B.E, III Semester, ADVANCED COMMUNICATION TECHNOLOGY

	Semester: III								
	Mathematics for AV Communication								
Cou	rse Code:	MVJ22EA31	CIE Marks: 50						
Cred	lits:	L: T:P:S: 3:0:0:0	SEE Marks: 50						
Hou	rs:	30L+10T	SEE Duration: 3 Hrs.						
Cou	rse Learning	Objectives: The students will be able to							
1		rete and continuous probability distributions in ngineering field.	analyzing the probability models						
2	Understand the concepts of Complex variables and transformation for solving Engineering Problems.								
3	Apprehend and apply Fourier Series.								
4	Apply Fourier Transform as a tool for solving Integral equations								
5	Apply Z-T	Apply Z-Transforms technique to solve various mathematical functions							

UNIT-I	
Probability Theory: Random variables (discrete and continuous), probability	8 Hrs
density function, cumulative density function.	
Probability Distributions: Binomial distribution, Poisson distribution. Normal	
distribution, Exponential distribution. Joint probability distributions.	
UNIT-II	
Complex Variables: Functions of complex variables, Analytic function, Cauchy-	8 Hrs
Riemann equations in Cartesian and polar coordinates, Construction of analytic	
function (Using Milne-Thomson method)	
Consequences of Cauchy-Riemann equations, Properties of analytic functions.	
Application to flow problems- complex potential, velocity potential, equipotential	
lines, stream functions, stream lines.	
UNIT-III	
Fourier Series: Periodic functions, Dirichlet's condition, Fourier series of periodic	8 Hrs
functions with period 2π and arbitrary period $2c$. Fourier series of even and odd	
functions. Half range Fourier Series, Practical harmonic Analysis and Problems.	
UNIT-IV	
Fourier Transforms: Infinite Fourier transform, Infinite Fourier sine and cosine	8 Hrs
transforms, Inverse Fourier transforms, Inverse. Fourier sine and cosine transforms,	
Convolution theorem	
UNIT-V	
Z-Transforms: Definition, standard Z-transforms, properties of Z- transforms- Shifting	8 Hrs
property, Reversal property, Multiplication by n, initial value and final value theorems.	
Inverse Z- transform, convolution theorem (proof and problems) Application of Z-	
transforms to solve difference equations.	

Cours	se Outcomes: After completing the course, the students will be able to
CO1	Apply discrete and continuous probability distributions in analyzing the probability models arising in engineering field.
CO2	Use the concepts of analytic function and complex potentials to solve the problems arising in electromagnetic field theory
CO3	Know the use of periodic signals and Fourier series to analyze circuits and system.
CO4	Demonstrate Fourier Transform as a tool for solving Integral equations.
CO5	Learn to evaluate Z-transform to solve difference equations.

Refe	erence Books										
1.	B.S. Grewal, "Higher Engineering Mathematics" Khanna Publishers, 44th Edition, 2013.										
2.	Erwin Kreyszig, "Advanced Engineering Mathematics", Wiley-India publishers,										
	10 th edition, 2014.										
3.	Bali N. P. & Manish Goyal, "A text book of Engineering Mathematics", Laxmi										
	Publications, 8 th Edition										
4.	Ramana B. V., "Higher Engineering Mathematics", Tata Mc Graw-Hill, 2006.										

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	0	3	0	0	0	0	0	0	0	1
CO2	3	3	0	3	0	0	0	0	0	0	0	1
CO3	3	3	0	2	0	0	0	0	0	0	0	1
CO4	3	3	0	3	0	0	0	0	0	0	0	1
CO5	3	2	0	3	0	0	0	0	0	0	0	1

		Semester: III								
		Analysis and Design of Digita	l Circuits							
Cou	rse Code:	MVJ22EA32	CIE Marks:50							
Cre	dits:	L:T:P: 3:0:2	SEE Marks: 50							
Ηοι	Hours: 40 L+ 26 P SEE Duration: 03 Hours									
Cou	rse Learning Obje	ctives: The students will be able to								
1	understand simplogic gates.	olification techniques & design various	s combinational digital circuits	using						
2	Understand desi	gn procedures for synchronous and as	synchronous sequential circuits.							
3	Analyze & desigr	n different applications of Combination	nal & Sequential Circuits							
4	Analyze & desig machines	gn sequential circuits using SR, JK,	D, T flip-flops and Mealy &	Moore						
5	understand the i	mportance of programmable devices	used for designing digital circuit	s.						
		UNIT-I								
Pre	requisites: Numb	er systems, Boolean Algebra, Log	gic Gates, Comparison of	8 Hrs						
Con	nbinational & Sequ	ential Circuits.								
Prir	ciples of combina	tional logic: Introduction, Canonical for	orms, Generation of switching							
equ	ations from truth	n tables, Karnaugh maps-3, 4 varia	ables, Incompletely specified							
fun	ctions (Don't care t	erms), Quine- McClusky techniques- 3	3 & 4 variables.							
Lab	oratory Sessions/	Experimental learning:								
	1. Study of Logic G	ates – NOT, OR, AND, NOR, NAND, XO	R and XNOR.							
	2. Design a 4-bit Bi	inary to Gray code converter using log	ic gates.							
Арр	lications: OR gate	in detecting exceed of threshold val	ues and producing command							
sigr	al for the system a	and AND gate in frequency measurement	ent.							
Vid	eo link / Addition	al online information:								
	1. <u>https://nptel.ac.ir</u>	n/courses/108105113								
		UNIT-II								
Pre	r equisites: Decode	r, Encoders, Multiplexers & Demultiple	exer	8 Hrs						
Des	ign and Analysis o	f combinational logic: Full Adder & S	ubtractors, Parallel Adder and							
Sub	tractor, Look ahea	ad carry Adder, Binary comparators,	Decoders & Multiplexers as							
min	term/maxterm Ge	nerator.								

Laboratory Sessions/ Experimental learning:	
1. Design a full adder with two half adders using logic gates.	
2. Design an Adder cum Subtractor circuit which adds when input bit operation=1 or	
subtract if 0, using logic gates.	
3. Design 4-bit comparator using IC7485.	
4. Realize a Boolean expression using decoder IC74139.	
Applications: Communication systems, Speed synchronization of multiple motors in	
industries.	
Video link / Additional online information:	
1. https://nptel.ac.in/courses/108105113	
UNIT-III	
Prerequisites: SR, JK, D, T flipflops	8 Hrs
Flip-Flops and its Applications: Latches and Flip Flops, Master-slave JK flip-flop, Timing	
concerns in sequential circuits, Shift Registers – SISO, SIPO, PISO PIPO, Universal shift	
register, Counters – Synchronous and Asynchronous.	
Laboratory Sessions/ Experimental learning:	
1. Develop SR, D, JK &T flip flop using logic gates	
2. Design a 6-bit Register using D-Flipflop	
Applications: Frequency divider circuit, frequency counter.	
Video link / Additional online information:	
1. https://nptel.ac.in/courses/108105113	
UNIT-IV	
Sequential Circuit Design: Characteristic equations, Design of a synchronous mod-n	8 Hrs
counter using clocked JK, D, T and SR flip-flops, Melay& Moore Models.	
Laboratory Sessions/ Experimental learning:	
1. Design a Synchronous Counter for a given sequence- 0, 2, 4, 6, 0	
2. Design a 4-bit Asynchronous up/down counter	
3. Design a 4-bit binary Synchronous up/down	
Applications: Data synchronizer, Counter.	
Video link / Additional online information:	
1. https://nptel.ac.in/courses/108105113	

UNIT-V **Applications of Digital Circuits:** 8 Hrs Design of a Sequence Detector, Guidelines for construction of state graphs, Design Example – Code Converter, Design of Binary Multiplier, Design of Binary Divider. Programmable Logic Devices: PLA, PAL, FPGA. Laboratory Sessions/ Experimental learning: 1. Designing of sequence detector using necessary digital components. Video link / Additional online information: 1. https://nptel.ac.in/courses/108105113 LABORATORY EXPERIMENTS Simulate & design the Digital Circuits using NI ELVIS II+ and NI Multisim 1. Design of Logic Gates and Realization using K-Map 2. Design of Half Adder and Half Subtractor 3.Implementation of Binary to Gray Code Converter 4.Realization of SR, JK, D and T flip flop 5.Design of Multiplexer and Demultiplexer 6. Implementation of Encoder and Decoder

Course	e outcomes:
CO1	Illustrate simplification of Algebraic equations using K-map & Quine-McCluskey Technique.
CO2	Design the combinational logic circuits.
СОЗ	Analyse& design different applications of Combinational & Sequential Circuits to meet desired need within realistic constraints.
CO4	Design the sequential circuits using SR, JK, D, T flip-flops and Mealy & Moore machines
CO5	Know the importance of programmable devices used for designing digital circuits.
Refere	nce Books:
1.	John M Yarbrough, "Digital Logic Applications and Design", Thomson Learning, 2001.

I	2.	Donald D. Givone, "Digital Principles and Design", McGraw Hill, 2002.
	3.	Charles H Roth Jr., Larry L. Kinney –Fundamentals of Logic Design, CengageLearning, 7th Edi
	4.	. Morris Mano, –Digital Design∥, Prentice Hall of India, Third Edition.

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three qquizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes eeffectively. The number of quizzes may be more than three (conduct additional quizzes aand take best three). The three tests are conducted for 50 marks each and the average of aall the tests are calculated for 50. The marks for the self -study are 20 (2 presentations are b held for 10 marks each). The marks obtained in test, quiz and self -studies are added to gget marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

CO/PO	P01	PO2	PO3	PO4	PO5	PO6	P07	P08	PO9	PO10	PO11	PO12
CO1	3	2	1	1	-	-	-	-	-	-	-	2
CO2	1	-	-	-	3	-	-	-	-	-	-	2
CO3	1	2	3	-	1	-	-	-	-	-	-	2
CO4	1	2	2	2	-	-	-	-	-	-	-	1
CO5	1	1	1	-	2	-	-	-	-	-	-	1

		Se	mester: III					
		Analog E	ectronic Circuits					
Cou	irse Code:	MVJ22EA33	CIE Marks:50					
Cre	dits:	L:T:P: 3:0:2	SEE Marks: 50					
Ηοι	ırs:	40 L+ 26 P	SEE Duration: 03+03 Hours					
Cou	ırse Learning Obj	ectives: The students wi	ll be able to					
1	solve low frequ	iency response for variou	is configurations of BJT and FET amplifier.					
2	Understand di	fferent topologies of fee	back amplifiers and oscillators.					
3	Analyze Power	Analyze Power amplifier circuits in different modes of operation						
4		Sketch and explain typical Frequency Response graphs for each of the Filter circuits and switching circuits of Op-Amps and analyse its operations.						
5		between various types f each with neat circuit d	of DACs and ADCs, Timer IC's and evaluate the iagrams.					

Module -I	
Prerequisites: Operation of Transistor	8 Hrs
Transistor Biasing:	
Fixed bias circuits, Emitter stabilized biased circuits, Voltage divider biased circuits.	
Transistor at Low Frequencies: BJT transistor modeling, CE Fixed bias configuration,	
Voltage divider bias, Emitter follower, Analysis of circuits re model.	
Laboratory Sessions/ Experimental learning:	
1. 8Plot the transfer and drain characteristics of a BJT and calculate its drain	
resistance, mutual conductance and amplification factor.	
Applications: Analog switches, Phase shift oscillator, chopper, and current limiter.	
Video link/ Additional online information:	
https://nptel.ac.in/courses/108102112	
Module -II	<u> </u>
Prerequisites: Working of JFET	8 Hrs
FET Amplifiers: JFET small signal model, Fixed bias configuration, Voltage divider	
configuration, Common Gate configuration,	
Feedback Amplifier: The Four Basic Feedback Topologies, The series-shunt, series-series,	

shunt-shunt and shunt-series amplifiers.

Laboratory Sessions/ Experimental learning:

1. Design and test the voltage-shunt feedback amplifier and calculate the parameters using with and without feedback.

Applications: Radios, Televisions, Communication systems, Computers, Industrial controlled applications.

Video link/ Additional online information:

https://nptel.ac.in/courses/108102112

Module -III

Wodule -III	
Oscillators: Oscillator operation, FET based Phase shift oscillator, Wien bridge oscillator,	8 Hrs
LC and Crystal Oscillators.	
Output Stages and Power Amplifiers: Introduction, Classification of output stages, Class A	
output stage, Class B output stage: Transfer Characteristics, Power Dissipation, Power	
Conversion efficiency, Class AB output stage, Class C tuned Amplifier.	
Laboratory Sessions/ Experimental learning:	
1. Plot the frequency response using any class of power amplifier	
Applications: Audio power amplifiers, Switching type power amplifiers, and Wireless	
Communication	
Video link/ Additional online information:	
https://nptel.ac.in/courses/108102112	
Module -IV	
OP-Amps as DC Amplifiers: Direct coupled voltage followers, Non-inverting amplifiers,	8 Hrs
inverting amplifiers.	
Op-Amps as AC Amplifiers: Capacitor coupled voltage follower, Capacitor coupled non	
inverting amplifiers, Capacitor coupled inverting amplifiers, Capacitor coupled difference	
amplifier.	
Application: Summing, Scaling and Averaging Amplifiers, Instrumentation amplifier, Zero	
Crossing Detector, Schmitt trigger.	
Laboratory Sessions/ Experimental learning:	
1. Design and find the gain of a Differential Amplifier.	
Applications: Industrial areas (Temperature Indicator, Light Intensity Meter, Temperature	

Controller)

Video link / Additional online information:

https://nptel.ac.in/courses/108102112

Module -V

Op-Amp Circuits: DAC - Weighted resistor and R-2R ladder, ADC- Successive **8 Hrs** approximation type, Active Filters, First and second order low-pass and high-pass Butterworth filters, Band-pass filters, Band reject filters.

555 Timer and its applications: Mono-stable and Astable Multivibrators.

Laboratory Sessions/ Experimental learning:

1. Demonstrate a simple light circuit that uses a decade counter to drive two traffic lights and uses 555 timer chips as clock.

Applications: PWM (Pulse Width Modulation) & PPM (Pulse Position Modulation), Analog frequency meters, Digital logic probes.

Video link / Additional online information:

https://nptel.ac.in/courses/108102112

Laboratory Experiments

Simulation using EDA software (EDWinXP, PSpice, MultiSim, Proteus, CircuitLab or any other equivalent tool can be used)

- 1. Monostable Multivibrator using 555 Timer.
- 2. Astable Multivibrator using 555 Timer.
- 3. RC Phase shift oscillator.
- 4. Inverting Schmitt Trigger.
- 5. Narrow Band-pass Filter and Narrow band-reject filter
- 6. Precision full-wave rectifier.

Cours	Course Outcomes: After completing the course, the students will be able to								
CO1	Analyse the DC biasing & frequency response of BJT Amplifier and FET amplifier								
CO2	Design various Feedback amplifiers.								
CO3	Evaluate the efficiency of power amplifiers and working of oscillator.								
CO4	Describe DC amplifier, AC Amplifiers and its application.								
CO5	Acquire knowledge about Active Filters, DAC, ADC and Timer.								

Text	t Books
1.	Robert L.Boylestad and louis Nashelsky, "Electronic Devices and circuit Theory",
	PHI/Pearson Education,11 TH Edition.
2.	Adel S Sedra, Kenneth C Smith "Microelectronic Circuits, Theory and Applications",
	6th Edition, Oxford, 2015.ISBN:978-0-19-808913-1.
Refe	erence Books
1	Behzad Razavi, "Fundamentals of Microelectronics", John Weily ISBN 2013 978-81-
	265-2307-8,2 nd Edition, 2013.
	203-2307-6,2 Euron, 2013.
2	K.A.Navas, "Electronics Lab Manual", Volume I, PHI, 5th Edition, 2015, ISBN:
-	
	9788120351424.
-	
3	"Operational Amplifiers and Linear IC"s", David A. Bell, 2 nd edition, PHI/Pearson,
	2004. ISBN 978-81-203-2359-9.
4	"Linear Integrated Circuits", D. Roy Choudhury and Shail B. Jain, 4th edition, Reprint
	2006, New Age International ISBN 978-81-224-3098-1.

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the self -study are 20 (2 presentations are be held for 10

marks each). The marks obtained in test, quiz and self -studies are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	2	1	-	-	-	-	-	1
CO2	3	3	3	2	2	1	-	-	-	-	-	1
CO3	3	3	3	2	2	1	-	-	-	-	-	1
CO4	3	3	3	2	2	1	-	-	-	-	-	1
CO5	3	3	3	2	2	1	-	-	-	-	-	1

Semester: III											
NETWORK ANALYSIS Course Code: MVJ22EA34 CIE Marks: 50											
Course Code:MVJ22EA34CIE Marks: 50Credits:L: T:P:S 3:0:0:YSEE Marks: 50											
Hours: 40L SEE Duration: 3 Hrs.											
Course Learning Objectives: The students will be able to											
Describe basic network concepts emphasizing source transformation source shifting,											
1 mesh and nodal techniques to solve for resistance/impedance, voltage,	, current and										
power.											
Explain network Thevenin's, Millman's, Superposition, Reciprocity, Ma	ximum Power										
2 transfer and Norton's Theorems and apply them in solving the proble	ems related to										
Electrical Circuits.											
Describe Series and Parallel Combination of Passive Components as reson	nating circuits,										
³ related parameters and to analyze frequency response.											
Explain the behavior of networks subjected to transient conditions. Use a	pplications of										
4 Laplace transform to solve network problems.											
5 Execute two port network parameters like Z, Y, T and h and their inter-relation	onships.										
UNIT-I Prerequisites: Ohm's law, Kirchhoff's laws	8 Hrs										
	0 11 5										
Basic Concepts: Introduction, Practical sources, Source transformations, Star –											
Delta transformation, Loop and node analysis with linearly dependent and											
independent sources for DC networks, Concepts of super node and super mesh.											
Laboratory Sessions/ Experimental learning:											
1. Find the current through and voltage across the load in the given											
circuit.											
Applications: Simplification and analysis of analog circuits, microwave circuit											
analysis											
Video link / Additional online information :											
https://nptel.ac.in/courses/108105159											
UNIT-II											
Graph Theory and Network equations: Graph of a network, Trees, Co-trees	8 Hrs										
and Loops, Incidence Matrix, Cut-set Matrix, Tie-set Matrix and loop currents,											
Number of possible trees of a graph, Analysis of networks, Duality.											
Laboratory Sessions/ Experimental learning: NA											

Applications: Simplification and analysis of analog circuits, microwave circuit	
analysis	
Video link / Additional online information:	
https://nptel.ac.in/courses/108105159	
UNIT-III	
Network Theorems: Superposition Theorem, Millman's theorem, Thevenin's	8 Hrs
and Norton's theorems, Reciprocity theorem, Maximum Power transfer	
theorem.	
Laboratory Sessions/ Experimental learning:	
1. Verify superposition theorem for a given circuit.	
Applications: Simplification and analysis of analog circuits, microwave circuit	
analysis.	
Video link / Additional online information:	
https://nptel.ac.in/courses/108105159	
UNIT-IV	
Prerequisites: Laplace Transforms, Properties of Laplace Transform and Inverse	8 Hrs
Laplace Transform using partial fraction method.	
Transient behaviour and initial conditions: Behaviour of circuit elements under	
switching condition and their Representation, evaluation of initial and final	
conditions in RL, RC and RLC circuits for DC excitations, Applications of Laplace	
Transforms in circuit analysis.	
Laboratory Sessions/ Experimental learning:	
1. Plot the response of a series RLC circuit.	
Applications: In the analysis of transmission lines and waveguides.	
Video link / Additional online information :	
https://nptel.ac.in/courses/108105159	
UNIT-V	1
Two port network parameters: Introduction, open circuit impedance	8 Hrs
parameter, short circuit admittance parameter, hybrid parameters,	
transmission parameter, relationship between parameters.	
Laboratory Sessions/ Experimental learning:	
1. Plot the frequency response characteristics for a series RL, RC circuit.	
2. Plot the frequency response characteristics for a parallel RL circuit.	

	3. Measure two port parameters for a given network								
Арр	lications: For analysis of communication systems and antennas.								
Vide	eo link / Additional online information:								
http	s://nptel.ac.in/courses/108105159								
Cou	rse Outcomes: After completing the course, the students will be able to								
CO1	Determine currents and voltages in a circuit using network simplification t	echniques.							
CO2	To solve the network problems using graphical methods.								
CO3	CO3 To simplify the complex circuits using network theorems.								
CO4	To analyze simple DC circuits and applies the concepts to transient condition	ions.							
COS	Solve the given network using specified two port network parameters like h and Evaluate frequency response related parameters through the RLC e resonant circuits.								
Text	t Books								
1.	M.E. Van Valkenberg (2000), "Network analysis", Prentice Hall of India, 3 rd ISBN: 9780136110958.	edition, 2000,							
2.	Roy Choudhury, "Networks and systems", 2nd edition, New Age International Publication 2006, ISBN: 9788122427677.								
Refe	erence Books								
1.	Hayt, Kemmerly and Durbin – Engineering Circuit Analysis", TMH 7th Edition,	2010.							
2.	J. David Irwin /R. Mark Nelms, "Basic Engineering Circuit Analysis", John Wile 2006.	ey, 8th edition,							

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	P07	P08	PO9	PO10	PO11	PO12
CO1	3	3	3	2	2	1	-	-	-	-	-	1
CO2	3	3	3	2	2	1	-	-	-	-	-	1
CO3	3	3	3	2	2	1	-	-	-	-	-	1
CO4	3	3	3	2	2	1	-	-	-	-	-	1
CO5	3	3	3	2	2	1	-	-	-	-	-	1
	3	_	3	_		-				-		1

		Semes	ster:III									
		Analog and Digital El	ectronics Laboratory									
Cour	se Code:	MVJ22EAL35	CIE Marks: 50									
Cred	its:	L:T:P:0:0:2	SEE Marks: 50									
Hour	rs:	20	SEE Duration: 3 Hrs									
Cour	se Learning Obj	ectives: The students will be	able to									
1	5											
2	Understand operation and application of electronic devices and their circuits.											
3	Analyze circui	t characteristics with signal a	analysis using Op-amp ICs.									
4	Execute Mode	Execute Modern EDA tool such as Verilog.										
5	Solve differen	t types of description in Veri	-									
		PAR	RT A									
1	. Design and se	t up the RC coupled Single s	tage BJT amplifier and determine the gain-									
	frequency res	ponse, input, and output im	pedances									
2	. Design an osc	illator with tank circuit havir	ng two inductances and one capacitance and									
	compare the	practical frequency with the	oretical frequency.									
3	. Design an osc	illator with tank circuit havir	ng two capacitance and one inductance and									
		practical frequency with the	• •									
4		illator whose frequency is 21	VHZ and compare with the theoretical									
	frequency.											
5	-	second order Butterworth lo	•									
6	-	e Multivibrator using 555 Tir										
7	. Design Mono	stable Multivibrator using 55										
	_	P/	ART B									
	. Verify											
а		roduct expression using univ	-									
b		of-sum expression using univ	rersal gates.									
	 Design and in 	-										
•	•	ng basic logic gates.										
•	•	r using basic logic gates.										
	-	plement 4-bitParallelAdder,	-									
	-	-	de conversion and vice-versa using IC 7483.									
1	2. Realize 4-vari	able function using IC 74151	(8:1MUX)									

Course of	Course outcomes:								
CO1 Design various circuits using PSPICE and verify functionality.									
CO2	Design and test of analog circuits using OPAMPs								
CO3	Design and implement basic circuits using IC (OPAMP and 555 timers).								
CO4	Use the modern engineering tool Verilog for engineering practice.								
CO5	Design and Verify functionality of digital circuit/system.								

О-РО Ма	pping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	1	-	-	-	-	-	-	-	2
CO2	1	-	-	-	3	-	-	-	-	-	-	2
CO3	1	2	3	-	1	-	-	-	-	-	-	2
CO4	1	2	2	2	-	-	-	-	-	-	-	1
CO5	1	1	1	-	2	-	-	-	-	-	-	1

Engineering Science Course:

		Semester	: 111								
		Digital System Design	n using Verilog								
Cour	se Code:	MVJ22EA361	CIE Marks:50								
Cred	its:	L: T:P: 3:0:0	SEE Marks: 50								
Hours: 40L SEE Duration: 03 Hours											
		ojectives: The students will be al									
1	1 Understand the concepts of Verilog Language										
2	Describe veri	og data flow .									
3	Design behav	ioral programming using verilog									
4	Understand t	he concepts of Verilog Structural	Language								
5	Design of ver	log circuits using synthesis modu	ıle.								
		UNIT	1								
Intro	duction to Ve	rilog: Structure of verilog Modu	ule, Operators, Data types, Units and								
ports	, Verilog constr	ructs.									
Laboi	ratory Sessions	S/ Experimental learning:									
1	. Develop a m	ini project to demonstrate the co	oncept of de morgan's theorem.								
Appli	cations:			8Hrs.							
1.	Conversion	from one form of expression to	another								
Video	link / Additio	nal online information:									
	1. <u>https://n</u>	otel.ac.in/courses/106103358									
		UNIT	2								
Data-	Flow Descrip	tion: Highlights Of Data-Flow	Description, Signal Declaration And								
Assig	nment Statem	ent , Constant Declaration and	d Constant Assignment Statements ,								
Assig	ning a Delay Ti	me to the Signal-Assignment Stat	tement								
Laboi	ratory Sessions	/ Experimental learning:									
1	L.	Develop an algorithm using dat	ta flow description								
Appli	cations:			8Hrs.							
1	. Programs f	or simple mathematical calculation	ons								
Video	-	nal online information:									
		/nptel.ac.in/courses/106103358									
		, ,,,									

UNIT 3	
Behavioral Description: Behavioral Description Highlights, Structure of the Verilog	
Behavioral Description, Sequential Statements: IF Statement, The case Statement, Verilog	
casex and casez , The wait-for Statement , The Loop Statement: For-Loop, While-Loop ,	
Verilog repeat , Verilog forever	
Laboratory Sessions/ Experimental learning:	
1. Develop an algorithm using behavioural description	8Hrs.
Applications:	
1. Comparators using behavioural description.	
2. Multiplexers using behavioural description.	
Video link / Additional online information:	
1. https://nptel.ac.in/courses/106103358	
UNIT 4	
Structural Description: Highlights of Structural Description, Organization of Structural	
Description, Half adder and full adder design using structural description, Half subtractor	
and full subtractor design using structural description, generate and parameter (Verilog),	
Exercises	
Laboratory Sessions/ Experimental learning:	8Hrs.
1. Code converters using behavioural description.	01113.
Applications:	
1. Decoders using Structural description.	
Video link / Additional online information:	
1. <u>https://nptel.ac.in/courses/106103358</u>	
UNIT 5	
Synthesis Basics: Highlights of Synthesis, Synthesis Information From Module, Mapping	
Always in the Hardware Domain , Mapping the Signal-Assignment Statement to Gate Level,	
Mapping Logical Operators, Mapping the IF Statement, Mapping the case Statement ,	
Mapping the Loop Statement	8Hrs.
Laboratory Sessions/ Experimental learning:	
1. Weather analysis of a weak using synthesis module	
2. synthesis verilog code for state machine	

	/ ^ -! -!'	tional culius information.						
VIGEO IINK	/ Addi	tional online information:						
1. <u>http</u>	os://npt	tel.ac.in/courses/106103358						
Course Ou	tcome	s: After completing the course, the students will be able to						
CO1		Understand verilog programming basics						
CO2		Describe how dataflow description of verilog code works and write simple programs using dataflow description.						
CO3		Describe how Behavioural description of verilog code works and write simple programs using dataflow description.						
CO4		Design simple circuits using verilog structural description.						
CO5		Synthesize different assign statements and simple applications using verilog.						
Text Books:								
	HDL V	NITH DIGITAL DESIGN VHDL AND VERILOG, Nazeih Botros, MERCURY LE	ARNING					
1.	INFOR	MATION Dulles, Virginia Boston, Massachusetts New Delhi, 2015.						
Reference	Books	::						
Samir Palnitkar "Verilog HDL: A Guide to Digital Design and Synthesis",								
1. Pearson Education, Second Edition								
2.	Charles H Roth Jr., Larry L. Kinney "Fundamentals of Logic Design", Cengage Learning, 7 Edition							

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	-	1	-	-	1	-	-	1
CO2	3	3	2	2	-	1	-	-	1	-	-	1
CO3	3	3	2	2	-	1	-	-	1	-	-	1
CO4	3	3	2	2	-	1	-	-	1	-	-	1
CO5	3	3	2	2	-	1	-	-	1	-	-	1

Operating System										
Course Co	de:	MVJ22EA362	CIE Marks:50							
Credits:	Credits: L:T:P: 3:0:0 SEE Marks: 50									
Hours: 40L SEE Duration: 3 Hrs										
Course Le	arning Obj	ectives: The students will be able to)							
1	1 Understand the services provided by an operating system.									
2	Describe how processes are synchronized and scheduled.									
3	Implement	t different approaches of memory r	nanagement and virtual memory manag	ement.						
4	Explain the	e structure and organization of file	system							
5	Understan	d inter process communication and	deadlock situations.							
		UNIT 1								
Prerequisi	tes: Compu	iter Organization and Architecture								
Introducti	on to Ope	erating Systems: OS, Goals of an	OS, Operation of an OS, Program's,							
Resource a	allocation t	echniques, Efficiency, System Perfo	rmance and User Convenience, Classes							
of operati	ng System,	Batch processing, Multi programm	ing, Time Sharing Systems, Real Time,							
distributed	d and mode	ern Operating Systems.								
Laborator	y Sessions/	Experimental learning:								
1. Cas	se study: B	asics of LINUX OS.		8Hrs.						
Applicatio	ns:			01113.						
•	Contro	ols the backing store and peripheral	s such as scanners and printers.							
•	Maint	ains security and access rights of us	ers.							
•	Spooli	ng (Simultaneous Peripheral Opera	tion on Line)							
Video link	/ Addition	al online information :								
1. <u>htt</u>	os://nptel.ac.	in/courses/106105214								
D										
	-	t: OS View of Processes, PCB, Proce								
		Threads, Non-preemptive scheduli		8Hrs.						
-	g- RR and L	CN, Long term, medium term and s	hort term scheduling in a time sharing							
system.										

Laboratory Sessions/ Experimental learning:

1. Case study on Processes and threads in Linux/ Windows/ UNIX Scheduling Algorithms

Applications:

- Organizes the use of memory between programs.
- Organizes processing time between programs and users.
- Install Operating Systems Ubuntu Linux.

Video link / Additional online information:

1. <u>https://nptel.ac.in/courses/106105214</u>

UNIT 3

Memory Management: Static and Dynamic memory allocation, Contiguous Memory allocation, Non-Contiguous Memory Allocation, Paging, Segmentation, Segmentation with paging, Virtual Memory Management, Demand Paging, Paging Hardware, VM handler, Page replacement policies - FIFO, LRU.

Laboratory Sessions/ Experimental learning:

1. Case Study on Linux/ UNIX Memory Management.

Applications:

• Memory Management deals with the transfer of programs in and out of memory.

8Hrs.

• Dynamically allocate portions of memory to programs at their request, and free it for reuse when no longer needed.

Video link / Additional online information:

1. https://nptel.ac.in/courses/106105214

UNIT 4

File Systems: File systems and IOCS, Files and File Operations, Fundamental File Organizations, Directory structures, File Protection, Interface between File system and IOCS, Allocation of diskspace, Implementing file access, and File sharing schematics. 8Hrs.

Laboratory Sessions/ Experimental learning:

1. Case Study on UNIX/ Windows/ Linux File System.

Applications:

• Unde	erstand file handling operations (read, write, and append).
--------	---

• Basic understanding of how pointers are used

Video link / Additional online information :

1. <u>https://nptel.ac.in/courses/106105214</u>

UNIT 5										
Message Passing and Deadlocks: Overview of Message Passing, Implementing message										
passing, Mailboxes, Deadlocks, Deadlocks in resource allocation, Handling Deadlocks, Deadlock										
detection algorithm, Deadlock Prevention, Deadlock avoidance-Bankers algorithm.										
Laboratory Sessions/ Experimental learning:	8Hrs.									
1. Simulate Bankers Algorithm for Dead Lock Avoidance.	эпт5.									
Applications: Email management										
Video link / Additional online information:										
1. <u>https://nptel.ac.in/courses/106105214</u>										
Course Outcomes: After completing the course, the students will be able to										
CO1 Summarize the goals, structure, operation and types of operating systems.										
CO2 Apply scheduling techniques to find performance factors.										
CO3 Apply suitable techniques for contiguous and non-contiguous memory allocation.										
CO4 Interpret the organization of file systems and IOCS.										
CO5 Describe message passing, deadlock detection and prevention methods.										

Text Bo	poks:									
1.	Operating Systems: Internals and Design Principles" by William Stallings, Prentice hall Publisher, 2011									
2.	Operating System Concepts" by Avi Silberschatz and Peter Galvin, Wiley Publisher, 8 th Edition 2011.									
Refere	nce Books:									
1	Operating Systems: A Concept-Based Approach" by D M Dhamdhere, Mc Graw Hill									
	Education,2017									
2	Operating System: A Design-oriented Approach" by Charles Crowley, Mc Graw Hill									
	Education,2017									

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2	2	1	-	-	1	-	-	1	1	-
CO2	3	3	2	2	2	1	-	-	1	-	-	1	1	-
CO3	3	3	2	2	2	1	-	-	1	-	-	1	1	-
CO4	3	3	2	2	2	1	-	-	1	-	-	1	1	-
CO5	3	3	2	2	2	1	-	-	1	-	-	1	1	-

		Semeste								
		COMPUTER ORGANIZATIO	ON & ARCHITECTURE							
Course (Code:	MVJ22EA363	CIE Marks:50							
Credits:		L:T:P: 3:0:0	SEE Marks: 50							
Hours:	oorning Oh	40L jectives: The students will be a	SEE Duration: 3 Hrs							
1	Explain the basic sub systems of a computer, their organization, structure and Operation. Execute programs as sequences of machine instructions.									
2	-			duaa						
3	understand different ways of communicating with I/O devices and to introdumemory types including cache memories.									
4	Describe n	nemory hierarchy and concept o	of virtual memory.							
5	Analyze co	ncepts of Pipelining and other o	computing systems.							
		UNIT	1							
Equation Machin IEEE st Operate Labora 1. 2. Applica Video	on. ne Instructions tandard for tions, Instruction tory Session Understance Study of Mission ations: Under link / Additi	ons and Programs: Numbers, Floating point Numbers, Mem ctions and Instruction Sequencin ns/ Experimental learning: ding various parts of CPU of a PC icroprocessor and understandin erstand the functionality of the onal online information: ourses/106102157	c. g of its various instruction various units of computer.	8Hrs.						
Droros		UNIT	2	[
-	uisite :Num									
	-		put and Output Operations, Stacks and							
Queue	s, Subroutin	es, Additional Instructions.		8Hrs.						
Labora	tory Session	ns/ Experimental learning:								

1. Write an ALP to find the sum of two numbers and verify if the sum is an even or

odd number and simulate the output.

2. Write an ALP to transfer a block of data from one location to other and simulate the output.

Applications: Project based on microprocessor.

Video link / Additional online information:

1. https://nptel.ac.in/courses/106102157

UNIT 3

8Hrs.

Input/Output Organization: Accessing I/O Devices, Interrupts – Interrupt Hardware, Enabling and Disabling Interrupts, Handling Multiple Devices, Controlling Device Requests, Direct Memory Access, and Buses.

Laboratory Sessions/ Experimental learning: Study any one input/output device and

examine its various input output ports details.

Applications: Interfacing of Peripheral devices

Video link / Additional online information:

1. https://nptel.ac.in/courses/106102157

UNIT 4

Memory System: Basic Concepts, Semiconductor RAM Memories-Internal organization of memory chips, Static memories, Asynchronous DRAMS, Read Only Memories, Cash Memories, Mapping Functions, Replacement Algorithm, Virtual Memories, Secondary Storage-Magnetic Hard Disks.

Laboratory Sessions/ Experimental learning: Implement and simulate a simple memory unit which is capable of reading and writing data within a single clock cycle.

Applications: Understanding the various memories

Video link / Additional online information :

https://nptel.ac.in/courses/106102157

UNIT 5

Basic Processing Unit: Some Fundamental Concepts, Execution of a Complete Instruction,
Multiple Bus Organization, Hardwired Control, Micro programmed Control ,Pipelining8Hrs.

,Basic concepts, Role of Cache memory, Pipeline Performance

Laboratory Sessions/ Experimental learning: Evaluate the possible control sequence for

implementing a multiplication instruction using registers for a single bus organization

Applications: Microprocessor

Video link / Additional online information:

https://nptel.ac.in/courses/106102157

Course Outcomes: After completing the course, the students will be able to

CO1	Identify the functional units of the processor and the factors affecting the performance of a computer								
CO2	Demonstrate the ability to classify the addressing modes, instructions sets and design programs.								
CO3	Understand the different ways of accessing an input / output device including interrupts.								
CO4	Illustrate the organization of different types of semiconductor and other secondary storage memories.								
CO5	Illustrate the simple processor organization based on hard wired control and micro programmed control.								

Text B	ooks:
1.	Carl Hamacher, ZvonkoVranesic, SafwatZaky: "Computer Organization", 6th Edition, Tata McGraw Hill, 2011.
2.	Andrew S. Tanenbaum, Todd Austin, "Structured Computer Organization", 6th Edition, Pearson, 2013.
Refere	nce Books:
1	David A. Patterson, John L. Hennessy: "Computer Organization and Design – The Hardware / Software Interface ARM Edition", 4th Edition, Elsevier, 2009.
2	William Stallings: "Computer Organization & Architecture", 7th Edition, PHI, 2006.

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO M	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	2	2	-	1	-	-	1	-	-	1	
CO2	3	3	2	2	-	1	-	-	1	-	-	1	
CO3	3	3	2	2	-	1	-	-	1	-	-	1	
CO4	3	3	2	2	-	1	-	-	1	-	-	1	
CO5	3	3	2	2	-	1	-	-	1	-	-	1	

Applied Numerical Methods									
Course Code:	MVJ22EA364	CIE Marks:50							
Credits:	L:T:P:S: 2:2:0:0	SEE Marks: 50							
Hours:	20L+20T	SEE Duration: 3 Hrs							

Demonstrate and understand of common numerical methods and apply to obtain approximate solutions to mathematical problems.

UNIT-I	
Algebraic equations:	8 Hrs
Systems of linear equations: Gauss Elimination method, Thomas algorithm for	
tridiagonal system - Jacobi, Gauss Seidel, SOR iteration methods - Systems of	
nonlinear equations: Fixed point iterations, Newton Method, Eigenvalue	
problems: power method.	
UNIT-II	
Numerical solutions of PDE – Classification of second order equations, finite	8 Hrs
difference approximation to derivatives, solution of heat equations, solution of	
wave equations and solution of Laplace equation.	
UNIT-III	
Finite Element Method:	8 Hrs
Basic concept of the finite element method. Variational formulation of BVP's,	
Rayleigh-Ritz approximation, weighted residual methods, finite element analysis	
of one-dimensional problems.	
UNIT-IV	
Numerical Integration:	8 Hrs
Romberg Integration, Gaussian quadrature, system of first order and higher order	
differential equations by Euler's and Runge-Kutta methods, The Chebyshev	
approximation	
UNIT-V	
Numerical Methods for the Solution of Systems of Equations:	8 Hrs
Linear Algebra Review, Linear Systems and Gaussian Elimination, The LU	
Factorization, Cholesky Decomposition, Iterative Methods for Linear Systems: A	
Brief Survey, Nonlinear Systems: Newton's Method.	

Course Outco	Course Outcomes: After completing the course, the students will be able to									
CO1	Solve algebraic equations using direct and iteration methods.									
CO2	Understands the basic theory underlying the numerical solution of partial differential equations.									
CO3	Understand the concepts behind formulation methods in FEM									
CO4	find approximate solutions for ODE.									
CO5	Learn to solve system of equations using numerical techniques.									

Tex	t Book							
1	B.S. Grewal, "Higher Engineering Mathematics" Khanna Publishers, 43 rd Edition, 2013.							
Ref	Reference Books							
1	Sastry, S.S: "Introductory Methodsof Numerical Analysis"., Prentice Hall India.							
2	Jain, M.K, Jain, R.K and Iyenger, S.R.K.: "Numerical Methods for Scientific and							
	Engineering Computations", New Age International Publication Pvt. Ltd.							

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	0	0	0	0	0	0	0	1	1
CO2	3	3	2	0	0	0	0	0	0	0	1	1
CO3	3	3	2	0	0	0	0	0	0	0	1	1
CO4	3	3	2	0	0	0	0	0	0	0	1	1
CO5	3	3	2	0	0	0	0	0	0	0	0	0

		Semester: IV							
		Engineering Electromagn	etics						
Course (Code:	MVJ22EA41	CIE Marks:50						
Credits:		L:T:P:S 3:0:0:Y	SEE Marks: 50						
Hours:		40L	SEE Duration: 3 Hrs						
Course l	Learning Obj	ectives: The students will be able to							
1	Understand the applications of Coulomb's law and Gauss law to different charge Distributions.								
2	Understand the physical significance of Biot-Savart's Law, Amperes' Circuital Law and Stokes' theorem for different current distributions.								
3	Apply Maxwell's equations and its applications in plane waves.								
4	Evalute Boundary Conditions and wave equation to solve different field equations								
5		smission lines problems and Understeen Understeen understeen and Understeen and Understeen and Understeen and U	tand the concepts of Smith Chart for						

B.E, IV Semester, Advanced Communication Technology

UNIT 1

Prerequisites: Vector Algebra, Coordinate systems (Rectangular Coordinate System, Cylindrical Coordinate System and Spherical Coordinate System), gradient, divergence and curl

Electrostatics: Coulomb's Law, Electric Field Intensity, Flux density and potential:

Coulomb's law, Electric field intensity, Field due to line charge, Field due to Sheet of charge, Field due to continuous volume charge distribution, Electric flux, Electric flux density, Electric potential, Potential difference, relation between Electric field intensity (E) & potential (V), potential gradient, Electric dipole, Energy density in electrostatic fields.

Laboratory Sessions/ Experimental learning:

8 Hrs.

- 1. Determine the electric field intensity at a point due to uniform linear charge (ρ L) and point charges using MATLAB.
- Determine the electric field intensity at a point due to surface charge using MATLAB.
- 3. Determine the potential difference between two points on a ring having linear charge density, ρ L using MALAB.

Applications: The Van de Graaff generator, Xerography, Ink Jet Printers and Electrostatic Painting, Smoke Precipitators and Electrostatic Air Cleaning

Video link / Additional online information: 1. https://nptel.ac.in/courses/108104087 UNIT 2 Gauss' law, Divergence, Poisson's and Laplace's Equations: Gauss law, Maxwell's First equation, Application of Gauss' law, Divergence theorem, Current, Current density, Conductor, The continuity equation, Boundary conditions (dielectric-dielectric, conductor-dielectric, conductor-free space), Poisson's and Laplace's Equations, Uniqueness theorem. Laboratory Sessions/ Experimental learning: 1. Evaluate the current flowing through a given surface using MATLAB. 2. Verify the Divergence theorem using MATLAB. **Applications:** Used for calculation electrical field for a symmetrical distribution of charges Video link / Additional online information: 1. https://nptel.ac.in/courses/108104087 UNIT 3 Magnetostatics: Steady Magnetic Field-Biot-Savart Law, Ampere's circuital law, Curl,

8 Hrs.

Stokes' theorem, Gauss's law for magnetic fields, Magnetic flux and Magnetic flux density, Maxwell's equations for static fields, Magnetic Scalar and Vector Potentials. Magnetic Forces and magnetic materials: Force on a moving charge and differential

current element, Force between differential current elements, Magnetization, magnetic susceptibility, permeability, Magnetic boundary conditions, Inductances, magnetic energy, magnetic circuit.

Laboratory Sessions/ Experimental learning: Determine the magnetic field intensity at a point due to magnetic field using MATLAB.

Applications: Motors, Generators, Loudspeakers, MRI

Video link / Additional online information :

1. https://nptel.ac.in/courses/108104087

	UNIT 4							
Time v	varying Fields and Electromagnetic wave propagation: Time varying fields &							
Maxwe	ell's equations, Faraday's law, Transformer and Motional Electro - Motive Forces,							
Displac	Displacement current, Maxwell's equation in differential and integral form, Time varying							
potent	ials.							
Electro	magnetic wave propagation: Derivation of wave equations from Maxwell's							
equations, Relation between E and H, Wave propagation in - lossy dielectrics, lossless								
dielect	rics, free space and good conductor, skin-effect, Poynting theorem.	8 Hrs.						
Labora	tory Sessions/ Experimental learning: Determine the parameters of wave using							
MATLA	В.							
Applica	ations: Optoelectronics							
Video l	ink / Additional online information :							
1.	https://nptel.ac.in/courses/108104087							
	UNIT 5							
Tranco	nission line: Introduction, Transmission line parameters, Transmission line							
	ons, input impedance, standing wave ratio and power, Smith Chart basic							
	nentals, types of transmission lines - coaxial line, strip line, micro strip line. Ations of transmission line: Impedance matching and tuning: single stub tuning,							
••	stub tuning, and the quarter wave transformer.							
	tory Sessions/ Experimental learning: Simulation of micro strip transmission line	8 Hrs.						
•••	ations: Telephone, Cable TV, Broadband network							
	ink / Additional online information:							
1. <u>https://nptel.ac.in/courses/108104087</u>								
Course	Outcomes: After completing the course, the students will be able to							
	Evaluate problems on electrostatic force, electric field due to point, linear, surface	charge						
CO1	and volume charges.	, charge						
CO2	Apply Gauss law to evaluate Electric fields due to different charge distributions l Divergence Theorem. Determine potential and capacitance using Laplace equat							
02	Poisson equation.							

CO3	Apply Biot-Savart's and Ampere's laws for evaluating Magnetic field for different current
	configurations.
CO4	Apply Maxwell's equations for time varying fields and evaluate power associated with EM
	waves using Poynting theorem.
CO5	Execute transmission lines and use Smith chart for determining the impedance and
	admittance.

Text Book:								
1	Matthew N. O. Sadiku, "Elements of Electromagnetics", Oxford University Press, Edition VII,							
1.	2018.							

Reference Books									
2.	David M Pozar, "Microwave Engineering", John Wiley & Sons, Inc., 4th edition, 2014.								
3.	W.H. Hayt. J.A. Buck & M Jaleel Akhtar, "Engineering Electromagnetics", Tata McGraw – Hill, Edition VIII, 2014.								

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have

internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	2	1	-	-	-	-	-	1
CO2	3	3	3	2	2	1	-	-	-	-	-	1
CO3	3	3	3	2	2	1	-	-	-	-	-	1
CO4	3	3	3	2	2	1	-	-	-	-	-	1
CO5	3	3	3	2	2	1	-	-	-	-	-	1

		Sen	nester: IV			
		Principles of	of Communication Systems			
Cours	se Code:	MVJ22EA42	CIE Marks:50			
Credits:		L:T:P: 3:0:2	SEE Marks: 50			
Hours:		40 L+ 26 P	SEE Duration: 03 Hours			
Cours	e Learning	Objectives: The students will b	be able to			
1	Underst	Understand the concepts of Analog Modulation schemes viz; AM, FM.				
2	Describe	Describe different types of noise in communication system.				
3	Understand the concepts of digitization of signals viz; sampling, quantizing, and encoding.					
4	Analyze	the Base Band data transmission	on system.			
5	Distingu	Distinguish coherent and non-coherent digital modulation techniques and understand the				
	basics of spread spectrum modulation.					

UNIT 1

Prerequisites: Modulation, Need for Modulation, and types of Modulation.

Amplitude Modulation: Introduction to AM, Time-Domain description, Frequency-Domain description, Generation of AM wave: Square Law Modulator, Switching modulator, Detection of AM waves: Envelop detector.

Double side band suppressed carrier modulation (DSBSC): Time-Domain description, Frequency-Domain representation, Generation of DSBSC waves: Ring modulator. Coherentdetection of DSBSC modulated waves. Costas loop.

Single Side-Band Modulation (SSB):Single side-band modulation, Time-Domain
description, Frequency-Domain description of SSB wave, Phase discrimination method
for generating an SSB modulated wave.8Hrs.

Laboratory Sessions/ Experimental learning:

- 1. Generation of AM signal using MATLAB
- 2. Generation of DSBSC signal using transistor

Applications: Broadcast transmissions, Air band radio, Quadrature amplitude modulation **Video link / Additional online information :** 1. <u>https://nptel.ac.in/courses/108104091</u>

1. <u>https://nptei.ac.in/courses/108104091</u>	
UNIT 2	<u> </u>
Frequency Modulation: Basic definitions, FM, narrow band FM, wide band FM,	
transmission bandwidth of FM waves, and generation of FM waves: indirect FM and	
direct FM.	
Demodulation of FM waves: Phase-locked loop, Nonlinear model of the phase –	
lockedloop, Linear model of the phase – locked loop, Nonlinear effects in FM systems.	
Laboratory Sessions/ Experimental learning:	
1. Generation of FM signal using MATLAB	
2. Design of mixer	8 Hrs.
Applications: FM radio broadcasting, telemetry, radar, seismic prospecting, and	
monitoring new-born for seizures via EEG, two-way radio systems, sound synthesis,	
magnetic tape- recording systems and some video-transmission systems.	
Video link / Additional online information :	
1. https://nptel.ac.in/courses/108104091	
UNIT 3	
NOISE: Shot Noise, Thermal noise, White Noise, Noise Figure, Equivalent noise	
temperature, Noise Equivalent Bandwidth.	
NOISE IN ANALOG MODULATION: Introduction, Receiver Model, Noise in DSB-SC	
receivers. Noise in AM receivers, Threshold effect, Noise in FM receivers, Capture	
effect, FM threshold effect, FM threshold reduction, Pre-emphasis, and De-emphasis in	
FM	8 Hrs.
Laboratory Sessions/ Experimental learning: ASK modulation and demodulation.	
Applications: Biomedical engineering, communication system	
Video link / Additional online information: 1. https://nptel.ac.in/courses/108104091	

UNIT 4	
Inter-symbol Interference & Signal Space representation: Base band transmission:	
Discrete PAM Signals, Power spectra of Discrete PAM Signals, Inter Symbol Interference,	
Nyquist criterion for Distortion less Base band Binary Transmission, Eye diagram,	
Geometric representation of signals, Gram-Schmidt Orthogonalization procedure,	
Optimum receivers for coherent detection: Correlation Receivers and Matched Filter	
receiver.	
Laboratory Sessions/ Experimental learning:	8 Hrs.
1. Eye diagram using MATLAB	
Applications: Ethernet, RFID marker localization signals, Radar Systems	
Video link / Additional online information:	
1. <u>https://nptel.ac.in/courses/108104091</u>	
UNIT 5	
Prerequisites: Probability & Random Process	
Pass band transmission: Digital modulation techniques: Phase shift Keying techniques	
using Coherent detection: Generation, Detection and Error probabilities of BPSK and	
QPSK, QAM, Frequency shift keying techniques using Coherent detection: BFSK	
generation, detection, and error probability.	
Non-coherent orthogonal modulation techniques: BFSK, DPSK Symbol representation,	
Block diagrams of Transmitter and Receiver, Probability of error (without derivation of	
probability of error equation)	0.11.00
Principles of Spread Spectrum Communication Systems: Model of a Spread Spectrum,	8 Hrs.
Digital Communication System, Direct Sequence Spread Spectrum Systems (DSSS),Some	
applications of DS Spread Spectrum Signals, Generation of PN Sequences, Frequency	
Hopped Spread Spectrum (FHSS).	
Laboratory Sessions/ Experimental learning:	
1. Analyze constellation of 16-QAM Using MATLAB	
Applications: CDMA, WiMAX (16d, 16e), telemetry, caller ID, garage door openers,	
wireless communication, mobile communication and Satellite Communication, LANs,	

Bluetooth, RFID, GPS, Wi-Fi, etc.,

Video link / Additional online information :

1. <u>https://nptel.ac.in/courses/108104091</u>

Lab Experiments

- 1. Simulation of ASK, FSK, and BPSK generation schemes
- 2. Simulation of DPSK, QPSK and QAM generation schemes
- 3. Simulation of signal constellations of BPSK, QPSK and QAM
- 4. Simulation of ASK, FSK and BPSK detection schemes
- 5. Simulation of Linear Block and Cyclic error control coding schemes
- 6. Simulation of Convolutional coding scheme
- 7. Communication link simulation

Course o	Course outcomes:						
CO1	Examine the concepts of analog modulation techniques such as amplitude, modulations						
	andits variations like DSB-SC and SSB-SC.						
CO2	Analyze frequency modulation and compute performance of different types of noise.						
CO3	Apply the concepts of noise in analog modulation and analysis of pre-emphasis and						
	deemphasis circuit.						
CO4	Analyze the signal space representation of digital signals.						
CO5	Simulate different digital modulation techniques and error coding schemes						

Text Books:				
1	Simon Haykins& Moher, Communication Systems, 5th Edition, John Wiley, India Pvt. Ltd,			
1.	2010, ISBN 978 - 81 - 265 - 2151 - 7.			
2. Simon Haykins, "An Introduction to Analog and Digital Communication", John Wiley, 2003.				

Reference Books						
1	John G Proakis and MasoudSalehi, "Fundamentals of Communication Systems", 2014					
	Edition, Pearson Education, ISBN 978-8-131-70573-5.					
2	B P Lathi and Zhi Ding, Modern Digital and Analog Communication Systems, Oxford					
	University Press., 4th edition, 2010, ISBN: 97801980738002.					

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. The test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in tests, quizzes and assignment are added to get marks out of 100 and report CIE for 50 marks.

Laboratory- 50 Marks

The laboratory session is held every week as per the timetable and the performance of the student is evaluated in every session. The average of the marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are awarded 10 marks. Total marksfor the laboratory are 50.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three subdivisions. Each unit will have an

internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

CO-PO Ma	pping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	1	1	-	-	-	-	-	1
CO2	3	3	3	2	1	1	-	-	-	-	-	1
CO3	3	3	3	2	1	1	-	-	-	-	-	1
CO4	3	3	3	2	1	1	-	-	-	-	-	1
CO5	3	3	3	2	1	1	-	-	-	-	-	1

		Semester: IV							
	Modern Control systems								
Course C	Code:	MVJ22EA43	CIE Marks:100						
Credits:		L:T:P: 3:0:0	SEE Marks: 100						
Hours:		40L	SEE Duration: 3 Hrs						
Course L	earning Obj	ectives: The students will be able to							
1	Execute m function	athematical modelling of systems and und	erstand the concepts of transfer						
2	Solve transfer function using block diagram reduction and signal flow graph techniques.								
3	Analyze the response of first and second order systems using standard test signals and analyze steady state error.								
4	Analyze stability of systems using RH criteria, Root Locus, Nyquist, Bode plot and polar plot.								
5	Derive stat	e variable model for electrical systems.							

UNIT 1	
Introduction to Control Systems: open loop and closed loop systems, Types of feedback,	
Differential equation of Physical Systems – Mechanical Systems, Electrical Systems,	
Analogous Systems.	
Block diagrams and signal flow graphs: Transfer functions, Block diagram algebra and	
Signal Flow graphs.	
Laboratory Sessions/ Experimental learning:	10Hrs.
1. Determine and plot poles and zeros from the transfer function using MATLAB.	10113.
Applications: Electric Hand Drier, Automatic Washing Machine, DC motor, Automatic	
Electric Iron, Voltage Stabilizer	
Video link / Additional online information :	
1. <u>https://nptel.ac.in/courses/107106081</u>	
UNIT 2	
Time Response of feedback control systems: Standard test signals, Unit step response of	
First and Second order Systems. Time response specifications, Time response	10Hrs.
specifications of second order systems for underdamped system, steady state errors and	

arrar constants				
error constants.				
Introduction to Controllers: P, PI, PD and PID Controllers.				
Laboratory Sessions/ Experimental learning:				
1. Obtain step and impulse response of a unity feedback first order system for a given				
forward path transfer function using MATLAB.				
2. Obtain step and impulse response of a unity feedback second order system for a				
given forward path transfer function using MATLAB.				
Applications: Industrial Control systems				
Video link / Additional online information :				
https://nptel.ac.in/courses/107106081				
UNIT 3				
Stability analysis using RH Criteria and root locus: Concepts of stability, Necessary				
conditions for stability, Routh Hurwitz stability criterion, Relative stability analysis,				
Introduction to Root-Locus Techniques, the root locus concepts, Construction of root loci.				
Laboratory Sessions/ Experimental learning:				
1. Obtain Root Locus Plot of the system for a given forward path transfer function	10Hrs.			
using MATLAB.	101113.			
Applications: Used to determine the dynamic response of a s system				
Video link / Additional online information:				
1. <u>https://nptel.ac.in/courses/107106081</u>				
UNIT 4	<u></u>			
Stability analysis using Nyquist criteria and Bode plots: Polar plot, Nyquist Stability				
criterion, Nyquist plots, Bode plots, Gain and phase margin.				
Laboratory Sessions/ Experimental learning:				
1. Obtain Bode Plot of the system for a given forward path transfer function using				
MATLAB.	10Hrs.			
2. Obtain Nyquist Plot of the system for a given forward path transfer function using				
MATLAB.				
Applications: To determine a stability of a system				
Video link / Additional online information:				

1. <u>https://nptel.ac.in/courses/107106081</u>

UNIT 5

Introduction to State variable analysis: Concepts of state, state variable and state models for electrical systems, Solution of state equations, State transition matrix and its properties.Lag, lead and lag lead compensation.

Laboratory Sessions/ Experimental learning:

1. Determining the solution of state equations using MATLAB.

Applications: State variables are used to describe the future response of a dynamic response

Video link / Additional online information:

https://nptel.ac.in/courses/107106081

Course	Course Outcomes: After completing the course, the students will be able to						
CO1	Write the mathematical model for electrical systems and find the transfer function using						
	block diagram reduction technique and signal flow graph.						
CO2	Analyze transient and steady state response of second order systems using standard test						
02	signals and analyze steady state error.						
CO3	Analyze the stability of the systems by applying RH criteria and root locus techniques.						
CO4	Analyze the stability of the system using frequency domain techniques such as Nyquist and						
04	Bode plots.						
CO5	Derive space equations and solutions of a given electrical system.						

Text Book:				
	Nagarath and M.Gopal, — Control Systems Engineering New Age International (P)			
1.	Limited, Publishers, Fifth edition-2005, ISBN: 81-224-2008-			

Reference Books							
2.	Modern Control Engineering, K.Ogata, Pearson Education Asia/PHI, 4 th Edition, 2002. ISBN						
	978-81-203-4010-7.						
3.	Automatic Control Systems , Benjamin C. Kuo, John Wiley India Pvt. Ltd., 8 th Edition, 2008.						

Continuous Internal Evaluation (CIE): Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	1	-	-	-	-	-	-	-	-
CO2	3	2	2	1	-	-	-	-	-	-	-	-
CO3	3	2	2	2	-	-	-	-	-	-	-	-
CO4	3	2	2	2	-	-	-	-	-	-	-	-
CO5	3	2	2	1	-	-	-	-	-	-	-	-

	Semester:IV							
		Communi	cation laboratory					
Cour	se Code:	MVJ22EAL44	CIEMarks:50					
Cred	its:	L:T:P:0:0:2	SEEMarks: 50					
Hou	rs:	26P	SEEDuration:03Hours					
Cour	se Learning C	Dbjectives: The students will b	e able to					
1	Evaluate	the effects of sampling and TD	N					
2	Evaluate /	AM & FM modulation and dem	odulation					
3	Analyze PCM & DM							
4	Evaluate Digital Modulation schemes							

	EXPERIMENTS						
1	Signal Sampling and reconstruction						
2	Time Division Multiplexing						
3	AM Modulator and Demodulator						
4	FM Modulator and Demodulator						
5	Pulse Code Modulation and Demodulation						
6	Delta Modulation and Demodulation						
7	Line coding schemes						
8	DSB SC Modulation						
9	Pre-Emphasis & de-emphasis						
10	Pulse Amplitude Modulation abd Detection						
11	Generation of PWM/PPM Signal						
12	Generation and Detection of ASK Waveform						

Course Outcomes: After completing the course, the students will be able to									
CO1	Validation of the the various functional modules of a communication system.								
CO2	Demonstrate their knowledge in base band signaling schemes through Implementation of digital modulation schemes.								
CO3	Apply various channel coding schemes & demonstrate their capabilities.								
CO4	Execute different modulation techniques								

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	1	1	-	-	-	-	-	1
CO2	3	3	3	2	1	1	-	-	-	-	-	1
CO3	3	3	3	2	1	1	-	-	-	-	-	1
CO4	3	3	3	2	1	1	-	-	-	-	-	1
CO5	3	3	3	2	1	1	-	-	-	-	-	1

		Semester:	IV					
	Digital Communication							
Cou	rse Code:	MVJ22EA451	CIE Marks:50					
Crec		L:T:P: 3:0:2	SEE Marks: 50					
Hou		40T ectives: The students will be abl	SEE Duration: 03 Hours					
1	Understand the concept of signal processing of digital data and signal conversion to symbols at the transmitter and receiver.							
2		mance metrics and parameters channel conditions.	for symbol processing and recovery	in ideal				
3		e principles of spread spectrum eory and various source coding to	communications and the basic princ echniques.	ciples of				
4	Analyze differe		etection and controlling codes used	d in the				
5	Execute convo domain approa	•	de words using time domain and tra	ansform				
Prer	equisites: Basics	of signal processing		8 Hrs				
Elen	nents of Digital (Communication Systems: Eleme	nts of Communication System, Block					
diag	ram of digital	communication system, Certa	in issues in Digital Transmission,					
Adva	antages of Digi [.]	tal Communication, Channels	for Digital communication, Digital					
Repi	resentation of A	nalog Signal – Sampling, Samplir	ng theorem for band limited signals,					
Hart	ley Shannon Law	I, Bandwidth-S/N tradeoff.						
Labo	oratory Sessions,	/ Experimental learning:						
FSK	generation and c	detection						
PSK	generation and o	detection						
	Applications:							
Mo	Modern communication systems, such as cellular phones, Wi-Fi, and Bluetooth							
Vide	Video link/ Additional online information:							
htt	https://nptel.ac.in/courses/108102096							
		Module -	II					
Puls	e Digital Mod	ulation: Elements of PCM: S	ampling, Quantization & Coding,	8 Hrs				
Qua	ntization error,	Companding in PCM systems,	Differential PCM systems (DPCM),					

Time Division Multiplexing & Demultiplexing.Delta modulation, its draw backs, adaptive					
delta modulation, comparison of PCM and DM systems, Noise in PCM and DM systems					
Laboratory Sessions/ Experimental learning:					
Generation and detection of PCM signal.					
Applications:					
Communications, radars, positioning, sensing, and remote control.					
Video link/ Additional online information:					
https://nptel.ac.in/courses/108102096					
Module -III					
Bandpass Signal to Equivalent Low pass:	8 Hrs				
Hilbert Transform, Pre-envelopes, Complex envelopes, Canonical representation of					
bandpass signals, Complex low pass representation of bandpass systems, Complex					
representation of band pass signals and systems, Coherent and Non-Coherent ASK					
detector ,Coherent reception of BPSK, DPSK, QPSK.					
Laboratory Sessions/ Experimental learning:					
Hilbert Transform.					
Applications:					
Establishment of secure communications, increasing resistance to natural interference,					
noise, and jamming, to prevent detection, to limit power flux density (e.g., in satellite					
downlinks)					
Video link/ Additional online information:					
https://nptel.ac.in/courses/108102096					
Module -IV					
Introduction to Information Theory: Measure of information, Average information	8 Hrs				
content of symbols in long independent sequences.					
Source Coding: Encoding of the Source Output, Shannon's Encoding Algorithm, Shannon-					
Fano Encoding Algorithm, Huffman coding.					
Error Control Coding: Introduction, Examples of Error control coding, methods of					
Controlling Errors, Types of Errors, types of Codes.					
Laboratory Sessions/ Experimental learning:					
Write a program to encode binary data using Huffman code and decode it.					
Applications:					

Quantum computing, molecular codes, thermal physics, anomaly detection, black hole,						
intelligence gathering, cryptography, linguistics, molecular dynamics, information						
retrieval, complex art, and statistical inference.						
Video link / Additional online information:						
https://nptel.ac.in/courses/108102096						
Module -V						
Linear Block Codes: Matrix description of Linear Block Codes, Error Detection & 81	Hrs					
Correction capabilities of Linear Block Codes, Single error correction Hamming code,						
Table lookup Decoding using Standard Array.						
Convolution codes: Convolution Encoder, Time domain approach, Transform domain						
approach, Code Tree, Trellis and State Diagram.						
Laboratory Sessions/ Experimental learning:						
Write a program to encode binary data using a (7,4) Hamming code and decode it.						
Applications:						
Information systems, Data management systems, Data structures, Data layout, Data						
encryption.						
Video link / Additional online information:						
https://nptel.ac.in/courses/108102096						
Course Outcomes: After completing the course, the students will be able to						
CO1 Explain the conventional digital communication system.						
CO2 Discuss the pulse digital modulation schemes such as PCM, DPCM and DM.						
CO3 Analysis of bandpass signals and systems						
CO4 Apply the fundamentals of information theory and perform source coding for g	given					
CO5 Apply different encoding and decoding techniques with error Detection and Correction.						
Text Books						
1. Simon Haykin, "Digital Communication Systems", John Wiley & sons, First Edition, 2014,						
ISBN 978-0- 471-64735-5.						
2. John G Proakis and Masoud Salehi, "Fundamentals of Communication Systems", 2	2014					
Edition, Pearson Education, ISBN 978-8-131-70573-5.						

Refe	erence Books
1	K Sam Shanmugam, "Digital and analog communication systems", John Wiley India Pvt. Ltd, 1996.
2	Hari Bhat, Ganesh Rao, "Information Theory and Coding", Cengage, 2017.
3	Todd K Moon, "Error Correction Coding", Wiley Std. Edition, 2006
4	Bernard Sklar, "Digital Communications – Fundamentals and Applications", Second Edition, Pearson Education, 2016, ISBN: 9780134724058.

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the self -study are 20 (2 presentations are be held for 10 marks each). The marks obtained in test, quiz and self -studies are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	2	1	-	-	-	-	-	1
CO2	3	3	3	2	2	1	-	-	-	-	-	1
CO3	3	3	3	2	2	1	-	-	-	-	-	1
CO4	3	3	3	2	2	1	-	-	-	-	-	1
CO5	3	3	3	2	2	1	-	-	-	-	-	1

	Semester: IV								
	Data Structures Using C++								
Со	ourse	MVJ22EA452	CIE Marks:100						
Со	de:								
Cr	edits:	L:T:P: 3:0:0	SEE Marks: 100						
Но	ours:	40L	SEE Duration: 3 Hrs						
Со	Course Learning Objectives: The students will be able to								
	Understan	d the fundamentals of data structures ar	nd their applications in logic building and project						
1	assessmen	assessment.							
2	Understand the concept of linked lists and sorting techniques.								
3	Apply the knowledge of algorithms of queues and stacks.								
4	Analyze the concepts of Binary trees.								
5	Execute different Graphs and its algorithms.								

UNIT 1				
Python Primer: Python Overview, Objects in Python, Expressions, Operators, Control Flow,				
Functions, Simple i/p and o/p, Modules.				
Basic Concepts of Data Structures and Algorithms: Introduction- Variables, Datatypes,				
Data Structures, ADT, what is an algorithm, How to compare algorithms, Rate growth,				
Types of analysis, Asymptotic Notation, Performance Analysis: Space complexity, Time				
complexity, Guidelines for asymptotic analysis.				
Searching Techniques: Linear Search and Binary Search				
Applications: developing computational tools and bioinformatics software, Mathematics.				
Laboratory Sessions/ Experimental learning:				
1. Develop a mini project to demonstrate the concept Binary Search.				
Applications:				
1. Conversion from one form of expression to another				
2. Mathematical calculation for expression evaluation				
Video link / Additional online information (related to module if any):				
1. http://www.nptelvideos.com/video.php?id=1442.2				
2. <u>https://nptel.ac.in/courses/106105085/</u>				

UNIT 2	
Prerequisites: Programming using the concept of Arrays and pointers	
Linked Lists: Definition, Linked list operations: Traversing, Searching, Insertion, and	
Deletion. Doubly Linked lists and its operations, Circular linked lists and its operations.	
Sorting Techniques: Bubble Sort, Insertion Sort, Selection Sort, Quick Sort and Merge Sort.	
Laboratory Sessions/ Experimental learning:	
Develop an algorithm to demonstrate the concept of Linked lists.	
Applications:	8Hrs.
1. Programs for Departmental store bills	
2. Programs for Railway booking	
Video link / Additional online information:	
1. <u>https://nptel.ac.in/courses/106/102/106102064/</u>	
2. <u>https://drive.google.com/file/d/0BzTQ7doC5eGSQTBicHo1UDgtOVU/view</u>	
UNIT 3	
Stacks: Definition, Stack Implementation using arrays/lists and linked lists, Stack ADT, Stack	
Operations (Insertion and Deletion), Array Representation of Stacks, Stack Applications:	
Infix to postfix conversion, Tower of Hanoi.	
Queues: Definition, Array Representation, Queue Implementation using arrays/lists and	
linked lists, Queue ADT, Operations on queues (Insertion and Deletion), Circular Queues	
and its operations, Priority Queues and its operations.	
Laboratory Sessions/ Experimental learning:	8Hrs.
1. Implementation of Towers of Hanoi using Stacks.	01115.
Applications:	
1. Towers of Hanoi.	
2. Parenthesis matching in an expression	
Video link / Additional online information:	
1. <u>https://nptel.ac.in/courses/106/106/106106127/</u>	
2. <u>https://www.youtube.com/playlist?list=PL0gIV7t6l2iIsR55zsSgeiOw9Bd_IUTbY</u>	

UNIT 4						
Trees: Terminology, Binary Trees, Types of Binary trees, Properties of Binary trees, Array						
Representation of Binary Trees, Binary Tree Traversals – Inorder, Postorder, Preorder.						
Binary Search Trees – Definition, Insertion, Deletion, Searching, Implementation of Binary						
tree, Heaps and Heap Sort, Construction of Expression Trees, AVL Trees.						
Laboratory Sessions/ Experimental learning:						
1. Solve Parenthesis Matching problem using binary search trees.						
Applications:	8Hrs.					
1. Can be used for Memory Management.						
2. In solving backtracking problems.						
Video link / Additional online information:						
1. <u>https://nptel.ac.in/courses/106/106/106106127/</u>						
2. <u>https://nptel.ac.in/courses/106/105/106105225/</u>						
UNIT 5						
Graphs: Definitions, Terminologies, Matrix and Adjacency List Representation of Graphs,						
Elementary Graph operations, Traversal methods: Breadth First Search and Depth First						
Search, DAG, Minimum Spanning Trees: Prim – Kruskal algorithm, Single Source Shortest						
Path: Weighted graphs, Dijkstra algorithm.						
Laboratory Sessions/ Experimental learning:						
1. Print all the nodes of graph using DFS and BFS.	8Hrs.					
2. Apply various algorithms on a graph and analyze it.						
Video link / Additional online information:						
1. <u>https://nptel.ac.in/courses/106/106/106106133/</u>						
2. https://nptel.ac.in/courses/106/105/106105225/						
2. <u>Inteps.//inpeer.ac.in/courses/100/103/100103223/</u>						
1. <u>https://nptel.ac.in/courses/106/102/106102264/</u>						
1. <u>https://nptel.ac.in/courses/106/102/106102064/</u>						
1. https://nptel.ac.in/courses/106/102/106102064/ Course Outcomes: After completing the course, the students will be able to						
1. https://nptel.ac.in/courses/106/102/106102064/ Course Outcomes: After completing the course, the students will be able to CO1 Acquire knowledge of Python fundamentals and data structures.						

CO5	Execute Graphical algorithms.

Text B	ooks:
1.	Rance D Necaise "Data Structures and Algorithms using Python", Wiley, John Wiley and Sons.
2	Yeshavant Kanetkar"Data Structure using C++"bpb Publisher-March 2022

Refere	nce Books
1.	Michael T. Goodrich, R. Tamassia and Michael H Goldwasser "Data structures and Algorithms in python", Wiley student edition, John Wiley and Sons.
2.	Narasimha Karumanchi "Data Structures and Algorithmic Thinking with Python", CareerMonk Publications.

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marksis executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO N	/lapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2	-	1	-	-	1	-	-	1	1	1
CO2	3	3	2	2	-	1	-	-	1	-	-	1	1	1
CO3	3	3	2	2	-	1	-	-	1	-	-	1	1	1
CO4	3	3	2	2	-	1	-	-	1	-	-	1	1	1
CO5	3	3	2	2	-	1	-	-	1	-	-	1	1	1

	Semester:IV						
	ARM MICROCONTROLLER						
Cour	se Code:	MVJ22EA453	CIE Marks:50				
Cred	its:	L:T:P: 3:0:2	SEE Marks: 50				
Hours: 40 L SEE Duration: 03Hours			SEE Duration: 03Hours				
Cour	se Learning Objectives: The stu	udents will be able to					
1	Explain the fundamentals of ARM based system, basic hardware components, selection methods and attributes of an ARM Controller.						
2	Design ARM controller using various instructions.						
3	³ Understand the fundamentals of Exception, Interrupt Handling and Memory Management Unit of ARM Controller.						
4	Implement Embedded System Design applications.						
5	Evaluate real time operating system for embedded system design.						

UNIT-I			
ARM EMBEDDED SYSTEMS:	8 Hrs		
Prerequisites: ARM DESIGN PHILOSOPHY, ARM DATAFLOW MODEL			
Microprocessors versus Microcontrollers, ARM Embedded Systems: The RISC design philosophy,			
The ARM Design Philosophy, Embedded System Hardware, Embedded System Software.			
ARM Processor Fundamentals: Registers, Current Program Status Register, Pipeline, Exceptions,			
Interrupts, and the Vector Table, Core Extensions			
Laboratory Sessions/ Experimental learning:			
1. Comparision of Microprocessor and Microcontroller hardware Model			
2. Comparing the Microprocessor and Microcontroller Software Model			
Applications: Smartphones, Tablets, Wearables			
Video link / Additional online information:			
1. <u>https://www.youtube.com/watch?v=DMsL6TVS0IQ</u>			
https://www.youtube.com/watch?v=JPfG0UQd3x4			
UNIT-II			
ARM Instruction Set and Programming	8 Hrs		
Prerequisites: ARM INSTRUCTION SET, ARM ASSEMBLY PROGRAMMING			
Introduction to the ARM Instruction Set : Data Processing Instructions, Programme Instructions,			
Software Interrupt Instructions, Program Status Register Instructions, Coprocessor Instructions,			
Loading Constants			

ARM programming using Assembly language: Writing Assembly code, Profiling and cycle	
counting, instruction scheduling	
Laboratory Sessions/ Experimental learning:	
1.Writing ARM Assembly program for Embedded System Applications	
Applications: Coding Device Drivers, Real-Time Systems, Low-Level Embedded Systems, Boot Codes,	
Reverse Engineering	
Video link / Additional online information:	
https://www.youtube.com/watch?v=gfmRrPjnEw4	
UNIT-III	
Interrupt and Memory Management Unit:	8 Hrs
Prerequisites: Interrupt, Exception, Memory Management unit	
Exception, Interrupt Handling : Exception handling, Interrupts, Interrupt handling Schemes	
Memory Management Unit : The Memory Hierarchy and Cache Memory, Cache Architecture, Cache	
Policy, Moving from MPU to an MMU, How Virtual Memory Works, Details of ARM MMU	
Laboratory Sessions/ Experimental learning:	
1) Use of External interrupt0 to turn ON/OFF led connected to Pin P1.25 of ARM Processor.	
2) Use of Software Interrupt SWI instruction in programming.	
3) Calculating physical memory address from logical address.	
Applications: Internal Errors and Special Conditions Management, Hardware Concurrency,	
and Service Requests Management.	
Video link / Additional online information:	
1. <u>https://www.youtube.com/watch?v=-Dt9EDsMHil</u>	
https://www.youtube.com/watch?v=Kju5UMLC7hg UNIT-IV	
Prerequisites: Embedded systems, Embedded Applications	8 Hrs
Embedded System Components: Embedded Vs General computing system, History of embedded	
systems, Classification of Embedded systems, Major applications areas of embedded systems,	
systems, Classification of Embedded systems, Major applications areas of embedded systems, purpose of embedded systems Core of an Embedded System including all types of	
purpose of embedded systems Core of an Embedded System including all types of	
purpose of embedded systems Core of an Embedded System including all types of processor/controller, Memory, Sensors, Actuators, LED, 7 segment LED display, stepper motor,	

Applications: Home Appliances, Office Automation, Security, Telecommunication	
Video link / Additional online information:	
1. <u>https://www.youtube.com/watch?v=SD65b5cYfdI</u>	
https://www.youtube.com/watch?v=obknO3gA92E	
UNIT-V	
Prerequisites: Real time operating system	8 Hrs
Real Time Operating System (RTOS) based Embedded System Design:	
Operating System basics, Types of operating systems, Task, process and threads (Only POSIX	
Threads with an example program), Thread pre-emption, Multiprocessing and Multitasking, Task	
Communication (without any program), Task synchronization issues – Racing and Deadlock, Concept	
of Binary and counting semaphores (Mutex example without any program), How to choose an RTOS	
Laboratory Sessions/ Experimental learning: Automated Meter Reading System (AMR) and Digital	
Camera, Real time concepts	
Applications: Industrial Control, Telephone Switching Equipment, Flight Control, and Real-Time	
Simulations	
Video link / Additional online information:	
https://www.youtube.com/watch?v=T54qJMqpim8	

Cours	se Outcomes: After completing the course, the students will be able to
CO1	Describe the architectural features and instructions of ARM microcontroller
CO2	Develop Assembly Programs in ARM for Embedded applications.
CO3	Describe the fundamentals of Exception, Interrupt Handling and Memory Management Unit of ARM
	Controller
CO4	Interface external devices and I/O with ARM microcontroller.
CO5	Demonstrate the need of real time operating system for embedded system applications

Text	t Books
1.	Andrew N Sloss, Dominic Symes and Chris Wright, ARM system developer's guide, Elsevier, Morgan
	Kaufman publishers, 2008.
2.	Shibu K V, "Introduction to Embedded Systems", Tata McGraw Hill Education, Private Limited, 2 nd Edition.
Refe	erence Books
1.	Raghunandan.G.H, "Microcontroller (ARM) and Embedded System", Cengage learning Publication, 2019
2.	Hung Le,"ARM Microcontrollers: Theory and Practical Applications ",Cognella, Inc Publications,November
	2021

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of Cos and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	2	1	-	-	-	-	-	-	-	-
CO2	3	2	1	3	3	2	-	-	2	-	1	-
CO3	3	2	1	3	-	2	-	-	2	-	-	-
CO4	3	3	2	3	3	2	-	-	2	2	2	-
CO5	3	2	3	3	3	2	-	-	2	2	2	2

	Semester: IV				
Engineering Statistics and Linear Algebra					
Course Code:	MVJ22EA454	CIE Marks: 50			
Credits:	L: T:P:S: 2:2:0:0	SEE Marks: 50			
Hours:	30L+10T	SEE Duration: 3 Hrs.			
Course Learning Objectives: The students will be able to					

• Organize, manage, and present data using statistical methods.

- Demonstrate the important tools of linear algebra, that are essential in all branches of engineering.
- Evaluate linear transformation and decomposition techniques in a comprehensive manner.

UNIT-I	
Correlation and Regression : Correlation, Regression coefficients, line of	8 Hrs
regression problems.	•
Curve fitting: Fitting of the curves of the form $y = ax + b$, $y = ax^2 + bx + c$,	
$y = ae^{bx}$ by the method of least squares.	
UNIT-II	
Design of Experiments (ANOVA):	8 Hrs
One way and Two way classifications, Completely randomized design,	
Randomized block design, Latin square design.	
UNIT-III	
Linear Equations: Consistent and inconsistent systems and its solution	8 Hrs
sets; LU-decomposition.	
Vector Spaces: Vector spaces; subspaces, Linearly independent and	
dependent vectors, Bases and dimension, coordinate vectors,	
computations concerning subspaces-Illustrative examples.	
UNIT-IV	
Linear Transformations: Linear transformations, algebra of	8 Hrs
transformations, representation of transformations by matrices, linear	
functional, Non singular Linear transformations, inverse of a linear	
transformation, Problems on Rank-Nullity theorem.	
UNIT-V	•
Inner Product Spaces: Inner products, inner product spaces, orthogonal	8 Hrs
sets and orthogonal projections, Gram-Schmidt orthogonalization process,	
QR- decomposition.	

Cours	e Outcomes: After completing the course, the students will be able to
CO1	Fit a suitable curve by the method of least squares and determine the lines of
	regression for a set of statistical data.
CO2	Understand the need and application of analytics.
CO3	Analyze whether a system is consistent or inconsistent, its solution is unique
	or infinite and find bases and dimension of vector spaces required in network analysis.
CO4	Linearly transform the system from one dimension to another in matrix form,
	required to analyze image processing problems.
CO5	Compute orthogonal and orthonormal basis vectors required to analyze image
	and signal processing problems.

Text Books

ICAL	DOOKS								
1.	Introduction to Linear Algebra, Gilbert Strang, Wellesley Cambridge Press, 5th								
	Edition, 2016.								
2.	Linear Algebra and its Applications, David C. Lay, Cambridge University Press,								
	3rd Edition, 2017.								
Refe	rence Books								
1	Fundamentals of Statistics, S C Gupta, Himalaya Publications 2012.								
2	B.S. Grewal, "Higher Engineering Mathematics" Khanna Publishers, 44th								
	Edition, 2013.								

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	0	3	0	0	0	0	0	0	0	1
CO2	3	3	0	3	0	0	0	0	0	0	0	1
CO3	3	3	0	2	0	0	0	0	0	0	0	1
CO4	3	3	0	3	0	0	0	0	0	0	0	1
CO5	3	2	0	3	0	0	0	0	0	0	0	1

		Semester: V						
		TECHNICAL MANAGEMEN	г					
Co	ourse Code:	MVJ22EA51	CIE Marks:50					
	Credits:	L: T:P: 3:0:0	SEE Marks: 50					
	Hours:	40L	SEE Duration: 3 Hr	s				
Cour	se Learning Ol	pjectives: The students will be able to						
1	Explain the	concepts of management, planning, orga	nizing, and staffing.					
2	Apply the knowledge required to become an entrepreneur.							
3	Understand entreprenet	and choose the appropriate institutional ar.	support to succeed as an					
4		requirements towards the small-scale in	dustries and project prepa	aration.				
5		the general principles of IPR, Concept an						
		Property Rights.	·					
		Module 1						
D		cs of management system, roles and resp						
profe Man Man appr Appl Vide	ession, Mana agement, Mai agement Tho oaches. Iications: IT seo o link / Additio	onal areas of management, Manageme gement & Administration, Roles of I nagerial Skills, Management & Adminis rught early management approaches ctors and Institutional Research sectors.	Management, Levels of tration, Development of Modern management					
	· · ·	courses/110/107/110107150/		8Hrs.				
http	s://nptel.ac.in/	courses/110/105/110105146/						
		Module 2		1				
	-	Importance, Types, Steps and Limitatic Types and Steps in Decision Making	ons of Planning, Decision					
orga Com of cc and Appl Vide	nization, Span mittees, Centr ontrol, MBO an Importance, Re lications: IT sec o link / Additio	ffing: Nature and purpose of organization of Management, Types of organization, E alization Vs Decentralization of authority d MBE (Meaning Only) Nature and impor ecruitment and Selection Process. ctors, Banking sectors and Institutional Re chal online information: /courses/110/107/110107151/	Departmentation and responsibility, Span tance of staffing: Need esearch sectors.	8Hrs.				

Module 3

Directing and Controlling: Meaning and nature of directing Leadership styles, Motivation Theories, Communication: Meaning and importance, Leadership: Meaning, Characteristics, Behavioral Approach of Leadership; Coordination: Meaning, importance and Techniques of Coordination. Meaning and steps in Controlling, Essentials of a sound control system and Methods of establishing control system. Applications: Core Industrial sectors, New Enterprises sectors. Video link / Additional online information: 8Hrs. 1. https://nptel.ac.in/courses/110/106/110106141/ Module 4 Small Scale Industries: Definition, Characteristics, Need and rationale, Objectives, Scope, role of SSI in Economic Development. Advantages of SSI, Steps to start and SSI-Government policy, Different Policies of SSI, Government Support for SSI during 5year plans. Impact of Liberalization, Privatization, Globalization on SSI Effect of WTO/GATT, Sickness in SSI sector, Problems for Small Scale Industries, Supporting Agencies of Government for SSI, Meaning, Nature of support, Objectives, Functions, Types of Help, **8Hrs.** Ancillary Industry and Tiny Industry. Applications: Industrial sectors, and Institutional Research sectors. Video link / Additional online information: https://www.youtube.com/watch?v=2I0XdF uOuA https://www.youtube.com/watch?v=jmx7SiCzay8 Module 5 Intellectual Property Rights: Introduction to Intellectual Property Rights, Copyrights, Trademarks, Designs and Design Patents, Semiconductor Integrated Circuits and Layout Designs. Ideas and Intellectual Property Rights, Contents of a Patent, Patent Draft, Filing Patent Applications, IPR Strategy and IPR Policy Applications: Research works copyrights, Paper Publication and Patent filing. 8Hrs. Video link / Additional online information: 1. https://www.youtube.com/watch?v=RLQivEQUgUc https://www.youtube.com/watch?v=NFTBbfYGM6A

Cours	se Outcomes
CO1	Explain about the management and planning.
CO2	Apply the knowledge on organizing and staffing,
CO3	Analyse the concept of directing, and controlling.
CO4	Choose the requirements towards the small-scale industries and project preparation.
CO5	Understand the Concepts of Intellectual Property Rights
Text E	Books:
1.	P.C.Tripathi, P.N.Reddy , "Principles of Management", Tata Mc Graw Hill, 5 th edition, 2008.
2.	Poornima M Charantimath, "Entrepreneurship Development Small Business Enterprises", Pearson Education, 2008, ISBN 978-81-7758-260-4.
3.	Rachna Singh Puri & Arvind Viswanathan, "Practical Approach to Intellectual Property Rights", 1/e, I K International Publishing House Pvt. Ltd, 2009.

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	3	3	-	-	1	-	3	3	2	2	1
CO2	-	3	3	-	-	1	-	3	3	2	2	1
CO3 CO4	-	3	3	-	-	1	-	3	3	2	2	1
CO4	-	3	3	-	-	1	-	3	3	2	2	1
CO5	-	3	3	_	-	1	-	3	3	2	2	1

Semester-V						
MICROWAVE ENGINEERING						
Course Code:	MVJ22EA52	CIE Marks:50				
Credits:	L: T:P: 3:0:0	SEE Marks: 50				
Hours:	40L	SEE Duration: 3 Hrs				

Course objectives:Students will be able to

1 Analyze and study rectangular and circular wave guides using field theory.

2 Understand the theoretical principles underlying microwave devices and networks.

- **3** Design microwave components such as power dividers, hybrid junctions, Directional Couplers, microwave filters, Microwave Wave-guides and Components, Ferrite Devices.
- 4 Examine Microwave Solid-State Microwave Devices and Microwave Tubes.
- **5** Evaluate Microwave Measurement Techniques.

Teaching-Learning Process (General Instructions)

These are sample Strategies, which teachers can use to accelerate the attainment of the various course outcomes.

Module-1

Introduction, Microwave Spectrum and Bands, Applications of Microwaves, Rectangular Waveguides – TE/TM mode analysis, Expressions for Fields, Characteristic Equation and Cutoff Frequencies, Dominant and Degenerate Modes, Sketches of TE and TM mode fields in the cross section, Mode Characteristics – Phase and Group Velocities, Wavelengths and Impedance Relations; Power Transmission and Power Losses in Rectangular Guide, Impossibility of TEM mode.

Application:Transmitting Power and communication signals,Microwave RADAR,Coupler Web Reference: https://nptel.ac.in/courses/108103141

Module-2

Circular waveguides- Introduction, Characteristic Equation, Dominant and Degenerate Modes. Microstrip Lines– Introduction, Zo Relations, Effective Dielectric Constant, Losses, Q factor. Cavity Resonators–Types, Resonant Frequencies, Q factor and Coupling Coefficients, Related Problems..

Application:Attenuator,TV Signal Generator, low-noise block converters for TV signal receiving antennas.

Web Reference: https://nptel.ac.in/courses/108103141

Module-3

Terminations, Attenuators, Phase shifters, Directional couplers, Hybrid Junctions, Power dividers, Circulator, Isolator, Impedance matching devices: Tuning screw, Stub and quarter wave transformers. Crystal and Schottkey diode detector and mixers, PIN diode switch, Gunn diode oscillator, IMPATT diode oscillator and amplifier, Varactor diode, Introduction to MIC.

Application: Frequency translators, Amplitude and phase modulation, Phased arrays for the Radar systems, SSPA: linearization / RF distortion, Residual phase noise measurement, Signal phase correction in long-distance fibre optics communication link

Web Reference: https://nptel.ac.in/courses/108103141

Module-4

Review of conventional vacuum Triodes, Tetrodes and Pentodes, High frequency effects in vacuum Tubes, Theory and application of Two cavity Klystron Amplifier, Reflex Klystron oscillator, Traveling wave tube amplifier, Magnetron oscillator using Cylindrical, Linear, Coaxial Voltage tunable Magnetrons, Backward wave Crossed field amplifier and oscillator.

Application: Radio receivers. Portable microwave links. Parametric amplifiers. Local oscillators of microwave receivers

Web Reference: https://nptel.ac.in/courses/108103141

Module-5

Measuring Instruments : Principle of operation and application of VSWR meter, Power meter, Spectrum analyzer, Network analyzer, Measurement of Impedance, Frequency, Power, VSWR, Q-factor, Dielectric constant, Scattering coefficients, Attenuation, S-parameters.

Application: Microwave leakage meters, area monitors, and power measuring devices are used to detect and measure microwave energy

Web Reference: https://nptel.ac.in/courses/108103141

Course outcomes

1.	Explain different types of waveguides and their respective modes of propagation.
2.	Analyze typical microwave networks using impedance, admittance, transmission and
	scattering matrix representations.
3.	Design microwave matching networks using L section, single and double stub and quarter
	wave transformer.
4.	Explain working of microwave passive circuits such as isolator, circulator, Directional
	couplers, attenuators etc.
5.	Describe and explain working of microwave tubes and solid state devices.

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). The student is declared as a pass in the course if he/she secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- There are 25 marks for the CIE's Assignment component and 25 for the Internal Assessment Test component.
- Each test shall be conducted for 25 marks. The first test will be administered after 40-50% of the coverage of the syllabus, and the second test will be administered after 85-90% of the coverage of the syllabus. The average of the two tests shall be scaled down to 25 marks
- Any two assignment methods mentioned in the 22OB2.4, if an assignment is project-based then only one assignment for the course shall be planned. The schedule for assignments shall be planned properly by the course teacher. The teacher should not conduct two assignments at the end of the semester if two assignments are planned. Each assignment shall be conducted for 25 marks. (If two assignments are conducted then the sum of the two assignments shall be scaled down to 25 marks)
- The final CIE marks of the course out of 50 will be the sum of the scale-down marks of tests and assignment/s marks.

Internal Assessment Test question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester-End Examination:

Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the course (**duration 03 hours**).

1. The question paper will have ten questions. Each question is set for 20 marks.

Suggested Learning Resources:

Books

- 1. David M. Pozar Microwave Engineering, 4th Edition, John Wiley & Sons, Inc. 2013
- 2. E C Jordan and K G Balmain Electromagnetic Waves and Radiating Systems, 2nd Edition, PHI, 2003.

Web links and Video Lectures (e-Resources):

- <u>http://nptel.ac.in/courses</u>
- https://nptel.ac.in/courses/108103141
- https://nptel.ac.in/courses/108105114

CO-PO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	2	2	1	-	-	-	-	-	1	3	1
CO2	3	3	3	2	2	1	-	-	-	-	-	1	3	1
CO3	3	3	3	2	2	1	-	-	-	-	-	1	3	1
CO4	3	3	3	2	2	1	-	-	-	-	-	1	3	1
CO5	3	3	3	2	2	1	-	-	-	-	-	1	3	1

	Semester: V							
	Signal Processing							
Со	urse Code:	MVJ22EA53	CIE Marks:50					
Cre	edits:	L: T:P: 3:0:0	SEE Marks: 50					
Но	ours:	40L	SEE Duration: 3 Hrs					
Со	ourse Learning	Objectives: The students will	be able to					
1	Understand the frequency domain sampling and reconstruction of discrete time signals.							
Execute the properties and the development of efficient algorithms for the comp								
2	DFT.							
3	Design IIR filte	ers from the analog filters usi	ng impulse invariance and bilinear transformation.					
	Understand d	Understand different windows used in the design of FIR filters and design appropriate filters						
4	based on the specifications.							
5	Explain DSP P	rocessor Architecture and stu	dy real time applications of DSP					

UNIT I	
Prerequisites: DTFT and its properties.	
Discrete Fourier Transforms (DFT): Frequency domain sampling and reconstruction of	
discrete time signals, DFT as a linear transformation, Properties of DFT.	
Laboratory Sessions/ Experimental learning:	
1. DFT computation of square pulse and Sinc function using MATLAB.	
Applications: Spectral Analysis of Signals, Frequency Response of Systems, Convolution via	8Hrs.
the Frequency Domain.	01113.
Video link / Additional online information:	
1. <u>https://nptel.ac.in/courses/117/105/117105134/</u>	
2. https://nptel.ac.in/courses/117102060	
Project: OBJECT DETECTION SYSTEM	
UNIT 2	
Linear filtering methods based on the DFT: Use of DFT in Linear Filtering, Filtering of Long	
Data Sequences, overlap-save and overlap-add method.	
Fast-Fourier-Transform (FFT) algorithms: Efficient Computation of the DFT: Radix-2 FFT	
algorithms for the computation of DFT and IDFT, decimation-in-time and decimation-in	8Hrs.
frequency Algorithms.	
Laboratory Sessions/ Experimental learning : 1. Computation of FFT of a given image and to plot magnitude and phase spectrum using MATLAB.	

Applications: Frequency domain filtering, video and audio signal processing.

Video link / Additional online information:

1. https://nptel.ac.in/courses/117105134

Project: ECHO CANCELLATION SYSTEM

UNIT 3 Prerequisites: L- Hospital rule, Sinc function **Design of FIR Filters**: Symmetric and Antisymmetric FIR filters, Design of Linear-phase FIR filters using windows - Rectangular, Hamming, Hanning, Bartlett windows. Design of FIR filters using frequency sampling method. Structure for FIR Systems: Direct form, Cascade form and Lattice structures. Laboratory Sessions/ Experimental learning: 1. Design and implementation of Low pass FIR filter to meet the desired specifications (using different window techniques) and test the filter with an audio file. Plot the spectrum 8Hrs. of audio signal before and after filtering. Applications: Noise suppression, Enhancement of selected frequency ranges, Removal or attenuation of selected frequencies Video link / Additional online information: 1. https://nptel.ac.in/courses/117/102/117102060/ 2. https://nptel.ac.in/courses/108/105/108105055/ Project: INTELLIGENT SENSOR ANALYSIS SYSTEM UNIT 4 **Prerequisites:** Types of filters IIR filter design: Characteristics of commonly used analog filter – Butterworth and Chebyshev filters, analog to analog frequency transformations. Design of IIR Filters from analog filter using Butterworth filter: Impulse invariance, Bilinear transformation. Laboratory Sessions/ Experimental learning: 1. Design and implementation of Low pass IIR filter to meet the desired specifications 8Hrs. (using different window techniques) and test the filter with an audio file. Plot the spectrum of audio signal before and after filtering Applications: Audio equalization, biomedical sensor signal processing, IoT/IIoT smart sensors and high-speed telecommunication/RF applications. Video link / Additional online information :

1. https://nptel.ac.in/courses/117/102/117102060/

UNIT 5

Prerequisites: Binary number system, basics of computer architectureDigital Signal Processors: DSP Architecture, DSP Hardware Units, Fixed point format,
Floating point Format, IEEE Floating point formats, FIR and IIR filter implementations in
Fixed point systems. Application of DSP to real systems : Voice Processing, Music
processing, Image processing and Radar processing.Laboratory Sessions/ Experimental learning:
1. Generation of sinusoid and Plotting with CCS (TMS320C6713)Applications: Audio, Military, Video & Imaging, WirelessVideo link / Additional online information:

1. https://nptel.ac.in/courses/108/105/108105055/

Project: LANE DETECTION SYSTEM

Cours	Course Outcomes: After completing the course, the students will be able to						
CO1	Compute DFT of real and complex discrete time signals.						
CO2	Analyse the computational complexity of DFT and FFT algorithms.						
CO3	Solve problems on FIR filter design and realize using digital computations.						
CO4	Design and realize IIR digital filters.						
CO5	Illustrate the DSP processor architecture and to apply knowledge to various real time cases.						

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the self -study are 20 (2 presentations are be held for 10 marks each). The marks obtained in test, quiz and self -studies are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

CO-PO-P	CO-PO-PSO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	3	2	1	-	-	-	-	-	-	2	1
CO2	3	3	3	3	2	1	-	-	-	-	-	-	2	1
CO3	3	3	3	3	2	1	-	-	-	-	-	-	2	1
CO4	3	3	3	3	2	1	-	-	-	-	-	-	2	1
CO5	3	3	3	3	2	1	-	-	-	-	-	-	2	1

High-3, Medium-2, Low-1

		Seme	ester: V						
		Optical Commur	ication Laboratory						
Cou	rse Code:	MVJ22EAL54	CIE Marks: 50						
Cree	dits:	L:T:P:0:0:2	SEE Marks: 50						
Hou	Hours: 20 SEE Duration: 3 Hrs								
Cou		ojectives: The students will be	able to						
1	Evaluate bas	ic concepts of Optical Fibre							
2	Execute loss	es in Optical Fibre							
3	Evaluate var	ius characteristic of LASER and	I LED						
4	Evaluate Va	ius characteristic of Photo dio	de and Avalanche Diode						
5	Determine b	it error rate of Optical Fibre u	sing Analog and Digital Link						
		P/	ART A						
	1. Measureme	nt of Numerical Aperture of a	fiber, after preparing the fiber ends.						
	2. Setting up c	f Fiber optic Digital link.							
	3. Preparation	of a Splice joint and measurer	plice joint and measurement of the splice loss.						
	4. Power vs Cu	irrent (P-I) characteristics and	measure slope efficiency of Laser Diode.						
	5. Voltage vs C	Current (V-I) characteristics of	aser Diode.						
	6. Power vs Cu								
	7. Voltage vs Current (V-I) characteristics of LED.								
	8. Characterist	ics of Photodiode and measur	e the responsivity.						
	9. Characterist	ics of Avalanche Photo Diode	(APD) and measure the responsivity.						
	10. Measureme	nt of fiber characteristics, fibe	r damage and splice loss/connector loss						

- 11. Analog communication link using optical fiber
- 12. Determination of bit error rate using digital link

Course	outcomes:
CO1	Measurement of Numerical Aperture of a fiber
CO2	Setting up of Fiber optic Digital link and measurement of splice loss
CO3	Measurement of V-I and P-I characterstic of LASER and LED
CO4	Measure the responsivity of photo diode and avalanche photo diode
CO5	Determination of bit error rate using digital link

CO-PO Ma	apping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3		1	-	-	-	-	-	-	-	2
CO2	3	3	3	-	3	-	-	-	-	-	-	2
CO3	1		2	-	3	-	-	-	-	-	-	2
CO4	1		2	-	3	-	-	-	-	-	-	2
C05	1		2	-	3	-	-	-	-	-	-	2

	Semester: V							
	SATELLITE COMMUNICATION							
Course Code: MVJ22EA551 CIE Marks:50								
Credits:		L:T:P: 3:0:0	SEE Marks: 50					
Hours:		40L	SEE Duration: 3 Hrs					
Course L	earning Obj	ectives: The students will be able to						
1	Understand orbital aspects of satellite communication							
	Describe electronic systems associated with a satellite and the earth station and							
2	understanding satellite applications focusing various domains services							
3	3 Understand typical challenges of satellite-based systems.							
4	Describe basic principle of RADAR and RADAR equation.							
5	Understan	Understand the need and functioning of CW, FM-CW and MTI radars						

UNIT 1						
Prerequisites: Digital Communication Systems						
Introduction to Satellite Communication: Orbital aspects of Satellite Communication,						
Introduction to geo-synchronous and geo-stationary satellites, Kepler's laws, Locating the						
satellite with respect to the earth, Sub-satellite point, Look angles, Mechanics of launching a						
synchronous satellite.						
Laboratory Sessions/ Experimental learning:						
To study the details regarding satellite communication toolbox in Matlab.						
Project:						
Calculate look angles for a given Earth station and satellite position using simulations. Analyze						
the impact of different factors on look angles (e.g., Earth station location, satellite altitude).						
Applications: DTH, or satellite television, services (such as the DirecTV and DISH Network						
services						
Video link / Additional online information:						
1. <u>https://nptel.ac.in/courses/117/105/117105131/#</u>						
2. <u>https://nptel.ac.in/courses/117105131</u>						
UNIT 2						
Elements of Communication Satellite Design: Satellite subsystems - Attitude and orbit control						
electronics - Telemetry and tracking - Power subsystems - Communication subsystems -	8Hrs.					
Satellite antennas - Reliability and redundancy- Frequency modulation techniques.						

Communication Satellites: Introduction, Related Applications, Frequency Bands, Payloads, Satellite Vs. Terrestrial Networks, Satellite Telephony.

Navigation Satellites: Development of Satellite Navigation Systems, GPS system, Applications. Laboratory Sessions/ Experimental learning:

A Case Study of Using Remote Sensing Data and GIS for Land Management

Project:

Investigate the design elements that ensure high reliability and fault tolerance in satellite communication systems. Consider redundancy mechanisms, power backup systems, and error correction techniques to minimize system downtime.

Applications: Mobile Communication

Video link / Additional online information:

- 1. <u>https://nptel.ac.in/courses/117/105/117105131/#</u>
- 2. https://nptel.ac.in/courses/117/105/117105131/#

UNIT 3

Satellite Link Design: Basic transmission theory – System noise temperature and G/T Ratio-Noise figure and noise temperature- Calculation of system noise temperature – G/T ratio for earth stations - Link budgets - Uplink and downlink budget calculations - Error control for digital satellite links - Prediction of rain attenuation and propagation impairment counter measures.

Laboratory Sessions/ Experimental learning:

Simulate system noise temperature, G/T ratio, link budgets, error control schemes, and rain attenuation effects.

Project:

Perform a link budget analysis for a satellite communication system operating in the Ku-band **8Hrs.** frequency range. Consider the transmitter power, antenna gain, path loss, rain attenuation, and receiver sensitivity to determine the link performance and

Applications: Error detection and correction in Communication, Weather forecasting, Remote sensing, Navigation satellites.

Video link /Additional online information:

- 1. https://www.digimat.in/nptel/courses/video/117105131/L13.html
- 2. https://www.digimat.in/nptel/courses/video/117105131/L14.html
- 3. <u>https://onlinecourses.nptel.ac.in/noc19_ce45/preview</u>

UNIT 4				4
--------	--	--	--	---

UNIT 4					
Introduction to Radar: Radar block diagram and operation, Radar frequencies, Applications of					
radar, Prediction of range performance, Minimum detectable signal, Receiver noise,					
Probability density function, SNR, Integration of radar pulses, Radar cross-section of targets,					
PRF and range ambiguities, Transmitter power, System losses.					
Electronically steered Phased Array Antenna in Radar: Phase shifters, Frequency scan					
arrays, Array elements, Feeds for arrays, Computer Control of Phased-Array Radar.					
Laboratory Sessions/ Experimental learning:					
Implement the radar range equations for remote sensing.	8Hrs.				
Project:	опіз.				
Simulate system losses (e.g., atmospheric attenuation, hardware losses) and their effect on					
radar performance.					
Applications: Ground surveillance, missile control, fire control, air traffic control (ATC), moving					
target indication (MTI).					
Video link / Additional online information:					
1. <u>https://onlinecourses.nptel.ac.in/noc19_ee58/preview</u>					
2. <u>https://nptel.ac.in/courses/108/105/108105154/</u>					
UNIT 5					
Radar Technology and Applications: Doppler Effect, CW radar, FM CW radar, Multiple					
frequency CW radar, MTI radar, Delay line canceller, Range gated MTI radar, Blind speeds,					
Staggered PRF, Limitations to the performance of MTI radar, Non-coherent MTI radar. Tracking					
radar: sequential lobing, conical scan, Monopulse: amplitude comparison and phase					
comparison methods, Radar displays.					
Laboratory Sessions/ Experimental learning:					
Study the implementation and importance of MTI radar with Power amplifier.					
Project:					
Design and Simulation of FM-CW Radar for Accurate Range Detection using Simulink.					
Applications: Ground surveillance, weapons location, and vehicle search					
Video link / Additional online information:					

1. <u>http</u>	s://nptel.ac.in/courses/108/105/108105154/				
2. <u>https://nptel.ac.in/courses/108105154</u>					
Course Outcomes: After completing the course, the students will be able to					
CO1	Describe the satellite orbits and its trajectories with the definitions of paran	neters			
	associated with it.				
CO2	Comprehend the design of satellite subsystems				
CO3	Evaluate spacecraft subsystem performance and trades				
CO4	Analyze how the radar equation is derived and its significance in radar technology.				
CO5	Demonstrate how CW, FM-CW, and MTI radars function in different scenarios.				

Refere	nce Books:
1.	T. Pratt, C.W. Boastian and Jeremy Allnutt, "Satellite Communication", 2013, 2nd edition, John Wiley and Sons, Bangalore, India.
2.	Anil K Maini, Varsha Agrawal, Satellite Communication, Wiley India Pvt. Ltd., 2015, ISBN: 978- 81265-2071-8.
3.	Merril. I. Skolnik, "Introduction to Radar Systems", 2/e, MGH, 1981.
4.	Dennis Roddy, Satellite Communications, 4th Edition, McGraw- Hill International edition, 2006

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20

marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2	1	1	1	-	1	-	-	1	2	2
CO2	3	3	2	2	1	1	1	-	1	-	-	1	2	2
CO3	3	3	2	2	1	1	1	-	1	-	-	1	2	2
CO4	3	3	2	2	1	1	1	-	1	-	-	1	2	2
CO5	3	3	2	2	1	1	1	-	1	-	-	1	2	2

High-3, Medium-2, Low-1

			Semester V		
			CRYPTOGRAPHY		1
Course Code				Marks	50
Teaching Hours/Week (L: T:P: S)			3:0:0:0 SEE	Marks	50
Total	Hou	rs of Pedagogy	30 Tot	al Marks	100
Cours	se of	ojectives: The student	ts will be able to		
court	1		inciples of Cyber security and its applications		
	2	Demonstrate Crypt	ography and very essential algorithms.		
	3	Execute cryptograp	hic operations and compare & contrast difference	rent types o	f
		cryptography.		,,	
	4	Explain the concept	s & uses of Digital signature and web security		
	5	Demonstrate the ne	eed and summarize the concept of Secure Elec	tronic Trans	saction
		& Intrusion detection	on system.		
These	e are	Learning Process (Ge sample Strategies, w tcomes.	hich teachers can use to accelerate the attain	ment of the	variou
These cours	e are se ou	sample Strategies, w tcomes.	hich teachers can use to accelerate the attain Module-1		variou
These cours Intro	e are se ou duct	sample Strategies, w tcomes. ion: Services, Mec	hich teachers can use to accelerate the attain Module-1 chanisms, Mechanism Attacks, The OSI	Security	variou
These cours Intro	e are se ou duct	sample Strategies, w tcomes. ion: Services, Mec	hich teachers can use to accelerate the attain Module-1	Security	variou
These cours Intro Archi	e are se ou duct tectu	sample Strategies, w tcomes. ion: Services, Mec	hich teachers can use to accelerate the attain Module-1 chanisms, Mechanism Attacks, The OSI swork Security, Cyber Attacks, Defence Strate	Security	variou
These cours Intro Archi Techr	e are se ou duct tectu	sample Strategies, w tcomes. ion: Services, Mec ure, A Model for Net es, Guiding Principles.	hich teachers can use to accelerate the attain Module-1 chanisms, Mechanism Attacks, The OSI swork Security, Cyber Attacks, Defence Strate	Security egies and	variou
These cours Intro Archi Techr Math	e are se ou duct tectu nique	sample Strategies, w tcomes. ion: Services, Mec ure, A Model for Net es, Guiding Principles. tical Background of C	hich teachers can use to accelerate the attain Module-1 hanisms, Mechanism Attacks, The OSI work Security, Cyber Attacks, Defence Strate	Security egies and rithmetic,	variou
These cours Intro Archi Techr Math Matri	e are se ou duct tectu nique ema	sample Strategies, w tcomes. ion: Services, Mec ure, A Model for Net es, Guiding Principles. tical Background of C	hich teachers can use to accelerate the attain Module-1 chanisms, Mechanism Attacks, The OSI work Security, Cyber Attacks, Defence Strate Cryptography: Integer Arithmetic, Modular Au	Security egies and rithmetic,	variou
These cours Intro Archi Techr Math Matri Rema	e are se ou duct tectu nique ema ices, ainde	sample Strategies, w tcomes. ion: Services, Mec ure, A Model for Net es, Guiding Principles. tical Background of C The Greatest Com er Theorem.	hich teachers can use to accelerate the attain Module-1 chanisms, Mechanism Attacks, The OSI work Security, Cyber Attacks, Defence Strate Cryptography: Integer Arithmetic, Modular Au	Security egies and rithmetic, Chinese	variou
These cours Intro Archi Techr Math Matri Rema Appli	e are se ou duct tectu nique ema ices, ainde catic	sample Strategies, w tcomes. ion: Services, Mec ure, A Model for Net es, Guiding Principles. tical Background of C The Greatest Com er Theorem.	hich teachers can use to accelerate the attain Module-1 chanisms, Mechanism Attacks, The OSI work Security, Cyber Attacks, Defence Strate Cryptography: Integer Arithmetic, Modular An hma Divisor, Useful Algebraic Structures, Electronic Money, Secure Network Communic	Security egies and rithmetic, Chinese	variou
These cours Intro Archi Techr Math Matri Rema Appli Labor	e are se ou duct tectu nique ema ices, ainde catio	sample Strategies, w tcomes. ion: Services, Mec ure, A Model for Net es, Guiding Principles. tical Background of C The Greatest Com er Theorem. ons: Time Stamping, E	hich teachers can use to accelerate the attain Module-1 chanisms, Mechanism Attacks, The OSI work Security, Cyber Attacks, Defence Strate Cryptography: Integer Arithmetic, Modular An hma Divisor, Useful Algebraic Structures, Electronic Money, Secure Network Communic	Security egies and rithmetic, Chinese	variou
These cours Intro Archi Techr Math Matri Rema Appli Labor Brea	e are se ou duct tectu nique ema ices, ainde catio rator king	sample Strategies, w tcomes. ion: Services, Mec ure, A Model for Net es, Guiding Principles. tical Background of C The Greatest Com er Theorem. ons: Time Stamping, E y Sessions/ Experime	hich teachers can use to accelerate the attain Module-1 chanisms, Mechanism Attacks, The OSI work Security, Cyber Attacks, Defence Strate Cryptography: Integer Arithmetic, Modular An hma Divisor, Useful Algebraic Structures, Electronic Money, Secure Network Communic	Security egies and rithmetic, Chinese	variou
These cours Intro Archi Techr Math Matri Rema Appli Labor Brea	duct duct tectu nique ema ices, ainde catio rator king Ref	sample Strategies, w tcomes. ion: Services, Mec ure, A Model for Net es, Guiding Principles. tical Background of C The Greatest Com er Theorem. ons: Time Stamping, E y Sessions/ Experime the Shift Cipher	hich teachers can use to accelerate the attain Module-1 thanisms, Mechanism Attacks, The OSI twork Security, Cyber Attacks, Defence Strate Cryptography: Integer Arithmetic, Modular An nma Divisor, Useful Algebraic Structures, Electronic Money, Secure Network Communicantal learning:	Security egies and rithmetic, Chinese	variou
These cours Intro Archi Techr Math Matri Rema Appli Labor Brea Web	duct duct tectu nique ema ices, ainde catio rator king Ref ht:	sample Strategies, w tcomes. ion: Services, Mec ure, A Model for Net es, Guiding Principles. tical Background of C The Greatest Com er Theorem. ons: Time Stamping, E y Sessions/ Experime the Shift Cipher erence:	hich teachers can use to accelerate the attain Module-1 chanisms, Mechanism Attacks, The OSI cwork Security, Cyber Attacks, Defence Strate Cryptography: Integer Arithmetic, Modular Anna Divisor, Useful Algebraic Structures, Electronic Money, Secure Network Communicantal learning: rses/117101106/ rses/108108114/	Security egies and rithmetic, Chinese	variou

Module-2	1
Basics of Cryptography: Preliminaries, Elementary Substitution Ciphers, Elementary	8Hrs
Transport Ciphers, Other Cipher Properties.	
Symmetric Ciphers: Symmetric Ciphers model, Substitution Techniques,	
Transposition Techniques, Simplified DES, Data encryption Standard (DES), The	
strength of DES, Differential and Linear Cryptanalysis, Block Cipher Design Principles	
and modes of operation, Evaluation Criteria for Advanced Encryption standard, The	
AES Cipher.	
Laboratory Sessions/ Experimental learning:	
Breaking the Mono-alphabetic Substitution Cipher	
Applications: wireless security, processor security, file encryption	
Web Reference:	
 https://nptel.ac.in/courses/117101106/ https://nptel.ac.in/courses/108108114/ 	
 https://nptel.ac.in/courses/108105113/ 	
Module-3	
Block Cipher Operation: Electronic Codebook, Cipher Block Chaining Mode, Cipher	8Hrs
Feedback Mode, Output Feedback Mode, Counter Mode	
Public Key Cryptography: Principles of public key Cryptosystem, The RSA algorithms,	
Key management, Diffie – Hellman key exchange, Elgamal Cryptographic system,	
PRNG based on Asymmetric Cipher	
Digital Signatures: Digital Signatures and Digital Signature Standard.	
Laboratory Sessions/ Experimental learning:	
Diffie-Hellman Key Establishment	
Applications: Random number generator, permutation generator	
Web Reference:	
https://nptel.ac.in/courses/117101106/	
 <u>https://nptel.ac.in/courses/108108114/</u> https://nptel.ac.in/courses/108105113/ 	
 https://nptel.ac.in/courses/108105113/ 	
Module-4	
Key Management and Distribution: Symmetric key distribution using symmetric	8Hrs
encryption, Symmetric key distribution using asymmetric encryption, Distribution of	
Public keys, X.509 Certificates, Public key infrastructure.	
Laboratory Sessions/ Experimental learning:	

1. [Digital Signatures Scheme	
2. (Cryptographic Hash Functions and Applications (HMAC)	
	plications: Cyber-attacks, Cybercrime, Cyber security. eb Reference:	
	 https://nptel.ac.in/courses/117101106/ https://nptel.ac.in/courses/108108114/ https://nptel.ac.in/courses/108105113/ 	
	Module-5	
Inti	ruders, Intrusion Detection, Password Management, Malicious software programs	8Hrs
– V	iruses and related Threats, Virus Countermeasures	
Fire	ewall: Need of firewalls, Firewall Characteristics, Types of Firewalls, Design	
Prii	nciples, Trusted Systems Laboratory Sessions/ Experimental learning:	
Pro	gram for SSL operation.	
Ap	plications: Encryption, message authentication and integrity, and replay attack	
•	tection	
W	eb Reference:	
	 https://nptel.ac.in/courses/117101106/ 	
	 <u>https://nptel.ac.in/courses/108108114/</u> 	
	 https://nptel.ac.in/courses/108105113/ 	
Cοι	urse outcome (Course Skill Set)	
At t	he end of the course, the student will be able to :	
1.	Analyse the importance of security attacks, service mechanism, basic network secu and its applications.	irity model
2.	Design and develop simple cryptography algorithms and explain basic structure on AES	of DES and
3.	Illustrate the concept public key cryptography & apply digital signatures in email	
4.	Describe different techniques used in key exchange protocols.	
5.	Analyzing various malicious software and firewalls.	

Refe	rence Books
1.	Cryptography and Network Security- Behrouz A Forouzan, Debdeep Mukhopadhyay, Mc-
	GrawHill, 3rd Edition, 2015
2.	Cryptography and Network Security- William Stallings, Pearson Education, 7th Edition.
3	Cryptography, Network Security and Cyber Laws – Bernard Menezes, Cengage Learning,
	2010 edition.
Asse	ssment Details (both CIE and SEE)
The	weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is
50%.	. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50)
and	for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). The

student is declared as a pass in the course if he/she secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- There are 25 marks for the CIE's Assignment component and 25 for the Internal Assessment Test component.
- Each test shall be conducted for 25 marks. The first test will be administered after 40-50% of the coverage of the syllabus, and the second test will be administered after 85-90% of the coverage of the syllabus. The average of the two tests shall be scaled down to 25 marks
- Any two assignment methods mentioned in the 22OB2.4, if an assignment is project-based then only one assignment for the course shall be planned. The schedule for assignments shall be planned properly by the course teacher. The teacher should not conduct two assignments at the end of the semester if two assignments are planned. Each assignment shall be conducted for 25 marks. (If two assignments are conducted then the sum of the two assignments shall be scaled down to 25 marks)
- The final CIE marks of the course out of 50 will be the sum of the scale-down marks of tests and assignment/s marks.

Internal Assessment Test question paper is designed to attain the different levels of Bloom's Suggested Learning Resources:

3.

Web links and Video Lectures (e-Resources):

- https://nptel.ac.in/courses/117101106/
- https://nptel.ac.in/courses/108108114/
- https://nptel.ac.in/courses/108105113/
- https://nptel.ac.in/courses/117106086/

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

CO-PO I	CO-PO Mapping													
CO/P	PO1	PO2	PO3	РО	РО	РО	РО	PO8	PO9	PO10	PO1	PO12	PSO1	PSO2
0	PUI			4	5	6	7				1			
CO1	3	3	3	2	1	1	-	-	1	-	-	1	1	-
CO2	3	3	3	2	1	1	-	-	1	-	-	1	1	-
CO3	3	3	3	2	1	1	-	-	1	-	-	1	1	-
CO4	3	3	3	2	1	1	-	-	1	-	-	1	1	-
CO5	3	3	3	2	1	1	-	-	1	-	-	1	1	-

	Semester: V							
		INFORMATION TH	ORY & CODING					
Course C	ode:	MVJ22EA553	CIE Marks:50					
Credits:		L:T:P: 3:0:0	SEE Marks: 50					
Hours:		40L	SEE Duration: 3 Hrs					
Course L	earning Obj	ectives: The students will be a	able to					
1	Understan	d the principles and applicatio	ns of information theory					
2	Analyze fu	ndamental concept of entropy	and information used in communications.					
3	Implement probabilities, entropy & measures of information.							
4	4 Evaluate coding schemes, including error correcting codes.							
_	Explain qua	Explain quantitative measure of information used in order to build efficient solutions to						
5	multitudin	ous engineering problems.						

These are sample Strategies, which teachers can use to accelerate the attainment of	the
various course outcomes.	
Module-1	
Introduction: Measure of information, Information content of message, Average	8Hrs
Information content of symbols in Long Independent sequences, Average	
Information content of symbols in Long dependent sequences, Markov Statistical	
Model of Information Sources, Entropy and Information rate of Markoff Sources.	
Applications: Time Stamping, Electronic Money, Secure Network Communication	
Laboratory Sessions/ Experimental learning:	
Web links and Video Lectures (e-Resources):	
 https://nptel.ac.in/courses/108102117 	

Module-2	
Source Coding: Source coding theorem, Prefix Codes, Kraft McMillan Inequality	
property – KMI, Encoding of the Source Output, Shannon's Encoding Algorithm,	8Hrs
Shannon Fano Encoding Algorithm, Huffman codes, Extended Huffman coding,	
Arithmetic Coding, Lempel – Ziv Algorithm	
Laboratory Sessions/ Experimental learning:	
Breaking the Mono-alphabetic Substitution Cipher	
Applications: wireless security, processor security, file encryption	
 Web links and Video Lectures (e-Resources): https://nptel.ac.in/courses/108102117 	
Module-3	
Information Channels: Communication Channels, Channel Models, Channel Matrix,	8Hrs
Joint probability Matrix, Binary Symmetric Channel, System Entropies, Mutual	
Information, Channel Capacity, Channel Capacity of: Binary Symmetric Channel,	
Binary Erasure Channel, Muroga's Theorem, Continuous Channels	
Laboratory Sessions/ Experimental learning:	
Diffie-Hellman Key Establishment	
Applications: Random number generator, permutation generator	
Web links and Video Lectures (e-Resources):	
 <u>https://nptel.ac.in/courses/108102117</u> 	
Module-4	
Error Control Coding: Introduction, Examples of Error control coding, methods of	8Hrs
Controlling Errors, Types of Errors, types of Codes.	
Linear Block Codes: Matrix description of Linear Block Codes, Error Detection and	
Error Correction Capabilities of Linear Block Codes, Single Error Correcting Hamming	
Codes, Table lookup Decoding using Standard Array.	
Binary Cyclic Codes: Algebraic Structure of Cyclic Codes, Encoding using an (n-k) Bit	
Shift register, Syndrome Calculation, Error Detection and Correction	
Laboratory Sessions/ Experimental learning:	
1. Digital Signatures Scheme	
2. Cryptographic Hash Functions and Applications (HMAC)	
Applications: Cyber-attacks, Cybercrime, Cyber security.	

Web links and Video Lectures (e-Resources):

https://nptel.ac.in/courses/108102117

Module-5	
Important Cyclic Codes & Convolution Codes :Golay Codes, BCH Codes. Convolution	8Hrs
Encoder, Time domain approach, Transform domain approach, Code Tree, Trellis and	1
State Diagram, The Viterbi Algorithm	
Laboratory Sessions/ Experimental learning:	1
Program for SSL operation.	1
Applications : Encryption, message authentication and integrity, and replay attack protection	
Web links and Video Lectures (e-Resources):	l
 <u>https://nptel.ac.in/courses/108102117</u> 	l
Assessment Details (both CIE and SEE)	

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). The student is declared as a pass in the course if he/she secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- There are 25 marks for the CIE's Assignment component and 25 for the Internal Assessment Test component.
- Each test shall be conducted for 25 marks. The first test will be administered after 40-50% of the coverage of the syllabus, and the second test will be administered after 85-90% of the coverage of the syllabus. The average of the two tests shall be scaled down to 25 marks
- Any two assignment methods mentioned in the 22OB2.4, if an assignment is projectbased then only one assignment for the course shall be planned. The schedule for assignments shall be planned properly by the course teacher. The teacher should not conduct two assignments at the end of the semester if two assignments are planned. Each assignment shall be conducted for 25 marks. (If two assignments are conducted then the sum of the two assignments shall be scaled down to 25 marks)
- The final CIE marks of the course out of 50 will be the sum of the scale-down marks of tests ٠ and assignment/s marks.

Internal Assessment Test question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course. **Semester-End Examination:**

Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the course (**duration 03 hours**).

- 10. The question paper will have ten questions. Each question is set for 20 marks.
- 11. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), **should have a mix of topics** under that module.
- 12. The students have to answer 5 full questions, selecting one full question from each module.

Marks scored shall be proportionally reduced to 50 marks

Suggested Learning Resources:

Text books:

- 1. Digital and analog communication systems, K. Sam Shanmugam, John Wiley India Pvt. Ltd, 1996.
- 2. Digital communication, Simon Haykin, John Wiley India Pvt. Ltd, 2008.
- Information Theory and Coding, Muralidhar Kulkarni, K.S. Shivaprakasha, Wiley India Pvt. Ltd, 2015, ISBN:978-81-265-5305-1.

Reference Books:

- 4. ITC and Cryptography, Ranjan Bose, TMH, II edition, 2007.
- 5. Principles of digital communication, J. Das, S. K. Mullick, P. K. Chatterjee, Wiley, 1986 -Technology & Engineering.
- 6. Digital Communications Fundamentals and Applications, Bernard Sklar, Second Edition, Pearson Education, 2016, ISBN: 9780134724058.
- 13. Cryptography, Network Security and Cyber Laws Bernard Menezes, Cengage Learning, 2010 edition.

Web links and Video Lectures (e-Resources):

• https://nptel.ac.in/courses/108102117

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

CO-PO N	lapping	S												
CO/PO	PO1	PO2	PO3	РО	РО	РО	РО	PO8	PO9	PO10	PO1	PO12	PSO1	PSO2
0/10	POI			4	5	6	7				1			
CO1	3	3	3	2	1	1	-	-	1	-	-	1	1	-
CO2	3	3	3	2	1	1	-	-	1	-	-	1	1	-
CO3	3	3	3	2	1	1	-	-	1	-	-	1	1	-
CO4	3	3	3	2	1	1	-	-	1	-	-	1	1	-
CO5	3	3	3	2	1	1	-	-	1	-	-	1	1	-

		Semester: V						
		Optical Communication						
Course C	Code:	MVJ22EA554	CIE Marks:50					
Credits:		L:T:P: 3:0:0	SEE Marks: 50					
Total Ho	our	40Hrs	Total marks:100					
Pedagog	gy:							
Course L	earning Obj.	ectives: The students will be able to						
	Understand	the functionality of each of the compo	nents that comprise a fiber-optic					
1	communica	tion system .						
	Describe pr	operties of optical fiber and the principles of single and multi-mode optical fibers and						
2	their charac	racteristics.						
	Understand	the operation of LEDs, laser diodes, and PIN	photo detectors (spectral properties,					
3	bandwidth,	and circuits) and apply in optical systems.						
4	Explain the	concept of power launch to Optical analog and	digital receiver					
5	Explain the	concepts of optical system design and WDM						

UNIT 1
Overview of optical fiber communication - Historical development, The general system, advantag
of optical fiber communications. Optical fiber wave guides- Introduction, Ray theory transmission
Total Internal Reflection, Acceptance angle, Numerical Aperture, Skew rays, Cylindrical fibe
Modes, V-number, Mode coupling, Step Index fibers, Graded Index fibers, Single mode fibers- (
off wavelength, Mode Field Diameter, Effective Refractive Index, Related problems

Application: Telephone. Telephone calls are made between different two locations that are near or far away from each other 8Hrs.

Web References:

- 1 https://nptel.ac.in/courses/108106161
- 2 https://nptel.ac.in/courses/108106167

UNIT 2

8Hrs.

FIBER MATERIALS:

Glass, Halide, Active glass, Chalgenide glass, Plastic optical fibers. Signal distortion in optical fibers-Attenuation, Absorption, Scattering and Bending losses, Core and Cladding losses, Information capacity determination, Group delay.

Application: Medical Applications,CCTV cameras

Web References

1 https://nptel.ac.in/courses/108106161

UNIT 3	
OPTICAL FIBER CONNECTORS-Connector types, Single mode fiber connectors, Connector return	
loss,	
Fiber Splicing- Splicing techniques, Splicing single mode fibers, Fiber alignment and joint loss- Multimode fiber joints, single mode fiber joints.	
OPTICAL SOURCES AND DETECTORS:	
Optical sources- LEDs, Structures, Materials, Quantum efficiency, Power, Modulation, Power bandwidth product. Injection Laser Diodes- Modes, Threshold conditions, External quantum efficiency, Laser diode rate equations, Resonant frequencies, Reliability of LED&ILD, Optical detectors-Physical principles of PIN and APD, Detector response time, Temperature effect on Avalanche gain, Comparison of Photo detectors, Related problems.	8Hrs.
Application: Computer Networking, Internet.	
Web References	
1 <u>https://nptel.ac.in/courses/108106161</u>	
2 <u>https://nptel.ac.in/courses/108106167</u>	
UNIT 4	
Source to fiber power launching - Output patterns, Power coupling, Power launching, Equilibrium	
Numerical Aperture, Laser diode to fiber coupling, Optical receiver operation- Fundamental receiver	
operation, Digital signal transmission, error sources, Receiver configuration, Digital receiver	
performance, Probability of Error, Quantum limit, Analog receivers.	
Application: Defence and Space related Applications, Automobile Industries.	8Hrs.
	onrs.
Web References	
1 <u>https://nptel.ac.in/courses/108106161</u>	
2 <u>https://nptel.ac.in/courses/108106167</u>	
UNIT 5	
Optical system design - Point-to- point links- Component choice and considerations, Link power budget, Rise time budget with examples, Line coding in Optical links, WDM, Necessity, Principles,	
Measurement of Attenuation and Dispersion, Eye pattern.	
Application: Television Cables	Olluc
Web References	8Hrs.
3. <u>https://nptel.ac.in/courses/108106161</u>	
4. https://nptel.ac.in/courses/108106167	

Course Out	comes: After completing the course, the students will be able to
CO1	Choose necessary components required in modern optical communication systems.
CO2	Design and build optical fiber experiments in laboratory, and learn how to calculate electromagnetic modes in wave guides, the amount of light lost going through an optical system, dispersion of optical fibers.
CO3	Use different types of photo detectors and optical test equipment to analyze optical fiber and light wave systems.
CO4	Choose the optical cables for better communication with minimum losses.
CO5	Design, build and demonstrate optical fiber experiments in the laboratory.

Suggested Learning Resources:

Books

1.	Optical Fiber Communications – Gerd Keiser, McGraw-Hill International edition, 3rd Edition, 2000.
2.	Optical Fiber Communications – John M. Senior, PHI, 2nd Edition, 2002.
3.	Fiber Optic Communications – D.K. Mynbaev , S.C. Gupta and Lowell L. Scheiner, Pearson Education, 2005.
4.	Fiber Optic Communication Systems – Govind P. Agarwal , John Wiley, 3rd Ediition, 2004.
5.	Fiber Optic Communications – Joseph C. Palais, 4th Edition, Pearson Education, 2004

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from

each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO N	Mappir	ng												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2	1	1	1	-	1	-	-	1	2	2
CO2	3	3	2	2	1	1	1	-	1	-	-	1	2	2
CO3	3	3	2	2	1	1	1	-	1	-	-	1	2	2
CO4	3	3	2	2	1	1	1	-	1	-	-	1	2	2
CO5	3	3	2	2	1	1	1	-	1	-	-	1	2	2

High-3, Medium-2, Low-1

		Semester:	V						
		Innovation & Entrep	reneurship						
Course C	Code:	MVJ22EA555	CIE Marks:50						
Credits:		L:T:P: 3:0:0	SEE Marks: 50						
Total Ho	our	40Hrs	Total marks:100						
Pedagog	gy:								
Course L	earning Obj	ectives: The students will be able	e to						
1	Inspired; de	evelop entrepreneurial mindset and	attributes; entrepreneurial skill sets for venture						
, I	creation and	creation and intrapreneurial leadership							
	Apply the p	process of problem-opportunity identification and feasibility assessment by developing							
2	a macro perspective of the real market, industries, domains, and customers while using design								
	thinking principles to refine and pivot their venture idea.								
-	Analyze Cu	stomer and Market segmentation, e	estimate Market size, and develop and validate						
3	Customer P	ersona.							
4	Initiate Solu	ition design, develop MVP, and deter	mine Product-Market fit prototypes.						
	Craft initial	Business plan, Develop go-to-market	strategies apply storytelling skills in presenting a						
5	persuasive and defensible Venture Pitch.								

UNIT 1

 Entrepreneurship Fundamentals & Context Meaning and concept, attributes and mindset of entrepreneurial and intrapreneurial leadership, role models in each and their role in economic development. Gamified role play-based exploration aligned to one's short-term career aspiration and ambition. An understanding of how to build an entrepreneurial mindset, skillsets, attributes, and networks while on campus. Core Teaching Tool: Simulation, Game, Industry Case Studies (Personalized for students – 16 industries to choose from), Venture Activity 	8Hrs.
UNIT 2	
 Problem & Customer Identification: Understanding and analyzing the macro-problem and Industry perspective, technological, socio-economic, and urbanization trends and their implication on new opportunities. Identifying passion, identifying and defining problems using Design thinking principles. Analyzing problems and validating with the potential customer. Iterating problem-customer fit. Understanding customer segmentation, creating and validating customer personas. Competition and Industry trends mapping and assessing initial opportunity. Core Teaching Tool: Several types of activities including Class, game, Gen AI, 'Get out of the building', and Venture Activities. 	8Hrs.

UNIT 3

Solution design & Prototyping: Understanding Customer Jobs-to-be-done and crafting innovative solution design to map to customers' needs and create a strong value proposition. Developing Problem-solution fit iteratively. Understanding prototyping and MVP. Developing a feasibility prototype with differentiating values, features, and benefits. Initial testing for proof-of-concept and iteration on the prototype.

Core Teaching Tool: Venture Activity, no code Innovation tools, Class activity

UNIT 4

 Opportunity Assessment and Sizing, Business & Financial Model: Assess relative market position
 via competition analysis, sizing the market, and assessing the scope and potential scale of the opportunity. Introduction to Business model and types, Lean approach, 9 block lean canvas model, riskiest assumptions to Business models. Importance of Build–Measure–Lean approach.
 8Hrs.

 Business planning: components of Business plan- Sales plan, People plan, and financial plan.
 Core Teaching Tool: Class and Venture Activity

 UNIT 5

Go-to-Market Plan, Scale Outlook, and Venture Pitch Readiness: Financial Planning: Types of costs, preparing a financial plan for profitability using a financial template, understanding the basics of Unit economics, and analyzing financial performance. Introduction to Marketing and Sales, Selecting the Right Channel, creating a digital presence, and building customer acquisition strategy. Choosing a form of business organization specific to your venture, identifying sources of funds: Debt & Equity, Map the Start-up Lifecycle to Funding Options.

Scale Outlook and Venture Pitch readiness: Understand and identify potential and aspiration for scale vis a vis your venture idea. Persuasive Storytelling and its key components. Build an Investor-ready pitch deck.

Core Teaching Tool: Expert talks; Cases; Class activity and discussions; Venture Activities

Course Outo	omes: After completing the course, the students will be able to
C01	Understand Entrepreneurial Skillset and Mindset
CO2	Understand and analyze industry problems and Enhance customer personas based on market/other feedback
CO3	Understand and develop MVPs
CO4	Understand and apply Business models and Business planning.
CO5	Develop a go-to-market strategy and build a Persuasive sales pitch

Suggested Learning Resources:

1.Ries, E. (2011). The Lean Startup: How Today's Entrepreneurs Use Continuous Innovation to Create Radically Successful Businesses. Crown Business

2. Osterwalder, A., & Pigneur, Y. (2010). Business Model Generation: A Handbook for Visionaries, Game Changers, and Challengers. John Wiley & Sons.

3.Brown Tim (2019) Change by Design Revised & Updated: How Design Thinking Transforms Organizations and Inspires Innovation, Harper Business

4. Collins Jim, Porras Jerry, (2004) Built to Last: Successful Habits of Visionary Companies

5. Burlington Bo, (2016) Small Giants: Companies That Choose to Be Great Instead of Big

6. Saras D. Sarasvathy, (2008) Effectuation: Elements of Entrepreneurial Expertise, Elgar Publishing Ltd

Books

- 1. Robert D. Hisrich, Michael P. Peters, Dean A. Shepherd, Sabyasachi Sinha (2020). Entrepreneurship, McGrawHill, 11th Edition.
- 2. Namita Thapar (2022) The Dolphin and the Shark: Stories on Entrepreneurship, Penguin Books Limited.

3. Simon Sinek (2011) Start with Why, Penguin Books limited

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of

three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO	Mappir	ng												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	2								-	2	2	
CO2			2	2	2						-	2		
CO3			2		2	2			2		-	2		
CO4			2		2				2		-	2		
CO5			2			2	2	2		2	-	2		

High-3, Medium-2, Low-1

		Antenna and Wave Propagation			
Со	urse Code	MVJ22EA61	CIE Marks	50	
Теа	aching Hours/Week (L:T:P: S)	3:0:2:0	SEE Marks	50	
То	tal Hours of Pedagogy	40 hours Theory + 8-10 Lab slots	Total Marks	100	
Со	urse objectives:Students will be able to	L			
1	Understand the applications of electron	nagnetic waves in free snace			
2	Explain working principles of various an	č			
3		ennas with an emphasis on how antennas ar	e employed		
4		echanism parameters, current distributions		avs	
5		gation in various layers and losses due to ea		.,.	
out	1. Group discussion, MCQ, Pooling qu	estion MODULE-1			
An	tenna Fundamentals				
Sid		nd Mechanism, Patterns in Principal Planes, I am Area, Radiation Intensity, Beam Efficien perture Efficiency, Effective Height, Illustrate			
Gai			ed problems.		
	n Linear Wire Antennas:		ed problems.		
Thi Po ap	otential function and electromagneti	c field: Heuristic Approach, Maxwell E odic fields, Radiation from an oscillating Dip	Equation	8 Hrs	
Thi Po ap al	otential function and electromagneti oproach, Potential function for time peri	c field: Heuristic Approach, Maxwell E odic fields, Radiation from an oscillating Dip Dipole.	Equation	8 Hrs	
Thi Po ap al Vid	otential function and electromagneti oproach, Potential function for time peri ternating current element, The Hertzian	c field: Heuristic Approach, Maxwell E odic fields, Radiation from an oscillating Dip Dipole.	Equation	8 Hrs	

MODULE-2

Antenna Arrays Two element arrays – different cases, Principle of Pattern Multiplication, N element Uniform Linear Arrays – Broadside, End fire Arrays, EFA with Increased Directivity, Derivation of their characteristics and comparison; Concept of Scanning Arrays, Directivity Relations (no derivations). Related Problems. Binomial Arrays, Effects of Uniform and Non-uniform Amplitude Distributions, Design Relations. Arrays with Parasitic Elements, Yagi-Uda Arrays, Smart antennas.

Video link / Additional online information:

<u>Antennas - Course (nptel.ac.in)</u> (By Prof.Girish Kumar-IIT-Bombay)

MODULE-3

Non-Resonant Radiators

Introduction, Traveling wave radiators – Basic concepts, Long wire antennas – Field strength calculations and Patterns, Micro Strip Antennas-Introduction, Features, Advantages and Limitations. Rectangular Patch Antennas –Geometry and Parameters, Impact of different parameters on characteristics. Broadband Antennas: Helical Antennas – Significance, Geometry, Basic properties. Design considerations for mono-filer helical antennas in Axial Mode and Normal Modes (Qualitative Treatment).

Video link / Additional online information:

Antennas - Course (nptel.ac.in) (By Prof.Girish Kumar-IIT-Bombay)

MODULE-4

VHF, UHF and Microwave Antennas

Reflector Antennas: Flat Sheet and Corner Reflectors. Paraboloidal Reflectors – Geometry, characteristics, types of feeds, F/D Ratio, Spill Over, Back Lobes, Aperture Blocking, Off-set Feeds, Cassegrain Feeds. Horn Antennas– Types, Optimum Horns, Design Characteristics of Pyramidal Horns; Lens Antennas – Geometry, Features, Dielectric Lenses and Zoning, Applications, Antenna Measurements – Patterns Required, Set Up, Distance Criterion, Directivity and Gain Measurements (Comparison, Absolute and 3-Antenna Methods).

Video link / Additional online information: https://youtu.be/t-AP3ya8Pao

<u>Antennas - Course (nptel.ac.in)</u>(By Prof.Girish Kumar-IIT-Bombay)

8 Hrs

8 Hrs

8 Hrs

MODULE-5

8 Hrs

WAVE PROPAGATION

Concepts of Propagation – Frequency ranges and types of propagations. Friis Free Space Equation, Reflection of radio waves from plane surface of earth, Reflection coefficient for horizontal and vertical polarization, Ground Wave Propagation–Field strength, Attenuation Characteristic for vertical and Horizontal polarized wave, Sky Wave Propagation – Formation of Ionospheric Layers and their Characteristics, Mechanism of Reflection and Refraction, Critical Frequency, MUF Calculations for flat and spherical earth cases.

Video link / Additional online information:

Antennas - Course (nptel.ac.in) (By Prof.Girish Kumar-IIT-Bombay)

SI.NO **Experiments** 1 Measurement of attenuation by using microwave test bench. 2 Determination of Coupling and isolation characteristics of microstrip directional 3 Study of Isolator. Extraction of S-parameters. 4 Study of Circulator. Extraction of S- parameters 5 Study the I-V Characteristics of Gunn Diode. 6 **Reflex klystron X-Y Characteristic** 7 Design of a monopole antenna 8 Design of a Dipole Antenna 9 Measurement of directivity and gain of microstrip Yagi antennas. 10 Design of Rectangular and circular Microstrip Patch Antenna 11 Design of horn antenna 12 Design of a Parabolic Reflector Antenna **Course outcomes (Course Skill Set):** Acquire knowledge of basic antenna parameters 1 2 Design and analyze wire antennas, loop antennas, reflector antennas, lens antennas, horn antennas and micro-strip antennas. Analyze the field patterns radiated by various types of antennas. 3 4 Understand the working and characteristics of antenna arrays. 5 Compute several antenna parameters to assess antenna's performance. Assessment Details (both CIE and SEE) The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is

PRACTICAL COMPONENT OF IPCC(May cover all / major modules)

50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). The student is declared as a pass in the course if he/she secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

The IPCC means the practical portion integrated with the theory of the course. CIE marks for the theory component are **25 marks** and that for the practical component is **25 marks**.

CIE for the theory component of the IPCC

- 25 marks for the theory component are split into 15 marks for two Internal Assessment Tests (Two Tests, each of 15 Marks with 01-hour duration, are to be conducted) and 10 marks for other assessment methods mentioned in 22OB4.2. The first test at the end of 40-50% coverage of the syllabus and the second test after covering 85-90% of the syllabus.
- Scaled-down marks of the sum of two tests and other assessment methods will be CIE marks for the theory component of IPCC (that is for **25 marks)**.
- The student has to secure 40% of 25 marks to qualify in the CIE of the theory component of IPCC.

CIE for the practical component of the IPCC

- 15 marks for the conduction of the experiment and preparation of laboratory record, and 10 marks for the test to be conducted after the completion of all the laboratory sessions.
- On completion of every experiment/program in the laboratory, the students shall be evaluated including viva-voce and marks shall be awarded on the same day.
- The CIE marks awarded in the case of the Practical component shall be based on the continuous evaluation of the laboratory report. Each experiment report can be evaluated for 10 marks. Marks of all experiments' write-ups are added and scaled down to 15 marks.
- The laboratory test (duration 02/03 hours) after completion of all the experiments shall be conducted for 50 marks and scaled down to 10 marks.
- Scaled-down marks of write-up evaluations and tests added will be CIE marks for the laboratory component of IPCC for **25 marks**.
- The student has to secure 40% of 25 marks to qualify in the CIE of the practical component of the IPCC.

SEE for IPCC

Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the course (**duration 03 hours**)

1. The question paper will have ten questions. Each question is set for 20 marks.

- 2. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), **should have a mix of topics** under that module.
- 3. The students have to answer 5 full questions, selecting one full question from each module.
- 4. Marks scored by the student shall be proportionally scaled down to 50 Marks

The theory portion of the IPCC shall be for both CIE and SEE, whereas the practical portion will have a CIE component only. Questions mentioned in the SEE paper may include questions from the practical component.

- The minimum marks to be secured in CIE to appear for SEE shall be 10 (40% of maximum marks-25) in the theory component and 10 (40% of maximum marks -25) in the practical component. The laboratory component of the IPCC shall be for CIE only. However, in SEE, the questions from the laboratory component shall be included. The maximum of 04/05 sub-questions are to be set from the practical component of IPCC, the total marks of all questions should not be more than 20 marks.
- SEE will be conducted for 100 marks and students shall secure 35% of the maximum marks to qualify for the SEE. Marks secured will be scaled down to 50.
- The student is declared as a pass in the course if he/she secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Suggested Learning Resources:

Books

1.	Antennas for All Applications – John D. Kraus and Ronald J. Marhefka, 3 rd Edition, TMH, 2003.
2.	Electromagnetic Waves and Radiating Systems – E.C. Jordan and K.G. Balmain, PHI, 2 nd Edition, 2000.
3.	Antennas and Wave Propagation – K.D. Prasad, SatyaPrakashan, Tech India Publications, New Delhi, 2001.
4.	Antenna Theory - C.A. Balanis, John Wiley and Sons, 2 nd Edition, 2001.
5.	Transmission and Propagation – E.V.D. Glazier and H.R.L. Lamont, The Services Text Book of Radio, vol. 5, Standard Publishers Distributors, Delhi.
Act	tivity Based Learning (Suggested Activities in Class)/ Practical Based learning

					CO-	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO1	3	1	2	1	-	-	-	-	-	-	-	-
CO2	3	2	1	3	3	2	-	-	2	-	1	-
CO3	3	2	1	3	-	2	-	-	2	-	-	-
CO4	3	3	2	3	3	2	-	-	2	2	2	-
CO5	3	2	3	3	3	2	-	-	2	2	2	2

		5G & Beyo	ond			
Course Code		MVJ22E/	\62	CIE Marks		50
Teaching Hou	ırs/Week (L:	3 Hours/Week (I	.:T:P: 3:0:0)	SEE Marks	5	50
T:P: S) Total Hours c	f Podagogy	40L		Total Mar	kc	100
	i Peuagogy	40L			KS	100
Course objec	tives:					
1 Under	stand the essentia	al principles of 5G comr	nunications			
2 Descr	be the 5G archite	cture and 5G Internet.				
3 Analy	e cognitive radio	networks for 5G.				
4 Analy:	ze 5G spectrum cr	unch and security issue	s.			
		Module-1			1	
History of 5G	: Historical backgr	ound, 5G use cases, an	d system conc	ept: Use case	8Hrs	
requirements	, 5G system conce	pt.				
Web Referen https://nptel https://nptel	High-speed mobile ce: .ac.in/courses/10 ac.in/courses/108 ac.in/courses/117	<u>8105134</u> 105179				
		Module-2				
		s: Introduction, Fundar		ues for MTC,	8Hrs	
Massive MTC	, Massive MTC, Su	mmary of uMTC featur	es.			
Device to D	evice (D2D) com	munications: From 4	G to 5G, Rad	lio resource		
management	for mobile broad	lband D2D, Multi-hop	D2D commun	nications for		
proximity and	emergency servio	es, Multi operator D2D	communicatio	on		
Application:	nigh-definition vic	eo streaming, Efficient	use of RFID ta	ags		
Web Referen						
	ac.in/courses/108					
	ac.in/courses/108					
https://nptel.	ac.in/courses/117	104484				

	Module-3	
The 5G	radio-access technologies: Access design principles for multi-user	8Hrs
commu	nications, Multi-carrier with filtering: a new waveform, Non-orthogonal	
scheme	s for efficient multiple access, Radio access for dense deployments,	
Radio a	ccess for V2X communication, Radio access for massive machine-type	
commu	nication.	
Applica	tion: Internet of Things – Connecting everything, Smart Home	
Web Re	ference	
https://	nptel.ac.in/courses/108105134	
https://	nptel.ac.in/courses/108105179	
https://	nptel.ac.in/courses/117104484	
	Module-4	
Relayin	g and wireless network coding: The role of relaying and network coding	8Hrs
in 5G w	vireless networks, Multi-flow wireless backhauling, Highly flexible multi-	
flow rel	aying,Buffer-aided relaying.	
Applica	tion: Use of smart tracking devices for accurate monitoring of	
temper	ature, shock, light exposure, humidity, etc	
Web Re	ference	
https://	nptel.ac.in/courses/108105134	
https://	nptel.ac.in/courses/108105179	
https://	nptel.ac.in/courses/117104484	
	Module-5	
Mobility	y management in 5G, Dynamic network reconfiguration in 5G	
Spectru	m: Introduction, 5G spectrum landscape and requirements, Spectrum	8Hrs
-	modes and sharing scenarios, 5G spectrum technologies, Value of	01110
	m for 5G: a techno-economic perspective .	
•	tion: Efficient monitoring minimizes theft risk and misplacing of	
	ealtime delivery tracking and reporting,Self-driving cars and drones	
-	re goods delivery	
	ference	
https://	nptel.ac.in/courses/108105134	
	nptel.ac.in/courses/108105179	
	nptel.ac.in/courses/117104484	
	outcome (Course Skill Set), At the end of the course, the student will be al	ole to :
Course	e outcomes:	
CO1	Describe the concepts of 5G networks and its architecture.	
CO2	Analyze the spectrum optimization using cognitive radio in 5G network.	
CO3	Analyze the white space spectrum opportunities and challenges	

CO4 Analyze the security issues and challenges in 5G communication systems

CO5 Describe the concepts of 5G networks and its architecture

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE)

is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). The student is declared as a pass in the course if he/she secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- There are 25 marks for the CIE's Assignment component and 25 for the Internal Assessment Test component.
- Each test shall be conducted for 25 marks. The first test will be administered after 40-50% of the coverage of the syllabus, and the second test will be administered after 85-90% of the coverage of the syllabus. The average of the two tests shall be scaled down to 25 marks

• Any two assignment methods mentioned in the 22OB2.4, if an assignment is projectbased then only one assignment for the course shall be planned. The schedule for assignments shall be planned properly by the course teacher. The teacher should not conduct two assignments at the end of the semester if two assignments are planned. Each assignment shall be conducted for 25 marks. (If two assignments are conducted then the sum of the two assignments shall be scaled down to 25 marks)

• The final CIE marks of the course out of 50 will be the sum of the scale-down marks of tests and assignment/s marks.

Internal Assessment Test question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester-End Examination:

Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the course (duration 03 hours).

1. The question paper will have ten questions. Each question is set for 20 marks.

2. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), should have a mix of topics under that module.

- 3. The students have to answer 5 full questions, selecting one full question from each module.
- 4. Marks scored shall be proportionally reduced to 50 marks.

Suggested Learning Resources:

Books

- 1. 5G Mobile and Wireless Communication Technology, AfifOsseran, Jose F Monserrat, Patrick Marsch, Cambridge University Press, 2016.
- 2. Fundamentals of 5G Mobile Networks, Jonathan Rodriguez, John Wiley & Sons 2015, ISBN: 9781118867525.
- 3. 5G Core Networks Powering Digitization, Stephen Rommer, Academic Press, 2019 ISBN: 978-0-08-1030009-7.

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

CO-PO Ma	pping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	3	2	2	2	-	-	-	-	-	1
CO2	3	3	2	2	1	2	-	-	-	-	-	2
CO3	3	3	3	2	2	2	-	-	-	-	-	1
CO4	3	2	2	2	2	2	-	-	-	-	-	1
CO5	3	2	3	2	2	2	-	-	-	-	-	1

		Semes	ter: VI				
		5G & Beyon	d Laboratory				
Course (Code:	MVJ22EAL66	CIE Marks: 50				
Credits:		L:T:P:0:0:2	SEE Marks: 50				
Hours:		20	SEE Duration: 3 Hrs				
Course L	earning Objec	tives: The students will be a	able to				
1	Understand	the fundamentals of SDR an	d Signal transmission				
2	Learn the principles of amplitude and Frequency modulation and Demodulation						
3	Perform spec	Perform spectrum analysis of different signals					
4	Implement C	t Channel Coding and error correction Techniques					
5	Understand	the principles and benefits o	of MIMO systems				
		PA	RT A				
1. E	asic Signal trar	nsmission and reception usi	ng SDR				
2. A	mplitude mod	ulation and demodulation ι	ising USRP B210				
3. F	requency Mod	ulation and Demodulation	using USRP B210				
4. C	igital Modulat	ion schemes like QPSK,QAN	1				
5. S	pectrum analy	sis of different signals using	USRP B210				
6. 0	hannel Coding	and Error Correction					
7. N	/lultiple Input a	and Multiple Output System	S				
8. C	ognitive radio						
9. C	Orthogonal free	quency division multiplexing					

9. Orthogonal frequency division multiplexing10. Transmit and receive OFDM signals using USRP B210

Course outcomes:					
CO1	Identify and analyze various signals present in the spectrum				
CO2	Encode a data stream using techniques such as Hamming and Convolutional codes				
CO3	Transmit and receive signals using MIMO techniques				
CO4	Analyze the performance and Efficiency of Cognitive radio systems				
CO5	Analyze the performance and benefits of OFDM in multipath environment				

CO-PO Ma	oping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	P08	PO9	PO10	PO11	PO12
CO1	3	3		1	-	-	-	-	-	-	-	2
CO2	3	3	3	-	3	-	-	-	-	-	-	2
CO3	1		2	-	3	-	-	-	-	-	-	2
CO4	1			1	-	-	-	-	-	-	-	1
CO5	1			-	2	-	-	-	-	-	-	1

		Semes	ster: VI
		RADAR SYSTEN	1 ENGINEERING
Course	Code:	MVJ22EA631	CIE Marks:50
Credits	:	L:T:P: 3:0:0	SEE Marks: 50
Hours:		40L	SEE Duration: 3 Hrs
Course	Learning Obj	ectives: The students will be	e able to
1	understan	d the Radar fundamentals ar	nd analyze the radar signals
2	understan	d the basic concepts of CW R	adar, FM-CW Radar and their applications.
3	learn vario	ous radars like MTI, Doppler a	and tracking radars and their comparison.
4	understan receivers.	d various technologies invo	olved in the design of radar transmitters and
5	understan	d the concept of tracking rac	lar and utilization of radar antenna.

UNIT 1				
Prerequisites:Electromagnetic theory and Antenna Theory				
Basics of Radar: Introduction, Maximum Unambiguous Range, Radar Waveforms,				
Definitions with respect to pulse waveform - PRF, PRI, Duty Cycle, Peak Transmitter				
Power, Average transmitter Power. Simple form of the Radar Equation, Radar Block				
Diagram and Operation, Radar Frequencies, Applications of Radar, The Origins of				
Radar, Illustrative Problems.				
Applications: detecting incoming signals during war and also used by a geologist for	8Hrs.			
earthquake detection.				
Video link / Additional online information:				
1. https://nptel.ac.in/courses/108105154				
2. <u>https://nptel.ac.in/courses/117/105/117105131/#</u>				
3. <u>https://nptel.ac.in/courses/117105131</u>				
UNIT 2	<u> </u>			
Radar Equation and Cross Section of Targets Prediction of Range Performance,				
Detection of signal in Noise, Minimum Detectable Signal, Receiver Noise, SNR,	01170			
Modified Radar Range Equation, Envelope Detector — False Alarm Time and	8Hrs.			
Probability, Probability of Detection, Radar Cross Section of Targets: Simple targets –				

sphere cone-sphere Transmitter Power DRF and Range Ambiguities System Losses 1	
sphere, cone-sphere, Transmitter Power, PRF and Range Ambiguities, System Losses (qualitative treatment), Illustrative Problems.	
Applications: Archaeologists use this technology for detection of buried artifacts. It	
is also used to understand the environment and climatic changes	
Video link / Additional online information:	
1. <u>https://nptel.ac.in/courses/108105154</u>	
2. <u>https://nptel.ac.in/courses/117/105/117105131/#</u>	
3. <u>https://nptel.ac.in/courses/117/105/117105131/#</u> UNIT 3	
UNIT 5	
MTI and Pulse Doppler Radar: Introduction, Principle, Doppler Frequency Shift,	
Simple CW Radar, Sweep to Sweep subtraction and Delay Line Canceler, MTI Radar	
with – Power Amplifier Transmitter, Delay Line Cancelers – Frequency Response of	
Single Delay, Line Canceler, Blind Speeds, Clutter Attenuation, MTI Improvement	
Factor, N- Pulse Delay-Line Canceler, Digital MTI Processing – Blind phases, I and Q	
Channels, Digital MTI Doppler signal processor, Moving Target Detector- Original	8Hrs.
MTD.	
Applications: Military, Remote Sensing, Air Traffic Control	
Video link /Additional online information:	
1. <u>https://nptel.ac.in/courses/108105154</u>	
2. https://www.digimat.in/nptel/courses/video/117105131/L13.html	
3. <u>https://www.digimat.in/nptel/courses/video/117105131/L14.html</u>	
UNIT 4	
Tracking Radar: Tracking with Radar - Types of Tracking Radar Systems, Monopulse	
Tracking - Amplitude Comparison Monopulse (one-and two-coordinates), Phase	
Comparison Monopulse. Sequential Lobing, Conical Scan Tracking, Block Diagram of	
Conical Scan Tracking Radar, Tracking in Range, Comparison of Trackers.	
Applications: Ground surveillance, missile control, fire control, air traffic control	00
Applications: Ground surveillance, missile control, fire control, air traffic control	8Hrs.
Applications: Ground surveillance, missile control, fire control, air traffic control	8Hrs.
Applications: Ground surveillance, missile control, fire control, air traffic control (ATC), moving target indication (MTI).	8Hrs.
Applications: Ground surveillance, missile control, fire control, air traffic control (ATC), moving target indication (MTI). Video link / Additional online information:	8Hrs.
Applications: Ground surveillance, missile control, fire control, air traffic control (ATC), moving target indication (MTI). Video link / Additional online information: 1. <u>https://nptel.ac.in/courses/108105154</u>	8Hrs.

Rada	r Antenna and Receiver: Functions of The Radar Antenna, Antenna Parameters,						
Refle	ctor Antennas and Electronically Steered Phased Array Antennas. The Radar						
Receiver, Receiver Noise Figure, Super Heterodyne Receiver, Duplexers and Receivers							
Prote	ctors, Radar Displays						
Applications: Ground surveillance, weapons location, and vehicle search							
Video	o link / Additional online information:						
1.	https://nptel.ac.in/courses/108105154						
2.	https://nptel.ac.in/courses/108/105/108105154/						
3.	https://nptel.ac.in/courses/108105154						
Cours	Course Outcomes: After completing the course, the students will be able to						
CO1	Understand the radar fundamentals and radar signals						
CO2	Explain the working principle of pulse Doppler radars, their applications and limit	tations.					
CO3	O3 Describe the working of various radar transmitters and receivers.						
CO4	Discuss different types of tracking radar systems and their application						
CO5	Analyze the range parameters of pulse radar system which affect the	system					
05	performance.						

Text/R	Text/Reference Books:						
1.	Introduction to Radar Systems- Merrill I Skolink, 3e, TMH, 2001.						
2.	Radar Principles, Technology, Applications — Byron Edde, Pearson Education, 2004						
3.	Principles of Modem Radar: Basic Principles – Mark A. Rkhards, James A. Scheer, William A. Holm. Yesdee, 2013						

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10

marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO I	CO-PO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2	1	1	1	-	1	-	-	1	2	2
CO2	3	3	2	2	1	1	1	-	1	-	-	1	2	2
CO3	3	3	2	2	1	1	1	-	1	-	-	1	2	2
CO4	3	3	2	2	1	1	1	-	1	-	-	1	2	2
CO5	3	3	2	2	1	1	1	-	1	-	-	1	2	2
	High-3 Medium-2 Low-1												•	

		Semest	er: VI
		Network and Cyber	Security (Theory)
Course	e Code:	MVJ22EA 632	CIE Marks:50
Credit	s:	L:T:P: 3:0:0	SEE Marks: 50
Hours	:	30L	SEE Duration: 3 Hrs
Course	e Learning Ob	jectives: The students will be a	able to
1	Identify se	curity concerns in Email.	
2	Understan	d the security factors in Internet I	rotocol.
3	Understan	d cyber security concepts.	
4	Identify pr	roblems that can arise in cyber se	curity.
5	Solve vario	ous cyber security frame work.	

UNIT 1	
Transport Level Security: Web Security Considerations, Secure Sockets Layer, Transport Layer	
Security, HTTPS, Secure Shell (SSH)	
Laboratory Sessions/ Experimental learning:	
1. Study of HTTP client server	
2. Study of SSH session with a laboratory router	8Hrs.
Applications: Encrypting the communication between web applications and servers, in VOIP,	опіз.
Video, Audio.	
Video link / Additional online information:	
1. https://www.youtube.com/watch?v=tcQQ9A8M2L0	
https://www.youtube.com/watch?v=LcdIBTYe6vo	
UNIT 2	1
E-mail Security: Pretty Good Privacy, S/MIME, Domain keys identified mail	
Laboratory Sessions/ Experimental learning:	
1. Study "How to make strong passwords" and "passwords cracking techniques".	
2. Analysis of the security vulnerabilities of E-Mail Application.	8Hrs.
Applications: Security of confidential data, Improve spam and phishing protection for mail.	опіз.
Video link / Additional online information:	
1. https://archive.nptel.ac.in/courses/106/106/106106234/	
2. https://heimdalsecurity.com/blog/email-security/	
UNIT 3	I
IP Security: IP Security Overview, IP Security Policy, Encapsulation Security Payload (ESP),	8Hrs.

Combining security Associations Internet Key Exchange. Cryptographic Suites	
Laboratory Sessions/ Experimental learning:	
1. Study the steps to hack a strong password.	
2. Study the Kali Tools for Cryptography.	
Applications: Remote Internet Access security.	
Video link / Additional online information:	
1. https://www.youtube.com/watch?v=ipQkQopBLfU	
https://www.youtube.com/watch?v=gtFZMvqXD1g	
UNIT 4	
Cyber network security concepts: Security Architecture, anti pattern: signature based malware	
detection versus polymorphic threads, document driven certification and accreditation, policy	
driven security certifications. Refactored solution: reputational, behavioural and entropy based	
malware detection.	
The problems: cyber anti patterns concept, forces in cyber anti patterns, cyber anti pattern	
templates, cyber security anti pattern catalog	
Laboratory Sessions/ Experimental learning:	
1. Demonstrate how to provide secure data storage, secure data transmission and for	8Hrs.
creating digital signatures.	
2. Demonstrate intrusion detection system (ids) using any tool (snort or any other s/w)	
Applications: Network and software security, Security against DDOS	
Video link / Additional online information :	
1. <u>https://www.simplilearn.com/tutorials/cyber-security-tutorial/what-is-cyber-security</u>	
2. https://onlinecourses.nptel.ac.in/noc23_cs127/preview	
UNIT 5	
Cyber network security concepts contd. : Enterprise security using Zachman framework Zachman	
framework for enterprise architecture, primitive models versus composite models, architectural	
problem solving patterns, enterprise workshop, matrix mining, mini patterns for problem solving	
meetings.	
Case study: cyber security hands on - managing administrations and root accounts, installing	00
hardware, reimaging OS, installing system protection/ antimalware, configuring firewalls	8Hrs.
Laboratory Sessions/ Experimental learning:	
1. Analysis the Security Vulnerabilities of E-commerce services.	
Applications: Security of enterprise applications.	
Video link / Additional online information:	

Video link / Additional online information:

1.	
Course Out	comes: After completing the course, the students will be able to
C01	Explain network security protocols
CO2	Understand the basic concepts of cyber security
CO3	Discuss the cyber security problems
CO4	Explain Enterprise Security Framework
CO5	Apply concept of cyber security framework in computer system administration

Referer	nce Books:
1.	William Stallings, Cryptography and Network Security Principles and Practice, Pearson Education Inc., 6th Edition, 2014, ISBN: 978-93-3251877-3.
2.	Thomas J. Mowbray, Cyber Security – Managing Systems, Conducting Testing, and Investigating Intrusions, Wiley.
3.	Cryptography and Network Security, Behrouz A. Forouzan, TMH, 200
4.	Cryptography and Network Security, Atul Kahate, TMH, 2003

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2	-	1	-	-	1	-	-	1		
CO2	3	3	2	2	-	1	-	-	1	-	-	1		
CO3	3	3	2	2	-	1	-	-	1	-	-	1		
CO4	3	3	2	2	-	1	-	-	1	-	-	1		
CO5	3	3	2	2	-	1	-	-	1	-	-	1		

		Semester: VI						
	SEN	SOR AND VIRTUAL INSTRUMENT	ATION					
Cours	se Code:	MVJ22EA633	CIE Marks:50					
Credi	ts:	L:T:P: 3:0:0	SEE Marks: 50					
Hours	s:	40 L	Total Marks:100					
Cours	se Learning Objectives: The	students will be able to	I					
1	understand the basic co	oncepts of transducers.						
2	identify the mathemati	cal model of transducer and its re	sponse for various inputs.					
3	understand the constru	understand the construction and working principle of resistive type transducers.						
4	Describe capacitive type	Describe capacitive type and inductive type transducer.						
5	understand the construction and working principle of sensors and its real time applications.							

UNIT-I					
Prerequisites: knowledge of basic of sensors	8 Hrs				
General block diagram of measurements systems – Methods of measurements –					
Classification and selection of transducers – Error analysis – Statistical methods – Odds and					
uncertainty, classification of instruments, applications of measurement systems.					
Laboratory Sessions/ Experimental learning:					
Displacement versus output voltage characteristics of a potentiometer transducer.					
Applications: Selection of appropriate sensors for different industrial applications.					
Video link / Additional online information:					
1. <u>https://www.youtube.com/watch?v=pFM9K9JrsU4&list=PLm_MSCIsnwm9HsQaejlrxvkNPWbvxgwWs</u>					
2. <u>https://www.youtube.com/watch?v=Z6evuxYjYMs&list=PLSGws_74K019wiWyVU3CnVMMqAcF3_sxz</u>					
UNIT-II					
Static characteristics – Accuracy, precision, resolution, sensitivity, linearity – Dynamic	8 Hrs				
characteristics – Mathematical model of transducer – Zero, first and second order					
transducers – Response for impulse, step, ramp and sinusoidal inputs					
Laboratory Sessions/ Experimental learning:					
1. Characteristics of Strain gauge.					
2. Characteristics of Load cell.					
Applications: Platform Weighing					

Video link / Additional online information:	
1. <u>https://www.youtube.com/watch?v=78NpGnA1sX4</u>	
UNIT-III	
Principle of operation – Construction details – Characteristics and application of resistance	8 Hrs
potentiometer – Strain gauge – Resistance thermometer – Thermistor – Hot-wire	
anemometer – Humidity sensor – Induction potentiometer – Variable reluctance transducers	
– LVDT.	
Laboratory Sessions/ Experimental learning:	
1. Characteristics of thermocouple.	
2. Characteristic of LDR and thermistor.	
3. Step response characteristics of RTD.	
Applications: Air conditioning Heating and Ventilation Devices.	
Video link / Additional online information:	
1. https://www.youtube.com/watch?v=IUjBmV4wMtA	
2. https://www.youtube.com/watch?v=kb3W-1_deLc	
UNIT-IV	
Capacitive transducer and types – Capacitor microphone – Frequency response –	8 Hrs
Piezoelectric transducer – Hall effect transducer – Magnetostrictive – Digital transducers –	
Fiber optic sensors – Thick and thin	
film sensors (Bio sensor and chemical sensor)	
Laboratory Sessions/ Experimental learning:	
1. Characteristics of LVDT.	
2. Characteristics of Hall effect transducer.	
Applications: Power turbines, hydraulics, automation, aircraft, satellites, nuclear reactors,	
current transformers, Position sensing.	
Video link / Additional online information:	
1. https://www.youtube.com/watch?v=emtskVpbtyY	
2. https://www.youtube.com/watch?v=E0NMM_Pq0IY	
UNIT-V	
Environmental monitoring sensors (Water quality and air pollution) – Photo electric	8 Hrs
transducer – Vibration sensor – Ultrasonic based sensors – Introduction to MEMS and	
Nanotechnology – Applications – Robotics – Home appliance.	
Laboratory Sessions/ Experimental learning:	
Study of smart transducers.	

Applications: Smart city developments with latest technological sensors.

Video link / Additional online information:

- 1. <u>https://www.youtube.com/watch?v=hyHcnZsgbRU</u>
- 2. <u>https://www.youtube.com/watch?v=jQF4_h0_2qw</u>

Course Ou	tcomes: After completing the course, the students will be able to
CO1	Choose appropriate sensors for the measurement of various physical parameters.
CO2	Obtain the mathematical model of the transducer and its response for various inputs.
CO3	Choose appropriate resistive type transducer for the measurement of various physical parameters.
CO4	Select capacitive and inductive type transducers for the measurement of various physical parameters.
CO5	Select the suitable type of sensors for real time applications.

Refere	ence Books
1.	"A Course in Electrical and Electronics Measurements and Instrumentation", Sawhney A K,
	Dhanpat Rai and Sons, New Delhi, 2013
2.	"Sensors and Transducers", Patranabis D, Prentice Hall of India, Second Edition, 2010
3.	"Transducers and Instrumentation", Murthy D V S, Prentice Hall of India, New Delhi,
	Second Edition, 2010.

Continuous Internal Evaluation (CIE):

Theory for 100 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 100 marks are executed by means of an examination.

The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	P07	P08	PO9	PO10	PO11	PO12
CO1	3	2	3	2	2	2	-	-	-	-	-	1
CO2	3	3	2	2	1	2	-	-	-	-	-	2
CO3	3	3	3	2	2	2	-	-	-	-	-	1
CO4	3	2	2	2	2	2	-	-	-	-	-	1
CO5	3	2	3	2	2	2	-	-	-	-	-	1

Artificial Neural Networks							
Course Code	MVJ22EA634	CIE Marks	50				
Teaching Hours/Week (L: T:P: S)	3:0:0:0	SEE Marks	50				
Total Hours of Pedagogy	30	Total Marks	100				

Course objectives:St

- 1 understand the biological neural network and to model equivalent neuron models.
- 2 understand the architecture, learning algorithm and issues of various feed forward and feedback neural networks
- 3 understand the architecture, learning algorithms
- 4 Describe various feed forward and feedback neural networks.
- 5 Solve Neuro dynamic models for various problems.

Teaching-Learning Process (General Instructions)

These are sample Strategies, which teachers can use to accelerate the attainment of the various course outcomes.

Module-1

Widdule-1	
Prerequisites: Linear Algebra, Statistics and Probability will smoothen the process of	
learning the surface of the subject	
Introduction: A Neural Network, Human Brain, Models of a Neuron, Neural Networks	
viewed as Directed Graphs, Network Architectures, Knowledge Representation	
Learning Process: Error Correction Learning, Memory Based Learning, Hebbian	
Learning, Competitive, Boltzmann Learning, Credit Assignment Problem, Memory,	8Hrs
Adaption, Statistical Nature of the Learning Process	
Laboratory Sessions/ Experimental learning: To find the basis and properties of	
statistical nature learning process.	
Applications:	
As CNN is used in image processing the medical imaging data retrieved from tests is	

As CNN is used in image processing, the medical imaging data retrieved from tests is analyzed and assessed based on neural network models.

Web Reference: https://nptel.ac.in/courses/117105084

Module-2

Single Layer Perceptron's: Adaptive Filtering Problem, Unconstrained Organization	8Hrs
Techniques, Linear Least Square Filters, Least Mean Square Algorithm, Learning	
Curves, Learning Rate Annealing Techniques, Perceptron –Convergence Theorem,	
Relation Between Perceptron and Bayes Classifier for a Gaussian Environment	
Multilayer Perceptron: Back Propagation Algorithm XOR Problem, Heuristics, Output	
Representation and Decision Rule, Computer Experiment, Feature Detection	
Applications: Perceptron is a linear classifier, and is used in supervised learning	
Web Reference: <u>https://nptel.ac.in/courses/117105084</u>	

Module-3

Back Propagation:Back Propagation and Differentiation, Hessian Matrix,8HrsGeneralization, Cross Validation, Network Pruning Techniques, Virtues andLimitations of Back Propagation Learning, Accelerated Convergence, SupervisedLearning

Applications: The neural network is trained to enunciate each letter of a word and a sentence

It is used in the field of speech recognition

It is used in the field of character and face recognition.

Web Reference: https://nptel.ac.in/courses/117105084

Module-4	
Self-Organization Maps (SOM): Two Basic Feature Mapping Models, Self-	8Hrs
Organization Map, SOM Algorithm, Properties of Feature Map, Computer	
Simulations, Learning Vector Quantization, Adaptive Patter Classification	
Applications: One of the earliest and well-known applications of the SOM is the phonetic typewriter of Kohonen. It is set in the field of speech recognition, and the problem is to classify phonemes in real time so that they could be used to drive a typewriter from dictation. Web Reference: <u>https://nptel.ac.in/courses/117105084</u>	
Module-5	
Neuro Dynamics: Dynamical Systems, Stability of Equilibrium States, Attractors,	8Hrs
Neuro Dynamical Models, Manipulation of Attractors as a Recurrent Network	
Paradigm Hopfield Models – Hopfield Models, Computer Experiment	

Weighted matching problem: Deterministic, stochastic and mean field annealing of a

Hopfield model

Applications: Neural Network for Machine Learning Face Recognition using it Neuro-

Fuzzy Model and its applications Neural Networks for data-intensive applications

Web Reference: https://nptel.ac.in/courses/117105084

Course outcome (Course Skill Set)

At the end of the course, the student will be able to :

- 1. Create different neural networks of various architectures both feed forward and feed backward
- 2. Perform the training of neural networks using various learning rules
- 3. Perform the testing of neural networks and do the perform analysis of these networks for various pattern recognition applications.
- 4. Understand the similarity of Biological networks and Neural networks
- 5. Perform the training of neural networks using various learning rules.
- 6. Understanding the concepts of forward and backward propagations.
- 7. Understand and Construct the Hopfield models.

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). The student is declared as a pass in the course if he/she secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

1 There are 25 marks for the CIE's Assignment component and 25 for the Internal Assessment Test component.

• Each test shall be conducted for 25 marks. The first test will be administered after 40-50% of the coverage of the syllabus, and the second test will be administered after 85-90% of the coverage of the syllabus. The average of the two tests shall be scaled down to 25 marks

• Any two assignment methods mentioned in the 22OB2.4, if an assignment is projectbased then only one assignment for the course shall be planned. The schedule for assignments shall be planned properly by the course teacher. The teacher should not conduct two assignments at the end of the semester if two assignments are planned. Each assignment shall be conducted for 25 marks. (If two assignments are conducted then the sum of the two assignments shall be scaled down to 25 marks)

• The final CIE marks of the course out of 50 will be the sum of the scale-down marks of tests and assignment/s marks.

Internal Assessment Test question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester-End Examination:

Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the course (duration 03 hours).

1. The question paper will have ten questions. Each question is set for 20 marks.

2. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), should have a mix of topics under that module.

3. The students have to answer 5 full questions, selecting one full question from each module.

4. Marks scored shall be proportionally reduced to 50 marks.

Suggested Learning Resources:

Books

•

DOOR						
1.	Neural Networks a Comprehensive Foundations, Simon Haykin, PHI edition.					
2.	Artificial Neural Networks - B. Vegnanarayana Prentice Hall of India P Ltd 2005					
3.	Neural Networks in Computer Inteligance, Li Min Fu MC GRAW HILL EDUCATION 2003					
4.	Neural Networks -James A Freeman David M S Kapura Pearson Education 2004.					
5.	Introduction to Artificial Neural Systems Jacek M. Zurada, JAICO Publishing House Ed.					
Web	Web links and Video Lectures (e-Resources):					

- 6 https://archive.nptel.ac.in/courses/117/105/117105084/
- 7 https://cosmolearning.org/courses/intelligent-systems-and-control/video-lectures/
- 8 https://nptel.ac.in/courses/101104061
- 9 https://scte-iitkgp.vlabs.ac.in/exp/neural-networks-perceptron/references.html

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

CO-PO N	CO-PO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	РО	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	З	3	3	1	1	1	-	-	1	-	-	1	1	-
CO2	З	3	3	1	1	1	-	-	1	-	-	1	1	-
CO3	З	3	3	1	1	1	-	-	1	-	-	1	1	-
CO4	З	3	3	1	1	1	-	-	1	-	-	1	1	-
CO5	3	3	3	1	1	1	-	-	1	-	-	1	1	-

		Seme	ter:VI
		Sensor Te	chnology
Cours	se Code:	MVJ22EA641	CIE Marks: 50
Credi	ts:	L:T:P: 3:0:0	SEE Marks: 50
Hours	s:	30	SEE Duration: 3 Hrs
Cours	se Learning Ob	ojectives: The students will b	e able to
1	Understan	d various technologies associ	ated in manufacturing of sensors
2	Understan	d different sensors and their	applications in real life.
2	Describe t	ypes of sensors used in mode	rn digital systems
3			
3	Demonstra	ate the technological and phy	sical limitations of a specific sensor.

Module-1							
Prerequisite: Basic Electronics, Knowledge on physical quantities							
Sensors Fundamentals and Characteristics: General Concepts and Terminology, Sensor							
Classification, Static Characteristics, Dynamic Characteristics, Materials for Sensors, Microsensor							
Technology.							
Laboratory Sessions/ Experimental learning:	8Hrs						
1. Study on applications of sensors							
Applications: Biological, Chemical, Electric, magnetic, or electromagnetic wave, Heat,							
temperature, Mechanical displacement or wave, Radioactivity, radiation and other.							
Video link / Additional online information:							
1. <u>https://nptel.ac.in/courses/108/105/108105064/</u>							
https://nptel.ac.in/courses/108/108/108108147/							
Module-2							
Primary sensors: Temperature sensors, Pressure sensors, Flow-velocity and flow-rate sensors,							
Level sensors, Force and torque sensors, Acceleration and inclination sensors and Velocity sensors.							
Resistive Sensors: Resistive Temperature Detectors (RTDs), Thermistors, Magneto resistors, Light-							
Dependent Resistors (LDRs), Resistive Hygrometers, Resistive Gas sensors.							
Laboratory Sessions/ Experimental learning:							
1. Strain measurement with Bridge circuit							
Applications: Patient monitoring in medical applications, Manufacturing and industrial equipment							
and motorsport applications.							
	1						

1. <u>https://nptel.ac.in/courses/108/105/108105064/</u>	
https://nptel.ac.in/courses/108/106/108106165/	
Module-3	
Reactance Variation and Electromagnetic Sensors: Capacitive sensors: Variable capacitor and	-
Differential capacitor, Inductive sensors: Variable reluctance sensors, Eddy current sensors, Linear	
Variable Differential Transformers (LVDTs), Electromagnetic sensors: Sensors based on Faraday's	
Law and Hall effect sensors.	8Hrs
Laboratory Sessions/ Experimental learning:	
1. Develop a displacement measurement system with inductive sensors (LVDT)	
Applications: Smart phones, Industrial automation, Communication, automobile and aerospace.	
Video link / Additional online information:	
https://nptel.ac.in/courses/108/105/108105064/	
Module-4	
Self-Generating sensors: Thermoelectric sensors, Piezoelectric sensors, Pyroelectric sensors,	
Photovoltaic sensors, Electrochemical sensors, Proximity sensors.	
Laboratory Sessions/ Experimental learning:	
1. Develop a sensor system for force measurement using piezoelectric sensors	8Hrs
Applications: Temperature controlled devices: refrigeration and air conditioning, Alarm clocks,	•
Medical devices, PIN pads, photonics and pharmaceutical compositions, Robotics.	
Video link / Additional online information:	
https://nptel.ac.in/courses/108/105/108105064/	
Module-5	
Digital sensors: Position encoders, Resonant sensors: SAW sensors, Vibrating wire strain gages,	
Vibrating cylinder sensors, Digital flow meters	
Other sensing methods: Charge-Coupled sensors – Fundamentals & types of CCD, Fiber-Optic	
sensors, Ultrasonic-based sensors, Gyroscope sensors, optical sensors, IR sensors.	
Laboratory Sessions/ Experimental learning:	8Hrs
1. Measure strain, temperature and pressure using LabVIEW.	
Applications: Industries, digital cameras, photocopiers.	
Video link / Additional online information:	
1. <u>https://nptel.ac.in/courses/108/105/108105064/</u>	
https://nptel.ac.in/courses/112/103/112103174/	

Course	outcomes:
CO1	Understand the concept of sensors and its characteristics.
CO2	Explain the working principles of primary and resistive sensors.
CO3	Understand the inductive, capacitive and Electromagnetic sensors and its applications
CO4	Identify alternative methods to measure common quantities such as temperature, pressure, force and acceleration.
CO5	Select appropriate sensors used for various applications
Text Bo	oks:
1.	Ramon Pallas & John G.Webster, "Sensors and signal conditioning", John Wiley & Sons., 2 nd Ed.,2001.
2.	J. Fraden, "Handbook of Modern Sensors: Physical, Designs, and Applications", AIP Press, Springer, 3 rd Ed.,2004.
Referer	nce Books:
1.	D. Patranabis, "Sensors and Transducers", PHI Publication, 2 nd Ed.,2004 New Delhi.
2.	Webster John G, "Instrumentation and sensors Handbook", CRC Press, 1 st Ed., 1999.
3.	Shawhney A.K., "Electrical and Electronics Measurements and Instrumentation", Dhanpat Rai & Sons, 1994.

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for

16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Map	ping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	1	-	2	-	-	-	-	2	1
CO2	3	2	2	1	1	2	-	-	-	-	2	1
CO3	3	2	2	1	1	2	-	-	-	-	2	1
CO4	3	2	2	1	1	2	-	-	-	-	2	1
CO5	3	2	2	1	2	2	-	-	-	-	2	1

		Semes	er:VI					
		Introduction To MA	TLAB & SIMULINK					
Cour	se Code:	MVJ22EA642	CIE Marks: 50					
Cred	its:	L:T:P: 3:0:0	SEE Marks: 50					
Hour	s:	30	SEE Duration: 3 Hrs					
Cour	se Learning Objec	tives: The students will be able t	0					
1	Execute program	nming for engineering problem se	olving using MATLAB software package.					
2	Solve different r	mathematical function using MAT	LAB					
3	Understand Graphical User Interface							
4	Create and man	ipulate geometric models in a co	nputer program.					
5	Develop skills to MATLAB	analyze and break down an engi	neering program and solve it algorithmically using					

Module-1	
Introduction to Matlab, Creating Variables, Some Useful MATLAB Functions Data Types creating	1
simple and multiple data set in single plot, Matrix generation, Array operations and Linear equations	
Introduction to programming in MATLAB, Visualization and Programming ,Control flow and operators	
Laboratory Sessions/ Experimental learning:	
1. Write MATLAB commands to analyze arithmetic, logical and Boolean operations.	8Hrs.
2. Write MATLAB commands to analyze vector operations and magic matrixes.	
3. Write a MATLAB program to demonstrate if and else if statement for comparing Two	
numbers.	
Video link / Additional online information :	
1. <u>https://in.mathworks.com/videos/writing-a-matlab-program-69023.html</u>	
Module-2	
Solving Equations, Curve Fitting, and Numerical Techniques :Linear Algebra, Polynomials,	-
Optimization, Differentiation/Integration, Differential Equations	
Advanced Methods: Probability and Statistics, Data Structures, Images, File I/O	
Video link / Additional online information:	8Hrs.
1. <u>https://www.youtube.com/watch?v=14H4UFoxZjs</u>	01113.
 <u>https://www.youtube.com/watch?v=fqS873TnMDs</u> 	

Module-3	
Various functions and toolboxes: Documentation, Misc. Useful Functions, Graphical User Interfaces,	
Simulink, Symbolic Toolbox	
Applications: App Designing using GUI, Image processing	
Video link / Additional online information:	8Hrs.
1. <u>https://www.youtube.com/watch?v=fqS873TnMDs</u>	
https://www.youtube.com/watch?v=14H4UFoxZjs	
Module-4	
Prerequisites: Types of filters	
Introduction to SIMULINK: Multiple plots creating models, blocks, Systems and sub-systems,	
Simulating Dynamic System, Solving a model, solvers, MATLAB SIMULINK integration, S-function);	
MATLAB Toolboxes training (Signal Processing, Neural Network, FUZZY logic, Control System,	
Communication, Power System toolboxes);	
Laboratory Sessions/ Experimental learning:	8Hrs.
1. Create a spreadsheet file with some data (or use an existing spreadsheet with data if you	
have) and import the data into MATLAB.	
2. Matlab 2D and 3D Plot	
Video link / Additional online information :	
1. <u>https://www.youtube.com/watch?v=iOmggewj5XI</u>	
2. https://in.mathworks.com/learn/tutorials/simulink-onramp.html	
Module-5	
Applications of Matlab: Diode Characteristics, Fourier Analysis, Signal Processing, Deep learning,	
Image processing	
Laboratory Sessions/ Experimental learning:	
1. Image Enhancement Using Intensity Transformations,	
2. Morphological and Other Set Operations	8Hrs.
3. Two-Dimensional Fast Fourier Transform	
Video link / Additional online information:	
1. <u>https://in.mathworks.com/videos/image-processing-and-computer-vision-in-matlab-and-</u>	
simulink-96760.html	

Course of	putcomes:
CO1	Students should be able to apply computer methods for solving a wide range of engineering problems.
CO2	Students should be able to use computer engineering software to solve and present problem solutions in a technical format.
CO3	Students should be able to utilize computer skills to enhance learning and performance in other engineering and science courses.
CO4	Understand how signals, images, and data are represented and manipulated in MATLAB
CO5	Students should be able understand the various programming constructs and how they can be used to solve a computational problem.

Text Bo	oks:
1	Proakis & Monalakis, "Digital signal processing – Principles Algorithms & Applications", 4th Edition,
1.	Pearson education, New Delhi, 2007. ISBN: 81-317-1000-9.
2	Li Tan, Jean Jiang, "Digital Signal processing – Fundamentals and Applications", Academic Press,
2.	2013, ISBN: 978-0-12-415893.
Referen	nce Books:
1.	S. Salivahanan, C. Gnanpriya, Digital Signal processing, McGraw Hill

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions.

Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO M	apping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	-	-	-	-	2	1	1	2
CO2	3	3	3	2	-	-	-	-	2	1	1	2
CO3	3	3	3	3	-	-	-	-	2	1	1	2
CO4	3	3	3	3	-	-	-	-	2	1	1	2
CO5	3	3	2	-	3	-	-	-	3	1	3	3

		Semes	ster:VI						
	Digital Image Processing								
Course	e Code:	MVJ22EA643	CIE Marks: 50						
Credit	s:	L:T:P: 3:0:0	SEE Marks: 50						
Hours	:	40	SEE Duration: 3 Hrs						
Course	e Learning Ob	jectives: The students will be	able to						
1	Understar	Understand the fundamentals of digital image processing							
2		Understand the image transforms and other image enhancement techniques used in digita image processing.							
3	Explain im	age restoration techniques and r	methods used in digital image processing						
4	Understan	d region-based segmentation, re	epresentation and descriptions						
5	Describe c	olor fundamentals and various n	norphological image processing techniques						

UNIT 1	
Prerequisites: Discrete Fourier Transform, MATLAB Basics	
Introduction to Digital Image Processing: What is Digital Image Processing? Origin of Digital Image	
Processing, Fundamental Steps in Digital Image Processing, Components of an Image Processing	
System, Elements of Visual Perception, Image Sensing and Acquisition, Image Sampling and	
Quantization	
Applications of Image Processing: Medical imaging, Robot vision, Character recognition, Remote Sensing.	
Laboratory Sessions/ Experimental learning:	8Hrs.
1. Implementation and analysis of image sampling methods including uniform, grid, jittered and	
best candidate algorithms using MATLAB	
Applications: Medical imaging, Robot vision, Character recognition, Remote Sensing.	
Video link / Additional online information :	
1. <u>https://nptel.ac.in/courses/117/105/117105079/</u>	
2. <u>https://www.tutorialspoint.com/dip/index.htm</u>	
UNIT 2	
Image Enhancement in the Spatial Domain: Some Basic Relationships Between Pixels, Linear and	
Nonlinear Operations, Some Basic Intensity Transformation Functions, Histogram Processing,	8Hrs.
Fundamentals of Spatial Filtering, Smoothing Spatial Filters, Sharpening Spatial Filters	

Frequency Domain: Filtering in the Frequency Domain, Image Smoothing and Image Sharpening Using	
Frequency Domain Filters	
Laboratory Sessions/ Experimental learning:	
1. Implementation and analysis of image smoothing and sharpening algorithms using MATLAB.	
Applications: Image Enhancement, Image Analysis	
Video link / Additional online information:	
1. <u>https://nptel.ac.in/courses/117/105/117105079/</u>	
2. <u>https://www.tutorialspoint.com/dip/index.htm</u>	
UNIT 3	
Restoration: Noise models, Restoration in the Presence of Noise Only using Spatial Filtering and	
Frequency Domain Filtering, Linear, Position-Invariant Degradations, Estimating the Degradation	
Function, Inverse Filtering, Minimum Mean Square Error (Wiener) Filtering	
Laboratory Sessions/ Experimental learning:	
1. Test the restoration with the Inverse Filter for deblurring and denoising. Identify the problem	
with the Inverse Filter and discuss the solution for the same.	
with the inverse Filter and discuss the solution for the same.	8Hrs.
Applications: Image Enhancement, Image Analysis, Error detection and correction	
Video link / Additional online information:	
1. <u>https://nptel.ac.in/courses/117/105/117105079/</u>	
2. <u>https://www.tutorialspoint.com/dip/index.htm</u>	
UNIT 4	
Segmentation: Point, Line, and Edge Detection: Detection of Isolated Points, Line Detection, Edge	
Models, Basic Edge Detection, Advanced Technique for Edge Detection, Thresholding: Optimum	
Global Thresholding Using Otsu's Method, Region-Based Segmentation: Region growing, Region	
splitting and merging	
Representation and Description: Representation, Boundary descriptors.	8Hrs.
Laboratory Sessions/ Experimental learning:	
1. Develop and implement a matlab code for Image segmentation using thresholding technique.	
Applications: Object tracking, Pattern recognition	
	l

Video lin	k / Additional online information :	
1.	https://nptel.ac.in/courses/117/105/117105079/	
2.	https://www.tutorialspoint.com/dip/index.htm	
	UNIT 5	
Color Ima	age Processing: Color Fundamentals, Color Models, Pseudo color Image Processing.	
Morphol	ogical Image Processing: Preliminaries, Erosion and Dilation, Opening and Closing, The Hit-	
or-Miss T	ransforms, Some Basic Morphological Algorithms.	
Laborato	ry Sessions/ Experimental learning:	
1. In	nplementation and analysis of multimodal image fusion using MATLAB.	8Hrs.
Applicati	ons: Color conversion, Object marking	
Video lin	k / Additional online information:	
1. <u>h</u>	ttps://nptel.ac.in/courses/117/105/117105079/	
2	. <u>https://www.tutorialspoint.com/dip/index.htm</u>	
Course O	utcomes: After completing the course, the students will be able to	
CO1	Analyze image processing algorithms used for sampling and quantization.	
CO2	Apply and analyze image processing techniques in both the spatial and frequency (Fourier) de	omains.
CO3	Implement and analyse various image restoration algorithms	
CO4	Design image analysis techniques for image segmentation and evaluate the methodologies for segmentation.	or

Text B	Books:
1.	Rafel C Gonzalez and Richard E. Woods, "Digital Image Processing"-, PHI 3 rd Edition, 2010.
2.	Milan Sonka, Vaclav Hlavac, Roger Boyle, —"Image Processing, Analysis, and Machine Vision", Cengage Learning, Fourth Edition, 2013, ISBN: 978-81-315-1883-0
Refere	ence Books:
1.	S.Jayaraman, S.Esakkirajan, T.Veerakumar, "Digital Image Processing"- Tata McGraw Hill 2014.
2.	A. K. Jain, "Fundamentals of Digital Image Processing"- Pearson 2004.

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

СО-РО Мар	ping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	2	1	-	-	1	-	-	1
CO2	3	3	3	2	2	1	-	-	1	-	-	1
CO3	3	3	3	2	2	1	-	-	1	-	-	1
CO4	3	3	3	2	2	1	-	-	1	-	-	1
CO5	3	3	3	2	2	1	-	-	1	-	-	1

		Semes	ter:VI		
		Principles of Comm	unication Systems		
Cou	rse Code:	MVJ22EA644	CIE Marks: 50		
Credits:		L:T:P: 3:0:0	SEE Marks: 50		
Hou	rs:	40	SEE Duration: 3 Hrs		
Cou	rse Learning Ob	jectives: The students will be	able to		
1	Understand an	d analyze the concepts of Analo	g Modulation schemes viz; AM, FM.		
2	Describe conce	epts of digitization of signals viz;	sampling, quantizing and encoding.		
2 3		epts of digitization of signals viz;			
	Understand ba		odulation techniques.		

Module-1	
Prerequisites: Modulation, Need for Modulation and types of Modulation.	
Analog Modulation: Amplitude Modulation - AM, DSBSC, SSBSC, VSB - PSD, modulators and	
demodulators, Angle modulation - PM and FM - PSD, modulators and demodulators - Super heterodyne	
receivers.	
Laboratory Sessions/ Experimental learning:	
1. Introduction to Matlab	
2. Generation of AM signal using Matlab	011
Applications: Broadcast transmissions, Air band radio, Quadrature amplitude modulation	8Hrs.
Video link / Additional online information :	
1. <u>https://nptel.ac.in/courses/117/105/117105143/</u>	
2. <u>https://youtu.be/00ZbuhPruJw</u>	
3. <u>https://youtu.be/rt08yTGv_z4</u>	

Module-2					
		8Hrs.			
Pulse	e Modulation: Low pass sampling theorem, Quantization, PAM, Line coding, PCM, DPCM, DM, and				
ADPC	CM and ADM, Channel Vocoder, Time Division Multiplexing, Frequency Division Multiplexing.				
Labo	ratory Sessions/ Experimental learning:				
1.	Delta modulation using Matlab				
Appli	ications: Speech recognition systems, pattern recognition systems, digital audio in computers, CDs,				
digita	al telephony, telephone and radio communications, television systems.				
	Video link / Additional online information :				
1.	https://nptel.ac.in/courses/117/105/117105077/				
2.	https://nptel.ac.in/courses/117/101/117101051/				

Module-3						
Digital Modulation And Transmission: Phase shift keying, BPSK, DPSK, QPSK, Principles of M-ary signaling						
M-ary PSK & QAM, Comparison, ISI Pulse shaping, Duo binary encoding, Cosine filters, Eye pattern,						
equalizers.						
Laboratory Sessions/ Experimental learning:						
1. Eye diagram using Matlab						
2. Generation of BPSK Using LabVIEW	8Hrs.					
Applications: LAN, CDMA, WiMAX, wireless communication, mobile communication, Satellite						
Communication, Bluetooth, RFID.						
Video link / Additional online information:						
1. <u>https://nptel.ac.in/courses/117/105/117105077/</u>						
2. <u>https://nptel.ac.in/courses/117/101/117101051/</u>						
Module-4						
Information Theory and Coding: Measure of information, Entropy, Source coding theorem - Shannon						
Fanon coding, Huffman Coding, LZ Coding, Channel capacity, Shannon-Hartley law – Shannon's limit, Error						
control codes, Cyclic codes, Syndrome calculation, Convolution Coding, Sequential and Viterbi decoding.						
Laboratory Sessions/ Experimental learning:	8Hrs.					
1. Huffman coding using Matlab						
Applications: Data Compression, audio/video transmission, data transmission and file transfer						
Video link / Additional online information:						
1. <u>https://nptel.ac.in/courses/108/102/108102117/</u>						

https://nptel.ac.in/courses/117/104/117104129/						
	Module-5					
Spread Spectrum Multiple Access Techniques: PN sequences, properties, m-sequence, DSSS – Processing						
gain, Jamming, FHSS, Synchronization and tracking, Multiple Access FDMA, TDMA, CDMA.						
Laboratory Sessions/ Experimental learning:						
1. Direct Sequence Spread spectrum Signal Generation & Detection using Matlab						
Applications: CDMA, Wi-Fi, WPAN, etc.,						
Video link / Additional online information:						
1. <u>ł</u>	https://nptel.ac.in/courses/117/105/117105077/					
2. <u>ł</u>	https://nptel.ac.in/courses/117/101/117101051/					
3. <u>k</u>	https://nptel.ac.in/courses/117/105/117105136/					
https://youtu.be/Ojmv3l4kDn4						

Course outcomes:									
CO1	Examine the concepts of AM and FM modulation and demodulation.								
CO2 Apply the concepts of sampling, quantization and encoding for digitization of sign									
CO3	Evaluate the performance of a baseband and pass band digital communication system in terms of error rate and spectral efficiency.								
CO4	Analyze source and error control coding.								
CO5	Illustrate the digital communication system with spread spectrum modulation.								

Text Books:								
1.	H Taub, D L Schilling, G Saha, "Principles of Communication Systems" 3/e, TMH 2007							
2.	Simon Haykins, "An Introduction to Analog and Digital Communication", John Wiley, 2003.							
Reference Books:								
1.	Simon Haykin, "Digital Communication Systems", John Wiley & sons, First Edition, 2014, ISBN 978-0-471-64735-5.							
2.	B.P.Lathi, "Modern Digital and Analog Communication systems", 3 rd edition, Oxford University Press, 2007							
3.	H P Hsu, Schaum Outline Series – "Analog and Digital Communications" TMH 2006							
4.	B.Sklar, "Digital Communications Fundamentals and Applications" 2/e Pearson Education 2007							
5.	K Giridhar, "Information Theory And Coding", 4th Edition, Pooja Publication, Bangalore, 2001.							

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	1	1	-	-	-	-	-	1
CO2	3	3	3	2	1	1	-	-	-	-	-	1
CO3	3	3	3	2	1	1	-	-	-	-	-	1
CO4	3	3	3	2	1	1	-	-	-	-	-	1
CO5	3	3	3	2	1	1	-	-	-	-	-	1

		PROJEC	۲ PHASE – I					
Cour	se Code:	MVJ22EA65	CIE Marks:100					
Cred	its:	L:T:P: 0:0:4	SEE Marks: 100					
Hour	rs:	-	SEE Duration: 3 Hrs					
Cour	se Learning Objecti	ves: The students will l	e able to					
1	Develop independent learning.							
2	Develop interacti skills.	ve, communication, or	ganization, time management, and presentation					
3	Appraise flexibility and adaptability.							
4			ninar without any fear, face audience confidently, roup discussion to present and exchange ideas.					

Project Work Phase - I: Each student of the project batch shall involve in carrying out the project work jointly in constant consultation with internal guide, co-guide, and external guide and prepare the project report as per the norms avoiding plagiarism.

Cours	Course outcomes: At the end of the course the student will be able to:						
CO1	Describe the project and be able to defend it.						
CO2	Learn to use modern tools and techniques.						
CO3	Develop skills to work in a team to achieve common goal. Develop skills of project management and finance.						
CO4	Develop skills of self-learning, evaluate their learning and take appropriate actions to improve it.						
CO5	Prepare them for life-long learning to face the challenges and support the technological changes to meet the societal needs.						

Scheme of Evaluation:

Internal Marks: The Internal marks (50 marks) evaluation shall be based on Phase wise completion of the

project work, Project report, Presentation and Demonstration of the actual/model/prototype of the project.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	3	3	2	1	1	2	1	1	2
CO2	2	2	2	3	3	2	1	1	2	1	2	2
CO3	2	2	2	3	3	2	1	1	2	1	2	2
CO4	2	2	2	3	3	2	1	1	2	1	2	2
CO5	2	2	2	3	3	2	1	1	2	1	2	2

	Computer Communication	Networks						
Course Code	MVJ22EA71	CIE	50					
Total No. of Contact Hours	40	SEE	50					
No. of Contact Hours/week	No. of Contact Hours/week 3 (L : T : P :: 3 : 0 : 2) Total 1							
Course objectives:Students wil 1 Understand the layering 2 Describe about the prote 3 Explain different networ 4 Describe various routing 5 Identify security feature Prerequisites: Basic knowledge Introduction: Data Communicat Networks: Network criteria, Phy Internet. Network Models: Protocol Layer Protocol Suite: Layered Archited Encapsulation and Decapsulation Model: OSI Versus TCP/IP Laboratory Sessions/ Experime 1. Study and draw the layon NetSim. 2. List out the type of cablin Applications: Ethernet, Fiberne Video link / Additional online in https://nptel.ac.in/courses/106	I be able to architecture of OSI reference ocols associated with each la king architectures and their techniques and the transport s and functionality of applica Module-1 Module-1 on computers tions: Components, Represe visical Structures, Network Ty ering: Scenarios, Principles, L cture, Layers in TCP/IP suite, on, Addressing, Multiplexing ntal learning: ut of LAN connection in Con ng involved. t, Satellite Communication. nformation: /106/106106091/	ce model and TCP/IP protocol s ayer. representations. ort layer services. ation layer protocols. entations, Data Flow, ypes: LAN, WAN, Switching, Logical Connections, TCP/IP , Description of layers, and Demultiplexing, The OSI nputer Networks Lab in	100 uite.					
Data-Link Layer: Introduction: N Link, Layer addressing: Types of Framing, Flow and Error Contro Wait protocol, Piggybacking. Media Access Control: Random Wired LANs: Ethernet: Ethernet Characteristics, Addressing, Acc Laboratory Sessions/ Experime Study and analyse packet trans Applications: Collision detection Video link / Additional online in https://nptel.ac.in/courses/106	addresses, ARP. Data Link C I, Data Link Layer Protocols: Access: ALOHA, CSMA, CSM Protocol: IEEE802, Ethernet ess Method, Efficiency, and ntal learning: fer using CSMA/CD and CSM n and avoidance in wired an nformation:	Control (DLC) services: Simple Protocol, Stop and MA/CD, CSMA/CA. t Evolution, Standard Ethernet: Implementation. MA/CA using NetSim.	8Hrs					

Wireless LANs: Introduction: Architectural Comparison, Characteristics, IEEE 802.11:	8Hrs				
Architecture, MAC Sublayer, Addressing Mechanism.	00				
Network Layer: Introduction, Network Layer services: Packetizing, Routing and					
Forwarding, Other services, Packet Switching: Datagram Approach, Virtual Circuit					
Approach, IPV4 Addresses, Address Space, Classful Addressing, Classless Addressing,					
DHCP.					
Unicast Routing: Introduction, Routing Algorithms: Distance Vector Routing, Link State					
Routing.					
Laboratory Sessions/ Experimental learning:					
1. Study of IP addressing, subnet mask and subnetting.					
Applications: Routing and forwarding packets in routers.					
Video link / Additional online information:					
https://nptel.ac.in/content/storage2/courses/106105080/pdf/M6L2.pdf					
Module-4					
Transport Layer: Introduction: Transport Layer Services, Connectionless and Connection					
oriented Protocols, Transport Layer Protocols: Simple protocol, Stop and wait protocol,					
Go-Back-N Protocol, Selective repeat protocol.					
Transport-Layer Protocols in the Internet: User Datagram Protocol: User Datagram, UDP					
Services, UDP Applications, Transmission Control Protocol: TCP Services, TCP Features,					
Segment, Connection, State Transition diagram, Windows in TCP, Flow control, Error					
control, TCP congestion control.					
Laboratory Sessions/ Experimental learning:					
Transport analysis using TCP/UDP using NetSim.					
Applications: MS Teams, Zoom, Cisco webex					
Video link / Additional online information:					
http://www.digimat.in/nptel/courses/video/106105183/L11.html					
Module-5					
Application Layer: Introduction: providing services, Application- layer paradigms,					
Standard Client - Server Protocols: World wide web, Hyper Text Transfer Protocol, FTP:					
Two connections, Control Connection, Data Connection, Electronic Mail: Architecture,					
Wed Based Mail, Telnet: Local versus remote logging, Domain Name system: Name					
space, DNS in internet, Resolution, DNS Messages, Registrars, DDNS, security of DNS.	011.5				
Laboratory Sessions/ Experimental learning:	8Hrs				
Applications: All applications like MS Office, Facebook, Instagram, etc.					
Video link / Additional online information:					
https://archive.nptel.ac.in/courses/106/105/106105183/2					
LABORATORY EXPERIMENTS	-				

1. Implement a point-to-point network with four nodes and duplex links between them. Analyze the network performance by setting the queue size and varying the bandwidth.

2. Implement a four-node point to point network with links n0-n1, n1-n2 and n2-n3. Apply TCP agent between n1-n2 and UDP between n1-n3. Apply relevant applications over TCP and UDP agents changing the parameter and determine the number of packets sent by TCP/UDP.

3. Implement Ethernet LAN using n (6-10) nodes. Compare the throughput by changing the error rate and data rate.

4. Implement ESS with transmission nodes in Wireless LAN and obtain the performance parameters.

5. Implementation of Link state routing algorithm.

Implement the following in C/C++ in Linux platform

6. Write a program for a HLDC frame to perform the following.

i) Bit stuffing ii) Character stuffing.

7. Write a program for distance vector algorithm to find suitable path for transmission. For the given data, use CRC-CCITT polynomial to obtain CRC code. Verify the program for the cases. a. Without error b. With error

8.Implementation of Sliding Window Protocol.

9. Write a program for congestion control using leaky bucket algorithm.

Course	ourse outcomes:							
CO1	Analyse the layering architecture of computer networks and distinguish between the OSI							
01	reference model and TCP/IP protocol suite.							
CO2	Apply the protocols and services of Physical and Data link layer.							
CO3	Describe functions associated with network layer and connecting devices.							
CO4	Analyse and apply the protocols and services of Transport layer.							
CO5	Analyse and apply the protocols and services of application layer.							
Text B	poks:							
1.	Behrouz A Forouzan, "Data Communication and Networks", 5th Ed. TMH.							
2.	Andrew S Tanebaum, "Computer Networks", 4th Ed. PHI/ Pearson education.							
Refere	Reference Books:							
1.	S. Keshav, "An Engineering approach to Computer Networks", 5th Ed. Pearson.							
2.	W.A. Shay, "Understanding communication and Networks", Thomson.							

CO-PO M	lapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	-	1	-	-	1	-	-	1
CO2	3	3	2	2	-	1	-	-	1	-	-	1
CO3	3	3	2	2	-	1	-	-	1	-	-	1
CO4	3	3	2	2	-	1	-	-	1	-	-	1
CO5	3	3	2	2	-	1	-	-	1	-	-	1

	Semester-VII					
	Digial Image Processing					
Course Code	MVJ22EA72	CIE Marks	50			
Teaching Hours/Week (L: T:P: S)	SEE Miarks					
Total Hours of Pedagogy	40L+10P	Total Marks	100			
image processing. Study the image restoration t Understand region-based seg Know the colour fundamenta Teaching-Learning Process (G These are sample Strategies,	orms and other image enhancement techniques and methods used in digit mentation and segmentation using r ls and various morphological image p	tal image processing norphological water processing technique	sheds. es.			
course outcomes. Module-1						
Prerequisites: Discrete Fourier Introduction to Digital Image of Digital Image Processing, F Components of an Image Pro- Sensing and Acquisition, Image Laboratory Sessions/ Experim 1.	e Processing: What is Digital Image Processing: What is Digital Image Processing System, Elements of Visual Page Sampling and Quantization nental learning: Implementation and analysis of image methods including uniform, grid, jitt	rocessing, erception, Image ge sampling ered and best	BHrs			
Applications: Medical imagin Sensing. Video link / Additional online	candidate algorithms using MATLAB g, Robot vision, Character recognitio e information : urses/117/105/117105079/					

Module-2	
Spatial Domain: Some Basic Relationships Between Pixels, Linear and Nonlinear	8Hrs
Operations, Some Basic Intensity Transformation Functions, Histogram Processing, Fundamentals of Spatial Filtering, Smoothing Spatial Filters, Sharpening Spatial	
Filters	
Frequency Domain: Filtering in the Frequency Domain, Image, Smoothing and	
Image Sharpening Using Frequency Domain Filters.	
Laboratory Sessions/ Experimental learning:	
1. Implementation and analysis of image smoothing and	
sharpening algorithms using MATLAB.	
Applications: Image Enhancement, Image Analysis	
Video link / Additional online information:	
1. <u>https://nptel.ac.in/courses/117/105/117105079/</u>	
2. https://www.tutorialspoint.com/dip/index.htm	
Module-3	
Restoration: Noise models, Restoration in the Presence of Noise Only using Spatial	8Hrs
Filtering and Frequency Domain Filtering, Linear, Position-Invariant Degradations,	
Estimating the Degradation Function, Inverse Filtering, Minimum Mean Square	
Error(Wiener) Filtering.	
Laboratory Sessions/ Experimental learning:	
1. Test the restoration with the Inverse Filter for	
deblurring and denoising. Identify the problem with	
the Inverse Filter and discuss the solution for the	
same.	
Applications: Image Enhancement, Image Analysis, Error detection and correction	
Video link / Additional online information:	
1. <u>https://nptel.ac.in/courses/117/105/117105079/</u>	
2. <u>https://www.tutorialspoint.com/dip/index.htm</u>	
Module-4	
Segmentation: Point, Line, and Edge Detection: Detection of Isolated Points, Line	8Hrs
Detection, Edge Models, Basic Edge Detection, Advanced Technique for Edge	
Detection, Thresholding: Optimum Global Thresholding Using Otsu's Method,	
Region-Based Segmentation: Region growing, Region splitting and merging	
Laboratory Sessions/ Experimental learning:	
 Develop and implement a matlab code for Image 	
segmentation using thresholding technique.	
Applications: Object tracking, Pattern recognition	
Video link / Additional online information :	
1. <u>https://nptel.ac.in/courses/117/105/117105079/</u>	
 <u>https://www.tutorialspoint.com/dip/index.htm</u> 	

Мо	dule-5	
Col	or Image Processing: Color Fundamentals, Color Models, Pseudocolor Image	8Hrs
	cessing.	
Мо	rphological Image Processing: Preliminaries, Erosion and Dilation, Opening and	
Clo	sing, The Hit-or-Miss Transforms, Some Basic Morphological Algorithms	
Lab	oratory Sessions/ Experimental learning:	
1.	Implementation and analysis of multimodal image fusion using MATLAB.	
Арр	blications: Color conversion, Object marking	
Vid	eo link / Additional online information:	
1.	https://nptel.ac.in/courses/117/105/117105079/	
	2. <u>https://www.tutorialspoint.com/dip/index.htm</u>	
Lab	Experiments	
1. R	ead a gray-scale image. Convert it to binary image using thresholding. Also draw th	ne
hist	ogram	
2. R	ead an image and perform histogram equalization of the input image	
3. R	ead an image and perform geometric transformation	
	a) Rotation of image 15 degree anticlockwise and 30 degree clockwise.	
	b) Change in scale or resize the image.	
4.R	ead an image and corrupt it using salt and pepper noise. Apply mean filtering to co	rrupted
ima	-	
	Generate an image showing text "Digital Image Processing" and save the image as I	DIP.bmp
	convert it to grayscale	
	erform wiener filtering on the modular image matrix f(m,n). Select suitable S matr	ix
7. P	erform Digital image arithmetic in spatial domain	
	a) Addition of digital images	
	b) Subtraction	
	c) Multiplication	
	d) Division	
	e) Complement of any of the image	
8. R	ead an image. Perform mean filtering using a 3*3 box filter. Analyze the effect wh	en
incr	easing the mask size.	
9. R	ead an image corrupted using salt and pepper noise. Apply averaging filter and an	alyse the
res	ult.	
10.	Read an image and perform the following edge detection algorithm	
1) S	obel 2) Prewitt 3) Roberts 4) Log 5) Canny edge detection	
11.	Read an image and perform erosion and dialation operations.	
12.	Perform opening and closing operations on an image	
Тех	t Books:	
1.	Rafel C Gonzalez and Richard E. Woods , "Digital Image Processing" -, PHI 3rdEditic	n 2010.
2.	Milan Sonka, Vaclav Hlavac, Roger Boyle, "Image Processing, Analysis, and Machin	e Vision∥",
	Cengage Learning, 2013, ISBN: 978-81-315-1883-0	
Ref	erence Books:	
1.	S.Jayaraman, S Esakkirajan, T.Veerakumar, "Digital Image Processing", Tata McG 2011	raw Hill,
2.	S.Jayaraman, S.Esakkirajan, T.Veerakumar, "Digital Image Processing"- Tata McG 2014.	raw Hill

Course outcome (Course Skill Set)

At the end of the course, the student will be able to :

- 1. Analyze image processing algorithms used for sampling and quantization.
- 2. Apply and analyze image processing techniques in both the spatial and frequency (Fourier) domains.
- 3. Implement and analyse various image restoration algorithms
- 4. Design image analysis techniques for image segmentation and evaluate the methodologies for segmentation.
- 5. Conduct independent study and analyze various Morphological Image Processing techniques.

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the self - study are 20 (2 presentations are be held for 10 marks each). The marks obtained in test, quiz and self -studies are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks.

CO-PO N	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	2	1	-	-	1	-	-	1
CO2	3	3	3	2	2	1	-	-	1	-	-	1
CO3	3	3	3	2	2	1	-	-	1	-	-	1
CO4	3	3	3	2	2	1	-	-	1	-	-	1
CO5	3	3	3	2	2	1	-	-	1	-	-	1

	W	ireless Cellular Communication	Semester	VII					
Course Cod	9	MVJ22EA73	50	50					
Teaching Ho T:P: S)	ours/Week (L:	3 Hours/Week (L:T:P: 3:0:0)	50	50					
Total Hours	Total Hours of Pedagogy 30L 100								
Course obje	ctives:								
• Unde	erstand the basics o	f LTE standardization phases and specif	ications.						
	ain the system arch FDMA and SC-FDM	itecture of LTE and E-UTRAN, the layer of principles.	of LTE, based	on the use					
	•	radio interface protocols to set up, reco erring the EPS bearer.	nfigure and re	elease the					
	yze the main factor smission bandwidth	s affecting LTE performance including m	obile speed a	and					
		Module-1		-					
Key Enable	rs for LTE features	: OFDM, Single carrier FDMA, Single	carrier FDE,	8Hrs					
Channel De	oendent Multiuser	Resource Scheduling, Multi antenna Te	chniques, IP						
based Flat n	etwork Architectur	e, LTE Network Architecture.							
Wireless Fu	Indamentals: Cellu	lar concept, Broadband wireless chai	nnel (BWC),						
Fading in B	WC, Modeling BW	C – Empirical and Statistical models, N	/litigation of						
Narrow band and Broadband Fading.									
Application: Android Based Smart Phone Used for Induction Motor Control,									
Robotic Vehicle Movement By Cell Phone									
Web Reference: <u>https://nptel.ac.in/courses/106106167</u>									

Module-2	
Multicarrier Modulation: OFDM basics, OFDM in LTE, Timing and Frequency	8Hrs
Synchronization, PAR, SC-FDE .	
OFDMA and SC-FDMA: OFDM with FDMA,TDMA,CDMA, OFDMA, SC-FDMA,	
OFDMA and SC-FDMA in LTE .	
Multiple Antenna Transmission and Reception: Spatial Diversity overview, Receive Diversity, Transmit Diversity, Interference cancellation and signal enhancement, Spatial Multiplexing, Choice between Diversity, Interference suppression and Spatial Multiplexing Application: Dialed Telephone Number LED Based Display System, DTMF based	
Load Control System	
Web Reference: https://nptel.ac.in/courses/106106167	
Module-3	·
Overview and Channel Structure of LTE: Introduction to LTE, Channel Structure of	8Hrs
LTE, Downlink OFDMA Radio Resource, Uplink L1, L2 146 SC-FDMA Radio Resource.	
Downlink Transport Channel Processing: Overview, Downlink shared channels,	
Downlink Control Channels, Broadcast channels, Multicast channels, Downlink	
physical channels, H-ARQ on Downlink.	
Application: Wireless Message Communication between Two Computers	
Web Reference: https://nptel.ac.in/courses/106106167	
Module-4	
Uplink Channel Transport Processing: Overview, Uplink shared channels, Uplink	8Hrs
Control Information, Uplink Reference signals, Random Access Channels, H-ARQ on	
uplink.	
Physical Layer Procedures: Hybrid – ARQ procedures, Channel Quality Indicator	
CQI feedback, Precoder for closed loop MIMO Operations, Uplink channel	
sounding, Buffer status Reporting in uplink, Scheduling and Resource Allocation,	
Cell Search, Random Access Procedures, Power Control in uplink.	
Application: Remotely Controlled Android based Electronic Notice Board,	
Remote Operated Domestic Appliances Control by Android Application	
Web Reference: https://nptel.ac.in/courses/106106167	

	Module-5	
Radio	Resource Management and Mobility Management: PDCP overview,	8Hrs
MAC/F	RLC overview, RRC overview, Mobility Management, Inter-cell Interference	
Coordi	nation	
Applic	ation: Home Automation by Android Application based Remote Control	
Web R	eference: https://nptel.ac.in/courses/106106167	
Course	e outcome (Course Skill Set)	
At the	end of the course, the student will be able to :	
1.	Understand the system architecture and the functional standard specified in	LTE 4G.
2.	Analyze the role of LTE radio interface protocols and EPS Data convergence	protocols to
	set up, reconfigure and release data and voice from users.	
3.	Demonstrate the UTRAN and EPS handling processes from set up to release	ase including
	mobility management for a variety of data call scenarios.	
4.	Test and Evaluate the Performance of resource management and packet da	ta processing
	and transport algorithms.	

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). The student is declared as a pass in the course if he/she secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- There are 25 marks for the CIE's Assignment component and 25 for the Internal Assessment Test component.
- Each test shall be conducted for 25 marks. The first test will be administered after 40-50% of the coverage of the syllabus, and the second test will be administered after 85-90% of the coverage of the syllabus. The average of the two tests shall be scaled down to 25 marks
- Any two assignment methods mentioned in the 22OB2.4, if an assignment is project-based then only one assignment for the course shall be planned. The schedule for assignments shall be planned properly by the course teacher. The teacher should not conduct two assignments at the end of the semester if two assignments are planned. Each assignment shall be conducted for 25 marks. (If two assignments are conducted then the sum of the two assignments shall be scaled down to 25 marks)
- The final CIE marks of the course out of 50 will be the sum of the scale-down marks of tests and assignment/s marks.

Internal Assessment Test question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester-End Examination:

Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the course (**duration 03 hours**).

- 1. The question paper will have ten questions. Each question is set for 20 marks.
- 2. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), **should have a mix of topics** under that module.
- 3. The students have to answer 5 full questions, selecting one full question from each module.
- 4. Marks scored shall be proportionally reduced to 50 marks

Su	Suggested Learning Resources:						
Во	oks						
1.	Arunabha Ghosh, Jan Zhang, Jefferey Andrews, Riaz Mohammed, 'Fundamentals of LTE', Prentice Hall, Communications Engg. and Emerging Technologies.						
2.	LTE for UMTS Evolution to LTE-Advanced' Harri Holma and Antti Toskala, Second Edition - 2011, John Wiley & Sons, Ltd. Print ISBN: 9780470660003.						
3.	'EVOLVED PACKET SYSTEM (EPS) ; THE LTE AND SAE EVOLUTION OF 3G UMTS' by Pierre Lescuyer and Thierry Lucidarme, 2008, John Wiley & Sons, Ltd. Print ISBN:978-0-470-05976-0.						
4.	'LTE – The UMTS Long Term Evolution ; From Theory to Practice' by Stefania Sesia, Issam Toufik, and Matthew Baker, 2009 John Wiley & Sons Ltd, ISBN 978-0-470-69716-0.						
We	eb links and Video Lectures (e-Resources):						
	 <u>https://archive.nptel.ac.in/courses/117/102/117102062/</u> <u>https://nptel.ac.in/courses/106105160</u> 						
Ac	Activity Based Learning (Suggested Activities in Class)/ Practical Based learning						

CO-PO N	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	P08	PO9	PO10	PO11	PO12
CO1	3	3	3	2	1	-	-	-	-	-	-	1
CO2	3	3	3	2	1	-	-	-	-	-	-	1
CO3	3	3	3	2	1	-	-	-	-	-	-	1
CO4	3	3	3	2	1	-	-	-	-	-	-	1

Semester-VII							
Industrial IOT							
Course Code	MVJ22EA741	CIE Marks	50				
Teaching Hours/Week (L: T:P: S)	3 Hours/Week (L:T:P: 3:0:2)	SEE Marks	50				
Total Hours of Pedagogy	40L	Total Marks	100				

Cou	rse objectives:The students will be able to	
1	Design Industrial IOT Systems for various application.	
2	Develop systems for lioT	
3	Understand IIoT Data Monitoring & Control techniques	
4	Analyze Cyber Physical Systems	
5	Understand various Industrial IoT- Applications:	
Mo	dule-1	
Intr The of T	requisites: Basic knowledge on computers oduction to Industrial IoT (IIoT) Systems: Various Industrial Revolutions, Role of Internet of Things (IoT) & Industrial Internet hings (IIoT) in Industry, Industry 4.0 revolutions, Support System for Industry 4.0, art Factories.	8Hrs
fitn	lications:IoT devices improve entertainment, network connectivity, health, and ess. eo link / Additional online information: <u>https://nptel.ac.in/courses/106104242</u>	
Mo	dule-2	
netv and	lementation systems for IIoT:: Sensors and Actuators for Industrial Processes, Sensor works, Process automation and Data Acquisitions on IoT Platform, Microcontrollers Embedded PC roles in IIoT, Wireless Sensor nodes with Bluetooth, WiFi, and LoRa cocols and IoT Hub systems	
on t	lications: RFID and GPS technology can help a manufacturer track a product from its start he factory floor to its placement in the destination store, the whole supply chain from t to finish	8Hrs
	eo link / Additional online information: <u>https://nptel.ac.in/courses/106104242</u>	
Mo	dule-3	
	Data Monitoring & Control: Gate way, IoT Edge Systems and It's Programming, Cloud computing, Real Time	8Hrs
	hboard for Data Monitoring, Data Analytics and Predictive Maintenance with IIoT mology.	
	lications: IoT makes monitoring and management of micro-climate conditions a ity, which in turn increases production	
	eo link / Additional online information: <u>https://nptel.ac.in/courses/106104242</u>	

Module-4	
Cyber Physical Systems:Next Generation Sensors, Collaborative Platform and Product Lifecycle Management, Augmented Reality and Virtual Reality, Artifical Intelligence, Big Data and Advanced Analysis Applications: Smart Grid and Energy Saving, Fleet Management Video link / Additional online information: <u>https://nptel.ac.in/courses/106104242</u>	8Hrs
Module-5	
Industrial IoT- Applications: Healthcare, Power Plants, Inventory Management & Quality Control, Plant Safety and Security (Including AR and VR safety applications), Facility Management. Applications: Maintenance Management, Smart Pollution Control Video link / Additional online information: <u>https://nptel.ac.in/courses/106104242</u>	8Hrs
Assessment Details (both CIE and SEE)	
The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam	(SEE) is 50%
The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the
SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). The studer	nt is declare
as a pass in the course if he/she secures a minimum of 40% (40 marks out of 100) in the	sum total o
the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken toget	ner.
 Continuous Internal Evaluation: There are 25 marks for the CIE's Assignment component and 25 for the Internal Assection component. Each test shall be conducted for 25 marks. The first test will be administered after 44 coverage of the syllabus, and the second test will be administered after 85-90% of the the syllabus. The average of the two tests shall be scaled down to 25 marks Any two assignment methods mentioned in the 22OB2.4, if an assignment is project-b only one assignment for the course shall be planned. The schedule for assignments shall planned properly by the course teacher. The teacher should not conduct two assignment 	D-50% of the coverage of ased then all be
end of the semester if two assignments are planned. Each assignment shall be conduct marks. (If two assignments are conducted then the sum of the two assignments shall be down to 25 marks)	ted for 25 be scaled

• The final CIE marks of the course out of 50 will be the sum of the scale-down marks of tests and assignment/s marks.

Internal Assessment Test question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester-End Examination:

Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the course (duration 03 hours).

- 1. The question paper will have ten questions. Each question is set for 20 marks.
- 2. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), **should have a mix of topics** under that module.
- 3. The students have to answer 5 full questions, selecting one full question from each module.

Marks scored shall be proportionally reduced to 50 marks

Course	outcomes:
CO1	Understand Revolution of Industrial IoT
CO2	Understand Use of Sensors and Actuators in Industry application
CO3	Understand IoT Gateways, Edge System and Programming
CO4	Acquire knowledge of next Generation Sensors
CO5	Industrial IoT applications
Text Bo	ooks:
1.	INTERNET OF THINGS, Architecture and Design Principles. Raj Kamal, TataMcGrawHill-ISBN-13: 978-93-5260-523-1
2.	Industrial IoT,Challenges,Design Principles,Application and security, Ismail Butun,Springer Nature,1 July 2020
Refere	nce Books:
1	Introduction to Industrial Internet of Things and Industry 4.0, Sudip Misra, Chandana Roy,
1.	Anandarup Mukherjee, 1st Edition, CRC Press
2.	W.A. Shay, "Understanding communication and Networks", Thomson.

CO-PO N	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	1	-	-	-	-	-	-	1
CO2	3	3	3	2	1	-	-	-	-	-	-	1
CO3	3	3	3	2	1	-	-	-	-	-	-	1
CO4	3	3	3	2	1	-	-	-	-	-	-	1
CO5	3	3	3	2	1	-	-	-	-	-	-	1

		Semeste	r: VII						
		VIRTUAL & AUGMENTE	D REALITY (Theory)						
Course C	ode:	MVJ22EA554	CIE Marks:50						
Credits:		L:T:P: 3:0:0	SEE Marks: 50						
Hours:		40L	SEE Duration: 3 Hrs						
Course L	earning Obj	ectives: The students will be a	ble to						
1	Understand virtual and Augmented Reality.								
2	Describe various elements and components used in AR/VR Hardware								
3	Explain various factors involved in multisensory action of human being								
	Execute detail analysis of the engineering, scientific and functional aspects of VR systems								
4	and the fundamentals of VR/AR modelling and programming.								
5	Understan	d virtual reality, augmented	reality and using them to build Biomedical,						
5	engineerin	engineering and robotics application.							

Module-1	
Prerequisites: Intermediate programming ability in object-oriented languages, Basic linear	
algebra	
Introduction to Immersive Technologies: A Brief History of Virtual Reality, The five Classic	
Components of a VR System, Early Commercial VR Technology, VR becomes an Industry,	
Reality, Virtuality and Immersion, VR, AR, MR, xR: similarities and differences.	
Laboratory Sessions/ Experimental learning:	8Hrs.
1. Choose an existing VR application and write a summary including a	
personal critical reflection on its look and feel especially in relation to immersion,	
presence, agency and interactivity.	
Applications: VR in Sport, Mental Health, Medical Training.	
Video link / Additional online information:	
https://nptel.ac.in/courses/121/106/121106013/	
Module-2	
Motion Tracking and Navigation: Position and Motion Trackers , Inside Out/Outside In ,	
Tracker Performance Parameters , Optical, Active and Passive Trackers , Inertial and Hybrid	
Trackers, HMD Trackers , Magnetic Trackers , Mechanical Trackers , Ultrasonic Trackers ,	8Hrs.
Navigation and Manipulation Interfaces , Tracker-Based Navigation/Manipulation	
Interfaces.	
Laboratory Sessions/ Experimental learning:	

1. Design an immersive environment in Unity-3D or Unreal that will develop and	
enhance Work in groups. Start by building a simple 3D world that an interactive	
player can move around in. Connect the controllers and create a simple interaction	
loop. Measure velocity, acceleration, distances, and other motion and spatial	
parameters of the user and the controllers.	
Applications: Industrial Training and Simulation, Flight Training and Simulation, Pilot Head	
Tracking, Live Aircraft, Sports motion Analysis.	
Video link / Additional online information:	
https://nptel.ac.in/courses/106/106/106106138/	
Module-3	
The Human behind the lenses: Human Perception and Cognition , The Human Visual	
System, VR Health and Safety Issues, Effects of VR Simulations on Users , Cyber sickness,	
before and now Guidelines for Proper VR Usage.	
Laboratory Sessions/ Experimental learning:	011
1. Create a well-rounded multisensory action that is meaningful, safe and	8Hrs.
accommodates all senses, visual, auditory and tactile.	
Applications: Human–Computer Interaction, e-Sports, Games, Cultural heritage	
Video link / Additional online information:	
https://nptel.ac.in/noc/courses/noc18/SEM1/noc18-ge08/	
Module-4	
Augmented and Mixed Reality: Taxonomy, technology and features of augmented reality,	
difference between AR and VR, Challenges with AR, AR systems and functionality,	
Augmented reality methods, visualization techniques for augmented reality, wireless	
displays in educational augmented reality applications, mobile projection interfaces,	
marker-less tracking for augmented reality, enhancing interactivity in AR environments,	
evaluating AR systems.	8Hrs.
Laboratory Sessions/ Experimental learning:	
1. Experiment with Photo grammetry and improve the visual look and feel of	
your environment	
Applications: Healthcare	
Video link / Additional online information:	
https://www.coursera.org/learn/ar-technologies-video-streaming	

Module-5								
Medical Applications of xR: Behavioural Therapy, Virtual and Augmented Surgery, Triage								
and Diagnostics, Applications of VR in Robotics: Robot Programming, Robot Tele operation.								
Laboratory Sessions/ Experimental learning:								
1. Add a training component to your existing prototype. Define the mechanics	8Hrs.							
that will progressively improve user's performance to mastery through an								
interaction loop using the dual concept of challenge / reinforcing.								
Video link / Additional online information:								
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5622235/								

Course out	tcomes:
CO1	Acquire various principles and concepts of virtual reality and its application.
CO2	Understand the optical motion tracking and navigation in virtual reality.
CO3	Analyse and solve problems related to their expertise in Augment and Virtual Environments.
CO4	Develop detailed analysis of the engineering, scientific and functional aspects of VR systems and the fundamentals of VR modelling and programming.
CO5	Illustrate the knowledge of integrating hardware, software, tools for AR/VR technology.
Text Books	5:
2.	C. Burdea and Philippe Coiffet, "Virtual Reality Technology", First Edition, Gregory, John Wiley and Sons, Inc.,2008
3.	Steven M. LaValle, "Virtual Reality", 2016. Online version: http://msl.cs.uiuc.edu/vr/
4.	Alan B. Craig, "Understanding Augmented Reality, Concepts and Applications", Morgan Kaufmann, First Edition, 2013.
5.	Dieter Schmalstieg and Tobias Hollerer, "Augmented Reality: Principles and Practice (Usability)" by Pearson Education (US), Addison-Wesley Educational Publishers Inc, New Jersey, United States, 2016. ISBN: 9780321883575
Reference	Books:
1.	Jason Jerald., "The VR Book: Human-Centred Design for Virtual Reality", Association for Computing Machinery and Morgan and Claypool, New York, NY, USA, First Edition, 2015

	Steve Aukstakalnis, "Practical Augmented Reality: A Guide to the Technologies,								
2.	Applications, and Human Factors for AR and VR (Usability)", Addison-Wesley								
	Professional; 1st edition, 2016.								
2	Robert Scoble and Shel Israel, "The Fourth Transformation: How Augmented Reality and								
3.	Artificial Intelligence Will Change Everything", Patrick Brewster Press; 1st edition, 2016.								
4.	Tony Parisi, "Learning Virtual Reality: Developing Immersive Experiences and								
4.	Applications for Desktop, Web, and Mobile", OReilly Media; 1st edition, 2015.								
5.	Tony Parisi, "Programming 3D Applications with HTML5 and WebGL: 3D Animation and								
5.	Visualization for Web Pages", OReilly Media; 1st edition, 2014.								

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO N	CO-PO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	P07	P08	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	2	3	1	-	-	1	-	-	1	-	1
CO2	3	3	3	2	3	1	-	-	1	-	-	1	-	1
CO3	3	3	3	2	3	1	-	-	1	-	-	1	-	1
CO4	3	3	3	2	3	1	-	-	1	-	-	1	-	1
CO5	3	3	3	2	3	1	-	-	1	-	-	1	-	1

	Scri	pting Language For Communication						
Cours	se Code	MVJ22EA743 C	CIE Mark	S	50			
Teach	ning Hours/Week (L:	3 Hours/Week (L:T:P: 3:0:0)	SEE Marl	/ 5	50			
T:P: S								
Total	Hours of Pedagogy	30L T	fotal Ma	otal Marks 1				
Cours	se objectives:Students will	be able to						
1	study the basics of script	ing languages like Java script, Perl, PHP an	d Ruby.					
2	understand the requirem	ents of Scripting Languages.						
3	identify the uses of Scrip	ting Languages						
4	Explain programming fea	tures of Perl and PHP.						
5	Demonstrate the implem	entation and applications of Scripting						
	- -	Module-1						
Intro	duction to Scripts and Scri	oting Languages-Scripts and Programs, Us	ses for	8Hrs				
Script	ting Languages, Web Script	ing.						
Java 🛛	Script: Variables, Data Typ	es, Operators, Conditional statements, L	_oops,					
Array	s, Functions, Objects-Pro	edefined objects, accessing objects, o	object					
Meth	ods.							
Appli	cation: useful for extractin	g information from a dataset						
Web	Reference: <u>https://nptel.a</u>	c.in/courses/117106113						
		Module-2						
		ctive web pages elements: JavaScript Ev		8Hrs				
	· •	, Form events, window events, Event han	dlers,					
	es, Form object, JavaScript							
		trol an application's behavior by writing so	cripts.					
Web	Reference: <u>https://nptel.a</u>	c.in/courses/117106113						
		Module-3						
		lars, Operators, Conditional statements, L	•	8Hrs				
-		uilt-in Functions, Pattern matching and re	egular					
-	ession operators							
	cation							
Web	Reference: <u>https://nptel.a</u>							
	_	Module-4						
		erators, Conditional statements, Loops, A	•	8Hrs				
	•	ay, String Functions, Functions-Paramet						
		eference, File Handling, PHP Form handlir	ng					
	cation: front-end and back	-						
Web	Reference: <u>https://nptel.ac</u> .	<u>1n/courses/11/106113</u>						

	Module-5								
Ruby:	iby: Data types, Variables, Operators, Conditional statements, Loops, Methods, 8Hrs								
Blocks	ocks, Modules, Arrays, Strings, Hashes, File I/O, Ruby Form handling.								
Applic	pplication: for formatting documents								
Web R	Veb Reference: https://nptel.ac.in/courses/117106113								
-									
Course	outcome (Course Skill Set), At the end of the course, the student will be ab	le to :							
		le to :							
	e outcomes:								
Cours	e outcomes: To comprehend the differences between typical scripting languages, typic								
	e outcomes:								
Cours CO1	e outcomes: To comprehend the differences between typical scripting languages, typic system and application programming languages To implement the design of programs for simple applications.								
Cours CO1 CO2	e outcomes: To comprehend the differences between typical scripting languages, typic system and application programming languages								

At the end of the course, the student will be able to :

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). The student is declared as a pass in the course if he/she secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

• There are 25 marks for the CIE's Assignment component and 25 for the Internal Assessment Test component.

• Each test shall be conducted for 25 marks. The first test will be administered after 40-50% of the coverage of the syllabus, and the second test will be administered after 85-90% of the coverage of the syllabus. The average of the two tests shall be scaled down to 25 marks

• Any two assignment methods mentioned in the 22OB2.4, if an assignment is project-based then only one assignment for the course shall be planned. The schedule for assignments shall be planned properly by the course teacher. The teacher should not conduct two assignments at the end of the semester if two assignments are planned. Each assignment shall be conducted for 25 marks. (If two assignments are conducted then the sum of the two assignments shall be scaled down to 25 marks)

• The final CIE marks of the course out of 50 will be the sum of the scale-down marks of tests and assignment/s marks.

Internal Assessment Test question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester-End Examination:

Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the course (duration 03 hours).

1. The question paper will have ten questions. Each question is set for 20 marks.

2. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), should have a mix of topics under that module.

3. The students have to answer 5 full questions, selecting one full question from each module.

4. Marks scored shall be proportionally reduced to 50 marks.

Suggested Learning Resources: Books

1. The World of Scripting Languages, David Barron, Wiley Publications.

- 2. Learning PHP, MySQL, JavaScript, CSS&HTML5: A Step-byStep Guide to Creating Dynamic Websites 3rdEdition, O'Reilly Publications..
- 3. The Ruby Programming Language, David Flanagan and Yukihiro Matsumoto, O'Reilly Publications.

4. Beginning JavaScript with Dom scripting and AJAX, Russ Ferguson, Christian Heilmann, Apress.

5. Programming Perl, Larry Wall, T. Christiansen and J. Orwant, O'Reilly, SPD.

6. Open-source Web Development with LAMP using Linux Apache, MySQL, Perl and PHP, J. Lee and B. Ware (Addison Wesley) Pearson Education.

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

CO-PO N	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	P07	P08	PO9	PO10	PO11	PO12	
CO1	3	2	3	2	2	2	-	-	-	-	-	1	
CO2	3	3	2	2	1	2	-	-	-	-	-	2	
CO3	3	3	3	2	2	2	-	-	-	-	-	1	
CO4	3	2	2	2	2	2	-	-	-	-	-	1	
CO5	3	2	3	2	2	2	-	-	-	-	-	1	

~			Nano Electronics							
Co	Course Code MVJ22EA744 CIE Marks									
	achi P: S)	ing Hours/Week (L:	Hours/Week (L: 3 Hours/Week (L:T:P: 3:0:0) SEE Mar							
Total Hours of Pedagogy 30L Total Mar										
•										
Ele mo gro Ap M	ectro etho owth oplic eb R <u>tps:</u>	onic conduction, effects ods: Top-down processes, n of nano materials, order ation: Nanobiotechnolog deference: ://nptel.ac.in/courses/10 //nptel.ac.in/courses/10	08106186 03105122	Fabrication						
<u>ht</u>	tps:/	//nptel.ac.in/courses/11	<u>2106222</u>							
			Module-2							
		cterization: Classification ng probe techniques,di	n, Microscopic techniques, Field ion	microscopy.	8Hrs					

Module-3	
Inorganic semiconductor nanostructures: overview of semiconductor physics.	8Hrs
Quantum confinement in semiconductor nanostructures: quantum wells,	
quantum wires, quantum dots, super-lattices, band offsets,	
andelectronicdensity of states.	
Carbon Nanostructures:Carbon molecules,Carbon Clusters,Carbon	
Nanotubes, application of Carbon Nanotubes.	
Application: Nanotubes show promise in treating cardiovascular disease. They	
could play an important role in blood vessel cleanup	
Web Reference	
https://nptel.ac.in/courses/108106186	
https://nptel.ac.in/courses/103105122	
https://nptel.ac.in/courses/112106222	
Module-4	1
Fabrication techniques: requirements of ideal semiconductor, epitaxial growth	8Hrs
of quantum wells, lithography and etching,cleaved edge over growth,growth of	
vicinal substrates, strain induced dots and wires, electrostatically induced dots	
and wires, Quantum well width fluctuations, thermally annealed quantum	
wells, semi conductor nanocrystals, colloidal quantum dots, self-	
assemblytechniques.	
Application: use of renewable energy through green nanotechnology by	
generating, storing, and using energy without emitting harmful greenhouse	
gases such as carbon dioxide.	
Web Reference	
https://nptel.ac.in/courses/108106186	
https://nptel.ac.in/courses/103105122	
https://nptel.ac.in/courses/112106222	
Module-5	
Physical processes: modulation doping, quantum hall effect, resonant	8Hrs
	1
tunnelling, charging effects, ballistic carrier transport, Inter band absorption,	
tunnelling, charging effects, ballistic carrier transport, Inter band absorption,	
tunnelling, charging effects, ballistic carrier transport, Inter band absorption, intra band absorption, Light emission processes, phonon bottleneck,quantum	
tunnelling, charging effects, ballistic carrier transport, Inter band absorption, intra band absorption, Light emission processes, phonon bottleneck,quantum confined stark effect,nonlinear effects,coherence and	
tunnelling, charging effects, ballistic carrier transport, Inter band absorption, intra band absorption, Light emission processes, phonon bottleneck,quantum confined stark effect,nonlinear effects,coherence and dephasing,characterization of semiconductor nanostructures:optical electrical	
tunnelling, charging effects, ballistic carrier transport, Inter band absorption, intra band absorption, Light emission processes, phonon bottleneck,quantum confined stark effect,nonlinear effects,coherence and dephasing,characterization of semiconductor nanostructures:optical electrical and structural	
tunnelling, charging effects, ballistic carrier transport, Inter band absorption, intra band absorption, Light emission processes, phonon bottleneck,quantum confined stark effect,nonlinear effects,coherence and dephasing,characterization of semiconductor nanostructures:optical electrical and structural Application: Nanotechnology is enabling the use of hydrogen energy at a much higher capacity.Hydrogen fuel cells, while they are not an energy source	
tunnelling, charging effects, ballistic carrier transport, Inter band absorption, intra band absorption, Light emission processes, phonon bottleneck,quantum confined stark effect,nonlinear effects,coherence and dephasing,characterization of semiconductor nanostructures:optical electrical and structural Application: Nanotechnology is enabling the use of hydrogen energy at a much higher capacity.Hydrogen fuel cells, while they are not an energy source themselves, allow for storing energy from sunlight and other renewable	
tunnelling, charging effects, ballistic carrier transport, Inter band absorption, intra band absorption, Light emission processes, phonon bottleneck,quantum confined stark effect,nonlinear effects,coherence and dephasing,characterization of semiconductor nanostructures:optical electrical and structural Application: Nanotechnology is enabling the use of hydrogen energy at a much higher capacity.Hydrogen fuel cells, while they are not an energy source themselves, allow for storing energy from sunlight and other renewable sources in an environmentally-friendly fashion without any CO ₂ emissions	
tunnelling, charging effects, ballistic carrier transport, Inter band absorption, intra band absorption, Light emission processes, phonon bottleneck,quantum confined stark effect,nonlinear effects,coherence and dephasing,characterization of semiconductor nanostructures:optical electrical and structural Application: Nanotechnology is enabling the use of hydrogen energy at a much higher capacity.Hydrogen fuel cells, while they are not an energy source themselves, allow for storing energy from sunlight and other renewable sources in an environmentally-friendly fashion without any CO ₂ emissions Web Reference:	
tunnelling, charging effects, ballistic carrier transport, Inter band absorption, intra band absorption, Light emission processes, phonon bottleneck,quantum confined stark effect,nonlinear effects,coherence and dephasing,characterization of semiconductor nanostructures:optical electrical and structural Application: Nanotechnology is enabling the use of hydrogen energy at a much higher capacity.Hydrogen fuel cells, while they are not an energy source themselves, allow for storing energy from sunlight and other renewable sources in an environmentally-friendly fashion without any CO ₂ emissions Web Reference: https://nptel.ac.in/courses/108106186	
tunnelling, charging effects, ballistic carrier transport, Inter band absorption, intra band absorption, Light emission processes, phonon bottleneck,quantum confined stark effect,nonlinear effects,coherence and dephasing,characterization of semiconductor nanostructures:optical electrical and structural Application: Nanotechnology is enabling the use of hydrogen energy at a much higher capacity.Hydrogen fuel cells, while they are not an energy source themselves, allow for storing energy from sunlight and other renewable sources in an environmentally-friendly fashion without any CO ₂ emissions Web Reference:	

Course outcome (Course Skill Set), At the end of the course, the student will be able to :

Course	Course outcomes:									
CO1	Know the principles behind Nano scienc eengineering and Nanoelectronics.									
CO2	Apply the knowledge to prepare and characterize nano materials.									
CO3	Know the effect of particles size on mechanical, thermal, optical and electrical									
03	Properties of nano materials									
CO4	Design the process flow required to fabricate state of the art transistor technology									
CO5	Analyze the requirements for newmaterials and device structure in the future									
05	technologies.									

At the end of the course, the student will be able to :

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). The student is declared as a pass in the course if he/she secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

• There are 25 marks for the CIE's Assignment component and 25 for the Internal Assessment Test component.

• Each test shall be conducted for 25 marks. The first test will be administered after 40-50% of the coverage of the syllabus, and the second test will be administered after 85-90% of the coverage of the syllabus. The average of the two tests shall be scaled down to 25 marks

• Any two assignment methods mentioned in the 22OB2.4, if an assignment is project-based then only one assignment for the course shall be planned. The schedule for assignments shall be planned properly by the course teacher. The teacher should not conduct two assignments at the end of the semester if two assignments are planned. Each assignment shall be conducted for 25 marks. (If two assignments are conducted then the sum of the two assignments shall be scaled down to 25 marks)

• The final CIE marks of the course out of 50 will be the sum of the scale-down marks of tests and assignment/s marks.

Internal Assessment Test question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester-End Examination:

Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the course (duration 03 hours).

1. The question paper will have ten questions. Each question is set for 20 marks.

2. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), should have a mix of topics under that module.

3. The students have to answer 5 full questions, selecting one full question from each module.

4. Marks scored shall be proportionally reduced to 50 marks.

Su	ggested Learning Resources:								
Bo	Books								
1.	Nano scale Science and Technology',Ed Robert Kelsall, Ian Hamley, Mark Geoghegan, JohnWiley, 2007								
2.	'Introduction to Nano technology', Charles P Poole, Jr, Frank JOwens, John Wiley, Copyright 2006, Reprint 2011.								
	ReferenceBook:								
1.	'HandBook of Nano science Engineering and Technology', Ed William A Goddard III, Donald WBrenner, Sergey E. Lyshevski, Gerald Jlafrate, CRC press, 2003								
Act	Activity Based Learning (Suggested Activities in Class)/ Practical Based learning								

CO-PO I	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	2	3	2	2	2	-	-	-	-	-	1	
CO2	3	3	2	2	1	2	-	-	-	-	-	2	
CO3	3	3	3	2	2	2	-	-	-	-	-	1	
CO4	3	2	2	2	2	2	-	-	-	-	-	1	
CO5	3	2	3	2	2	2	-	-	-	-	-	1	

Mobile Communication											
	CIE Mark	s	50								
3 Hours/Week (L:T:P: 3:0:0)	SEE Marl	s	50								
30L	Total Marks		100								
N, Bluetooth and WiFi Technologies											
3 Understand network protocol stack											
4 Define basics of mobile telecommunication system											
5 Explain Ad-Hoc networks											
Module-1											
Mobile Computing – Applications of M	/lobile	8Hrs									
Mobile Communication Technologies	-MAC										
	ntrol,										
ac.in/courses/106106167											
		8Hrs									
		01113									
, , ,	obinty										
Number LED Based Display System, DTM	F based										
.ac.in/courses/106106167											
Module-3											
ess LANs and PANs – IEEE 802.11 Stand	lard –	8Hrs									
Γooth- Wi-Fi – WiMAX											
e Communication between Two Computer	ſS										
ac.in/courses/106106167											
Module-4											
		8Hrs									
t RoutingVehicular Ad Hoc networks (VA	NET) —										
olled Android based Electronic Notice	Board,										
	MVJ22EA751 3 Hours/Week (L:T:P: 3:0:0) 30L 30L II be able to concepts of mobile computing NN, Bluetooth and WiFi Technologies otocol stack telecommunication system Ks Module-1 Mobile Computing – Applications of N Mobile Communication Technologies MAL - CDMA mart Phone Used for Induction Motor Computing – Communication Technologies A- CDMA mart Phone Used for Induction Motor Computers Acc.in/courses/106106167 Module-2 DN SYSTEM : GSM – Architecture – Protoc Frequency Allocation – Routing – M Actin/courses/106106167 Module-3 ess LANs and PANs – IEEE 802.11 Stanc Tooth- Wi-Fi – WiMAX e Communication between Two Computers .ac.in/courses/106106167 Module-4 obile IP – DHCP – AdHoc – Proactive and Re t RoutingVehicular Ad Hoc networks (VAI	MVJ22EA751 CIE Mark 3 Hours/Week (L:T:P: 3:0:0) SEE Mark 30L Total Ma 30L Total Ma Il be able to Description Dencepts of mobile computing Mark NN, Bluetooth and WiFi Technologies Description Description See Mark Total Ma Module-1 Mobile Computing – Applications of Mobile Mobile Communication Technologies-MAC MA- CDMA Mark mart Phone Used for Induction Motor Control, Cell Phone .ac.in/courses/106106167 Module-2 DN SYSTEM : GSM – Architecture – Protocols – Frequency Allocation – Routing – Mobility UMTS- Architecture Number LED Based Display System, DTMF based .ac.in/courses/106106167 Module-3 ess LANs and PANs – IEEE 802.11 Standard – Tooth- Wi-Fi – WiMAX e Communication between Two Computers .ac.in/courses/106106167	MVJ22EA751 CIE Marks 3 Hours/Week (L:T:P: 3:0:0) SEE Marks 30L Total Marks 30L Total Marks Il be able to Descepts of mobile computing NN, Bluetooth and WiFi Technologies Descepts of mobile computing NN, Bluetooth and WiFi Technologies Descepts of mobile computing NN, Bluetooth and WiFi Technologies Descepts of Mobile Outle-1 Mobile Communication system Mobile Communication Technologies-MAC AA- CDMA mart Phone Used for Induction Motor Control, Cell Phone BHrs A CDMA Module-2 NS SYSTEM : GSM – Architecture – Protocols – Frequency Allocation – Routing – Mobility BHrs - UMTS- Architecture Module-3 ess LANs and PANs – IEEE 802.11 Standard – Tooth- Wi-Fi – WiMAX BHrs e Communication between Two Computers BHrs ac.in/courses/106106167 BHrs Module-4 Obile IP – DHCP – AdHoc– Proactive and Reactive t RoutingVehicular Ad Hoc networks (VANET) – BHrs								

	eference: <u>https://nptel.ac.in/courses/106106167</u>	
	Module-5	
MOB	LE TRANSPORT AND APPLICATION LAYER: Mobile TCP- WAP -	8Hrs
Archi	ecture – WDP – WTLS – WTP –WSP – WAE – WTA Architecture –WML	
٩plic	ation: Home Automation by Android Application based Remote Control	
Nah D	eference: https://nptel.ac.in/courses/106106167	
мер к	······································	
Course	outcome (Course Skill Set), At the end of the course, the student will be a	ble to :
Course	outcome (Course Skill Set), At the end of the course, the student will be a	ble to :
Course Cours	outcome (Course Skill Set), At the end of the course, the student will be a	
Course Cours CO1	outcome (Course Skill Set), At the end of the course, the student will be a e outcomes: Explain the basics of mobile telecommunication system.	
Course Course CO1 CO2	outcome (Course Skill Set), At the end of the course, the student will be a e outcomes: Explain the basics of mobile telecommunication system. Illustrate the generations of telecommunication systems in wireless network	work

At the end of the course, the student will be able to :

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). The student is declared as a pass in the course if he/she secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

• There are 25 marks for the CIE's Assignment component and 25 for the Internal Assessment Test component.

• Each test shall be conducted for 25 marks. The first test will be administered after 40-50% of the coverage of the syllabus, and the second test will be administered after 85-90% of the coverage of the syllabus. The average of the two tests shall be scaled down to 25 marks

• Any two assignment methods mentioned in the 22OB2.4, if an assignment is project-based then only one assignment for the course shall be planned. The schedule for assignments shall be planned properly by the course teacher. The teacher should not conduct two assignments at the end of the semester if two assignments are planned. Each assignment shall be conducted for 25 marks. (If two assignments are conducted then the sum of the two assignments shall be scaled down to 25 marks)

• The final CIE marks of the course out of 50 will be the sum of the scale-down marks of tests and assignment/s marks.

Internal Assessment Test question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester-End Examination:

Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the course (duration 03 hours).

1. The question paper will have ten questions. Each question is set for 20 marks.

2. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), should have a mix of topics under that module.

3. The students have to answer 5 full questions, selecting one full question from each module.

4. Marks scored shall be proportionally reduced to 50 marks.

Suggested Learning Resources:

Books

1. Jochen Schiller, —Mobile Communications , PHI, Second Edition, 2003.

2. Prasant Kumar Pattnaik, Rajib Mall, —Fundamentals of Mobile Computing||, PHI Learning Pvt.Ltd, New Delhi – 2012.

ReferenceBook:

- 1. Dharma Prakash Agarval, Qing and An Zeng, "Introduction to Wireless and Mobile systems", Thomson Asia Pvt Ltd, 2005.
- 2. Uwe Hansmann, Lothar Merk, Martin S. Nicklons and Thomas Stober, —Principles of Mobile Computing, Springer, 2003.
- 3. William.C.Y.Lee,—Mobile Cellular Telecommunications-Analog and Digital Systems, Second Edition,Tata Mc Graw Hill Edition ,2006.

4. C.K.Toh, —AdHoc Mobile Wireless Networks||, First Edition, Pearson Education, 2002.

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	3	2	2	2	-	-	-	-	-	1
CO2	3	3	2	2	1	2	-	-	-	-	-	2
CO3	3	3	3	2	2	2	-	-	-	-	-	1
CO4	3	2	2	2	2	2	-	-	-	-	-	1
CO5	3	2	3	2	2	2	-	-	-	-	-	1

		Semest	er: VII								
		SATELLITE COM	MUNICATION								
Course	Code:	MVJ22EA752	CIE Marks:50								
Credits:		L:T:P: 3:0:0	SEE Marks: 50								
Hours:		30L	SEE Duration: 3 Hrs								
Course		ectives: The students will be									
1	Understand	l orbital aspects of satellite co	mmunication								
2 Describe electronic systems associated with a satellite and the earth static understanding satellite applications focusing various domains services											
3	Understand	Understand typical challenges of satellite-based systems.									
4	Describe b	asic principle of RADAR and	RADAR equation.								
5	Understand	the need and functioning of	CW, FM-CW and MTI radars								
		UNI	٢1								
Prerequ	isites: Digita	l Communication Systems									
Introdu	ction to Sat	ellite Communication: Orbit	al aspects of Satellite Communication,								
Introduo	ction to geo-	synchronous and geo-station	ary satellites, Kepler's laws, Locating the								
satellite	with respect	to the earth, Sub-satellite po	int, Look angles, Mechanics of launching								
a synchr	a synchronous satellite.										
		r satellite television, services	(such as the DirecTV and DISH Network	8Hrs.							
services											
Video li	nk / Additior	al online information:									
1. <u>ł</u>	nttps://nptel.	ac.in/courses/117/105/11710	<u>05131/#</u>								
2.	<u>nttps://nptel.</u>	ac.in/courses/117105131									
		UNI	٢2								
Element	ts of Commu	unication Satellite Design: Sa	atellite subsystems - Attitude and orbit								
control	electronics	- Telemetry and tracking -	Power subsystems - Communication								
subsyste	ems - Satelli	te antennas - Reliability ar	nd redundancy- Frequency modulation								
techniq	ues.			8Hrs.							
Applicat	t ions: Mobile	Communication									
Video li	nk / Additior	al online information:									
1. <u>ł</u>	<u>nttps://nptel.</u>	ac.in/courses/117/105/11710	<u> 05131/#</u>								
2.	https://nptel.	ac.in/courses/117/105/11710	<u>05131/#</u>								

UNIT 3							
Communication Satellites: Introduction, Related Applications, Frequency Bands, Payloads,							
Satellite Vs. Terrestrial Networks, Satellite Telephony.							
Navigation Satellites: Development of Satellite Navigation Systems, GPS system, Applications.							
Applications: Error detection and correction in Communication, Weather forecasting, Remote							
sensing, Navigation satellites.							
Video link /Additional online information:							
1. <u>https://www.digimat.in/nptel/courses/video/117105131/L13.html</u>							
2. https://www.digimat.in/nptel/courses/video/117105131/L14.html							
3. <u>https://onlinecourses.nptel.ac.in/noc19_ce45/preview</u>							
UNIT 4							
Satellite Link Design: Basic transmission theory – System noise temperature and G/T Ratio- Noise							
figure and noise temperature- Calculation of system noise temperature – G/T ratio for earth							
stations - Link budgets - Uplink and downlink budget calculations - Error control for digital satellite							
links - Prediction of rain attenuation and propagation impairment counter measures. Video link /							
Applications: Error detection and correction in Communication, Weather forecasting, Remote	8Hrs.						
sensing, Navigation satellites.							
Video link /Additional online information:							
1. <u>https://onlinecourses.nptel.ac.in/noc19_ee58/preview</u>							
2. <u>https://nptel.ac.in/courses/108/105/108105154/</u>							
UNIT 5							
Introduction to Radar: Radar block diagram and operation, Radar frequencies, Applications of							
radar, Prediction of range performance, Minimum detectable signal, Receiver noise, Probability							
density function, SNR, Integration of radar pulses, Radar cross-section of targets, PRF and range							
ambiguities, Transmitter power, System losses.	01140						
Applications: Ground surveillance, weapons location, and vehicle search	8Hrs.						
Video link / Additional online information:							
1. <u>https://nptel.ac.in/courses/108/105/108105154/</u>							
2. https://nptel.ac.in/courses/108105154							

Course Outcomes: After completing the course, the students will be able to									
C01	Describe the satellite orbits and its trajectories with the definitions of parameters								
	associated with it.								
CO2	Comprehend the design of satellite subsystems								
CO3	Evaluate spacecraft subsystem performance and trades								
CO4	Analyze how the radar equation is derived and its significance in radar technology.								
CO5	Demonstrate how CW, FM-CW, and MTI radars function in different scenarios.								

Referen	ce Books:
1.	T. Pratt, C.W. Boastian and Jeremy Allnutt, "Satellite Communication", 2013, 2nd edition, John Wiley and Sons, Bangalore, India.
2.	Anil K Maini, Varsha Agrawal, Satellite Communication, Wiley India Pvt. Ltd., 2015, ISBN: 978- 81265-2071-8.
3.	Merril. I. Skolnik, "Introduction to Radar Systems", 2/e, MGH, 1981.
4.	Dennis Roddy, Satellite Communications, 4th Edition, McGraw- Hill International edition, 2006

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of

three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO I	CO-PO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2	1	1	1	-	1	-	-	1	2	2
CO2	3	3	2	2	1	1	1	-	1	-	-	1	2	2
CO3	3	3	2	2	1	1	1	-	1	-	-	1	2	2
CO4	3	3	2	2	1	1	1	-	1	-	-	1	2	2
CO5	3	3	2	2	1	1	1	-	1	-	-	1	2	2

		Embedded System Design							
Cour	rse Code	MVJ22EA753	CIE Marks	50					
Teac T:P:	ching Hours/Week (L: S)	3 Hours/Week (L:T:P: 3:0:0)	SEE Marks	50					
Total Hours of Pedagogy30LTotal Marks									
Cour	rse objectives:Students wil	l be able to							
1	L Understand the basic co	ncepts of Embedded System							
2	2 Understand different En	nbedded Hardware							
3	3 Explain MSP430 Process	sor							
4	1 Demonstarate basics of	Timers and state Machines							
5	5 Utilize CC studio suite								
		Module-1							
Cycle Mod Emb Emb Perfo (RAN Perfo of a Softw Appl syste Web	e, An Introduction to Embe lel, edded Hardware: The E edded Processors: ISAArchi ormance, Board Memory: F M), Auxiliary Memory, M ormance, Approaches to Er Typical Small Microcontr ware, Introduction to small	ystems, weather monitoring systems, <u>ac.in/courses/106103182</u> 6105159	dded Systems mann Model, ign, Processor ccess Memory Memory and lers, Anatomy ry, Embedded						

Module-2	
MSP430 - I: Architecture of the MSP430 Processor: Central Processing Unit,	8Hrs
Addressing Modes, Constant Generator and Emulated Instructions, Instruction Set,	
Examples, Reflections on the CPU and Instruction Set, Resets, Clock System,	
Memory and Memory Organization. Functions, Interrupts, and Low-Power Mode:	
Functions and Subroutines, Storage for Local Variables, Passing Parameters to a	
Subroutine and Returning a Result, Mixing C and Assembly Language, Interrupts,	
Interrupt Service Routines, Issues Associated with Interrupts, Low-Power Modes of	
Operation.	
Application: video conferencing, voice over Internet Protocol, instant messaging	
(IM), and ecommerce applications.	
Web Reference	
https://nptel.ac.in/courses/106103182	
https://nptel.ac.in/courses/106105159	
https://nptel.ac.in/courses/108102045	
Module-3	
MSP430 – II:Digital Input, Output, and Displays:Parallel Ports, Digital Inputs, Switch	8Hrs
Debounce, Digital Outputs, Interface between Systems, Driving Heavier Loads,	
Liquid Crystal Displays, Simple Applications of the LCD.	
Timers: Watchdog Timer, Timer A, Timer A Modes, Timer B, Timer B Modes,	
Setting the Real-Time Clock, State Machines.	
Application: light control systems, missile guidance systems, weapons defense	
systems, medical systems, and air traffic control systems.	
Web Reference	
https://nptel.ac.in/courses/106103182	
https://nptel.ac.in/courses/106105159	
https://nptel.ac.in/courses/108102045	
Module-4	
MSP430 Communication:	
Communication Peripherals in the MSP430, Serial Peripheral Interface, SPI with the	8Hrs
USI, SPI with the USCI, A Thermometer Using SPI Modes, Inter-integrated Circuit	
Bus(I ² C) and its operations, State Machines for I ² C Communication, A Thermometer	
Using I^2 C, Asynchronous Serial Communication, Asynchronous Communication	
with the USCI A, A Software UART Using Timer A, Other Types of Communication.	
Application: Home/office security systems, ATMs, and POS systems.	
Web Reference	
https://nptel.ac.in/courses/106103182	
https://nptel.ac.in/courses/106105159	
https://nptel.ac.in/courses/108102045	

Module-5							
MSP430 Case Studies:	8Hrs						
Introduction to Code Composer studio (CC Studio Ver. 6.1) a tutorial, A Study of							
blinking LED, Enabling LED using Switches, UART Communication, LCD interfacing,							
Interrupts, Analog to Digital Conversion, General Purpose input and output ports,							
I2C.							
Application							
Web Reference							
https://nptel.ac.in/courses/106103182							
https://nptel.ac.in/courses/106105159							
https://nptel.ac.in/courses/108102045							
Course outcome (Course Skill Set), At the end of the course, the student will be abl	e to :						
Course outcomos							

Course	e outcomes:
CO1	Be familiar with the composition, design, and implementation of
01	embedded systems
CO2	Be familiar with reading and understanding processor and component datasheets
CO3	Be familiar with driving use contexts, including human-computer interaction,
COS	environmental sensing and actuation, etc.,
CO4	Be familiar with the basics of interfacing hardware and software
CO5	Be familiar with working on a team to create and apply embedded systems

At the end of the course, the student will be able to :

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). The student is declared as a pass in the course if he/she secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

• There are 25 marks for the CIE's Assignment component and 25 for the Internal Assessment Test component.

• Each test shall be conducted for 25 marks. The first test will be administered after 40-50% of the coverage of the syllabus, and the second test will be administered after 85-90% of the coverage of the syllabus. The average of the two tests shall be scaled down to 25 marks

• Any two assignment methods mentioned in the 22OB2.4, if an assignment is project-based then only one assignment for the course shall be planned. The schedule for assignments shall be planned properly by the course teacher. The teacher should not conduct two assignments at the end of the semester if two assignments are planned. Each assignment shall be conducted for 25

marks. (If two assignments are conducted then the sum of the two assignments shall be scaled down to 25 marks)

• The final CIE marks of the course out of 50 will be the sum of the scale-down marks of tests and assignment/s marks.

Internal Assessment Test question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester-End Examination:

Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the course (duration 03 hours).

1. The question paper will have ten questions. Each question is set for 20 marks.

2. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), should have a mix of topics under that module.

3. The students have to answer 5 full questions, selecting one full question from each module.

4. Marks scored shall be proportionally reduced to 50 marks.

Suggested Learning Resources:

Books

1. Tammy Noergaard "Embedded Systems Architecture: A Comprehensive Guide for Engineers and Programmers", Elsevier(Singapore) Pvt.Ltd.Publications, 2005.

2. John H. Davies "MSP430 Microcontroller Basics", Elsevier Ltd Publications, Copyright 2008

ReferenceBook:

- 1. Manuel Jiménez Rogelio, Palomeralsidoro Couvertier "Introduction to Embedded Systems Using Microcontrollers and the MSP430" Springer Publications, 2014.
- 2. Frank Vahid, Tony D. Givargis, "Embedded system Design: A Unified Hardware/Software Introduction", John Wily & Sons Inc.2002.
- 3. Peter Marwedel, "Embedded System Design", Science Publishers, 2007.
- 4. Arnold S Burger, "Embedded System Design", CMP Books, 2002.
- 5. Rajkamal, "Embedded Systems: Architecture, Programming and Design", TMH Publications, Second Edition, 2008.

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

CO-PO I	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	2	3	2	2	2	2	1	-	-	-	1	
CO2	3	3	2	2	1	2	1	1	-	-	-	2	
CO3	3	3	3	2	2	2	2	1	-	-	-	1	
CO4	3	2	2	2	2	2	2	1	-	-	-	1	
CO5	3	2	3	2	2	2	2	1	-	-	-	1	

Course Code: MVJ2ZEA754 CIE Marks: 50 Credits: L:T:P: 3:0:0 SEE Marks: 50 Hours: 30L SEE Duration: 3 Hr; Course objectives:Students will be able to			M								
Hours: 30L SEE Duration: 3 Hr: Course objectives:Students will be able to Analyze and study rectangular and circular wave guides using field theory. Understand the theoretical principles underlying microwave devices and networks. Design microwave components such as power dividers, hybrid junctions, Directional Couplers, microwave filters, Microwave Wave-guides and Components, Ferrite Device Examine Microwave Solid-State Microwave Devices and Microwave Tubes. Evaluate Microwave Measurement Techniques. Teaching-Learning Process (General Instructions) These are sample Strategies, which teachers can use to accelerate the attainment of the various course outcomes. Module-1 Introduction, Microwave Spectrum and Bands, Applications of Microwaves, Rectangular Waveguides – TE/TM mode analysis, Expressions for Fields, Characteristic Equation and Cut-off Frequencies, Dominant and Degenerate Modes, Sketches of TE and TM mode fields in the cross section, Mode Characteristics – Phase and Group Velocities, Wavelengths and Impedance Relation; Power Transmission and Power Losses in Rectangular Guide, Impossibility of TEM mode. Application:Transmitting Power and communication signals,Microwave RADAR,Coupler Module-2 Circular waveguides- Introduction, Characteristic Equation, Dominant and Degenerate Modes. Microstrip Lines– Introduction, Zo Relations, Effective Dielectric Constant, Losses, Q factor. Cavity Resonators-Types, Resonant Frequencies, Q factor and Coupling Coefficients, Related Problems Application:Attenuator,TV Signal Generator, Iow-noise											
Course objectives:Students will be able to 1 Analyze and study rectangular and circular wave guides using field theory. 2 Understand the theoretical principles underlying microwave devices and networks. 3 Design microwave components such as power dividers, hybrid junctions, Directional Couplers, microwave filters, Microwave Wave-guides and Components, Ferrite Device 4 Examine Microwave Solid-State Microwave Devices and Microwave Tubes. 5 Evaluate Microwave Measurement Techniques. Teaching-Learning Process (General Instructions) These are sample Strategies, which teachers can use to accelerate the attainment of the various course outcomes. Module-1 Introduction, Microwave Spectrum and Bands, Applications of Microwaves, Rectangular Waveguides – TE/TM mode analysis, Expressions for Fields, Characteristic Equation and Cut-off Frequencies, Dominant and Degenerate Modes, Sketches of TE and TM mode fields in the cross section, Mode Characteristics – Phase and Group Velocities, Wavelengths and Impedance Relations; Power Transmission and Power Losses in Rectangular Guide, Impossibility of TEM mode. 8Hrs Module-2 Circular waveguides- Introduction, Characteristic Equation, Dominant and Degenerate Modes. Microstrip Lines- Introduction, Zo Relations, Effective Dielectric Constant, Losses, Q factor. Cavity Resonators-Types, Resonant Frequencies, Q factor and Coupling Coefficients, Related Problems 8Hrs											
1 Analyze and study rectangular and circular wave guides using field theory. 2 Understand the theoretical principles underlying microwave devices and networks. 3 Design microwave components such as power dividers, hybrid junctions, Directional Couplers, microwave filters, Microwave Wave-guides and Components, Ferrite Device 4 Examine Microwave Solid-State Microwave Devices and Microwave Tubes. 5 Evaluate Microwave Measurement Techniques. Feaching-Learning Process (General Instructions) These are sample Strategies, which teachers can use to accelerate the attainment of the various course outcomes. Module-1 Introduction, Microwave Spectrum and Bands, Applications of Microwaves, Rectangular Waveguides – TE/TM mode analysis, Expressions for Fields, Characteristic Equation and Cut-off Frequencies, Dominant and Degenerate Modes, Sketches of TE and TM mode fields in the cross section, Mode Characteristics – Phase and Group Velocities, Wavelengths and Impedance Relations; Power Transmission and Power Losses in Rectangular Guide, Impossibility of TEM mode. Application:Transmitting Power and communication signals,Microwave RADAR,Coupler Module-2 Web Reference: https://nptel.ac.in/courses/108103141 8Hrs Evaluate Modes. Microstrip Lines- Introduction, Zo Relations, Effective Dielectric Constant, Losses, Q factor. Cavity Resonators-Types, Resonant Frequencies, Q factor and Coupling Coefficients, Related Problems Application:Atten	Hours: 30L SEE Dur										
1 Analyze and study rectangular and circular wave guides using field theory. 2 Understand the theoretical principles underlying microwave devices and networks. 3 Design microwave components such as power dividers, hybrid junctions, Directional Couplers, microwave filters, Microwave Wave-guides and Components, Ferrite Device 4 Examine Microwave Solid-State Microwave Devices and Microwave Tubes. 5 Evaluate Microwave Measurement Techniques. Teaching-Learning Process (General Instructions) These are sample Strategies, which teachers can use to accelerate the attainment of the various course outcomes. Module-1 Introduction, Microwave Spectrum and Bands, Applications of Microwaves, Rectangular Waveguides – TE/TM mode analysis, Expressions for Fields, Characteristic Equation and Cut-off Frequencies, Dominant and Degenerate Modes, Sketches of TE and TM mode fields in the cross section, Mode Characteristics – Phase and Group Velocities, Wavelengths and Impedance Relations; Power Transmission and Power Losses in Rectangular Guide, Impossibility of TEM mode. Application:Transmitting Power and communication signals,Microwave RADAR,Coupler Module-2 Web Reference: https://nptel.ac.in/courses/108103141 8Hrs Evaluate Modes. Microstrip Lines Introduction, Zo Relations, Effective Dielectric Constant, Losses, Q factor. Cavity Resonators-Types, Resonant Frequencies, Q factor and Coupling Coefficients, Related Problems Application:Attenu	Co	urse	e objectives:Students will be	able to							
2 Understand the theoretical principles underlying microwave devices and networks. 3 Design microwave components such as power dividers, hybrid junctions, Directional Couplers, microwave filters, Microwave Wave-guides and Components, Ferrite Device 4 Examine Microwave Solid-State Microwave Devices and Microwave Tubes. 5 Evaluate Microwave Measurement Techniques. Module-1 Module-1 Module-1 Introduction, Microwave Spectrum and Bands, Applications of Microwaves, Rectangular Waveguides – TE/TM mode analysis, Expressions for Fields, Characteristic Equation and Cut-off Frequencies, Dominant and Degenerate Modes, Sketches of TE and TM mode fields in the cross section, Mode Characteristics – Phase and Group Velocities, Wavelengths and Impedance Relations; Power Transmission and Power Losses in Rectangular Guide, Impossibility of TEM mode. Application:Transmitting Power and communication signals,Microwave RADAR,Coupler Module-2 Web Reference: https://nptel.ac.in/courses/108103141 8Hrs Circular waveguides- Introduction, Characteristic Equation, Dominant and Degenerate Modes. Microstrip Lines- Introduction, Zo Relations, Effective Dielectric Constant, Losses, Q factor. Cavity Resonators–Types, Resonant Frequencies, Q factor and Coupling Coefficients, Related Problems Application:Attenuator,TV Signal Generator, Iow-noise block converters for TV					theory.						
3 Design microwave components such as power dividers, hybrid junctions, Directional Couplers, microwave filters, Microwave Wave-guides and Components, Ferrite Device 4 Examine Microwave Solid-State Microwave Devices and Microwave Tubes. 5 Evaluate Microwave Measurement Techniques. Module-1 Module-1 Introduction, Microwave Spectrum and Bands, Applications of Microwaves, Rectangular Waveguides – TE/TM mode analysis, Expressions for Fields, Characteristic Equation and Cut-off Frequencies, Dominant and Degenerate Modes, Sketches of TE and TM mode fields in the cross section, Mode Characteristics – Phase and Group Velocities, Wavelengths and Impedance Relations; Power Transmission and Power Losses in Rectangular Guide, Impossibility of TEM mode. 8Hrs Module-2 Module-2 Circular waveguides- Introduction, Characteristic Equation, Dominant and Degenerate Modes. Microstrip Lines– Introduction, Zo Relations, Effective Dielectric Constant, Losses, Q factor. Cavity Resonators–Types, Resonant Frequencies, Q factor and Coupling Coefficients, Related Problems 8Hrs					-						
Couplers, microwave filters, Microwave Wave-guides and Components, Ferrite Device 4 Examine Microwave Solid-State Microwave Devices and Microwave Tubes. 5 Evaluate Microwave Measurement Techniques. Feaching-Learning Process (General Instructions) These are sample Strategies, which teachers can use to accelerate the attainment of the various course outcomes. Module-1 Introduction, Microwave Spectrum and Bands, Applications of Microwaves, Rectangular Waveguides – TE/TM mode analysis, Expressions for Fields, Characteristic Equation and Cut-off Frequencies, Dominant and Degenerate Modes, Sketches of TE and TM mode fields in the cross section, Mode Characteristics – Phase and Group Velocities, Wavelengths and Impedance Relations; Power Transmission and Power Losses in Rectangular Guide, Impossibility of TEM mode. Module-2 Module-2 Module-2 Module-2 Circular waveguides- Introduction, Characteristic Equation, Dominant and Degenerate Modes. Microstrip Lines- Introduction, Zo Relations, Effective Dielectric Constant, Losses, Q factor. Cavity Resonators–Types, Resonant Frequencies, Q factor and Coupling Coefficients, Related Problems Application::Attenuator,TV Signal Generator, Iow-noise block converters for TV											
4 Examine Microwave Solid-State Microwave Devices and Microwave Tubes. 5 Evaluate Microwave Measurement Techniques. Feaching-Learning Process (General Instructions) These are sample Strategies, which teachers can use to accelerate the attainment of the various course outcomes. Module-1 Module-1 Introduction, Microwave Spectrum and Bands, Applications of Microwaves, Rectangular Waveguides – TE/TM mode analysis, Expressions for Fields, Characteristic Equation and Cut-off Frequencies, Dominant and Degenerate Modes, Sketches of TE and TM mode fields in the cross section, Mode Characteristics – Phase and Group Velocities, Wavelengths and Impedance Relations; Power Transmission and Power Losses in Rectangular Guide, Impossibility of TEM mode. Application:Transmitting Power and communication signals,Microwave RADAR,Coupler BHrs Module-2 Circular waveguides- Introduction, Characteristic Equation, Dominant and Degenerate Modes. Microstrip Lines– Introduction, Zo Relations, Effective Dielectric Constant, Losses, Q factor. Cavity Resonators–Types, Resonant Frequencies, Q factor and Coupling Coefficients, Related Problems BHrs		2									
5 Evaluate Microwave Measurement Techniques. Freaching-Learning Process (General Instructions) These are sample Strategies, which teachers can use to accelerate the attainment of the various course outcomes. Module-1 Introduction, Microwave Spectrum and Bands, Applications of Microwaves, Rectangular Waveguides – TE/TM mode analysis, Expressions for Fields, Characteristic Equation and Cut-off Frequencies, Dominant and Degenerate Modes, Sketches of TE and TM mode fields in the cross section, Mode Characteristics – Phase and Group Velocities, Wavelengths and Impedance Relations; Power Transmission and Power Losses in Rectangular Guide, Impossibility of TEM mode. Replication:Transmitting Power and communication signals,Microwave RADAR,Coupler 8Hrs Wodule-2 Circular waveguides- Introduction, Characteristic Equation, Dominant and Degenerate Modes. Microstrip Lines– Introduction, Zo Relations, Effective Dielectric Constant, Losses, Q factor. Cavity Resonators–Types, Resonant Frequencies, Q factor and Coupling Coefficients, Related Problems 8Hrs		4	• •	- · · ·	-						
Feaching-Learning Process (General Instructions) These are sample Strategies, which teachers can use to accelerate the attainment of the various course outcomes. Module-1 Introduction, Microwave Spectrum and Bands, Applications of Microwaves, Rectangular Waveguides – TE/TM mode analysis, Expressions for Fields, Characteristic Equation and Cut-off Frequencies, Dominant and Degenerate Modes, Sketches of TE and TM mode fields in the cross section, Mode Characteristics – Phase and Group Velocities, Wavelengths and Impedance Relations; Power Transmission and Power Losses in Rectangular Guide, Impossibility of TEM mode. Application:Transmitting Power and communication signals,Microwave RADAR,Coupler Web Reference: https://nptel.ac.in/courses/108103141 Module-2 Circular waveguides- Introduction, Characteristic Equation, Dominant and Degenerate Modes. Microstrip Lines- Introduction, Zo Relations, Effective Dielectric Constant, Losses, Q factor. Cavity Resonators–Types, Resonant Frequencies, Q factor and Coupling Coefficients, Related Problems Application:Attenuator,TV Signal Generator, Iow-noise block converters for TV					e Tubes.						
Module-1 Introduction, Microwave Spectrum and Bands, Applications of Microwaves, 8Hrs Rectangular Waveguides – TE/TM mode analysis, Expressions for Fields, 8Hrs Characteristic Equation and Cut-off Frequencies, Dominant and Degenerate Modes, Sketches of TE and TM mode fields in the cross section, Mode Characteristics – Phase and Group Velocities, Wavelengths and Impedance Relations; Power Transmission and Power Losses in Rectangular Guide, Impossibility of TEM mode. Application:Transmitting Power and communication signals,Microwave RADAR,Coupler Web Reference: https://nptel.ac.in/courses/108103141 Begenerate Modes. Microstrip Lines– Introduction, Zo Relations, Effective Dielectric Constant, Losses, Q factor. Cavity Resonators–Types, Resonant Frequencies, Q factor and Coupling Coefficients, Related Problems Application:Attenuator,TV Signal Generator, low-noise block converters for TV		5	Evaluate Microwave Measu	rement Techniques.							
Web Reference: https://nptel.ac.in/courses/108103141 Module-2 Circular waveguides- Introduction, Characteristic Equation, Dominant and Degenerate Modes. Microstrip Lines- Introduction, Zo Relations, Effective Dielectric Constant, Losses, Q factor. Cavity Resonators-Types, Resonant Frequencies, Q factor and Coupling Coefficients, Related Problems 8Hrs Application:Attenuator,TV Signal Generator, Iow-noise block converters for TV 1	R¢ Cl	ecta nara	angular Waveguides – TE/T acteristic Equation and Cut-	m and Bands, Applications of Microv M mode analysis, Expressions for off Frequencies, Dominant and Dege	Fields, nerate						
Module-2Circular waveguides- Introduction, Characteristic Equation, Dominant and Degenerate Modes. Microstrip Lines- Introduction, Zo Relations, Effective Dielectric Constant, Losses, Q factor. Cavity Resonators-Types, Resonant Frequencies, Q factor and Coupling Coefficients, Related Problems8HrsApplication:Attenuator,TV Signal Generator, Iow-noise block converters for TV8	R Cl Cl R Cl	ecta nara ode nara elati npos	angular Waveguides – TE/T acteristic Equation and Cut- es, Sketches of TE and TM acteristics – Phase and Grou ions; Power Transmission ssibility of TEM mode.	m and Bands, Applications of Microv M mode analysis, Expressions for off Frequencies, Dominant and Degen I mode fields in the cross section, up Velocities, Wavelengths and Impe and Power Losses in Rectangular	Fields, enerate Mode edance Guide,						
Circular waveguides- Introduction, Characteristic Equation, Dominant and Degenerate Modes. Microstrip Lines– Introduction, Zo Relations, Effective Dielectric Constant, Losses, Q factor. Cavity Resonators–Types, Resonant Frequencies, Q factor and Coupling Coefficients, Related Problems Application:Attenuator,TV Signal Generator, Iow-noise block converters for TV	R(Cl Cl R(In A R	ecta nara ode nara elati npos oplie ADA	angular Waveguides – TE/T acteristic Equation and Cut- es, Sketches of TE and TM acteristics – Phase and Grou ions; Power Transmission ssibility of TEM mode. actation:Transmitting Power AR,Coupler	m and Bands, Applications of Microv M mode analysis, Expressions for off Frequencies, Dominant and Deger I mode fields in the cross section, up Velocities, Wavelengths and Impe and Power Losses in Rectangular and communication signals, Micro	Fields, enerate Mode edance Guide,						
Circular waveguides- Introduction, Characteristic Equation, Dominant and Degenerate Modes. Microstrip Lines– Introduction, Zo Relations, Effective Dielectric Constant, Losses, Q factor. Cavity Resonators–Types, Resonant Frequencies, Q factor and Coupling Coefficients, Related Problems Application:Attenuator,TV Signal Generator, Iow-noise block converters for TV	R(Cl Cl R(In A R	ecta nara ode nara elati npos oplie ADA	angular Waveguides – TE/T acteristic Equation and Cut- es, Sketches of TE and TM acteristics – Phase and Grou ions; Power Transmission ssibility of TEM mode. actation:Transmitting Power AR,Coupler	m and Bands, Applications of Microv M mode analysis, Expressions for off Frequencies, Dominant and Deger I mode fields in the cross section, up Velocities, Wavelengths and Impe and Power Losses in Rectangular and communication signals, Micro	Fields, enerate Mode edance Guide,						
Circular waveguides- Introduction, Characteristic Equation, Dominant and Degenerate Modes. Microstrip Lines– Introduction, Zo Relations, Effective Dielectric Constant, Losses, Q factor. Cavity Resonators–Types, Resonant Frequencies, Q factor and Coupling Coefficients, Related Problems Application:Attenuator,TV Signal Generator, Iow-noise block converters for TV	R(Cl Cl R(In A R	ecta nara ode nara elati npos oplie ADA	angular Waveguides – TE/T acteristic Equation and Cut- es, Sketches of TE and TM acteristics – Phase and Grou ions; Power Transmission ssibility of TEM mode. actation:Transmitting Power AR,Coupler	m and Bands, Applications of Microv M mode analysis, Expressions for off Frequencies, Dominant and Deger I mode fields in the cross section, up Velocities, Wavelengths and Impe and Power Losses in Rectangular and communication signals, Micro	Fields, enerate Mode edance Guide,						
Dielectric Constant, Losses, Q factor. Cavity Resonators–Types, Resonant Frequencies, Q factor and Coupling Coefficients, Related Problems Application:Attenuator,TV Signal Generator, low-noise block converters for TV	R(Cl Cl R(In A	ecta nara ode nara elati npos oplie ADA	angular Waveguides – TE/T acteristic Equation and Cut- es, Sketches of TE and TM acteristics – Phase and Grou ions; Power Transmission ssibility of TEM mode. actation:Transmitting Power AR,Coupler	m and Bands, Applications of Microv M mode analysis, Expressions for off Frequencies, Dominant and Degen I mode fields in the cross section, up Velocities, Wavelengths and Impe and Power Losses in Rectangular and communication signals,Micro n/courses/108103141	Fields, enerate Mode edance Guide,						
Frequencies, Q factor and Coupling Coefficients, Related Problems Application:Attenuator,TV Signal Generator, low-noise block converters for TV	R(CI CI R(In A R A R	ecta nara ode nara elati npos opli ADA	angular Waveguides – TE/T acteristic Equation and Cut- es, Sketches of TE and TM acteristics – Phase and Grou ions; Power Transmission ssibility of TEM mode. Scation:Transmitting Power AR,Coupler Reference: https://nptel.ac.ir	m and Bands, Applications of Microv M mode analysis, Expressions for off Frequencies, Dominant and Degen I mode fields in the cross section, up Velocities, Wavelengths and Impe and Power Losses in Rectangular and communication signals,Micro n/courses/108103141 Module-2	Fields, enerate Mode edance Guide, owave						
Application:Attenuator,TV Signal Generator, low-noise block converters for TV	R(Cl Cl R(In A R M	ecta nara ode nara elati npos opli a b	angular Waveguides – TE/T acteristic Equation and Cut- es, Sketches of TE and TM acteristics – Phase and Grou ions; Power Transmission ssibility of TEM mode. acation:Transmitting Power AR,Coupler Reference: https://nptel.ac.ir	m and Bands, Applications of Microv M mode analysis, Expressions for off Frequencies, Dominant and Deger I mode fields in the cross section, up Velocities, Wavelengths and Impe and Power Losses in Rectangular and communication signals,Micro n/courses/108103141 <u>Module-2</u> m, Characteristic Equation, Dominan	Fields, enerate Mode edance Guide, owave owave						
		ecta nara ode nara elati npos opli ADA reb	angular Waveguides – TE/T acteristic Equation and Cut- es, Sketches of TE and TM acteristics – Phase and Grou ions; Power Transmission ssibility of TEM mode. acation:Transmitting Power AR,Coupler Reference: https://nptel.ac.ir	m and Bands, Applications of Microv M mode analysis, Expressions for off Frequencies, Dominant and Degen I mode fields in the cross section, up Velocities, Wavelengths and Impe and Power Losses in Rectangular and communication signals,Micro n/courses/108103141 <u>Module-2</u> m, Characteristic Equation, Dominan Lines– Introduction, Zo Relations, Eff	Fields, enerate Mode edance Guide, owave nt and 8Hrs fective						
signal receiving antennas.		ecta nara ode nara elati npos opli (aDA (eb	angular Waveguides – TE/T acteristic Equation and Cut- es, Sketches of TE and TM acteristics – Phase and Grou ions; Power Transmission ssibility of TEM mode. Scation:Transmitting Power AR,Coupler Reference: https://nptel.ac.ir	m and Bands, Applications of Microv M mode analysis, Expressions for off Frequencies, Dominant and Deger I mode fields in the cross section, up Velocities, Wavelengths and Impe- and Power Losses in Rectangular and communication signals,Micro n/courses/108103141 <u>Module-2</u> on, Characteristic Equation, Dominan Lines– Introduction, Zo Relations, Eff factor. Cavity Resonators–Types, Res	Fields, enerate Mode edance Guide, owave nt and 8Hrs fective						
Web Reference: https://nptel.ac.in/courses/108103141	R(Cl R(In A R M Ci D Fr A	ecta nara ode nara elati npos opli ADA rcul egen elec equ opli	angular Waveguides – TE/T acteristic Equation and Cut- es, Sketches of TE and TM acteristics – Phase and Grou ions; Power Transmission ssibility of TEM mode. Scation:Transmitting Power AR,Coupler Reference: https://nptel.ac.ir lar waveguides- Introduction nerate Modes. Microstrip L ctric Constant, Losses, Q f uencies, Q factor and Coupling Scation:Attenuator,TV Signal	m and Bands, Applications of Microv M mode analysis, Expressions for off Frequencies, Dominant and Degen I mode fields in the cross section, up Velocities, Wavelengths and Impe- and Power Losses in Rectangular and communication signals,Micro h/courses/108103141 <u>Module-2</u> on, Characteristic Equation, Dominan Lines– Introduction, Zo Relations, Eff factor. Cavity Resonators–Types, Res g Coefficients, Related Problems	Fields, enerate Mode edance Guide, owave nt and 8Hrs fective sonant						

The second	
Terminations, Attenuators, Phase shifters, Directional couplers, Hybrid	8Hrs
Junctions, Power dividers, Circulator, Isolator, Impedance matching devices:	
Tuning screw, Stub and quarter wave transformers. Crystal and Schottkey diode	
detector and mixers, PIN diode switch, Gunn diode oscillator, IMPATT diode	
oscillator and amplifier, Varactor diode, Introduction to MIC.	
Application: Frequency translators, Amplitude and phase modulation, Phased	
arrays for the Radar systems,SSPA:linearization / RF distortion,Residual phase	
noise measurement, Signal phase correction in long-distance fibre optics	
communication link	
Web Reference: https://nptel.ac.in/courses/108103141	
Module-4	
Review of conventional vacuum Triodes, Tetrodes and Pentodes, High frequency	8Hrs
effects in vacuum Tubes, Theory and application of Two cavity Klystron Amplifier,	
Reflex Klystron oscillator, Traveling wave tube amplifier, Magnetron oscillator	
using Cylindrical, Linear, Coaxial Voltage tunable Magnetrons, Backward wave	
Crossed field amplifier and oscillator.	
Application: Radio receivers. Portable microwave links. Parametric amplifiers.	
Local oscillators of microwave receivers	
Web Reference: https://nptel.ac.in/courses/108103141	
Module-5	
Module-5 Measuring Instruments : Principle of operation and application of VSWR meter,	8Hrs
	8Hrs
Measuring Instruments : Principle of operation and application of VSWR meter,	8Hrs
Measuring Instruments : Principle of operation and application of VSWR meter, Power meter, Spectrum analyzer, Network analyzer, Measurement of Impedance,	8Hrs
Measuring Instruments : Principle of operation and application of VSWR meter, Power meter, Spectrum analyzer, Network analyzer, Measurement of Impedance, Frequency, Power, VSWR, Q-factor, Dielectric constant, Scattering coefficients,	8Hrs
Measuring Instruments : Principle of operation and application of VSWR meter, Power meter, Spectrum analyzer, Network analyzer, Measurement of Impedance, Frequency, Power, VSWR, Q-factor, Dielectric constant, Scattering coefficients, Attenuation, S-parameters.	8Hrs
Measuring Instruments : Principle of operation and application of VSWR meter, Power meter, Spectrum analyzer, Network analyzer, Measurement of Impedance, Frequency, Power, VSWR, Q-factor, Dielectric constant, Scattering coefficients, Attenuation, S-parameters. Application: Microwave leakage meters, area monitors, and power measuring devices are used to detect and measure microwave energy	8Hrs
Measuring Instruments : Principle of operation and application of VSWR meter, Power meter, Spectrum analyzer, Network analyzer, Measurement of Impedance, Frequency, Power, VSWR, Q-factor, Dielectric constant, Scattering coefficients, Attenuation, S-parameters. Application: Microwave leakage meters, area monitors, and power measuring	8Hrs
Measuring Instruments : Principle of operation and application of VSWR meter, Power meter, Spectrum analyzer, Network analyzer, Measurement of Impedance, Frequency, Power, VSWR, Q-factor, Dielectric constant, Scattering coefficients, Attenuation, S-parameters. Application: Microwave leakage meters, area monitors, and power measuring devices are used to detect and measure microwave energy	8Hrs
Measuring Instruments : Principle of operation and application of VSWR meter, Power meter, Spectrum analyzer, Network analyzer, Measurement of Impedance, Frequency, Power, VSWR, Q-factor, Dielectric constant, Scattering coefficients, Attenuation, S-parameters. Application: Microwave leakage meters, area monitors, and power measuring devices are used to detect and measure microwave energy Web Reference: https://nptel.ac.in/courses/108103141	8Hrs
Measuring Instruments : Principle of operation and application of VSWR meter, Power meter, Spectrum analyzer, Network analyzer, Measurement of Impedance, Frequency, Power, VSWR, Q-factor, Dielectric constant, Scattering coefficients, Attenuation, S-parameters. Application: Microwave leakage meters, area monitors, and power measuring devices are used to detect and measure microwave energy Web Reference: https://nptel.ac.in/courses/108103141	

Explain different types of waveguides and their respective modes of propagation.
 Analyze typical microwave networks using impedance, admittance, transmission and scattering matrix representations.

3. Design microwave matching networks using L section, single and double stub and quarter wave transformer.

4. Explain working of microwave passive circuits such as isolator, circulator, Directional couplers, attenuators etc.

5. Describe and explain working of microwave tubes and solid state devices.

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). The student is declared as a pass in the course if he/she secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- 6 There are 25 marks for the CIE's Assignment component and 25 for the Internal Assessment Test component.
- Each test shall be conducted for 25 marks. The first test will be administered after 40-50% of the coverage of the syllabus, and the second test will be administered after 85-90% of the coverage of the syllabus. The average of the two tests shall be scaled down to 25 marks
- Any two assignment methods mentioned in the 22OB2.4, if an assignment is project-based then only one assignment for the course shall be planned. The schedule for assignments shall be planned properly by the course teacher. The teacher should not conduct two assignments at the end of the semester if two assignments are planned. Each assignment shall be conducted for 25 marks. (If two assignments are conducted then the sum of the two assignments shall be scaled down to 25 marks)
- The final CIE marks of the course out of 50 will be the sum of the scale-down marks of tests and assignment/s marks.

Internal Assessment Test question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester-End Examination:

Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the course (duration 03 hours).

1. The question paper will have ten questions. Each question is set for 20 marks.

Suggested Learning Resources: Books

- 1. David M. Pozar Microwave Engineering, 4th Edition, John Wiley & Sons, Inc. 2013
- 2. E C Jordan and K G Balmain Electromagnetic Waves and Radiating Systems, 2nd Edition, PHI, 2003.

Web links and Video Lectures (e-Resources):

- 7 <u>http://nptel.ac.in/courses</u>
- 8 https://nptel.ac.in/courses/108103141
- 9 https://nptel.ac.in/courses/108105114

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

CO-PO	CO-PO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	2	2	1	-	-	-	-	-	1	3	1
CO2	3	3	3	2	2	1	-	-	-	-	-	1	3	1
CO3	3	3	3	2	2	1	-	-	-	-	-	1	3	1
CO4	3	3	3	2	2	1	-	-	-	-	-	1	3	1
CO5	3	3	3	2	2	1	-	-	-	-	-	1	3	1

PROJECT PHASE – II										
Course Code	MVJ22EAP76	CIE Marks	100							
Teaching Hours/Week (L: T:P: S)	(0:0:12)	SEE Marks	100							
Total Hours of Pedagogy	40	Total Marks								

Course objectives:

- 1 To support independent learning.
- 2 To develop interactive, communication, organization, time management, and presentation skills.
- 3 To impart flexibility and adaptability.
- 4 To train students to present the topic of project work in a seminar without any fear, face audience confidently, enhance communication skill, involve in group discussion to present and exchange ideas.
- 5 To inspire independent and team working.

Teaching-Learning Process (General Instructions)

These are sample Strategies, which teachers can use to accelerate the attainment of the various course outcomes.

Project Work Phase - II

Project Work Phase - II: Each student of the project batch shall involve in carrying out the project work jointly in constant consultation with internal guide, co-guide, and external guide and prepare the project report as per the norms avoiding plagiarism

Course outcome (Course Skill Set)

At the end of the course, the student will be able to :

- 1. Describe the project and be able to defend it. Develop critical thinking and problem solving skills.
- 2. Learn to use modern tools and techniques. Communicate effectively and to present ideas clearly and coherently both in written and oral forms.
- 3. Develop skills to work in a team to achieve common goal. Develop skills of project management and finance.
- 4. Develop skills of self-learning, evaluate their learning and take appropriate actions to improve it.
- 5. Prepare them for life-long learning to face the challenges and support the technological changes to meet the societal needs.

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). The student is declared as a pass in the course if he/she secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- 6 There are 25 marks for the CIE's Assignment component and 25 for the Internal Assessment Test component.
- Each test shall be conducted for 25 marks. The first test will be administered after 40-50% of the coverage of the syllabus, and the second test will be administered after 85-90% of the coverage of the syllabus. The average of the two tests shall be scaled down to 25 marks
- Any two assignment methods mentioned in the 22OB2.4, if an assignment is project-based then only one assignment for the course shall be planned. The schedule for assignments shall be planned properly by the course teacher. The teacher should not conduct two assignments at the end of the semester if two assignments are planned. Each assignment shall be conducted for 25 marks. (If two assignments are conducted then the sum of the two assignments shall be scaled down to 25 marks)
- The final CIE marks of the course out of 50 will be the sum of the scale-down marks of tests and assignment/s marks.

Internal Assessment Test question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester-End Examination:

Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the course (**duration 03 hours**).

- 1. The question paper will have ten questions. Each question is set for 20 marks.
- 2. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), **should have a mix of topics** under that module.
- 3. The students have to answer 5 full questions, selecting one full question from each module.
- 4. Marks scored shall be proportionally reduced to 50 marks

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

CO-PO N	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	3	3	2	1	1	2	1	1	2
CO2	2	2	2	3	3	2	1	1	2	1	2	2
CO3	2	2	2	3	3	2	1	1	2	1	2	2
CO4	2	2	2	3	3	2	1	1	2	1	2	2
CO5	2	2	2	3	3	2	1	1	2	1	2	2