M.TECH - Electronics and Communication Engineering (Advanced Communication Technology) Choice Based Credit System (CBCS) and Outcome Based Education (OBE)

(Effective from the academic year2022-23)

SEMESTER-I

ADVANCED ENGINEERING MATHEMATICS				
Course Code	MVJ22MATE11	CIE Marks	50	
Teaching Hours/Week (L:P:T:S)	3:0:0	SEE Marks	50	
Total Hours of Pedagogy	40 Hours Theory	Total Marks	100	
Credits	03	Exam Hours	03	

Course Learning objectives: This course will enable students:

- Understand the concept of vector space and linear transformations.
- Understand the concept of eigen values and eigen vectors, Numerical techniques for orthogonal basis for a vector space.
- Understand the concept of probability distributions in analyzing the probability models arising in engineering field.

Understand the concept of Random processes	
MODULE-1	
Linear Algebra-I : Introduction to vector spaces and sub-spaces, definitions, illustrative example. Linearly independent and dependent vectors- Basis-definition and problems. Linear	8hrs
transformations-definitions. Matrix form of linear transformations-Illustrative examples	
MODULE-2	
Linear Algebra-II: Computation of Eigen values and Eigen vectors of real symmetric matrices-	8hrs
Given's method. Orthogonal vectors and orthogonal bases. Gram-Schmidt orthogonalization	
process.	
MODULE-3	
Calculus of Variations: Concept of functional – Euler's equation. Functional dependent on first	8hrs
and higher order derivatives, Functional on several dependent variables. Isoperimetric problems-	
variation problems with moving boundaries.	
MODULE-4	
Probability Theory: Review of basic probability theory. Definitions of random variables and	8hrs
probability distributions, probability mass and density functions, expectation, moments, central	
moments, characteristic functions, probability generating and moment generating functions-	
illustrations. Poisson, Gaussian and Erlang distributions examples	

MODULE-5

Engineering Applications on Random processes: Classification. Stationary, WSS and	8hrs
Ergodic random process. Auto-correlation function-properties, Gaussian random process	

Text	Books:
1	'Linear Algebra and its Applications', David CLay, Steven R Lay and J J McDonald,
	Pearson Education Ltd., 5 th Edition, 2015
2	'Advanced Engineering Mathematics', E. Kreyszig, Wiley, 10th edition, 2015
3	'Probability, Statistics and Random Process', T Veerarajan, TataMc-GrawHillCo.,3rd
	Edition,2016

Ref	erence Books:
1	'Introduction to Linear Algebra', Gilbert Strang, Wellesley-Cambridge Press, 5 th Edition,2016
2	'Schaum's Outlines of Theory and Problems of Matrix Operations', Richard Bronson, McGraw-Hill,1988
3	'Probability and Random Process with application to Signal Processing', Scott L Miller, Donald G Childers, Elsevier Academic Press, 2 nd Edition, 2013

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE.

A student shall be deemed to have satisfied the academic requirements (passed) and earned the credits allotted to each subject/ course if the student secures not less than 50% of the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- 1. Three Unit Tests each of 50 Marks.
- 2. Two assignments each of 20 Marks or one Skill Development Activity of 40 marks to attain the COs and POs.

The sum of three tests, two assignments/skill Development Activities, will be scaled down to 50 marks. CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

- 1. The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.
- 2. The question paper will have ten full questions carrying equal marks.

- **3.** Each full question is for 20 marks. There will be two full questions (with a maximum of four subquestions) from each module.
- **4.** Each full question will have a sub-question covering all the topics under a module.
- **5.** The students will have to answer five full questions, selecting one full question from each module.

Course Learning Outcomes: After the completion of the course, students will be able to:

Sl.	Description	Blooms
No.		Level
CO1	Understand vector spaces, basis, linear transformations and the process of obtaining matrix of linear transformations arising in magnification and rotation of images.	Explain
CO2	Apply the technique of singular value decomposition for data compression, least square approximation in solving inconsistent linear systems.	Understand
CO3	Utilize the concepts of functional and their variations in the applications of communication systems, decision theory, synthesis and optimization of digital circuits.	Analyze
CO4	Learn the idea of random variables (discrete/continuous) and probability distributions in analyzing the probability models arising in control systems and system communications.	Analyze
CO5	Analyze random process through parameter-dependent variables in various random processes	Design and analyze

Program Outcomes for this Course:

Sl.	Description	POs
No.		
1	An ability to independently carry out research/investigation and development work to solve practical problems.	PO1
2	An ability to write and present a substantial technical report/document.	PO2
3	Students should be able to demonstrate a degree of mastery over the area as per the specialization of the program. The mastery should beat a level higher than the requirements in the appropriate bachelor program.	
4	An ability to create, select, apply appropriate techniques, resources and modern tools to solve complex engineering activities with an understanding of their limitations.	PO4
5	An ability to apply Professional ethics, responsibilities and norms of the engineering.	PO5
6	An ability to recognize the need to engage in independent and life-long learning in various Communication domain.	PO6

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	1	1	1	2	1	1
CO2	1	1	1	2	1	1
CO3	2	1	2	2	1	1
CO4	1	1	1	2	1	1
CO5	1	1	1	2	1	1

ADVANC	ED DIGITAL SIGNAL PROC	ESSING		
Course Code	MVJ22LAC12	CIE Marks	50	
Teaching Hours/Week (L:P:T:S)	3:0:2:0	SEE Marks	Marks 50	
Total Hours of Pedagogy	40 L + 13 P	Total Marks	100	
Credits	04	Exam Hours	03	
Course Learning objectives: This	course will enable students:		<u> </u>	
• To know the analysis of discret	e time signals.			
• To study the modern digital sig	nal processing algorithms and ap	plications.		
• To Have a min-depth knowledg	ge of use of digital systems in real	time application	S	
• To apply the algorithms for wice	le area of recent applications			
	MODULE-1			
Introduction to Digital Signal Pro	ocessing: Review of Discrete tin	ne signals and sy	stems and	
	9			8hrs
frequency analysis of discrete time linear time invariant systems, implementation of discrete time systems, correlation of discrete time systems Sampling, decimation by a factor 'D', Interpolation				
by a factor 'I', sampling rate conversion by a factor 'I/D', Implementation of sampling rate				
conversion, Multistage implementation of sampling rate conversion.				
	MODULE-2			
Multirate Digital Signal Processing	g: Multirate signal processing and	d its applications.	, Design of	8hrs
Digital filters, Design of FIR filters, Design of IIR filters, frequency transformations, Digital				
filter banks, two channel Quadrature mirror filter banks, M channel QMF bank.				
	MODULE-3			I
Linear prediction and Optimum 1	Linear Filters: Random signals,	Correlation Fun	ections and	8hrs
Power Spectra, Innovations Repres	sentation of a Stationary Rand	om Process. Fo	rward and	
Backward Linear Prediction. Solution of the Normal Equations. The Levinson-Durbin Algorithm.				
Properties of the Linear Prediction-Error Filters.				
	MODULE-4			I
Adaptive filters: Applications of	of Adaptive Filters – Adaptiv	ve Channel Equ	alization,	8hrs
Adaptive noise cancellation, Linear	Predictive coding of Speech Sig	nals, Adaptive di	rect form	
FIR filters-The LMS algorithm, Pr	roperties of LMS algorithm. Ad	aptive direct for	m filters-	
RLS algorithm.				

MODULE-5

8hrs

Power Spectrum Estimation: Non parametric Methods for Power Spectrum Estimation - Bartlett Method, Welch Method, Blackman & Tukey Methods. Parametric Methods for Power Spectrum Estimation: Relationship between the auto correlation and the model parameters, Yule and Walker methods for the AR Model Parameters, Burg Method for the AR Model parameters, Unconstrained least-squares method for the AR Model parameters, Sequential estimation methods for the AR Model parameters, ARMA Model for Power Spectrum Estimation.

Text	Books:
1	Digital Signal Processing Principles, Algorithms, and Applications by John G. Proakis,
	Prentice-Hall InternationalInc.,4th Edition, 2012.
2	Theory and Application of Digital Signal Processing by Lawrence R. Rabiner and Bernard
	Gold.

Refer	Reference Books:	
1	Oppenheim, Alan V. Discrete-time signal processing. Pearson Education India,1999.	
2	Mitra, Sanjit Kumar, and Yong hong Kuo. Digital signal processing: a computer-based	
	approach. Volume 2. New York: McGraw-Hill Higher Education, 2006.	

PRACTICAL COMPONENT OF IPCC:

Conduct the experiments using MATLAB/Scilab/TMS320C5XDSP Processors

Sl.	Experiments
No	
1	Generate various fundamental discrete time signals
2	Basic operations on signals (Multiplication, Folding, Scaling).
3	Find out the DFT &IDFT of a given sequence without using in built instructions.
4	Interpolation & decimation of a given sequence.
5	Generation of DTMF (Dual Tone Multiple Frequency) signals
6	Estimate the PSD of a noisy signal using periodogram and modified periodogram
7	Estimation of PSD using different methods (Bartlett, Welch, Blackman-Tukey).
8	Design of Chebyshev Type I, II Filters.
9	Cascade Digital IIR Filter Realization.
10	Parallel Realization of IIR filter.
11	Estimation of power spectrum using parametric methods (Yule Walker &Burg).
12	Time-Frequency Analysis with the Continuous Wavelet Transform.

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE. A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 50% (50 marks out of 100)in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

CIE for the theory component of IPCC

- 1. Two Tests each of 50 Marks
- 2. Two assignments each of 10 Marks/One Skill Development Activity of 20 marks
- 3. Total Marks of two tests and two assignments/one Skill Development Activity added will be CIE for 60marks, marks scored will be proportionally scaled down to **30marks**.

CIE for the practical component of IPCC

- On completion of every experiment/program in the laboratory, the students shall be evaluated and
 marks shall be awarded on the same day. The 15 marks are for conducting the experiment and
 preparation of the laboratory record, the other 05 marks shall be for the test conducted at the end
 of the semester.
- The CIE marks awarded in the case of the Practical component shall be based on the continuous evaluation of the laboratory report. Each experiment report can be evaluated for 10 marks. Marks of all experiments' write-ups are added and scaled down to 15marks.
- The laboratory test at the end /after completion of all the experiments shall be conducted for 50 marks and scaled down to 05 marks.
- Scaled-down marks of write-up evaluations and tests added will be CIE marks for the laboratory component of IPCC for **50 marks**.

SEE for IPCC

Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the course (duration 03Hours)

The question paper will be set for 100 marks and marks scored will be scaled down proportionately to 50marks.

- The question paper will have ten questions. Each question is set for 50 marks.
- There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), **should have a mix of topics** under that module.
- The students have to answer 5 full questions, selecting one full question from each module.

The theory portion of the IPCC shall be for both CIE and SEE, whereas the practical portion will have a CIE component only. Questions mentioned in the SEE paper shall include questions from the

practical component).

The minimum marks to be secured in CIE to appear for SEE shall be the 15 (50% of maximum marks-30) in the theory component and 10 (50% of maximum marks -20) in the practical component. The laboratory component of the IPCC shall be for CIE only. However, in SEE, the questions from the laboratory component shall be included. The maximum of 04/05 questions to be set from the practical Component of IPCC, the total marks of all questions should not bemorethanthe20marks.

Course Learning Outcomes: After the completion of the course, students will be able to:

Sl.	Description	Blooms
No.		Level
CO1	Able to analyze and implement the frequency analysis & correlation of	Analyze
	discrete- Time linear time invariant systems.	
CO2	Able to implement sampling rate conversion by decimation & Interpolation	Analyze
	Process and design digital filter banks	
CO3	Able to analyze forward and backward linear prediction of a stationary	Analyze
	random Process using Levinson-Durbin Algorithm	
CO4	Able to understand and analyze adaptive filters and its application using	Analyze
	LMS Algorithm & RLS algorithm.	
CO5	Able to understand parametric & non-parametric methods for power	Understand
	spectrum estimation.	

Program Outcomes for this Course:

Sl.	Description	
No.		
1	An ability to independently carry out research/investigation and development	PO1
	work to solve practical problems.	
2	An ability to write and present a substantial technical report/document.	PO2
3	Students should be able to demonstrate a degree of mastery over the area as per	PO3
	the specialization of the program. The mastery should beat a level higher than the	
	requirements in the appropriate bachelor program.	
4	An ability to create, select, apply appropriate techniques, resources and modern	PO4
	tools to solve complex engineering activities with an understanding of their	
	limitations.	
5	An ability to apply Professional ethics, responsibilities and norms of the	PO5
	engineering.	

6	An ability to recognize the need to engage in independent and life-long learning	PO6
	in various Communication domain.	

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	1	1	1	2	1	1
CO2	1	1	1	2	1	1
CO3	2	1	2	2	1	1
CO4	1	1	1	2	1	1
CO5	1	1	1	2	1	1

ADVA	NCED COMMUNICATION SY	YSTEM-1			
Course Code	MVJ22LAC13	CIE Marks	50		
Teaching Hours/Week (L:P:T:S)	3:0:0	SEE Marks	50		
Total Hours of Pedagogy	40 L	Total Marks	100		
Credits	04	Exam Hours	03		
Course Learning objectives: This	course will enable students:				
To know modulation techniques	S.				
To study the demodulation tech	niques.				
To Have a min-depth knowledge	ge of band limited channels and ed	qualizers			
To understand spread spectrum					
	MODULE-1				
Signal Representation: Low pass re	presentation of bandpass signals,	Low pass repres	sentation of		
band pass random process. Mod	ulation: Representation of dig	gitally modulate	ed Signals,	8hrs	
Modulation Schemes without memo	ory (Band Limited Schemes - PA	AM, BPSK, QPS	SK, MPSK,		
MQAM, Power Limited Schemes -	FSK, MFSK, DPSK, DQPSK)	, modulation sch	nemes with		
memory (Basics of CPFSK and CPM	M – Full Treatment of MSK), Tr	ansmit PSD for 1	Modulation		
Schemes.					
	MODULE-2				
Demodulation: Vector Channel, Ve	ctor Channel + AWGN, Perform	ance parameters	, Optimum	8hrs	
Coherent Detection for power limited	d and Bandlimited schemes, Opt	imal Coherent de	etection for		
schemes with memory, Optimal Nor	n-Coherent detection for schemes	s without and wi	th memory		
(FSK, DPSK, DQPSK), Comparison	of detection schemes.				
	MODULE-3				
Bandlimited Channels: Bandlimite	d channel characterization, sign	aling through ba	and limited	8hrs	
linear filter channels, Sinc, RC,					
Optimum receiver for channel with I	SI and AWGN. Linear Equaliz e	ers: Zero forcing	Equalizer,		
MSE and MMSE, Baseband and Pass	sband Linear Equalizers. Perform	ance of ZFE and	MSE.		
	MODULE-4				
Non-Linear Equalizers: Decision -	feedback equalization, Predictive	DFE, Performa	nce of DFE	8hrs	
Adaptive equalization: Adaptive linear equalizer, adaptive decision feedback equalizer,					
Adaptive Fractionally spaced Equalizer (Tap Leakage Algorithm), Adaptive equalization of					
Trellis-coded signals					
MODULE-5					
Spread spectrum signals for digi	tal communication: Model of	spread spectrun	n digital	8hrs	
communication system, Direct sequence spread spectrum signals, some applications of DS					

spread spectrum signals, generation of PN sequences, Frequency hopped spread spectrum signals, Time hopping SS, Synchronization of SS systems.

Text Books:

1 'Digital Communications', John G. Proakis, Masoud Salehi, Pearson Education, ISBN:978-9332535893, 5th edition, 2014

Reference Books:

- Digital Communications: Fundamentals and Applications: Fundamentals & Applications', Bernard Sklar, Pearson Education, ISBN:9788131720929, 2nd edition, 2009
- 2 'Digital Communications Systems', Simon Haykin, Wiley, ISBN:9788126542314,1st edition, 2014

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE. A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 50% (50 marks out of 100)in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- Three Unit Tests each of 50 Marks.
- Two assignments each of **20 Marks** or **one Skill Development Activity of 40 marks** to attain the COs and POs.
- The sum of three tests, two assignments/skill Development Activities, will bescaleddownto50marks.

CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

- The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.
- The question paper will have ten full questions carrying equal marks.
- Each full question is for 20 marks. There will be two full questions (with a maximum of four subquestions) from each module.
- Each full question will have a sub-question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module

Course Learning Outcomes: After the completion of the course, students will be able to:

Sl.	Description	Blooms
No.		Level
CO1	Ability to explain the concept of low pass and Band pass signals	Explain
	representations at the Transmitter, the process of Detection and Estimation	
	at the receiver in the Presence of AWGN only.	
CO2	Able to Evaluate Receiver performance for various types of single carrier	Understand
	symbol Modulations through ideal and AWGNN on-band limited and band	
	limited channels.	
CO3	Analyze and demonstrate the model of discrete time channel with ISI & the	Analyze
	Model of discrete time channel by equalizer.	
CO4	Design single carrier equalizers for various symbol modulation schemes and	Analyze
	Detection methods for defined channel models, and compute parameters to	
	meet desired rate and performance requirements.	
CO5	Design and Evaluate Non band limited and Non power limited spread	Design and
	spectrum systems for communications in a Jamming environment, multi	analyze
	user situation and Low power intercept environment.	

Program Outcomes for this Course:

Sl.	Description	POs
No.		
1	An ability to independently carry out research/investigation and development work to solve practical problems.	PO1
2	An ability to write and present a substantial technical report/document.	PO2
3	Students should be able to demonstrate a degree of mastery over the area as per the specialization of the program. The mastery should beat a level higher than the requirements in the appropriate bachelor program.	
4	An ability to create, select, apply appropriate techniques, resources and modern tools to solve complex engineering activities with an understanding of their limitations.	PO4
5	An ability to apply Professional ethics, responsibilities and norms of the engineering.	PO5
6	An ability to recognize the need to engage in independent and life-long learning in various Communication domain.	PO6

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	1	1	1	2	1	1
CO2	1	1	1	2	1	1
CO3	2	1	2	2	1	1
CO4	1	1	1	2	1	1
CO5	1	1	1	2	1	1

Course Code	MVJ22LAC14	CIE Marks	50
		SEE Marks	
Teaching Hours/Week (L:P:T:S)	3:0:0	SEE Warks	50
Total Hours of Pedagogy	40 L	Total Marks	100
Credits	03	Exam Hours	03
Course Learning objectives: This c	ourse will enable students:		
• To introduce the basic mathemati	cal concepts related to elect	romagnetic vector field	s.
To impart knowledge on the cond	cepts of electrostatics, electr	ic potential, energy dens	sity and their
applications.	- -		-
 To impart knowledge on the cond 	cepts of magnetostatics, mag	gnetic flux density, scala	ar and vector
potential and its applications.		•	
To impart knowledge on the cond	cepts of Faraday 's law, indu	aced emf and Maxwell '	s equations.
To impart knowledge on the cond	cepts of Concepts of electron	magnetic waves and Tra	nsmission lines
	MODULE-1		
Vector Analysis: Review of vector	algebra, Review of cartes	sian, Cylindrical and s	pherical
coordinate systems, Introduction to d	el (operator, Use of del op	perator as gradient, dive	ergence, 8hrs
curl). Smith Chart: Description and det	tailed analysis		
	MODULE-2		
Electrostatic fields: Introduction to	coulomb's law, Gaussian	n law and its applicat	tions in 8hrs
determination of field of spherical and	cylindrical geometries, La	place's and poission's e	equation
in various coordinate systems. Effect o	of dielectric on capacitance,	Boundary conditions at	electric
interfaces, Method of images and its ap	oplications.		

MODULE-3

8hrs

8hrs

8hrs

Magnetostatics: Introduction to ampere's law, Magnetic vector potential, Magnetic forces, Boundary conditions at magnetic interfaces.

MODULE-4

Time Varying Fields and Maxwell's Equations: Continuity of charge, Concept of displacement current, Maxwell's equation in integral and differential form: for static fields, for time varying fields, for free space, for good conductors, for harmonically varying fields, Poynting theorem: Energy stored and radiated power, Complex Poynting vector, Properties of conductor and dielectrics, Wave equations for free space, Wave equations for conductors.

MODULE-5

Uniform Plane Waves: Introduction, Uniform plane wave propagation: Wave equations, Transverse nature of uniform plane waves, Perpendicular relation between E and H, EM

waves in charge free, Current free dielectric, Reflection by ideal conductor: Normal incidence, reflection and transmission with normal incidence at another dielectric, Plane wave in lossy dielectric, Wave impedance and propagation constant, Depth of penetration, Surface impedance and surface resistance, Application of EM propagation through Transmission Lines and Rectangular Waveguides

Text	Text Books:		
1	Kraus, J.D., Electromagnetics, McGraw-Hill (2006).		
2	Sadiku, M.N.O, Elements of Electromagnetics, Oxford University Press (2009).		

Refe	Reference Books:		
1	Hayt, W.H., Engineering Electromagnetics, Tata McGraw Hill (2008).		
2	Jordan, E.C. and Balmain K.G., Electromagnetic Waves and Radiating Systems, Prentice Hall of India (2008).		
3	Paramanik, A, Electromagnetism: Theory and Applications, Prentice Hall of India (2006)		

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE. A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 50% (50 marks out of 100)in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- Three Unit Tests each of 50 Marks.
- Two assignments each of **20 Marks** or **one Skill Development Activity of 40 marks** to attain the COs and POs.

The sum of three tests, two assignments/skill Development Activities, will bescaleddownto50marks.

CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

- The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.
- The question paper will have ten full questions carrying equal marks.
- Each full question is for 20 marks. There will be two full questions (with a maximum of four subquestions) from each module.
- Each full question will have a sub-question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module

Course Learning Outcomes: After the completion of the course, students will be able to:

Sl.	Description	Blooms
No.		Level
CO1	Appraise need analysis for different coordinate systems in electromagnetics and their interrelations.	Explain
CO2	Apply vector calculus to solve field theory problems.	Understand
CO3	Calculate electric and magnetic fields in different coordinates for various charge and current configurations.	Analyze
CO4	Exhibit the concept of time varying fields and demonstrate different aspects of plane wave in dielectric and conducting media.	Understand
CO5	Realize the analogy of wave with transmission line and determine the transmission line performance.	Understand

Program Outcomes for this Course:

Sl.	Description	POs
No.		
1	An ability to independently carry out research/investigation and development	PO1
	work to solve practical problems.	
2	An ability to write and present a substantial technical report/document.	PO2
3	Students should be able to demonstrate a degree of mastery over the area as per	PO3
	the specialization of the program. The mastery should beat a level higher than the	
	requirements in the appropriate bachelor program.	
4	An ability to create, select, apply appropriate techniques, resources and modern	PO4
	tools to solve complex engineering activities with an understanding of their	
	limitations.	
5	An ability to apply Professional ethics, responsibilities and norms of the	PO5
	engineering.	
6	An ability to recognize the need to engage in independent and life-long learning	PO6
	in various Communication domain.	

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	1	1	2	1	1	1
CO2	1	1	1	2	1	1
CO3	2	1	2	1	1	1
CO4	1	1	1	2	1	1
CO5	1	2	1	1	1	1

ADVAN	CED COMMUNICATION	NETWORKS			
Course Code	MVJ22LAC15	CIE Marks	50		
Teaching Hours/Week (L:P:T:S)	3:0:0	SEE Marks	50	50 100 03	
Total Hours of Pedagogy	40 L	Total Marks	100		
Credits	03	Exam Hours	03		
 Course Learning objectives: This of the control of the co	ots. ols. of congestion control and rese	ource allocation			
F oundation : Building a Networ		ants Natwork Arch	nitecture		
Implementing Network Software, Per		ents, Network Arci	mieciure,	8hrs	
	MODULE-2				
Advanced Internetworking: The C Multiprotocol Label Switching (MP Reliable Byte Stream (TCP).			-	8hrs	
·	MODULE-3				
Congestion Control and Resource location, Queuing Disciplines, TCP Quality of Service.	_			8hrs	
	MODULE-4				
Applications: Traditional Application		POP IMAP MIME) World	8hrs	
••	,		· ·	oms	
Wide Web (HTTP), Multimedia A (DNS), Network Management (SNN		ivices (Domain Name	5 System		
(DIAS), INCLINIAL MANAGEMENT (SIM	•				
	MODULE-5			1 0 -	
End-to End data: Presentation for	rmatting, Multimedia Data I	Network Security: Se	curity	8hrs	

<u> </u>	
Tex	t Books:
1	'Computer Networks: A System Approach', Larry Peterson and Bruce S Davis, 5thEdition, Elsevier-2014.
2	'Internetworking with TCP/IP, Principles, Protocols and Architecture', Douglas E Comer, 6th Edition, PHI–2014

attacks, Cryptographic building blocks, Key Pre distribution, Authentication protocols,

Firewalls.

Re	Reference Books:			
1	'Computer Networks, Protocols, Standards and Interfaces', Uyless Black,2ndEdition, PHI.			
2	'TCP /IP Protocol Suite', Behrouz A Forouzan, 4thEdition, Tata McGraw-Hill			

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE. A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 50% (50 marks out of 100)in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- Three Unit Tests each of 50 Marks.
- Two assignments each of **20 Marks** or **one Skill Development Activity of 40 marks** to attain the COs and POs.

The sum of three tests, two assignments/skill Development Activities, will bescaleddownto50marks.

CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

- The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.
- The question paper will have ten full questions carrying equal marks.
- Each full question is for 20 marks. There will be two full questions (with a maximum of four subquestions) from each module.
- Each full question will have a sub-question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module

Course Learning Outcomes: After the completion of the course, students will be able to:

Sl.	Description	Blooms
No.		Level
CO1	Classify network services, protocols and architectures, explain why they are layered.	Understand
CO2	Knowledge on Advanced Internetworking applications and their protocols, and ability to work on their own applications (e.g. Client Server applications, Web Services).	Analyze
CO3	To analyze various techniques for Congestion avoidance and Resource Allocation.	Analyze
CO4	Gain the knowledge of application layer protocols.	Understand
CO5	Understand the concept of Network Security through cryptographic blocks, authentication protocols and Firewalls.	Apply

Program Outcomes for this Course:

Sl.	Description	POs
No.		

1	An ability to independently carry out research/investigation and development	PO1
	work to solve practical problems.	
2	An ability to write and present a substantial technical report/document.	PO2
3	Students should be able to demonstrate a degree of mastery over the area as per	PO3
	the specialization of the program. The mastery should beat a level higher than the	
	requirements in the appropriate bachelor program.	
4	An ability to create, select, apply appropriate techniques, resources and modern	PO4
	tools to solve complex engineering activities with an understanding of their	
	limitations.	
5	An ability to apply Professional ethics, responsibilities and norms of the	PO5
	engineering.	
6	An ability to recognize the need to engage in independent and life-long learning	PO6
	in various Communication domain.	

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	1	1	2	2	-	2
CO2	1	1	2	2	-	2
CO3	1	1	2	2	-	2
CO4	1	1	2	2	-	2
CO5	1	1	2	2	-	2

RESEARCH METHODOLOGY & IPR						
Course Code	MVJ22RM16	CIE Marks	50			
Teaching Hours/Week (L:P:T:S)	3:0:0	SEE Marks	50			
Total Hours of Pedagogy	40 L	Total Marks	100			
Credits	03	Exam Hours	03			

Course Learning objectives: This course will enable students:

- To give an overview of the research methodology and explain the technique of defining a research problem
- To explain the functions of the literature review in research.
- To explain carrying out a literature search, its review, developing theoretical and conceptual frameworks and writing a review.
- To explain various research designs and their characteristics.
- To explain the details of sampling designs, and also different methods of data collections.
- To explain the art of interpretation and the art of writing research reports.
- To explain various forms of the intellectual property, its relevance and business impact in the changing global business environment.
- To discuss leading International Instruments concerning Intellectual Property Rights

MODULE-1

Research Methodology: Introduction, Meaning of Research, Objectives of Research, Motivation in Research, Types of Research, Research Approaches, Significance of Research, Research Methods versus Methodology, Research and Scientific Method, Importance of Knowing How Research is Done, Research Process, Criteria of Good Research, and Problems Encountered by Researchers in India.

8hrs

Defining the Research Problem: Research Problem, Selecting the Problem, Necessity of Defining the Problem, Technique Involved in Defining a Problem, An Illustration.

MODULE-2

Reviewing the literature: Place of the literature review in research, Bringing clarity and focus to your research problem, Improving research methodology, Broadening knowledge base in research area, Enabling contextual findings, How to review the literature, searching the existing literature, reviewing the selected literature, Developing a theoretical framework, Developing a conceptual framework, Writing about the literature reviewed.

8hrs

Research Design: Meaning of Research Design, Need for Research Design, Features of a Good Design, Important Concepts Relating to Research Design, Different Research Designs, Basic Principles of Experimental Designs, Important Experimental Designs.

MODULE-3

8hrs **Design of Sampling:** Introduction, Sample Design, Sampling and Non-sampling Errors, Sample Survey versus Census Survey, Types of Sampling Designs. Measurement and Scaling: Qualitative and Quantitative Data, Classifications of Measurement Scales, Goodness of Measurement Scales, Sources of Error in Measurement Tools, Scaling, Scale Classification Bases, Scaling Technics, Multidimensional Scaling, Deciding the Scale. Data Collection: Experimental and Surveys, Collection of Primary Data, Collection of Secondary Data, Selection of Appropriate Method for Data Collection, Case Study Method. **MODULE-4** 8hrs **Testing of Hypotheses:** Hypothesis, Basic Concepts Concerning Testing of Hypotheses, Testing of Hypothesis, Test Statistics and Critical Region, Critical Value and Decision Rule, Procedure for Hypothesis Testing, Hypothesis Testing for Mean, Proportion, Variance, for Difference of Two Mean, for Difference of Two Proportions, for Difference of Two Variances, P-Value approach, Power of Test, Limitations of the Tests of Hypothesis. Chi-square Test: Test of Difference of more than Two Proportions, Test of Independence of Attributes, Test of Goodness of Fit, Cautions in Using Chi Square Tests. **MODULE-5** 8hrs **Interpretation and Report Writing:** Meaning of Interpretation, Technique of Interpretation, Precaution in Interpretation, Significance of Report Writing, Different Steps in Writing Report, Layout of the Research Report, Types of Reports, Oral Presentation, Mechanics of Writing a Research Report, Precautions for Writing Research Reports. **Intellectual Property:** The Concept, Intellectual Property System in India, Development of TRIPS Complied Regime in India, Patents Act, 1970, TradeMarkAct, 1999, The Designs Act, 2000, The Geographical Indications of Goods (Registration and Protection) Act 1999, Copyright Act, 1957, The Protection of Plant Varieties and Farmers' Rights Act, 2001, The Semi-

Text Books:

1 Research Methodology: Methods and Techniques', C.R. Kothari, Gaurav Garg, New Age
International, 4th Edition, 2018

2 'Research Methodology a step-by-step guide for beginners., Ranjit Kumar, SAGE
Publications, 3rd Edition, 2011

3 Study Material (For the topic Intellectual Property under module 5) Professional Programme

Conductor Integrated Circuits Layout Design Act, 2000, Trade Secrets, Utility Models, IPR and

Biodiversity, The Convention on Biological Diversity (CBD) 1992, Competing Rationales for

Protection of IPRs, Leading International Instruments Concerning IPR, World Intellectual

Property Organisation (WIPO), WIPO and WTO.

Intellectual Property Rights, Law and Practice, The Institute of Company Secretaries of India, Statutory Body Under an Act of Parliament, September 2013.

Refe	Reference Books:		
1	'Research Methods: the concise knowledge base', Trochim, Atomic Dog Publishing, 2005		
2	'Conducting Research Literature Reviews: From the Internet to Paper', Fink A, Sage		
	Publications, 2009		

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE. A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 50% (50 marks out of 100)in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- Three Unit Tests each of 50 Marks.
- Two assignments each of 20 Marks or one Skill Development Activity of 40 marks to attain the COs and POs.

The sum of three tests, two assignments/skill Development Activities, will bescaleddownto50marks.

CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

- The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.
- The question paper will have ten full questions carrying equal marks.
- Each full question is for 20 marks. There will be two full questions (with a maximum of four subquestions) from each module.
- Each full question will have a sub-question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module

Course Learning Outcomes: After the completion of the course, students will be able to:

Sl. Description Bl	Blooms
--------------------	--------

No.		Level
CO1	Discuss research methodology and the technique of defining a research	Understand
	problem.	
CO2	Explain the functions of the literature review in research, carrying out a	Analyze
	literature search, developing theoretical and conceptual frameworks and	
	writing a review.	
CO3	Explain various research designs, sampling designs, measurement and	Analyze
	scaling techniques and also different methods of data collections.	
CO4	Explain several parametric tests of hypotheses, Chi-square test, art of	Understand
	interpretation and writing research reports	
CO5	Discuss various forms of the intellectual property, its relevance and business	Apply
	impact in the changing global business environment and leading	
	International Instruments concerning IPR.	

ADVANCED DIGITAL	SIGNAL PROCESSING L	ABORATORY	
Course Code	MVJ22LACL17	CIE Marks	50
Teaching Hours/Week(L:T:P:S)	0:2:0	SEE Marks	50
Credits	02	Exam Hours	03

Course objectives: This course will enable students to:

- To know the analysis of discrete time signals.
- To study the modern digital signal processing algorithms and applications.
- To Have a min-depth knowledge of use of digital systems in real time applications
- To apply the algorithms for wide area of recent applications.

Sl. No.	Experiments
1	Generate various fundamental discrete time signals
2	Basic operations on signals (Multiplication, Folding, Scaling).
3	Find out the DFT & IDFT of a given sequence without using in built instructions.
4	Interpolation & decimation of a given sequence.
5	Generation of DTMF (Dual Tone Multiple Frequency) signals
6	Estimate the PSD of a noisy signal using periodogram and modified periodogram
7	Estimation of PSD using different methods (Bartlett, Welch, Blackman-Tukey).
8	Design of Chebyshev Type I, II Filters.
9	Cascade Digital IIR Filter Realization.
10	Parallel Realization of IIR filter.
11	Estimation of power spectrum using parametric methods (Yule Walker & Burg).
12	Time-Frequency Analysis with the Continuous Wavelet Transform.
13	Signal Reconstruction from Continuous Wavelet Transform Coefficients.

Conduct the experiments using MATLAB/ Scilab /TMS320C5X DSP Processors

Course outcomes (**Course Skill Set**): At the end of the course the student will be able to:

- 1. Able to generate discrete time signals and perform DFT, IDFT on the signals.
- 2. Able to estimate the PSD using different methods.
- 3. Able to design and realize FIR and IIR filters.
- 4. Able to estimate power spectrum using Parametric methods.
- 5. Able to analyze in Time and Frequency domain and reconstruct the signal using Wavelet Transform.

SEMESTER-II

ADV	ANCED COMMUNICATION SY	STEMS-2	
Course Code	MVJ22LAC21	CIE Marks	50
Teaching Hours/Week (L:P:T:S)	3:0:0:0	SEE Marks	50
Total Hours of Pedagogy	40L	Total Marks	100
Credits	03	Exam Hours	03

Course Learning objectives: This course will enable students:

- To describe models for fading channels, and concepts of diversity in time, antenna and frequency.
- To understand concepts of multi-channel signaling (including OFDM) scheme and synchronization for carrier and symbol timing recovery at receiver.
- To Understand the capacity and degradation in performance of various symbol signaling schemes in a multipath fading environment.
- Develop & analyze multiplexing capability and modelling of MIMO channels
- Develop and evaluate the performance of a MIMO scheme to meet specified rate in a given multipath

	Bevelop and evaluate the performance of a minima seneme to meet specified rate in a given	mampan
	environment.	
	Prerequisites: Band limited channels	
	MODULE-1	
	Point-to-Point Communication-Detection in a Rayleigh Fading Channel, Time Diversity, Antenna	8hrs
]	Diversity, Frequency Diversity.	
þ	Fading—Large scale, small scale, signal time spreading- in time domain and frequency domain. Time	
,	variance of the channel caused by motion, in time domain. Donnler shift domain, degradation	

variance of the channel caused by motion- in time domain, Doppler-shift domain, degradation categories due to time variance, viewed in the doppler shift domain, Mitigating the degradation effects of fading.

MODULE-2

Fading Contd.: Small scale multipath propagation-factors influencing small scale fading, Doppler shift, Small scale multipath measurements, Parameters of mobile multipath channels, Types of small scale fading, Simulation of Clarke and Gans Fading model.

Multicarrier Signaling: Multicarrier Communications in AWGN channel- Single carrier vs Multicarrier, OFDM-Matrix representation, FFT Implementation, Peak to Average Power Ratio.

Wideband Systems: CDMA

MODULE-3

Capacity of wireless channel: AWGN channel capacity, Linear time invariant Gaussian channel, 8hrs Capacity of Fading Channels.

MODULE-4

MIMO spatial multiplexing and channel modeling: Multiplexing capability of deterministic 8hrs MIMO channels, Physical modeling of MIMO channels, Modeling of MIMO fading channels.

MODULE-5

MO 8hrs

MIMO capacity and multiplexing architectures: The VBLAST architecture, Fast fading MIMO channel, Capacity with CSI at receiver, Performance gains, Full CSI, Performance gains in a MIMO channel, Receiver architectures — (Linear decorrelator, Successive cancellation, Linear MMSE receiver), Information theoretic optimality, Connections with CDMA multiuser detection and ISI equalization, Slow fading MIMO channel.

Text	Books:
1	'Digital Communications Fundamentals and applications', Bernad Sklar, Pearson Education, ISBN:8178083736,2 nd edition, 2004
2	'Fundamentals of Wireless Communication', David Tse, Pramod Viswanath, Cambridge University Press, ISBN:0521845270,1st edition, 2005
3	'Wireless Communications', Theodore S. Rappaport, Cambridge University Press, ISBN:8120323815,2 nd edition, 2005
4	'Wireless Communications', Andrea Goldsmith, Cambridge University Press, ISBN:9780521837163,2 nd edition, 2005

Refe	Reference Books:	
1	'Digital Communication Systems', Simon Haykin, Wiley, ISBN:978-0471-64735-5,2014	
2	'Digital Communications', John G. Proakis, Masoud Salehi, Pearson Education, ISBN:9789332535 893,5 th edition,2014	

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE.

A student shall be deemed to have satisfied the academic requirements (passed) and earned the credits allotted to each subject/ course if the student secures not less than 50% of the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- 1. Three Unit Tests each of 50 Marks.
- 2. Two assignments each of 20 Marks or one Skill Development Activity of 40 marks to attain the COs and POs.

The sum of three tests, two assignments/skill Development Activities, will be scaled down to 50 marks. CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

- 1. The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.
- 2. The question paper will have ten full questions carrying equal marks.
- 3. Each full question is for 20 marks. There will be two full questions (with a maximum of four subquestions) from each module.
- **4.** Each full question will have a sub-question covering all the topics under a module.
- **5.** The students will have to answer five full questions, selecting one full question from each module.

Course Learning Outcomes: After the completion of the course, students will be able to:

Sl. No.	Description	Blooms Level
CO1	To describe models for fading channels, and concepts of diversity in time, antenna and frequency.	Explain
CO2	Explain the concepts of multi-channel signaling (including OFDM) scheme and Synchronization for carrier and symbol timing recovery at receiver.	Understand
CO3	Evaluate the capacity and degradation in performance of various symbol signaling schemes in a multipath fading environment.	Analyze
CO4	Develop & analyze multiplexing capability and modelling of MIMO channels.	Analyze
CO5	Develop and evaluate the performance of a MIMO scheme to meet Specified rate in a given multipath environment.	Analyze

Program Outcomes for this Course:

Sl. No.	Description	Pos
1	An ability to independently carry out research/investigation and development work to solve practical problems.	PO1
2	An ability to write and present a substantial technical report/document.	PO2
3	Students should be able to demonstrate a degree of mastery over the area as per the specialization of the program. The mastery should beat a level higher than the requirements in the appropriate bachelor program.	
4	An ability to create, select, apply appropriate techniques, resources and modern tools to solve complex engineering activities with an understanding of their limitations.	PO4
5	An ability to apply Professional ethics, responsibilities and norms of the engineering.	PO5
6	An ability to recognize the need to engage in independent and life-long learning in various Communication domain.	PO6

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	1	1	2	1	2
CO2	2	2	1	1	1	1
CO3	3	1	2	2	1	1
CO4	3	2	2	2	2	3
CO5	3	2	2	2	2	3

A	NTENNA THEORY AND DI	ESIGN	
Course Code	MVJ22LAC22	CIE Marks	50
Teaching Hours/Week (L:P:T:S)	3:2:0:Y	SEE Marks	50
Total Hours of Pedagogy	40L + 13P	Total Marks	100
Credits	04	Exam Hours	03

Course Learning objectives: This course will enable students:

- To classify different types of antennas.
- To define and illustrate various types of array antennas.
- To design antennas like Yagi-Uda, Helical antennas and other broad band antennas.
- To describe different antenna synthesis methods.

8hrs
8hrs
8hrs
8hrs
8hrs
8hr

CEM for antennas: The method of moments: Introduction of the methods moments, Pocklington's integral equation, Integral equation and Kirchhoff's networking equations, Source modeling weighted residual formulations and computational consideration, Calculation of antenna and scatter characteristics.

Text	Books:
1	Antenna Theory Analysis and Design', C.A. Balanis, John Wiley, 2 nd Edition, 2007

Refe	Reference Books:		
1	Antennas and Wave Propagation', J.D. Krauss, McGraw Hill TMH,4thEdition, 2010.		
2	Antenna and Wave Propagation, K.D.Prasad, Satya Prakashan, New Delhi, 2021.		

PRACTICAL COMPONENT OF IPCC:

Conduct the experiments using MATLAB/Scilab/any antenna simulation tool

Sl. No	Experiments
1	MATLAB/C implementation to obtain the radiation pattern of an antenna.
2	Study of radiation pattern of different antennas.
3	Determine the directivity and gains of Horn/Yagi/dipole/Parabolic antennas.
4	Impedance measurements of Horn/Yagi/dipole/Parabolic antennas
5	Study of radiation pattern of E&H plane horns.
6	Significance of Pocklington's integral equation.
7	Determine the directivity and gains of dipole antennas.
8	Impedance measurements of Yagi antennas.
9	Determine the directivity and gains of Parabolic antennas.
10	Study of radiation pattern of E plane horns

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE.

A student shall be deemed to have satisfied the academic requirements (passed) and earned the credits allotted to each subject/ course if the student secures not less than 50% of the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- 1. Three Unit Tests each of 50 Marks.
- 2. Two assignments each of 20 Marks or one Skill Development Activity of 40 marks to attain the COs and POs.

The sum of three tests, two assignments/skill Development Activities, will be scaled down to 50 marks. CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

- 1. The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.
- 2. The question paper will have ten full questions carrying equal marks.
- 3. Each full question is for 20 marks. There will be two full questions (with a maximum of four subquestions) from each module.
- 4. Each full question will have a sub-question covering all the topics under a module.
- 5. The students will have to answer five full questions, selecting one full question from each module.

Course Learning Outcomes: After the completion of the course, students will be able to:

Sl. No.	Description	Blooms Level
CO1	To classify different types of antennas.	Understand
CO2	To define and illustrate various types of array antennas.	Understand
CO3	To design antennas like Yagi-Uda, Helical antennas and other broadband Antennas.	Understand
	To describe different antenna synthesis methods and apply methods like Method of Moments, Pocklington's integral equation, Source modelling	Understand
CO5	To measure s-parameter, Radiation and Gain of various antenna.	Analyze

Program Outcomes for this Course:

Sl. No.	Description	POs
	An ability to independently carry out research/investigation and development work to solve practical problems.	PO1
2	An ability to write and present a substantial technical report/document.	PO2
	Students should be able to demonstrate a degree of mastery over the area as per the specialization of the program. The mastery should beat a level higher than the requirements in the appropriate bachelor program.	

4	An ability to create, select, apply appropriate techniques, resources and modern tools to solve complex engineering activities with an understanding of their limitations.	
5	An ability to apply Professional ethics, responsibilities and norms of the engineering.	PO5
6	An ability to recognize the need to engage in independent and life-long learning in	PO6
	various Communication domain.	

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	1	1	1	1	1	1
CO2	1	1	1	2	1	1
CO3	2	1	1	1	1	1
CO4	1	1	1	2	1	1
CO5	1	1	2	1	1	1

Professional Elective – 1

WIRELESS SENSOR NETWORKS				
Course Code	MVJ22LAC231	CIE Marks	50	
Teaching Hours/Week (L:P:T:S)	3:0:0:0	SEE Marks	50	
Total Hours of Pedagogy	40L	Total Marks	100	
Credits	03	Exam Hours	03	

Course Learning objectives: This course will enable students:

- Learn the basic concepts of Wireless sensor networks architecture and protocols.
- Understand the challenges in designing a Wireless sensor network.

\mathcal{E}	
 Understand the function of Data link and Network layer Protocols. 	
 Understand the function of Transport layer Protocols. 	
• Analyze wireless sensor network system for different applications under consideration.	
Prerequisites: Wireless Communication concepts.	
MODULE-1	
Introduction: Sensor Mote Platforms, WSN Architecture and Protocol Stack,	8hrs
WSN Applications: Military Applications, Environmental Applications, Health Applications,	
Home Applications, Industrial Applications.	
MODULE-2	
Factors Influencing WSN Design: Hardware Constraints Fault Tolerance Scalability Production	8hrs
Costs WSN Topology, Transmission Media, Power Consumption.	
Physical Layer: Physical Layer Technologies, Overview of RF Wireless Communication,	
Channel Coding (Error Control Coding), Modulation, Wireless Channel Effects, PHY Layer	
Standards.	
MODULE-3	.1
Medium Access Control: Challenges for MAC, CSMA Mechanism, Contention-Based Medium	8hrs
Access, Reservation-Based Medium Access, Hybrid Medium Access.	
Network Layer: Challenges for Routing, Data-centric and Flat Architecture Protocols,	
Hierarchical Protocols, Geographical Routing Protocols.	
MODULE-4	.1
Transport Layer: Challenges for Transport Layer, Reliable Multi Segment Transport (RMST)	8hrs
Protocol, Pump Slowly, Fetch Quickly (PSFQ) Protocol, Congestion Detection and Avoidance	
(CODA) Protocol, Event-to-Sink Reliable Transport (ESRT) Protocol, GARUDA	
Application Layer: Source Coding (Data Compression), Query Processing, Network	
Management.	
MODULE-5	
Wireless Sensor and Actor Networks: Characteristics, Sensor Actor coordination, Actor Actor	8hrs
coordination, WSAN protocol stack, Wireless Multimedia Sensor Networks, Grand Challenges.	

Text Book:

1	Wireless Sensor Networks, Ian F. Akyildiz and Mehmet Can Vuran, John Wiley & Sons Ltd.
	ISBN978-0-470-3601-3(H/B),2010

Reference Book:

Wireless Sensor Networks: Signal Processing and Communications Perspectives', Ananthram Swami, et.al,
John Wiley &Sons Ltd., ISBN 978-0470-03557-3, 2007.

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE.

A student shall be deemed to have satisfied the academic requirements (passed) and earned the credits allotted to each subject/ course if the student secures not less than 50% of the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- 1. Three Unit Tests each of 50 Marks.
- 2. Two assignments each of 20 Marks or one Skill Development Activity of 40 marks to attain the COs and POs.

The sum of three tests, two assignments/skill Development Activities, will be scaled down to 50 marks. CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

- 1. The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.
- 2. The question paper will have ten full questions carrying equal marks.
- 3. Each full question is for 20 marks. There will be two full questions (with a maximum of four subquestions) from each module.
- 4. Each full question will have a sub-question covering all the topics under a module.
- 5. The students will have to answer five full questions, selecting one full question from each module.

Course Learning Outcomes: After the completion of the course, students will be able to:

Sl. No.	Description	Blooms Level
CO1	Acquire knowledge of Wireless sensor network architecture and protocols.	Understand
CO2	Apply various transport layer protocols.	Apply
CO3	Understand the multiple radio access techniques, radio standards and Communication protocols to be used for wireless sensor.	Understand
	Design wireless sensor network system for different applications under consideration.	Analyze
	Understand the hardware details of different types of sensors and select right type of sensor for various applications.	Understand

Program Outcomes for this Course:

Sl.	Description		
No. 1	An ability to independently carry out research/investigation and development work to solve practical problems.	PO1	
2	An ability to write and present a substantial technical report/document.	PO2	
3	Students should be able to demonstrate a degree of mastery over the area as per the specialization of the program. The mastery should beat a level higher than the		
	requirements in the appropriate bachelor program.	DO 4	
4	An ability to create, select, apply appropriate techniques, resources and modern tools to solve complex engineering activities with an understanding of their limitations.		
5	An ability to apply Professional ethics, responsibilities and norms of the engineering.	PO5	
6	An ability to recognize the need to engage in independent and life-long learning in	PO6	
	various Communication domain.		

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	1	-	1	3	-	2
CO2	1	-	1	3	-	2
CO3	1	-	1	3	-	2
CO4	1	1	1	3	-	2
CO5	1	1	1	3	-	2

NANO ELECTRONICS					
Course Code	MVJ22LAC232	CIE Marks	50		
Teaching Hours/Week (L:P:T:S)	3:0:0:0	SEE Marks	50		
Total Hours of Pedagogy	40L	Total Marks	100		
Credits	03	Exam Hours	03		
Course I carning chicatives. This course will enable students:					

Course Learning objectives: This course will enable students

- Know the principles behind Nanoscience engineering and Nano electronics.
- Apply the knowledge to prepare and characterize nanomaterials.
- Know the effect of particles size on mechanical, thermal, optical and electrical properties of nano materials.
- Design the process flow required to fabricate state of the art transistor technology.
- Analyze the requirements for new materials and device structure in the future technologies.

MODULE-1

Introduction to Physics of the solid state: Structure, Energy bands, Localized particles

Generic methodologies for nanotechnology: classification and fabrication: Introduction and

classification, Summary of the electronic properties of atoms and solids, effects of the nanometer length scale, Fabrication methods: Top-down processes, bottom-up processes methods for

templating the growth of nanomaterials, ordering of nano systems.

MODULE-2

Characterization: Classification, Microscopic techniques, Field ion microscopy, scanning probe techniques, diffraction techniques: bulk and surface diffraction techniques, spectroscopy techniques: photon, radiofrequency, electron, surface analysis and dept profiling: electron, mass, Ion beam, Reflectometry, Techniques for property measurement: mechanical, electron, magnetic, thermal properties.

MODULE-3

Inorganic semiconductor nanostructures: overview of semiconductor physics. Quantum confinement in semiconductor nanostructures: quantum wells, quantum wires, quantum dots, super-lattices, band offsets, and electronic density of states.

Carbon Nanostructures: Introduction, carbon molecules, carbon clusters, carbon nanotubes, applications of carbon nanotubes.

MODULE-4

Fabrication techniques: requirements of ideal semiconductor, epitaxial growth of quantum wells, lithography and etching, cleaved-edge over growth, growth of vicinal substrates, strain induced dots and wires, electrostatically induced dots and wires, Quantum well width fluctuations, thermally annealed quantum wells, semiconductor nanocrystals, colloidal quantum dots, self-assembly techniques.

Physical processes: modulation doping, quantum hall effect, resonant tunnelling, charging effects, ballistic carrier transport, Interband absorption, intra band absorption, Light emission

8hrs

8hrs

8hrs

8hrs

processes, phonon bottleneck, quantum confined stark effect, nonlinear effects, coherence and		
dephasing, characterization of semiconductor.		
MODULE-5		
Methods of measuring properties: atomic, crystallography, microscopy, spectroscopy	8hrs	
Applications: Injection lasers, quantum cascade lasers, single photon sources, biological		
tagging, optical memories, Coulomb blockade devices, photonic structures.		

Text	Text Books:			
1	'Nano scale Science and Technology', Ed Robert Kelsall, Ian Hamley, Mark Geoghegan, John			
	Wiley, 2007.			
2	'Introduction to Nanotechnology', Charles Poole, Jr, Frank J Owens, John Wiley, Copyright 2006,			
	Reprint 2011.			

Reference Books:

1 'Hand Book of Nanoscience Engineering and Technology', Ed William A Goddard III, Donald W Brenner, Sergey E. Lyshevski, Gerald Jlafrate, CRC press, 2003.

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE.

A student shall be deemed to have satisfied the academic requirements (passed) and earned the credits allotted to each subject/ course if the student secures not less than 50% of the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- 1. Three Unit Tests each of 50 Marks.
- 2. Two assignments each of 20 Marks or one Skill Development Activity of 40 marks to attain the COs and POs.

The sum of three tests, two assignments/skill Development Activities, will be scaled down to 50 marks. CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

- 1. The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.
- 2. The question paper will have ten full questions carrying equal marks.
- 3. Each full question is for 20 marks. There will be two full questions (with a maximum of four subquestions) from each module.
- 4. Each full question will have a sub-question covering all the topics under a module.
- 5. The students will have to answer five full questions, selecting one full question from each module.

Course Learning Outcomes: After the completion of the course, students will be able to:

Sl. No.	Description	Blooms Level
CO1	Know the principles behind Nanoscience engineering and Nanoelectronics.	Understand
CO2	Apply the knowledge to prepare and characterize nano materials.	Apply
CO3	Know the effect of particles size on mechanical, thermal, optical and electrical Properties of nanomaterials	Understand
CO4	Design the process flow required to fabricate state of the art transistor technology	Apply
CO5	Analyze the requirements for new materials and device structure in the future technologies.	Apply

Program Outcomes for this Course:

Sl. No.	Description	POs
1	An ability to independently carry out research/investigation and development work to solve practical problems.	PO1
2	An ability to write and present a substantial technical report/document.	PO2
3	Students should be able to demonstrate a degree of mastery over the area as per the specialization of the program. The mastery should beat a level higher than	PO3
	the requirements in the appropriate bachelor program.	
4	An ability to create, select, apply appropriate techniques, resources and modern tools to solve complex engineering activities with an understanding of their limitations.	PO4
5	An ability to apply Professional ethics, responsibilities and norms of the engineering.	PO5
6	An ability to recognize the need to engage in independent and life-long learning	PO6
	in various Communication domain.	

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	-	1	2	2	-	-
CO2	2	1	2	2	-	-
CO3	2	1	2	2	-	-
CO4	2	1	2	2	-	-
CO5	-	1	2	2	-	-

BIOMEDICAL SIGNAL PROCESSING					
Course Code	MVJ22LAC233	CIE Marks	50		
Teaching Hours/Week (L:P:T:S)	3:0:0:0	SEE Marks	50		
Total Hours of Pedagogy	40L	Total Marks	100		
Credits	03	Exam Hours	03		

- Model a biomedical system.
- Understand various methods of acquiring bio signals.

Ultrasound waves, Optical Microscopy, Infrared Imaging.

• Understand various sources of bio signal distortions and its remedial techniques.

Analyze ECG and EEG signal with characteristic feature points. Understand use of bio signals in diagnosis, patient monitoring and physiological investigation. **Prerequisites:** Basic Signal Processing, Basic concepts on biomedical instruments. **MODULE-1** Introduction to Computers in Medicine, overview of electric activities of biological cells, Electric 8hrs characteristics of cell membrane, Electric Data Acquisition. **MODULE-2** 8hrs Electrocardiogram: Introduction and overview, function and structure of the heart, signal of cardiovascular system, cardiovascular diseases and ECG, Processing and feature extraction of ECG. **MODULE-3 Electroencephalogram:** Introduction and overview, Brain and its functions, EEG signal of the 8hrs brain, Evoked Potentials, Diseases of central nervous system and EEG, EEG for assessment of Anesthesia, Processing and feature extraction of EEG. **MODULE-4 Electromyogram:** Introduction and overview, muscle, signal of muscles, neuromuscular diseases 8hrs and EMG, other applications of EMG, processing and feature extraction of EMG. Other biomedical signals. **MODULE-5** Introduction to X-Ray, X-Ray Detection, Biomedical CT Scanners, Magnetic Resonance Imaging: 8hrs Physical and physiological principles of MRI, MR Imaging, Processing and feature extraction of MRI, Ultrasound Imaging: Introduction, Why Ultrasound Imaging, Generation and Detection of

Text	Text Books:				
1	1 'Biomedical Digital Signal Processing', Willis J Tompkins, Prentice Hall of India,1996.				
2	'Biomedical Signal and Image Processing', Kayvan Najarian, Robert Splinter, second edition, 2012 by				
	Taylor & Francis Group.				

Refer	Reference Books:					
1	'Biomedical Signal Processing (in IV parts)', R Challisand R I Kitney, Medical and Biological					
	Engg. and current computing, 1990-91.					
2	Special issue on 'Biological Signal Processing', Proc. IEEE1972.					
3	'Bio medical Signal Processing', Arnon Cohen, Volumes I&II, CRC Press.					
4	'Time, frequency and Wavelets in Biomedical Signal Processing', Metin Akay, IEEE Press, 1999.					

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE.

A student shall be deemed to have satisfied the academic requirements (passed) and earned the credits allotted to each subject/ course if the student secures not less than 50% of the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- 1. Three Unit Tests each of 50 Marks.
- 2. Two assignments each of 20 Marks or one Skill Development Activity of 40 marks to attain the COs and POs.

The sum of three tests, two assignments/skill Development Activities, will be scaled down to 50 marks. CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

- 1. The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.
- 2. The question paper will have ten full questions carrying equal marks.
- 3. Each full question is for 20 marks. There will be two full questions (with a maximum of four subquestions) from each module.
- 4. Each full question will have a sub-question covering all the topics under a module.
- 5. The students will have to answer five full questions, selecting one full question from each module.

Course Learning Outcomes: After the completion of the course, students will be able to:

Sl. No.	Description	Blooms Level
CO1	Describe models for a biomedical system.	Explain
CO2	Understand various methods of acquiring bio signals.	Understand
CO3	Understand various sources of bio-signal distortions and its remedial techniques.	Analyze
CO4	Analyze ECG and EEG signal with characteristic feature points	Analyze
CO5	Understand use of bio signals in diagnosis, patient monitoring and physiological investigation.	Understand

Program Outcomes for this Course:

Sl.	Description	POs
No.		
1	An ability to independently carry out research/investigation and development work to solve practical problems.	PO1
2	An ability to write and present a substantial technical report/document.	PO2
3	Students should be able to demonstrate a degree of mastery over the area as per	PO3
	the specialization of the program. The mastery should beat a level higher than	
	the requirements in the appropriate bachelor program.	
4	An ability to create, select, apply appropriate techniques, resources and modern tools to solve complex engineering activities with an understanding of their limitations.	PO4
5	An ability to apply Professional ethics, responsibilities and norms of the engineering.	PO5
6	An ability to recognize the need to engage in independent and life-long learning	PO6
	in various Communication domain.	

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	1	1	1	1	2	1
CO2	1	1	1	2	1	1
CO3	2	1	2	1	1	1
CO4	1	1	1	2	1	1
CO5	1	1	2	1	1	1

Professional Elective – 2

OPTICAL COMMUNICATION AND NETWORKING				
Course Code	MVJ22LAC241	CIE Marks	50	
Teaching Hours/Week (L:P:T:S)	3:0:0:0	SEE Marks	50	
Total Hours of Pedagogy	40L	Total Marks	100	
Credits	03	Exam Hours	03	

Course Learning objectives: This course will enable students:

- Understand the various optical devices and how they operate.
- Recognize and choose various components for optical networking in accordance with the established design requirements.
- Acquire knowledge of the elements of data transmission, loss obstacles, and other network operating artifacts.
- Acquire knowledge of the problems associated with setting up and maintaining the ontical network's

 Acquire knowledge of the problems associated with setting up and maintaining the optical ne 	etwork's
access component while keeping up with current data transmission trends.	
 Build a WDM network and explore the management of components and networks. 	
Prerequisites: Advanced Communication Systems-1	
MODULE-1	
Introduction to optical networks: Optical Networks, optical packet switching, Propagation of	8hrs
signals in Optical fiber: Different losses, Non-linear effects, Solitons.	oms
Optical Components: Couplers, Isolators and Circulators.	
MODULE-2	
Optical Components: Multiplexers and Filters, Optical Amplifiers, detectors.	8hrs
Modulation-Demodulation: Formats, Ideal receivers, Practical direct detection receivers, Optical	
preamplifiers, Bit error rates, Coherent detection.	
MODULE-3	
Transmission System Engineering: System model, Power penalty, Transmitter, Receiver,	8hrs
Crosstalk. Client Layers of optical layer: SONET/SDH: Multiplexing, layers, Frame structure.	
Asynchronous Transfer Mode: ATM functions, Adaptation layers, Quality of Service (QoS) and flow	
control, Signaling and Routing.	
MODULE-4	
WDM network elements: Optical line terminals, Optical line amplifiers, Optical Add/ Drop	8hr
Multiplexers, Optical cross-connects.	S
WDM Network Design: Cost trade-offs, LTD and RWA problems, Routing and wavelength	
assignment, Wavelength conversion.	
MODULE-5	
Control and Management: Network management functions, management framework,	8hrs
Information model, management protocols, Layers within the optical layer, Control and	
Management: Performance and fault management, Impact of transparency, BER measurement,	

Optical trace, Alarm management, Configuration management, Optical Safety.

Text Books:

1 'Optical Networks', Rajiv Ramaswami, Kumar N. Sivarajan and Galan H Sasaki, Morgan Kaufman Publishers, 3rd edition, 2010.

Refer	Reference Books:			
1	'Optical fiber Communication', John M. Senior, Pearson edition, 2000.			
2	'Optical fiber Communication', Gerd Keiser, John Wiley, New York, 5 th Edition, 2017.			
3	'Fiber Optic Networks', P. E. Green, Prentice Hall, 1994.			

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE.

A student shall be deemed to have satisfied the academic requirements (passed) and earned the credits allotted to each subject/ course if the student secures not less than 50% of the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- 1. Three Unit Tests each of 50 Marks.
- 2. Two assignments each of 20 Marks or one Skill Development Activity of 40 marks to attain the COs and POs.

The sum of three tests, two assignments/skill Development Activities, will be scaled down to 50 marks. CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

- 1. The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.
- 2. The question paper will have ten full questions carrying equal marks.
- 3. Each full question is for 20 marks. There will be two full questions (with a maximum of four subquestions) from each module.
- 4. Each full question will have a sub-question covering all the topics under a module.
- 5. The students will have to answer five full questions, selecting one full question from each module.

Course Learning Outcomes: After the completion of the course, students will be able to:

Sl. No.	Description	Blooms Level
CO1	Comprehend the various optical devices and their working strategies.	Understand
CO2	Recognize and select various optical networking components according to	Understand
	the prescribed design specifications.	
CO3	Learn the aspects of data transmission, loss hindrances and other artifacts	Understand
	affecting the network operation.	
CO4	Learn the issues involved in setting up and maintaining access part of the	Understand
	optical network with the latest trends in the data communication.	
CO5	Design a WDM network and study the component and network management	Analyze
	Aspects.	

Program Outcomes for this Course:

Sl.	Description	POs
No.		
1	An ability to independently carry out research/investigation and development work to solve practical problems.	PO1
2	An ability to write and present a substantial technical report/document.	PO2
3	Students should be able to demonstrate a degree of mastery over the area as per	PO3
	the specialization of the program. The mastery should beat a level higher than the	
	requirements in the appropriate bachelor program.	
4	An ability to create, select, apply appropriate techniques, resources and modern tools to solve complex engineering activities with an understanding of their limitations.	PO4
5	An ability to apply Professional ethics, responsibilities and norms of the engineering.	PO5
6	An ability to recognize the need to engage in independent and life-long learning	PO6
	in various Communication domain.	

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	1	1	1	1	2	1
CO2	1	1	1	2	1	1
CO3	2	1	2	1	1	1
CO4	1	1	1	2	1	1
CO5	1	1	2	1	1	1

STATISTICAL SIGNAL PROCESSING				
Course Code	MVJ22LAC242	CIE Marks	50	
Teaching Hours/Week (L:P:T:S)	3:0:0:0	SEE Marks	50	
Total Hours of Pedagogy	40L	Total Marks	100	
Credits	03	Exam Hours	03	

- Understand random processes and its properties.
- Understand the basic theory of signal detection and estimation.
- Identify the engineering problems that can be put into the frame of statistical signal processing
- Solve the identified problems using the standard techniques learned through this course.

 Make contributions to the theory and the practice of statistical signal processing. 	
Prerequisites: Basic Signal Processing concepts	
MODULE-1	
Random Processes: Random variables, random processes, white noise, filtering random	
processes, spectral factorization, ARMA, AR and MA processes.	8hrs
MODULE-2	
Signal Modeling: Least squares method, Pade approximation, Prony's method, finite data	8hrs
records, stochastic models, Levinson-Durbin recursion; Schur recursion; Levinson recursion.	
MODULE-3	
Spectrum Estimation: Non-parametric methods, minimum-variance spectrum estimation,	8hrs
maximum entropy method, parametric methods, frequency estimation, principal components	
spectrum estimation.	
MODULE-4	
Optimal and Adaptive Filtering: FIR and IIR Wiener filters, Discrete Kalman filter, FIR	8hr
Adaptive filters: Steepest descent, LMS, LMS-based algorithms, adaptive recursive filters,	S
RLS algorithms.	
MODULE-5	
Array Processing: Array fundamentals, beam-forming, optimum array processing,	8hrs
performance considerations, adaptive beam-forming, linearly constrained minimum-variance	
beam-formers, side-lobe cancellers.	

Text	Books:
1	Monson H. Hayes, "Statistical Digital Signal Processing and Modeling", John Wiley & Sons (Asia) Pvt. Ltd.,2002.
2	Dimitris G. Manolakis, Vinay K. Ingle, and Stephen M. Kogon, "Statistical and Adaptive Signal Processing: Spectral Estimation, Signal Modeling, Adaptive Filtering And Array Processing", McGraw-Hill International Edition, 2000.

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%.

The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE.

A student shall be deemed to have satisfied the academic requirements (passed) and earned the credits allotted to each subject/ course if the student secures not less than 50% of the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- 3. Three Unit Tests each of 50 Marks.
- 4. Two assignments each of 20 Marks or one Skill Development Activity of 40 marks to attain the COs and POs.

The sum of three tests, two assignments/skill Development Activities, will be scaled down to 50 marks. CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

- 6. The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.
- 7. The question paper will have ten full questions carrying equal marks.
- 8. Each full question is for 20 marks. There will be two full questions (with a maximum of four subquestions) from each module.
- 9. Each full question will have a sub-question covering all the topics under a module.
- 10. The students will have to answer five full questions, selecting one full question from each module.

Course Learning Outcomes: After the completion of the course, students will be able to:

Sl. No.	Description	Blooms Level
CO1	Design statistical DSP algorithms to meet desired needs.	Analyze
CO2	Apply vector space methods to statistical signal processing problems.	Apply
CO3	Identify the engineering problems that can be put into the frame of statistical signal processing.	Understand
CO4	Understand Wiener filter theory and design discrete and continuous Wiener filters.	Understand
CO5	Understand Kalman Filter theory and design discrete Kalman filters.	Understand

Program Outcomes for this Course:

Sl.	Description	POs
No.	·	
1	An ability to independently carry out research/investigation and development work to solve practical problems.	PO1
2	An ability to write and present a substantial technical report/document.	PO2
3	Students should be able to demonstrate a degree of mastery over the area as per	PO3
	the specialization of the program. The mastery should beat a level higher than the	
	requirements in the appropriate bachelor program.	
4	An ability to create, select, apply appropriate techniques, resources and modern tools to solve complex engineering activities with an understanding of their limitations.	PO4
5	An ability to apply Professional ethics, responsibilities and norms of the engineering.	PO5
6	An ability to recognize the need to engage in independent and life-long learning	PO6
	in various Communication domain.	

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	1	1	1	1	2	1
CO2	1	1	1	2	1	1
CO3	2	1	2	1	1	1
CO4	1	1	1	2	1	1
CO5	1	1	2	1	1	1

MATLAB for Advanced Applications					
Course Code	MVJ22LAC243	CIE Marks	50		
Teaching Hours/Week (L:P:T:S)	3:0:0:0	SEE Marks	50		
Total Hours of Pedagogy	40L	Total Marks	100		
Credits	03	Exam Hours	03		

- Solve ordinary differential equations and perform calculus operations using MATLAB
- Implement and Analyze Neural Network Models
- Design fuzzy logic systems and implement applications using the graphical user interface tools in MATLAB
- Analyze and Process Digital Signals and digital filters using MATLAB
- Model wireless communication channels and generate various fading channels for MIMO systems using MATLAB

Prerequisites: MATLAB basic concepts, Advanced Communication System-1

MODULE-1

MATLAB for Numerical Computing:

8hrs

Executing a function, function subprograms, Types of functions, function handles, errors and warning, matlab debugger. Matlab Graphics-2D plots, Multiple plots, Sub plots, specialized 2D plots, 3D plots Ordinary Differential Equation solvers, Calculus using Symbolic mathematics, simplification functions.

MODULE-2

MATLAB Applications in Neural Networks:

8hrs

Generation of Input-Output Training data, creating a Neural Network, training a Multilayer perceptron, Generation of Input-Output Test Data, Simulating Network, Preprocessing and Post processing Inputs and Outputs, Using Graphical User Interface for creating Multilayered Neural Network. Implementation of ANN based Control, Creating RBF Neural Network.

MODULE-3

MATLAB Applications in Fuzzy Logic Systems:

8hrs

Fuzzy operations, fuzzy Inference systems-fuzzification of input variables, applications of fuzzy operators, mapping of degree of matching to fuzzy outputs, aggregation of outputs, defuzzification, Washing Machine problem, Building systems with Graphical User Interface-FIS editor, Membership function editor, Rule editor, Rule viewer, surface viewer, Fuzzy controller example-fuzzy controller for water bath system.

MODULE-4

MATLAB Applications in Digital Signal Processing:

8hr

Classification and representation of basic discrete signals, operations on discrete signals, multirate signal processing functions, Convolution, Fast Fourier transform, Inverse Fast Fourier Transform, Digital filter Design-IIR filter design and FIR digital filter design, Filter design and analysis tool-IIR and FIR using FDA tool.

MODULE-5	MODULE-5	
----------	----------	--

MATLAB Applications in Wireless Communication:

8hrs

Free space path loss model, outdoor propagation model Hata model and okumura model, generate Raleigh channels, Rician fading channels, Time domain FWGN channel model, Generation of correlated MIMO fading channel, Ergodic Channel Capacity, Ergodic Channel Capacity for Various Antenna Configuration.

Text	Books:
1	Raj kumar Bansal, Ashok Kumar Goel and Manoj Kumar Sharma, MATLAB and its Applications
	in Engineering, Pearson India Education Services Pvt Ltd, 2017.
2	Yong Soo Cho, Jaekwon Kim, Won Young Yang, Chung G. Kang, MIMO-OFDM Wireless
	Communications with MATLAB, John Wiley & Sons Pvt Ltd, 2010.

Refe	rence Books:
1	Chapman Stephen J, MATLAB Programming for Engineers, New Delhi Cengage Learning
	India 2008.
2	Rudra Pratap, Getting Started with MATLAB-Oxford University Press-2017, ISBN: 978-0-19-
	060206-2.
3	C.F. Van Loan and KY.D. Fan, Insight Through Computing: A MATLAB Introduction to
	Computational
	Science and Engineering, SIAM, 2010.
4	Bhagali a c., Digital Signal Processing with Matlab Programs, Kolhapur Mahalakshmi Pub 2001.
	Stormy Attaway, MATLAB: A Practical Introduction to Programming and Problem Solving,
	Elsevier, 2022.

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE.

A student shall be deemed to have satisfied the academic requirements (passed) and earned the credits allotted to each subject/ course if the student secures not less than 50% of the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- 5. Three Unit Tests each of 50 Marks.
- 6. Two assignments each of 20 Marks or one Skill Development Activity of 40 marks to attain the COs and POs.

The sum of three tests, two assignments/skill Development Activities, will be scaled down to 50 marks. CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

- 11. The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.
- 12. The question paper will have ten full questions carrying equal marks.
- 13. Each full question is for 20 marks. There will be two full questions (with a maximum of four subquestions) from each module.

- 14. Each full question will have a sub-question covering all the topics under a module.
- 15. The students will have to answer five full questions, selecting one full question from each module.

Course Learning Outcomes: After the completion of the course, students will be able to:

Sl. No.	Description	Blooms Level
CO1	Apply MATLAB for solving ordinary differential equations and calculus problems.	Apply
CO2	Analyze and Implement Neural network models through MATLAB.	Analyze
CO3	Apply fuzzy logic models for various applications using MATLAB.	Apply
CO4	Analyze and process digital signals and digital filters using MATLAB toolboxes	Analyze
	Design different indoor and outdoor propagation models and MIMO fading channels through MATLAB.	Apply

Program Outcomes for this Course:

Sl. No.	Description	POs
1	An ability to independently carry out research/investigation and development work to solve practical problems.	PO1
2	An ability to write and present a substantial technical report/document.	PO2
3	Students should be able to demonstrate a degree of mastery over the area as per the specialization of the program. The mastery should beat a level higher than the	PO3
	requirements in the appropriate bachelor program.	
4	An ability to create, select, apply appropriate techniques, resources and modern tools to solve complex engineering activities with an understanding of their limitations.	PO4
5	An ability to apply Professional ethics, responsibilities and norms of the engineering.	PO5
6	An ability to recognize the need to engage in independent and life-long learning	PO6
	in various Communication domain.	

Mapping	of CPS and	POs _{PO2}	PO3	PO4	PO5	PO6
CO1	1	1	2	2	-	-
CO2	2	1	2	2	-	2
CO3	2	1	2	2	-	2
CO4	2	1	2	2	-	2
CO5	2	1	2	2	-	2

ADVANCED COMMUNICATION LAB				
Course Code	MVJ22LACL26	CIE Marks	50	
Teaching Hours/Week (L:P:T:S)	0:2:0:0	SEE Marks	50	
Total Hours of Pedagogy		Total Marks	100	
Credits	02	Exam Hours	03	

- Achieve high levels of spectrum usage efficiency through QAM.
- Enable each sub stream's data rate to be lower than would be required by a single stream of similar bandwidth.
- Digitally represent analog signals.
- Know how occupy numerous signals in a single transmission channel by optimizing the use of bandwidth.
- Increase the amount of data that can be transmitted over a single optical fiber.

Sl. No.	Experiments
1	Measurement of Bit Error Rate using Binary Data.
2	Efficiency of Direct Sequence Spread Spectrum Technique.
3	Simulation of Frequency Hopping (FH) Spread- Spectrum.
4	Measurement of effect of Inter Symbol Interference.
5	Design of FSK system.
6	BPSK Modulation and Demodulation techniques.
7	DPSK Modulation and Demodulation techniques.
8	4-QAM Modulation and Demodulation techniques.
9	OFDM Transmitter and Receiver design.
10	Performance evaluation of CDMA system.
11	BER performance of QPSK modulation with AWGN and Rayleigh multipath fading.
12	DPCM Generation and Detection.
13	Measurement of losses in a given optical fibre (propagation loss, bending loss) and numerical
	aperture.
14	Analog and digital (with TDM) communication link using optical fibre.

Note: Conduct any ten experiments using any simulation tool kits

Course Learning Outcomes: After the completion of the course, students will be able to:

- Achieve high levels of spectrum usage efficiency through QAM.
- Enable each sub stream's data rate to be lower than would be required by a single stream of similar bandwidth.
- Digitally represent analog signals.
- Know how occupy numerous signals in a single transmission channel by optimizing the use of bandwidth.
- Increase the amount of data that can be transmitted over a single optical fiber.

Microwave Devices and Applications					
Course Code	MVJ22LAC31	CIE Marks	50		
Teaching Hours/Week (L:P:T:S)	3:0:0	SEE Marks	50		
Total Hours of Pedagogy	40 L	Total Marks	100		
Credits	03	Exam Hours	03		

- Describe the microwave properties and its transmission media.
- Describe microwave devices for several applications.
- Understand the concept of smith Chart.
- Understand the different types of Microwave Amplifiers.
- Understand the concepts of Microwave Circuit Design

MODULE-1

Introduction to Microwaves: History of Microwaves, Microwave Frequency bands, General Applications of Microwaves, Advantages of Microwaves

8hrs

Analysis of Microwave Transmission Lines: Transmission line equations & solutions, Analysis of simple circuit in Phasor Domain, High Frequency Parameters, Formulation of S Parameters, Properties of S Parameters, Transmission Matrix, Generalized s parameters.

MODULE-2

Microwave Passive components: Directional Coupler, Magic Tee, Wave-guide Corners, Bends, 8hrs Twists, Attenuator, Circulator, Isolator.

Microwave Active components: Tunnel diode, Varactor diodes, Step recovery diodes, Schottky Barrier diodes, PIN diodes, Gunn Diodes, IMPATT and TRAPATT diodes, Parametric Amplifiers, Microwave Transistors, Microwave oscillators and Mixers.

Microwave tubes: Klystron and Travelling Wave tubes.

MODULE-3

Smith Chart and its Applications: Introduction, smith Chart, Derivation of Smith Chart, Smith 8hrs Chart Circular and Radical scales, Application of smith Chart.

MODULE-4

RF Microwave Amplifiers: Small signal Design: Introduction, Types of Amplifiers, Design of **8hrs** different types of Amplifiers.

RF/Microwave frequency Conversion: Mixers: Introduction, Mixer types, Conversion losses for SSB Mixers, SSB Versus DSB Mixers, One diode Mixer, Two diode Mixer.

MODULE-5

RF and Microwave Control Circuit Design: Introduction, PN Junction Devices, Phase Shifters, **8hrs** Digital Phase shifters, Semiconductor Phase Shifters, PIN Diode attenuators.

RF and Microwave IC Design: MIC, MIC Materials, Types of MIC, Hybrid Versus Monolithic IC.

Text Books:

Radio Frequency and Microwave Electronics (Illustrated) , Mathew M. Radmanesh, Pearson India, 2015.

Reference Books:

1 RF Circuit design theory and applications' Reinhold Ludwig, and Pavel Bretchko, Pearson Education edition, 2004.

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE.

A student shall be deemed to have satisfied the academic requirements (passed) and earned the credits allotted to each subject/ course if the student secures not less than 50% of the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- Three Unit Tests each of 50 Marks.
- Two assignments each of 20 Marks or one Skill Development Activity of 40 marks to attain the COs and POs.

The sum of three tests, two assignments/skill Development Activities, will be scaled down to 50 marks. CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

- 1. The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.
- 2. The question paper will have ten full questions carrying equal marks.
- **3.** Each full question is for 20 marks. There will be two full questions (with a maximum of four subquestions) from each module.
- **4.** Each full question will have a sub-question covering all the topics under a module.
- **5.** The students will have to answer five full questions, selecting one full question from each module.

Course Learning Outcomes: After the completion of the course, students will be able to:

Sl.	Description	Blooms
No.		Level
CO1	Design and analyze microwave transmission lines.	Explain
CO2	Identify various passive microwave components for different applications.	Understand
CO3	Design and analyze Characteristic impedance using smith Chart.	Analyze
CO4	Examine various amplifiers and Mixers for Microwave Circuit design.	Analyze
CO5	Design Microwave Circuit using Phase Shifters.	Design and analyze

Program Outcomes for this Course:

Sl.	Description	POs
No.		
1	An ability to independently carry out research/investigation and development work to solve practical problems.	PO1
2	An ability to write and present a substantial technical report/document.	PO2
3	Students should be able to demonstrate a degree of mastery over the area as per the specialization of the program. The mastery should beat a level higher than the requirements in the appropriate bachelor program.	
4	An ability to create, select, apply appropriate techniques, resources and modern tools to solve complex engineering activities with an understanding of their limitations.	PO4
5	An ability to apply Professional ethics, responsibilities and norms of the engineering.	PO5
6	An ability to recognize the need to engage in independent and life-long learning in various Communication domain.	PO6

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	1	1	1	2	1	1
CO2	1	1	1	2	1	1
CO3	2	1	2	2	1	1
CO4	1	1	1	2	1	1
CO5	1	1	1	2	1	1

Corres Codo	MX/1221 A C/221	CIE Manda	FΛ		
Course Code Taggling Harry (Week (L. P.T.S.)	MVJ22LAC321	CIE Marks	50		
Teaching Hours/Week (L:P:T:S)	3:0:0	SEE Marks	50	50	
Total Hours of Pedagogy	40 L	Total Marks	100		
Credits	03	Exam Hours	03		
Course Learning objectives: This	course will enable students:				
• Understand the representation	of the digital image and its p	properties.			
 Apply pre-processing technique 	ues required to enhance the ir	mage for its further ana	alysis.		
• Use segmentation techniques	to select Interest in the image	e for analysis.			
• Represent the image based on	its shape and edge information	on and also describe th	ne objects pi	resent in	
the image based on its propert	ies and structure.				
 Use morphological operation characteristics of the objects. 	1 0	quantify and preser	ve the ma	iin shap	
	MODULE-1				
The image, its representations and	d properties: Image represe	entations a few concep	pts, Image		
digitization, Digital image properties,	Color images.			8hrs	
	MODULE-2				
Image Pre-processing: Pixel bright	eness transformations, geome	etric transformations,	local pre-	8hrs	
processing.					
	MODULE-3				
Segmentation: Thresholding, Edg	e-based segmentation – E	dge image threshold	ing, Edge	8hrs	
relaxation, Border tracing, Hough tr	ansforms; Region – based s	egmentation – Regior	n merging,		
Region splitting, Splitting and me	erging, Water shed segmen	ntation, Region grow	ving post-		
processing.					
<u> </u>	MODULE-4				
Shape representation and des	cription: Region identifi	ication; Contour-base	ed shape	8hrs	
representation and description–Chai	n codes, Simple geometric	border representation	n, Fourier		
transforms of boundaries,		-			
Boundary description using segmen	t sequences, B-spline repres	sentation; Region-base	ed shape		
representation and description – Simp		, ,	•		
1 " F	MODULE-5	· · · · · · · · · · · · · · · · · · ·			
Mathematical Morphology: Basic n	norphological concepts, four	morphological princip	les, Binary	8hrs	

Text Books:

1 'Image Processing, Analysis, and Machine Vision', Milan Sonka, Vaclav H lavac, Roger Boyle, Cengage Learning, ISBN:978-81-315-1883-0, 2013

Refer	Reference Books:			
1	'Digital Image Processing for Medical Applications', Geoff Doughertry, Cambridge University			
	Press,2010.			
2	'Digital Image Processing', S Jayaraman, S Esakkirajan, T Veerakumar, Tata Mc Graw			
	Hill, 2011.			

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE.

A student shall be deemed to have satisfied the academic requirements (passed) and earned the credits allotted to each subject/ course if the student secures not less than 50% of the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- Three Unit Tests each of 50 Marks.
- Two assignments each of 20 Marks or one Skill Development Activity of 40 marks to attain the COs and POs.

The sum of three tests, two assignments/skill Development Activities, will be scaled down to 50 marks. CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

- 6. The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.
- 7. The question paper will have ten full questions carrying equal marks.
- **8.** Each full question is for 20 marks. There will be two full questions (with a maximum of four subquestions) from each module.
- **9.** Each full question will have a sub-question covering all the topics under a module.
- 10. The students will have to answer five full questions, selecting one full question from each module.

Course Learning Outcomes: After the completion of the course, students will be able to:

Sl.	Description	Blooms
No.		Level

CO1	Understand the representation of the digital image and its properties.	Understand
CO2	Apply pre-processing techniques required to enhance the image for its further analysis.	Understand
CO3	Use segmentation techniques to select the region of interest in the image for analysis.	Understand
CO4	Represent the image based on its shape and edge information and also describe the objects present in the image based on its properties and structure.	Understand
CO5	Use morphological operations to simplify images, and quantify and preserve the main shape characteristics of the objects.	Apply

Program Outcomes for this Course:

Sl.	Description	POs
No.		
1	An ability to independently carry out research/investigation and development	PO1
	work to solve practical problems.	
2	An ability to write and present a substantial technical report/document.	PO2
3	Students should be able to demonstrate a degree of mastery over the area as per	PO3
	the specialization of the program. The mastery should beat a level higher than the	
	requirements in the appropriate bachelor program.	
4	An ability to create, select, apply appropriate techniques, resources and modern	PO4
	tools to solve complex engineering activities with an understanding of their	
	limitations.	
5	An ability to apply Professional ethics, responsibilities and norms of the	PO5
	engineering.	
6	An ability to recognize the need to engage in independent and life-long learning	PO6
	in various Communication domain.	

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	1	1	1	1	2	1
CO2	1	1	1	2	1	1
CO3	2	1	2	1	1	1
CO4	1	1	1	2	1	1
CO5	1	1	2	1	1	1

RF MEMS						
Course Code	MVJ22LAC322	CIE Marks	50			
Teaching Hours/Week (L:P:T:S)	3:0:0	SEE Marks	50			
Total Hours of Pedagogy	40 L	Total Marks	100			
Credits	03	Exam Hours	03			

- Comprehend the need for micromachining and MEMS based systems for RF and micro wave applications
- Describe the micro machining techniques and their use in the fabrication of micro switches, capacitors and inductors
- Design MEMS based microwave components aimed at reducing insertion loss and increasing bandwidth.
- Realize high Q micromechanical filters for frequencies up to and beyond10 MHz, and micro machined surface acoustic wave (SAW) filters filling the gap up to 2 GHz.
- Describe the packaging approaches used for these RF MEMS devices

MODULE-1

Review: Introduction to MEMS: Fabrication for MEMS transducers and actuators, Micro sensing for MEMS, Materials for MEMS. MEMS materials and fabrication techniques: Metals, Semiconductors, Thin films, Materials for polymer MEMS, Bulk machining for Silicon based MEMS, Surface machining for Silicon based MEMS, Micro stereo-lithography for polymer MEMS.

8hrs

MODULE-2

RF MEMS Switches and micro-relays: Switch parameters, Basics of switching, Switches for RF and Microwave applications, Actuation mechanisms, Micro-relays and micro-actuators, Dynamic of switch operations; MEMS switch design and design consideration, MEMS inductors and capacitors.

MODULE-3

Micro machined RF filters and phase shifters: RF filters, Modelling of mechanical filters, 8hrs Micro-mechanical filters, SAW filters - Basic, Design consideration. Bulk acoustic wave filters, Micro-machined filters for millimeter wave frequencies. Micro-machined phase shifters, Types and limitations, MEMS and Ferroelectric phase shifters, Applications.

MODULE-4

Micro machined transmission line and components: Micro machined transmission line: Losses in Transmission line, coplanar lines, Micro shield and membrane supported lines, Micro shield components, Micro machined waveguides, Directional couplers and Mixers, Resonators and Filters

MODULE-5

Micromachined antennas: design, Fabrication and measurements. Integration and packaging for RF MEMS. Roles and types of packages, Flip chip techniques, Multichip module packaging and Wafer bonding, Reliability issues and thermal issues.

Text Books:

1 'RF MEMS and their Applications', Vijay K Varadan, K. J. Vinoy and K. A. Jose, Wiley India Pvt. Ltd., ISBN-10: 8126529911,2011.

Refe	erence Books:
1	'RF MEMS circuit design', J De Los Santos, Artech House, 2002.
2	'Transaction Level Modelling with System C: T L M concepts and applications for Embedded Systems', Frank Ghenassia, Springer, 2005.
3	'Networks on chips: Technology and Tools', Luca Beninid, Morgan Kaufmann Publishers, 2006.

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE.

A student shall be deemed to have satisfied the academic requirements (passed) and earned the credits allotted to each subject/ course if the student secures not less than 50% of the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- Three Unit Tests each of 50 Marks.
- Two assignments each of 20 Marks or one Skill Development Activity of 40 marks to attain the COs and POs.

The sum of three tests, two assignments/skill Development Activities, will be scaled down to 50 marks. CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

- 11. The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.
- **12.** The question paper will have ten full questions carrying equal marks.
- **13.** Each full question is for 20 marks. There will be two full questions (with a maximum of four subquestions) from each module.
- **14.** Each full question will have a sub-question covering all the topics under a module.

15. The students will have to answer five full questions, selecting one full question from each module.

Course Learning Outcomes: After the completion of the course, students will be able to:

Sl.	Description	Blooms
No.		Level
CO1	Comprehend the need for micro machining and MEMS based systems for	Understand
	RF and microwave applications	
CO2	Describe the micro machining techniques and their use in the fabrication of	Apply
	micro switches, capacitors and inductors.	
CO3	Design MEMS based microwave components aimed at reducing insertion	Analyze
	loss and increasing bandwidth.	
CO4	Realize high Q micro mechanical filters for frequencies upto and beyond	Apply
	10MHz, and micro machined surface acoustic wave (SAW) filters filling	
	the gap up to 2GHz	
CO5	Describe the packaging approaches used for these RF MEMS devices.	Analyze

Program Outcomes for this Course:

Sl.	Description	POs
No.		
1	An ability to independently carry out research/investigation and development work to solve practical problems.	PO1
2	An ability to write and present a substantial technical report/document.	PO2
3	Students should be able to demonstrate a degree of mastery over the area as per the specialization of the program. The mastery should beat a level higher than the requirements in the appropriate bachelor program.	PO3
4	An ability to create, select, apply appropriate techniques, resources and modern tools to solve complex engineering activities with an understanding of their limitations.	PO4
5	An ability to apply Professional ethics, responsibilities and norms of the engineering.	PO5
6	An ability to recognize the need to engage in independent and life-long learning in various Communication domain.	PO6

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	1	2	2	2	-	2
CO2	1	2	2	2	-	2
CO3	1	2	2	2	-	2
CO4	1	2	2	2	-	2
CO5	1	2	2	2	-	3

5G-Radio Access Technologies					
Course Code	MVJ22LAC323	CIE Marks	50		
Teaching Hours/Week (L:P:T:S)	3:0:0	SEE Marks	50		
Total Hours of Pedagogy	40 L	Total Marks	100		
Credits	03	Exam Hours	03		

- 5G channel modelling and use cases
- Get Idea on Multiple-input multiple-output (MIMO) systems
- To know about 5G architecture and Importance of 5G Technology
- To understand Device-to-de vice (D2D) communication and standardization
- Analyze the 5G radio-access technologies

MODULE-1

5G Channel Modelling and Use Cases Modeling requirements and scenarios, Channel model requirements, Propagation scenarios, Relaying multi-hop and cooperative communications: **8hrs** Principles of relaying, fundamentals of relaying, Cognitive radio: Architecture, spectrum sensing, Software Defined Radio(SDR).

MODULE-2

8hrs

Multiple-input multiple-output (MIMO) systems: Introduction to Multi-antenna Systems, Motivation, Types of multi-antenna systems, MIMO vs. multi-antenna systems. Diversity, exploiting multipath diversity, transmit diversity, Space-time codes, The Alamouti scheme, Delay diversity, Cyclic delay diversity, Space-frequency codes, Receive diversity, Therake receiver, Combining techniques, Spatial Multiplexing.

MODULE-3

The 5G architecture Introduction, NFV and SDN, Basics about RAN architecture, High-level requirements for the 5G architecture, Functional architecture and 5G flexibility, Functional split criteria, Functional split alternatives, Functional optimization for specific applications, Integration of LTE and new air interface to fulfill 5G Requirements, Enhanced Multi-RAT coordinate features, Physical architecture and 5G deployment.

MODULE-4

Device-to-device(D2D) communications D2D: from 4G to 5G, D2D standardization: 4G LTE **8hrs** D2D, D2D in5G: research challenges, Radio resource management for mobile broadband D2D, RRM techniques for mobile broadband D2D, RRM and system design for D2D, 5G D2D RRM concept: an example, Multi-hop D2D communications for proximity and emergency, services, National security and public safety requirements in 3 GPP and METIS,

Device discovery without and with network assistance.

MODULE-5

Access design principles for multi-user communications, Orthogonal multiple-access systems, Spread spectrum multiple-access systems, Capacity limits of multiple-access methods, Sparse code multiple access (SCMA), Interleave division multiple access(IDMA), Radio access for dense deployments, OFDM numerology for small-cell deployments, Small-cell sub-frame structure, Radio access for V2X communication, Medium access control for nodes on the move, Radio access for massive machine-type communication.

8hrs

Tex	Text Books:			
1	Afif Osseiran, Jose F. Monserrat, Patrick Marsch, 5G Mobile and Wireless Communications			
	Technology, Cambridge University Press, Second Edition, 2011			
2	Erik Dahlman, Stefan Parkvall, Johan Sköld ,5G NR: The Next Generation Wireless Access			
	Technology, Elsevier, First Edition, 2016			

Reference Books:

Jonathan Rodriguez Fundamentals of 5G Mobile Networks, Wiley, First Edition, 2010.

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE.

A student shall be deemed to have satisfied the academic requirements (passed) and earned the credits allotted to each subject/ course if the student secures not less than 50% of the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- Three Unit Tests each of 50 Marks.
- Two assignments each of 20 Marks or one Skill Development Activity of 40 marks to attain the COs and POs.

The sum of three tests, two assignments/skill Development Activities, will be scaled down to 50 marks. CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

- The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.
- The question paper will have ten full questions carrying equal marks.

- Each full question is for 20 marks. There will be two full questions (with a maximum of four sub-questions) from each module.
- Each full question will have a sub-question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Course Learning Outcomes: After the completion of the course, students will be able to:

Sl. No.	Description	Blooms Level
CO1	Understand and explain the channel models of 5G and the use cases for 5G.	Understand
CO2	Analyze use of MIMO in 5G and its techniques.	Understand
CO3	Draw and explain 5G architecture, its components and functional criteria.	Understand
CO4	Understand device to device (D2D) communication and standardization.	Understand
CO5	Study the in-depth functioning of 5G radio access technologies.	Apply

Program Outcomes for this Course:

Sl.	Description	POs
No.		
1	An ability to independently carry out research/investigation and development work to solve practical problems.	PO1
2	An ability to write and present a substantial technical report/document.	PO2
3	Students should be able to demonstrate a degree of mastery over the area as per the specialization of the program. The mastery should beat a level higher than the requirements in the appropriate bachelor program.	
4	An ability to create, select, apply appropriate techniques, resources and modern tools to solve complex engineering activities with an understanding of their limitations.	PO4
5	An ability to apply Professional ethics, responsibilities and norms of the engineering.	PO5
6	An ability to recognize the need to engage in independent and life-long learning in various Communication domain.	PO6

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	1	1	1	1	2	1
CO2	1	1	1	2	1	1
CO3	2	1	2	1	1	1
CO4	1	1	1	2	1	1
CO5	1	1	2	1	1	1

PATTERN RECOGN	ITION AND MACHINE	LEARNING		
Course Code	MVJ22LAC331	CIE Marks	50	
Teaching Hours/Week (L:P:T:S)	3:0:0	SEE Marks	50	
Total Hours of Pedagogy	40 L	Total Marks	100	
Credits	03	Exam Hours	03	
Course Learning objectives: This cou	rrse will enable students:			
• Develop the mathematical tools red	quired for the pattern recog	gnition.		
• Enable the student with basic know	wledge on the techniques t	o build an intellectual	machine fo	or maki
decisions behalf of humans.				
• Understand the techniques on how	to make learning by a mod	del, how it can be eval	uated, what	are all
Different algorithms to construct a	learning model.			
• Enable the student to Identify the	deep learning algorithm hi	charemore appropriate	for variou	s types
learning tasks.				
Understand the student to Implen	nent deep learning algorit	hms and Execute per	formance r	netrics
Deep Learning Techniques.				
	MODULE-1			
· , 1 .0 . 1	of Microwaves, Microw	vave Frequency bands	s, General	
ntroduction to Microwaves: History				8hrs
•	es of Microwaves			OHIS
Applications of Microwaves, Advantage		equations & solutions		OHIS
Analysis of Microwaves History of simple circuit in Phasor Domain, H	Lines: Transmission line	_	s, Analysis	OHIS

Microwave Passive components: Directional Coupler, Magic Tee, Wave-guide Corners, Bends, Twists, Attenuator, Circulator, Isolator.

Microwave Active components: Tunnel diode, Varactor diodes, Step recovery diodes, Schottky Barrier diodes, PIN diodes, Gunn Diodes, IMPATT and TRAPATT diodes, Parametric Amplifiers, Microwave Transistors, Microwave oscillators and Mixers.

Microwave tubes: Klystron and Travelling Wave tubes.

MODULE-3

Smith Chart and its Applications: Introduction, smith Chart, Derivation of Smith Chart, Smith Chart Circular and Radical scales, Application of smith Chart.

MODULE-4

RF Microwave Amplifiers: Small signal Design: Introduction, Types of Amplifiers, Design of different types of Amplifiers.

RF/Microwave frequency Conversion: Mixers: Introduction, Mixer types, Conversion losses for SSB Mixers, SSB Versus DSB Mixers, One diode Mixer, Two diode Mixer.

MODULE-5

RF and Microwave Control Circuit Design: Introduction, PN Junction Devices, Phase Shifters, **8hrs** Digital Phase shifters, Semiconductor Phase Shifters, PIN Diode attenuators.

RF and Microwave IC Design: MIC, MIC Materials, Types of MIC, Hybrid Versus Monolithic IC.

Text Books:

Radio Frequency and Microwave Electronics (Illustrated), Mathew M. Radmanesh, Pearson India, 2015.

Reference Books:

1 RF Circuit design theory and applications' Reinhold Ludwig, and Pavel Bretchko, Pearson Education edition, 2004.

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE.

A student shall be deemed to have satisfied the academic requirements (passed) and earned the credits allotted to each subject/ course if the student secures not less than 50% of the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- Three Unit Tests each of 50 Marks.
- Two assignments each of 20 Marks or one Skill Development Activity of 40 marks to attain the COs and POs.

The sum of three tests, two assignments/skill Development Activities, will be scaled down to 50 marks. CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

- The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.
- The question paper will have ten full questions carrying equal marks.

- Each full question is for 20 marks. There will be two full questions (with a maximum of four subquestions) from each module.
- Each full question will have a sub-question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Course Learning Outcomes: After the completion of the course, students will be able to:

Sl.	Description	Blooms
No.		Level
CO1	Design and analyze microwave transmission lines.	Explain
CO2	Identify various passive microwave components for different applications.	Understand
CO3	Design and analyze Characteristic impedance using smith Chart.	Analyze
CO4	Examine various amplifiers and Mixers for Microwave Circuit design.	Analyze
CO5	Design Microwave Circuit using Phase Shifters.	Design and analyze

Program Outcomes for this Course:

Sl.	Description	POs
No.		
1	An ability to independently carry out research/investigation and development work to solve practical problems.	PO1
2	An ability to write and present a substantial technical report/document.	PO2
3	Students should be able to demonstrate a degree of mastery over the area as per the specialization of the program. The mastery should beat a level higher than the requirements in the appropriate bachelor program.	
4	An ability to create, select, apply appropriate techniques, resources and modern tools to solve complex engineering activities with an understanding of their limitations.	PO4
5	An ability to apply Professional ethics, responsibilities and norms of the engineering.	PO5
6	An ability to recognize the need to engage in independent and life-long learning in various Communication domain.	PO6

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	1	1	1	2	1	1
CO2	1	1	1	2	1	1
CO3	2	1	2	2	1	1
CO4	1	1	1	2	1	1
CO5	1	1	1	2	1	1

WAVELET TRANSFORMS AND APPLICATIONS						
Course Code	MVJ22LAC332	CIE Marks	50			
Teaching Hours/Week (L:P:T:S)	3:0:0	SEE Marks	50			
Total Hours of Pedagogy	40 L	Total Marks	100			
Credits 03 Exam Hours 03						
Course I coming chicatives. This cou	maa yyill anahla atudanta.	<u> </u>				

- Classify various wavelet transform and explain importance of it.
- Describe Continuous Wavelet Transform (CWT) and Discrete Wavelet Transform (DWT).
- Explain the properties and application of wavelet transform.
- Develop and realize computationally efficient wavelet-based algorithms for signal and image processing.
- Explain brief features and strength of transform beyond wavelet.

MODULE-1

8hrs

8hrs

8hrs

8hrs

Continuous Wavelet Transform: Continuous time frequency representation of signals, The Windowed Fourier Transform, Uncertainty Principle and time frequency tiling, Wavelets, specifications, admissibility conditions, Continuous wavelet transform, CWT as a correlation, CWT as an operator, Inverse CWT.

MODULE-2

Discrete wavelet Transform: Approximations of vectors in nested linear vector spaces, Example of an MRA, Formal definition of MRA, Construction of genera orthonormal MRA, a Wavelet basis for MRA, Digital filtering interpretations- Decomposition and Reconstruction filters, examples of orthogonal basis generating wavelets, interpreting orthonormal MRA for Discrete time signals, Mallat algorithm Filter bank implementation of DWT.

MODULE-3

Alternative wavelet representations- Biorthogonal Wavelets: biorthogonality in vector space, biorthogonalwavelet bases, signal representation using biorthogonal wavelet system, advantages of biorthogonal wavelets, biorthogonal analysis and synthesis, Filter bank implementation, Two dimensional Wavelets, filter bank implementation of two-dimensional wavelet transform.

MODULE-4

Lifting scheme: Wavelet Transform using polyphase matrix factorization, Geometrical foundations of the lifting scheme, lifting scheme in the z-domain, mathematical preliminaries for polyphase factorization, Dealing with Signal Boundary.

MODULE-5

Applications: Image Compression: EZW Coding, SPIHT, Wavelet Difference Reduction Compression Algorithm, Denoising, speckle removal, edge detection and object isolation, audio

8hrs

compression, communication applications – scaling functions as signaling pulses, Discrete Wavelet Multitone Modulation.

Beyond Wavelet: Ridge lets and curve lets: Ridge let transform and Digital Curve let transform, Curve let construction, Properties and applications.

Curve let construction, Properties and applications.

Text Books:

1 WaveletTransforms-Introductionandapplications-RaguveerM.RaoandAjitS.Bopardikar--PearsonEducation, 2008

Reference Books:

- 1 Insight into Wavelets from Theory to practice K. P Soman, K. I. Ramachandran, PHI, 2006
- Fundamentals of Wavelets: Theory, Algorithms and Applications- J C Goswamy and AK Chan, Wiley Inder science Publications, John Wiley and Sons, 1999.

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE.

A student shall be deemed to have satisfied the academic requirements (passed) and earned the credits allotted to each subject/ course if the student secures not less than 50% of the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- Three Unit Tests each of 50 Marks.
- Two assignments each of 20 Marks or one Skill Development Activity of 40 marks to attain the COs and POs.

The sum of three tests, two assignments/skill Development Activities, will be scaled down to 50 marks. CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

- The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.
- The question paper will have ten full questions carrying equal marks.
- Each full question is for 20 marks. There will be two full questions (with a maximum of four subquestions) from each module.

- Each full question will have a sub-question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Course Learning Outcomes: After the completion of the course, students will be able to:

Sl.	Description	Blooms
No.		Level
CO1	Classify various wavelet transform and explain importance of it.	Understand
CO2	Describe Continuous Wavelet Transform (CWT) and Discrete Wavelet Transform (DWT).	Understand
CO3	Explain the properties and application of wavelet transform.	Analyze
CO4	Develop and realize computationally efficient wavelet-based algorithms for signal and image processing.	Apply
CO5	Explain brief features and strength of transform beyond wavelet.	Analyze

Program Outcomes for this Course:

Sl.	Description	POs
No.		
1	An ability to independently carry out research/investigation and development work to solve practical problems.	PO1
2	An ability to write and present a substantial technical report/document.	PO2
3	Students should be able to demonstrate a degree of mastery over the area as per the specialization of the program. The mastery should beat a level higher than the requirements in the appropriate bachelor program.	
4	An ability to create, select, apply appropriate techniques, resources and modern tools to solve complex engineering activities with an understanding of their limitations.	PO4
5	An ability to apply Professional ethics, responsibilities and norms of the engineering.	PO5
6	An ability to recognize the need to engage in independent and life-long learning in various Communication domain.	PO6

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	1	1	1	2	1
CO2	1	1	1	2	1	1
CO3	2	1	2	1	1	1
CO4	1	1	1	2	1	1
CO5	1	1	2	1	1	1

VLSI DESIGN FOR SIGNAL PROCESSING					
Course Code	MVJ22LAC333	CIE Marks	50		
Teaching Hours/Week (L:P:T:S)	3:0:0	SEE Marks	50		
Total Hours of Pedagogy	40 L	Total Marks	100		
Credits	03	Exam Hours	03		

- Familiarize with essential DSP algorithms such as filtering (FIR and IIR)
- Gain proficiency in algorithmic strength reduction techniques for digital filters and transforms, aiming to optimize computational efficiency and resource utilization in signal processing applications
- Develop expertise in pipelining and parallel processing techniques specifically tailored for Infinite
 Impulse Response (IIR) filters
- Master the design and implementation of bit-level arithmetic architectures, including adders, multipliers, and shifters, with a focus on optimizing performance, area efficiency, and power consumption in digital circuits
- Explore and understand the principles and implementation methodologies of synchronous wave and asynchronous pipelining techniques in digital circuit design, emphasizing their impact on performance, timing, and design complexity

MODULE-1

Introduction to DSP systems: Typical DSP algorithms, Data flow and Dependence graphs - critical path, Loop bound, iteration bound, Longest path matrix algorithm

8hrs

Pipelining and Parallel processing of FIR filters: Pipelining and Parallel processing for low power.

MODULE-2

Retiming – Definitions and properties, Unfolding – an algorithm for unfolding, properties of unfolding, sample period reduction and parallel processing application

Algorithmic strength reduction in filters and transforms: 2-parallel FIR filter, 2- parallel fast FIR filter, DCT architecture, rank-order filters, Odd-Even merge-sort architecture, parallel rank-order filters.

MODULE-3

Pipelining and parallel processing of IIR filters: Fast convolution — Cook-Toom algorithm, **8hrs** modified Cook-Toom algorithm, Pipelined and parallel recursive filters — Look-Ahead pipelining in first-order IIR filters, Look-Ahead pipelining with power- of-2 decomposition, Clustered lookahead pipelining, Parallel processing of IIR filters, combined pipelining and parallel processing of IIR filters.

M	M	DI	Æ-4

Bit-level arithmetic architectures – parallel multipliers with sign extension, parallel carry-ripple and carry-save multipliers, Design of Lyon's bit-serial multipliers using Horner's rule, bit-serial FIR filter, CSD representation, CSD multiplication using Horner's rule for precision improvement, Distributed Arithmetic fundamentals and FIR filters.

MODULE-5

Synchronous Wave and Asynchronous Pipelining: Numerical strength reduction – sub expression elimination, multiple constant multiplication, iterative matching, synchronous pipelining and clocking styles, clock skew in edge-triggered single-phase clocking, two-phase clocking, wave pipelining. Asynchronous pipelining bundled data versus dual rail protocol.

Text Books:

1

"VLSI Digital Signal Processing Systems", Keshab K. Parhi, Wiley Eastern.

Reference Books:

- Digital Signal Processing for Multimedia Systems", Keshab K. Parhi and Takao Nishitani, Marcel Dekker.
- 2 "Pipelined Lattice and Wave Digital Recursive Filters", J. G. Chung and Keshab K. Parhi, Kluwer.

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE.

A student shall be deemed to have satisfied the academic requirements (passed) and earned the credits allotted to each subject/ course if the student secures not less than 50% of the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- Three Unit Tests each of 50 Marks.
- Two assignments each of 20 Marks or one Skill Development Activity of 40 marks to attain the COs and POs.

The sum of three tests, two assignments/skill Development Activities, will be scaled down to 50 marks. CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

• The SEE question paper will be set for 100 marks and the marks scored will be proportionately

- reduced to 50.
- The question paper will have ten full questions carrying equal marks.
- Each full question is for 20 marks. There will be two full questions (with a maximum of four subquestions) from each module.
- Each full question will have a sub-question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Course Learning Outcomes: After the completion of the course, students will be able to:

Sl.	Description	Blooms
No.		Level
CO1	Illustrate the use of various DSP algorithms and addresses their representation using block diagrams, signal flow graphs and data-flow graphs	Explain
CO2	Use pipelining and parallel processing in design of high-speed /low-power applications	Understand
CO3	Apply unfolding in the design of parallel architecture	Analyze
CO4	Evaluate the use of look-ahead techniques in parallel and pipelined IIR Digital filters.	Analyze
CO5	Develop an algorithm or architecture or circuit design for DSP applications	Design and analyze

Program Outcomes for this Course:

Sl.	Description					
No.						
1	An ability to independently carry out research/investigation and development work to solve practical problems.					
2	An ability to write and present a substantial technical report/document.	PO2				
3	Students should be able to demonstrate a degree of mastery over the area as per the specialization of the program. The mastery should beat a level higher than the requirements in the appropriate bachelor program.	PO3				
4	An ability to create, select, apply appropriate techniques, resources and modern tools to solve complex engineering activities with an understanding of their limitations.	PO4				
5	An ability to apply Professional ethics, responsibilities and norms of the engineering.	PO5				
6	An ability to recognize the need to engage in independent and life-long learning in various Communication domain.	PO6				

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	2	2	1	1
CO2	3	3	2	2	1	1
CO3	3	3	2	2	1	1
CO4	3	3	2	2	1	1
CO5	3	3	2	2	1	1