, Analysing Data with Unix tools, The Big Data Foundation, Big Data Computing Platforms (or Computing Platforms That Handle the Big Data Analytics Tsunami), Big Data Computation, More on Big Data Storage, Big Data Computational Limitations, Big Data Emerging Technologies.

Module 28hrsBasics of Hadoop: Hadoop Architecture, The Design of HDFS, HDFS Concepts, Command Line
Interface, Hadoop file system interfaces, Data flow, Data Ingest with Flume and Scoop and Hadoop
archives, Hadoop I/O: Compression, Serialization, Avro and File-Based Data structures. Anatomy of
File Write and Read, NameNode, Secondary NameNode, and DataNode, Hadoop MapReduce
paradigm, Map and Reduce tasks, Job, Task trackers - Cluster Setup – SSH & Hadoop Configuration
– HDFS Administering –Monitoring & Maintenance. Analysing Data with Hadoop, Hadoop
Streaming, IBM Big Data Strategy, Introduction to Infosphere BigInsights and Big Sheets.

Module 3	8hrs
Map Reduce: Anatomy of a Map Reduce Job Run, Failures, Job Scheduling, Shuffle and	l Sort, Task
Execution, Map Reduce Types and Formats, Map Reduce Features.	
Hadoop Ecosystem And Yarn: Hadoop ecosystem components - SPARK, FLUME, I	Hadoop 2.0
New Features- NameNode High Availability, HDFS Federation, MRv2, YARN.	-
Module 4	8hrs
Pig: Introduction to PIG, Execution Modes of Pig, Comparison of Pig with Databases,	Grunt, Pig
Latin, User Defined Functions, Data Processing operators.	
Hive: Hive Shell, Hive Services, Hive Metastore, Comparison with Traditional Database	es, HiveOL,
Tables, Querying Data and User Defined Functions.	, <u> </u>
Zookeeper - how it helps in monitoring a cluster, HBase uses Zookeeper and ho	w to Build
Applications with Zookeeper.	

Module 5	8hrs

Understanding Text Analytics and big Data: Exploring Unstructured data, Understanding Text Analytics, Analysis and extraction techniques, Putting the results together with structured data, putting big data to use, Text analytics tools for Big Data.

Customized approaches for Analysis of Big Data: Different approaches to big data Analysis, custom and semi-custom applications for big data analysis.

LABORATORY EXPERIMENTS

1. Installation of Hadoop and basic commands execution on Hadoop.

2. Implementation of wordcount program using MapReduce.

3. Implementation of max avg of student marks using MapReduce programs.

4. Implement MapReduce program to find the max temperature.

5. Implementation of matrix multiplication using map reduce program.

6. Implement MapReduce program to find the max. Fuel consumed by the vehicles in the city.

7. Implement MapReduce program to find the average of city MPG just for electric cars for the given data sets

8. Implement the MapReduce program to find Even and odd numbers.

9. Implement the MapReduce program to find the list of prime numbers in the given data sets.

10. Implement MapReduce program to find the total and Average salary of the employees.

Cours	e outcomes: Students will able to
CO1	Describe big data and use cases from selected business domains
CO2	Install, configure, and run Hadoop and HDFS
CO3	Perform map-reduce analytics using Hadoop
CO4	Use Hadoop related tools such as HBase, Pig, and Hive for big data Analytics
CO5	Understand different Applications of big data approaches
Textb	ooks:
1	Big Data Analytics", Seema Acharya, Subhasini Chellappan, Wiley 2015
2	Understanding Big data: Analytics for Enterprise Class Hadoop and Streaming Data, Chris
	Eaton, Dirk deroos et al., 1 st edition, Tata McGraw Hill, 2015, ISBN 13: 978-9339221270
3	Tom White "Hadoop: The Definitive Guide" Third Edit on, O'reily Media, 2012.
4	Big data for dummies, Judith Hurwitz, Alan Nugent, Fern Halper, Marcia Kaufman, Wiley
	Publications, 1st edition, 2013, ISBN: 978-1-118-50422-2
5	Big Data, Big Analytics: Emerging Business Intelligence and Analytic Trends for Today's
	Businesses, Michael Minelli ,Michele Chambers , Ambiga Dhiraj

CIE Assessment:

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

SEE Assessment:

Question paper for the SEE consists of two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.

Part B also covers the entire syllabus consisting of five questions having choices and may contain sub-divisions, each carrying 16 marks. Students must answer five full questions.

One question must be set from each unit. The duration of examination is 3 hours.

	CO-PO MAPPING												
СОРО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	2	1	2	2	-							1	
CO2	2	2	2	2	-							1	
CO3	2	2	2	2	3							1	
CO4	2	2	2	2	3							1	
CO5	2	2	2	2	3							1	

Course Title	Parallel Computing	Semester	VII
Course code	MVJ22IS72	CIE	50+50
Total No. of Contact Hours	3:0:1	SEE	50+50
No. of Contact Hours/week	40 L+26 P	Total	100
Credits	4	Exam. Duration	3

COURSE OBJECTIVES: This course will enable students to

1. Understand fundamental concepts in Parallel Computing.

2. Understand Distributed-Memory Programming with MPI.

3. Understand parallel programming model, analyse synchronization in real computing problems.

4. Apply open MP on Shared memory programming.

Module 1

8hrs

Introduction to Parallel Computing: Motivating Parallelism, Scope of Parallel Computing. Parallel Programming Platforms: Trends in microprocessor architectures - limitations of memory system performance – parallel computing platforms – communication costs in parallel machines – routing mechanisms for interconnection networks.

Module 2

Module 3

Module 4

8hrs

Shre

8hrs

Principles of Parallel Algorithm Design: Preliminaries – decomposition techniques – characteristics of tasks and interactions – mapping techniques for load balancing – methods for containing interaction overheads – parallel algorithm models. Basic Communication Operations: One-to-all broadcast and all-to-one reduction – all-to-all broadcast reduction – all-reduce and prefix-sum operations – scatter and gather – all to-all personalized communication – circular shift – improving the speed of some communication Operation.

Module 5									
Examples of Distributed Systems–Trends in Distributed Systems – Focus on resou Challenges. Case study: World Wide Web.	rce sharing –								

System Model Inter process Communication – the API for internet protocols – External data representation and Multicast communication. Network virtualization: Overlay networks. Case study: MPI Remote Method Invocation And Objects: Remote Invocation – Introduction – Request-reply protocols – Remote procedure call – Remote method invocation. Case study: Java RMI.

Module 5	8hrs
Peer-to-peer Systems - Introduction - Napster and its legacy - Peer-to-peer - Middlev	vare – Routing
overlays. Overlay case studies: Pastry, Tapestry. Distributed File Systems -Introduction	– File service
architecture – Andrew File system.	

LABORATORY EXPERIMENTS

1.Familiarization with HPC programming paradigms: Single program multiple data (SPMD) & MPMD

2. To interface Speeding up C/Fortran/Python programs: Vectorization; Compiler options.

3. Programming in Message Passing Interface (MPI): Point-to-point and collective communications;

Parallel I/O; MPI for Python and C/Fortran.

- 4. Programming in OpenMP.
- 5. Programming GPUs using OpenACC.
- 6. Programming GPUs using CuPy and CUDA
- 7. Reduction clause in OpenMP
- 8. Scheduling loops in OpenMP-odd even transposition sort
- 9. Synchronization in OpenMp Producer Consumer problem

10. OpenMP program for fork join model

Cours	e outcomes: Students will able to
CO1	Acquire the skills to implement software effectively and efficiently on parallel hardware
	platforms
CO2	Discuss trends in Distributed Systems
CO3	Apply network virtualization.
CO4	Apply remote method invocation and objects.
CO5	Differentiate the file systems.
Textb	ooks:
1	P. S. Pacheco, An Introduction to Parallel Programming, Elsevier (2011)
2	M. Quinn, Parallel Programming in C and OpenMP, McCraw Hill Education (India) (2003)
3	A. Grama, A. Gupta, G. Karypis, and V. Kumar, Introduction to Parallel Computing, Pearson
	(2007)
4	G. Zaccone. Python Parallel Programming Cookbook, Packt Publ. (2015)
5	R. Farber, Parallel Programming with OpenACC, Morgan Kaufmann

CIE Assessment:

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

SEE Assessment:

Question paper for the SEE consists of two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.

Part B also covers the entire syllabus consisting of five questions having choices and may contain subdivisions, each carrying 16 marks. Students must answer five full questions.

One question must be set from each unit. The duration of examination is 3 hours.

CO-PO MAPPING												
СОРО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3							
CO2	3	2	3	3	3							
CO3	2	3	2	3	3							
CO4	3	2	3	3	3							
CO5	2	3	3	3	3							

Course Title	Information and Network Security	Semester	VII
Course code	MVJ22IS73	CIE	50+50
Total No. of Contact Hours	3:0:0	SEE	50+50
No. of Contact Hours/week	40	Total	100
Credits	3	Exam. Duration	3

COURSE OBJECTIVES: *This course will enable students to*

- 1. Identify the major types of threats to information security and the associated attacks, Services and Mechanisms.
- 2. Design and develop cryptographic algorithms using public key cryptography.
- 3. Generate the own key for developing cryptography algorithms.
- 4. Understand various Transport-level Security and Wireless Network Security

Module 1

5. Generate and distribute a PGP key pair and use the PGP package to send an encrypted e- mail message.

Computer Security Concepts: Introduction, The need for security, Security approaches, Principles of security, The OSI Security Architecture, Types of Security attacks, Security services, Security Mechanisms, A model for Network Security. **Cryptography:** Symmetric Encryption Principles, Symmetric Block Encryption Algorithms, Random and Pseudorandom Numbers, Stream Ciphers and RC4 45, Cipher Block Modes of Operation, Approaches to Message Authentication, Secure Hash Functions, Message Authentication Codes, Public-Key Cryptography Algorithms (Knapsack, RSA, Diffie-Hellman, Elliptic Curve Cryptography), Digital Signatures.

Module 2

8hrs

8hrs

Network Security Applications: Symmetric Key Distribution Using Symmetric Encryption, Kerberos, Key Distribution Using Asymmetric Encryption, Public key infrastructure, Federated Identity Management. **Transport Level Security:** Secure Socket Layer and Transport Layer Security, Transport Layer Security, HTTPS, Secure Shell (SSH). **Wireless Network Security:** Wireless Application Protocol Overview, Wireless Transport Layer Security, WAP End-to-End Security.

Module 3	8hrs						
Electronic Mail Security: Pretty Good Privacy, S/MIME 241, DomainKeys Identified Mail. IP Security: IP Security Policy, Encapsulating Security Payload, Combining Security Associations,							
Internet Key Exchange, Cryptographic Suites, Intrusion Detection, Password Management, Firewalls							
- Types, Location and Configurations, Basics of SNMP, Legal and Ethical Aspects -	Intellectual						
Property, Privacy, Ethical Issue							
Module 4	8hrs						
Hash Functions: Introduction, The Birthday Problem, Non-Cryptographic Hashes, Tiger Hash, HMAC,							
Uses. Advanced Cryptanalysis: Linear and differential Cryptanalysis, Side Channel Attack on RSA,							
Lattice Reduction and Knapsack, Hellman's time memory trade off. Access Control: Authentication,							
Authorization, Simple Authentication Protocols							

Module 5

8hrs

Malware: Introduction, Types Insecurity in software: Software Reverse Engineering, Software Tamper Resistance, Digital Rights Management, Software Development. Operating System and Security: Operating System Security Functions, Trusted Operating Systems

Cours	e outcomes: Students will able to
CO1	Identify common security threats and vulnerabilities in networks and information systems.
CO2	learn about encryption techniques, access control mechanisms, and security protocols.
CO3	Evaluate and propose solutions to legal and ethical challenges in the context of technology and
	information systems.
CO4	Apply mathematical and statistical methods to cryptanalysis and develop strategies for breaking
	encrypted messages.
CO5	Develop skills in malware analysis, reverse engineering, and incident response to effectively
	combat malware threats.
Textb	ooks:
1	Principles of Information Security - Michael E. Whitman and Herbert J. Mattord, 2nd
	Edition, Thompson, 2005.
2	Network Security Essentials Applications and Standards - William Stallings, Person Education,
	2000
3	Cryptography and Network Security - Behrouz A. Forouzan, Tata McGraw-Hill, 2007

CIE Assessment:

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

SEE Assessment:

Question paper for the SEE consists of two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.

Part B also covers the entire syllabus consisting of five questions having choices and may contain subdivisions, each carrying 16 marks. Students must answer five full questions.

One question must be set from each unit. The duration of examination is 3 hours.

CO-PO MAPPING												
СОРО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3							2
CO2	2	3	2	2	3							2
CO3	3	3	3	2	2							3
CO4	2	3	3	2	3							2
CO5	3	3	2	2	3							3

Cours	se Title	Deep Learning	Semester	VII							
Cours	se code	MVJ22IS741 CIE		50							
Total	No. of Contact Hours	3:0:0	SEE	50							
No. of	f Contact Hours/week	40	Total	100							
Credi	ts	3	Exam. Duration	3							
COU	DSE ODIECTIVES. This	agunga will an abla studa	146 40								
1. Lea	rn feed forward deep netw	orks.									
2. Und	derstand convolutional net	works and sequence mode	lling.								
3. Stu	dy probabilistic models and	d auto encoders.									
4. Exp	pose the students to various	s deep generative models.									
5. Stu	dy the various applications	of deep learning.									
		Module 1		8hrs							
DEE learnii	P NETWORKS: Machine ng – Feed forward Deep ne	e Learning Basics: Learnir etworks – regularization –	ng Algorithms – Supervised a Optimization for training Dec	nd Unsupervised pp models.							
		Madula 2		9 Phug							
		Iviouule 2		01118							
and re Auto 1	ecursive nets : Recurrent regressive networks – Long	neural networks – Basic Co g term dependencies – Ter	ctional RNN – Recursive No mporal dependencies – Appro	ums – Recurrent eural networks – ximate search.							
		Module 3		8hrs							
PROB	BABILISTIC MODELS A	ND AUTO ENCODERS :	: Structured Probabilistic mod	lels : Challenges							
of uns	structured modelling – usin	ng graphs to describe mod	lel structure – Learning abou	t dependencies –							
inferen	nce – Deep learning approa	ach – Monte carlo models	Linear Factor models and Au	to encoders							
		Module 4		Shrs							
DEEP Boltzr	GENERATIVE MODEL mann machine – Convoluti	S : Restricted Boltzmann onal Boltzmann machine	n Machines – Deep Belief r	etworks – Deep							
		Module 5		8hrs							
APPL proces task le	ICATIONS: Speech, Aud ssing – information retriev earning	io and Music processing val – object recognition a	 Language modelling and l nd computer vision – Multi 	Natural language modal and multi							
	~ ~ ~										
Cours	Course outcomes: Students will able to										
CO2 Apply convolutional networks and converse modelling for methlem colving											
C02	CO3 Use probabilistic models and auto encoders										
CO4	Use deep generative mod	els for problem solving									
CO5 Apply the deep learning techniques											
Textb	Textbooks:										
1	Yoshua Bengio and Ian J	.Goodfellow and Aaron C	ourville, "Deep Learning", M	IT Press, 2015							
	Li Deng, Dong Yu, "Deep Learning: Methods and Applications", now publishers 2014										
2	Li Deng, Dong Yu, "Dee	ep Learning: Methods and	Applications", now publisher	rs, 2014							

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

SEE Assessment:

Question paper for the SEE consists of two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.

Part B also covers the entire syllabus consisting of five questions having choices and may contain subdivisions, each carrying 16 marks. Students must answer five full questions.

One question must be set from each unit. The duration of examination is 3 hours.

	CO-PO MAPPING											
COPO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3							2
CO2	2	3	2	2	3							2
CO3	3	3	3	2	2							3
CO4	2	3	3	2	3							2
CO5	3	3	2	2	3							3

Course Title	Natural	Language	Semester	VII
	Processing			
Course code	MVJ22IS742		CIE	50
Total No. of Contact Hours	3:0:0		SEE	50
No. of Contact Hours/week	40		Total	100
Credits	3		Exam. Duration	3

COURSE OBJECTIVES: *This course will enable students to*

- 1. Learn the fundamentals of natural language processing
- 2. Understand the use of CFG and PCFG in NLP
- 3. Understand the role of semantics of sentences and pragmatics
- 4. Gain knowledge in automated Natural Language Generation and Machine Translation.

Module 1

8hrs

INTRODUCTION: Origins and challenges of NLP – Language Modelling: Grammar-based LM, Statistical LM –Regular Expressions, Finite-State Automata – English Morphology, Transducers for lexicon and rules, Tokenization, Detecting and Correcting Spelling Errors, Minimum Edit Distance values of real symmetric matrices: Jacobi and Givens method.

Module 28hrsWORD LEVEL AND SYNTACTIC ANALYSIS: N grams Models of Syntax - Counting Words
Unsmoothed N grams-Smoothing-Back off Deleted Interpolation – Entropy – English Word Classes -
Tag sets for English-Part of Speech Tagging-Rule Based Part of Speech Tagging - Stochastic Part of
Speech Tagging - Transformation-Based Tagging -Issues in PoS tagging – Hidden Markov and
Maximum Entropy models.

Module 3	8hrs
CONTEXT FREE GRAMMARS: Context-Free Grammars, Grammar rules for English Normal Forms for grammar – Dependency Grammar – Syntactic Parsing, Ambig Programming parsing – Shallow parsing Probabilistic CFG, Probabilistic CYK Lexicalized CFGs – Feature structures, Unification of feature structures.	sh, Tree banks, guity, Dynamic , Probabilistic
Lexicalized CFGs – Feature structures, Unification of feature structures.	

Module 4	8hrs					
Representing Meaning - Meaning Structure of Language, First Order Predicate Calculus-Representin						
Linguistically Relevant Concepts -SyntaxDriven Semantic Analysis - Semantic Attach	ments –Syntax					
Driven Analyzer- Robust Analysis - Lexemes and Their Senses - Internal Structure	- Word Sense					
Disambiguation -Information Retrieval.						
Module 5	8hrs					

LANGUAGE GENERATION AND DISCOURSEANALYSIS: Discourse segmentation, Coherence – Reference Phenomena, Anaphora Resolution using Hobbs and Centering Algorithm – Co reference Resolution – Resources: Porter Stemmer, Lemmatize, Penn ,Treebank, Brill's Tagger, Word Net, Prop Bank, Frame Net, Brown Corpus, and British National Corpus (BNC).

Cours	Course outcomes: Students will able to							
CO1	Tag a given text with basic Language features.							
CO2	Design an innovative application using NLP components							
CO3	Implement a rule-based system to tackle morphology/syntax of a language							
CO4	Design a tag set to be used for statistical processing for real-time applications							
CO5	Compare the use of different statistical approaches for different types of NLP applications							
Textb	ooks:							
1	Daniel Jurafsky, James H. Martin-Speech and Language Processing: An Introduction to							
	Natural Language Processing, Computational Linguistics and Speech, Pearson Publication, 2014							
2	C. Manning and H. Schutze, "Foundations of Statistical Natural Language Processing",							
	MITPress Cambridge MA:1999							

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

SEE Assessment:

Question paper for the SEE consists of two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.

CO-PO MAPPING												
СОРО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	3	3	2							
CO2	3	2	3	3	2							
CO3	3	3	3	3	3							
CO4	2	2	3	3	3							
CO5	3	3	3	3	3							

Course Title	Embedded Systems	Semester	VII
Course code	MVJ22IS743	CIE	50
Total No. of Contact Hours	3:0:0	SEE	50
No. of Contact Hours/week	40	Total	100
Credits	3	Exam. Duration	3

COURSE OBJECTIVES: This course will enable students to

- 1. Comprehend the underlying features and building blocks of embedded system development.
- 2. Outline the advanced architecture components of 8051 microcontroller.
- 3. Build the assembly language routines using 8051 microcontroller.
- 4. Analyze various models of embedded system development
- 5. Evaluate the RTOS concepts of embedded system applications
- 6. Design embedded systems prototypes for real-time applications.

8hrs

Introduction to Embedded Systems: Definition, Purpose, Embedded systems Vs. General computing systems, Classifications, Applications, Innovative bonding of lifestyle with embedded technologies, Building Blocks of Embedded Systems: Core components including all types of processor/controller, Memory, Sensors, Actuators, LED, 7 segment LED display, stepper motor, Keyboard, Push button switch, Communication Interface (on board and external types), Embedded firmware, Other system components

Module 2

Module 1

8hrs

Microprocessors versus Microcontrollers, ARM Embedded Systems: The RISC design philosophy, The ARM Design Philosophy, Embedded System Hardware, Embedded System Software. ARM Processor Fundamentals: Registers, Current Program Status Register, Pipeline, Exceptions, Interrupts, and the Vector Table, Core Extensions

Module 3	8hrs					
ntroduction to the ARM Instruction Set : Data Processing Instructions, Programme Instructions Software Interrupt Instructions, Program Status Register Instructions, Co-processor Instructions Loading Constants, ARM programming using Assembly language: Writing Assembly code, Profiling						
Module 4	8hrs					
Exception, Interrupt Handling : Exception handling, Interrupts, Interrupt handling Schemes.						

Memory Management Unit : The Memory Hierarchy and Cache Memory, Cache Architecture, Cache Policy, Moving from MPU to an MMU, How Virtual Memory Works, Details of ARM MMU. Module 5

Module 5

Real Time Operating System (RTOS) based Embedded System Design: Operating System basics, Types of operating systems, Task, process and threads (Only POSIX Threads with an example program), Thread pre-emption, Multiprocessing and Multitasking, Task Communication (without any program), Task synchronization issues – Racing and Deadlock, Concept of Binary and counting semaphores (Mutex example without any program), How to choose an RTOS.

Course outcomes: Students will able to

CO1 Comprehend the underlying features and building blocks of embedded system development

CO2	Describe the architectural features and instructions of ARM microcontroller									
CO3	Develop Assembly Programs in ARM for Embedded applications									
CO4	Describe the fundamentals of Exception, Interrupt Handling and Memory Management Unit of									
	ARM Controller									
CO5	Demonstrate the need of real time operating system for embedded system applications.									
Textb	ooks:									
1	Andrew N Sloss, Dominic Symes and Chris Wright, ARM system developer's guide, Elsevier,									
	Morgan Kaufman publishers, 2008.									
2	Shibu K V, "Introduction to Embedded Systems", Tata McGraw Hill Education, Private									

Limited, 2nd Edition

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

SEE Assessment:

Question paper for the SEE consists of two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.

CO-PO MAPPING												
СОРО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	3	3	3							
CO2	3	-	3	3	3							
CO3	3	-	3	3	3							
CO4	2	2	3	3	3							
CO5	3	3	3	3	3							

Course Title	Distributed File Systems	Semester	VII
Course code	MVJ22IS744	CIE	50+50
Total No. of Contact Hours	3:0:0	SEE	50+50
No. of Contact Hours/week	40	Total	100
Credits	3	Exam. Duration	3

COURSE OBJECTIVES: *This course will enable students to*

- 1. To get knowledge in distributed architecture, naming, synchronization, consistency and replication, fault tolerance, security, and distributed file systems.
- 2. To understand Distributed on multiple file servers or multiple locations. It allows programs to access or store isolated files as they do with the local ones, allowing programmers to access files from any network or computer.
- 3. Illustrates DFS is executed as a part of the operating system.
- 4. Analyse DFS, a namespace is created, and this process is transparent for the clients.

Module 1	8hrs							
Distributed file System: What is distributed file system, File Service architecture, Need of Distributed								
File system, Distributed file system requirement, - Case Study 1: Sun Network File S	System, Case							
Study 2: The Andrew File System. Name Services, Domain Name System, Directory Serv	vices.							
Module 2	8hrs							
Name Services and Domain Name System: Name servers and Navigation, Domain Name s	ystems, Main							
Features, Directory service protocol, Name Hierarchy, Case study Global Name service, Th	he X.500							
directory service, X.500 Infrastructure.								
Module 3	8hrs							
Distributed File system: Motivation, Naming and Transparency, Remote File Access, Sta	teful vs State							
less service, why did we choose these systems, GFS, GFS2- Google colossus system,	Hyper scale:							
Facebook Tectonic system								
Module 4	8hrs							
Desirable Features of a Good Distributed File System, Goal of Distributed File System, File	e models,							
File-Accessing Models, File - Sharing Semantics, File - Caching Schemes, File Replicatio	on, Fault							
Tolerance, Atomic Transactions and Design Principles, Trends in Distributed File system,								
Module 5	8hrs							
Hadoop Distributed File System: The Design of HDFS, HDFS Concepts, Command Line In	nterface,							
Hadoop File System interfaces, Data flow, Data Ingest with Flume and Scoop and Hadoop	Archives,							
Apache Storm, Spark, Oozie								
Course outcomes: Students will able to								
CO1 Demonstrate Proficiency in understanding of Distributed file system								
CO2 Analyze the Name services and Domain Name system.								
CO3 Illustrate DFS its Motivation, GFS								
Interpret File Accessing Models, Caching Schemes, Replication Models, sufficient Knowledge								

	on File access.							
CO5	Discussion about Hadoop Distributed File System, Hadoop File System interfaces							
Textbooks:								
1	Distributed File Systems: Concepts and Examples" by Jurai Hromkovic							

2 Distributed File Systems" by Sun Microsystems

3 Modern Distributed File Systems: Design and Implementation" by Ricardo Morin

Video links: http://acl.digimat.in/nptel/courses/video/106104189/lec4.pdf

CIE Assessment:

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

SEE Assessment:

Question paper for the SEE consists of two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.

CO-PO MAPPING													
СОРО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
C01	3	3	2	3	3							2	
CO2	3	3	2	3	2							2	
CO3	3	3	2	2	2							2	
CO4	2	2	2	2	2							2	
CO5	2	2	2	3	3							2	

Cours	se Title	Introduction To DBMS	Semester	VII					
Cours	se code	MVJ22IS7551	CIE	50					
Total	No. of Contact Hours	3:0:0	SEE	50					
No. of	f Contact Hours/week	40	Total	100					
Credi	ts	3	Exam. Duration	3					
COUI	RSF OB IFCTIVES . Thi	is course will enable students	10						
 Pra Pra Der Des 	ovide a strong foundation ctice SQL programming t nonstrate the use of concu sign and build database ap	in database concepts, technol hrough a variety of database p urrency and transactions in da pplications for real world prob	logy, and practice. problems. tabase. lems						
		Module 1		8hrs					
Intro on th datab	duction to Databases: Int le scene; workers behind base Applications; when N	roduction; An example; characteristic the scene; advantages of using lot to use a DBMS.	acteristics of the database ng the DBMS approach; A	approach; actors brief history of					
		Module 2		8hrs					
relatio relatio	onal operations, additional onal algebra.	relational operations (aggreg Module 3	ate, grouping, etc.) Exampl	es of Queries in 8hrs					
SQL: action	Advances Queries: More triggers, Views in SOL	complex SQL retrieval queri Schema change statements in	es, Specifying constraints a	as assertions and					
		Module 4		8hrs					
Norma Multiv Norma	alization: Database Desig valued Dependencies: Info al Forms based on Primar	n Theory – Introduction to No ormal design guidelines for re v Kevs, Second and Third No	ormalization using Function lation schema, Functional I ormal Forms, Boyce- Codd	al and Dependencies, Normal Form.					
		Module 5		8hrs					
Transa Desira schedu	action Processing: Introdu able properties of Transac ules based on Serializabili	action to Transaction Processi tions, Characterizing schedule ity, Transaction support in SQ	ng, Transaction and System es based on recoverability, 0 L.	n concepts, Characterizing					
Course outcomes: Students will able to									
CO1	O1 Identify, analyse and define database objects, enforce integrity constraints on a database using RDBMS.								
CO2	Use Structured Query L	anguage (SQL) for database n	nanipulation.						
CO3	Design and build simple	e database systems.							
CO4	Apply the concepts of N	ormalization and design datal	base which possess no anor	nalies.					
CO5	Develop application to i	nteract with databases							
Textb	ooks:								
1	I Fundamentals of Database Systems, Ramez Elmasri and Shamkant B. Navathe, 7th Edition,								

	2017, Pearson
2	Database management systems, Ramakrishnan, and Gehrke, 3rd Edition, 2014, McGraw Hill
3	Silberschatz Korth and Sudharshan, Database System Concepts, 6th Edition, McGrawHill, 2013.

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

SEE Assessment:

Question paper for the SEE consists of two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.

					(CO-PO	MAPI	PING				
СОРО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	3	3	2	2				1			2
CO2	3	3	3	2	2				1			2
CO3	3	3	3	2	2				1			2
CO4	2	3	3	2	2				1			2
CO5	2	3	3	3	3				2			2

		Open Electi Semester	ve II 7 th				
Cours	I.	NTRODUCTION TO	ALGORITHMS	50+50			
Cours		MIVJ22157552		50+50			
Total	No. of Contact Hours	3:0:0	SEE	50+50			
No. of	f Contact Hours/week	40	Total	100			
Credi	ts	3	Exam. Duration	3			
COUI	RSE OBJECTIVES: This	course will enable stud	lents to				
1. 2. 3. 4. 5.	 Learn the basics Algorithms Learn to write algorithms and its performance. Learn the different functions of algorithms. Understand the concept of recurrence algorithms Understand probabilistic analysis. 						
		Module 1		8hrs			
The l Algori	Role of Algorithms in C ithms as a technology, Effi	omputing: Algorithms, ciency, Data structures,	kinds of problems are solved Technique, Hard problems	by algorithms,			
		Module 2		8hrs			
Gettir averag	ng Started Insertion sort ge-case analysis, Designing	, Analyzing algorithn g algorithms	ns, Analysis of insertion sort,	Worst-case and			
		Module 3		8hrs			
Growt notatio	th of Functions Growth of ons and common functions	Functions, Asymptoti , Functional iteration	c notation, Comparison of funct	ions, Standard			
		Module 4		8hrs			
Recun master	rrences The substitution r r theorem, The proof for ex	nethod, The recursion-tact powers	ree method, The master metho	d, Proof of the			
		Module 5		8hrs			
Probabilistic Analysis and Randomized Algorithms The hiring problem, Indicator random variables, Randomized algorithms, Probabilistic analysis and further uses of indicator random variables							
Cours	e outcomes: Students will Explain the basic algori	II able to thm and its characteristi	cs				
CO2	Understanding of sorting	g algorithm	•••				
CO3	Analysis of algorithm ar	nd performance					
CO4	Illustrate Recurrence al	gorithms					
CO5	Interpret Probabilistic A	nalysis and randomized	algorithms				
Textb	ooks:						

1	Introduction to Algorithms, Thomas H. Cormen, Charles E. Leiserson, Ronal L. Rivest, Clifford
	Stein, 3rd Edition, PHI.
2	Introduction to the Design and Analysis of Algorithms, Anany Levitin:, 2rd Edition, 2009.
	Pearson.
3	Design and Analysis of Algorithms, S. Sridhar, Oxford (Higher Education).
4	Introduction to the Design and Analysis of Algorithms, Anany Levitin:, 2rd Edition, 2009.
	Pearson.
5	Introduction to Algorithms, Thomas H. Cormen, Charles E. Leiserson, Ronal L. Rivest, Clifford
	Stein, 3rd Edition, PHI.

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

SEE Assessment:

Question paper for the SEE consists of two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.

	CO-PO MAPPING											
СОРО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	2	-	-		-	3	1	3	1	1
CO2	3	2	3	3	2	-	2	2	2	3	2	3
CO3	3	2	3	3	2	2	2	3	3	3	2	3
CO4	3	3	3	3	2	2	3	3	3	3	2	3
CO5	3	2	2	2	2	2	3	3	3	3	2	3

COurse Title	Software Engineering	Semester	VII
Course code	MVJ22IS7553	CIE	50
Total No. of Contact Hours	3:0:0	SEE	50
No. of Contact Hours/week	40	Total	100
Credits	3	Exam. Duration	3

COURSE OBJECTIVES: This Course will enable the students to

1. Understand principles, concepts, methods, and techniques of the software engineering approach to producing quality software (particularly for large, complex systems).

2. Impart skills in the design and implementation of efficient software systems across disciplines.

3. Familiarize engineering practices and standards used in developing software products and components.

4. Gather knowledge on various software testing, maintenance methods.

	Module 1	8hrs
FUNI	DAMENTALS OF SOFTWARE ENGINEERING AND REQUIREMENTS EN	NGINEERING
Softwa	are Engineering Fundamentals; Software processes: Software life-cycle mod	lels; Software
requir	ements and specifications: Requirements elicitation; Requirements analysis modeli	ng techniques;
Functi	onal and non-functional requirements.	
	Module 2	8hrs
Funda	amental design concepts and principles; Design characteristics; System Mode	els - Context,
Behav	ioral, Data and, Object models.	
	Module 3	8hrs
SOFT	WARE VALIDATION AND MAINTENANCE Software validation: Validat	tion planning;
Testin	g fundamentals, including test plan creation and test case generation; Black-box	and white-box
testing	techniques; Unit, integration, validation, and system testing; Object-oriented testin	g; Inspections
	Module 4	8hrs
COM	PONENT BASED SOFTWARE ENGINEERING Engineering of Component-Base	ed Systems;
The C	BSE Process; Domain Engineering; Component Based Development; Classifying and	nd Retrieving
Comp	onents; Economics of CBSE	C
	Module 5	8hrs
SOFT	WARE QUALITY PROCESS IMPROVEMENT Overview of Quality management	t and Process
Impro	vement; Overview of SEI -CMM, ISO 9000, CMMI, PCMM, TQM and Six Sigma;	overview of
CASE	tools. Software tools and environments: Programming environments; Project mana	gement tools;
Cours	e outcomes: Students will able to	
CO1	Comprehend software development life cycle and Prepare SRS document for a pr	oject
CO2	Apply software design and development techniques	
CO3	Identify verification and validation methods in a software engineering project	
CO4	Apply on Component based software development process.	
CO5	Involve in continuous learning to solve issues of process and software proc	duct using the
	advanced CASE tools and techniques	-

Textb	Textbooks:				
1	Ian Sommerville, "Software Engineering", 9th Edition, Addison- Wesley, 2011				
2	R. S. Pressman, Software Engineering, a practitioner's approach, McGraw Hill,7th Edition,				
	2010				
3	Rajib Mall, "Fundamentals of Software Engineering", PHI Publication, 3rd edition, 2009				
4	Pankaj Jalote: An Integrated Approach to Software Engineering, Wiley India.				

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

SEE Assessment:

Question paper for the SEE consists of two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.

	CO-PO MAPPING											
СОРО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	2	2	-			1	2		
CO2	2	2	2	2	2	1			1	2		
CO3	2	2	2	2	2	1			1	2		
CO4	1	2	2	2	2	1			1	2		
CO5	1	2	2	1	2	1			2	2		

Course Title	Cloud Computing	Semester	VII
Course code	MVJ22IS7554	CIE	50
Total No. of Contact Hours	3:0:0	SEE	50
No. of Contact Hours/week	40	Total	100
Credits	3	Exam. Duration	3

COURSE OBJECTIVES: This Course will enable the students to

1.Understands cloud computing models and infrastructure for larger networks

2. Identify policies, mechanisms and scheduling for resource management, virtualization, and optimization of networks.

3. Compare multiple approaches to cloud system design and solve real world problems.

4. Illustrate storage concept and self-organizing capability for different cloud systems.

5. Understands cloud security and risk

Module 1	8hrs

Defining a Cloud, Cloud Computing Reference Model, Characteristics and Benefits, Historical Developments, Building Cloud Computing Environments, Computing Platforms and Technologies, Eras of Computing, Parallel vs. Distributed Computing, Elements of Parallel Computing.

Module 2

8hrs

Characteristics of Virtualized Environments, Taxonomy of Virtualization Techniques, Virtualization and Cloud Computing, Pros and Cons of Virtualization, Technology Examples, Xen, VMware, Microsoft Hyper-V, Cloud Reference Model and Architecture, Infrastructure as a Service, Platform as a Service, Software as a Service, Types of Clouds, Economics of the Cloud, Open Challenges in Clouds **Module 3** 8hrs

Data-intensive computing Characterizing data-intensive computations, Challenges ahead, Historical perspective, Technologies for data-intensive computing – Storage systems, Programming platforms – Map Reduce. Public Cloud Infrastructures: Amazon Web Services - Compute, Storage, and Communication Services; Google App Engine – Architecture, Application Life-Cycle, Cost Model; and Microsoft Azure

Module 4

8hrs

ECG Data Analysis on Cloud, Protein Structure Prediction, Satellite Image Processing; Business and
Consumer Applications – CRM, Social Networks, Media Applications, and Multiplayer Online Gaming.
Advanced Topics in Cloud Computing, Energy efficiency in clouds, Energy-efficient and green cloud
computing architecture, Market-based management of clouds, Market-oriented cloud computing, A
reference model for MOCC,3 Technologies and initiatives supporting MOCC, ObservationsModule 5Module 58hrs

Cloud security risks, Security: The top concern for cloud users, Privacy and privacy impact assessment, Trust, Operating system security, Virtual machine Security, Security of virtualization, Security risks posed by shared images, Security risks posed by a management OS, A trusted virtual machine monitor.

Cours	e outcomes: Students will able to
CO1	Explore the basic concepts of cloud computing, cloud infrastructure, cloud models, cloud
	services, distributed computing, and other related concepts.
CO2	Understand Virtualization and working of some of industrially popular Virtualization
	technologies.
CO3	Apply Map Reduce programming model to solve some data-intensive computing applications
	over public or private cloud platforms.
CO4	Analyzing the security risks in cloud from different perspectives and study some of the
	available solutions.
CO5	Explain Operating system security, Virtual machine Security and Security of virtualization.
Textb	ooks:
1	Mastering Cloud Computing, Rajkumar Buyya, Christian Vecchiola, and ThamaraiSelvi, 2013,
	McGraw Hill, New Delhi, India, ISBN-13: 978-1-25-902995-0.
	(Module 1, Module 2, Module 3, Module 4, Module 5)
2	Cloud Computing Theory and Practice, Dan C Marinescu, 1st Edition, 2013, Elsevier (MK),
	ISBN: 9780124046276. (Module 5)
3	Distributed Computing and Cloud Computing, from parallel processing to internet of things, Kai
	Hwang, GeofferyC. Fox, Jack J Dongarra, 1st Edition, 2012, Elsevier (MK), ISBN: 978-0-12-
	385880-1.

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

SEE Assessment:

Question paper for the SEE consists of two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.

CO-PO MAPPING												
СОРО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	3	-	-	-	-	2	3	3
CO2	3	3	3	2	3	-	-	-	-	2	3	3
CO3	3	3	2	2	3	-	-	-	-	2	3	3

CO4	3	3	2	2	3	-	-	-	-	2	3	3
CO5	2	2	-	2	2	-	-	-	-	-	-	-