	Semester: III											
	ANALOG ELECTRONICS											
Course	Code:	MVJ22VL32	CIE Marks:100									
Credits:		L:T:P: 3:0:2	SEE Marks: 100									
Hours:		40L+26P	SEE Duration: 3 Hrs									
Course]	Learning Object	ives: The students will be ab	le to									
1	Understand low frequency response for various configurations of BJT and FET amplifier.											
2	Understand the	different topologies of feedbac	ck amplifiers and oscillators.									
3	Compare various types of DACs and ADCs, timer IC's and evaluate the performance of											
5	each with neat circuit diagrams.											
4	Analyze typical	l frequency response graphs for each of the filter circuits and switching										
T	circuits of Op-A	mps.										
5	Analyze differen	nt oscillator, filters, rectifiers a	nd transistor configurations.									

UNIT 1

P-N Junction Diode : Load line analysis, diode applications - Limiters, clippers, clampers,						
voltage multipliers, half wave & full wave rectification.						
Special Purpose Diodes - Zener diode, varactor diode, light emitting diodes, laser diodes.						
	8Hrs.					
Laboratory Sessions/ Experimental Learning:						
1. Construct and analyze a full-wave rectifier						
Applications: Half wave and full wave rectifiers, clippers and clampers						
UNIT 2						
Bipolar Junction Transistors (BJT): Introduction, DC operating point, fixed bias, emitter						
bias with and without emitter resistance, voltage divider bias, dc bias with voltage feedback,						
analysis of above circuits and their design, variation of operating point and its stability.						
	8Hrs.					
Laboratory Sessions/ Experimental Learning:						
1. Plot the transfer and drain characteristics of a BJT and calculate its drain resistance,						
mutual conductance and amplification factor.						
Applications: Small signal amplifiers, oscillators, voltage regulators, sensors						
UNIT 3						

Transistors Amplifier: Small signal BJT amplifiers: AC equivalent circuit, hybrid, re model	
and their use in amplifier design. Multistage amplifiers, frequency response of basic &	
compound configuration.	
	8Hrs.
Laboratory Sessions/ Experimental Learning:	
1. Plot the frequency response using any class of power amplifier.	
Applications: Power amplifiers	
UNIT 4	
OP-Amps and its Applications : Ideal Op-Amp, practical op-amp circuits, differential and	
common mode operation, inverting & non inverting amplifier, integrator, differentiator,	
summing, scaling and averaging amplifiers, buffer, instrumentation amplifier, Schmitt	
Trigger	
Active Filters: First and second order low-pass and high-pass Butterworth filters, band-pass	
filters, band reject filters.	8Hrs.
Laboratory Sessions/ Experimental Learning:	
1. Design and test the voltage-shunt feedback amplifier and calculate the parameters using	
with and without feedback.	
2. Design and find the gain of a differential amplifier.	
Applications: Amplifiers, filters, oscillators, comparators	
UNIT 5	
Feedback Circuits: Effect of positive and negative feedbacks, basic feedback topologies &	
their properties, Analysis of practical feedback amplifiers.	
Oscillators: Oscillator operation, FET based phase shift oscillator, Wien bridge oscillator,	
LC and crystal oscillators.	
555 Timer and its Applications: Mono-stable and astable multivibrators.	
eee Third and its representations, where stable and astable maniferenties.	8Hrs.
Laboratory Sessions/ Experimental Learning:	
1. Construct a Wien Bridge Oscillator circuit using an operational amplifier and analyse	
the output waveform.	
-	
Applications: Waveform generation, servo-system	

Course Ou	tcomes: After completing the course, the students will be able to							
CO1	Explain the principles of analog electronic circuits, describing device characteristics such							
	as transistor operation modes, biasing techniques, and small-signal models.							
CO2	Apply knowledge of analog circuit analysis to design and simulate basic amplifier							
	circuits, filters, and oscillators.							
CO3	Analyze the performance of analog circuits by evaluating frequency response, gain-							
	bandwidth product, and stability criteria.							
CO4	Design analog integrated circuits (ICs) by integrating transistor-level designs into							
	functional blocks such as operational amplifiers (op-amps).							
CO5	Design, test and utilize various types of op amps for many applications							
	LIST OF EXPERIMENTS							
S. No.	Experiment Name							
1	Design a monostable multivibrator using 555 timer.							
2	Design a astable multivibrator using 555 timer.							
3	Design a RC phase shift oscillator.							
4	Design a inverting Schmitt trigger.							
5	Design a narrow band-pass filter and narrow band-reject filter.							
6	Design a precision full-wave rectifier.							
7	Input and output characteristics of transistor CB configuration							
8	Input and output characteristics of transistor CE configuration							

Text Books	
1.	Robert L. Boylestad and Louis Nashelsky, "Electronic Devices and Circuit Theory",
	PHI/Pearson Education,11th Edition.
2.	Adel S Sedra, Kenneth C Smith "Microelectronic Circuits, Theory and Applications",
	6th Edition, Oxford, 2015.ISBN:978-0-19-808913-1.
Reference	Books
1.	Behzad Razavi, "Fundamentals of Microelectronics", John Weily ISBN 2013 978-81-
	265-2307-8,2 nd Edition.
2.	K.A. Navas, "Electronics Lab Manual", Volume I, PHI, 5th Edition, 2015, ISBN:
	9788120351424.

3	.	"Linear Integrated Circuits", D. Roy Choudhury and Shail B. Jain, 4th edition, New Age
		International ISBN 978-81-224-3098-1.

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

CO-P	CO-PO-PSO Mapping													
CO/	PO	PO	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PSO	PSO
РО	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	1	2	2	-	-	-	-	-	-	2	1	1
CO2	3	3	1	3	2	-	-	-	-	-	-	2	1	1
CO3	3	3	2	3	2	-	-	-	-	-	-	2	1	1
CO4	3	3	2	2	2	-	-	-	-	-	-	2	1	1
CO5	3	3	2	2	2	-	-	1	2	-	-	2	1	1

High-3, Medium-2, Low-1

	Semester: III										
	PHYSICS OF SEMICONDUCTOR DEVICES										
Cou	rse Code:	MVJ22VL33	CIE Marks: 50								
Credits:		L:T:P: 3:0:2	SEE Marks: 50								
Hou	rs:	40L+26P	SEE Duration: 3 Hrs								
Cou	rse Learning O	bjectives: The students wi	ll be able to								
1	Understand the	fundamentals of intrinsic, e	extrinsic semiconductors with carrier concentration.								
2	Analyze the cu	rrent-voltage characteristics	of a diode.								
3	Analyze the performance and behavior of semiconductor devices under different operating conditions by examining capacitance-voltage (C-V) profiles.										
4	Analyze variou	is short channel effects in M	OSFET.								
5	Understand the	basic structure and operation	onal principles of FinFETs.								

UNIT 1	
Semiconductor Fundamentals: Crystal structure, quantum mechanics, energy bands	
and charge carriers in solids, Fermi level, carrier concentration in semiconductors,	
intrinsic and extrinsic semiconductors, density of states, Fermi distribution, equilibrium	
concentration, Boltzmann statistics, direct and indirect band-gap.	
Carrier Transport in Semiconductors: Current flow mechanisms: Drift current,	
diffusion current, mobility of carriers, current density equations, continuity equation.	8Hrs.
Laboratory Sessions/ Experimental Learning:	
1. Measure and compare the resistivity of intrinsic and extrinsic (doped)	
semiconductors	
Applications: Direct bandgap semiconductors are used in LED and LASER	
UNIT 2	
P-N Junction: Energy band diagrams, space charge layers, poisson equation, electric	
fields and potentials, p-n junction under applied bias, static current-voltage	
characteristics of p-n junctions, breakdown mechanisms (Avalanche breakdown, Zener	011
process), Reverse bias junction capacitance.	8Hrs.
Laboratory Sessions/ Experimental Learning:	

1. Observe the current-voltage behavior of a diode in forward and reverse bias	
-	
Applications: Transient voltage suppression (TVS) diodes	
UNIT 3	I
Metal Semiconductor Contact: Ideal MS contact, ohmic contact, rectifying contact,	
schottky diode.	
MOS Capacitor: Ideal MOS fundamentals, accumulation, depletion and inversion,	
threshold voltage, factors affecting the threshold voltage, CV characteristics of ideal	
MOS.	8Hrs.
	01115.
Laboratory Sessions/ Experimental Learning:	
1. Measure the gate capacitance of MOSCAP and understand its variation with applied	
voltage.	
Applications: DRAM, capacitive sensors, charged coupled devices	
UNIT 4	
Non Ideal MOS: Metal semiconductor work function difference, oxide charges: Mobile	
ions, fixed charges, interfacial traps, induce charges, CV characteristics of non-ideal	
MOS.	
MOSFETs: Theory of operation, I _D -V _D characteristics, I _D -V _G characteristics, Scaling	
and Short Channel Effects, drain-induced barrier lowering, velocity saturation, impact	
ionization, Channel length modulation, Hot carrier effect.	8Hrs.
Laboratory Sessions/ Experimental Learning:	
1. Measure the $I_D - V_D$ at various gate voltage for n channel MOSFET.	
Applications: Switching devices, amplifiers, digital circuits, RF and microwave circuits	
UNIT 5	
Modern FET Structures: FinFETs, structure and design of FinFET, benefits over	
Planar MOSFETs, SOI (Silicon on insulator) MOSFET, GAAFETs (Gate-All-Around	
FETs).	
	8Hrs.
Laboratory Sessions/ Experimental Learning:	
1. Measure the I-V characteristics and efficiency of a SOI MOSFET.	
Applications: Microprocessor and CPU, smartphone, tablets	

Course	Outcomes: After completing the course, the students will be able to
CO1	Explain the band structure diagrams of intrinsic and extrinsic semiconductors.
CO2	Solve the electrostatics of PN junction diode and draw its characteristics in positive and
	negative bias.
CO3	Analyze the fundamentals parameters of MOS capacitor.
CO4	Understand various modern FET architectures
CO5	Examine and evaluate the performance of various types of diodes and MOSFET.
	LIST OF EXPERIMENTS
S. No.	Experiment Name
1.	To study the I-V characteristics of a PN junction diode and understand its behaviour
	under forward and reverse bias conditions.
2.	Examine the operation of the Zener diode and plot its characteristic curve for both
	forward and reverse bias.
3,	Apply Zener diode to make stable voltage regulator(VR)
4.	To examine the I-V characteristics of an n-channel MOSFET.
5.	To understand MOS operation in different regions (cut off, linear, and saturation).
6.	To understand the transfer characteristics of (ID vs VGS) characteristics of MOS operation
	and analyse DIBL effect by varying VDS=0.05 and VDS=1.05
7.	To study the electrical characteristics of light emitting diodes (LEDs)
Text Bo	ooks:
1.	Semiconductor Device Fundamentals" by Robert F. Pierret, Addison-Wesley, ISBN: 0-
1.	201-54393-1
2.	Streetman, B. and Banerjee, S., Solid State Electronics, Prentice Hall India.
Referen	ce Books:
1.	Sze, S.M., Physics of Semiconductor Devices, John Wiley.
2	Advanced Semiconductor Fundamentals" by Robert F. Pierret, Addison-Wesley, ISBN:
2.	0-201-54393-1

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

CO-P	CO-PO-PSO Mapping													
CO /	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
РО	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	1	2	2	-	-	-	-	-	-	2	1	1
CO2	3	3	1	2	2	-	-	-	-	-	-	2	1	1
CO3	3	3	1	2	2	-	-	-	-	-	-	2	1	1
CO4	3	3	1	2	2	-	-	-	-	-	-	2	1	1
CO5	3	3	1	2	2	-	-	1	2	-	-	2	1	1

		Semester:	III									
	A	NALYSIS AND DESIGN OI	F DIGITAL CIRCUITS									
Cou	irse Code:	MVJ22VL34	CIE Marks:50									
Cre	Credits: L:T:P:S 3:0:0:Y SEE Marks: 50											
Hours:40 LSEE Duration: 03 Hours												
Cou	Irse Learning O	bjectives: The students will b	be able to									
1	Explain the basic principles of digital logic design, including the operation of l											
1	flip-flops, and the distinction between combinational and sequential circuits.											
2	Interpret Boolean expressions and demonstrate the use of truth tables and Karnaugh maps											
Z	in simplifying logical expressions for combinational circuits.											
3	Apply digital design principles to construct basic combinational circuits.											
4	Design sequential circuits, such as counters and shift registers, by utilizing flip-flops.											
5	Design digital s	systems using programmable l	ogic devices (PLDs).									
	1	UNIT-	I									
Pre	requisites: Numb	er systems, Boolean Algebra, I	Logic Gates	8 Hrs								
Prin	nciples of Comb	inational Logic: Introduction	, canonical forms, generation of									
swit	ching equations	from truth tables, Karnaugh m	aps-3, 4 variables, incompletely									
spec	cified functions	(Don't care terms), Quine-	McClusky techniques- 3 & 4									
vari	ables.											
Lab	oratory Session	s/ Experimental Learning:										
1. S	tudy of Logic Ga	tes – NOT, OR, AND, NOR, I	NAND, XOR and XNOR.									
2. D	esign a 4-bit Bin	ary to Gray code converter usi	ing logic gates.									
App	olications: OR g	ate in detecting exceed of t	hreshold values and producing									
com	mand signal for	the system and AND gate in fr	requency measurement.									
		UNIT-I	I									
Des	ign and Analysis	s of Combinational Logic: Ha	alf adder & subtractor, full adder	8 Hrs								
& s	ubtractors, parall	el adder and subtractor, look	ahead carry adder, BCD adder,									
bina	ary comparators,	multiplexers and demultiplexe	ers, decoders, encoders, priority									
enco	oder											
Lab	oratory Session	s/ Experimental Learning:										

Memory Devices: Basic memory structure: ROM, PROM, EPROM, EEPROM, RAM- Static and dynamic RAM Programmable Logic Devices: Programmable Logic Array (PLA), Programmable Array Logic (PAL), Field Programmable Gate Arrays (FPGA), Implementation of combinational logic circuits using PLA, PAL.	8 Hrs
RAM- Static and dynamic RAM Programmable Logic Devices: Programmable Logic Array (PLA), Programmable Array Logic (PAL), Field Programmable Gate	8 Hrs
RAM- Static and dynamic RAM Programmable Logic Devices: Programmable	8 Hrs
	8 Hrs
Memory Devices: Basic memory structure: ROM DROM EDROM EEDDOM	8 Hrc
U111- Y	
UNIT-V	
Applications: Data synchronizer, counter.	
 Design a 4-bit asynchronous up/down counter Design a 4-bit binary synchronous up/down 	
 Design a synchronous counter for a given sequence- 0, 2, 4, 6, 0 Design a 4 bit asymptotecous un/down counter 	
Laboratory Sessions/ Experimental Learning:	
Laboratory Sociena/ Experimental Laborations	
of a sequence detector.	
n counter using clocked JK, D, T and SR flip-flops, Melay & Moore models, design	
Sequential Circuit Design: Characteristic equations, design of a synchronous mod-	8 Hrs
UNIT-IV	
Applications: Frequency divider circuit, frequency counter.	
2. Design a 6-bit Register using D-Flipflop	
1. Develop SR, D, JK &T flip flop using logic gates	
Laboratory Sessions/ Experimental Learning:	
universal shift register, counters – synchronous and asynchronous.	
timing concerns in sequential circuits, shift registers – SISO, SIPO, PISO PIPO,	
Flip-Flops and its Applications: Latches and flip flops, master-slave JK flip-flop,	8 Hrs
UNIT-III	
in industries.	
Applications: Communication systems, speed synchronization of multiple motors	
4. Realize a Boolean expression using decoder IC74139.	
3. Design 4-bit comparator using IC7485.	
or subtract if 0, using logic gates.	
2. Design an Adder cum Subtractor circuit which adds when input bit operation=1	

1. Designing of combinational logic circuits using PLA, PAL.

Course	Outcomes: After completing the course, the students will be able to
CO1	Describe the algebraic equations using K-map & Quine-McCluskey technique.
CO2	Explain the operation and characteristics of fundamental digital electronic components, including logic gates, flip-flops, and multiplexers, and describe their roles in digital circuits.
CO3	Interpret and construct truth tables and Boolean expressions for various digital logic circuits.
CO4	Apply digital design techniques to develop combinational and sequential circuits.
CO5	Analyze and design finite state machines (FSMs) by evaluating state transition diagrams, constructing state tables, and designing sequential circuits using FSMs.
Text Bo	ooks:
1.	Morris Mano, —Digital Design, Prentice Hall of India, Third Edition.
Referer	nce Books:
1.	Charles H Roth Jr., Larry L. Kinney —Fundamentals of Logic Design, CengageLearning 7th Edition.
2.	Donald D. Givone, "Digital Principles and Design", McGraw Hill.

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20

marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-P	CO-PO-PSO Mapping														
CO /	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	
PO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	3	3	2	2	1	-	-	-	-	-	-	1	1	1	
CO2	3	3	2	2	1	-	-	-	-	-	-	1	1	1	
CO3	3	3	2	2	1	-	-	-	-	-	-	1	1	1	
CO4	3	3	2	2	1	-	-	-	-	-	-	1	1	1	
CO5	3	3	2	2	1	-	-	-	-	-	-	1	1	1	

		Semester	: III					
		DIGITAL CIRCUIT	LABORATO	DRY				
Course	e Code:	MVJ22VLL35		CIE Marks: 50				
Credit	s:	L:T:P:0:0:2		SEE Marks: 50				
Hours	:	26P		SEE Duration: 3 Hrs				
Course	e Learning O	bjectives: The students will be	able to					
1	Understand digital logic levels and application of knowledge to further understand digital electronics circuits.							
2	Analyze the	design of various digital electro	onic circuits.					
3		nowledge of digital circuits and ly to achieve desired results.	l systems to e	fficiently, reliably, and				
4		techniques for modelling and the determined gate-level networks and bread						
5	Analyze the	timing diagrams of digital circu	uits to underst	tand their temporal behavior.				

	LIST OF EXPERIMENTS
S. No.	Experiment Name
1	To study and verify truth table of logic gates
2	To realize half/full adder and half/full subtractor
3	To realize IC7483 as parallel adder/subtractor
4	To verify BCD to excess 3-code conversion using NAND gates. To study and verify the truth table of excess-3 to BCD code convertor
5	To convert given binary numbers to gray code.
6	To verify truth table of MUX and DEMUX using NAND
7	To verify the truth table of one bit and two bit comparators using logic gates
8	To convert a given octal input to binary output and to study the LED display using 7447 7- segment decoder
9	To verify the truth table of flipflops
10	To design bi-synchronous counter using T-flipflop
Course	Outcomes: After completing the course, the students will be able to
CO1	Understand the fundamental concepts and techniques used in digital electronics.

CO2	Identify and describe the functions of various digital components.
CO3	Solve boolean functions using logic gates.
CO4	Describe the truth tables of different combinational & sequential circuits.
CO5	Analyze the performance and behavior of digital circuits.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	3	2	1	-	1	3	-	-	2	1	1
CO2	3	3	3	3	2	1	-	1	3	-	-	2	1	1
CO3	3	3	3	3	2	1	-	1	3	-	-	2	1	1
CO4	3	3	3	3	2	1	-	1	3	-	-	2	1	1
CO5	3	3	3	3	2	1	-	1	3	-	-	2	1	1

		Semester: III							
		PRINCIPLES OF COMMUNIC.	ATION						
Course	e Code:	MVJ22VL361	CIE Marks:50						
Credit	Credits: L:T:P 3:0:0 SEE Marks: 50								
Hours:40 LSEE Duration: 03 Hour									
Course	e Learning Objec	tives: The students will be able to	I						
1	_	ndamental principles of analog and ation techniques, signal transmission,	-	systems,					
2	Apply modulation	on and demodulation techniques to des	ign analog communication	n systems.					
3	• •	ormance of digital communication sys BER), signal-to-noise ratio (SNR), ar	• • • • •	eters such					
4		al modulation schemes such as putitude modulation (QAM).	lse code modulation (PC	CM), and					
5		concepts of coherent and non-coheren asics of spread spectrum modulation.	t digital modulation techn	iques and					
		UNIT-I							
	uction: Basic blo f modulation	ck diagram of communication syste	m, Need of Modulation,	8 Hrs					
Ampli	tude Modulation	: Introduction to AM, time-domain	description, frequency-						
domair	description, sing	gle-tone modulation, generation of	AM wave: Square law						
modula	tor, switching mo	dulator, detection of AM waves: Enve	elope detector						
Double	e Side Band Suj	ppressed Carrier (DSBSC) and S	SB Modulation: Time-						
domair	description and f	requency-domain representation							
Labo	ratory Sessions/ I	Experimental Learning:							
1. Ge	eneration of AM si	ignal using MATLAB.							
2. Ge	eneration of DSBS	C signal using transistor.							
Appli modul		st transmissions, Air band radio, Qua	drature amplitude						
		UNIT-II							

Angle Modulation: Basic concepts of Phase Modulation, Frequency Modulation:	8 Hrs
Narrow band FM, wide band FM, and generation of FM waves: Indirect FM and direct	
FM. Detection of FM Signal: Balanced slope detector, Phase locked loop, Comparison	
of FM and AM., Concept of Pre-emphasis and de-emphasis.	
Laboratory Sessions/ Experimental Learning:	
1. Generation of FM signal using MATLAB	
Applications: FM radio broadcasting, telemetry, radar, seismic prospecting, and	
monitoring new-born for seizures via EEG, two-way radio systems, sound synthesis,	
magnetic tape- recording systems and some video-transmission systems.	
UNIT-III	
Transmitters: Classification of Transmitters, AM Transmitters, FM Transmitters	8 Hrs
Receivers: Radio Receiver - Receiver Types - Tuned radio frequency receiver, Super	
heterodyne receiver, RF section and Characteristics - Frequency changing and tracking,	
Intermediate frequency, Image frequency, AGC, Amplitude limiting, FM Receiver,	
Comparison of AM and FM Receivers.	
Laboratory Sessions/ Experimental Learning:	
1. Investigate the effects of noise on analog modulation signals and explore noise	
reduction techniques.	
Applications: Biomedical engineering, communication systems	
UNIT-IV	
Pulse Modulation: Types of Pulse modulation- PAM, PWM and PPM. Comparison	8 Hrs
of FDM and TDM Pulse Code Modulation: PCM Generation and Reconstruction,	
Quantization Noise, Non-Uniform Quantization and Companding, DPCM, Adaptive	
DPCM, DM and Adaptive DM, Noise in PCM and DM.	
Laboratory Sessions/ Experimental Learning:	
1. Eye diagram using MATLAB	
Applications: Ethernet, RFID marker localization signals, Radar Systems	
UNIT-V	
Digital Modulation Techniques: ASK- Modulator, Coherent ASK Detector, FSK-	8 Hrs

Modulator, Non-Coherent FSK Detector, BPSK- Modulator, Coherent BPSK
Detection. Principles of QPSK, Differential PSK and QAM.
Laboratory Sessions/ Experimental Learning:

Analyze constellation of 16-QAM Using MATLAB

Applications: CDMA, WiMAX (16d, 16e), telemetry, caller ID, garage door openers, wireless communication, mobile communication and satellite

communication, LANs, Bluetooth, RFID, GPS, Wi-Fi, etc.

Course Ou	tcomes: After completing the course, the students will be able to
CO1	Explain the concepts of analog modulation techniques such as amplitude, modulations
CO1	and its variations like DSB-SC and SSB-SC.
CO2	Analyze frequency modulation and compute performance of different types of noise.
CO3	Apply the concepts of noise in analog modulation and analysis of pre-emphasis and de
005	emphasis circuit.
CO4	Analyze the signal space representation of digital signals.
C05	Analyze the performance of a baseband and pass band digital communication system
CO5	and spread spectrum techniques.
Fext Book	s:
1	Simon Haykins & Moher, Communication Systems, 5th Edition, John Wiley,
1.	India Pvt. Ltd, 2010, ISBN 978 - 81 - 265 - 2151 - 7.
2.	Simon Haykins, "An Introduction to Analog and Digital Communication", John Wiley
Reference	Books:
1	B P Lathi and Zhi Ding, Modern Digital and Analog Communication Systems, Oxford
1.	University Press., 4th edition, 2010, ISBN: 97801980738002.

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of

quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-P	CO-PO-PSO Mapping														
CO /	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	
РО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	3	3	2	2	1	-	-	-	-	-	-	2	1	1	
CO2	3	3	2	2	1	-	-	-	-	-	-	2	1	1	
CO3	3	3	2	2	1	-	-	-	-	-	-	2	1	1	
CO4	3	3	2	2	1	-	-	-	-	-	-	2	1	1	
CO5	3	3	2	2	1	-	-	-	-	-	-	2	1	1	

	Semester: III									
	ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING									
Course (Code:	MVJ22VL362	CIE Marks:50							
Credits:		L:T:P: 3:0:0	SEE Marks: 50							
Hours:40LSEE Duration: 3 Hr										
Course l	Learning (Objectives: The students will be a	ble to							
1	Understa	nd the AI foundations and applicat	ions.							
2	Apply ma	achine learning algorithms to analy	ze and interpret real-world datasets.							
3	Solve pro	Solve problems by searching.								
4	Analyze advanced problem solving paradigms and knowledge representation.									
5	Impleme	Implement various learning algorithms, such as backpropagation and gradient descent,								
5	to optimi	ze neural network parameters.								

UNIT 1	
	<u> </u>
Introduction: What is artificial intelligence? What Is AI? The Foundations of	
Artificial Intelligence, The History of Artificial Intelligence, The State of the Art.	
Heuristic Search Techniques: Generate and test, Hill Climbing, Best First Search,	
Problem Reduction, Constraint Satisfaction, Means-ends Analysis.	
Laboratory Sessions/ Experimental Learning:	8Hrs.
1. Find the shortest path from a start node to a goal node in a maze using heuristic	
search technique.	
Applications: Used in AI for games such as chess, checkers, and Go to determine	
optimal moves.	
UNIT 2	<u> </u>
Knowledge Representation: Knowledge representation issues, predicate logic,	
representation knowledge using rules.	
Concept Learning: Concept learning task, concept learning as search, find-S	
algorithm, candidate elimination algorithm, inductive bias of candidate elimination	8Hrs.
algorithm.	
Laboratory Sessions/ Experimental Learning:	

1. Apply the concept learning paradigm in machine learning, specifically using the						
Find-S algorithm to identify the most specific hypothesis from a given dataset.						
Applications: Expert systems use knowledge representation to model medical						
expertise for diagnosing diseases based on symptoms, medical history, and tests.						
UNIT 3						
Decision Tree Learning: Introduction, decision tree representation, appropriate						
problems, ID3 algorithm.						
Artificial Neural Network: Introduction, NN representation, appropriate problems,						
perceptrons, backpropagation algorithm.						
Laboratory Sessions/ Experimental Learning:	8Hrs.					
1. Apply decision tree representation in machine learning by building and visualizing						
a decision tree classifier.						
Applications: Decision trees help in diagnosing diseases based on patient symptoms,						
medical history, and test results.						
UNIT 4						
Bayesian Learning: Introduction, Bayes theorem, Bayes theorem and concept						
learning, ML and LS error hypothesis, ML for predicting, MDL principle, Bates						
optimal classifier, Gibbs algorithm, Navie Bayes classifier, BBN, EM Algorithm						
optimar classifier, Globs algorithin, Navie Dayes classifier, DDN, Elvi Algorithin						
Laboratory Sessions/ Experimental Learning:	8Hrs.					
1. Apply the concept of least squares error hypothesis in machine learning, specifically	01115.					
using linear regression to predict outcomes based on input features.						
Applications: Used to model the probability of fraudulent activities based on historical						
transaction data and patterns.						
UNIT 5						
Instance-Base Learning: Introduction, k-nearest neighbour learning, locally weighted						
regression, radial basis function, case-based reasoning, reinforcement learning:						
Introduction, learning task, Q-learning.	8Hrs.					
Laboratory Sessions/ Experimental Learning:						

-	. Apply the K-nearest neighbors (KNN) algorithm in machine learning, using it to classify a dataset and evaluate its performance.							
Applic	Applications: k-NN: Movie Recommendations, Medical Diagnosis, Image							
Recog	Recognition. Locally Weighted Regression: Sales Forecasting, Stock Market							
Predict	ion, Financial Forecasting.							
Course	Outcomes: After completing the course, the students will be able to							
C01	Understand the fundamental principles of artificial intelligence and machine learning.							
CO2	Apply machine learning algorithms such as linear regression, decision trees, to develop and train models using real-world datasets.							
СО3	3 Implement techniques for data preprocessing to prepare datasets for machine learning tasks.							
CO4	Apply the knowledge of searching and reasoning techniques for different applications.							
CO5	Analyze the performance of neural network models by evaluating metrics such as accuracy, loss, precision.							

Text Bo	ooks:
1.	Tom M Mitchell, "Machine Learning", 1st Edition, McGraw Hill Education, 2017.
2.	Elaine Rich, Kevin K and S B Nair, "Artificial Intelligence", 3rd Edition, McGraw Hill Education, 2017.
Referen	ice Books:
1.	Saroj Kaushik, Artificial Intelligence, Cengage learning.
2.	Stuart Rusell, Peter Norving, Artificial Intelligence: A Modern Approach, Pearson Education 2nd Edition.

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50

marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the entire syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO-PSO Mapping

		11	0											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	2	-	1	-	-	1	-	-	1	2	1
CO2	3	3	3	2	-	1	-	-	1	-	-	1	2	1
CO3	3	3	3	2	-	1	-	-	1	-	-	1	2	1
CO4	3	3	3	2	-	1	-	-	1	-	-	1	2	1
CO5	3	3	3	2	-	1	-	-	1	-	-	1	2	1

		Semester: III						
		COMPUTER ORGANIZATION & AF	CHITECTURE					
Course	Code:	MVJ22VL363	CIE Marks:50					
Credits	:	L:T:P: 3:0:0	SEE Marks: 50					
Hours:		40L	SEE Duration: 3 Hrs					
Course	Learning O	bjectives: The students will be able to						
1	Explain the	e basic sub-systems of a computer, their o	rganization, structure and operation.					
2		Apply knowledge of instruction set architectures to design and implement basic assembly language programs for different processor architectures.						
3	•	Analyze the performance of computer systems by examining factors such as pipelining, caching strategies, and parallelism.						
4	Describe n	Describe memory hierarchy and concept of virtual memory.						
5	Analyze the design and operation of memory systems by evaluating cache coherence protocols, memory mapping techniques, and virtual memory management strategies.							

UNIT 1

Basic Structure of Computers: Computer types, functional units, basic operational concepts, bus structures, software, performance – processor clock, basic performance equation.

Machine Instructions and Programs: Numbers, arithmetic operations and characters, IEEE standard for floating point numbers, memory location and addresses, memory operations, instructions and instruction sequencing.

8Hrs.

Laboratory Sessions/ Experimental Learning:

- 1. Understanding various parts of CPU of a PC.
- 2. Study of microprocessor and understanding of its various instruction

Applications: Understand the functionality of the various units of computer.

UNIT 2

Prerequisite: Number systems

Addressing Modes: Assembly language, basic input and output operations, stacks and queues, subroutines, additional instructions.

Laboratory Sessions/ Experimental Learning:	
1. Write an ALP to find the sum of two numbers and verify if the sum is an even or odd	
number and simulate the output.	
2. Write an ALP to transfer a block of data from one location to other and simulate the	
output.	
Applications: Project based on microprocessor.	
UNIT 3	
Input/Output Organization: Accessing I/O devices, interrupts - interrupt hardware,	
enabling and disabling interrupts, handling multiple devices, controlling device requests,	
direct memory access, and buses.	
	8Hrs.
Laboratory Sessions/ Experimental Learning: Study any one input/output device and	
examine its various input output ports details.	
Applications: Interfacing of peripheral devices	
UNIT 4	
Memory System: Basic concepts, semiconductor RAM memories- Internal organization of	
memory chips, static memories, asynchronous DRAMS, read only memories, cache	
memories, mapping functions, replacement algorithm, virtual memories, secondary storage-	
magnetic hard disks.	
magnetic naid disks.	8Hrs.
Laboratory Sessions/Experimental Learning, Implement and simulate a simple memory	
Laboratory Sessions/ Experimental Learning: Implement and simulate a simple memory	
unit which is capable of reading and writing data within a single clock cycle.	
Applications: Understanding the various memories.	
UNIT 5	
Basic Processing Unit: Some fundamental concepts, execution of a complete instruction,	
multiple bus organization, hardwired control, micro programmed control, pipelining, basic	
concepts, role of cache memory, pipeline performance.	
	8Hrs.
Laboratory Sessions/ Experimental Learning: Evaluate the possible control sequence for	
implementing a multiplication instruction using registers for a single bus organization	
Applications: Microprocessor	
Course Outcomes: After completing the course, the students will be able to	
course succentes, mus completing the course, the students will be able to	

CO1	Identify the functional units of the processor and the factors affecting the performance of a
	computer.
CO2	Demonstrate the ability to classify the addressing modes, instructions sets and design
02	programs.
CO3	Understand the different ways of accessing an input / output device including interrupts.
CO4	Analyze the organization of different types of semiconductor and other secondary storage
004	memories.
CO5	Analyze the simple processor organization based on hardwired control and micro
	programmed control.

Text B	ooks:				
Carl Hamacher, ZvonkoVranesic, SafwatZaky: "Computer Organization", 6th 1.					
	McGraw Hill, 2011.				
Refere	nce Books:				
1	Andrew S. Tanenbaum, Todd Austin, "Structured Computer Organization", 6th Edition,				
1.	Pearson, 2013.				
2.	David A. Patterson, John L. Hennessy: "Computer Organization and Design – The Hardware				
۷.	/ Software Interface ARM Edition", 4th Edition, Elsevier.				
3.	William Stallings: "Computer Organization & Architecture", 7th Edition, PHI.				

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the

entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO-	PSO N	Mappir	ng											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	2	-	1	-	-	1	-	-	1	2	1
CO2	3	3	3	2	-	1	-	-	1	-	-	1	2	1
CO3	3	3	3	2	-	1	-	-	1	-	-	1	2	1
CO4	3	3	3	2	-	1	-	-	1	-	-	1	2	1
CO5	3	3	3	2	-	1	-	-	1	-	-	1	2	1

		Semeste	er: III					
		SENSOR TEC	HNOLOGY					
Course Code: MVJ22VL364 CIE Marks:50								
Credits:		L:T:P: 3:0:0	SEE Marks: 50					
Hours:		40L	SEE Duration: 3 Hrs					
Course I	Learning Ob	jectives: The students will be	e able to					
1	Understan	Understand various technologies associated in manufacturing of sensors.						
2	Provide be	Provide better familiarity with different sensors and their applications in real life.						
3	Acquire ki	Acquire knowledge about types of sensors used in modern digital systems.						
4	Evaluate th	Evaluate the technological and physical limitations of a specific sensor.						
5	Propose a	suitable sensor for a given me	asurement situation.					

Prerequisite: Basic Electronics, Knowledge on physical quantities.

Sensors Fundamentals and Characteristics: General concepts and terminology, sensor classification, static characteristics, dynamic characteristics, materials for sensors, microsensor technology.

8Hrs.

Laboratory Sessions/ Experimental Learning:

1. To understand the fundamental concepts and characteristics of temperature and pressure sensors including their static and dynamic characteristics

Applications: Weather stations, air quality monitoring, climate research

 UNIT 2

 Temperature Sensors: Basic Concepts, temperature scale, standard temperature points, thermistor sensors, thermocouple sensors, pyrometer, radiation thermometer, Temperature sensor applications

Position Measurement Sensors: Principle of position measurement, inductive sensors,
capacitive sensors, capacitive and inductive sensor applications, hall effect sensors8Hrs.

Laboratory Sessions/ Experimental Learning:

1. Measure resistance at various temperatures in thermistors

Applications: Industrial Process Control: Furnace temperature monitoring. Environmental	
Monitoring: Weather stations. Medical Diagnostics: Body temperature measurement.	
Automotive Applications: Engine temperature monitoring.	
UNIT 3	
Strain Gauge Sensors: Transfiguration and measurement methods, resistive metal probe,	
piezoresistive silicon sensors	
Pressure Measurement Sensors: Pressure measurement principles, characteristics of	
pressure sensors, types of pressure sensors, piezoelectric sensors, magnetoresistive sensors,	
pressure measurement sensor applications	8Hrs.
pressure measurement sensor appreations	01115.
Laboratory Sessions/ Experimental Learning:	
1. Compare measured pressures with reference gauge data.	
Applications: Bridge and Building Monitoring	
UNIT 4	I
Optical Sensors: Luminescent sensors, photoresistors, photoelectric cells, classification of	
optical sensors	
Fluid-flow Measurement sensors: Flow measurement methods, types of sensors used to	
measure fluid flows, level sensors, flow measurement by pressure difference	8Hrs.
Laboratory Sessions/ Experimental Learning:	onrs.
1. Study static and dynamic characteristics of each optical sensor.	
Applications: Flow meters are used to monitor and control water flow in treatment	
processes.	
UNIT 5	
Motion Sensors: Resistive potentiometer, LVDT, Eddy current sensor, Piezoelectric	
accelerator sensor	
Proximity sensors: Introduction, inductive proximity sensors, capacitive proximity sensors,	
optical proximity sensors, ultrasonic proximity sensors	8Hrs.
Laboratory Sessions/ Experimental Learning:	
1. Evaluate the performance of inductive, capacitive, optical, and ultrasonic proximity sensors.	

Applications: LVDTs used for precise position control in robotic arms for manufacturing tasks.

Course Outcomes: After completing the course, the students will be able to				
CO1	Understand the concept of sensors and its characteristics.			
CO2	Explain the working principles of primary and resistive sensors.			
CO3	Understand the inductive, capacitive and Electromagnetic sensors and its applications.			
CO4	Identify alternative methods to measure common quantities such as temperature, pressure,			
004	force and acceleration.			
CO5	Select appropriate sensors used for various applications.			

Text Books:				
1.	Ramon Pallas & John G.Webster, "Sensors and signal conditioning", John Wiley & Sons., 2 nd Edition.			
2.	J. Fraden, "Handbook of Modern Sensors: Physical, Designs, and Applications", AIP Press, Springer, 3 rd Edition			
Reference Books:				

1.	D. Patranabis, "Sensors and Transducers", PHI Publication, 2 nd Edition, New Delhi.
2.	Webster John G, "Instrumentation and sensors Handbook", CRC Press, 1 st Edition.
3.	Shawhney A.K., "Electrical and Electronics Measurements and Instrumentation", Dhanpat Rai & Sons.

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the entire syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO-	PSO N	Aappir	ng											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2	1	1	1	-	1	-	-	1	1	1
CO2	3	3	2	2	1	1	1	-	1	-	-	1	1	1
CO3	3	3	2	2	1	1	1	-	1	-	-	1	1	1
CO4	3	3	2	2	1	1	1	-	1	-	-	1	1	1
CO5	3	3	2	2	1	1	1	-	1	-	-	1	1	1

	Semester: IV FPGA BASED SYSTEM DESIGN USING VERILOG HDL					
Course	Code:	MVJ22VL41	CIE Marks:100			
Credits	:	L:T:P: 3:0:0	SEE Marks: 100			
Hours:		40L	SEE Duration: 3 Hrs			
Course	Learning (Objectives: The students wi	ll be able to			
1	Explain the fundamental concepts of FPGA architecture, describing the components such as logic cells, interconnect resources, and configurable I/O blocks that constitute an FPGA.					
2	Apply Verilog HDL to implement digital circuits on FPGA platforms.					
3	Analyze the impact of design choices on FPGA resource usage and power consumption by examining synthesis reports, power analysis tools, and performance profiling.					
4	Develop proficiency in writing synthesizable Verilog code for combinational and sequential logic.					
5	Model designs using IP-based methodologies and tools.					

UNIT 1

Introduction to Programmable Logic Devices: Introduction to programmable logic and comparison with full custom, semi-custom, and gate array design flow.

CPLD: Working principle, architecture, I/O block, macrocells, programming, features, examples.

FPGA: Working principle, architecture, I/O block, CLB, embedded memory, clock management, DSP capability, programming, features, examples, FPGA design flow, prototyping solution, need for hardware description languages and implementation and verifications of digital logics on FPGA platform to prove FPGA design flow. Distinguish between HDL based digital logic design and test-bench for verifications.

Laboratory Sessions/ Experimental Learning:

1. Understand the basics of PLDs, including their architecture and use in digital logic design.

Applications: To design accelerator for specific application like ALU, Floating point

UNIT 2

Verilog HDL Language: Importance and popularity of verilog HDL, typical design flow. Hierarchical modeling concepts: Top to bottom and bottom to top. Difference between design and test-bench writing using verilog,

Lexical Conventions: Whitespace, comments, operators, number specifications, string, identifiers, keywords.

Data Types: Value set, nets, registers, vectors, integer, real, and time register data, arrays, memories, parameters and string. System tasks and compiler directives, module, ports, and hierarchical names.

Laboratory Sessions/ Experimental Learning:

1. Create simple verilog modules to demonstrate the use of verilog data types.

Applications: Digital logics Adder, Subtractor etc.

UNIT 3

Design Modeling Techniques: Gate/Structural level modeling: Highlights of structural description, organization of structural description, half adder and full adder design using structural description, half subtractor and full subtractor design using structural description. **Data Flow Level Modeling:** Highlights of data-flow description, signal declaration and assignment statement, constant declaration and constant assignment statements, assigning a delay time to the signal-assignment statement.

Behavioral Level Modeling: Behavioral description highlights, structure of the verilog behavioral description, sequential statements: If statement, the case statement, verilog casex and casez, the wait-for statement, the loop statement: for-loop, while-loop, repeat, forever.
 Switching Level Modeling: Highlights of switching level description, MOS, CMOS switches, NOR and NAND gate implementation using switching flow. Tasks and Functions, timing and delays, modular test benches

Laboratory Sessions/ Experimental Learning:

1. Design a 4-bit arithmetic logic unit (ALU) using behavioral modeling.

Applications: Algorithms: FSMs, ECC

UNIT 4

Synthesis Basics: Highlights of synthesis, synthesis information from module, mapping always in the hardware domain, mapping the signal-assignment statement to gate level, mapping logical operators, mapping the IF statement, mapping the case statement, mapping the loop statement.

Implementation: Mapping, placement and routing.

8Hrs.

Laboratory Sessions/ Experimental Learning:

1. Analyze the synthesis report to understand the resource utilization and timing summary.

Applications: FPGA based prototyping

UNIT 5

IP-Based Digital Logic Design and Logic Validation: Basics of AXI interfacing, IP-	
based counter implementation, IP-based different clock generator, FIFO, and BRAM.	
Real Time Logic Validations: Integrated logic analyzer (Xilinx ILA IP) and virtual input	
and output (VIO).	8Hrs.

Laboratory Sessions/ Experimental Learning:

1. Analyze timing diagrams and understand the signaling involved in AXI transactions.

Applications: Embed ILA IP to monitor internal signals and debug the system in real-time.

Course Outcomes: After completing the course, the students will be able to				
CO1	Explain the basic architecture and functioning of FPGAs.			
CO2	Develop synthesizable Verilog HDL code for combinational and sequential logic circuits.			
CO3	Make use of simulation tools to debug and validate Verilog HDL code.			
CO4	Understand the FPGA design flow, including synthesis, placement, and routing.			
CO5	Develop AXI-based interfaces for high-speed communication within FPGA designs.			

Text Books	
1.	Palnitkar, S. "Verilog HDL: A guide to Digital Design and Synthesis" 2 nd ed. Pearson.
2.	Sass, Ronald, and Andrew G. Schmidt, "Embedded systems design with platform
	FPGAs: Principles and practices", Morgan Kaufmann.

Reference Books				
1.	J. A Bhasker, "System Verilog Primer" 1st Indian ed. B.S. Publication.			
2.	Steve Kilts, Advanced FPGA design: architecture, implementation, and optimization"			
	John Wiley & Sons.			

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-P	CO-PO-PSO Mapping													
CO/	PO	PO	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PSO	PSO
РО	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2	2	-	-	-	-	-	-	-	-	-	1	1
CO2	3	2	2	-	-	-	-	-	-	-	-	-	1	1
CO3	3	2	2	-	-	-	-	-	-	-	-	-	1	1
CO4	3	2	2	-	2	2	-	-	-	-	-	-	1	1
CO5	3	2	2	2	-	-	-	-	-	-	-	-	1	1

	Semester: IV						
	NETWORK THEORY						
Cou	rse Code:	MVJ22VL42	CIE Marks: 50				
Credits:		L: T:P: 3:0:2	SEE Marks: 50				
Hours:		40L+26P	SEE Duration: 3 Hrs.				
Cou	Course Learning Objectives: The students will be able to						
1	1Understand the basic network concepts emphasizing source transformation, mesh and nodal techniques to solve for resistance/impedance, voltage, current and power.						
2	2 Apply Thevenin's, Millman's, superposition, reciprocity, maximum power transfer and Norton's Theorems in solving the problems related to electrical circuits.						
3	3 Analyze the frequency response of series and parallel combination of passive components as resonating circuits.						
4	Describe the behavior of RLC circuits in the time and frequency domain.						
5	Analyze the two port network parameters like Z, Y, T and h and their inter-relationships.						

UNIT-I			
Basic Concepts: Introduction, practical sources, source transformations, star – delta	8 Hrs		
transformation, loop and node analysis with linearly dependent and independent			
sources for DC networks, concepts of super node and super mesh.			
	l		
Laboratory Sessions/ Experimental Learning:	l		
1. Find the current through and voltage across the load in the circuit.			
Applications: Simplification and analysis of analog circuits, microwave circuit			
analysis.	l		
UNIT-II			
Graph Theory and Network Equations: Graph of a network, trees, co-trees and	8 Hrs		
loops, incidence matrix, cut-set matrix, tie-set matrix and loop currents, number of			
possible trees of a graph, analysis of networks, duality.			
Laboratory Sessions/ Experimental Learning:			
1. Understand and apply graph theory concepts such as trees, co-trees, loops,	l		
incidence matrices, cut-set matrices, tie-set matrices, and loop currents to the			
analysis of electrical networks.			

Applications: Simplification and analysis of analog circuits, microwave circuit	
analysis.	
UNIT-III	
Network Theorems: Superposition theorem, Millman's theorem, Thevenin's and	8 Hrs
Norton's theorems, reciprocity theorem, maximum power transfer theorem.	
Laboratory Sessions/ Experimental Learning:	
1. Verify superposition theorem for a circuit.	
Applications: Simplification and analysis of analog circuits, microwave circuit	
analysis.	
UNIT-IV	1
Transient Behaviour and Initial Conditions: Behaviour of circuit elements under	8 Hrs
switching condition and their representation, evaluation of initial and final conditions	
in RL, RC and RLC circuits for DC excitations, applications of Laplace transforms in	
circuit analysis.	
Laboratory Sessions/ Experimental Learning:	
1. Plot the response of a series RLC circuit.	
Applications: In the analysis of transmission lines and waveguides.	
UNIT-V	
Two Port Network Parameters: Introduction, open circuit impedance parameter,	8 Hrs
short circuit admittance parameter, hybrid parameters, transmission parameter,	
relationship between parameters.	
Laboratory Sessions/ Experimental Learning:	
1. Plot the frequency response characteristics for a series RL, RC circuit.	
 Plot the frequency response characteristics for a parallel RL circuit. 	
3. Measure two port parameters for a given network	

Course Outcomes: After completing the course, the students will be able to					
	CO1	Apply network simplification techniques to calculate currents and voltages in a circuit.			
	CO2	Describe the network problems using graphical methods.			

CO3	Apply network theorems to simplify the complex circuits.
CO4	Examine and differentiate between transient and steady-state responses of electrical
	circuits to various inputs, using techniques such as differential equations and Laplace
	transforms.
CO5	Analyze the given network using specified two port network parameters like Z or Y
	or T or h and evaluate the frequency response related parameters through the RLC
	elements, in resonant circuits.
	LIST OF EXPERIMENTS
S. No.	Experiment Name
1.	Apply the kirchoff's law for finding current in a complex electrical circuit.
2.	Verification of Norton and maximum power transfer theorems in ac circuits.
3.	Apply the Thevenin theorem for finding current in a complex electrical circuit.
4.	Determination of transient response of current in RL and RC circuits with step voltage
	input.
5.	Determination of transient response of current in RLC circuit with step voltage input for
	under damp, critically damp and over damp cases.
6.	Determination of the equivalent parameters of series connection of two port network.
7.	Determination of impedance and admittance for series and parallel RLC circuits.
8.	Analyze circuit in s-domain (Laplace Transform)

Text Bo	oks
1.	M.E. Van Valkenberg, "Network analysis", Prentice Hall of India, 3 rd edition, ISBN: 9780136110958.
2.	Roy Choudhury, "Networks and systems", 2nd edition, New Age International Publications, ISBN: 9788122427677.
Referen	ce Books
1.	Hayt, Kemmerly and Durbin — Engineering Circuit Analysis", TMH 7th Edition, 2010.
2.	J. David Irwin /R. Mark Nelms, "Basic Engineering Circuit Analysis", John Wiley, 8th edition.

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

CO-P	CO-PO-PSO Mapping													
CO/	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
PO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	2	2	2	-	-	-	-	-	-	2	1	1
CO2	3	3	2	2	2	-	-	-	-	-	-	2	1	1
CO3	3	3	2	2	2	-	-	-	-	-	-	2	1	1
CO4	3	3	2	2	2	-	-	-	-	-	-	2	1	1
CO5	3	3	2	2	2	-	-	-	-	H	-	2	1	1

		Semest	er: IV							
		ELECTROMAGNET	IC FIELD THEORY							
Course Code:MVJ22VL43CIE Marks:50										
Credits	:	L:T:P:S 3:0:0:Y	SEE Marks: 50							
Hours:		40L	SEE Duration: 3 Hrs							
Course	Learning	Objectives: The students will	be able to							
1	Underst	Understand the physical significance of Biot-Savart's Law, Amperes' circuital law and								
1	Stokes'	Stokes' theorem for different current distributions.								
2	Apply n	Apply mathematical methods, including vector calculus and differential equations, to								
2	solve pr	solve problems related to electromagnetic fields.								
3	Analyze	Analyze electromagnetic wave propagation by evaluating wave equations, polarization								
5	states, an	states, and propagation characteristics in different media.								
4	Underst	Understand the concepts of Smith Chart for impedance matching.								
	Analyze	the interaction between elect	romagnetic fields and materials by examining							
5		concepts such as dielectric and magnetic properties.								

UNIT 1

Prerequisites: Vector algebra, coordinate systems (Rectangular coordinate system, cylindrical coordinate system and spherical coordinate system), gradient, divergence and curl.

Electrostatics: Coulomb's Law, Electric Field Intensity, Flux Density and Potential:Coulomb's law, electric field intensity, field due to line charge, field due to Sheet ofcharge, field due to continuous volume charge distribution, electric flux, electric fluxdensity, electric potential, potential difference, relation between electric field intensity (E)& potential (V), potential gradient, electric dipole, energy density in electrostatic fields.

Laboratory Sessions/ Experimental Learning:

- 1. Determine the electric field intensity at a point due to uniform linear charge (ρ L) and point charges using MATLAB.
- 2. Determine the electric field intensity at a point due to surface charge using MATLAB.

3. Determine the potential difference between two points on a ring having linear charge	
density, p L using MATLAB.	
Applications: The Van de Graaff generator, Xerography, Ink Jet Printers and Electrostatic	
Painting, Smoke Precipitators and Electrostatic Air Cleaning.	
UNIT 2	
Gauss' law, Divergence, Poisson's and Laplace's Equations: Gauss law, Maxwell's	
first equation, application of Gauss' law, divergence theorem, current, current density,	
conductor, the continuity equation, boundary conditions (dielectric-dielectric, conductor-	
dielectric, conductor-free space), Poisson's and Laplace's equations.	
Laboratory Sessions/ Experimental Learning:	8 Hrs.
1. Evaluate the current flowing through a given surface using MATLAB.	
2. Verify the divergence theorem using MATLAB.	
Applications: Used for calculation electrical field for a symmetrical distribution of	
charges.	
UNIT 3	1
Magnetostatics: Steady magnetic field-Biot-Savart law, Ampere's circuital law, Curl,	
Stokes' theorem, Gauss's law for magnetic fields, magnetic flux and magnetic flux	
density, Maxwell's equations for static fields, magnetic scalar and vector Potentials.	
Magnetic Forces and Magnetic Materials: Force on a moving charge and differential	
current element, force between differential current elements, magnetization, magnetic	
susceptibility, permeability, magnetic boundary conditions, inductances, magnetic	
energy, magnetic circuit.	8 Hrs.
Laboratory Sessions/ Experimental Learning:	
1. Determine the magnetic field intensity at a point due to magnetic field using	
MATLAB.	
Applications: Motors, Generators, Loudspeakers, MRI.	
UNIT 4	<u> </u>
Time Varying Fields and Electromagnetic Wave Propagation: Time varying fields &]
Maxwell's equations, Faraday's law, transformer and motional electro - motive forces,	
displacement current, Maxwell's equation in differential and integral form, time varying	8 Hrs.
potentials.	
•	

Electromagnetic Wave Propagation: Derivation of wave equations from Maxwell's						
equations, relation between E and H, Wave propagation in - lossy dielectrics, lossless						
dielectrics, free space and good conductor, skin-effect, Poynting theorem.						
Laboratory Sessions/ Experimental Learning:						
1. Determine the parameters of wave using MATLAB.						
Applications: Optoelectronics.						
UNIT 5						
Transmission Line: Introduction, transmission line parameters, transmission line						
equations, input impedance, standing wave ratio and power, Smith Chart basic						
fundamentals, types of transmission lines - coaxial line, strip line, micro strip line.						
Applications of Transmission Line: Impedance matching and tuning: Single stub tuning,						
double stub tuning, and the quarter wave transformer. 8 Hrs.						
Laboratory Sessions/ Experimental Learning:						
1. Simulation of micro strip transmission line using FEKO software.						
Applications: Telephone, Cable TV, Broadband network						
Course Outcomes: After completing the course, the students will be able to						
CO1 Solve problems on electrostatic force, electric field due to point, linear, surface ch	arge and					
volume charges.						
CO2 Apply Gauss law to evaluate electric fields due to different charge distributions	by using					
Divergence Theorem.						
CO3 Apply Biot-Savart's and Ampere's laws for evaluating magnetic field for differen	t current					
configurations.						
CO4 Apply Maxwell's equations for time varying fields and evaluate power associated v	with EM					
waves using Poynting theorem.						
CO5 Design electromagnetic devices and systems, such as antennas and transmission line	es, while					
optimizing performance characteristics such as impedance matching and radiation patterns						

Text Books:								
1	Matthew N. O. Sadiku, "Elements of Electromagnetics", Oxford University Press, Edition							
1.	VII, 2018.							

2. David M Pozar, "Microwave Engineering", John Wiley & Sons, Inc., 4th edition, 2014.

1	W.H. Hayt. J.A. Buck & M Jaleel Akhtar, "Engineering Electromagnetics", Tata McGraw –
1.	Hill, Edition VIII, 2014.

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-P	CO-PO-PSO Mapping													
CO/	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
PO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	2	2	2	-	-	-	-	-	-	2	1	1
CO2	3	3	2	2	2	-	-	-	-	-	-	2	1	1
CO3	3	3	2	2	2	-	-	-	-	-	-	2	1	1
CO4	3	3	2	2	2	-	-	-	-	-	-	2	1	1
CO5	3	3	2	2	2	-	-	-	-	-	-	2	1	1

	Semester: IV							
	VERILOG HDL LABORATORY							
Course	Code:	MVJ22VLL44	CIE Marks: 50					
Credits	redits: L:T:P:0:0:2 SEE Marks: 50							
Hours:		26P	SEE Duration: 3 Hrs					
Course	Learning	g Objectives: The students v	vill be able to					
1	Understa	and architectures of FPGA, C	PLD and different IC design flow.					
2	Apply verilog HDL design flow and hierarchical modeling to design various digital circuits.							
3	3 Design and verify circuits using various verilog modeling techniques.							
4	Grasp the synthesis process from high-level design to hardware implementation.							
5	Impleme	ent and validate designs using	IP-based methodologies and tools.					

LABORATORY SESSIONS							
	PART A						
Exp. No	Experiment Name						
	Write Verilog program for the following combinational logic, verify the design						
	using test bench and perform the synthesis by downloading the design on to FPGA						
1.	device.						
	a. Structural modeling of Full adder using two half adders and or Gate						
	b. BCD to Excess-3 code converter						
	Write Verilog program for the following Sequential Circuits, verify the design						
	using test bench and perform the synthesis by downloading the design on to FPGA						
2.	device.						
	a. Mod-N counter						
	b. Random sequence counter						
	Write Verilog program for the following Sequential Circuits, verify the design						
	using test bench and perform the synthesis by downloading the design on to FPGA						
3.	device.						
	a. SISO and PISO shift register b. 4-Bit Linear Feedback shift register						
	b. Barrel Shifter						

	Write Verilog program for the following Digital Circuits, verify the functionality
	using test bench and perform the synthesis by downloading the design on to FPGA
4.	device.
т.	a. Ring Counter
	b. Johnson Counter
	Write Verilog program for the following Digital Circuits, verify the functionality
	using test bench and perform the synthesis by downloading the design on to FPGA
5.	device.
	a. 4-Bit Ripple Carry Adder
	b. 4-bit Array Multiplication.
	c. 4-bit Booth Multiplication
	PART B
6	Write a Verilog code to design a clock divider circuit that generates 1/2, 1/3rdand
	1/4thclock from a given input clock. Port the design to FPGA and validate the
	Functionality through ILA.
7	Generate 3 different clock frequencies using predefined IP and validate using
	oscilloscopes.
8	Write a Verilog code to interface LED and display HDL on the LED display and
	also validate all output using VIO IP before implementations
9	Design a FSM to detect 1010 patterns and validate real time detection of patterns
	using ILA IP
10	Write Verilog code to convert an analog input of a sensor to digital form by
	interfacing ADC to display the same on a suitable display like set of simple LEDs
	like 7-Segment
	display digits.
11	Interface a DAC to FPGA and write Verilog code to generate Square wave of
	Frequency F KHz. Modify the code to down sample the frequency to F/2 KHz.
	Display the original and Down sampled signals by connecting them to an
	Oscilloscope.
Course	Outcomes: After completing the course, the students will be able to
001	Develop proficiency in writing Verilog code for modelling digital systems at various
CO1	levels of abstraction (behavioral, dataflow, and structural).

CO2	Apply Verilog HDL to design and simulate basic digital circuits such as logic gates, multiplexers, and flip-flops, using simulation tools to verify circuit functionality.
CO3	Analyze the behavior of Verilog-based designs by evaluating simulation results, identifying and debugging errors in the Verilog code, and optimizing designs for performance.
CO4	Design and implement complex digital systems, such as finite state machines (FSMs)
CO5	Implement Verilog designs on Field-Programmable Gate Arrays (FPGAs) and understand the FPGA design flow.

130	Mapp	ing											
PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
3	3	3	3	2	1	-	-	-	-	-	-	2	1
3	3	3	3	2	1	-	-	-	-	-	-	2	1
3	3	3	3	2	1	-	-	-	-	-	-	2	1
3	3	3	3	2	1	-	-	-	-	-	-	2	1
3	3	3	3	2	1	-	-	-	-	-	-	2	1
	3 3 3 3	3 3 3 3 3 3 3 3 3 3	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3 3 3 3 2 3 3 3 3 2 3 3 3 3 2 3 3 3 3 2 3 3 3 3 2 3 3 3 3 2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 3 3 3 2 1 - 3 3 3 3 2 1 - 3 3 3 3 2 1 - 3 3 3 3 2 1 - 3 3 3 3 2 1 - 3 3 3 3 2 1 -	3 3 3 3 2 1 - - 3 3 3 3 2 1 - - 3 3 3 3 2 1 - - 3 3 3 3 2 1 - - 3 3 3 3 2 1 - - 3 3 3 3 2 1 - -	3 3 3 3 2 1 - - - 3 3 3 3 2 1 - - - 3 3 3 3 2 1 - - - 3 3 3 3 2 1 - - - 3 3 3 3 2 1 - - - 3 3 3 3 2 1 - - -	3 3 3 3 2 1 - - - - 3 3 3 3 2 1 - - - - 3 3 3 3 2 1 - - - - 3 3 3 3 2 1 - - - 3 3 3 3 2 1 - - - 3 3 3 3 2 1 - - -	3 3 3 3 2 1 - - - - - 3 3 3 3 2 1 - - - - - 3 3 3 3 2 1 - - - - 3 3 3 3 2 1 - - - - 3 3 3 3 2 1 - - - - 3 3 3 3 2 1 - - - -	3 3 3 3 2 1 - - - - - - 3 3 3 3 2 1 -	3 3 3 3 2 1 - - - - 2 3 3 3 3 2 1 - - - - 2 3 3 3 3 2 1 - - - - 2 3 3 3 3 2 1 - - - 2 3 3 3 3 2 1 - - - 2

		Semes	ter: IV		
		CONTROL	SYSTEMS		
Course Code: Credits:		MVJ22VL451	CIE Marks:100		
		L:T:P: 3:0:0	SEE Marks: 100		
Hours:	:	40L	SEE Duration: 3 Hrs		
Course	e Learning	Objectives: The students will	be able to		
1	Explain the fundamental principles and components of control systems.				
2	Apply control theory to model dynamic systems using differential equations and state- space representations.				
3	Analyse the response of first and second order systems using standard test signals and analyse steady state error.				
4	Analyse stability of systems using RH criteria, root locus, Nyquist, Bode plot and polar plot.				
5	Design controllers such as PID, lead-lag, and state feedback controllers to achieve desired system performance specifications.				

UNIT 1

8Hrs.

Introduction to Control Systems: Open loop and closed loop systems, types of feedback, differential equation of physical systems – Mechanical systems, electrical systems, analogous systems.

Block Diagrams and Signal Flow Graphs: Transfer functions, block diagram algebra and signal flow graphs.

Laboratory Sessions/ Experimental Learning:

1. Determine and plot poles and zeros from the transfer function using MATLAB.

Applications: Electric hand drier, automatic washing machine, DC motor, automatic electric iron, voltage stabilizer.

UNIT 2

Time Response of Feedback Control Systems: Standard test signals, unit step response of	
first and second order systems. Time response specifications of first order systems, time	8Hrs.
response specifications of second order systems for underdamped system, steady state errors	опту.
and error constants.	

Introduction to Controllers: P, PI, PD and PID Controllers.	
Laboratory Sossions/Exposimental Learning	
Laboratory Sessions/ Experimental Learning:	
1. Obtain step and impulse response of a unity feedback first order system for a given	
forward path transfer function using MATLAB.	
2. Obtain step and impulse response of a unity feedback second order system for a given	
forward path transfer function using MATLAB.	
Applications: Industrial control systems	
UNIT 3	
Stability Analysis Using RH Criteria and Root Locus: Concepts of stability, necessary	
conditions for stability, Routh Hurwitz stability criterion, relative stability analysis,	
introduction to root-locus techniques, the root locus concepts, construction of root loci.	
	8Hrs.
Laboratory Sessions/ Experimental Learning:	
1. Obtain root locus plot of the system for a given forward path transfer function using	
MATLAB.	
Applications: Used to determine the dynamic response of a system.	
UNIT 4	
Stability Analysis using Nyquist Criteria and Bode Plots: Polar plot, Nyquist stability	
criterion, Nyquist plots, Bode plots, gain and phase margin.	
Laboratory Sessions/ Experimental Learning:	
1. Obtain Bode plot of the system for a given forward path transfer function using	011
MATLAB.	8Hrs.
2. Obtain Nyquist plot of the system for a given forward path transfer function using	
MATLAB.	
Applications: To determine a stability of a system.	
UNIT 5	
Introduction to State Variable Analysis: Concepts of state, state variable and state models	
for electrical systems, solution of state equations, state transition matrix and its properties.	
lag, lead and lag lead compensation.	8Hrs.
Laboratory Sessions/ Experimental Learning:	

1. Determining the solution of state equations using MATLAB.

Applications: State variables are used to describe the future response of a d+ynamic response.

Course Outcomes: After completing the course, the students will be able to

CO1	Apply mathematical models to represent and simulate the behavior of dynamic systems.
CO2	Analyze transient and steady state response of second order systems using standard test
	signals and analyze steady state error.
CO3	Analyze the stability of the systems by applying RH criteria and root locus techniques.
CO4	Analyze the stability of the system using frequency domain techniques such as Nyquist and
04	Bode plots.
CO5	Design and implement controllers, such as proportional-integral-derivative (PID) controllers,
05	lead-lag compensators, and state feedback controllers.

Text Books: 1. Nagarath and M.Gopal, Control Systems Engineering, New Age International (P) Limited, Publishers, Fifth edition, ISBN: 81-224-2008. 2. Modern Control Engineering, K.Ogata, Pearson Education Asia/PHI, 4th Edition, ISBN 978 81-203-4010-7.

Reference Books:

1. Automatic Control Systems^I, Benjamin C. Kuo, John Wiley India Pvt. Ltd., 8th Edition.

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the entire syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO /	PO	PSO	PSO											
PO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	2	2	2	-	-	-	-	-	-	2	1	1
CO2	3	3	2	2	2	-	-	-	-	-	-	2	1	1
CO3	3	3	2	2	2	-	-	-	-	-	-	2	1	1
CO4	3	3	2	2	2	-	-	-	-	-	-	2	1	1
CO5	3	3	2	2	2	-	-	-	-	-	-	2	1	1

High-3, Medium-2, Low-1

		Semester: I	V			
		INDUSTRIAL ELEC	CTRONIC	CS		
Course	Code:	MVJ22VL452		CIE Marks:50		
Credits	:	L:T:P: 3:0:0		SEE Marks: 50		
Hours:		40 L		SEE Duration: 03 Hour	S	
Course	Learning Objecti	ives: The students will be a	ble to			
1	1 Explain broad types of industrial power devices, there structure, and its characteristics.					
2	Design and anal	yse the broad categories of p	ower elec	tronic circuits.		
3	Explain various	types of MEMs devices, prin	nciple of c	peration and construction.		
4	Familiarize with	soft core processors and con	mputer arc	chitecture		
5	Apply protective	e methods for devices and cir	rcuits.			
		UNIT-I				
Industr	ial Power Devices	s: General purpose power di	iodes, fast	recovery power diodes,	8 Hrs	
schottky	power diodes, si	ilicon carbide power diodes	s, Power	MOSFETs, Steady state		
characte	ristics, switching	characteristics, silicon c	arbide M	IOSFETs, COOLMOS,		
Junction	field effect transi	istors, operation and charact	eristics of	JFETs, Silicon Carbide		
JFET st	ructures, Bipolar	Junction Transistors, Stead	ly state c	haracteristics, switching		
characte	ristics, silicon cart	bide BJTs, IGBT, silicon car	bide IGB7	Γs		
Labora	tory Sessions/ Exj	perimental Learning:				
1. To understand the steady-state and switching characteristics of various industrial						
pov	ver devices, incluc	ding power diodes, MOSFE	Ts, JFETs	, BJTs, and IGBTs, and		
exp	lore their applicati	ions in industrial settings.				
Applic	ations: High-effic	ciency power conversion sy	stem can	be deployed in various		
industri	al applications					
		UNIT-II				
Power 1	Electronics Circu	its: Thyristor, Thyristor cha	aracteristic	es, two transistor model.	8 Hrs	
Controll	ed Rectifiers – Sin	ngle phase full converter with	n R and RI	L load, Single phase dual		
converters, and Three phase full converter with RL load. Switching mode regulators -						
Buck Re	egulator, Boost reg	gulator, Buck – Boost regulat	or, compa	rison of regulators		

Laboratory Sessions/ Experimental Learning:	
1. Use the semiconductor parameter analyzer to measure the thyristor's I-V	
characteristics.	
Applications: The solar power inverter system can be deployed in residential and	
commercial settings to harness solar energy efficiently and reduce dependency on	
conventional power sources.	
UNIT-III	
Inverters – Principle of operation, Single phase bridge inverter, Three phase inverter with	8 Hrs
180 and 120 degree conduction, Current source inverter. AC voltage controllers - Single	
phase full wave controller with resistive load, single phase full wave controller with	
inductive load	
Laboratory Sessions/ Experimental Learning:	
1. To understand the principles of operation of inverters and AC voltage controllers, and	
to analyze the performance of single-phase and three-phase inverters, as well as single-	
phase full-wave AC voltage controllers with resistive and inductive loads.	
Applications: The UPS system can be deployed in various critical applications such as	
data centers, medical facilities, industrial automation	
UNIT-IV	
MEMS Devices: Sensing and Measuring Principles, Capacitive Sensing, Resistive	8 Hrs
Sensing, Piezoelectric Sensing, Thermal Transducers, Optical Sensors, Magnetic	
Sensors, MEMS Actuation Principles, Electrostatic Actuation, Thermal Actuation,	
Piezoelectric Actuation, Magnetic Actuation, MEMS Devices Inertial Sensors, Pressure	
Sensors, Radio Frequency MEMS: Capacitive Switches and Phase Shifters,	
Microfluidic Components, Optical Devices.	
MEMS Applications: Introduction, Industrial, Automotive, Biomedical	
Laboratory Sessions/ Experimental Learning:	
1. To understand the principle of capacitive sensing and to design and test a capacitive	
MEMS sensor for measuring displacement.	
Applications: The MEMS pressure sensor system can be deployed in vehicles to	
continuously monitor tire pressure.	
UNIT-V	

Protections of Devices and Circuits: Cooling and Heat sinks, Thermal Modeling of	8 Hrs
Power Switching Devices, Electrical Equivalent Thermal model, Mathematical	
Thermal Equivalent Circuit, Coupling of Electrical and Thermal Components, Snubber	
circuits, Voltage protection by Selenium Diodes and Metal oxide Varistors, Current	
protection, Fusing, Fault current with AC source, Fault current with DC source,	
Electromagnetic Interference, sources of EMI, Minimizing EMI Generation, EMI	
shielding, EMI standards	
Laboratory Sessions/ Experimental Learning:	
1. To understand and implement various protection mechanisms for electronic devices	
and circuits, including thermal management, voltage and current protection, snubber	
circuits, and electromagnetic interference (EMI) mitigation techniques.	
Applications: The protection system can be deployed in various industrial applications,	
such as motor drives, renewable energy systems, industrial automation	
	1

Course Ou	tcomes: After completing the course, the students will be able to					
CO1	Explain different types of industrial power devices such as MOSFET, BJT, IGBT etc, there structure, and its operating characteristics.					
CO2	Design and analyse the power electronic circuits such as switch mode regulators, inverters, controlled rectifiers and ac voltage controllers.					
CO3	Explain various types of MEMs devices used for sensing pressure, temperature, current, voltage, humidity, vibration etc					
CO4	Familiarize with soft core processors such as ASIC and FPGA.					
CO5	Familiarize with computer hardware, software, architecture, instruction set, memoryorganization, multiprocessor architecture.					
Text Book	S:					
1.	Power Electronics: Devices, Circuits, and Applications, Muhammad H. Rashid, Pearson, 4th International edition.					
2.	Fundamentals of Industrial Electronics , Bogdan M. Wilamowski, J. David Irwin, CRC Press.					
Reference	Books:					

	Thomas E. Kissell, Industrial Electronics: Applications for Programmable Controllers,
1.	Instrumentation and Process Control, and Electrical Machines and Motor Controls, 3rd
	edition, Prentice Hall.
2	Ned Mohan, T.M. Undeland and W.P. Robbins, "Power Electronics: Converters,
2.	Applications and Design", Wiley India Ltd.

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-P	O-PS	O Ma	pping	5										
CO/	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
РО	1	2	3	4	5	6	7	8	9	10	11	12	1	2
C01	3	3	2	2	2	-	-	-	-	-	-	2	1	1
CO2	3	3	2	2	2	-	-	-	-	-	-	2	1	1
CO3	3	3	2	2	2	-	-	-	-	-	-	2	1	1
CO4	3	3	2	2	2	-	-	-	-	-	-	2	1	1
CO5	3	3	2	2	2	-	-	-	-	-	-	2	1	1

		Semester	: IV	
		ROBOTICS AND A	UTOMATION	
Cour	rse Code:	MVJ22VL453	CIE Marks:50	
Cred	lits:	L:T:P: 3:0:0	SEE Marks: 50	
Hou	rs:	40 L	SEE Duration: 03 Ho	ours
Cour	rse Learning Ob	jectives: The students will	be able to	
1	Explain the fur	ndamental concepts and prin	ciples of robotics and automation.	
2	Apply mathem	atical and computational tec	hniques to model robotic mechani	sms.
2	Analyze the pe	rformance and efficiency of	robotic systems by evaluating par	ameters
3	such as accurate	cy, repeatability, and speed.		
4	Analyze basic	robotic dynamics, path plan	ning and control problems.	
5	Design and im	plement control algorithms f	for robotic systems.	
		UNIT	I	
Basi	c Concepts in Ro	botics: Definition, anatomy	of robot, basic structure of robot,	8 Hrs
speci	fications and cla	ssification of robot, safety	measures in robotics, industrial	
appli	cations of robots.	Drives for robots: Electric, h	ydraulic and pneumatic. Sensors:	
Inter	nal-external, cont	act-non-contact, position, v	elocity, force, torque, proximity	
and r	ange.			
Labo	oratory Sessions	Experimental Learning:		
1. 1	Interface various	sensors with Microcontrolle	r.	
Appl	ications: Machin	ne Tending, Picking, Packi	ng and Palletizing, painting, all	
Indus	strial applications			
		UNIT-	II	
Robo	ot Drivers, Senso	ors and Vision: Introduction	to techniques, image acquisition	8 Hrs
and	processing, diffe	erent types of grippers- N	Iechanical, magnetics, vacuum,	
adhes	sive, gripper forc	e analysis and gripper desig	gn, overview of actuators, power	
and t	orque, accelerati	on and velocity specificatio	ns and characteristics of stepper	
moto	rs, AC motors, D	C motors and servomotors.		
Labo	oratory Sessions/	Experimental Learning:		

	1
1. Interface motors using various motor drivers.	
Applications: Industrial application, agriculture robots, surgical robots	
UNIT-III	
Robot Kinematics nd Dynamics: Direct and inverse kinematics for industrial	8 Hrs
robots for position and orientation, redundancy, manipulator, direct and inverse	
velocity. Link inertia tensor and manipulator inertia tensor, Newton-Eller	
formulation for RP and RP manipulators, trajectory planning.	
Laboratory Sessions/ Experimental Learning:	
1. Interface servo motors to form gripper.	
Applications: Pick and Place, Excavators, Robotic ARM.	
UNIT-IV	<u> </u>
Robot Kinematics : Dynamics and programming methods, robot language	8 Hrs
classification, robot language structure, kinematics and path planning: Solution of	
inverse kinematics problem, multiple solution jacobian work envelop, hill climbing	
techniques, robot programming languages elements and its functions. Simple	
programs on sensing distance and direction, Line following algorithms, feedback	
systems.	
Laboratory Sessions/ Experimental Learning:	
1. Design algorithm for Maze solving robot.	
Applications: Defence, Surveillance, Autonomous Vehicles	
UNIT-V	I
Design and Applications: Developing and building a robot, models of flexible links	8 Hrs
and joints, robotic arm - Components and structure, types of joints and workspace,	
design models for mechanic arms and lifting systems mutiple robots, machine	
interface, robots in manufacturing and non- manufacturing applications, robot cell	
design, selection of robot.	
Laboratory Sessions/ Experimental Learning:	
1. Case Study on Robots in material handling and assembly. Human Robot	
Interaction	
Applications: Humanoid, Robotic Arms.	

Course	Outcomes: After completing the course, the students will be able to
CO1	Analyze the concept development and key components of robotics technologies.
CO2	Select the components for interfacing actuators.
CO3	Implement basic mathematics manipulations of spatial coordinate representation and Transformation.
CO4	Solve basic robot forward and inverse kinematic problems.
CO5	Design robots which are capable to solve basic robotic dynamics, path planning and control problems.
Text Bo	ooks:
1.	Introduction to Robotics By S.K.Saha , Tata McGraw Hill
2.	Robotics Control, Sensing, Vision and Intelligence by K.S. Fu, R.C. Gonzalez, C.S.G.Lee, Tata McGraw HillJ. Hirchhorn: Kinematics and Dynamics of Machinery, McGraw Hill book Co.
Referer	ice Books:
1.	Robert J. Schilling, Fundamentals of Robotics- Analysis and Control, Prentics Hall india.
2.	Robotics Technology and Flexible Automation by S.R.Deb, S. Deb, Tata McGraw Hill
3.	Robot Motion and Control (Recent Developments) by M.Thoma& M. Morari

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the entire syllabus. Part - B Students have to answer five questions, one from each unit for

16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-P	O-PS	O Ma	pping											
CO/	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
РО	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	2	2	2	-	-	-	-	-	-	2	1	1
CO2	3	3	2	2	2	-	-	-	-	-	-	2	1	1
CO3	3	3	2	2	2	-	-	-	-	-	-	2	1	1
CO4	3	3	2	2	2	-	-	-	-	-	-	2	1	1
CO5	3	3	2	2	2	-	-	-	-	-	-	2	1	1

		Semes	ter: IV	
		DATA STRUCTURI	ES USING PYTHON	
Cour	se Code:	MVJ22VL454	CIE Marks:50	
Cred	its:	L:T:P: 3:0:0	SEE Marks: 50	
Hour	rs:	40 L	SEE Duration: 03 Hours	
Cour	se Learning Obj	jectives: The students will	be able to	
1	Understand the project assessm		tures and their applications in logic build	ling and
2	Understand the	concept of linked lists and	sorting techniques.	
3	Acquire the know	owledge of algorithms of qu	ueues and stacks.	
4	Analyze the co	ncepts of binary trees.		
5	Examine Graph	ns and its algorithms.		
		UN	IT-I	
Pythe	on Primer: Pyth	on Overview, Objects in P	ython, Expressions, Operators, Control	8 Hrs
Flow	, Functions, Simp	ble i/p and o/p, Modules.		
Basic	c Concepts of Dat	ta Structures and Algorith	ms: Introduction- Variables, Datatypes,	
Data	Structures, ADT	, what is an algorithm, How	w to compare algorithms, Rate growth,	
Туре	s of analysis, Asy	mptotic Notation, Performation	ance Analysis: Space complexity, Time	
comp	lexity, Guideline	s for asymptotic analysis.		
Searc	ching Technique	s: Linear Search and Binary	y Search	
Labo	oratory Sessions/	Experimental learning:		
1. D	evelop a mini pro	ject to demonstrate the con-	cept Binary Search.	
Appli	ications: The Lit	orary Management System	can be deployed in small libraries to:	
Mana	ge Book Inventor	ry, Register Members, Searc	ch Efficiently	
		UNI	T-II	
Link	ed Lists: Definit	ion, Linked list operations	: Traversing, Searching, Insertion, and	8 Hrs
Delet	tion. Doubly Link	ted lists and its operations, G	Circular linked lists and its operations.	
Sorti	ng Techniques:	Bubble Sort, Insertion Sort	, Selection Sort, Quick Sort and Merge	
Sort.				

Laboratory Sessions/ Experimental learning:	
1. Develop an algorithm to demonstrate the concept of Linked lists.	
Applications: Student Management System using linked lists and sorting techniques to	
manage student records, including traversing, searching, inserting, and deleting records.	
UNIT-III	
Stacks: Definition, Stack Implementation using arrays/lists and linked lists, Stack ADT,	8 Hrs
Stack Operations (Insertion and Deletion), Array Representation of Stacks, Stack	
Applications: Infix to postfix conversion, Tower of Hanoi.	
Queues: Definition, Array Representation, Queue Implementation using arrays/lists and	
linked lists, Queue ADT, Operations on queues (Insertion and Deletion), Circular Queues	
and its operations, Priority Queues and its operations.	
Laboratory Sessions/ Experimental learning:	
1. Implementation of Towers of Hanoi using Stacks.	
Applications: An Expression Evaluation and Task Scheduling System using stacks and	
queues to manage and evaluate arithmetic expressions, as well as to schedule and manage	
tasks.	
UNIT-IV	
Trees: Terminology, Binary Trees, Types of Binary trees, Properties of Binary trees,	8 Hrs
Array Representation of Binary Trees, Binary Tree Traversals - Inorder, Postorder,	
Preorder.	
Binary Search Trees - Definition, Insertion, Deletion, Searching, Implementation of	
Binary tree, Heaps and Heap Sort, Construction of Expression Trees, AVL Trees.	
Laboratory Sessions/ Experimental learning:	
1. Solve Parenthesis Matching problem using binary search trees.	
Applications: A Task Management System to manage and organize tasks using various	
tree data structures. This system will allow users to add, delete, and search for tasks, as	
well as sort tasks based on their priorities using heaps.	
UNIT-V	
Graphs: Definitions, Terminologies, Matrix and Adjacency List Representation of	8 Hrs
Graphs, Elementary Graph operations, Traversal methods: Breadth First Search and Depth	

First Search, DAG, Minimum Spanning Trees: Prim – Kruskal algorithm, Single Source	
Shortest Path: Weighted graphs, Dijkstra algorithm.	
Laboratory Sessions/ Experimental learning:	
1. Print all the nodes of graph using DFS and BFS.	
2. Apply various algorithms on a graph and analyse it.	
Applications: Use DAGs to represent scenarios where relationships have a direction and	
there are no cycles, such as task scheduling.	

Course Ou	itcomes:	After compl	eting the	course, t	the stude	ents will	be able to	

CO1	Acquire knowledge of Python fundamentals and data structures.
CO2	Analyse and design of algorithms for Linked lists and sorting techniques.
CO3	Apply the concepts of Stacks and queues.
CO4	Utilize the operations of search trees and their applications.
CO5	Investigate Graphical algorithms.
Text Bo	ooks:
	Rance D Necaise "Data Structures and Algorithms using Python", Wiley, John Wiley and
1.	Sons.
	Michael T. Goodrich, R. Tamassia and Michael H Goldwasser "Data structures and
2.	Algorithms in python", Wiley student edition, John Wiley and Sons.
Referei	nce Books:
	Narasimha Karumanchi, "Data Structures and Algorithmic Thinking with Python",
1.	CareerMonk Publications.

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are

20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the entire syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-P	O-PS	U Ma	pping	5										
CO /	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
PO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	2	2	2	-	-	-	-	-	-	2	1	1
CO2	3	3	2	2	2	-	-	-	-	-	-	2	1	1
CO3	3	3	2	2	2	-	-	-	-	-	-	2	1	1
CO4	3	3	2	2	2	-	-	-	-	-	-	2	1	1
CO5	3	3	2	2	2	-	-	-	-	-	-	2	1	1

	Semester: III							
	ANALOG ELECTRONICS							
Course	Code:	MVJ22VL32	CIE Marks:100					
Credits:		L:T:P: 3:0:2	SEE Marks: 100					
Hours:		40L+26P	SEE Duration: 3 Hrs					
Course	Learning Object	ives: The students will be abl	e to					
1	Understand low frequency response for various configurations of BJT and FET amplifier.							
2	Understand the different topologies of feedback amplifiers and oscillators.							
3	Analyze the power amplifier circuits in different modes of operation.							
4	Analyze typical	frequency response graphs for	or each of the filter circuits and switching					
	circuits of Op-Amps.							
5	Compare various types of DACs and ADCs, timer IC's and evaluate the performance of							
5	each with neat circuit diagrams.							

UNIT 1	
Prerequisites: Operation of PN junction diode	
P-N Junction Diode: Load line analysis, diode applications - Limiters, clippers, clampers,	
voltage multipliers, half wave & full wave rectification.	
Special Purpose Diodes - Zener diode, varactor diode, light emitting diodes, laser diodes.	
Laboratory Sessions/ Experimental Learning:	8Hrs.
1. Construct and analyze a full-wave rectifier	
Video Link/ Additional Online Information:	
1. https://archive.nptel.ac.in/courses/108/105/108105158/	
UNIT 2	
Prerequisites: Working of BJT.	
Bipolar Junction Transistors (BJT): Introduction, DC operating point, fixed bias, emitter	
bias with and without emitter resistance, voltage divider bias, dc bias with voltage feedback,	8Hrs.
analysis of above circuits and their design, variation of operating point and its stability.	onrs.

Laboratory Sessions/ Experimental Learning: 1. Plot the transfer and drain characteristics of a BJT and calculate its drain resistance, mutual conductance and amplification factor. Video Link/ Additional Online Information: 1. https://archive.nptel.ac.in/courses/108/105/108105158/ UNIT 3 Transistors Amplifier: Small signal BJT amplifiers: AC equivalent circuit, hybrid, re model and their use in amplifier design. Multistage amplifiers, frequency response of basic & compound configuration. Laboratory Sessions/ Experimental Learning: 8Hrs. 1. Plot the frequency response using any class of power amplifier. Video Link/ Additional Online Information: 1. http://www.nptelvideos.in/2012/12/electronics.html UNIT 4 **OP-Amps and its Applications**: Ideal Op-Amp, practical op-amp circuits, differential and common mode operation, inverting & non inverting amplifier, integrator, differentiator, summing, scaling and averaging amplifiers, buffer, instrumentation amplifier, Schmitt Trigger Active Filters: First and second order low-pass and high-pass Butterworth filters, band-pass filters, band reject filters. 8Hrs. Laboratory Sessions/ Experimental Learning: 1. Design and test the voltage-shunt feedback amplifier and calculate the parameters using with and without feedback. 2. Design and find the gain of a differential amplifier. Video Link/ Additional Online Information: 1. https://archive.nptel.ac.in/courses/108/105/108105158/

UNIT 5			
Feedback Circuits: Effect of positive and negative feedbacks, basic feedback topologies &			
their properties, Analysis of practical feedback amplifiers.			
Oscillators: Oscillator operation, FET based phase shift oscillator, Wien bridge oscillator,			
LC and crystal oscillators.			
555 Timer and its Applications: Mono-stable and astable multivibrators.			
Laboratory Sessions/ Experimental Learning:	8Hrs.		
1. Construct a Wien Bridge Oscillator circuit using an operational amplifier and analyse			
the output waveform.			
Video Link/ Additional Online Information:			
1. <u>https://archive.nptel.ac.in/courses/108/105/108105158/</u>			

Course Ou	tcomes: After completing the course, the students will be able to				
CO1	Explain the principles of analog electronic circuits, describing device characteristics such				
	as transistor operation modes, biasing techniques, and small-signal models.				
CO2	Apply knowledge of analog circuit analysis to design and simulate basic amplifier				
	circuits, filters, and oscillators.				
CO3	Analyze the performance of analog circuits by evaluating frequency response, gain-				
	bandwidth product, and stability criteria.				
CO4	Design analog integrated circuits (ICs) by integrating transistor-level designs into				
	functional blocks such as operational amplifiers (op-amps).				
CO5	Lab				
	LIST OF EXPERIMENTS				
S. No.	Experiment Name				
1	Design a monostable multivibrator using 555 timer.				
2	Design a astable multivibrator using 555 timer.				
3	Design a RC phase shift oscillator.				
4	Design a inverting Schmitt trigger.				
5	Design a narrow band-pass filter and narrow band-reject filter.				

6	Design a precision full-wave rectifier.
7	Input and output characteristics of transistor CB configuration
8	Input and output characteristics of transistor CE configuration

Text Books	
1.	Robert L. Boylestad and louis Nashelsky, "Electronic Devices and Circuit Theory",
	PHI/Pearson Education,11th Edition.
2.	Adel S Sedra, Kenneth C Smith "Microelectronic Circuits, Theory and Applications",
	6th Edition, Oxford, 2015.ISBN:978-0-19-808913-1.
Reference I	Books
1.	Behzad Razavi, "Fundamentals of Microelectronics", John Weily ISBN 2013 978-81-
	265-2307-8,2 nd Edition.
2.	K.A.Navas, "Electronics Lab Manual", Volume I, PHI, 5th Edition, 2015, ISBN:
	9788120351424.
3.	"Operational Amplifiers and Linear IC"s", David A. Bell, 2 nd edition, PHI/Pearson.
	ISBN 978-81-203-2359-9.
4.	"Linear Integrated Circuits", D. Roy Choudhury and Shail B. Jain, 4th edition, New Age
	International ISBN 978-81-224-3098-1.

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the entire syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks

adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

CO-P	CO-PO-PSO Mapping													
CO/	РО	PO	PSO	PSO										
РО	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	1	2	2	-	-	-	-	-	-	2	1	1
CO2	3	3	1	2	2	-	-	-	-	-	-	2	1	1
CO3	3	3	1	2	2	-	-	-	-	-	-	2	1	1
CO4	3	3	1	2	2	-	-	-	-	-	-	2	1	1
CO5	3	3	1	2	2	-	-	-	-	-	-	2	1	1

	Semester: III						
	PHYSICS OF SEMICONDUCTOR DEVICES						
Course Code:		MVJ22VL33	CIE Marks: 50				
Credits:		L:T:P: 3:0:2	SEE Marks: 50				
Hou	irs:	40L+26P	SEE Duration: 3 Hrs				
Cou	Course Learning Objectives: The students will be able to						
1	1 Understand the fundamentals of intrinsic, extrinsic semiconductors with carrier concentration.						
2	Analyze the current-voltage characteristics of a diode.						
3	3 Analyze the performance and behavior of semiconductor devices under different operating conditions by examining capacitance-voltage (C-V) profiles.						
4	Analyze various short channel effects in MOSFET.						
5	Distinguish between different types of diodes and their characteristics.						

UNIT 1		
Semiconductor Fundamentals: Crystal structure, quantum mechanics, energy bands		
and charge carriers in solids, Fermi level, carrier concentration in semiconductors,		
intrinsic and extrinsic semiconductors, density of states, Fermi distribution, equilibrium		
concentration, Boltzmann statistics, direct and indirect band-gap.		
Carrier Transport in Semiconductors: Current flow mechanisms: Drift current,		
diffusion current, mobility of carriers, current density equations, continuity equation.		
	8Hrs.	
Laboratory Sessions/ Experimental Learning:		
1. Measure and compare the resistivity of intrinsic and extrinsic (doped)		
semiconductors		
Video Link / Additional Online Information:		
1. <u>https://archive.nptel.ac.in/courses/108/108/108108122/</u>		
UNIT 2	<u> </u>	
P-N Junction: Energy band diagrams, space charge layers, poisson equation, electric		
fields and potentials, p-n junction under applied bias, static current-voltage	8Hrs.	
characteristics of p-n junctions, breakdown mechanisms (Avalanche breakdown, Zener		

process), Reverse bias junction capacitance.

011
8Hrs.
011
8Hrs.

UNIT 5			
Modern FET Structures : FinFETs, structure and design of FinFET, benefits over Planar MOSFETs, SOI (Silicon on insulator) MOSFET, GAAFETs (Gate-All-Around FETs).			
 Laboratory Sessions/ Experimental Learning: Measure the I-V characteristics and efficiency of a SOI MOSFET. 			
Video Link / Additional Online Information: 1. <u>https://archive.nptel.ac.in/courses/108/108/108108122/</u>			

Course	Outcomes: After completing the course, the students will be able to				
CO1	Explain the band structure diagrams of intrinsic and extrinsic semiconductors.				
CO2	Solve the electrostatics of PN junction diode and draw its characteristics in positive and				
	negative bias.				
CO3	Analyze the fundamentals parameters of MOS capacitor.				
CO4	Analyze the MOSFET in various regimes (linear, cut off and saturation)				
CO5	Distinguish various III-V semiconductor devices. (Lab)				
	LIST OF EXPERIMENTS				
S. No.	Experiment Name				
1.	To study the I-V characteristics of a PN junction diode and understand its behaviour				
	under forward and reverse bias conditions.				
2.	To examine the I-V characteristics of an n-channel MOSFET.				
3.	To understand its operation in different regions (cut off, linear, and saturation).				
4.	To study the electrical characteristics of light emitting diodes (LEDs)				
5.	To analyze the I-V characteristics of a solar cell and determine its efficiency and fill factor.				
6.	To analyse zener diode characteristics and show zener diode as a voltage regulator				
7.					
8.					
Text Bo	Text Books:				

1.	Semiconductor Device Fundamentals" by Robert F. Pierret, Addison-Wesley, ISBN: 0-201-54393-1
2.	Streetman, B. and Banerjee, S., Solid State Electronics, Prentice Hall India.
Reference Books:	
1.	Sze, S.M., Physics of Semiconductor Devices, John Wiley.
	Advanced Semiconductor Fundamentals" by Robert F. Pierret, Addison-Wesley, ISBN:

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the entire syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

CO-P	CO-PO-PSO Mapping													
CO /	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
PO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	1	2	2	-	-	-	-	-	-	2	1	1
CO2	3	3	1	2	2	-	-	-	-	-	-	2	1	1
CO3	3	3	1	2	2	-	-	-	-	-	-	2	1	1
CO4	3	3	1	2	2	-	-	-	-	-	-	2	1	1
CO5	3	3	1	2	2	-	-	-	-	-	-	2	1	1

	Semester: III									
	ANALYSIS AND DESIGN OF DIGITAL CIRCUITS									
Cou	Course Code: MVJ22VL34 CIE Marks:50									
Cre	dits:	L:T:P:S 3:0:0:Y	SEE Marks: 50							
Hours:40 LSEE Duration: 03 Hours										
Cou	irse Learning Ob	jectives: The students will be able	to							
1	Explain the basi	c principles of digital logic design, in	cluding the operation of le	ogic gates,						
1	flip-flops, and th	e distinction between combinational	and sequential circuits.							
2	Interpret Boolea	n expressions and demonstrate the us	e of truth tables and Karna	augh maps						
2	in simplifying lo	gical expressions for combinational	circuits.							
3	Apply digital de	sign principles to construct basic con	binational circuits.							
4	Design sequentia	al circuits, such as counters and shift	registers, by utilizing flip	-flops.						
5	Design digital sy	stems using programmable logic dev	vices (PLDs).							
		UNIT-I								
Pre	requisites: Numbe	er systems, Boolean Algebra, Logic	Gates, Comparison of	8 Hrs						
Con	nbinational & Seq	uential Circuits.								
Priı	nciples of Combin	national Logic: Introduction, canoni	cal forms, generation of							
swit	ching equations fi	om truth tables, Karnaugh maps-3, 4	variables, incompletely							
spec	cified functions (Don't care terms), Quine- McClus	sky techniques- 3 & 4							
vari	ables.									
Lab	oratory Sessions	Experimental Learning:								
1. S	tudy of Logic Gat	es – NOT, OR, AND, NOR, NAND,	XOR and XNOR.							
2. D	Design a 4-bit Bina	ry to Gray code converter using logic	e gates.							
App	olications: OR ga	te in detecting exceed of threshold	d values and producing							
com	mand signal for th	ne system and AND gate in frequency	measurement.							
Vic	leo Link / Additio	onal Online Information:								

1. <u>https://onlinecourses.nptel.ac.in/noc21_ee10/preview</u>

UNIT-II

Prerequisites: Decoder, Encoders, Multiplexers & Demultiplexer.	8 Hrs
Design and Analysis of Combinational Logic: Half adder & subtractor, full adder	V III J
& subtractors, parallel adder and subtractor, look ahead carry adder, BCD adder,	
binary comparators, multiplexers and demultiplexers, decoders, encoders, priority	
encoder	
Laboratory Sessions/ Experimental Learning:	
1. Design a full adder with two half adders using logic gates.	
2. Design an Adder cum Subtractor circuit which adds when input bit operation=1	
or subtract if 0, using logic gates.	
3. Design 4-bit comparator using IC7485.	
4. Realize a Boolean expression using decoder IC74139.	
Applications: Communication systems, speed synchronization of multiple motors	
in industries.	
Video Link / Additional Online Information:	
1. <u>https://onlinecourses.nptel.ac.in/noc21_ee10/preview</u>	
UNIT-III	
UNIT-III Prerequisites: SR, JK, D, T flipflops	8 Hrs
	8 Hrs
Prerequisites: SR, JK, D, T flipflops	8 Hrs
<i>Prerequisites</i>: SR, JK, D, T flipflopsFlip-Flops and Its Applications: Latches and flip flops, master-slave JK flip-flop,	8 Hrs
 Prerequisites: SR, JK, D, T flipflops Flip-Flops and Its Applications: Latches and flip flops, master-slave JK flip-flop, timing concerns in sequential circuits, shift registers – SISO, SIPO, PISO PIPO, 	8 Hrs
 Prerequisites: SR, JK, D, T flipflops Flip-Flops and Its Applications: Latches and flip flops, master-slave JK flip-flop, timing concerns in sequential circuits, shift registers – SISO, SIPO, PISO PIPO, universal shift register, counters – synchronous and asynchronous. 	8 Hrs
 Prerequisites: SR, JK, D, T flipflops Flip-Flops and Its Applications: Latches and flip flops, master-slave JK flip-flop, timing concerns in sequential circuits, shift registers – SISO, SIPO, PISO PIPO, universal shift register, counters – synchronous and asynchronous. Laboratory Sessions/ Experimental Learning: 	8 Hrs
 <i>Prerequisites:</i> SR, JK, D, T flipflops Flip-Flops and Its Applications: Latches and flip flops, master-slave JK flip-flop, timing concerns in sequential circuits, shift registers – SISO, SIPO, PISO PIPO, universal shift register, counters – synchronous and asynchronous. Laboratory Sessions/ Experimental Learning: Develop SR, D, JK &T flip flop using logic gates 	8 Hrs
 Prerequisites: SR, JK, D, T flipflops Flip-Flops and Its Applications: Latches and flip flops, master-slave JK flip-flop, timing concerns in sequential circuits, shift registers – SISO, SIPO, PISO PIPO, universal shift register, counters – synchronous and asynchronous. Laboratory Sessions/ Experimental Learning: Develop SR, D, JK &T flip flop using logic gates Design a 6-bit Register using D-Flipflop 	8 Hrs
 <i>Prerequisites:</i> SR, JK, D, T flipflops Flip-Flops and Its Applications: Latches and flip flops, master-slave JK flip-flop, timing concerns in sequential circuits, shift registers – SISO, SIPO, PISO PIPO, universal shift register, counters – synchronous and asynchronous. Laboratory Sessions/ Experimental Learning: Develop SR, D, JK &T flip flop using logic gates Design a 6-bit Register using D-Flipflop Applications: Frequency divider circuit, frequency counter. 	8 Hrs
 <i>Prerequisites:</i> SR, JK, D, T flipflops Flip-Flops and Its Applications: Latches and flip flops, master-slave JK flip-flop, timing concerns in sequential circuits, shift registers – SISO, SIPO, PISO PIPO, universal shift register, counters – synchronous and asynchronous. Laboratory Sessions/ Experimental Learning: Develop SR, D, JK &T flip flop using logic gates Design a 6-bit Register using D-Flipflop Applications: Frequency divider circuit, frequency counter. Video Link / Additional Online Information: 	8 Hrs
 <i>Prerequisites:</i> SR, JK, D, T flipflops Flip-Flops and Its Applications: Latches and flip flops, master-slave JK flip-flop, timing concerns in sequential circuits, shift registers – SISO, SIPO, PISO PIPO, universal shift register, counters – synchronous and asynchronous. Laboratory Sessions/ Experimental Learning: Develop SR, D, JK &T flip flop using logic gates Design a 6-bit Register using D-Flipflop Applications: Frequency divider circuit, frequency counter. Video Link / Additional Online Information: 	8 Hrs
 <i>Prerequisites:</i> SR, JK, D, T flipflops Flip-Flops and Its Applications: Latches and flip flops, master-slave JK flip-flop, timing concerns in sequential circuits, shift registers – SISO, SIPO, PISO PIPO, universal shift register, counters – synchronous and asynchronous. Laboratory Sessions/ Experimental Learning: Develop SR, D, JK &T flip flop using logic gates Design a 6-bit Register using D-Flipflop Applications: Frequency divider circuit, frequency counter. Video Link / Additional Online Information: <u>https://onlinecourses.nptel.ac.in/noc21_ee10/preview</u> 	8 Hrs 8 Hrs
Prerequisites: SR, JK, D, T flipflops Flip-Flops and Its Applications: Latches and flip flops, master-slave JK flip-flop, timing concerns in sequential circuits, shift registers – SISO, SIPO, PISO PIPO, universal shift register, counters – synchronous and asynchronous. Laboratory Sessions/ Experimental Learning: 1. Develop SR, D, JK &T flip flop using logic gates 2. Design a 6-bit Register using D-Flipflop Applications: Frequency divider circuit, frequency counter. Video Link / Additional Online Information: 1. https://onlinecourses.nptel.ac.in/noc21_ee10/preview	

Laboratory Sessions/ Experimental Learning: 1. Design a synchronous counter for a given sequence- 0, 2, 4, 6, 0 2. Design a 4-bit asynchronous up/down counter 3. Design a 4-bit binary synchronous up/down Applications: Data synchronizer, counter. Video Link / Additional Online Information: 1. https://onlinecourses.nptel.ac.in/noc21_ee10/preview UNIT-V Memory Devices: Basic memory structure: ROM, PROM, EPROM, EEPROM, RAM- Static and dynamic RAM Programmable Logic Devices: Programmable Logic Array (PLA), Programmable Array Logic (PAL), Field Programmable Gate Arrays (FPGA), Implementation of combinational logic circuits using PLA, PAL.	8 Hrs
 Logic Array (PLA), Programmable Array Logic (PAL), Field Programmable Gate Arrays (FPGA), Implementation of combinational logic circuits using PLA, PAL. Laboratory Sessions/ Experimental Learning: Designing of combinational logic circuits using PLA, PAL. Video Link / Additional Online Information: <u>https://onlinecourses.nptel.ac.in/noc21_ee10/preview</u> 	

Course	Outcomes: After completing the course, the students will be able to
CO1	Describe the algebraic equations using K-map & Quine-McCluskey technique.
CO2	Explain the operation and characteristics of fundamental digital electronic components, including logic gates, flip-flops, and multiplexers, and describe their roles in digital circuits.
CO3	Interpret and construct truth tables and Boolean expressions for various digital logic circuits.
CO4	Apply digital design techniques to develop combinational and sequential circuits.
CO5	Analyze and design finite state machines (FSMs) by evaluating state transition diagrams, constructing state tables, and designing sequential circuits using FSMs.
Text Bo	ooks:

1.	Morris Mano, —Digital Design, Prentice Hall of India, Third Edition.
2.	John M Yarbrough, "Digital Logic Applications and Design", Thomson Learning.
Refere	nce Books:
1	Charles H Roth Jr., Larry L. Kinney -Fundamentals of Logic Design, CengageLearning
1.	7th Edition.
2.	Donald D. Givone, "Digital Principles and Design", McGraw Hill.

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-P	CO-PO-PSO Mapping													
CO /	PO	PO	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PSO	PSO
PO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	2	2	1	-	-	-	-	-	-	1	1	1
CO2	3	3	2	2	1	-	-	-	-	-	-	1	1	1
CO3	3	3	2	2	1	-	-	-	-	-	-	1	1	1
CO4	3	3	2	2	1	-	-	-	-	-	-	1	1	1
CO5	3	3	2	2	1	-	-	-	-	-	-	1	1	1

High-3, Medium-2, Low-1

	Semester: III										
	DIGITAL CIRCUIT LABORATORY										
Course	e Code:	MVJ22VLL35	CIE Marks: 50								
Credits	5:	L:T:P:0:0:2	SEE Marks: 50								
Hours:		26P	SEE Duration: 3 Hrs								
Course	e Learning O	bjectives: The students will be able to									
1	Understand digital logic levels and application of knowledge to further understand digital electronics circuits.										
2	Analyze the	design of various digital electronic circuits									
3		nowledge of digital circuits and systems to y to achieve desired results.	efficiently, reliably, and								
4		techniques for modelling and troubleshoot ad gate-level networks and breadboard desig									
5	Analyze the	timing diagrams of digital circuits to under	stand their temporal behavior.								

	LIST OF EXPERIMENTS							
S. No.	Experiment Name							
1	To study and verify truth table of logic gates							
2	To realize half/full adder and half/full subtractor							
3	To realize IC7483 as parallel adder/subtractor							
4	To verify BCD to excess 3-code conversion using NAND gates. To study and verify the truth table of excess-3 to BCD code convertor							
5	To convert given binary numbers to gray code.							
6	To verify truth table of MUX and DEMUX using NAND							
7	To verify the truth table of one bit and two bit comparators using logic gates							
8	To convert a given octal input to binary output and to study the LED display using 7447 7- segment decoder							
9	To verify the truth table of flipflops							
10	To design bi-synchronous counter using T-flipflop							
Course	Course Outcomes: After completing the course, the students will be able to							

CO1	Understand the fundamental concepts and techniques used in digital electronics.
CO2	Identify and describe the functions of various digital components.
CO3	Solve boolean functions using logic gates.
CO4	Describe the truth tables of different combinational & sequential circuits.
CO5	Analyze the performance and behavior of digital circuits.

CO-PO-	CO-PO-PSO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	3	2	1	-	-	3	-	-	2	1	1
CO2	3	3	3	3	2	1	-	-	3	-	-	2	1	1
CO3	3	3	3	3	2	1	-	-	3	-	-	2	1	1
CO4	3	3	3	3	2	1	-	-	3	-	-	2	1	1
CO5	3	3	3	3	2	1	-	-	3	-	-	2	1	1

		Semester: III					
		PRINCIPLES OF COMMUNIC	CATION				
Cours	e Code:	MVJ22VL361	CIE Marks:50				
Credit	Credits: L:T:P 3:0:0 SEE Marks: 50						
Hours	3.	40 L	SEE Duration: 03 Hou	irs			
Cours	e Learning Objec	tives: The students will be able to					
1	Explain the fur	ndamental principles of analog an	d digital communication	systems,			
1	including modul	ation techniques, signal transmission	, and reception.				
2	Apply modulation	on and demodulation techniques to dea	sign analog communicatio	n systems.			
3	•	formance of digital communication sy (BER), signal-to-noise ratio (SNR), a	• • • • •	eters such			
4		tal modulation schemes such as pritiude modulation (QAM).	ulse code modulation (P	CM), and			
5		concepts of coherent and non-coherent asics of spread spectrum modulation	C	niques and			
		UNIT-I					
	luction: Basic blo of modulation	ck diagram of communication syste	em, Need of Modulation,	8 Hrs			
Ampli	itude Modulation	: Introduction to AM, time-domain	n description, frequency-				
domai	n description, sin	gle-tone modulation, generation of	AM wave: Square law				
	, C	dulator, detection of AM waves: Env	1				
		ppressed Carrier (DSBSC) and S	SSB Modulation: Time-				
domai	n description and f	requency-domain representation					
Labo	oratory Sessions/ I	Experimental Learning:					
1. G	eneration of AM s	ignal using MATLAB.					
2. G	eneration of DSBS	C signal using transistor.					
	ications: Broadcas	st transmissions, Air band radio, Qua	adrature amplitude				
Vide	o Link / Addition	al Online Information:					
1. <u>http</u>	s://nptel.ac.in/cour	ses/117/105/117105143/_					

UNIT-II					
Angle Modulation: Basic concepts of Phase Modulation, Frequency Modulation:	8 Hrs				
Narrow band FM, wide band FM, and generation of FM waves: Indirect FM and direct					
FM. Detection of FM Signal: Balanced slope detector, Phase locked loop, Comparison					
of FM and AM., Concept of Pre-emphasis and de-emphasis.					
Laboratory Sessions/ Experimental Learning:					
1. Generation of FM signal using MATLAB					
Applications: FM radio broadcasting, telemetry, radar, seismic prospecting, and					
monitoring new-born for seizures via EEG, two-way radio systems, sound synthesis,					
magnetic tape- recording systems and some video-transmission systems.					
Video Link / Additional Online Information:					
1. <u>https://nptel.ac.in/courses/117/105/117105143/</u>					
UNIT-III					
Transmitters: Classification of Transmitters, AM Transmitters, FM Transmitters	8 Hrs				
Receivers: Radio Receiver - Receiver Types - Tuned radio frequency receiver, Super					
heterodyne receiver, RF section and Characteristics - Frequency changing and tracking,					
Intermediate frequency, Image frequency, AGC, Amplitude limiting, FM Receiver,					
Comparison of AM and FM Receivers.					
Laboratory Sessions/ Experimental Learning:					
1. Investigate the effects of noise on analog modulation signals and explore noise					
reduction techniques.					
Applications: Biomedical engineering, communication system.					
Video Link / Additional Online Information:					
1. https://nptel.ac.in/courses/117/105/117105077/					
2. <u>https://nptel.ac.in/courses/117/101/117101051/</u>					
UNIT-IV					

Pulse Modulation: Types of Pulse modulation- PAM, PWM and PPM. Comparison	8 Hrs
of FDM and TDM Pulse Code Modulation: PCM Generation and Reconstruction,	
Quantization Noise, Non-Uniform Quantization and Companding, DPCM, Adaptive	
DPCM, DM and Adaptive DM, Noise in PCM and DM.	
Laboratory Sessions/ Experimental Learning:	
1. Eye diagram using MATLAB	
Applications: Ethernet, RFID marker localization signals, Radar Systems	
Video Link / Additional Online Information:	
1. https://nptel.ac.in/courses/117/105/117105077/	
2. <u>https://nptel.ac.in/courses/117/101/117101051/</u>	
UNIT-V	
Digital Modulation Techniques: ASK- Modulator, Coherent ASK Detector, FSK-	8 Hrs
Modulator, Non-Coherent FSK Detector, BPSK- Modulator, Coherent BPSK	
Detection. Principles of QPSK, Differential PSK and QAM.	
Laboratory Sessions/ Experimental Learning:	
1. Analyze constellation of 16-QAM Using MATLAB	
Applications: CDMA, WiMAX (16d, 16e), telemetry, caller ID, garage door openers, wireless communication, mobile communication and satellite communication, LANs, Bluetooth, RFID, GPS, Wi-Fi, etc.Video Link / Additional Online Information:	
1. <u>https://nptel.ac.in/courses/117/105/117105077/</u>	
2. https://nptel.ac.in/courses/117/101/117101051/	
3. https://nptel.ac.in/courses/117/105/117105136/	

Course Outcomes: After completing the course, the students will be able to

	Englain the annual of an large delation to hair and a second to a secolity de second hair to be
CO1	Explain the concepts of analog modulation techniques such as amplitude, modulations
COI	and its variations like DSB-SC and SSB-SC.
CO2	Analyze frequency modulation and compute performance of different types of noise.
	Apply the concepts of noise in analog modulation and analysis of pre-emphasis and de-
CO3	emphasis circuit.
CO4	Analyze the signal space representation of digital signals.
0.05	Analyze the performance of a baseband and pass band digital communication system
CO5	and spread spectrum techniques.
Text Books:	
1	Simon Haykins & Moher, Communication Systems, 5th Edition, John Wiley,
1.	India Pvt. Ltd, 2010, ISBN 978 – 81 – 265 – 2151 – 7.
2.	Simon Haykins, "An Introduction to Analog and Digital Communication", John Wiley
Reference B	ooks:
1	B P Lathi and Zhi Ding, Modern Digital and Analog Communication Systems, Oxford
1.	University Press., 4th edition, 2010, ISBN: 97801980738002.

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub

divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-P	0-P5	U Ma	pping											
CO /	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
РО	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	2	2	1	-	-	-	-	-	-	2	1	1
CO2	3	3	2	2	1	-	-	-	-	-	-	2	1	1
CO3	3	3	2	2	1	-	-	-	-	-	-	2	1	1
CO4	3	3	2	2	1	-	-	-	-	-	-	2	1	1
CO5	3	3	2	2	1	-	-	-	-	-	-	2	1	1

High-3, Medium-2, Low-1

	Semester: III									
	ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING									
Course	Code:	MVJ22VL362	CIE Marks:50							
Credits:		L:T:P: 3:0:0 SEE Marks: 50								
Hours:		SEE Duration: 3 Hrs								
Course l	Course Learning Objectives: The students will be able to									
1	Understa	Understand the AI foundations and applications.								
2	Apply ma	Apply machine learning algorithms to analyze and interpret real-world datasets.								
3	Solve pro	Solve problems by searching.								
4	Analyze advanced problem solving paradigms and knowledge representation.									
5	Impleme	nt various learning algorithms	s, such as backpropagation and gradient descent,							
5	to optimi	ze neural network parameters								

|--|

Introduction: What is artificial intelligence? What Is AI? The Foundations of Artificial Intelligence, The History of Artificial Intelligence, The State of the Art.	
Heuristic Search Techniques: Generate and test, Hill Climbing, Best First Search,	
Problem Reduction, Constraint Satisfaction, Means-ends Analysis.	
Laboratory Sessions/ Experimental Learning:	8Hrs.
1. Find the shortest path from a start node to a goal node in a maze using heuristic	
search technique.	
Video Link / Additional Online Information:	
1. <u>https://nptel.ac.in/courses/106102220</u>	
UNIT 2	
Knowledge Representation: Knowledge representation issues, predicate logic,	
representation knowledge using rules.	
Concept Learning: Concept learning task, concept learning as search, find-S	8Hrs.
algorithm, candidate elimination algorithm, inductive bias of candidate elimination	опгу.
algorithm.	

Laboratory Sessions/ Experimental Learning:	
1. Apply the concept learning paradigm in machine learning, specifically using the	
Find-S algorithm to identify the most specific hypothesis from a given dataset.	
Video Link / Additional Online Information:	
https://nptel.ac.in/courses/106102220	
UNIT 3	
Decision Tree Learning: Introduction, decision tree representation, appropriate	
problems, ID3 algorithm.	
Artificial Neural Network: Introduction, NN representation, appropriate problems,	
perceptrons, backpropagation algorithm.	
Laboratory Sessions/ Experimental Learning:	8Hrs.
1. Apply decision tree representation in machine learning by building and visualizing	
a decision tree classifier.	
Video Link / Additional Online Information:	
. https://nptel.ac.in/courses/106102220	
UNIT 4	
Bayesian Learning: Introduction, Bayes theorem, Bayes theorem and concept	
learning, ML and LS error hypothesis, ML for predicting, MDL principle, Bates	
optimal classifier, Gibbs algorithm, Navie Bayes classifier, BBN, EM Algorithm	
Laboratory Sessions/ Experimental Learning:	
. Apply the concept of least squares error hypothesis in machine learning, specifically	8Hrs.
using linear regression to predict outcomes based on input features.	
Video Link / Additional Online Information:	
https://nptel.ac.in/courses/106102220	

Instand									
LIDUNIN	e-Base Learning : Introduction, k-nearest neighbour learning, locally weighted								
regressi	on, radial basis function, case-based reasoning, reinforcement learning:								
Introdu	troduction, learning task, Q-learning.								
Labora	tory Sessions/ Experimental Learning:								
1. Ap	1. Apply the K-nearest neighbors (KNN) algorithm in machine learning, using it to 8Hrs.								
cla	ssify a dataset and evaluate its performance								
X 7• 1 1									
Video I	Video Link / Additional Online Information:								
1. <u>htt</u>	1. <u>https://nptel.ac.in/courses/106102220</u>								
Course	Outcomes: After completing the course, the students will be able to								
CO1	Understand the fundamental principles of artificial intelligence and machine le								
COI	Understand the fundamental principles of artificial interrigence and machine is	orning							
Apply machine learning algorithms such as linear regression, decision trees, to c									
CO2	Apply machine learning algorithms such as linear regression, decision trees, to								
CO2	Apply machine learning algorithms such as linear regression, decision trees, to and train models using real-world datasets.								
		o develop							
CO2 CO3	and train models using real-world datasets. Implement techniques for data preprocessing to prepare datasets for machine	o develop							
CO3	and train models using real-world datasets. Implement techniques for data preprocessing to prepare datasets for machine tasks.	e learning							
	and train models using real-world datasets. Implement techniques for data preprocessing to prepare datasets for machine tasks. Apply the knowledge of searching and reasoning techniques for different appl	e learning ications.							
CO3 CO4	and train models using real-world datasets. Implement techniques for data preprocessing to prepare datasets for machine tasks.	e learning ications.							
CO3	and train models using real-world datasets. Implement techniques for data preprocessing to prepare datasets for machine tasks. Apply the knowledge of searching and reasoning techniques for different appl	e learning ications.							

Text Bo	oks:
1.	Tom M Mitchell, "Machine Learning", 1st Edition, McGraw Hill Education, 2017.
2.	Elaine Rich, Kevin K and S B Nair, "Artificial Intelligence", 3rd Edition, McGraw Hill Education, 2017.
Referen	ce Books:
1.	Saroj Kaushik, Artificial Intelligence, Cengage learning.
2.	Stuart Rusell, Peter Norving, Artificial Intelligence: A Modern Approach, Pearson Education 2nd Edition.

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the entire syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

PSO N	Aappir	ng											
PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
3	3	3	2	-	1	-	-	1	-	-	1	2	1
3	3	3	2	-	1	-	-	1	-	-	1	2	1
3	3	3	2	-	1	-	-	1	-	-	1	2	1
3	3	3	2	-	1	-	-	1	-	-	1	2	1
3	3	3	2	-	1	-	-	1	-	-	1	2	1
	PO1 3 3 3 3 3	PO1 PO2 3 3 3 3 3 3 3 3 3 3	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	PO1 PO2 PO3 PO4 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2	PO1 PO2 PO3 PO4 PO5 3 3 3 2 - 3 3 3 2 - 3 3 3 2 - 3 3 3 2 - 3 3 3 2 - 3 3 3 2 - 3 3 3 2 - 3 3 3 2 -	PO1 PO2 PO3 PO4 PO5 PO6 3 3 3 2 - 1 3 3 3 2 - 1 3 3 3 2 - 1 3 3 3 2 - 1 3 3 3 2 - 1 3 3 3 2 - 1 3 3 3 2 - 1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 3 3 3 2 - 1 - 3 3 3 2 - 1 - 3 3 3 2 - 1 - 3 3 3 2 - 1 - 3 3 3 2 - 1 - 3 3 3 2 - 1 - 3 3 3 2 - 1 -	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 3 3 3 2 - 1 - - 3 3 3 2 - 1 - - 3 3 3 2 - 1 - - 3 3 3 2 - 1 - - 3 3 3 2 - 1 - - 3 3 3 2 - 1 - - 3 3 3 2 - 1 - -	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 3 3 3 2 - 1 - - 1 3 3 3 2 - 1 - - 1 3 3 3 2 - 1 - - 1 3 3 3 2 - 1 - - 1 3 3 3 2 - 1 - - 1 3 3 3 2 - 1 - - 1 3 3 3 2 - 1 - - 1 3 3 3 2 - 1 - - 1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 3 3 3 2 - 1 - - 1 - 3 3 3 2 - 1 - - 1 - 3 3 3 2 - 1 - - 1 - 3 3 3 2 - 1 - - 1 - 3 3 3 2 - 1 - - 1 - 3 3 3 2 - 1 - - 1 - 3 3 3 2 - 1 - - 1 - 3 3 3 2 - 1 - - 1 -	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 3 3 3 2 - 1 - - 1 - - 3 3 3 2 - 1 - - 1 - - 3 3 3 2 - 1 - - 1 - - 3 3 3 2 - 1 - - 1 - - 3 3 3 2 - 1 - - 1 - - 3 3 3 2 - 1 - - 1 - - - 3 3 3 2 - 1 - - 1 - - - 3 3 3 2 - 1 - - 1 - - -	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 3 3 3 2 - 1 - - 1 - 1 3 3 3 2 - 1 - - 1 1 3 3 3 2 - 1 - - 1 1 3 3 3 2 - 1 - - 1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 3 3 3 2 - 1 - - 1 2 3 3 3 2 - 1 - - 1 2 3 3 3 2 - 1 - - 1 2 3 3 3 2 - 1 - - 1 2 3 3 3 2 - 1 - - 1 2 3 3 3 2 - 1 - - 1 2 3 3 3 2 - 1 - 1 - 1 2 3 3 3 2 - 1 - 1 - 1 2 3 3 2 - 1 - - 1 - 1 2 <

	Semester: III								
	COMPUTER ORGANIZATION & ARCHITECTURE								
Course	ourse Code: MVJ22VL363 CIE Marks:50								
Credits:	L:T:P: 3:0:0 SEE Marks: 50								
Hours:		40L SEE Duration: 3 Hrs							
Course	Learning O	bjectives: The students will be able to							
1	Explain the basic sub-systems of a computer, their organization, structure and operation.								
2	Apply knowledge of instruction set architectures to design and implement basic assemblylanguage programs for different processor architectures.								
3	Analyze the performance of computer systems by examining factors such as pipelining, caching strategies, and parallelism.								
4	Describe memory hierarchy and concept of virtual memory.								
5		ne design and operation of memory syste memory mapping techniques, and virtual me							

UNIT 1

Basic Structure of Computers: Computer types, functional units, basic operational concepts, bus structures, software, performance – processor clock, basic performance equation.

Machine Instructions and Programs: Numbers, arithmetic operations and characters, IEEE standard for floating point numbers, memory location and addresses, memory operations, instructions and instruction sequencing.

8Hrs.

- Laboratory Sessions/ Experimental Learning:
 1. Understanding various parts of CPU of a PC.
- 2. Study of microprocessor and understanding of its various instruction

Applications: Understand the functionality of the various units of computer.

Video Link / Additional Online Information:

1. <u>https://archive.nptel.ac.in/courses/106/105/106105163/</u>

UNIT 2

Prerequisite: Number systems

8Hrs.

Addressing Modes: Assembly language, basic input and output operations, stacks and queues, subroutines, additional instructions.

Laboratory Sessions/ Experimental Learning:

- 1. Write an ALP to find the sum of two numbers and verify if the sum is an even or odd number and simulate the output.
- 2. Write an ALP to transfer a block of data from one location to other and simulate the output.

Applications: Project based on microprocessor.

Video Link / Additional Online Information:

1. https://archive.nptel.ac.in/courses/106/105/106105163/

UNIT 3

Input/Output Organization: Accessing I/O devices, interrupts – interrupt hardware, enabling and disabling interrupts, handling multiple devices, controlling device requests, direct memory access, and buses.

Laboratory Sessions/ Experimental Learning: Study any one input/output device and examine its various input output ports details. 8Hrs.

Applications: Interfacing of peripheral devices

Video Link / Additional Online Information:

1. https://archive.nptel.ac.in/courses/106/105/106105163/

UNIT 4

8Hrs.

Memory System: Basic concepts, semiconductor RAM memories- Internal organization of memory chips, static memories, asynchronous DRAMS, read only memories, cache memories, mapping functions, replacement algorithm, virtual memories, secondary storage-magnetic hard disks.

Laboratory Sessions/ Experimental Learning: Implement and simulate a simple memory unit which is capable of reading and writing data within a single clock cycle.

Applications: Understanding the various memories.

Video Link / Additional Online Information:

1. <u>htt</u>	ps://archive.nptel.ac.in/courses/106/105/106105163/					
	UNIT 5					
Basic 1	Processing Unit: Some fundamental concepts, execution of a complete instruction,					
multipl	e bus organization, hardwired control, micro programmed control, pipelining, basic					
concep	ts, role of cache memory, pipeline performance.					
	atory Sessions/ Experimental Learning: Evaluate the possible control sequence for menting a multiplication instruction using registers for a single bus organization	8Hrs.				
Applic	ations: Microprocessor.					
Video Link / Additional Online Information:						
1. https://archive.nptel.ac.in/courses/106/105/106105163/						
Course	e Outcomes: After completing the course, the students will be able to					
CO1	Identify the functional units of the processor and the factors affecting the performan	nce of a				
COI	computer.					
CO2	Demonstrate the ability to classify the addressing modes, instructions sets and	design				
02	programs.					
CO3	Understand the different ways of accessing an input / output device including interru	pts.				
CO4 Analyze the organization of different types of semiconductor and other secondary st						
04	memories.					
CO5	Analyze the simple processor organization based on hardwired control and	l micro				
005	programmed control.					

Text I	Text Books:					
1.	Carl Hamacher, ZvonkoVranesic, SafwatZaky: "Computer Organization", 6th Edition, Tata					
1.	McGraw Hill, 2011.					
Refer	ence Books:					
1.	Andrew S. Tanenbaum, Todd Austin, "Structured Computer Organization", 6th Edition,					
1.	Pearson, 2013.					
2.	David A. Patterson, John L. Hennessy: "Computer Organization and Design – The Hardware					
2.	/ Software Interface ARM Edition", 4th Edition, Elsevier.					
3.	William Stallings: "Computer Organization & Architecture", 7th Edition, PHI.					

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO-	PSO N	Aappir	ng											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	2	-	1	-	-	1	-	-	1	2	1
CO2	3	3	3	2	-	1	-	-	1	-	-	1	2	1
CO3	3	3	3	2	-	1	-	-	1	-	-	1	2	1
CO4	3	3	3	2	-	1	-	-	1	-	-	1	2	1
CO5	3	3	3	2	-	1	-	-	1	-	-	1	2	1

		Semeste	er: III					
		SENSOR TEC	HNOLOGY					
Course	Code:	MVJ22VL364	CIE Marks:50					
Credits:		L:T:P: 3:0:0	SEE Marks: 50					
Hours:		40L	SEE Duration: 3 Hrs					
Course]	Learning Ob	jectives: The students will be	e able to					
1	Understan	Understand various technologies associated in manufacturing of sensors.						
2	Provide be	Provide better familiarity with different sensors and their applications in real life.						
3	Acquire k	Acquire knowledge about types of sensors used in modern digital systems.						
4	Evaluate t	Evaluate the technological and physical limitations of a specific sensor.						
5	Propose a	Propose a suitable sensor for a given measurement situation.						

UNIT 1

8Hrs.

Prerequisite: Basic Electronics, Knowledge on physical quantities.

Sensors Fundamentals and Characteristics: General concepts and terminology, sensor classification, static characteristics, dynamic characteristics, materials for sensors, microsensor technology.

Laboratory Sessions/ Experimental Learning:

Applications:

Video Link / Additional Online Information:

- 1. https://nptel.ac.in/courses/108/105/108105064/
- 2. https://nptel.ac.in/courses/108/108/108108147/

UNIT 2

Temperature Sensors: Basic Concepts, temperature scale, standard temperature points,
thermistor sensors, thermocouple sensors, pyrometer, radiation thermometer, Temperature
sensor applicationsSensors: Principle of position measurement, inductive sensors,
tal sensors, capacitive and inductive sensor applications, mutual sensors, hall sensorsSensors

Laboratory Sessions/ Experimental Learning:

Applications:

Video Link / Additional Online Information:

- 1. <u>https://nptel.ac.in/courses/108/105/108105064/</u>
- 2. https://nptel.ac.in/courses/108/106/108106165/

UNIT 3	
Strain Gauge Sensors: Transfiguration and measurement methods, resistive metal probe,	
piezoresistive silicon sensors	
Pressure Measurement Sensors: Pressure measurement principles, types of pressure	
sensors, piezoelectric sensors, magnetoresistive sensors, characteristics of pressure sensors,	
pressure measurement sensor applications	
	8Hrs.
Laboratory Sessions/ Experimental Learning:	
Applications:	
Video Link / Additional Online Information:	
1. <u>https://nptel.ac.in/courses/108/105/108105064/</u>	
UNIT 4	
Optical Sensors: Luminescent sensors, photoresistors, photoelectric cells, classification of	
optical sensors	
Fluid-flow Measurement sensors: Flow measurement methods, types of sensors used to	
measure fluid flows, level sensors, flow measurement by pressure difference	
Laboratory Sessions/ Experimental Learning:	8Hrs.
1.	01115.
Applications:	
Video Link / Additional Online Information:	
1. <u>https://nptel.ac.in/courses/108/105/108105064/</u>	
UNIT 5	

Motion Sensors: Resistive potentiometer, LVDT, Eddy current sensor, Piezoelectricaccelerator sensorProximity sensors: Introduction, inductive proximity sensors, capacitive proximity sensors,

optical proximity sensors, ultrasonic proximity sensors

Laboratory Sessions/ Experimental Learning:

8Hrs.

Applications:

Video Link / Additional Online Information:

- 1. <u>https://nptel.ac.in/courses/108/105/108105064/</u>
- 2. https://nptel.ac.in/courses/112/103/112103174/

Course Outcomes: After completing the course, the students will be able to

CO1	Understand the concept of sensors and its characteristics.
CO2	Explain the working principles of primary and resistive sensors.
CO3	Understand the inductive, capacitive and Electromagnetic sensors and its applications.
CO4	Identify alternative methods to measure common quantities such as temperature, pressure,
004	force and acceleration.
CO5	Select appropriate sensors used for various applications.

Tex	Text Books:						
1	•	Ramon Pallas & John G.Webster, "Sensors and signal conditioning", John Wiley & Sons., 2 nd Edition.					
2	2.	J. Fraden, "Handbook of Modern Sensors: Physical, Designs, and Applications", AIP Press, Springer, 3 rd Edition					

Reference Books:

1.	D. Patranabis, "Sensors and Transducers", PHI Publication, 2 nd Edition, New Delhi.
2.	Webster John G, "Instrumentation and sensors Handbook", CRC Press, 1 st Edition.
3.	Shawhney A.K., "Electrical and Electronics Measurements and Instrumentation", Dhanpat Rai & Sons.

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the entire syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO-	PSO N	Mappir	ng											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2	1	1	1	-	1	-	-	1	1	1
CO2	3	3	2	2	1	1	1	-	1	-	-	1	1	1
CO3	3	3	2	2	1	1	1	-	1	-	-	1	1	1
CO4	3	3	2	2	1	1	1	-	1	-	-	1	1	1
CO5	3	3	2	2	1	1	1	-	1	-	-	1	1	1

		Seme	ster: IV				
	FPGA BASED SYSTEM DESIGN USING VERILOG HDL						
Course	Code:	MVJ22VL41	CIE Marks:100				
Credits: L:T:P: 3:0:0 SEE Marks: 100							
Hours:40LSEE Duration: 3 Hrs							
Course	Learning O	bjectives: The students wi	ll be able to				
1	Explain the fundamental concepts of FPGA architecture, describing the components such as logic cells, interconnect resources, and configurable I/O blocks that constitute an FPGA.						
2	Apply Ver	rilog HDL to implement dig	ital circuits on FPGA platforms.				
3	3 Analyze the impact of design choices on FPGA resource usage and power consumption by examining synthesis reports, power analysis tools, and performance profiling.						
4	4 Develop proficiency in writing synthesizable Verilog code for combinational and sequential logic.						
5	Model des	igns using IP-based method	ologies and tools.				

UNIT 1

Introduction to Programmable Logic Devices: Introduction to programmable logic and comparison with full custom, semi-custom, and gate array design flow.

CPLD: Working principle, architecture, I/O block, macrocells, programming, features, examples.

FPGA: Working principle, architecture, I/O block, CLB, embedded memory, clock management, DSP capability, programming, features, examples, FPGA design flow, prototyping solution, need for hardware description languages and implementation and verifications of digital logics on FPGA platform to prove FPGA design flow. Distinguish between HDL based digital logic design and test-bench for verifications.

Laboratory Sessions/ Experimental Learning:

1. Understand the basics of PLDs, including their architecture and use in digital logic design.

Video Link / Additional Online Information:

- 1. <u>https://archive.nptel.ac.in/courses/106/105/106105165/</u>
- 2. <u>https://onlinecourses.nptel.ac.in/noc24_cs61/preview</u>

UNIT 2

Verilog HDL Language: Importance and popularity of verilog HDL, typical design flow. Hierarchical modeling concepts: Top to bottom and bottom to top. Difference between design and test-bench writing using verilog,

Lexical Conventions: Whitespace, comments, operators, number specifications, string, identifiers, keywords.

Data Types: Value set, nets, registers, vectors, integer, real, and time register data, arrays, memories, parameters and string. System tasks and compiler directives, module, ports, and hierarchical names.

8Hrs.

Laboratory Sessions/ Experimental Learning:

1. Create simple verilog modules to demonstrate the use of verilog data types.

Video Link / Additional Online Information:

- 1. https://archive.nptel.ac.in/courses/106/105/106105165/
- 2. <u>https://onlinecourses.nptel.ac.in/noc24_cs61/preview</u>

UNIT 3

Design Modeling Techniques: Gate/Structural level modeling: Highlights of structural description, organization of structural description, half adder and full adder design using structural description, half subtractor and full subtractor design using structural description.
 Data Flow Level Modeling: Highlights of data-flow description, signal declaration and assignment statement, constant declaration and constant assignment statements, assigning a delay time to the signal-assignment statement.
 Behavioral Level Modeling: Behavioral description highlights, structure of the verilog behavioral description, sequential statements: If statement, the case statement, verilog casex and casez, the wait-for statement, the loop statement: for-loop, while-loop, repeat, forever.

Switching Level Modeling: Highlights of switching level description, MOS, CMOS switches, NOR and NAND gate implementation using switching flow. Tasks and

switches, NOR and NAND gate implementation using switching now. Tash

Functions, timing and delays, modular test benches

Laboratory Sessions/ Experimental Learning:					
1. Design a 4-bit arithmetic logic unit (ALU) using behavioral modeling.					
Video Link / Additional Online Information:					
1. <u>https://archive.nptel.ac.in/courses/106/105/106105165/</u>					
2. <u>https://onlinecourses.nptel.ac.in/noc24_cs61/preview</u>					
UNIT 4					
Synthesis Basics: Highlights of synthesis, synthesis information from module, mapping					
always in the hardware domain, mapping the signal-assignment statement to gate level,					
mapping logical operators, mapping the IF statement, mapping the case statement, mapping					
the loop statement.					
Implementation: Mapping, placement and routing.					
	8Hrs.				
Laboratory Sessions/ Experimental Learning:					
1. Analyze the synthesis report to understand the resource utilization and timing summary.					
Video Link / Additional Online Information:					
1. <u>https://archive.nptel.ac.in/courses/106/105/106105165/</u>					
2. <u>https://onlinecourses.nptel.ac.in/noc24_cs61/preview</u>					
UNIT 5					
IP-Based Digital Logic Design And Logic Validation: Basics of AXI interfacing, IP-					
based counter implementation, IP-based different clock generator, FIFO, and BRAM.					
Real Time Logic Validations: Integrated logic analyzer (Xilinx ILA IP) and virtual input					
and output (VIO).					
	8Hrs.				
Laboratory Sessions/ Experimental Learning:					
1. Analyze timing diagrams and understand the signaling involved in AXI transactions.					
Video Link / Additional Online Information:					
1. <u>https://onlinecourses.nptel.ac.in/noc24_cs61/preview</u>					

Course Or	itcomes: After completing the course, the students will be able to
Course Or	it comes. After completing the course, the students will be able to
CO1	Explain the basic architecture and functioning of FPGAs.
CO2	Develop synthesizable Verilog HDL code for combinational and sequential logic
	circuits.
CO3	Make use of simulation tools to debug and validate Verilog HDL code.
CO4	Understand the FPGA design flow, including synthesis, placement, and routing.
CO5	Develop AXI-based interfaces for high-speed communication within FPGA designs.

Text Books	
1.	Palnitkar, S. "Verilog HDL: A guide to Digital Design and Synthesis" 2 nd ed. Pearson.
2.	Sass, Ronald, and Andrew G. Schmidt, "Embedded systems design with platform
	FPGAs: Principles and practices", Morgan Kaufmann.
Reference I	Books
1.	J. A Bhasker, "System Verilog Primer" 1st Indian ed. B.S. Publication.
2.	Steve Kilts, Advanced FPGA design: architecture, implementation, and optimization"
	John Wiley & Sons.
3.	Pong P Chu, "FPGA prototyping by Verilog examples: Xilinx Spartan-3 version" John
	Wiley & Sons.

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-P	CO-PO-PSO Mapping													
CO/	PO	PO	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PSO	PSO
РО	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2	2	-	-	-	-	-	-	-	-	-	1	1
CO2	3	2	2	-	-	-	-	-	-	-	-	-	1	1
CO3	3	2	2	-	-	-	-	-	-	-	-	-	1	1
CO4	3	2	2	-	2	2	-	-	-	-	-	-	1	1
CO5	3	2	2	2	-	-	-	-	-	-	-	-	1	1

	Semester: IV									
	NETWORK THEORY									
Cou	rse Code:	MVJ22VL42	CIE Marks: 50							
Cree	dits:	L: T:P: 3:0:2	SEE Marks: 50							
Hou	irs:	40L+26P	SEE Duration: 3 Hrs.							
Cou	rse Learning (Objectives: The students will be able to								
1	1 Understand the basic network concepts emphasizing source transformation, mesh and nodal techniques to solve for resistance/impedance, voltage, current and power.									
2	Apply Thevenin's, Millman's, superposition, reciprocity, maximum power transfer and Norton's Theorems in solving the problems related to electrical circuits.									
3	3 Analyze the frequency response of series and parallel combination of passive components as resonating circuits.									
4	Describe the	behavior of RLC circuits in the time and f	frequency domain.							
5	Analyze the t	wo port network parameters like Z, Y, T a	and h and their inter-relationships.							

UNIT-I	
Ohm's law, Kirchhoff's laws	8 Hrs
Basic Concepts: Introduction, practical sources, source transformations, star – delta	
transformation, loop and node analysis with linearly dependent and independent	
sources for DC networks, concepts of super node and super mesh.	
Laboratory Sessions/ Experimental Learning:	
1. Find the current through and voltage across the load in the circuit.	
Applications: Simplification and analysis of analog circuits, microwave circuit	
analysis.	
Video Link /Additional Online Information:	
1. <u>https://archive.nptel.ac.in/courses/108/105/108105159/</u>	
UNIT-II	
Graph Theory and Network Equations: Graph of a network, trees, co-trees and	8 Hrs
loops, incidence matrix, cut-set matrix, tie-set matrix and loop currents, number of	
possible trees of a graph, analysis of networks, duality.	

Laboratory Sessions/ Experimental Learning:	
1. Understand and apply graph theory concepts such as trees, co-trees, loops,	
incidence matrices, cut-set matrices, tie-set matrices, and loop currents to the	
analysis of electrical networks.	
Applications: Simplification and analysis of analog circuits, microwave circuit	
analysis.	
Video Link /Additional Online Information:	
1. https://archive.nptel.ac.in/courses/108/105/108105159/	
UNIT-III	
Network Theorems: Superposition theorem, Millman's theorem, Thevenin's and	8 Hrs
Norton's theorems, reciprocity theorem, maximum power transfer theorem.	
Laboratory Sessions/ Experimental Learning:	
1. Verify superposition theorem for a circuit.	
Applications: Simplification and analysis of analog circuits, microwave circuit	
analysis.	
Video Link /Additional Online Information:	
1. <u>https://archive.nptel.ac.in/courses/108/105/108105159/</u>	
UNIT-IV	
Prerequisites: Laplace Transforms, Properties of Laplace Transform and Inverse	8 Hrs
Laplace Transform using partial fraction method.	
Transient Behaviour and Initial Conditions: Behaviour of circuit elements under	
switching condition and their representation, evaluation of initial and final conditions	
in RL, RC and RLC circuits for DC excitations, applications of Laplace transforms in	
circuit analysis.	
Laboratory Sessions/ Experimental Learning:	
1. Plot the response of a series RLC circuit.	
Applications: In the analysis of transmission lines and waveguides.	
Video Link /Additional Online Information:	
1. <u>https://archive.nptel.ac.in/courses/108/105/108105159/</u>	
· <u>https://dtoff/vonptof.ac.in/codises/100/105/100105157/</u>	

UNIT-V	
Two Port Network Parameters: Introduction, open circuit impedance parameter,	8 Hrs
short circuit admittance parameter, hybrid parameters, transmission parameter,	
relationship between parameters.	
Laboratory Sessions/ Experimental Learning:	
1. Plot the frequency response characteristics for a series RL, RC circuit.	
2. Plot the frequency response characteristics for a parallel RL circuit.	
3. Measure two port parameters for a given network	
Applications: For analysis of communication systems and antennas.	
Video Link /Additional Online Information:	
1. <u>https://archive.nptel.ac.in/courses/108/105/108105159/</u>	

Course	Outcomes: After completing the course, the students will be able to
CO1	Apply network simplification techniques to calculate currents and voltages in a circuit.
CO2	Describe the network problems using graphical methods.
CO3	Apply network theorems to simplify the complex circuits.
CO4	Examine and differentiate between transient and steady-state responses of electrical circuits to various inputs, using techniques such as differential equations and Laplace transforms.
CO5	Analyze the given network using specified two port network parameters like Z or Y or T or h and evaluate the frequency response related parameters through the RLC elements, in resonant circuits. (Lab)
	LIST OF EXPERIMENTS
S. No.	Experiment Name
1.	Apply the kirchoff's law for finding current in a complex electrical circuit.
2.	Verification of Norton and maximum power transfer theorems in ac circuits.
3.	Apply the Thevenin theorem for finding current in a complex electrical circuit.
4.	Determination of transient response of current in RL and RC circuits with step voltage input.

5.	Determination of transient response of current in RLC circuit with step voltage input for
	under damp, critically damp and over damp cases.
6.	To determine the equivalent parameters of series connection of two port network.
7.	
8.	

Text Bo	ooks
1.	M.E. Van Valkenberg, "Network analysis", Prentice Hall of India, 3 rd edition, ISBN: 9780136110958.
2.	Roy Choudhury, "Networks and systems", 2nd edition, New Age International Publications, ISBN: 9788122427677.
Referen	ice Books
1.	Hayt, Kemmerly and Durbin — Engineering Circuit Analysis", TMH 7th Edition, 2010.
2.	J. David Irwin /R. Mark Nelms, "Basic Engineering Circuit Analysis", John Wiley, 8th edition.

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

CO-P	CO-PO-PSO Mapping													
CO /	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
РО	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	2	2	2	-	-	-	-	-	-	2	1	1
CO2	3	3	2	2	2	-	-	-	-	-	-	2	1	1
CO3	3	3	2	2	2	-	-	-	-	-	-	2	1	1
CO4	3	3	2	2	2	-	-	-	-	-	-	2	1	1
CO5	3	3	2	2	2	-	-	-	-	-	-	2	1	1

		Semester	r: IV					
		ELECTROMAGNETIC	C FIELD THEORY					
Course	Code:	Code: MVJ22VL43 CIE Marks:50						
Credits	:	L:T:P:S 3:0:0:Y	SEE Marks: 50					
Hours:		40L	SEE Duration: 3 Hrs					
Course	Learning	Objectives: The students will be	e able to					
1	Understand the physical significance of Biot-Savart's Law, Amperes' circuital law and Stokes' theorem for different current distributions.							
2	Apply mathematical methods, including vector calculus and differential equations, to solve problems related to electromagnetic fields.							
3	Analyze electromagnetic wave propagation by evaluating wave equations, polarization states, and propagation characteristics in different media.							
4	Understand the concepts of Smith Chart for impedance matching.							
5	Analyze the interaction between electromagnetic fields and materials by examining concepts such as dielectric and magnetic properties.							

Prerequisites: Vector algebra, coordinate systems (Rectangular coordinate system, cylindrical coordinate system and spherical coordinate system), gradient, divergence and curl.

Electrostatics: Coulomb's Law, Electric Field Intensity, Flux Density And Potential:

Coulomb's law, electric field intensity, field due to line charge, field due to Sheet of charge, field due to continuous volume charge distribution, electric flux, electric flux density, electric potential, potential difference, relation between electric field intensity (E) & potential (V), potential gradient, electric dipole, energy density in electrostatic fields.

Laboratory Sessions/ Experimental Learning:

- 1. Determine the electric field intensity at a point due to uniform linear charge (ρ L) and point charges using MATLAB.
- 2. Determine the electric field intensity at a point due to surface charge using MATLAB.

3. Determine the potential difference between two points on a ring having linear charge	
density, p L using MATLAB.	
Applications: The Van de Graaff generator, Xerography, Ink Jet Printers and Electrostatic	
Painting, Smoke Precipitators and Electrostatic Air Cleaning.	
Video Link / Additional Online Information:	
1. <u>https://archive.nptel.ac.in/courses/108/104/108104087/</u>	
UNIT 2	
Gauss' law, Divergence, Poisson's and Laplace's Equations: Gauss law, Maxwell's first	
equation, application of Gauss' law, divergence theorem, current, current density, conductor,	
the continuity equation, boundary conditions (dielectric-dielectric, conductor-dielectric,	
conductor-free space), Poisson's and Laplace's equations.	
Laboratory Sessions/ Experimental Learning:	
1. Evaluate the current flowing through a given surface using MATLAB.	8 Hrs.
2. Verify the divergence theorem using MATLAB.	
Applications: Used for calculation electrical field for a symmetrical distribution of charges.	
Video Link / Additional Online Information:	
1. <u>https://archive.nptel.ac.in/courses/108/104/108104087/</u>	
UNIT 3	
Magnetostatics: Steady magnetic field-Biot-Savart law, Ampere's circuital law, Curl,	
Stokes' theorem, Gauss's law for magnetic fields, magnetic flux and magnetic flux density,	
Maxwell's equations for static fields, magnetic scalar and vector Potentials.	
Magnetic Forces And Magnetic Materials: Force on a moving charge and differential	
current element, force between differential current elements, magnetization, magnetic	
susceptibility, permeability, magnetic boundary conditions, inductances, magnetic energy,	
magnetic circuit.	8 Hrs.
-	
Laboratory Sessions/ Experimental Learning:	
1. Determine the magnetic field intensity at a point due to magnetic field using MATLAB.	
Applications: Motors, Generators, Loudspeakers, MRI.	
Video Link / Additional Online Information:	

1. https://archive.nptel.ac.in/courses/108/104/108104087	in/courses/108/104/108104087/
--	-------------------------------

UNIT 4

Time Varying Fields and Electromagnetic Wave Propagation: Time varying fields & Maxwell's equations, Faraday's law, transformer and motional electro - motive forces, displacement current, Maxwell's equation in differential and integral form, time varying potentials.

Electromagnetic Wave Propagation: Derivation of wave equations from Maxwell's equations, relation between E and H, Wave propagation in - lossy dielectrics, lossless dielectrics, free space and good conductor, skin-effect, Poynting theorem.

8 Hrs.

8 Hrs.

Laboratory Sessions/ Experimental Learning:

1. Determine the parameters of wave using MATLAB.

Applications: Optoelectronics.

Video Link / Additional Online Information:

1. https://archive.nptel.ac.in/courses/108/104/108104087/

UNIT 5

Transmission Line: Introduction, transmission line parameters, transmission line equations, input impedance, standing wave ratio and power, Smith Chart basic fundamentals, types of transmission lines - coaxial line, strip line, micro strip line.

Applications of Transmission Line: Impedance matching and tuning: Single stub tuning, double stub tuning, and the quarter wave transformer.

Laboratory Sessions/ Experimental Learning: 1. 1. Simulation of micro strip transmission line using FEKO software. Applications: Telephone, Cable TV, Broadband network Video Link / Additional Online Information: 1. https://archive.nptel.ac.in/courses/108/104/108104087/

Course Outcomes: After completing the course, the students will be able to

CO1	Solve problems on electrostatic force, electric field due to point, linear, surface charge and volume charges.
CO2	Apply Gauss law to evaluate electric fields due to different charge distributions by using Divergence Theorem.
CO3	Apply Biot-Savart's and Ampere's laws for evaluating magnetic field for different current configurations.
CO4	Apply Maxwell's equations for time varying fields and evaluate power associated with EM waves using Poynting theorem.
CO5	Design electromagnetic devices and systems, such as antennas and transmission lines, while optimizing performance characteristics such as impedance matching and radiation patterns.

Text B	Text Books:								
1.	Matthew N. O. Sadiku, "Elements of Electromagnetics", Oxford University Press, Edition VII, 2018.								
2.	David M Pozar, "Microwave Engineering", John Wiley & Sons, Inc., 4th edition, 2014.								

Reference Books:

1	W.H. Hayt. J.A. Buck & M Jaleel Akhtar, "Engineering Electromagnetics", Tata McGraw -
1.	Hill, Edition VIII, 2014.

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-P	CO-PO-PSO Mapping													
CO /	PO	PO	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PSO	PSO
РО	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	2	2	2	-	-	-	-	-	-	2	1	1
CO2	3	3	2	2	2	-	-	-	-	-	-	2	1	1
CO3	3	3	2	2	2	-	-	-	-	-	-	2	1	1
CO4	3	3	2	2	2	-	-	-	-	-	-	2	1	1
CO5	3	3	2	2	2	-	-	-	-	-	-	2	1	1

High-3, Medium-2, Low-1

	Semester: IV							
		VERILOG HD	L LABORATORY					
Course	Code:	MVJ22VLL44	CIE Marks: 50					
Credits	:	L:T:P:0:0:2	SEE Marks: 50					
Hours:		26P	SEE Duration: 3 Hrs					
Course	Learning	g Objectives: The students v	vill be able to					
1	Understa	and architectures of FPGA, C	PLD and different IC design flow.					
2	Apply verilog HDL design flow and hierarchical modeling to design various digital circuits.							
3	Design a	and verify circuits using vario	us verilog modeling techniques.					
4	Grasp the synthesis process from high-level design to hardware implementation.							
5	Impleme	ent and validate designs using	IP-based methodologies and tools.					

	LABORATORY SESSIONS							
	PART A							
Exp. No	Experiment Name							
	Write Verilog program for the following combinational logic, verify the design							
	using test bench and perform the synthesis by downloading the design on to FPGA							
1.	device.							
	a. Structural modeling of Full adder using two half adders and or Gate							
	b. BCD to Excess-3 code converter							
	Write Verilog program for the following Sequential Circuits, verify the design							
	using test bench and perform the synthesis by downloading the design on to FPGA							
2.	device.							
	a. Mod-N counter							
	b. Random sequence counter							
	Write Verilog program for the following Sequential Circuits, verify the design							
	using test bench and perform the synthesis by downloading the design on to FPGA							
3.	device.							
	a. SISO and PISO shift register b. 4-Bit Linear Feedback shift register							
	b. Barrel Shifter							

	Write Verilog program for the following Digital Circuits, verify the functionality							
	using test bench and perform the synthesis by downloading the design on to FPGA							
4.	device.							
т.	a. Ring Counter							
	b. Johnson Counter							
	Write Verilog program for the following Digital Circuits, verify the functionality							
	using test bench and perform the synthesis by downloading the design on to FPGA device.							
5.								
	a. 4-Bit Ripple Carry Adder							
	b. 4-bit Array Multiplication.							
	c. 4-bit Booth Multiplication							
	PART B							
6	Write a Verilog code to design a clock divider circuit that generates 1/2, 1/3rdand							
	1/4thclock from a given input clock. Port the design to FPGA and validate the							
	Functionality through ILA.							
7	Generate 3 different clock frequencies using predefined IP and validate using							
	oscilloscopes.							
8	Write a Verilog code to interface LED and display HDL on the LED display and							
	also validate all output using VIO IP before implementations							
9	Design a FSM to detect 1010 patterns and validate real time detection of patterns							
	using ILA IP							
10	Write Verilog code to convert an analog input of a sensor to digital form by							
	interfacing ADC to display the same on a suitable display like set of simple LEDs							
	like 7-Segment							
	display digits.							
11	Interface a DAC to FPGA and write Verilog code to generate Square wave of							
	Frequency F KHz. Modify the code to down sample the frequency to F/2 KHz.							
	Display the original and Down sampled signals by connecting them to an							
	Oscilloscope.							
Course	Outcomes: After completing the course, the students will be able to							
<u> </u>	Develop proficiency in writing Verilog code for modelling digital systems at various							
CO1	levels of abstraction (behavioral, dataflow, and structural).							

CO2	Apply Verilog HDL to design and simulate basic digital circuits such as logic gates, multiplexers, and flip-flops, using simulation tools to verify circuit functionality.
CO3	Analyze the behavior of Verilog-based designs by evaluating simulation results, identifying and debugging errors in the Verilog code, and optimizing designs for performance.
CO4	Design and implement complex digital systems, such as finite state machines (FSMs)
CO5	Implement Verilog designs on Field-Programmable Gate Arrays (FPGAs) and understand the FPGA design flow.

PSO	Mapp	ing											
PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
3	3	3	3	2	1	-	-	-	-	-	-	2	1
3	3	3	3	2	1	-	-	-	-	-	-	2	1
3	3	3	3	2	1	-	-	-	-	-	-	2	1
3	3	3	3	2	1	-	-	-	-	-	-	2	1
3	3	3	3	2	1	-	-	-	-	-	-	2	1
	PO1 3 3 3 3 3	PO1 PO2 3 3 3 3 3 3 3 3 3 3 3 3	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	PO1 PO2 PO3 PO4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	PO1 PO2 PO3 PO4 PO5 3 3 3 3 2 3 3 3 3 2 3 3 3 3 2 3 3 3 3 2 3 3 3 3 2 3 3 3 3 2 3 3 3 3 2	PO1 PO2 PO3 PO4 PO5 PO6 3 3 3 3 2 1 3 3 3 3 2 1 3 3 3 3 2 1 3 3 3 3 2 1 3 3 3 3 2 1 3 3 3 3 2 1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 3 3 3 3 2 1 - 3 3 3 3 2 1 - 3 3 3 3 2 1 - 3 3 3 3 2 1 - 3 3 3 3 2 1 - 3 3 3 3 2 1 -	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 3 3 3 3 2 1 - - 3 3 3 3 2 1 - - 3 3 3 3 2 1 - - 3 3 3 3 2 1 - - 3 3 3 3 2 1 - - 3 3 3 3 2 1 - -	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 3 3 3 3 2 1 - - - 3 3 3 3 2 1 - - - 3 3 3 3 2 1 - - - 3 3 3 3 2 1 - - - 3 3 3 3 2 1 - - - 3 3 3 3 2 1 - - - 3 3 3 3 2 1 - - -	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 3 3 3 2 1 - - - - 3 3 3 2 1 - - - - 3 3 3 2 1 - - - - 3 3 3 2 1 - - - - 3 3 3 2 1 - - - - 3 3 3 2 1 - - - - 3 3 3 2 1 - - - - 3 3 3 2 1 - - - -	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 3 3 3 2 1 - - - - - 3 3 3 2 1 - - - - - 3 3 3 2 1 - - - - 3 3 3 2 1 - - - - 3 3 3 2 1 - - - - 3 3 3 2 1 - - - - 3 3 3 2 1 - - - - 3 3 3 2 1 - - - -	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 3 3 3 3 2 1 - - - - - 3 3 3 2 1 - - - - - 3 3 3 2 1 - - - - - 3 3 3 2 1 - - - - - 3 3 3 2 1 - - - - - 3 3 3 2 1 - - - - - 3 3 3 2 1 - - - - -	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 3 3 3 3 2 1 - - - - 2 3 3 3 2 1 - - - - 2 3 3 3 2 1 - - - - 2 3 3 3 2 1 - - - - 2 3 3 3 2 1 - - - - 2 3 3 3 2 1 - - - - 2 3 3 3 2 1 - - - - 2 3 3 3 2 1 - - - - 2

		Semeste	er: IV						
		CONTROL	SYSTEMS						
Course	e Code:	MVJ22VL451	CIE Marks:100						
Credits: L:T:P: 3:0:0 SEE Marks: 100									
Hours	:	40L	SEE Duration: 3 Hrs						
Course	e Learning	Objectives: The students will I	be able to						
1	Explain	the fundamental principles and c	components of control systems.						
2		Apply control theory to model dynamic systems using differential equations and state- space representations.							
3		Analyse the response of first and second order systems using standard test signals and analyse steady state error.							
4	Analyse plot.	Analyse stability of systems using RH criteria, root locus, Nyquist, Bode plot and polar plot.							
5	Ū	controllers such as PID, lead-lag, performance specifications.	and state feedback controllers to achieve desired						

UNIT 1

Introduction to Control Systems: Open loop and closed loop systems, types of feedback, differential equation of physical systems – Mechanical systems, electrical systems, analogous systems.

Block Diagrams and Signal Flow Graphs: Transfer functions, block diagram algebra and signal flow graphs.

Laboratory Sessions/ Experimental Learning:8Hrs.1. Determine and plot poles and zeros from the transfer function using MATLAB.9Applications: Electric hand drier, automatic washing machine, DC motor, automatic electric
iron, voltage stabilizer.9Video Link / Additional Online Information:91. https://archive.nptel.ac.in/courses/107/106/107106081/

Time Response of Feedback Control Systems: Standard test signals, unit step response of	
first and second order systems. Time response specifications of first order systems, time	
response specifications of second order systems for underdamped system, steady state errors	
and error constants.	
Introduction to Controllers: P, PI, PD and PID Controllers.	
Laboratory Sessions/ Experimental Learning:	
1. Obtain step and impulse response of a unity feedback first order system for a given	8Hrs.
forward path transfer function using MATLAB.	
2. Obtain step and impulse response of a unity feedback second order system for a given	
forward path transfer function using MATLAB.	
Applications: Industrial control systems	
Video Link / Additional Online Information:	
1. <u>https://archive.nptel.ac.in/courses/107/106/107106081/</u>	
UNIT 3	
Stability Analysis Using RH Criteria And Root Locus: Concepts of stability, necessary	
conditions for stability, Routh Hurwitz stability criterion, relative stability analysis,	
introduction to root-locus techniques, the root locus concepts, construction of root loci.	
Laboratory Sessions/ Experimental Learning:	
1. Obtain root locus plot of the system for a given forward path transfer function using	8Hrs.
MATLAB.	
Applications: Used to determine the dynamic response of a s system.	
Video Link / Additional Online Information:	
1. https://archive.nptel.ac.in/courses/107/106/107106081/	
UNIT 4	<u> </u>
Stability Analysis using Nyquist Criteria and Bode Plots: Polar plot, Nyquist stability	
criterion, Nyquist plots, Bode plots, gain and phase margin.	
Laboratory Sessions/ Experimental Learning:	8Hrs.
1. Obtain Bode plot of the system for a given forward path transfer function using	
MATLAB.	
	1

2. Obtain Nyquist plot of the system for a given forward path transfer function using MATLAB.
Applications: To determine a stability of a system.
Video Link / Additional Online Information:

https://archive.nptel.ac.in/courses/107/106/107106081/

UNIT 5
Introduction to State Variable Analysis: Concepts of state, state variable and state models for electrical systems, solution of state equations, state transition matrix and its properties.
lag, lead and lag lead compensation.

Laboratory Sessions/ Experimental Learning:

1. Determining the solution of state equations using MATLAB.

Applications: State variables are used to describe the future response of a d+ynamic response.

8Hrs.

Video Link / Additional Online Information:

1. https://archive.nptel.ac.in/courses/107/106/107106081/

0	
Course	e Outcomes: After completing the course, the students will be able to
CO1	Apply mathematical models to represent and simulate the behavior of dynamic systems.
COA	Analyze transient and steady state response of second order systems using standard test
CO2	signals and analyze steady state error.
CO3	Analyze the stability of the systems by applying RH criteria and root locus techniques.
604	Analyze the stability of the system using frequency domain techniques such as Nyquist and
CO4	Bode plots.
COF	Design and implement controllers, such as proportional-integral-derivative (PID) controllers,
CO5	lead-lag compensators, and state feedback controllers.

	Text B	ooks:
Ī	1	Nagarath and M.Gopal, Control Systems Engineering, New Age International (P) Limited,
	1.	Publishers, Fifth edition, ISBN: 81-224-2008.

2	Modern Control Engineering, K.Ogata, Pearson Education Asia/PHI, 4 th Edition, ISBN 978-
۷.	81-203-4010-7.

Refere	nce Books:
1.	Automatic Control Systems ^I , Benjamin C. Kuo, John Wiley India Pvt. Ltd., 8 th Edition.

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the entire syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-P	CO-PO-PSO Mapping													
CO /	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
РО	1	2	3	4	5	6	7	8	9	10	11	12	1	2
C01	3	3	2	2	2	-	-	-	-	-	-	2	1	1
CO2	3	3	2	2	2	-	-	-	-	-	-	2	1	1
CO3	3	3	2	2	2	-	-	-	-	-	-	2	1	1
CO4	3	3	2	2	2	-	-	-	-	-	-	2	1	1
CO5	3	3	2	2	2	-	-	-	-	-	-	2	1	1

		Semester: IV		
		INDUSTRIAL ELECTRONI	CS	
Course	Code:	MVJ22VL452	CIE Marks:50	
Credits		L:T:P: 3:0:0	SEE Marks: 50	
Hours:		40 L	SEE Duration: 03 Hour	S
Course	Learning Objecti	ves: The students will be able to	l	
1	Explain broad ty	pes of industrial power devices, there	structure, and its character	ristics.
2	Design and anal	yse the broad categories of power elec	ctronic circuits.	
3	Explain various	types of MEMs devices, principle of	operation and construction.	
4	Familiarize with	soft core processors and computer ar	chitecture	
5	Apply protective	e methods for devices and circuits.		
	1	UNIT-I		
schottky characte Junction JFET st characte Video L	power diodes, si ristics, switching field effect transi ructures, Bipolar ristics, silicon cart ink / Additional	s: General purpose power diodes, fas licon carbide power diodes, Power characteristics, silicon carbide M stors, operation and characteristics o Junction Transistors, Steady state c bide BJTs, IGBT, silicon carbide IGB Online Information: in/courses/108/105/108105063/	MOSFETs, Steady state MOSFETs, COOLMOS, f JFETs, Silicon Carbide characteristics, switching	8 Hrs
		UNIT-II		
Controll converte Buck Re Video L	ed Rectifiers – Sin rs, and Three pha egulator, Boost reg ink / Additional (its: Thyristor, Thyristor characteristing of the set full converter with R and R as full converter with RL load. Swith a set full converter with RL load. Swith	L load, Single phase dual cching mode regulators –	8 Hrs

UNIT-III	
Inverters – Principle of operation, Single phase bridge inverter, Three phase inverter with	8 Hrs
180 and 120 degree conduction, Current source inverter. AC voltage controllers – Single	
phase full wave controller with resistive load, single phase full wave controller with	
inductive load	
Video Link / Additional Online Information:	
1. https://archive.nptel.ac.in/courses/108/105/108105063/	
UNIT-IV	
MEMS Devices: Sensing and Measuring Principles, Capacitive Sensing, Resistive	8 Hrs
Sensing, Piezoelectric Sensing, Thermal Transducers, Optical Sensors, Magnetic	
Sensors, MEMS Actuation Principles, Electrostatic Actuation, Thermal Actuation,	
Piezoelectric Actuation, Magnetic Actuation, MEMS Devices Inertial Sensors, Pressure	
Sensors, Radio Frequency MEMS: Capacitive Switches and Phase Shifters,	
Microfluidic Components, Optical Devices.	
MEMS Applications: Introduction, Industrial, Automotive, Biomedical	
Video Link / Additional Online Information:	
1. <u>https://archive.nptel.ac.in/courses/108/105/108105063/</u>	
UNIT-V	
Protections of Devices and Circuits: Cooling and Heat sinks, Thermal Modeling of	8 Hrs
Power Switching Devices, Electrical Equivalent Thermal model, Mathematical	
Thermal Equivalent Circuit, Coupling of Electrical and Thermal Components, Snubber	
circuits, Voltage protection by Selenium Diodes and Metaloxide Varistors, Current	
protection, Fusing, Fault current with AC source, Fault current with DC source,	
Electromagnetic Interference, sources of EMI, Minimizing EMI Generation, EMI	
shielding, EMI standards	
Video Link / Additional Online Information:	
1. https://archive.nptel.ac.in/courses/108/105/108105063/	

Course Outcomes: After completing the course, the students will be able to

CO1	Explain different types of industrial power devices such as MOSFET, BJT, IGBT etc,
001	there structure, and its operating characteristics.
CO2	Design and analyse the power electronic circuits such as switch mode regulators,
02	inverters, controlled rectifiers and ac voltage controllers.
CO3	Explain various types of MEMs devices used for sensing pressure, temperature, current,
005	voltage, humidity, vibration etc
CO4	Familiarize with soft core processors such as ASIC and FPGA.
CO5	Familiarize with computer hardware, software, architecture, instruction set, memory
005	organization, multiprocessor architecture.
Text Book	s:
1.	Power Electronics: Devices, Circuits, and Applications, Muhammad H. Rashid,
1.	Pearson, 4th International edition.
2.	Fundamentals of Industrial Electronics, Bogdan M. Wilamowski, J. David Irwin, CRC
۷.	Press.
Reference	Books:
	Thomas E. Kissell, Industrial Electronics: Applications for Programmable Controllers,
1.	Instrumentation and Process Control, and Electrical Machines and Motor Controls, 3rd
	edition, Prentice Hall.
2.	Ned Mohan, T.M. Undeland and W.P. Robbins, "Power Electronics: Converters,
۷.	Applications and Design", Wiley India Ltd.
L	

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO /	PO	PSO	PSO											
PO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	2	2	2	-	-	-	-	-	-	2	1	1
CO2	3	3	2	2	2	-	-	-	-	-	-	2	1	1
CO3	3	3	2	2	2	-	-	-	-	-	-	2	1	1
CO4	3	3	2	2	2	-	-	-	-	-	-	2	1	1
CO5	3	3	2	2	2	-	-	-	-	-	-	2	1	1

		Semeste	er: IV	
		ROBOTICS AND	AUTOMATION	
Cours	se Code:	MVJ22VL453	CIE Marks:50	
Credi	ts:	L:T:P: 3:0:0	SEE Marks: 50	
Hours	s:	40 L	SEE Duration: 03 Hours	
Cours	se Learning Ob	jectives: The students will h	be able to	
1	Explain the fur	ndamental concepts and princ	ciples of robotics and automation.	
2	Apply mathem	atical and computational tech	nniques to model robotic mechanisms.	
3	Analyze the pe	rformance and efficiency of	robotic systems by evaluating paramete	rs such
5	as accuracy, rej	peatability, and speed.		
4	Analyze basic	robotic dynamics, path plann	ing and control problems.	
5	Design and imp	plement control algorithms for	or robotic systems.	
		UNI	Г-І	
Basic	Concepts In R	Robotics: Definition, anatom	ny of robot, basic structure of robot,	8 Hrs
specif	ications and cl	assification of robot, safe	ty measures in robotics, industrial	
applic	ations of robots	. Drives for robots: Electric	c, hydraulic and pneumatic. Sensors:	
Intern	al-external, cont	tact-non-contact, position, v	elocity, force, torque, proximity and	
range.				l
				l
	•	Experimental Learning:		
		sensors with Microcontroller		
		e Tending, Picking, Packing	and Palletizing, painting, all Industrial	
applic	ations.			1
Video	Tink / Addition	nal Online Information:		l
		/courses/112/105/112105249)/	l
1. <u>11</u>		//////////////////////////////////////	<u>′′</u>	l
2. <u>h</u>	ttps://nptel.ac.in/	/courses/112/101/112101098	<u>M</u>	ſ
				l
		UNIT	`-II	

Robot Drivers, Sensors And Vision: Introduction to techniques, image acquisition and	8 Hrs
processing, different types of grippers- Mechanical, magnetics, vacuum, adhesive, gripper	
force analysis and gripper design, overview of actuators, power and torque, acceleration	
and velocity specifications and characteristics of stepper motors, AC motors, DC motors	
and servomotors.	
Laboratory Sessions/ Experimental Learning:	
1. Interface motors using various motor drivers.	
Applications: Industrial application, agriculture robots, surgical robots.	
Video Link / Additional Online Information:	
1. <u>https://nptel.ac.in/courses/112/105/112105249/</u>	
2. <u>https://nptel.ac.in/courses/112/101/112101098/</u>	
UNIT-III	<u> </u>
Robot Kinematics And Dynamics: Direct and inverse kinematics for industrial robots	8 Hrs
for position and orientation, redundancy, manipulator, direct and inverse velocity. Link	
inertia tensor and manipulator inertia tensor, Newton–Eller formulation for RP and RP	
manipulators, trajectory planning.	
Laboratory Sessions/ Experimental Learning:	
1. Interface servo motors to form gripper.	
Applications: Pick and Place, Excavators, Robotic ARM.	
Video Link / Additional Online Information:	
1. <u>https://nptel.ac.in/courses/112/105/112105249/</u>	
2. <u>https://nptel.ac.in/courses/112/101/112101098/</u>	
UNIT-IV	
Robot Kinematics: Dynamics and programming methods, robot language classification,	8 Hrs
robot language structure, kinematics and path planning: Solution of inverse kinematics	
problem, multiple solution jacobian work envelop, hill climbing techniques, robot	
programming languages elements and its functions. Simple programs on sensing distance	
and direction, Line following algorithms, feedback systems.	

Laboratory Sessions/ Experimental Learning: 1. Design algorithm for Maze solving robot. Applications: Defence, Surveillance, Autonomous Vehicle. Video Link / Additional Online Information:

1. https://nptel.ac.in/courses/112/105/112105249/

2. https://nptel.ac.in/courses/112/101/112101098/

UNIT-V

Design and Applications: Developing and building a robot, models of flexible links and
joints, robotic arm – Components and structure, types of joints and workspace, design
models for mechanic arms and lifting systems mutiple robots, machine interface, robots
in manufacturing and non- manufacturing applications, robot cell design, selection of
robot.8 Hrs

Laboratory Sessions/ Experimental Learning:

1. Case Study on Robots in material handling and assembly. Human Robot Interaction

Applications: Humanoid, Robotic Arms.

Video Link / Additional Online Information:

- 1. https://nptel.ac.in/courses/112/105/112105249/
- 2. https://nptel.ac.in/courses/112/101/112101098/

Course	Outcomes: After completing the course, the students will be able to
CO1	Analyze the concept development and key components of robotics technologies.
CO2	Select the components for interfacing actuators.
CO3	Implement basic mathematics manipulations of spatial coordinate representation and Transformation.
CO4	Solve basic robot forward and inverse kinematic problems.
CO5	Design robots which are capable to solve basic robotic dynamics, path planning and control problems.
Text B	ooks:

1.	Introduction to Robotics By S.K.Saha , Tata McGraw Hill
	Robotics Control, Sensing, Vision and Intelligence by K.S. Fu, R.C. Gonzalez, C.S.G.Lee,
2.	Tata McGraw HillJ. Hirchhorn: Kinematics and Dynamics of Machinery, McGraw Hill book
	Co.
Referer	nce Books:
1.	Robert J. Schilling, Fundamentals of Robotics- Analysis and Control, Prentics Hall india.
2.	Robotics Technology and Flexible Automation by S.R.Deb, S. Deb, Tata McGraw Hill
3.	Robot Motion and Control (Recent Developments) by M.Thoma& M. Morari

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-P	CO-PO-PSO Mapping													
CO/	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
РО	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	2	2	2	-	-	-	-	-	-	2	1	1
CO2	3	3	2	2	2	-	-	-	-	-	-	2	1	1
CO3	3	3	2	2	2	-	-	-	-	-	-	2	1	1

CO5 3 3 2 2 2 - - - - 2 1 1	CO4	3	3	2	2	2	-	-	-	-	-	-	2	1	1
		3	•	2	2	2	-	-	•	•	-	•	2	1	1

		Semest	ter: IV					
		DATA STRUCTURE	ES USING PYTHON					
Course Code:		MVJ22VL454	CIE Marks:50					
Cred	its:	L:T:P: 3:0:0	SEE Marks: 50					
Hour	Hours: 40 L SEE Duration: 03 Hours							
Cour	se Learning O	bjectives: The students will	be able to					
1	Understand the project assess		tures and their applications in logic build	ling and				
2	Understand th	e concept of linked lists and	sorting techniques.					
3	Acquire the k	nowledge of algorithms of qu	ueues and stacks.					
4	Analyze the c	oncepts of binary trees.						
5	Examine Grap	ohs and its algorithms.						
		UNI	IT-I					
Pythe	on Primer: Pyt	hon Overview, Objects in P	ython, Expressions, Operators, Control	8 Hrs				
Flow,	, Functions, Sim	ple i/p and o/p, Modules.						
Basic	Concepts of D	ata Structures and Algorith	ms: Introduction- Variables, Datatypes,					
Data	Structures, AD	Γ, what is an algorithm, How	w to compare algorithms, Rate growth,					
Types	s of analysis, As	symptotic Notation, Performation	ance Analysis: Space complexity, Time					
comp	lexity, Guidelin	es for asymptotic analysis.						
Searc	ching Techniqu	es: Linear Search and Binary	y Search					
Appli	cations: develop	ping computational tools and	bioinformatics software, Mathematics.					
Labo	oratory Sessions	s/ Experimental learning:						
1	. Develop a mi	ni project to demonstrate the	concept Binary Search.					
Video	o link / Additio	nal online information:						
1.	http://www.n	ptelvideos.com/video.php?id	<u>=1442.2</u>					
2.	https://nptel.a	c.in/courses/106105085/						
		UNI	T-II					
Prere	equisites: Progra	amming using the concept of	Arrays and pointers	8 Hrs				

Linked Lists: Definition, Linked list operations: Traversing, Searching, Insertion, and	
Deletion. Doubly Linked lists and its operations, Circular linked lists and its operations.	
Sorting Techniques: Bubble Sort, Insertion Sort, Selection Sort, Quick Sort and Merge	
Sort.	
Laboratory Sessions/ Experimental learning:	
1. Develop an algorithm to demonstrate the concept of Linked lists.	
Video link / Additional online information:	
1. <u>https://nptel.ac.in/courses/106/102/106102064/</u>	
UNIT-III	
Stacks: Definition, Stack Implementation using arrays/lists and linked lists, Stack ADT,	8 Hrs
Stack Operations (Insertion and Deletion), Array Representation of Stacks, Stack	
Applications: Infix to postfix conversion, Tower of Hanoi.	
Queues: Definition, Array Representation, Queue Implementation using arrays/lists and	
linked lists, Queue ADT, Operations on queues (Insertion and Deletion), Circular Queues	
and its operations, Priority Queues and its operations.	
Laboratory Sessions/ Experimental learning:	
1. Implementation of Towers of Hanoi using Stacks.	
Video link / Additional online information:	
1 .https://nptel.ac.in/courses/106/106/106106127/	
UNIT-IV	
Trees: Terminology, Binary Trees, Types of Binary trees, Properties of Binary trees,	8 Hrs
Array Representation of Binary Trees, Binary Tree Traversals - Inorder, Postorder,	
Preorder.	
Binary Search Trees - Definition, Insertion, Deletion, Searching, Implementation of	
Binary tree, Heaps and Heap Sort, Construction of Expression Trees, AVL Trees.	
Laboratory Sessions/ Experimental learning:	
1. Solve Parenthesis Matching problem using binary search trees.	
Video link / Additional online information:	
2. <u>https://nptel.ac.in/courses/106/106/106106127/</u>	

UNIT-V				
Graphs: Definitions, Terminologies, Matrix and Adjacency List Representation of	8 Hrs			
Graphs, Elementary Graph operations, Traversal methods: Breadth First Search and Depth				
First Search, DAG, Minimum Spanning Trees: Prim – Kruskal algorithm, Single Source				
Shortest Path: Weighted graphs, Dijkstra algorithm.				
Laboratory Sessions/ Experimental learning:				
1. Print all the nodes of graph using DFS and BFS.				
2. Apply various algorithms on a graph and analyse it.				
Video link / Additional online information:				
1. <u>https://nptel.ac.in/courses/106/106/106106133/</u>				

Course	Outcomes: After completing the course, the students will be able to
CO1	Acquire knowledge of Python fundamentals and data structures.
CO2	Analyse and design of algorithms for Linked lists and sorting techniques.
CO3	Apply the concepts of Stacks and queues.
CO4	Utilize the operations of search trees and their applications.
CO5	Investigate Graphical algorithms.
Text B	ooks:
1.	Rance D Necaise "Data Structures and Algorithms using Python", Wiley, John Wiley and
1.	Sons.
	Michael T. Goodrich, R. Tamassia and Michael H Goldwasser "Data structures and
2.	Algorithms in python", Wiley student edition, John Wiley and Sons.
Refere	nce Books:
1	Narasimha Karumanchi, "Data Structures and Algorithmic Thinking with Python",
1.	CareerMonk Publications.

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may

be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the entire syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-P	CO-PO-PSO Mapping													
CO /	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
PO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	2	2	2	-	-	-	-	-	-	2	1	1
CO2	3	3	2	2	2	-	-	-	-	-	-	2	1	1
CO3	3	3	2	2	2	-	-	-	-	-	-	2	1	1
CO4	3	3	2	2	2	-	-	-	-	-	-	2	1	1
CO5	3	3	2	2	2	-	-	-	-	-	-	2	1	1

		Semeste	er: V				
	ARM	M MICROCONTROLLER A	ND EMBEDDED SYSTEMS				
Course	Code:	MVJ22VL52	CIE Marks:50				
Credits :	:	L:T:P: 3:0:2	SEE Marks: 50				
Hours:		40L+26P	SEE Duration: 3 Hrs				
Course	Learning O	bjectives: The students will b	e able to				
1	Explain the	e architecture and core compon	ents of ARM microcontrollers.				
2	2 Describe the basic principles of embedded systems design, including real-time constraints, power management, and interfacing with external devices.						
3	Develop and debug embedded applications using ARM microcontrollers.						
4	4 Implement interfacing techniques for connecting ARM microcontrollers to peripheral devices.						
5	Implement	real-time operating system (R	TOS) concepts on ARM microcontrollers.				

TINITE 4			
UNIT 1			
Microprocessors Versus Microcontrollers, ARM Embedded Systems: The RISC design			
philosophy, The ARM design philosophy, embedded system hardware, embedded system			
software. ARM processor fundamentals: Registers, current program status register, pipeline,			
exceptions, interrupts, and the vector table, core extensions			
Laboratory Sessions/ Experimental Learning:			
1. Execute simple assembly programs on an ARM-based system or emulator.			
Video Link / Additional Online Information:			
1. <u>https://onlinecourses.nptel.ac.in/noc22_cs93/preview</u>			
UNIT 2			
Introduction To The ARM Instruction Set: Data processing instructions, branch			
instructions, software interrupt instructions, program status register instructions, coprocessor			
instructions, loading constants.	8Hrs.		
ARM Programming Using Assembly Language: Writing assembly code, profiling and			

cycle counting, instruction scheduling, register allocation, conditional execution, looping constructs.

Laboratory Sessions/ Experimental Learning:

1. Execute assembly programs that demonstrate various instructions and their functionalities.

Video Link / Additional Online Information:

1. <u>https://onlinecourses.nptel.ac.in/noc22_cs93/preview</u>

UNIT 3

Embedded System Components: Embedded vs general computing system, history of embedded systems, classification of embedded systems, major applications areas of embedded systems, purpose of embedded systems, Core of an embedded system including all types of processor/controller, memory, sensors, actuators, LED, 7 segment LED display, stepper motor, keyboard, push button switch, communication interface (onboard and external types), embedded firmware, other system components.

Laboratory Sessions/ Experimental Learning:

1. Hands-on experience with various components commonly found in embedded systems by interfacing them with a microcontroller and writing simple programs to control and monitor their behavior.

8Hrs.

Video Link / Additional Online Information:

1. <u>https://onlinecourses.nptel.ac.in/noc22_cs93/preview</u>

UNIT 4

Embedded System Design Concepts: Characteristics and quality attributes of embedded systems, operational quality attributes, non-operational quality attributes, embedded systems-application and domain specific, hardware software co-design and program modelling, embedded firmware design and development.

Laboratory Sessions/ Experimental Learning:

1. Apply fundamental concepts of embedded system design by designing, implementing, and testing a basic embedded system using a microcontroller.

Video Link / Additional Online Information:

1. <u>https://onlinecourses.nptel.ac.in/noc22_cs93/preview</u>

UNIT 5

RTOS And IDE For Embedded System Design: Operating system basics, types of operating systems, task, process and threads (only POSIX threads with an example program), thread preemption, multiprocessing and multitasking, task communication (without any program), task synchronization issues – racing and deadlock, concept of binary and counting semaphores (mutex example without any program), how to choose an RTOS, integration and testing of embedded hardware and firmware, embedded system development environment – block diagram (excluding keil), disassembler/decompiler, simulator, emulator and debugging techniques, target hardware debugging, boundary scan

Laboratory Sessions/ Experimental Learning:

8Hrs.

1. Hands-on experience with a Real-Time Operating System (RTOS) and Integrated Development Environment (IDE) for embedded system design by creating and deploying a simple real-time application.

Video Link / Additional Online Information:

1. <u>https://onlinecourses.nptel.ac.in/noc22_cs93/preview</u>

Course	Course Outcomes: After completing the course, the students will be able to					
CO1	Describe the architectural features and instructions of ARM microcontroller.					
CO2	Apply the knowledge gained for programming ARM for different applications.					
CO3	Analyze and optimize the performance of embedded systems based on ARM microcontrollers.					
CO4	Interpret the basic hardware components and their selection method based on the characteristics and attributes of an embedded system.					
CO5	Develop the hardware /software co-design and firmware design approaches.					

	LIST OF EXPERIMENTS
S.No.	Experiment Name
1	Write a program to multiply two 16 bit binary numbers.
2	Write a program to find the sum of first 10 integer numbers.
3	Write a program to find factorial of a number.
4	Write a program to add an array of 16 bit numbers and store the 32 bit result in internal RAM
5	Write a program to find the square of a number (1 to 10) using look-up table.
6	Write a program to find the largest/smallest number in an array of 32 numbers .
7	Write a program to arrange a series of 32 bit numbers in ascending/descending order.
8	Write a program to count the number of ones and zeros in two consecutive memory locations.

Text Books:								
1	Andrew N Sloss, Dominic Symes and Chris Wright, ARM System Developers Guide,							
1.	Elsevier, Morgan Kaufman publishers.							
2	Shibu K V, "Introduction to Embedded Systems", Tata McGraw Hill Education, Private							
Ζ.	Limited, 2nd Edition.							

Reference Books:

1	Stove Evelon ADM System on Chin Anchitecture Second Edition Desman 2015
1.	Steve Furber, ARM System-on-Chip Architecture, Second Edition, Pearson, 2015.

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-P	O-PS	O Ma	pping											
CO/	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
РО	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	2	2	1	1	1	-	1	-	-	1	1	1
CO2	3	3	2	2	1	1	1	-	1	-	-	1	1	1
CO3	3	3	2	2	1	1	1	-	1	-	-	1	1	1
CO4	3	3	2	2	1	1	1	-	1	-	-	1	1	1
CO5	3	3	2	2	1	1	1	-	1	-	-	1	1	1

Semester: V							
		DIGITAL VLSI DESI	GN				
Cours	e Code:	MVJ22VL53	CIE Marks:50				
Credit	ts:	L:T:P:S 4:0:0:Y	SEE Marks: 50				
Hours	:	40 L	SEE Duration: 03 Hours				
Cours	e Learning Ob	jectives: The students will be able to					
1	Explain the bas	sic principles and technologies used in	CMOS digital integrated circuit	design.			
2	Utilize VLSI de	esign techniques to create and optimiz	e combinational circuits.				
3	Design and ana	lyze static and dynamic sequential cir	cuits.				
4	Evaluate and a	nalyze the performance, power consu	mption, and reliability of variou	ıs digital			
т	VLSI circuits.						
5	Design and ana	lyze various memory structures.					
		UNIT-I					
Introd	luction to Digit	tal IC Design: Digital ICs design flo	w, issues in digital integrated	8 Hrs			
circuit	design, MOS t	ransistor basics -static and dynamic	behaviour, secondary effects.				
CMOS	S inverter static a	nd dynamic behaviour, noise margin,	power consumption and power				
delay p	product, latch up	o, technology scaling.					
Ŭ	Project Based Learning:						
1. D	1. Design, simulate, and analyze a MOS transistors analyse static, dynamic behaviours						
	•	v effects and also check static and dyna	amic power.				
	v	Experimental Learning:					
		atic and dynamic behavior of a CMC	S inverter through simulation				
	and analysis.						
Video Link / Additional Online Information:							
2. <u>ht</u>	tps://onlinecour	ses.nptel.ac.in/noc20_ee05/preview					
		UNIT-II					

Combinational Logic Gates: Static CMOS design: Complementary CMOS, ratioed logic,	8 Hrs		
pass transistor logic. Dynamic CMOS design: basic principles, performance of dynamic			
logic, noise consideration, power consumption in CMOS gates - Switching activity,			
glitches, logical efforts, layout rules.			
Project Based Learning:			
1. Design the CMOS logics Y=A+B+C and verify its dynamic and static behaviour and			
also evaluate the performance metrics (power, delay and cell area(Layout).			
Laboratory Sessions/ Experimental Learning:			
1. Design and simulate a ratioed logic circuit to understand its behavior and performance.			
Video Link / Additional Online Information:			
1. <u>https://archive.nptel.ac.in/courses/108/107/108107129/</u>			
2. <u>https://onlinecourses.nptel.ac.in/noc20_ee05/preview</u>			
UNIT-III			
Sequential Circuits:			
Static Latches and Registers: Bistability principle, SR flip-flops, CMOS static flip-flop,			
multiplexer-based latches, master-slave edge-triggered register, low-voltage static latches.			
Dynamic Latches and Registers: Dynamic transmission-gate edge-triggered registers,			
C2MOS—A clock-skew insensitive, pulse registers, sense-amplifier based registers.			
Pipelining: Latch- vs. register-based pipelines, NORA-CMOS—A logic style for pipelined			
structures			
Project Based Learning:			
1. Design a 4-bit register using FF and evaluate functionality, operating speed and			
validate their setup and hold time. Check whether hold/setup time is predefined or			
design dependent.			
Laboratory Sessions/ Experimental Learning:			
1. Create the schematic, perform functional verification, and analyze the performance of			
a static flip-flop circuit.			
Video Link / Additional Online Information:			
1. <u>https://archive.nptel.ac.in/courses/108/107/108107129/</u>			
2. <u>https://onlinecourses.nptel.ac.in/noc20_ee05/preview</u>			

UNIT-IV	
Non-Bistable Sequential Circuits: The Schmitt trigger, monostable sequential circuits,	8 Hrs
astable circuits.	
Datapath Subsystems: Adder: half adder, full adder, ripple carry adder (RCA), carry-look	
ahead adder (CLA), carry select adders (CSL), carry skip adder, subtractor, multipliers:	
Booth multiplier and Wallace tree multiplier and Dadda multiplier, comparators, ring and	
Johnson counter barrel shifters, and generalized ALU: 1 bit ALU.	
Project Based Learning:	
1. Design RCA, CLA and CSL and Carry Skip adder and do comparative study among	
them.	
Laboratory Sessions/ Experimental Learning:	
1. Understand the design, simulation, and analysis of non-bistable sequential circuits,	
focusing on Schmitt trigger.	
Video Link / Additional Online Information:	
1. <u>https://archive.nptel.ac.in/courses/108/107/108107129/</u>	
2. <u>https://onlinecourses.nptel.ac.in/noc20_ee05/preview</u>	
UNIT-V	
Memories and Array Structures: ROM and RAM cells design, SRAM: Cell, array and	8 Hrs
peripheral circuits, signal to noise margin of SRAM cell, capacitance and sources of	
SRAM power consumption, DRAM: DRAM cells, DRAM architecture ROM: NOR and	
NAND ROM, FLASH and advantages and disadvantages of ROM, SRAM and DRAM.	
Application: Register, FIFO/LIFO.	
Project Based Learning:	
1. Analyse the corners effects of 6T-SRAM cell and also analyse the stability of SRAM	
by performing HSNM, RSNM, WSNM. Learn Monte Carlo simulation check the	
deviation in SNMs with respect design parameters (L, W etc.)	
Laboratory Sessions/ Experimental Learning:	
1. Create the schematic, perform functional verification, and analyze the performance of	

a 6T SRAM cell

Video Link / Additional Online Information:

- 1. https://archive.nptel.ac.in/courses/108/107/108107129/
- 2. https://onlinecourses.nptel.ac.in/noc20_ee05/preview

Course	outcomes: After completing the course, the students will be able to							
CO1	Understand the fundamental concepts and methodologies of digital integrated circuit (IC) design.							
CO2	Analyze combinational logic gates using CMOS technology, focusing on performance metrics such as delay, power, and area.							
CO3	Analyze static latches and registers, as well as dynamic latches and registers, with an emphasis on timing, stability, and power consumption.							
CO4	Design and implement pipelined circuits and non-bistable sequential circuits, understanding their role in enhancing the performance and efficiency in VLSI systems.							
CO5	Design and analyze datapath subsystems and memory array structures, focusing on their integration into larger VLSI systems for optimized performance.							
Text Bo	ooks:							
1.	J. M. Rabaey, "Digital Integrated Circuits - A Design perspective", 2nd ed. Pearson Education.							
Referei	nce Books:							
1.	Neil Weste, and K. Eshraghian, "Principles of CMOS VLSI Design - A Systems perspective", 4th Edition Addison-Wesley.							
2.	S.M. Kang and Yusuf Leblebici, Chulwoo Kim "CMOS Digital Integrated Circuits, Analysis and Design" 4th Edition, McGraw Hills Publication, 2019							

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated

for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-P	O-PS	O Ma	pping	5										
CO /	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
РО	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	2	2	2	-	-	-	-	-	-	2	1	1
CO2	3	3	2	2	2	-	-	-	-	-	-	2	1	1
CO3	3	3	2	2	2	-	-	-	-	-	-	2	1	1
CO4	3	3	2	2	2	-	-	-	-	-	-	2	1	1
CO5	3	3	2	2	2	-	-	-	-	-	-	2	1	1

	Semester: V						
	VLSI LABORATORY-1						
Co	urse Code:	MVJ22VLL54	CIE Marks: 50				
Credits: L:T:P:0:0:2 SEE Marks: 50							
Но	urs:	26P	SEE Duration: 3 Hrs				
Co	urse Learning	g Objectives: The students will be	able to				
1	1 Understand the CMOS technology, including transistor characteristics and design rules.						
2	2 Design and implement basic digital circuits such as logic gates, multiplexers, and adders using CMOS technology.						
3	3 Analyze voltage transfer characteristics (VTC) of digital circuits to understand static behavior and optimize for speed, power, and area.						
4	4 Design and verify sequential circuits including static latches, dynamic registers, and flip- flops.						
5	Design SRA	M memory and analyze its perform	ance in terms of stability				

	LABORATORY SESSIONS:					
	PART A					
Exp. No	Experiment Names					
1	Draw the CMOS schematic and Layout of the inverter circuit, and analyze voltage transfer characteristics (VTC or DC) and Dynamic characteristics (transient) to determine propagation delay, rise time fall time and also validate layout versus schematic (LVS).					
2	Draw the CMOS schematic of the 2 input NAND and NOR gate, also draw the layout of the same and analyze the functions using transient analysis, in addition to that validate LVS and extract RC.					
3	Draw the CMOS schematic of the Half Adder circuit and verify it with truth table, and draw the layout of the same, and simulate transient analysis to validate LVS.					
4	Draw the CMOS circuit of the 4:1 Multiplexer circuit and verify it with truth table, and also draw the layout of the same and simulate transient analysis to validate LVS.					

	Draw the CMOS circuit of the 2:4 Decoder verify it with truth table, and also draw					
5	the layout of the same and simulate transient analysis to validate LVS.					
PART	3					
6	Draw a J-K FF and validate the design using transient analysis.					
7	Design a latch based Sense Amplifier and validate the design.					
8	Design a 6T-SRAM and analyse HOLD, READ and WRITE operation using transient analysis.					
9	Design peripheral circuits of SRAM: Decoder, Mux, Sense-Amplifier, Pre-charge Circuits etc.					
10	Design 4*4 i.e. 4 bit SRAM circuits: Analyse the circuits in terms SNM: HSNM, RSNM, WSNM.					
Course	Outcomes: After completing the course, the students will be able to					
CO1	Demonstrate the ability to design and draw the schematic and layout of CMOS circuits, including basic gates and inverters.					
CO2	Analyze voltage transfer characteristics (VTC), dynamic characteristics, and key performance metrics such as propagation delay, rise time, and fall time of digital circuit					
CO3Design, simulate, and verify various combinational logic circuits, ensuring co functionality and optimization for performance.						
CO4	Design, simulate, and analyze both static and dynamic sequential circuits, such as latches and flip-flops.					
CO5	Design memory structures like SRAM cells and analyze their stability and performance.					

CO-PO-PSO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	3	2	1	-	-	-	-	-	-	2	1
CO2	3	3	3	3	2	1	-	-	-	-	-	-	2	1
CO3	3	3	3	3	2	1	-	-	-	-	-	-	2	1
CO4	3	3	3	3	2	1	-	-	-	-	-	-	2	1
CO5	3	3	3	3	2	1	-	-	-	-	-	-	2	1

B.E (VLSI DESIGN AND TECHNOLOGY)

		Semester	: V		
		VLSI FABRICATION	TECHNOLOGY		
Cours	se Code:	MVJ22VL551	CIE Marks:50		
Credi	ts:	L:T:P: 3:0:0	SEE Marks: 50		
Hours	s:	40L	SEE Duration: 3 Hrs		
Cours	se Learning Objec	ctives: The students will be a	able to		
1	-	damental principles and proc position, etching, and doping t	cesses involved in VLSI fabrication, including techniques.		
2	Demonstrate proficiency in mask layout design and optimization for photolithography and mask alignment techniques.				
3	Analyze the impact of process variations and defects on VLSI device performance and yield.				
4	Evaluate the trade-offs between different fabrication techniques (e.g., CMOS vs. BiCMOS)in terms of performance, power consumption, and scalability.				
5	Critically assess the challenges and solutions in achieving nanoscale feature sizes and integration densities in modern VLSI fabrication.				

UNIT 1

Prerequisites: Basic science.

Introduction to Microelectronics Fabrication And Crystal Growth: Introduction and historical perspective, crystallography and crystal structure, crystal defects, Czochralski and float zone growth, sheet resistant measurement, Hall measurement (classification of clean room), basic fabrication process,

8Hrs.

Laboratory Sessions/ Experimental Learning:

1. To study the details regarding the crystal structure.

Video Link / Additional Online Information:

1. https://nptel.ac.in/courses/117106093

UNIT 2

Thermal Oxidation: Oxidation techniques: Importance of oxidation, types of oxidation techniques, growth mechanism, factors affecting the growth mechanisms, silicon oxidation8Hrs. model, dry & wet oxidation, Oxide charges in Si/SiO₂ system.

Laboratory Sessions/ Experimental Learning:	
1. Measure the oxide thickness grown on Si wafer grown in dry furnace.	
Video Link / Additional Online Information:	
1. <u>https://nptel.ac.in/courses/117106093</u>	
UNIT 3	
Lithography: Basic concepts, lithography techniques-optical lithography, electron beam	
lithography, x-ray lithography, ion beam lithography, photoresists, light sources and wafer	
exposure systems, optics, modulation transfer function	
Laboratory Sessions/ Experimental Learning:	
1. Measure the minimum feature size of patterned silicon using optical microscopy.	8Hrs.
Video Link / Additional Online Information:	
1. https://nptel.ac.in/courses/117106093	
UNIT 4	
Diffusion: Diffusion mechanisms; diffusion reactor; diffusion profile; diffusion kinetics;	
parameters affecting diffusion profile; dopants and their behaviors, choice of dopants.	
Ion Implantation: Reactor design, impurity distribution profile, properties of ion	
implantation, low energy and high energy ion implantation.	
Laboratory Sessions/ Experimental Learning:	8Hrs.
1. Measure the resistivity of doped area of wafer.	
Video Link / Additional Online Information:	
Video Link / Additional Online Information:	
Video Link / Additional Online Information:	

Etching: Performance metric s of etching; types of etching- wet and dry etching; dry etching techniques-ion beam or ion-milling, sputter ion plasma etching and reactive ion etching (RIE).

CMOS technology: Process flow.

Laboratory Sessions/ Experimental Learning:

1. Measure the thickness of metal deposited onto the wafer.

Video Link / Additional Online Information:

1. https://nptel.ac.in/courses/117106093

Course Outcomes: After completing the course, the students will be able to

CO1	Describe the basic process flow of CMOS fabrication process.
CO2	Analyze the factor affecting the oxide growth mechanism.
CO3	Apply knowledge of VLSI fabrication principles to design and optimize mask layouts for photolithography.
CO4	Analyze the dose required for given doping in diffusion and ion implantation techniques.
CO5	Analyze the impact of advanced fabrication techniques (e.g., advanced lithography, multi- patterning) on device scaling and integration density.

Text B	Books:
1.	Silicon VLSI Technology: Fundamentals, Practice and Modeling Book by Jim Plummer, Michael D. Deal, and Peter B. Griffin.
2.	The Science and Engineering of Microelectronic Fabrication by Stephen A. Campbell

Reference Books:					
1.	VLSI Fabrication Principles: Silicon and Gallium Arsenide by Sorab K. Ghandhi.				

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks.

Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the entire syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-P	O-PS	O Ma	pping	ŗ										
CO /	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
РО	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	2	2	2	-	-	-	-	-	-	2	1	1
CO2	3	3	2	2	2	-	-	-	-	-	-	2	1	1
CO3	3	3	2	2	2	-	-	-	-	-	-	2	1	1
CO4	3	3	2	2	2	-	-	-	-	-	-	2	1	1
CO5	3	3	2	2	2	-	-	-	-	-	-	2	1	1

High-3, Medium-2, Low-1

B. E. (VLSI DESIGN AND TECHNOLOGY)

		Semester: V					
		DESIGN FOR TESTABILIT	Y				
Course Code: MVJ22VL552 CIE Marks:50							
Credits	;:	L:T:P: 3:0:0	SEE Marks: 50				
Hours:		40 L	SEE Duration: 03Hours				
Course	Learning O	bjectives: The students will be able to	1				
1	Understand the significance and challenges of VLSI testing.						
2	Apply testability techniques and structured approaches in VLSI designs.						
3	Implement boundary scan (IEEE 1149.1) standards to facilitate board-level testing and						
	debugging of integrated circuits.						
4	Develop ATPG methods for combinational and sequential circuits.						
5	Analyze th	e trade-offs between different DFT methode	ologies (scan design vs. BIST) in				
	terms of area overhead, test application time, and fault coverage.						

UNIT-I

Introduction to Testing: Importance of testing, testing during the VLSI lifecycle,	8 Hrs		
challenges in VLSI testing: test generation, fault models, levels of abstraction in VLSI			
testing, historical review of VLSI test technology: automatic test equipment, automatic test			
pattern generation, fault simulation, digital circuit testing, analog and mixed-signal circuit			
testing, design for testability, board testing, boundary scan testing.			
Laboratory Sessions/ Experimental Learning:			
1. Understand and implement boundary scan testing techniques for testing and debugging			
printed circuit boards (PCBs).			
Video link / Additional Online Information:			
1. <u>https://archive.nptel.ac.in/noc/courses/noc16/SEM2/noc16-ec08/</u>			
2. <u>https://nptel.ac.in/courses/106103016</u>			
UNIT-II			

Design for Testability:

Testability Analysis: SCOAP testability analysis, probability-based testability analysis, simulation-based testability analysis, RTL testability analysis, Design for Testability Basics: *Ad Hoc* approach, structured approach, Scan Cell Designs: Muxed-D scan cell, clocked-scan cell, LSSD scan cell, Scan Architectures: Full-scan design, partial-scan design, random-access scan design Scan Design Rules: Tristate buses, bidirectional I/O ports, gated clocks, derived clocks, combinational feedback loop, asynchronous set/reset signal, Scan Design Flow: Scan design rule checking and repair, scan synthesis, scan extraction, scan verification. Special-Purpose Scan Designs: Enhanced scan, snapshot scan, error-resilient scan, RTL Design for Testability: RTL scan design rule checking and repair, RTL scan synthesis, RTL scan extraction and scan verification.

Laboratory Sessions/ Experimental Learning:

 Hands-on experience in implementing scan designs, performing DFT (Design for Testability) analysis, and verifying scan functionality through simulation.

Video Link / Additional Online Information:

- 1. https://archive.nptel.ac.in/noc/courses/noc16/SEM2/noc16-ec08/
- 2. https://nptel.ac.in/courses/106103016

UNIT-III

Logic and Fault Simulation:

Logic simulation for design verification, fault simulation for test and diagnosis, Simulation Models: Gate-level network, logic symbols, logic element evaluation, timing models, Logic Simulation: Compiled-code simulation, event-driven simulation, compiled-code *versus* event-driven simulation, hazards, Fault Simulation: Serial fault simulation, parallel fault simulation, deductive fault simulation, concurrent fault simulation, differential fault simulation, fault detection, comparison of fault simulation techniques, alternatives to fault simulation.

Laboratory Sessions/ Experimental Learning:

8 Hrs

8 Hrs

1. Understand and compare different fault simulation techniques-serial, parallel, and	
deductive—for assessing the testability and fault coverage of digital circuits.	
Video Link / Additional Online Information:	
2. <u>https://archive.nptel.ac.in/noc/courses/noc16/SEM2/noc16-ec08/</u>	
3. <u>https://nptel.ac.in/courses/106103016</u>	
UNIT-IV	
Automatic Test Pattern Generation:	8
	Hrs
Random Test Generation, Theoretical Background: Boolean Difference, Designing a	
Stuck-At ATPG for Combinational Circuits: A Naive ATPG Algorithm, A Basic ATPG	
Algorithm, Designing a Sequential ATPG: Time Frame Expansion, Gated Clocks and	
Multiple Clocks, Designing a Simulation-Based ATPG: Genetic-Algorithm-Based ATPG.	
Laboratory Sessions/ Experimental Learning:	
1. Implement a Stuck-At Automatic Test Pattern Generation (ATPG) technique for	
testing stuck-at faults in combinational circuits.	
Video Link / Additional Online Information:	
2. https://archive.nptel.ac.in/noc/courses/noc16/SEM2/noc16-ec08/	
UNIT-V	
Logic Built-In Self-Test: BIST design rules, test pattern generation for bist, output	8 Hrs
response analysis, BIST Architectures: BIST architectures for circuits without scan chains,	
BIST architectures for circuits with scan chains, BIST architectures using register	
reconfiguration, BIST architectures using concurrent checking circuits core-based design	
and test considerations, Digital Boundary Scan (IEEE Std. 1149.1): Basic concept, overall	
1149.1 test architecture and operations, test access port and bus protocols, data registers	
and boundary-scan cells, tap controller, instruction register and instruction set, boundary-	

scan description language, on-chip test support with boundary scan, board and systemlevel boundary-scan control architectures, case study JTAG-based interfacing.

Laboratory Sessions/ Experimental Learning:

1. Implement Built-In Self-Test (BIST) architectures for digital circuits, focusing on both circuits without scan chains and circuits with scan chains.

Video Link / Additional Online Information:

- 1. https://archive.nptel.ac.in/noc/courses/noc16/SEM2/noc16-ec08/
- 2. https://nptel.ac.in/courses/106103016

Course	Outcomes: After completing the course, the students will be able to					
CO1	Understand the principles and methodologies of design for testability (DFT) in VLSI					
	circuits, including fault models, test pattern generation, and fault coverage metrics.					
CO2	Apply DFT techniques such as scan chain insertion, built-in self-test (BIST), and					
	boundary scan design to enhance testability of VLSI designs.					
CO3	Evaluate the effectiveness of different DFT methodologies (scan design, BIST, boundary					
	scan) in achieving high fault coverage and minimizing test complexity.					
CO4	Analyze the impact of DFT strategies on chip area, power consumption, and test					
	application time.					
CO5	Assess advanced DFT techniques and their applicability to mitigate test challenges in					
	modern VLSI designs.					

Text Books:				
	M.Bushnell and V. D. Agrawal, "Essentials of Electronic Testing for Digital, Memory and			
1.	Mixed-Signal VLSI Circuits", Kluwer Academic Publishers.			
	L.T Wang, C.W. Wu and X. Wen, "VLSI Test Principles and Architectures", Morgan			
2	Kaufmann Publishers.			
Reference Books:				

1.	T.Kropf, "Introduction to Formal Hardware Verification", Springer Verlag, 2000
2.	L.T Wang, C.W. Wu and X. Wen, "VLSI Test Principles and Architectures", Morgan
2.	Kaufmann Publishers. 2006.

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the entire syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO /	PO1	PO	PSO	PS0										
PO	rui	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2	2	-	-	-	-	-	-	-	-	-	1	1
CO2	3	2	2	-	-	-	-	-	-	-	-	-	1	1
CO3	3	2	2	-	-	-	-	-	-	-	-	-	1	1
CO4	3	2	2	-	2	2	-	-	-	-	-	-	1	1
CO5	3	2	2	2	-	2	-	-	-	-	-	-	1	1

High-3, Medium-2, Low-1

B.E (VLSI DESIGN AND TECHNOLOGY)

		Semest	er: V	
		INTRODUCTION TO LI	NUX PROGRAMMING	
Cou	irse Code:	MVJ22VL553	CIE Marks:50	
Cre	dits:	L:T:P: 3:0:0	SEE Marks: 50	
Hou	ırs:	40 L	SEE Duration: 03 Hours	
Cou	rse Learning Obj	jectives: The students will	be able to	
1	Explain the fund the kernel, shell,	_	tecture of the Linux operating system, in	cluding
		-	in the Linux environment, using standard l	ibraries
2	and system calls.	1 1 0	in the Emux environment, using standard i	libraries
3	Utilize shell scr environment.	ipting to automate common	n tasks and enhance productivity in the	e Linux
4	Apply version c projects.	ontrol systems for managin	g and tracking changes in Linux progra	amming
5	Assess the securi		gramming practices, implementing best p	ractices
	I	UNI	Г-І	
Intr	oduction to Lin	ux: History of LINUX,	architecture and features of LINUX,	8
intro	oduction to vi edito	Dr.		Hrs
Lin	ux commands- PA	ATH, man, echo, printf, scrip	ot, passwd, uname, who, date, stty, pwd,	
cd,	mkdir, rmdir, ls, c	cp, mv, rm, cat, more, wc,	lp, od, tar, gzip, file handling utilities,	
secu	rity by file permis	sions, process utilities, disk	utilities, networking commands, unlink,	
du, e	df, mount, umount	, find, unmask, ulimit, ps, w	, finger, arp, ftp, telnet, rlogin.	
Util	ities: Text Process	ing utilities and backup utili	ties, tail, head, sort, nl, uniq, grep, egrep,	
fgre	p, cut, paste, join,	tee, pg, comm, cmp, diff, tr,	awk, cpio	
Lab	oratory Sessions/	Experimental Learning:		
1.	To familiarize wit	th basic and advanced Linux	commands.	
Vid	leo Link / Additio	onal Online Information:		
1.	https://nptel.ac.in/	/courses/117106113		

UNIT-II			
Introduction to Shells: Linux session, standard streams, redirection, pipes, tee command,	8		
command execution, command-line editing, quotes, command substitution, job control,	Hrs		
aliases, variables, predefined variables, options, shell/environment customization.			
Filters: Filters and pipes, concatenating files, display beginning and end of files, cut and			
paste, sorting, translating characters, files with duplicate lines, count characters, words or			
lines, comparing files.			
Laboratory Sessions/ Experimental Learning:			
1. To familiarize with basic and advanced shell commands and understand the use of filters			
to process text data.			
Video Link / Additional Online Information:			
1. https://nptel.ac.in/courses/117106113			
UNIT-III			
Grep: Operation, grep family, searching for file content. sed: scripts, operation, addresses,	8		
commands, applications, grep and sed.	Hrs		
UNIX file structure: Introduction to UNIX file system, inode (Index Node), file descriptors,			
system calls and device drivers.			
File Management: File structures, system calls for file management – create, open, close,			
read, write, lseek, link, symlink, unlink, stat, fstat, lstat, chmod, chown, directory api -			
opendir, readdir, closedir, mkdir, rmdir, umask			
Laboratory Sessions/ Experimental Learning:			
1. Practice using the grep command and basic file management operations in Linux.			
Video Link / Additional Online Information:			
1. https://nptel.ac.in/courses/117106113			
UNIT-IV			
Process And Signals: Process, process identifiers, process structure: process table, viewing	8		

process, zombie processes, orphan process, fork, vfork, exit, wait, waitpid, exec, signals functions, unreliable signals, interrupted system calls, kill, raise, alarm, pause, abort, system, sleep functions, signal sets.

File Locking: creating lock files, locking regions, use of read and write with locking, competing locks, other lock commands, deadlocks.

Laboratory Sessions/ Experimental Learning:

1. Practice managing processes and signals, as well as implementing file locking mechanisms in Linux.

Video Link / Additional Online Information:

1. https://nptel.ac.in/courses/117106113

UNIT-V

Inter Process Communication: Pipe, process pipes, the pipe call, parent and child8processes, and named pipes: fifos, semaphores: semget, semop, semctl, message queues:Hrsmsgget, msgsnd, msgrcv, msgctl, shared memory: shmget, shmat, shmdt, shmctl, ipc statuscommands.

Introduction to Sockets: Socket, socket connections - socket attributes, socket addresses, socket, connect, bind, listen, accept, socket communications.

Laboratory Sessions/ Experimental Learning:

1. Practice inter-process communication (IPC) mechanisms using sockets in Linux.

Video Link / Additional Online Information:

1. <u>https://nptel.ac.in/courses/117106113</u>

Course	Course Outcomes: After completing the course, the students will be able to						
CO1	Utilize various Linux commands that are used to manipulate system operations at admin level.						
CO2	Develop shell programming using Linux commands.						
CO3	Design and write application to manipulate internal kernel level Linux file system.						

CO4	Develop IPC-API's that can be used to control various processes for synchronization.								
CO5	Develop network programming that allows applications to make efficient use of resources								
	available on different machines in a network.								
Text B	Books:								
1	W. Richard. Stevens, Advanced Programming in the UNIX Environment, 3rd								
1.	edition, Pearson Education, New Delhi, India.								
2.	Unix and shell Programming Behrouz A. Forouzan, Richard F. Gilberg. Thomson								
Refere	ence Books:								
1.	Linux System Programming, Robert Love, O'Reilly, SPD								
2.	Advanced Programming in the UNIX environment, 2nd Edition, W.R.Stevens, Pearson								
۷.	Education.								

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-P	O-PS	O Ma	pping	5										
CO/	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
PO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	1	2	2	-	-	-	-	-	-	2	1	1
CO2	3	3	1	2	2	-	-	-	-	-	-	2	1	1
CO3	3	3	1	2	2	-	-	-	-	-	-	2	1	1
CO4	3	3	1	2	2	-	-	-	-	-	-	2	1	1
CO5	3	3	1	2	2	-	-	-	-	-	-	2	1	1

High-3, Medium-2, Low-1

B.E. (VLSI DESIGN AND TECHNOLOGY)

		Semester:	V			
		SIGNALS AND S	SYSTEM			
Course Code: Credits: Hours:		MVJ22VL554	CIE Marks:50			
		L:T:P: 3:0:0	SEE Marks: 50			
		40 L	SEE Duration: 03 Hou	SEE Duration: 03 Hours		
Cour	se Learning Object	tives: The students will be a	ble to			
1	Understand the r	nathematical description of con	ntinuous and discrete time signals and	systems.		
2	Analyze the signals in time domain using convolution sum.					
3	Analyze the response of the LTI system to any input signal.					
4	Analyze LTI systems in time and transform domains.					
5	Apply the knowl	edge of frequency-domain repr	resentation and analysis concepts usin	g Fourier		
3	analysis tools an	d Z-transform.				
	1	UNIT-I				
Prere	equisites: Definition	ı of step, ramp, impulse respor	nse.	8 Hrs		
Intro		ssification Of Signals: Def	finition of a signal and systems,			

communication and control system as examples, classification of signals. **Basic Operations on Signals:** Amplitude scaling, addition, multiplication, differentiation,

integration, time scaling, time shift and time reversal.

Elementary Signals/Functions: Exponential, sinusoidal, step, impulse and ramp functions.

Expression of triangular, rectangular and other waveforms in terms of elementary signals.

Laboratory Sessions/ Experimental Learning:

1.Exploring concepts with MATLAB- Generation of both continuous time and discrete time signals of various kinds.

b) Plot $y(x) = x^2 \cos(x)$, $g(x) = x \cos(x)$, $f(x) = 2^x \sin(x)$, $0 \le x \le 2\pi$ in the same figure.

- Generation of Signals & Signal Operations
 Plot in the time interval -5 ≤ t ≤ 10, the following signals:
- a) $\delta(t) + 2 \delta(t)$
- b) u(t) + 2 u(t) + 1
- c) r(t)+u(t)

Applications: Time shifting operation can be used in artificial intelligence, such as in systems that use time delay neural network, multiplication of signals is exploited in the field of analog communication when performing amplitude modulation (AM), differentiation of a signal is used in the field of image or video processing.

Video Link / Additional Online Information:

- 1. https://archive.nptel.ac.in/courses/108/106/108106151/
- 2. <u>https://onlinecourses.nptel.ac.in/noc21_ee28/preview</u>
- 3. https://archive.nptel.ac.in/courses/108/104/108104100/

UNIT-II

System Classification and Properties: Linear-nonlinear, time variant-invariant, causal-non8 Hrscausal, static-dynamic, stable-unstable, invertible.

Time Domain Representation of LTI System: Impulse response of an LTI system, convolution sum, convolution integral.

Properties of convolution - Commutative property, distributive property, associative property and system interconnection. Computation of convolution sum and convolution integral using graphical method for unit step and unit step, unit step and exponential, exponential and exponential, unit step and rectangular, and rectangular and rectangular.

Laboratory Sessions/ Experimental Learning:

1.To compute convolution of two signals using MATLAB.

- b) A system is described by the impulse response h (t) =t, $0 \le t \le 10$. Compute and plot the response of the system to the input signal x(t)=0.8 ^t, $0 \le t \le 10$.
- c) Compute the convolution between the complex sequence =[3+2j,1+j,4+6j] and h=[1-2j,j,3-2j,2].

Applications: Convolution concepts are used in artificial intelligence, image processing, signal filtering, audio processing.

Video Link / Additional Online Information:

- 1. https://archive.nptel.ac.in/courses/108/106/108106151/
- 2. https://archive.nptel.ac.in/courses/108/106/108106163/
- 3. https://archive.nptel.ac.in/courses/108/104/108104100/

UNIT-III

Prerequisites: Basics of Fourier series concepts.	8 Hrs
LTI System Properties in Terms of Impulse Response: Memoryless, causal, stable,	1
invertible, and step response.	1
Fourier Representation of Periodic Signals: CTFS and DTFS definition and basic	1
problems (excluding properties).	1
	1
Laboratory Sessions/ Experimental Learning:	1
1.To analyse the spectrum of signal with Fourier series using MATLAB.	1
b) Verify the linearity property of the given periodic signals $x(t)=cos(t)$ and $y(t)=sin(2t)$,	1
scalars are $a=3+2j,b=2$.	1
c) Verify the time reversal property of the given periodic signal $x(t)=t \cos(t), 0 \le t \le 2 \ \Pi$	1
in one period.	1
Applications: Signal processing, control theory, communications systems, image and video	1
processing, biomedical engineering (ECG, MRI), oil extraction (Seismology), music	1
industry (Audio) and power quality analysis.	1
Video Link / Additional Online Information:	1
1. <u>https://archive.nptel.ac.in/courses/108/106/108106163/</u>	l
2. <u>https://archive.nptel.ac.in/courses/108/104/108104100/</u>	1
	l
UNIT-IV	

Prerequisites : Basics of fourier transform concepts	8 Hrs			
Fourier Representation of Aperiodic Signals: Introduction to fourier transform, definition	L			
and basic problems.				
Properties of fourier transform: Linearity, time shift, frequency shift, scaling, differentiation	L			
and integration, convolution and modulation, Parseval's theorem and problems on properties				
of fourier transform.				
Laboratory Sessions/ Experimental Learning:				
1. Application of fourier transform in modulation and demodulation technology using	7			
MATLAB.				
b) Compute the fourier transform of the function $x(t) = e^{-t} u(t)$				
c) Suppose that a signal $x(t)$ is given by $x(t)=te^{-3t}$. Compute the fourier transform X (w	1			
of the signal of the signal $x(t)$ and plot for $-20 \le w \le 20$ rad/sec.				

Annlica	tions: Fourier transform in modulation and demodulation technology, frequency	
	multiplexing and time division multiplexing, in filtering technology	
	ink / Additional Online Information:	
	ps://archive.nptel.ac.in/courses/108/106/108106151/	
	s://archive.nptel.ac.in/courses/108/106/108106163/	
3. <u>http</u>	os://archive.nptel.ac.in/courses/108/104/108104100/	
	UNIT-V	
Prerequ	isites: Basics of Z-transform concepts.	8 Hrs
The Z-T	Fransforms: Z transform, properties of the region of convergence, properties of the	
Z-transf	orm, inverse Z-transform, causality and stability, transform analysis of LTI systems.	
Labora	tory Sessions/ Experimental Learning:	
1.To con	npute Z-transform of finite duration sequence using MATLAB.	
b) Com	pute the z-transform of the sequence $fx(n)$ -[-3,5,6,7,8], -2 $\leq n \leq 2$.	
c) Com	pute the z-transform of the discrete-time signal $x(n) = n^2 u(n)$.	
d) Com	pute the convolution between the signals $X_1(z) = \frac{z}{z-0.9}$ and $X_2(z) = \frac{z}{z+6}$.	
Applica	tions: In analysis of digital filters, used to simulate the continuous systems, Analyse	
the linea	r discrete system, used to finding frequency response, analysis of discrete signal,	
helps in	system design and analysis and also checks the systems stability, for automatic	
controls	in telecommunication.	
Video L	ink / Additional Online Information:	
1. <u>htt</u> r	os://archive.nptel.ac.in/courses/108/106/108106151/	
Course o	utcomes: After completing the course, the students will be able to	
CO1	Explain the fundamental concepts of signals and systems, including continuous-	-time and
COI	discrete-time signals, linear time-invariant (LTI) systems.	
CO2	Apply mathematical techniques to analyze signals in both the time and frequency de	omains.
CO3	Analyze the behavior of LTI systems by evaluating their impulse response, step resp	onse, and
005	frequency response.	
<u>CO4</u>	Implement signal processing algorithms, such as convolution and correlation, to pro-	ocess and
CO4	interpret real-world signals.	

	Analyze the performance of different system representations (e.g., differential equations,
CO5	difference equations, state-space models) by comparing their advantages and limitations in
	modeling.
T 4 D	
Text Boo	KS:
1.	Alan V Oppenheim, Alan S, Willsky and A Hamid Nawab, "Signals and Systems" Pearson
1.	Education Asia / PHI, 2 nd edition.
2.	Simon Haykins and Barry Van Veen, "Signals and Systems", 2nd Edition, Wiley India.
۷.	ISBN 9971-51-239-4.
Referenc	e Books:
1.	H.P Hsu, R. Ranjan, "Signals and Systems", Scham's outlines, TMH.
2	Michael Roberts, "Fundamentals of Signals & Systems", 2 nd edition, Tata McGraw-Hill,
2.	2010, ISBN 978-0-07-070221-9.

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the entire syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have an internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-P	O-PS	O Ma	pping	5										
CO/	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
РО	1	2	3	4	5	6	7	8	9	10	11	12	1	2
C01	3	3	2	2	2	-	-		-	-	-	2	1	1
CO2	3	3	2	2	2	-	-	-	-	-	-	2	1	1
CO3	3	3	2	2	2	-	-	-	-	-	-	2	1	1
CO4	3	3	2	2	2	-	-	-	-	-	-	2	1	1
CO5	3	3	2	2	2	-	-	-	-	-	-	2	1	1

High-3, Medium-2, Low-1

B.E. (VLSI DESIGN AND TECHNOLOGY)

		Semester: V						
INNOVATION AND ENTREPRENEURSHIP								
Cour	rse Code:	MVJ22VL555	CIE Marks:50					
Cred	lits:	L:T:P: 3:0:0	SEE Marks: 50					
Hours:40 LSEE Duration: 03 Hours								
Course Learning Objectives: The students will be able to								
1	Inspired; develop entrepreneurial mindset and attributes; entrepreneurial skill sets for venture							
1	creation and intrap	preneurial leadership						
	Apply the proce	ss of problem-opportunity identification	on and feasibility assessr	nent by				
2	developing a mac	ro perspective of the real market, industr	ies, domains, and custome	rs while				
	using design think	ing principles to refine and pivot their ve	nture idea.					
3	Analyze Customer and Market segmentation, estimate Market size, and develop and validate							
5	Customer Persona.							
4	4 Initiate Solution design, develop MVP, and determine Product-Market fit prototypes.							
5	Craft initial Business plan, Develop go-to-market strategies apply storytelling skills in							
5	presenting a persu	asive and defensible Venture Pitch.						
		UNIT-I						
of er econe caree mind	Entrepreneurship Fundamentals & Context Meaning and concept, attributes and mindset of entrepreneurial and intrapreneurial leadership, role models in each and their role in economic development. Gamified role play-based exploration aligned to one's short-term career aspiration and ambition. An understanding of how to build an entrepreneurial mindset, skillsets, attributes, and networks while on campus.							
	0	mulation, Game, Industry Case Studies (Personalized for students					
- 16	industries to choose	from), Venture Activity						
<u> </u>		UNIT-II	·	0.17				
and I impli using custo and v	Industry perspective ication on new oppo g Design thinking pomer. Iterating prob	Identification: Understanding and analy , technological, socio-economic, and urbortunities. Identifying passion, identifying principles. Analyzing problems and valid lem-customer fit. Understanding customed personas. Competition and Industry trend	anization trends and their g and defining problems dating with the potential er segmentation, creating	8 Hrs				

Core Teaching Tool: Several types of activities including Class, game, Gen AI, 'Get out of the building', and Venture Activities.					
UNIT-III	-1				
Solution design & Prototyping: Understanding Customer Jobs-to-be-done and crafting innovative solution design to map to customers' needs and create a strong value proposition. Developing Problem-solution fit iteratively. Understanding prototyping and MVP. Developing a feasibility prototype with differentiating values, features, and benefits. Initial testing for proof-of-concept and iteration on the prototype.					
Core Teaching Tool: Venture Activity, no code Innovation tools, Class activity					
UNIT-IV					
Opportunity Assessment and Sizing, Business & Financial Model: Assess relative market position via competition analysis, sizing the market, and assessing the scope and potential scale of the opportunity. Introduction to Business model and types, Lean approach, 9 block lean canvas model, riskiest assumptions to Business models. Importance of Build-Measure–Lean approach.					
Business planning: components of Business plan- Sales plan, People plan, and financial plan.					
Core Teaching Tool: Class and Venture Activity					
UNIT-V					
Go-to-Market Plan, Scale Outlook, and Venture Pitch Readiness: Financial Planning: Types of costs, preparing a financial plan for profitability using a financial template, understanding the basics of Unit economics, and analyzing financial performance. Introduction to Marketing and Sales, Selecting the Right Channel, creating a digital presence, and building customer acquisition strategy. Choosing a form of business organization specific to your venture, identifying sources of funds: Debt & Equity, Map the Start-up Lifecycle to Funding Options.					
Scale Outlook and Venture Pitch readiness: Understand and identify potential and aspiration for scale vis a vis your venture idea. Persuasive Storytelling and its key components. Build an Investor-ready pitch deck.					
Core Teaching Tool: Expert talks; Cases; Class activity and discussions; Venture Activities					
Course outcomes: After completing the course, the students will be able to	_1				
Understand Entrepreneurial Skillset and Mindset					
CO1					

CO3	Understand and develop MVPs
CO4	Understand and apply Business models and Business planning.
CO5	Develop a go-to-market strategy and build a Persuasive sales pitch
Text Boo	ks:
1.	Robert D. Hisrich, Michael P. Peters, Dean A. Shepherd, Sabyasachi Sinha (2020).
1.	Entrepreneurship, McGrawHill, 11 th Edition
2.	Namita Thapar (2022) The Dolphin and the Shark: Stories on Entrepreneurship, Penguin
۷.	Books Limited
3.	Simon Sinek (2011) Start with Why, Penguin Books Limited
Suggeste	d Learning Sources:
	Ries, E. (2011). The Lean Startup: How Today's Entrepreneurs Use Continuous Innovation
1.	to Create Radically Successful Businesses. Crown Business
	Osterwalder, A., & Pigneur, Y. (2010). Business Model Generation: A Handbook for
2.	Visionaries, Game Changers, and Challengers. John Wiley & Sons.
	Brown Tim (2019) Change by Design Revised & Updated: How Design Thinking Transforms
3.	Organizations and Inspires Innovation, Harper Business
4.	Collins Jim, Porras Jerry, (2004) Built to Last: Successful Habits of Visionary Companies
5.	Burlington Bo, (2016) Small Giants: Companies That Choose to Be Great Instead of Big
-	Saras D. Sarasvathy, (2008) Effectuation: Elements of Entrepreneurial Expertise, Elgar
6.	Publishing Ltd

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have an internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO /	PO	PSO	PSC											
PO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	2	2	-	-	-	-		-	-	-	2	2	-
CO2	-	-	2	2	2	-	-	-	-	-	-	2	-	-
CO3	-	-	2	-	-	2	-	-	2	-	-	2	-	-
CO4	-	-	2	-	-	-	-	-	2	-	-	2	-	-
CO5	-	-	2	-	-	2	2	2	-	2	-	2	-	-

High-3, Medium-2, Low-1

B.E (VLSI Design and	nd Technology)
----------------------	----------------

		Semester: VI								
		SCRIPTING LANGUAGE FOI	R VLSI							
Course Code: Credits: Hours:		MVJ22VL61	CIE Marks:50							
		L:T:P: 3:0:2	SEE Marks: 50							
		40L+ 26P	SEE Duration: 3 Hrs							
Course	Course Learning Objectives: The students will be able to									
Identify the purposes and features of different scripting languages, including Pyth TCL/TKL, and PERL										
2	Utilize loo	Utilize loops and conditional statements to control the flow of Python programs.								
3	Implement	Implement functions and perform basic file operations in Python.								
4	Design and develop Python scripts to automate execution, data extraction, and data manipulation tasks in VLSI design workflows									
5		ilar expressions (regex) for pattern matchi s, ensuring accurate data retrieval and mar	0							

UNIT 1

Introduction to Scripting: Origin of scripting, different types of scripting languages python, TCL/TKL and PERL etc, objective of scripting language,

Python Basics: Python history and features, python software environment, The python interactive shell, user input, python programming for HELLO WORLD, importance of indentation.

Python Variables and Data types: Variables, constants, comments, strings, numbers, integer, floats, Boolean, complex.

Operators: Arithmetic operators, assignment operators, comparison operators, logical **8Hrs.** operators, identity operators, membership operators and bitwise operators.

Project Based Learning:

1. Enable python command line interface (CLI) interface in EDA tools and implement scripts to manage and manipulate EDA tools to create run program, checkpoints of verification and stop or exit the program through command line interface(CLI) of EDA

tools (Xilinx-Vivado)

Laboratory Sessions/ Experimental Learning:

1. Understand integers and floats, perform arithmetic operations.

Video Link / Additional Online Information:

- 1. https://archive.nptel.ac.in/courses/106/106/106106182/
- 2. https://onlinecourses.swayam2.ac.in/aic20_sp31/preview

UNIT 2

Conditional Loops and iterations: Conditional if-else, nested if-else, while loop, nested while, for loop, break, continue Advanced-Data Types: Array, list, tuple, set, and dictionaries: functions for generation, slicing, indexing, different arithmetic and logical operations etc. use of functions: grep, split, join, slice, pop, push, reverse, sort, chop. **Project Based Learning:** 1. Create a python script to run two program (verilog/VHDL) for 10 iterations and merged all generated log file into single log file 8Hrs. Laboratory Sessions/ Experimental Learning: 1. Understand and use conditional statements. Implement for and while loops for iteration. Video Link / Additional Online Information: 1. https://onlinecourses.swayam2.ac.in/cec22_cs20/preview 2. https://onlinecourses.swayam2.ac.in/aic20_sp31/preview UNIT 3 Functions: Introduction to using functions and modules, types of functions; parameter and 8Hrs. argument, default argument following non-default argument, documenting functions and

custom functions vs. standard functions turtle graphics; techniques for importing functions and modules.

Working with Files: Files and file paths, using the / operator to join paths, working with directory, the home directory, absolute vs. relative paths, getting the parts of a file path, finding file sizes and folder contents, modifying a list of files using glob patterns, checking path validity, file reading/writing process.

Project Based Learning:

 Develop Python scripts to automate functions/modules for basic operations like locating log files from different sub-directories, copying, merging, moving, renaming, deletion (both permanent and safe), and compression operations. function should be generic so that targeted operation can be passed through argument, ex: for copying: python functions() arg=copy, merged

Laboratory Sessions/ Experimental Learning:

1. Learn to define and call basic functions.

Video Link / Additional Online Information:

- 1. https://onlinecourses.swayam2.ac.in/cec22_cs20/preview
- 2. <u>https://onlinecourses.swayam2.ac.in/aic20_sp31/preview</u>

UNIT 4

Pre-requisite: Python os, regex library

Organizing Files: Copying files and folders, moving and renaming files and folders, permanently deleting files and folders, safe deletes with the send2trash module, compressing files with the zipfile module.

Regular Expression: Finding patterns of text with regular expressions: creating regex**8Hrs.**objects, matching regex objects, review of regular expression matching, grouping with**8Hrs.**parentheses, matching multiple groups with the pipe, optional matching with the questionmark, matching zero or more with the star, matching one or more with the plus, matchingspecific repetitions with braces, greedy and non-greedy matching.

Project Based Learning:

1. Develop custom script function to automate common VLSI design tasks, such as file parsing, data extractions, performance parameters like hold/setup time, power, timing parameters and report generation. Targeted parameters can be passed through argument means which parameters are needed from the function..

Laboratory Sessions/ Experimental Learning:

1. Understand and perform basic file operations

Video Link / Additional Online Information:

- 1. https://onlinecourses.swayam2.ac.in/cec22_cs20/preview
- 2. https://onlinecourses.swayam2.ac.in/aic20_sp31/preview

UNIT 5

Pre-requisite: Python pandas NumPy library

Working with CSV and Excel File: Reading and writing of csv and excel file, generating csv/excel file from dictionary, merging all csv/excel file, statistical analysis (mean, media, standard deviation etc.) of data from csv file. Brief advance libraries: argv, sys, matplotlib, pyeda

Project Based Learning:

1. Develop python scripts for post-processing of data analysis using python libraries like Pandas, Numpy, matplotlibrary, ML/DL etc.

8Hrs.

Laboratory Sessions/ Experimental Learning:

1. Read and write CSV files using the csv module and pandas library.

Video Link / Additional Online Information:

- 1. https://onlinecourses.swayam2.ac.in/cec22_cs20/preview
- 2. <u>https://onlinecourses.swayam2.ac.in/aic20_sp31/preview</u>

S.N.	List of Experiments
1	Print all the prime numbers between 1 and 100
2	Write a program to check whether a string or number is a palindrome or not
3	You have been given a random integer array/list(ARR) of size N. You are required to
	find and return the second-largest element present in the array/list. Sample input 4 3 10 9
	2 and output 9. Use array or list concepts
4	Phone Number and Email Address Extractor using Python automation
5	Parsing a log File to Extract targeted "string" and store into csv file
6	Renaming Files with American-Style Dates to European-Style Dates
7	Reading, writing and update the spread sheet through python script
8	Read data from log file and keep into dictionary, then do statical analysis and post that
	store all data into csv file

Course	Outcomes: After completing the course, the students will be able to
CO1	Demonstrate a comprehensive understanding of the purposes, distinguishing features, and typical applications of various scripting languages such as Python, TCL/TKL, and PERL.
CO2	Utilize Python's loops (for, while) and conditional statements (if, else, elif) proficiently to control program flow in diverse scenarios.
CO3	Implement functions in Python to encapsulate reusable code segments and enhance code modularity. Integrate basic file operations within functions to manage data effectively in VLSI design and other applications.
CO4	Organize and manage files systematically using Python's file handling capabilities. Apply regular expressions (regex) to perform pattern matching and advanced text processing tasks, ensuring accurate data extraction and manipulation in VLSI design workflows.
CO5	Utilize Python libraries (such as pandas for CSV and openpyxl for Excel) to handle and analyze data stored in CSV and Excel files.

Textbooks:

1.	A. B. Downey, "Think Python, How to Think Like a Computer Scientist", 2 nd edition O'Reilly, 2015.							
2	2 A.l.Sweigart, "Automate the boring stuff with Python: practical programming for total beginners. no starch press", 2019.							
Reference Books:								
1.	Ousterhout J. and Jones K, "Tcl and the Tk toolkit", Upper Saddle River, NJ: Addison-Wesley.							
2.	Christiansen, Tom, and Nathan Torkington "Perl cookbook: Solutions & examples for							

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO/PO	PO	PSO	PSO											
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	2	2	1	-	-	-	-	-	-	1	2	2
CO2	3	3	2	2	1	-	-	-	-	-	-	1	2	2
CO3	3	3	2	2	1	-	-	-	-	-	-	1	2	1
CO4	3	3	2	2	1	-	-	-	-	-	-	1	1	1
CO5	3	3	2	2	1	-	-	-	-	-	-	1	1	1

High-3, Medium-2, Low-1

B.E (VLSI Design and Technology)

	Semester: VI								
	ANALOG VLSI DESIGN								
Cou	urse Code: MVJ22VL62	CIE Marks:50							
Cre	dits: L:T:P: 3:0:2	SEE Marks: 50							
Hou	urs:40 L+ 26P	SEE Duration: 03Hours							
Cou	Course Learning Objectives: The students will be able to								
	 Explain the basic physics and operational principles of MOS devices, including their structure, behavior under different bias conditions, and limitations in circuit applications. Analyze the performance characteristics and applications of single-stage and differential 								
	amplifiers								
	Evaluate the principles behind current mirrors and the generation of current and voltage references, examining their stability, accuracy, and applications in analog circuit design.								
4	Apply knowledge of current mirror circuits to design and implement reference current sources.								
5	Design operational amplifiers (op-amps) while adhering to specified design constraints							

UNIT-I

UNIT-I		
Introduction to Analog IC Design: Motivation for analog VLSI design, and mixed	8 Hrs	
signal circuits in MOS technologies and issues thereof. MOS device fundamentals:		
Basic MOS models, device capacitances, parasitic resistances, substrate models,		
transconductance, output resistance, f _T , frequency dependence of device parameters.		
Laboratory Sessions/ Experimental Learning:		
1. Investigate and measure key parameters of MOSFETs, including device		
capacitances, parasitic resistances, substrate effects, transconductance, and output		
resistance.		
Video Link / Additional Online Information:		
1. https://archive.nptel.ac.in/courses/117/101/117101105/		
UNIT-II		

Hrs

UNIT-III	
Current Mirror, Current and Voltage Reference: Basic current mirror, cascode	8 Hrs
current mirror, active current mirror and biasing techniques, low current biasing,	
supply insensitive biasing, temperature insensitive biasing, impact of device	
mismatch.	
Laboratory Sessions/ Experimental Learning:	
1. Explore the operation, characteristics, and applications of active current	
mirrors and various biasing techniques.	
Video Link / Additional Online Information:	
1. https://archive.nptel.ac.in/courses/117/101/117101105/	
2. https://nptel.ac.in/courses/108106084	
UNIT-IV	
Frequency Response of Amplifiers: General considerations, miller effect, frequency	8 Hrs
responses of single stage amplifier CS amplifier, source follower, CG amplifier,	
cascade, differential amplifier and gain and bandwidth trade-off. feedback: Feedback	
topologies, effect of load, modeling input and output ports in feedback circuits.	

Laboratory Sessions/ Experimental Learning:	
1. Study the frequency response characteristics of a common-source amplifier and	
understand its bandwidth limitations.	
Video Link / Additional Online Information:	
1. <u>https://archive.nptel.ac.in/courses/117/101/117101105/</u>	
UNIT-V	
Operational Amplifiers: Performance parameters, one-stage and two stage op amps,	8 Hrs
ain boosting, comparison, common mode feedback, input range, slew rate, power	
upply rejection, noise in Op Amps stability and frequency compensation: multi pole	
ystems, phase margin, frequency compensation	
Laboratory Sessions/ Experimental Learning:	
1. Study and compare the characteristics, frequency response, and gain stability of	
one-stage and two-stage operational amplifiers.	
Video Link / Additional Online Information:	
1. <u>https://archive.nptel.ac.in/courses/117/101/117101105/</u>	

Course Ou	Course Outcomes: After completing the course, the students will be able to		
CO1	Analyze and design single-stage amplifiers, including common-source, common-gate, and common-drain configurations.		
CO2	Analyze and design differential amplifiers, understanding their advantages and applications in analog circuits.		
CO3	Explain the principles and operation of basic and advanced current mirror circuits.		
CO4	Demonstrate proficiency in designing and optimizing current mirror circuits for various applications.		
CO5	Design operational amplifiers (op-amps) meeting specific design constraints such as gain, bandwidth, power consumption, and stability.		
	LIST OF EXPERIMENTS		
S. No.	Experiment Name		

1.	Introduction of SPICE/ EDA tools (Cadence/Synopsys), I-V characteristics
	MOSFET using Cadence EDA-SPECTRE/SPICE tools and understanding of
	different order of open source/propriety MOS PDK model
2.	Design an singe stage common source, common gate and source follower amplifier
	a. Draw the schematic and verify the following
	i) DC, AC, and transient analysis
	b. Draw the layout and verify the DRC, ERC
	c. Layout versus schematic (LVS) verifications
	d. Extract RC and back annotate the same and verify the design
3.	Design a differential voltage Gain and CMRR of the differential amplifier.
	a. Draw the schematic and verify the following
	i) DC, AC, and transient analysis
	b. Draw the layout and verify the DRC, ERC
	c. Layout versus schematic (LVS) verifications
	d. Extract RC and back annotate the same and verify the design
4.	Design a multistage current mirror to generate reference current and also increase
	reference current by modulating the width (W) of reference transistor.
5.	Design a single stage amplifier as per design constraints
Text Books	5:
1	Behzad Razavi, Design of Analog CMOS Integrated Circuits", McGraw Hill Education
1.	Publication, 2017.
Reference	Books:
1.	R. Jacob Baker, "CMOS Circuit Design, Layout, and Simulation, IEEE press Wiley
1.	Fourth Edition, 2019
2.	Phillip E. Allen, Douglas R. Holberg, "CMOS Analog Circuit Design" Oxford
۷.	University Press Second Edition.
3.	Ken Kundert and Olaf Zinke, "The Designer's Guide to Verilog-AMS", Kluwer

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

CO-P	CO-PO-PSO Mapping													
CO /	PO	PO	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PSO	PSO
РО	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	1	2	2	-	-	-	-	-	-	2	1	1
CO2	3	3	1	2	2	-	-	-	-	-	-	2	1	1
CO3	3	3	1	2	2	-	-	-	-	-	-	2	1	1
CO4	3	3	1	2	2	-	-	-	-	-	-	2	1	1
CO5	3	3	1	2	2	-	-	-	-	-	-	2	1	1

B.E (VLSI Design and Technology)

	Semester: VI										
	VLSI LABORATORY-2										
Cour	Course Code:MVJ22VLL66CIE Marks: 50										
Cred	its:	L:T:P:0:0:2 SEE Marks: 50									
Hour	's:	26P	SEE Duration: 3 Hrs								
Cour	se Learnin	g Objectives: The students w	rill be able to								
1	Demonstrate understanding of the features and capabilities of CAD tools specific to analog VLSI design.										
2	Design ar characteri		and simulate their DC, transient, and AC								
3	Utilize C.	AD tools to generate layout de	signs from analog circuit schematics								
4	Construct GDS (Graphic Data System) files and manage the tapeout process for fabrication of integrated circuits (ICs).										
5		and optimize complex analog on differential amplifiers using	designs such as operational amplifiers (OP- g CAD tools.								

	LABORATORY SESSIONS:									
	PART A									
Exp. No	Experiment Names									
1.	Introduction of SPICE/ EDA tools (Cadence/Synopsys), I-V characteristics MOSFET using Cadence EDA-SPECTRE/SPICE tools and understanding of different order of open source/propriety MOS PDK model									
2.	 Design a single-stage common source, common gate and source follower amplifier a. Draw the schematic and verify the following i) DC, AC, and Transient Analysis b. Draw the Layout and verify the DRC, ERC c. Layout versus Schematic (LVS) verifications d. Extract RC and back annotate the same and verify the Design 									
3.	Design a cascode amplifier a. Draw the schematic and verify the following									

	i) DC, AC, and Transient Analysis							
	Design of basic current sink.							
4.	a. Draw the schematic and verify the following							
	i) DC, AC, and Transient Analysis							
	Design current sink by using negative feed-back resistor							
5.	a. Draw the schematic and verify the following							
	i) DC, AC, and Transient Analysis							
	PART B							
6.	Differential voltage Gain and CMRR of the differential amplifier.							
	a. Draw the schematic and verify the following							
	i) DC, AC, and Transient Analysis							
	b. Layout versus Schematic (LVS) verifications							
	c. Extract RC and back annotate the same and verify the Design							
7.	Design a current mirror to generate reference current and increase reference							
	current by modulating the width (W) of reference transistor. (Parameter will be							
	provided during lab experiment)							
8.	Design a cascode current mirror and analyse the circuits with respect to width of the							
	transistors.							
9.	Design a single stage amplifier as per design constraints like gain, ft (Parameter will							
	be provided during lab experiment)							
10.	Design a double stage amplifier as per design constraints (Parameter will be provided							
	during lab experiment)							
Course o	utcomes: After completing the course, the students will be able to							
CO1	Utilize CAD tools for VLSI design, including schematic entry, simulation, layout							
COI	design, and verification processes.							
CO2	Design analog circuits and perform comprehensive analyses of their DC, transient,							
	and AC characteristics.							
CO3	Analyze layout designs derived from circuit schematics, performing Layout vs.							
	Schematic (LVS) checks to verify conformity and functionality.							

	Construct GDS files and prepare tapeouts for integrated circuit fabrication,
CO4	understanding the manufacturing process and requirements for IC production. Apply
	industry standards and practices to ensure compliance and readiness for fabrication.
	Evaluate and optimize complex analog designs, such as operational amplifiers and
CO5	differential amplifiers, analyzing performance metrics including gain, bandwidth,
	stability, and noise.

CO-PO-PSO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	3	2	1	-	-	-	-	-	-	2	1
CO2	3	3	3	3	2	1	-	-	-	-	-	-	2	1
CO3	3	3	3	3	2	1	-	-	-	-	-	-	2	1
CO4	3	3	3	3	2	1	-	-	-	-	-	-	2	1
CO5	3	3	3	3	2	1	-	-	-	-	-	-	2	1

	Semester: VI									
LOW POWER VLSI DESIGN										
С	ourse Code:	MVJ22VL631	CIE Marks:50							
C	redits:	L:T:P: 3:0:0	SEE Marks: 50							
Hours:		40 T	SEE Duration: 3 Hrs							
Course Learning Objectives: The students will be able to										
1	Compare and contrast the p identify the most significan	-	ristics of various digital circuit designs to ower consumption.							
2	Design and implement DVI	FS strategies in digital circ	cuits to achieve power reduction.							
3	Utilize specific design tech	niques to minimize switch	ned capacitance in digital circuits.							
4	Implement various leakage	power reduction techniqu	es in VLSI circuit designs.							
5	Investigate and analyze the consumption of VLSI system		are optimization techniques on the power							

B.E (VLSI Design and Technology)

UNIT-1

Introduction: Need for low power VLSI chips, sources of power dissipation in digital integrated circuits: Short circuit power dissipation, switching power dissipation: Dynamic power for a complex gate, reduced voltage swing, internal node power, switching activity, switching activity of static CMOS gates, inputs not equiprobable, mutually dependent inputs, transition probability in dynamic gates, power dissipation due to charge sharing, glitching power dissipation, leakage power dissipation, short channel effects

Laboratory Sessions/ Experimental Learning:

 Understand the basic operation of CMOS (Complementary Metal-Oxide-Semiconductor) gates. Measure and analyze the switching activity of CMOS gates. Calculate the power consumption due to switching activity.

8Hrs.

Video Link / Additional Online Information:

- 1. https://archive.nptel.ac.in/courses/106/105/106105034/
- 2. https://onlinecourses.nptel.ac.in/noc24_ee80/preview

UNIT-2

Low-Power Design Approaches: Low-power design through voltage scaling: Device feature size scaling: Constant-field scaling, constant-voltage scaling, multi-vdd circuits, voltage scaling using high-level transformations, dynamic voltage and frequency scaling: Basic approach, DVFS with varying work load, the model, workload prediction, discrete processing rate, latency overhead, adaptive voltage scaling, subthreshold logic circuits Architectural level approach-pipelining and parallel processing, multicore, and combining 8Hrs. parallelism with pipelining Laboratory Sessions/ Experimental Learning: 1. Implement low-power design techniques through voltage scaling and architectural approaches, including multi-VDD circuits, dynamic voltage and frequency scaling (DVFS), and architectural-level approaches such as pipelining and parallel processing. Video Link / Additional Online Information: https://archive.nptel.ac.in/courses/106/105/106105034/ 1. 2. https://onlinecourses.nptel.ac.in/noc24 ee80/preview UNIT-3 Switched Capacitance Minimization Approaches: Introduction, system-level approach: Hardware-software codesign, Transmeta's Crusoe processor, bus encoding: Gray coding, one-hot coding, bus-inversion coding, T0 coding, clock gating: CG circuits, CG granularity, gated-clock FSMs, FSM state encoding, FSM partitioning, operand isolation, glitching power minimization, logic styles for low power: Static CMOS logic, dynamic CMOS logic. Laboratory Sessions/ Experimental Learning: 8Hrs. 1. Implement FSMs using different state encoding methods. Analyze the impact of state encoding on area, speed, and power. Video Link / Additional Online Information: 1. https://archive.nptel.ac.in/courses/106/105/106105034/ 2. https://onlinecourses.nptel.ac.in/noc24_ee80/preview 8Hrs. **UNIT-4**

Leakage Power Minimization Approaches: Fabrication of multiple threshold voltages, variable-threshold-voltage CMOS (VTCMOS) approach, multi-threshold-voltage CMOS (MTCMOS) approach, power gating, transistor stacking, dual-Vt assignment approach (DTCMOS), Power Management: Combining DVFS and power management, Dynamic Vth Scaling

Laboratory Sessions/ Experimental Learning:

1. Implement the technique of using transistors with different threshold voltages (Vt) to optimize power and performance in CMOS circuits.

Video Link / Additional Online Information:

- 1. https://archive.nptel.ac.in/courses/106/105/106105034/
- 2. <u>https://onlinecourses.nptel.ac.in/noc24_ee80/preview</u>

UNIT-5

Low-Power Software Approaches: Introduction, machine-independent software optimizations, combining loop optimizations with DVFS: Loop unrolling, loop tiling, loop permutation, strength reduction, loop fusion, loop peeling, loop unstitching,
 Advanced techniques: Brief adiabatic logic circuits, asynchronous circuits.

8Hrs.

Laboratory Sessions/ Experimental Learning:

1. Measure and analyze power usage of software applications. Implement and evaluate low-power software techniques.

Video Link / Additional Online Information:

- 1. https://archive.nptel.ac.in/courses/106/105/106105034/
- 2. https://onlinecourses.nptel.ac.in/noc24_ee80/preview

Cours	Course outcomes: After completing the course, the students will be able to								
CO1	Identify and analyze various sources of power dissipation, including dynamic, static, and short- circuit power in digital circuits.								
CO2	Implement and evaluate voltage scaling and dynamic voltage and frequency scaling (DVFS) techniques to achieve power savings in digital circuits.								

CO3	Apply techniques such as clock gating, operand isolation, and bus encoding to minimize							
	switched capacitance and thereby reduce dynamic power consumption in digital designs.							
004	Utilize various methods, including the use of high-threshold voltage transistors, sleep							
CO4	transistors, and body biasing to reduce leakage power in VLSI circuits.							
CO5	Apply software algorithms and code to lower power usage in VLSI systems.							

Text I	Books:
1.	Ajit Pal, "Low-power VLSI circuits and systems", Springer Publication, 2015.
2.	Kaushik Roy, Sharat Prasad, "Low-Power CMOS VLSI Circuit Design" Wiley.
Refer	ence Books:
1.	Gary K. Yeap, "Practical Low Power Digital VLSI Design", Kluwer Academic.
2.	Jan M. Rabaey, Massoud Pedram, "Low Power Design Methodologies", Kluwer Academic.
3.	P. Chandrasekaran and R. W. Broadersen, "Low power digital CMOS design", Kluwer Academic.
4.	A Bellamour and M I Elmasri, "Low power VLSI CMOS circuit design", Kluwer Academic.

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50 =100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the entire syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding

up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO-	PSO N	lappin	g											
CO/P	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO
0	1	2	3	4	5	6	7	8	9	0	1	2	1	2
CO1	3	3	2	2	1	1	1	-	1	-	-	1	2	2
CO2	3	3	2	2	1	1	1	-	1	-	-	1	2	2
CO3	3	3	2	2	1	1	1	-	1	-	-	1	2	2
CO4	3	3	2	2	1	1	1	-	1	-	-	1	2	2
CO5	3	3	2	2	1	1	1	-	1	-	-	1	2	2

High-3, Medium-2, Low-1

	Semester: VI									
	FPGA AND ASIC									
Cour	rse Code:	MVJ22VL632	CIE Marks:50							
Cred	lits:	L:T:P: 3:0:0	SEE Marks: 50							
Hour	rs:	40 T	SEE Duration: 3 Hrs							
Cour	rse Learning Objectives:	The students will be abl	e to							
1	Explain the fundamental architecture, design flow, and key differences between Field- Programmable Gate Arrays (FPGAs) and Application-Specific Integrated Circuits (ASICs).									
2	Utilize standard cell lib circuits.	raries and programmable l	ogic cells in the synthesis of simple digital							
3	Assess the quality and a power, and area for AS	•	d schematics in terms of performance,							
4	•	Analyze the impact of different floor planning and placement strategies on design performance and area utilization.								
5	Implement partitioning	and routing techniques to	optimize a given FPGA or ASIC design.							

B.E (VLSI Design and Technology)

UNIT-1	
FPGA Basics: Introduction to FPGAs, FPGA architecture and components, FPGA design	
flow	
ASIC Basics: Introduction to ASICs, types of ASICs: Full-custom, semi-custom, and	
programmable ASICs, ASIC design flow, comparison between FPGA and ASIC,	
Design Styles and Challenges: Full-custom layout, gate-array layout, standard-cell layout,	
macro-cell layout and programmable logic arrays, FPGA layout and challenges in physical	
design	ottua
Overview of HDL language	8Hrs.
Laboratory Sessions/ Experimental Learning:	
1. Write and simulate basic RTL (Register-Transfer Level) designs using Verilog HDL	
Video Link / Additional Online Information:	
1. <u>https://onlinecourses.nptel.ac.in/noc23_ee137/preview</u>	
2. <u>https://archive.nptel.ac.in/courses/117/108/117108040/</u>	

UNIT-2	
ASIC Library Design: Basic standard cells, library component: basic logic gates (AND,	
OR, NOT), complex gates, flip-flops, latches, multiplexers. Case study of any library file	
(.lib) for the understanding of standard library cell, different process development kit (PDK):	
TSMC, UMC, USMC, SCL etc.	
Programmable Logic Cells or Configurable logic Block (CLB): Xilinx : LUT: MUX and	
distributed SRAM, programmable interconnect, I/O block, compare with Altera and ACTEL	
programmable logic cells	
Synthesis: Synthesis of logic or system design in aspect of FPGA (LUT, I/O, FF etc) and	
ASIC (different standard cells, MUX, AND OR, NOT, Buffer etc)	
Laboratory Sessions/ Experimental Learning:	
1. Design an inverter standard cell using a schematic editor. Simulate the inverter to verify	8Hrs.
its functionality.	01115.
2. Implement and test PLC designs on programmable hardware.	
Video Link / Additional Online Information:	
1. <u>https://onlinecourses.nptel.ac.in/noc23_ee137/preview</u>	
2. <u>https://archive.nptel.ac.in/courses/117/108/117108040/</u>	
UNIT-3	
High Level Design Entry: RTL coding using HDL, truth table representation, state	
diagram, flow chart, block diagram	
Low-level Design Entry: Schematic entry: Hierarchical design, the cell library, names,	
schematic icons & symbols, nets, schematic entry for ASICs, connections, vectored	
instances & buses, edit in place, attributes, netlist screener. ASIC construction: Physical	
design, CAD tools system partitioning, estimating ASIC size.	
A Case Study: Steps required in ASIC: RTL to GDS and FPGA: RTL to bit file	8Hrs.
Laboratory Sessions/ Experimental Learning:	
2. Create a basic logic circuit using schematic capture.	
Video Link / Additional Online Information:	
1. <u>https://onlinecourses.nptel.ac.in/noc23_ee137/preview</u>	
2. <u>https://archive.nptel.ac.in/courses/117/108/117108040/</u>	

3. https://www.youtube.com/playlist?list=PLZU5hLL_713x0_AV_rVbay0pWmED799G	
UNIT-4	
Floor Planning and Placement in Aspects of FPGA and ASIC: Goals and objectives,	
measurement of delay in floor planning, floor planning tools, channel definition, I/O and	
power planning and clock planning.	
Placement in Aspects of FPGA and ASIC: Goals and objectives, min-cut placement	
algorithm, iterative placement improvement, time driven placement methods, physical design	
flow.	
	8Hrs.
Laboratory Sessions/ Experimental Learning:	
1. Perform floor planning and placement for a simple FPGA design.	
Video Link / Additional Online Information:	
1. <u>https://onlinecourses.nptel.ac.in/noc23_ee137/preview</u>	
2. https://archive.nptel.ac.in/courses/117/108/117108040/	
UNIT-5	
Partitioning in ASIC and FPGA Perspective: Goals and objectives, constructive	
partitioning, iterative partitioning improvement, kl, fm and look ahead algorithms.	
Routing in Aspects of FPGA and ASIC: Global routing: goals and objectives, global	
routing methods, global routing between blocks, back- annotation. detailed routing: goals	
and objectives, measurement of channel density, left-edge algorithm, area-routing	
algorithms, multilevel routing, timing -driven detailed routing, final routing steps, special	
algorithms, multilevel routing, timing –driven detailed routing, final routing steps, special routing, circuit extraction and DRC.	8Hrs.
	8Hrs.
	8Hrs.
routing, circuit extraction and DRC.	8Hrs.
routing, circuit extraction and DRC. Laboratory Sessions/ Experimental Learning:	8Hrs.
 routing, circuit extraction and DRC. Laboratory Sessions/ Experimental Learning: 1. Perform physical partitioning for an ASIC or FPGA design 	8Hrs.
 routing, circuit extraction and DRC. Laboratory Sessions/ Experimental Learning: 1. Perform physical partitioning for an ASIC or FPGA design Video Link / Additional Online Information: 	8Hrs.

Cours	e outcomes: After completing the course, the students will be able to
CO1	Explain the fundamental architecture of FPGAs and ASICs, including their internal structures and functionalities.
CO2	Understand the operation and configuration of programmable logic cells (PLCs) in FPGA architectures.
CO3	Apply RTL coding techniques to describe digital circuits at the register transfer level.
CO4	Implement floor planning to define logical and physical boundaries within an ASIC or FPGA design.
CO5	Implement routing techniques to establish interconnections between partitions while minimizing delays and resource usage.

Text I	Books:
1.	Michael John Sebastian Smith, "Application - Specific Integrated Circuits", Addison- Wesley Professional.
2.	Pong P Chu, "FPGA prototyping by Verilog examples: Xilinx Spartan-3 version", John Wiley & Sons, 2011.
Refer	ence Books:
1.	Sridhar Gangadharan, Sanjay Churiwala, "Constraining Designs for Synthesis and Timing Analysis – A Practical Guide to Synopsis Design Constraints (SDC)", Springer, 2013
2.	Naresh Maheshwari and SachinSapatnekar, "Timing Analysis and Optimization of Sequential Circuits", Springer Science and Business Media.
3.	Vikram Arkalgud Chandrasetty, "VLSI Design: A Practical Guide for FPGA and ASIC Implementations" Springer, 2011

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2)

assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50 =100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the entire syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO-P		*ppmg												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PS02
CO1	3	2	2	-	-	-	-	-	-	-	-	-	2	2
CO2	3	2	2	-	-	-	-	-	-	-	-	-	2	2
CO3	3	2	2	-	-	-	-	-	-	-	-	-	2	2
CO4	3	2	2	-	2	2	-	-	-	-	-	-	1	1
CO5	3	2	2	2	-	2	-	-	-	-	-	-	1	1

		Semester: VI	
	MICRO ELE	CTRO-MECHANICA	AL SYSTEMS
Cour	rse Code: N	1VJ22VL633	CIE Marks:50
Cred	its: L	L:T:P: 3:0:0	SEE Marks: 50
Hour	rs: 4	0L	SEE Duration: 3 Hrs
Cour	se Learning Objectives: The stu	dents will be able to	I
1	Explain the fundamental conce operating principles.	pts of Micro-Electro-N	Aechanical Systems (MEMS) and their
2	Demonstrate the steps involved lab session.	l in a specific MEMS f	abrication technique through a hands-on
3	Classify MEMS sensors based	on their applications a	nd operating principles
4	Analyze the impact of MEMS systems.	sensors on the efficien	cy and functionality of real-world
5	Assess the challenges and limit sensor development.	ations of microfabrica	tion techniques in the context of MEMS

B.E (VLSI Design and Technology)

UNIT-1	
Overview of MEMS and Microsystems: MEMS and microsystem, typical MEMS and	
microsystems products, evolution of microfabrication, microsystems and microelectronics,	
multidisciplinary nature of microsystems, miniaturization. applications and markets.	
Laboratory Sessions/ Experimental Learning:	8Hrs.
1. Understanding of MEMS gas sensor in automobile industry.	
Video Link / Additional Online Information:	
1. https://nptel.ac.in/courses/108108113	
UNIT-2	
Working Principles of Microsystems: Introduction, microsensors, microactuation,	
MEMS with microactuators, microaccelerometers, microfluidics.	
Engineering Science for Microsystems Design: Introduction, molecular theory of matter	
and inter-molecular forces, plasma physics, electrochemistry.	

Laboratory Sessions/ Experimental Learning:	
2. Understanding of MEMS Accelerometer Characterization	8Hrs.
Video Link / Additional Online Information:	
1. https://nptel.ac.in/courses/108108113	
UNIT-3	
Photolithography and Deposition Techniques: Basics understanding of photolithography	
for pattering layer, photolithography, chemical vapor deposition (APCVD, LPCVD,	
PECVD), physical vapor deposition (Thermal deposition, e-beam evaporation, sputtering).	
 Laboratory Sessions/ Experimental Learning: 1. Understand the basic fabrication steps of MEMS devices and test a fabricated MEMS component. 	8Hrs.
Video Link / Additional Online Information:	
1. <u>https://nptel.ac.in/courses/108108113</u>	
UNIT-4	
Overview of Micromanufacturing: Introduction, bulk micromanufacturing, surface	
micromachining, the LIGA process, summary on micromanufacturing.	
Laboratory Sessions/ Experimental Learning:	8Hrs.
1. Details of anisotropic etching profile in Silicon wafer.	
Video Link / Additional Online Information:	
1. <u>https://nptel.ac.in/courses/108108113</u>	
UNIT-5	
Understanding various MEMS sensors: Metal oxide semiconductor gas sensor, pressure	
sensors, proximity sensors, gyroscope, TPMS, temperature sensor	
Laboratory Sessions/ Experimental Learning:	8Hrs.
1. Calibrate and test a MEMS pressure sensor and evaluate its performance characteristics,	
 Calibrate and test a MEMS pressure sensor and evaluate its performance characteristics, such as linearity, sensitivity, and hysteresis. 	

1.https://nptel.ac.in/courses/108108113

Course	outcomes: After completing the course, the students will be able to
CO1	Compare different MEMS technologies in terms of their functionality, applications, and limitations.
CO2	Apply these design and fabrication processes to create simple MEMS structures in a laboratory setting.
CO3	Use mathematical tools to model the behavior and performance of MEMS devices.
CO4	Illustrate specific applications of MEMS devices through real-world examples and case studies.
CO5	Demonstrate the micromanufacturing techniques by designing and fabricating simple microstructures.

Text Bo	oks:
1.	Tai-Ran Hsu: "MEMS & Microsystems Design Manufacture and nanoscale Engineering",2nd Edition, Tata McGraw Hill.
Referen	ce Books:
1.	Microsystem Design, Kluwer Academic Publisher, J.D. Plummer, M.D. Deal, P.G. Griffin
2.	Silicon VLSI Technology, Pearson Education, S.M. Sze (Ed)

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50 =100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the entire syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO/PO	PO1	PO1	PO1	PO1	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PS02
CO1	3	2	2	2	1	1	-	-	-	-	-	-	2	2				
CO2	3	2	2	2	1	1	-	-	-	-	-	-	2	2				
CO3	3	2	2	2	1	1	-	-	-	-	-	-	2	2				
CO4	3	2	2	2	1	1	-	-	-	-	-	-	1	1				
CO5	3	2	2	2	1	1	-	-	-	-	-	-	1	1				

B.E. (VLSI Design and Technology)

		Semester:	VI		
		SOC DESI	GN		
Course C	Code:	MVJ22VL634	CIE Marks:50		
Credits: L:T:P: 3:0:0			SEE Marks: 50		
Hours:		40L	SEE Duration: 3 Hrs		
Course L	earning Object	tives: The students will be a	ble to		
1	Explain the core features, instruction sets, and pipeline structure of ARM processors.				
2	Compare the ARM architecture with other processor architectures in terms of performance, efficiency, and design complexity.				
3	Implement and optimize a digital system using ARM cores with a focus on performance,power efficiency, and real-time capabilities.				
4	4 Assess the benefits and limitations of advanced ARM features and extensions in various application scenarios.				
5	Analyze specific case studies to identify how ARM-based SoCs address application- specific requirements and challenges.				

UNIT 1

ARM Organization and Implementation: 3-stage pipeline ARM organization, 5-stage pipeline ARM organization, ARM instruction execution, ARM implementation, The ARM coprocessor interface.

The ARM Instruction Set: Introduction, exceptions, conditional execution, branch and branch with link (B, BL), and eXchange (BX, BLX), software interrupt (SWI), data processing instructions, multiply instructions, count leading zeros (CLZ - architecture v5T only), single word and unsigned byte data transfer instruction, half-word and signed byte data transfer instructions, multiple register transfer instructions, swap memory and register instructions (SWP), program status register instructions, coprocessor instructions, coprocessor data operations, coprocessor data transfers, coprocessor register transfers, breakpoint instruction (BRK - architecture v5T only), unused instruction space, memory faults, ARM architecture variants.

Laboratory Sessions/ Experimental Learning:

1. Implement and analyze the performance of a 3-stage and a 5-stage pipeline.	
Video Link / Additional Online Information:	
1. https://onlinecourses.nptel.ac.in/noc24_ee17/preview_	
UNIT 2	1
Architectural Support for High-Level Languages: abstraction in software design, data	
types, floating-point data types, the ARM floating-point architecture, expressions,	
conditional statements, loops, functions and procedures, use of memory, run-time environment.	
Architectural Support for System Development: The ARM memory interface, the	
advanced microcontroller bus architecture (AMBA), The ARM reference peripheral	
specification, hardware system prototyping tools, the ARMulator, The JTAG boundary scan	
test architecture, The ARM debug architecture, embedded trace, signal processing support.	
	8Hrs.
Laboratory Sessions/ Experimental Learning:	
1. Understand the floating-point unit (FPU) in ARM Cortex-M4 or similar processors by	
implementing and analyzing floating-point operations. At last, compare the performance	
of floating-point operations with integer operations.	
Video Link / Additional Online Information:	
1. <u>https://onlinecourses.nptel.ac.in/noc24_ee17/preview</u>	
UNIT 3	<u></u>
ARM Processor Cores: ARM7TDMI, ARM8, ARM9TDMI, ARM10TDMI, discussion,	
example and exercises.	
Memory Hierarchy: Memory size and speed, on-chip memory, caches, cache design - an	011
	8Hrs.
example, memory management, examples and exercises	

Laboratory Sessions/ Experimental Learning:

1. Understand the architecture and functioning of ARM processor cores and compare the performance of different ARM cores

Video Link / Additional Online Information:

1 https://onlinecourses.nptel.ac.in/noc24_ee17/preview

UNIT 4

Architectural Support for Operating Systems: An introduction to operating systems, The ARM system control coprocessor, CP15 protection unit registers, ARM protection unit, CP15 MMU registers, ARM MMU architecture, synchronization, context switching, input/ output, example and exercises.

Laboratory Sessions/ Experimental Learning:

Understand the functionality of the memory management unit (MMU) in ARM processors. Configure and use the MMU to manage memory in an ARM-based system. Analyze the performance impact and behavior of the MMU in terms of memory access and virtual memory management.

Video Link / Additional Online Information:

1. https://onlinecourses.nptel.ac.in/noc24_ee17/preview

UNIT 5

ARM CPU Cores: The ARM710T, ARM720T and ARM740T, The ARM810, The strongARM SA-110, The ARM920T and ARM940T, The ARM946E-S and ARM966E-S, theARM1020E, discussion, example and exercises.

Embedded ARM Applications: The VLSI Ruby II advanced communication processor,8Hrs.The VLSI ISDN subscriber processor, The One CTMVWS22100 GSM chip, The Ericsson-
VLSI bluetooth baseband controller, examples and exercises.8

Laboratory Sessions/ Experimental Learning:

1. Understand the architecture and functionality of the Ericsson-VLSI Bluetooth Baseband Controller. Configure and use the Bluetooth Baseband Controller to establish a Bluetooth connection. Analyze the data transfer and performance of the Bluetooth connection.

Video Link / Additional Online Information:

https://onlinecourses.nptel.ac.in/noc24_ee17/preview

Course Outcomes: After completing the course, the students will be able to

CO1	Apply the 3- and 5-stage pipeline ARM processor cores and analyse the implementation issues.
000	Make use of concepts and methodologies employed in designing a System- on-chip (SoC)
CO2	based around a microprocessor core and in designing the microprocessor core itself.
	Understand how SoCs and microprocessors are designed and used, and why a modern
CO3	processor is designed the way that it is.
	Utilize integrated ARM CPU cores (including Strong ARM) that incorporate full support for
CO4	memory management.
	Analyze the requirements of a modern operating system and use the ARM architecture to
CO5	address the same.

Text Books:					
1.	1. Steve Furber, ARM System-on-Chip Architecture, Second Edition, Pearson, 2015.				
Refere	Reference Books:				

1.	Joseph Yiu, The Definitive Guide to the ARM Cortex-M3, Newnes, (Elsevier), 2 nd Edition.
C	Sudeep Pasricha and NikilDutt, On-Chip Communication Architectures: System on Chip
2.	Interconnect, Morgan Kaufmann Publishers.

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the entire syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO-PSO Mapping														
CO/P	PO	РО	PO	PO1	PO1	PO1	PSO	PSO						
0	1	2	3	4	5	6	7	8	9	0	1	2	1	2
CO1	3	3	2	2	1	1	1	-	1	-	-	1	1	1
CO2	3	3	2	2	1	1	1	-	1	-	-	1	1	1
CO3	3	3	2	2	1	1	1	-	1	-	-	1	1	1
CO4	3	3	2	2	1	1	1	-	1	-	-	1	1	1
CO5	3	3	2	2	1	1	1	-	1	-	-	1	1	1

		B.E. (VLSI Design	and Technology)		
		Semest	er: VI		
		SEMICONDUC	TOR DEVICES		
Co	urse Code:	MVJ22VL641	CIE Marks: 50		
Cr	edits:	L:T:P: 3:0:0	SEE Marks: 50		
Но	urs:	40L	SEE Duration: 3 Hrs		
Co	urse Learning	Objectives: The students wil	l be able to		
1	Compare the electrical properties of intrinsic and extrinsic semiconductors based on their carrier concentration and doping levels.				
2	Solve problems related to electrical conduction in semiconductors, incorporating concepts like mobility, drift velocity, and diffusion coefficient.				
3	3 Illustrate the I-V characteristics of a PN junction through practical experiments or simulations.				
4	4 Assess the impact of various physical parameters on the performance and characteristics of MOS devices.				
5	Analyze the challenges and limitations associated with scaling semiconductor devices and propose potential solutions.				

UNIT 1		
Semiconductor Fundamentals: Charge carriers in solids, fermi level, carrier		
concentration in semiconductors, intrinsic and extrinsic semiconductors, equilibrium		
concentration, Boltzmann statistics, and direct and indirect band-gap.		
Carrier Transport in Semiconductors: Current flow mechanisms: drift current,		
diffusion current, mobility of carriers, current density equations.		
	8Hrs.	
Laboratory Sessions/ Experimental Learning:		
1. Measure the sheet resistance of Silicon wafer		
Video Link / Additional Online Information:		
1. <u>https://archive.nptel.ac.in/courses/108/108/108108122/</u>		
UNIT 2		

 P-N Junction: Poisson equation, electric fields and potentials, p-n junction under applied bias, static current-voltage characteristics of p-n junctions, breakdown mechanisms. Laboratory Sessions/ Experimental Learning: Study the I-V characteristics of a PN junction diode Video Link / Additional Online Information: https://archive.nptel.ac.in/courses/108/108/108108122/ 	8Hrs.
UNIT 3	I
MOS Capacitor: Ideal MOS fundamentals, accumulation, depletion and inversion, threshold voltage, oxide and interface charges, CV characteristics of MOS	
Laboratory Sessions/ Experimental Learning:1. Measure C-V of n channel MOSFET	8Hrs.
Video Link / Additional Online Information:	
1. https://archive.nptel.ac.in/courses/108/108/108108122/	
UNIT 4	
MOSFETs: Theory of operation, I_D - V_D characteristics, I_D - V_G characteristics, scaling and short channel effects, breakdown.	
 Laboratory Sessions/ Experimental Learning: 1. Examine the I-V characteristics of an n-channel MOSFET. Video Link / Additional Online Information: 1. <u>https://archive.nptel.ac.in/courses/108/108/108108122/</u> 	8Hrs.
UNIT 5	
Optoelectronic devices: III-V semiconductors, optical absorption, direct and indirect band-gaps, solar cells, light emitting diode (LED), LASER diode	8Hrs.
Laboratory Sessions/ Experimental Learning:	

1. Analyze the I-V characteristics of a solar cell and determine its efficiency and fill factor.

Video Link / Additional Online Information:

1. https://archive.nptel.ac.in/courses/108/108/108108122/

Text]	Text Books:				
1.	Advanced semiconductor fundamentals Book by Robert F. Pierret				
2.	SEMICONDUCTOR DEVICE FUNDAMENTALS Book by Robert F. Pierret				

Refere	Reference Books:				
1.	Streetman, B. and Banerjee, S., Solid State Electronics, Prentice Hall India.				
2.	Sze, S.M., Physics of Semiconductor Devices, John Wiley.				

Course Outcomes: After completing the course, the students will be able to

CO1	Compare the electronic properties of semiconductors with different doping levels and analyze their band structures.
CO2	Evaluate the performance of PN junction diodes under various biasing conditions and explain the underlying physical mechanisms.
CO3	Analyze the impact of different materials and fabrication processes on the performance of MOSCAPs.
CO4	Assess the performance of MOSFETs by analyzing their characteristics in different regimes and explain the influence of physical parameters on their operation.
CO5	Compare the performance of III-V semiconductor devices with silicon-based devices and analyze their advantages and limitations in specific applications.

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the entire syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO/PO	PO	PSO	PSO											
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	2	2	1	-	-	-	-	-	-	1	2	2
CO2	3	3	2	2	1	-	-	-	-	-	-	1	2	2
CO3	3	3	2	2	1	-	-	-	-	-	-	1	2	2
CO4	3	3	2	2	1	-	-	-	-	-	-	1	1	1
CO5	3	3	2	2	1	-	-	-	-	-	-	1	1	1

B.E (VLSI Design and Technology)

	Semester: VI						
	DIGITAL LOGIC DESIGN						
Course Code:		MVJ22VL642	CIE Marks:50				
Credits:		L:T:P: 3:0:0	SEE Marks: 50				
Hou	Hours: 40 L SEE Duration: 03 Hours						
Cou	rse Learning Ob	jectives: The students will be able to					
1	1 Design combinational digital circuits using logic gates based on simplified Boolean expressions.						
2	Compare the pe	erformance and complexity of syncl	hronous and asynchronous	s sequential			
2	circuits in variou	s applications.					
3	Design and imple	ement combinational and sequential c	rcuits for specific applicati	ons.			
4	Design sequentia	l circuits using SR, JK, D, and T flip-	flops and implement state r	nachines.			
5	Use programmat	ble devices to implement and test digit	al circuits.				
		UNIT-I					
3, 4 v Labo 1. St 2. D App com	 canonical forms, generation of switching equations from truth tables, Karnaugh maps- 3, 4 variables, incompletely specified functions (Don't care terms). Laboratory Sessions/ Experimental Learning: Study of Logic Gates – NOT, OR, AND, NOR, NAND, XOR and XNOR. Design a 4-bit Binary to Gray code converter using logic gates. Applications: OR gate in detecting exceed of threshold values and producing command signal for the system and AND gate in frequency measurement. Video Link / Additional Online Information: https://archive.nptel.ac.in/courses/108/105/108105132/ 						
		UNIT-II					
Desi	gn and Analysis	of Combinational Logic: Full add	er & subtractors, parallel	8 Hrs			
adde	r and subtractor, I	ook ahead carry adder, binary compa	rators, decoder, encoders,				
mult	iplexers & demult	iplexer.					

Laboratory Sessions/ Experimental Learning:					
1. Design a full adder with two half adders using logic gates.					
2. Design an adder cum subtractor circuit which adds when input bit operation=1 or					
subtract if 0, using logic gates.					
Applications: Communication systems, Speed synchronization of multiple motors in					
industries.					
Video Link / Additional Online Information:					
1. https://archive.nptel.ac.in/courses/108/105/108105132/					
UNIT-III					
Flip-Flops and its Applications: Latches and flip flops, master-slave jk flip-flop,	8 Hrs				
timing concerns in sequential circuits, shift registers - SISO, SIPO, PISO, PIPO,					
universal shift register, counters – synchronous and asynchronous.					
Laboratory Sessions/ Experimental Learning:					
1. Develop SR, D, JK &T flip flop using logic gates					
2. Design a 6-bit Register using D-Flipflop					
Applications: Frequency divider circuit, frequency counter.					
Video Link / Additional Online Information:					
1. https://archive.nptel.ac.in/courses/108/105/108105132/					
UNIT-IV					
Sequential Circuit Design: Characteristic equations, design of a synchronous mod-n	8 Hrs				
counter using clocked JK, D, T and SR flip-flops.					
Laboratory Sessions/ Experimental Learning:					
1. Design a Synchronous Counter for a given sequence- 0, 2, 4, 6, 0					
Applications: Data synchronizer, Counter.					
Video Link / Additional Online Information:					
1. <u>https://archive.nptel.ac.in/courses/108/105/108105132/</u>					
UNIT-V					
Applications of Digital Circuits:	8 Hrs				
Design of a sequence detector, guidelines for construction of state graphs, design					

Programmable Logic Devices: PLA, PAL, FPGA.

Laboratory Sessions/ Experimental Learning:

1. Designing of sequence detector using necessary digital components.

Video Link / Additional Online Information:

1. https://nptel.ac.in/courses/117108040/

Cours	e outcomes:
CO1	Apply K-maps and Quine-McCluskey technique to simplify Boolean expressions with multiple variables.
CO2	Design combinational logic circuits based on given specifications and simplified Boolean functions.
CO3	Develop and implement combinational and sequential circuits for practical applications, considering timing, area, and power constraints.
CO4	Design sequential circuits using various flip-flops and state machine models to achieve desired sequential logic operations.
CO5	Utilize programmable devices to implement and prototype digital circuits, demonstrating flexibility and reconfigurability.
Text B	Books:
1.	Morris Mano, —Digital Design, Prentice Hall of India, Third Edition.
2.	Donald D. Givone, "Digital Principles and Design", McGraw Hill.
Refere	ence Books:
1.	John M Yarbrough, "Digital Logic Applications and Design", Thomson Learning.

CO-PO-	PSO 1	Mappi	ing											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	3	2	1	-	-	3	-	-	2	1	1
CO2	3	3	3	3	2	1	-	-	3	-	-	2	1	1
CO3	3	3	3	3	2	1	-	-	3	-	-	2	1	1
CO4	3	3	3	3	2	1	-	-	3	-	-	2	1	1
CO5	3	3	3	3	2	1	-	-	3	-	-	2	1	1

		Semester	r: VI					
	FUNDAMEN	TALS OF MICROPROCE	SSOR AND MI	CROCONTROLLER				
Course	Code:	MVJ22VL643		CIE Marks:50				
Credit	5:	L:T:P: 3:0:0		SEE Marks: 50				
Hours		40L		SEE Duration: 3 Hrs				
Course	e Learning Obj	ectives: The students will be	able to					
1	Explain the architecture of ARM microcontrollers, including core components such as CP memory, buses, and peripherals.							
2	Draw block diagrams and explain the functional units of the 8086 microprocessor architecture.							
3	Evaluate the efficiency of different interfacing techniques used to connect the 8086 microprocessor with memory, I/O devices, and external peripherals.							
4	Identify various types of peripheral devices that can be interfaced with ARM microcontrollers							
5	Design and implement embedded systems projects that integrate both microprocessors and microcontrollers to meet specific application requirements.							

B.E. (VLSI Design and Technology)

UNIT 1

The x86 microprocessor: Brief history of the x86 family, inside the 8088/86, introduction
to assembly programming, introduction to program segments, the stack, flag register, x86
addressing modes. assembly language programming: directives & a sample program,
assemble, link & run a program, more sample programs, control transfer instructions, data
types and data definition, full segment definition, flowcharts and pseudo codeBelle
MHrs.Laboratory Sessions/ Experimental Learning:8Hrs.

1. Understand the basic instruction set of the 8086 microprocessor by writing and executing a simple program that adds two numbers.

Video Link / Additional Online Information:

1. https://nptel.ac.in/courses/117104072

UNIT 2	
x86: Instructions sets description, arithmetic and logic instructions and programs: unsigned	
addition and subtraction, unsigned multiplication and division, logic instructions, rotate	
instructions.	
INT 21H and INT 10H Programming: Bios INT 10H programming, DOS interrupt 21H.	
8088/86 interrupts, x86 PC and interrupt assignment.	
Laboratory Sessions/ Experimental Learning:	8Hrs.
1. Explore the 8086 instruction set by writing and executing a program that demonstrates	
data transfer and arithmetic operations.	
Video Link / Additional Online Information:	
1. <u>https://nptel.ac.in/courses/117104072</u>	
UNIT 3	
Signed Numbers and Strings: Signed number arithmetic operations, string operations.	
memory and memory interfacing: memory address decoding, data integrity in RAM and	
ROM, 16-bit memory interfacing.	
8255 I/O programming: I/O addresses MAP ofx86 PC's, programming and interfacing the	
8255	
	011
Laboratory Sessions/ Experimental Learning:	8Hrs.
1. Demonstrate the programming of the 8255 programmable peripheral interface (PPI) to	
control LEDs connected to its ports using the 8086 microprocessor.	
Video Link / Additional Online Information:	
1. https://nptel.ac.in/courses/117104072	
UNIT 4	
ARM Embedded Systems: The RISC design philosophy, The ARM design philosophy,	
embedded system hardware, embedded system software	8Hrs.
ARM Processor Fundamentals: Registers, current program status register, pipeline,	

exceptions, interrupts, and the vector table, core extensions

Laboratory Sessions/ Experimental Learning:

1. Execute simple assembly programs on an ARM-based system or emulator.

Video Link / Additional Online Information:

1. <u>https://nptel.ac.in/courses/117104072</u>

UNIT 5

Introduction to the ARM Instruction Set: Data processing instructions, branch instructions, software interrupt instructions, program status register instructions, coprocessor instructions, loading constants

Laboratory Sessions/ Experimental Learning:

1. Execute assembly programs that demonstrate various instructions and their functionalities.

Video Link / Additional Online Information:

1. https://nptel.ac.in/courses/117104072

Course Outcomes: After completing the course, the students will be able to

CO1	Compare the advantages and limitations of using microprocessors versus microcontrollers in different real-world scenarios.
CO2	Develop software applications using ARM microcontrollers to perform tasks such as data processing, control, and communication.
CO3	Utilize ARM architecture features to optimize code execution and memory management in embedded applications.
CO4	Implement interfacing techniques to connect peripherals such as sensors, actuators, and communication modules to x86 and ARM-based systems.
CO5	Develop and implement interrupt service routines (ISRs) to manage and respond to external events from interfaced devices.

Text B	Books:
1	Andrew N Sloss, Dominic Symes and Chris Wright, ARM system developers guide, Elsevier,
1.	Morgan Kaufman publishers, 2008.
2	Muhammad Ali Mazidi, Janice Gillispie Mazidi, Danny Causey, The x86 PC Assembly
۷.	Language Design and Interfacing, 5th Edition, Pearson, 2013.

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the entire syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

СО-РО-	PSO N	Tappin	g											
CO/P	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO
0	1	2	3	4	5	6	7	8	9	0	1	2	1	2
CO1	3	3	2	2	1	1	1	-	1	-	-	1	1	1
CO2	3	3	2	2	1	1	1	-	1	-	-	1	1	1
CO3	3	3	2	2	1	1	1	-	1	-	-	1	1	1
CO4	3	3	2	2	1	1	1	-	1	-	-	1	1	1
CO5	3	3	2	2	1	1	1	-	1	-	-	1	1	1

CO-PO-PSO Mapping

B.E. (VLSI Design and Technology)

	Semester: VI								
	FLEXIBLE ELECTRONICS								
Cou	Course Code: MVJ22VL644 CIE Marks:50								
Cree	lits:	L:T:P: 3:0:0	SEE Marks: 50						
Hou	rs:	40L	SEE Duration: 3 Hrs						
Cou	rse Learning O	bjectives: The students will be able to							
1	Explain the si	gnificance of large area and flexible ele	ectronics in modern technology,						
1	highlighting ad	vantages such as portability, durability, and	versatility.						
2	Apply knowledge to select appropriate manufacturing processes and equipment based on								
2	specific requirements for flexible electronics production.								
3	Analyze the interactions and interfaces between materials and substrates in large area								
5	³ flexible electronic devices to optimize performance and reliability.								
4	Identify the cr	Identify the criteria for selecting materials for flexible electronics, including mechanical							
4	flexibility, thermal stability, and compatibility with manufacturing processes.								
5	Develop proce	ess flow diagrams and protocols for manu	facturing large area and flexible						
5	electronic devi	electronic devices tailored to specific application requirements.							

UNIT 1

Introduction to Flexible Electronics and their Materials Systems: Background and	
history, trends, emerging technologies, general applications.	
Introduction to Semiconductors and Processing Methods for Flexible Devices: Carrier	
transport, doping, band structure, thin-film electronic devices. thin-film deposition and	
processing methods for flexible devices -CVD, PECVD, PVD, etching, photolithography,	
low-temperature process integration	
	8Hrs.
Laboratory Sessions/ Experimental Learning:	
1. Familiarization with the fundamental processing techniques used in the fabrication of	
flexible electronic devices	
Video Link / Additional Online Information:	
1. <u>https://youtu.be/tRel4WbQNdU</u>	
UNIT 2	<u>I</u>
Materials for Flexible and Printed Electronics: Nanowire and nanoparticle synthesis,	011
transition metal oxides, amorphous thin films, polymeric semiconductors, structure and	8Hrs.

property relationships, paper-based electronics, textile substrates, barrier materials.	
Laboratory Sessions/ Experimental Learning:	
1. Understanding the various materials used in flexible and printed electronics, their	
properties, and how they are processed	
Video Link / Additional Online Information:	
1. <u>https://youtu.be/P3BSQgLfLTY</u>	
UNIT 3	
Thin Film Transistors: Device structure and performance: I-V characteristics, gradual	
channel approximation, electrical stability, lifetime extraction, characterization methods for	
rigid and flexible devices. Metal oxide TFT's, carbon nanotube TFT's	
Laboratory Sessions/ Experimental Learning:	011
1. Understand the structure of thin film transistors (TFTs) and to characterize their	8Hrs.
electrical properties.	
Video Link / Additional Online Information:	
1. https://youtu.be/P3BSQgLfLTY	
UNIT 4	
Solution-based Patterning Processes: Ink-jet printing, gravure, imprint lithography, spray	
pyrolysis, surface energy effects, multilayer patterning, design rule considerations. substrates	
for flexible electronics	
Laboratory Sessions/ Experimental Learning:	
1. Explore solution-based patterning techniques for fabricating flexible electronic devices.	8Hrs.
Learn about various materials, deposition methods, and patterning techniques used in	
solution-based processing.	
Video Link / Additional Online Information:	
1. <u>https://youtu.be/4LiWoZDQ3E</u> 4	
UNIT 5	
UNIT 5 Organic and Inorganic Electronic Devices: Contacts and interfaces to organic and	
	8Hrs.

Laboratory Sessions/ Experimental Learning:

1. Investigate the electrical properties of contacts and interfaces in organic and inorganic electronic devices.

Video Link / Additional Online Information:

1. <u>https://youtu.be/7in7KAZgvgQ</u>

Course Outcomes: After completing the course, the students will be able to

CO1	Apply material selection criteria to choose appropriate materials for different components of
	flexible electronic devices, such as substrates, conductive materials, and encapsulation layers.
CO2	Implement fabrication processes to construct prototype flexible electronic devices,
	demonstrating knowledge of material handling and process optimization.
	Select appropriate fabrication techniques based on specific application requirements for
CO3	flexible electronics, considering factors like resolution, throughput, and material
	compatibility.
CO4	Design thin film devices and circuits for specific flexible electronics applications, considering
04	performance parameters like mobility, on/off ratio, and power consumption.
CO5	Demonstrate proficiency in using modeling to analyze the behavior and performance of
05	materials and devices in flexible electronics applications.

Text B	Text Books:					
1	Flexible Electronics – Materials and applications, William S Wong, Salleo, Alberto, 2009,					
1.	Springer, ISBN 978-0-387-74363-9					
2	Large Area and Flexible Electronics, Mario Carioni, Yong-Yong Noh, 2015, Wiley ISBN:					
2.	978- 3-527-67999-7					

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the entire syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

00/00	Р	PO	PO	PO	PO	Р	Р	Р	Р	PO	PO	PO	PSO	PSO
CO/PO	01	2	3	4	5	06	07	08	09	10	11	12	1	2
CO1	3	3	2	2	1	-	-	-	-	-	-	1	2	2
CO2	3	3	2	2	1	-	-	-	-	-	-	1	2	2
CO3	3	3	2	2	1	-	-	-	-	-	-	1	2	2
CO4	3	3	2	2	1	-	-	-	-	-	-	1	1	1
CO5	3	3	2	2	1	-	-	-	-	-	-	1	1	1

B.E (VLSI DESIGN AND TECHNOLOGY)

	Semester: VII							
	SYSTEM VERILOG FOR VERIFICATION							
Cou	irse Code:	MVJ22VL71	CIE Marks: 50					
Cre	dits:	L:T:P: 3:0:2	SEE Marks: 50					
Hou	irs:	40L+26P	SEE Duration: 3 Hrs.					
Cou	irse Learning	Objectives: The students w	ill be able to					
1	Explain the fundamental syntax and features of SystemVerilog, including data types, operators, and control flow constructs, specifically in the context of verification.							
2	Develop SystemVerilog testbenches to verify the functionality of digital designs, utilizing constructs such as assertions, randomization, and functional coverage.							
3	3 Apply debugging techniques using SystemVerilog to identify and resolve issues in digital design verification, utilizing tools such as simulators and waveform viewers.							
4	Utilize threads and inter-process communication in test benches.							
5		0	of SystemVerilog verification environments, using thoroughness of the verification process.					

UNIT-I	
Verification Guidelines: The verification process, basic test bench functionality,	8 Hrs
directed testing, methodology basics, constrained random stimulus, randomization,	
functional coverage, test bench components, layered testbench, testbench	
performance	
Data Types: Built in data types, fixed and dynamic arrays, queues, associative	
arrays, linked lists, array methods, choosing a storage type, creating new types with	
typedef, creating user defined structures, typeconversion, enumerated types,	
constants and strings, expression width.	
Laboratory Sessions/ Experimental Learning:	
1. Write a simple module that uses logic and wire to model a basic combinational	
circuit.	
Video Link / Additional Online Information:	
1. <u>https://archive.nptel.ac.in/courses/108/108/108108122/</u>	
UNIT-II	

	0.77
Procedural Statements and Routines: Procedural statements, tasks, functions and	8 Hrs
void functions, task and function overview, routine arguments, returning from a	
routine, local data storage, time values.	
Converting the Test Bench and Design: Separating the test bench and design, the	
interface construct, stimulus timing, interface driving and sampling, system verilog	
assertions.	
Laboratory sessions/ Experimental Learning:	
1. Write a SystemVerilog module with immediate assertions to check for specific	
conditions (e.g., reset signal activation).	
Video Link / Additional Online Information:	
1. <u>https://archive.nptel.ac.in/courses/108/108/108108122/</u>	
UNIT-III	
Basic OOP and Randomization: Basic OOP: Introduction, think of nouns. not	8 Hrs
verbs, your first class, where to define a class, OOP terminology, creating new	
objects, object deallocation, using objects, static variables vs. global variables, class	
methods, detining methods outside of the class, scoping rules, using one class inside	
another, understanding dynamic objects, copying objects, public vs. local	
Randomization: Introduction, randomization in system verilog, constraint details,	
solution probabilities, valid constraints, inline constraints, random number	
functions, common randomization problems, iterative and array constraints, random	
control, random number generators.	
Laboratory Sessions/ Experimental Learning:	
1. Write a SystemVerilog module that generates random values for a simple	
signal (e.g., a 4-bit bus).	
Video Link / Additional Online Information:	
1. https://archive.nptel.ac.in/courses/108/108/108108122/	
UNIT-IV	
Threads and Interprocess Communication: Working with threads, disabling	8 Hrs
threads, interprocess communication, events, semaphores, mailboxes, building a test	
bench with threads and interprocess communication.	
Laboratory Sessions/ Experimental Learning:	

1. Write a SystemVerilog module that creates two parallel threads using fork and	
join to perform independent tasks (e.g., toggling two different signals).	
Video Link / Additional Online Information:	
1. <u>https://archive.nptel.ac.in/courses/108/108/108108122/</u>	
UNIT-V	
Functional Coverage: Coverage types, coverage strategies, simple coverage	8 Hrs
example, anatomy of cover group and triggering a cover group, data sampling,	
cross coverage, generic cover groups, coverage options, analyzing coverage data,	
measuring coverage statistics during simulation.	
Laboratory Sessions/ Experimental Learning:	
1. Write a SystemVerilog covergroup for a simple DUT, such as an ALU, to cover	
different operation modes (addition, subtraction, etc.).	
Video Link / Additional Online Information:	
1. https://archive.nptel.ac.in/courses/108/108/108108122/	
	1

Course (Dutcomes: After completing the course, the students will be able to
CO1	Demonstrate proficiency in using procedural statements, tasks, functions, and interface
	constructs in SystemVerilog.
CO2	Implement object-oriented programming principles and constrained randomization
	techniques in System Verilog.
CO3	Utilize threads and inter-process communication mechanisms in System Verilog
	testbenches
CO4	Analyze and measure functional coverage in simulations, utilizing functional coverage
004	
	metrics
CO5	Evaluate the effectiveness of different SystemVerilog verification strategies, identifying
	and optimizing areas for improvement to ensure comprehensive design validation.
	LIST OF EXPERIMENTS
S. No.	Experiment Name
1.	Write test benches for basic gates and FFs
2.	Write a testbench using TASK and FUNCTION for half adder and full adder

3.	Write a testbench for multiplier using randomization concepts.
4.	Write a testbench using OOP concepts of system verilog to verify the functionality of simple ALU of functions ADD, SUB, OR, AND and SHIFT etc. Model should not be used in practice as it fails when v > surface potentials.
5.	Write a testbench to verify ALU using functional coverage concepts of system verilog.
6.	write a testbench to verify 4 bit counter using functional coverage and randomization concepts of system verilog.
7.	write a testbench to verify a simple comparator using system assertion
8.	Write a testbench to verify 4 bit counter using threads and interprocess communication system verilog.

Text Bo	oks:
1.	Spear, Chris. SystemVerilog for Verification: A Guide to Learning the Testbench
	Language Features. Springer Science & Business Media.
Reference	ce Books:
1.	Ashok B Mehta, "System Verilog Assertions and Functional Coverage" Springer
	International Publishing, 2020.
2.	Stuart Sutherland, Simon Davidmann, and Peter Flake, "System Verilog for design: A
	guide to using system verilog for hardware design" Springer

CO-PO-PS	O Ma	appin	g											
CO/PO	P	PO	PO	PO	PO	Р	P	Р	P	PO	PO	PO	PSO	PSO
0/10	01	2	3	4	5	06	07	08	09	10	11	12	1	2
CO1	3	3	2	2	1	-	-	-	-	-	-	1	2	2
CO2	3	3	2	2	1	-	-	-	-	-	-	1	2	2
CO3	3	3	2	2	1	-	-	-	-	-	-	1	2	2
CO4	3	3	2	2	1	-	-	-	-	-	-	1	1	1
CO5	3	3	2	2	1	-	-	-	-	-	-	1	1	1

B.E (VLSI DESIGN AND TECHNOLOGY)

		Semes	ter: VII
		MIXED SIGNA	L VLSI DESIGN
Cou	rse Code:	MVJ22VL72	CIE Marks: 50
Cre	dits:	L: T:P: 3:0:2	SEE Marks: 50
Hou	irs:	40L+26P	SEE Duration: 3 Hrs.
Cou	rse Learning	Objectives: The students wi	ll be able to
1	1	undamental concepts and tec of analog and digital circuit	hniques of mixed-signal VLSI design, including integration.
2		ital converters (ADCs), digita	ectures used in mixed-signal systems, such as l-to-analog converters (DACs), and phase-locked
3	Model mixed	-signal behavior using Verilo	g-AMS.
4	Analyze the performance.	•	of DAC circuits to evaluate and optimize their
5	Analyze varie	ous ADC architectures.	

UNIT-I	
Pre-requisite: Analog VLSI design	8 Hrs
Introduction: An overview, analog and mixed-signal integrated design concepts,	
Revision of Analog VLSI design: MOSFET, single stage, differential and Op-	
Amp Amplifier.	
Advanced Analog Circuits: Basic switched capacitor, active integrator, sample-	
and-hold amplifier.	
Laboratory Sessions/ Experimental Learning:	
1. Design and simulate a differential amplifier using an electronic design	
automation (EDA) tool. Analyze the DC operating point, small-signal	
parameters, and frequency response of the differential amplifier.	
Video Link / Additional Online Information:	
1. <u>https://archive.nptel.ac.in/courses/108/108/108108122/</u>	
UNIT-II	

Verilog A/AMS for Modeling: Hardware description languages, the verilog	8 Hrs
family of languages, mixed-signal simulators, applications of verilog-ams,	
traditional approaches to mixed-signal design, Mixed-Signal Modeling:	
Modeling discrete behavior, modeling mixed-signal behavior, structural Verilog-	
AMS.	
Verilog A Language for AMS Modeling: Basics: Comments, identifiers,	
keywords, compiler directives, Data Types: Constants, variables, parameters,	
natures and disciplines, ports, nets, and nodes, branches	
Laboratory sessions/ Experimental learning:	
1. Design a mixed-signal system using structural Verilog-AMS, such as a	
digital control logic driving an analog filter.	
Video Link / Additional Online Information:	
1. https://archive.nptel.ac.in/courses/108/108/108108122	
UNIT-III	
Verilog A Language for AMS Modeling: Signals: Continuous-time signal	8 Hrs
access, contributions, expressions: operators, functions, mathematical functions,	
logical functions, environment functions, analog operators, thresholding	
functions, limiting functions, small-signal stimulus functions, user-defined	
functions. System functions and tasks, analog behaviour, discrete-event	
behaviour, mixed behaviour and design hierarchy.	
Laboratory Sessions/ Experimental Learning:	
1. Write a Verilog-A module to model a simple RC circuit and analyze the	
continuous-time response.	
Video Link / Additional Online Information:	
1. <u>https://archive.nptel.ac.in/courses/108/108/108108122/</u>	
UNIT-IV	
Data Converter Fundamental: Analog versus discrete time signals, converting	8 Hrs
analog signals to digital signals, sample-and-hold (S/H) characteristics, digital-	
to-analog converter (DAC) specifications, analog-to-digital converter (ADC)	
specifications, mixed-signal layout issues.	
Data Converter Architectures: DAC Architectures: Digital input code, resistor	
string, current steering, DAC trimming or calibration, glitch	

s
-

Course (Dutcomes: After completing the course, the students will be able to
CO1	Demonstrate a thorough understanding of the fundamental concepts and principles of
	analog VLSI design
CO2	Apply Verilog-AMS to model and simulate the behavior of mixed-signal systems,
	integrating both analog and digital components to accurately represent real-world
	circuits and systems.
CO3	Utilize Verilog-A for the modeling and simulation of analog behavior
CO4	Understand the operating principles, design considerations, and performance
	characteristics of digital-to-analog converters (DACs) and analog-to-digital converters
	(ADCs).
CO5	Analyze and compare various ADC architectures, understanding their design trade-offs,
	applications, and performance implications in different signal processing contexts.
	LIST OF EXPERIMENTS
S. No.	Experiment Name
1.	Write a Verilog-A model for linear conductor/resistor, capacitor and Inductor.
2.	Write a Verilog-A/MS models for a linear shunt RLC.

3.	Write a Verilog code for a constant valued current source and voltage source.
4.	Verilog-A/MS model for a junction diode and junction diode with resistors
5.	Write Verilog-A model for a linear voltage control voltage source (VCVS)
6.	Write a Verilog-A/MS model for an ideal periodic (self-clocked) sample and
7.	Write a Verilog-A/MS model that measures and saves the time interval between
8.	Write a Verilog-A/MS model for an N-bit analog-to-digital converter
9.	Write a Verilog-A/MS model for an N-bit analog-to-digital converter
10.	Write a Verilog-A/MS model for an N-bit digital-to-analog converter.

Text Bo	oks:
1.	Behzad Razavi, Design of Analog CMOS Integrated Circuits", McGraw Hill Education
	Publication, 2017.
2.	Ken Kundert and Olaf Zinke, "The Designer's Guide to Verilog-AMS", Kluwer
	Academic Publishers.
3.	Arjuna Marzuki, "CMOS Analog and Mixed-signal Circuit Design: Practices and
	Innovations", 1st Edition, CRC Press, 2020.
Referen	ce Books:
1.	R. Jacob Baker, "CMOS Circuit Design, Layout, and Simulation, IEEE press Wiley
	Fourth Edition, 2019
2.	Phillip E. Allen, Douglas R. Holberg, "CMOS Analog Circuit Design" Oxford
	University Press Second Edition.

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20

marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

	Р	PO	PO	PO	PO	Р	Р	Р	Р	PO	PO	PO	PSO	PSO
CO/PO	01	2	3	4	5	06	07	08	09	10	11	12	1	2
CO1	3	3	2	2	1	-	-	-	-	-	-	1	2	2
CO2	3	3	2	2	1	-	-	-	-	-	-	1	2	2
CO3	3	3	2	2	1	-	-	-	-	-	-	1	2	2
CO4	3	3	2	2	1	-	-	-	-	-	-	1	1	1
CO5	3	3	2	2	1	-	-	-	-	-	-	1	1	1

CO DO DEO Ma •

B.E. (VLSI Design and Technology)

	Semester: VII								
	VLSI PHYSICAL DESIGN								
Course (Code:	MVJ22VL73	CIE Marks:50						
Credits:		L:T:P:S 4:0:0:Y	SEE Marks: 50						
Hours:		40L	SEE Duration: 3 Hrs						
Course I	Learning Objective	es: The students will be able to	1						
1	Explain the fundamental concepts and techniques involved in VLSI physical								
1	including floorplanning, placement, routing, and timing analysis.								
2	Apply various algorithms to partition circuits and optimize floorplanning.								
3	Implement placement strategies to minimize wirelength and maximize performance.								
4	Design efficient routing and clock distribution using various algorithms.								
5	Apply techniques	Apply techniques for optimizing the physical layout of VLSI circuits, focusing on							
	minimizing area, p	oower consumption, and signal delay.							

UNIT 1

VLSI Design and Process: Introduction, architectural design, logic design, physical design, Layout Styles: Full-custom layout, gate-array layout, standard- cell layout, macro-cell layout, programmable logic arrays, FPGA layout, comparison of different design styles, difficulties in physical design, definitions and notation: Nets and netlist, connectivity information, weighted nets, grids, trees, and distances.

Laboratory Sessions/ Experimental Learning:

 1. Create and optimize layouts for custom cells using electronic design automation
 8Hrs.

 (EDA) tools. Verify the layout against design rules and perform layout versus
 8

 schematic (LVS) checks.
 8

Video Link / Additional Online Information:

1. https://onlinecourses.nptel.ac.in/noc21_cs12/preview

UNIT 2

Circuit Partitioning and Floor planning: Circuits Partitioning: Brief details of circuit					
partitioning, Cost Function and Constraints: Bounded size partitions, minimize external	0TT				
wiring, Approaches to Partitioning Problem: Kernighan-Lin algorithm, variations of	8Hrs.				
Kernighan-Lin algorithm, Fiduccia Mattheyses heuristic, simulated annealing.					

Floor planning: Brief introduction of floorplanning, floorplanning model, cost functions,							
terminologies related to floorplanning, Approaches to Floorplanning: Cluster growth,							
simulated annealing, analytical technique and dual graph technique.							
Laboratory Sessions/ Experimental Learning:							
1. Analyze the impact of floorplanning on performance metrics such as wirelength, area,							
and power.							
Video Link / Additional Online Information:							
1. <u>https://onlinecourses.nptel.ac.in/noc21_cs12/preview</u>							
2. https://onlinecourses.nptel.ac.in/noc23_ee137/preview h							
UNIT 3	<u> </u>						
Circuits Placement: Challenges in Placement, Cost functions and constraints, estimation							
of wirelength, minimize total wirelength, minimize maximum cut, minimize maximum							
density, maximize performance.							
Approaches to Placement: Partition-based methods, limitation of the min-cut heuristic,							
simulated annealing, numerical techniques, artificial neural networks and genetic algorithm.							
Laboratory Sessions/ Experimental Learning:	8Hrs.						
1. Analyze the impact of placement on performance metrics such as wirelength, timing,							
and congestion.							
Video Link / Additional Online Information:							
1. <u>https://onlinecourses.nptel.ac.in/noc21_cs12/preview</u>							
2. https://onlinecourses.nptel.ac.in/noc23_ee137/preview							
UNIT 4							
Routing or automated Interconnections and Clock Design: Introduction and challenges							
of routing							
Grid Routing: Maze routing algorithms, line search algorithms, power and ground routing							
and multi-layer routing.							
Global Routing: Sequential global routing, integer programming, global routing by							
simulated annealing, and hierarchical global routing.	8Hrs.						
Channel Routing: Brief of channel routing, cost function and constraints, approaches to							
channel routing: basic left-edge algorithm, dogleg algorithm, yoshimura and kuh algorithm,							
greedy channel router, switchbox routing.							
Clock routing and power/Ground							
	1						

Laboratory Sessions/ Experimental Learning:

1. Perform grid routing on the imported design and analyze the initial routing results.

Video Link / Additional Online Information:

- 1. <u>https://onlinecourses.nptel.ac.in/noc21_cs12/preview</u>
- 2. <u>https://onlinecourses.nptel.ac.in/noc23_ee137/preview</u>

UNIT 5

Layout Generation, Editors and Compaction:

Brief About Different Types of Layout, Behavioral level, structural level, physical level, layout generation: standard-cells, programmable logic array. standard-cell generation and optimizations, optimization of gate-matrix layout, **Programmable Logic Arrays:** PLA personality, optimization of PLAs, capabilities of layout editors, different types of layout system,

Layout Compaction: Compaction Algorithms, Horizontal Virtual Grid Compaction, Constraint Graph Compaction,

8Hrs.

Real Time Logic Validations: Integrated logic analyzer (Xilinx ILA IP) and Virtual input and output (VIO)

Laboratory Sessions/ Experimental Learning:

1. Enter a sample combinational logic design and set up the initial PLA environment.

Video Link / Additional Online Information:

1. <u>https://onlinecourses.nptel.ac.in/noc21_cs12/preview</u>

Course	e Outcomes: After completing the course, the students will be able to
CO1	Identify and explain different VLSI design styles, including their respective challenges and
	notation.
CO2	Apply a variety of algorithms to effectively partition VLSI circuits, ensuring balanced
02	partitioning that meets design constraints.
CO3	Implement advanced placement strategies aimed at minimizing wirelength, thereby reducing
	delay and power consumption.
CO4	Design efficient routing schemes using various algorithms to ensure signal integrity and
04	minimize delays.
CO5	Assess the trade-offs involved in physical design decisions and propose optimal solutions
	based on analysis and evaluation.

Text Books:								
1.	Sadiq M. Sait, and Habib Youssef, "VLSI physical design automation: theory and practice", Vol. 6. World Scientifi.							
2.	Sneh Saurabh, "Introduction to VLSI design flow" Cambridge University Press, 2023.							

Reference Books:

1.	Naveed A. Sherwani, "Algorithms for VLSI physical design automation", Springer Science & Business Media, 2012.
2.	Majid S Sarrafzadeh, and C. K. Wong, "An introduction to VLSI physical design", McGraw-Hill Higher Education.

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the entire syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

CO-PO-PSO Mapping														
CO/PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
CO1	3	2	2	-	-	-	-	-	-	-	-	-	2	1
CO2	3	2	2	-	-	-	-	-	-	-	-	-	1	1
CO3	3	2	2	-	-	-	-	-	-	-	-	-	1	1
CO4	3	2	2	-	2	2	-	-	-	-	-	-	1	1
CO5	3	2	2	2	-	2	-	-	-	-	-	-	1	1

B.E. (VLSI Design and Technology)

	Semester: VII									
	ADVANCES IN VLSI DESIGN									
Course Code:MVJ22VL741CIE Marks:50										
Credit	s:	L:T:P: 3:0:0 SEE Marks: 50								
Hours	ours: 40L SEE Duration: 3 Hrs									
Course	e Learning Obje	ectives: The students will be	e able to							
1	Understand various implementation strategies for digital integrated circuits, including standard cell-based design, gate array, and full custom design.									
2	Analyze the impact of interconnects on VLSI circuit performance and reliability, and develop strategies to mitigate issues such as signal delay, crosstalk, and power consumption.									
3	Analyze the timing issues in digital integrated circuit (IC) design, and learn techniques to analyze, optimize, and ensure timing closure in complex digital systems.									
4	Implement techniques for various memory and array structures in digital VLSI circuits, such as SRAM, DRAM, ROM, and CAM.									
5	Analyze the fa	Analyze the factors affecting memory reliability and yield in VLSI design								

UNIT 1

8Hrs.

Implementation Strategies for Digital ICs: Introduction, from custom to semicustom and
structured array design approaches, custom circuit design, cell- based design methodology,
standard cell, compiled cells, macrocells, megacells and intellectual property, semi-custom
design flow, array-based implementation approaches, pre-diffused (or mask-programmable)
arrays, pre-wired arrays

Laboratory Sessions/ Experimental Learning:

1. Design, synthesize, and layout a digital circuit using a standard cell library.

Video Link / Additional Online Information:

1. https://archive.nptel.ac.in/courses/117/101/117101004/

UNIT 2

Coping with Interconnect: Introduction, capacitive parasitics, capacitance and reliabilitycross talk, capacitance and performance in CMOS, resistive parasitics, resistance and reliability-ohmic voltage drop, electromigration, resistance and performance-RC delay, inductive parasitics, inductance and reliabilityvoltage drop, inductance and performancetransmission line effects

Laboratory Sessions/ Experimental Learning:

1. Analyze and mitigate issues such as signal delay, crosstalk, and power consumption associated with VLSI interconnects.

Video Link / Additional Online Information:

1. https://archive.nptel.ac.in/courses/117/101/117101004/

UNIT 3

Timing Issues In Digital Circuits: Introduction, timing classification of digital systems, synchronous interconnect, mesochronous interconnect, plesiochronous interconnect, asynchronous interconnect, synchronous design — an in-depth perspective, synchronous timing basics, sources of skew and jitter, clock- distribution techniques, latch-base clocking, self-timed circuit design, self- timed logic - an asynchronous technique, completion-signal generation, self- timed signaling, synchronizers and arbiters, synchronizers-concept and implementation, arbiters, clock synthesis and synchronization using a phase- locked loop, basic concept, building blocks of a PLL.

8Hrs.

8Hrs.

Laboratory Sessions/ Experimental Learning:

1. Understand and analyze timing issues in digital circuits and learn to identify and resolve timing violations using various techniques

Video Link / Additional Online Information:

1. https://archive.nptel.ac.in/courses/117/101/117101004/

UNIT 4

Designing Memory and Array Structures: Introduction, memory classification, memory architectures and building blocks, the memory core, read-only memories, nonvolatile read-write memories, read-write memories (RAM), contents-addressable or associative memory (CAM), memory peripheral circuitry, the address decoders, sense amplifiers, voltage references, drivers/buffers, timing and control.

Laboratory Sessions/ Experimental Learning:

1. Design, simulate, and analyze the performance of a 6T SRAM cell. Evaluate the stability, read/write operations, and power consumption of the SRAM cell.

Video Link / Additional Online Information:

1. <u>https://archive.nptel.ac.in/courses/117/101/117101004/</u>

UNIT 5

Memory Reliability and Yield: Signal-to-noise ratio, memory yield, power dissipation in memories, sources of power dissipation in memories, partitioning of the memory, addressing the active power dissipation, data retention dissipation

Laboratory Sessions/ Experimental Learning:

1. Analyze factors affecting memory reliability and yield in VLSI circuits. Implement techniques to improve memory reliability, such as error correction codes (ECC) and redundancy.

Video Link / Additional Online Information:

1. https://archive.nptel.ac.in/courses/117/101/117101004/

Course Outcomes: After completing the course, the students will be able to						
CO1	Apply design automation for complex circuits using the different implementation methodology like custom versus semi-custom, hardwired versus fixed, regular array versus ad-hoc.					
CO2	Utilizes the approaches to minimize the impact of interconnect parasitics on performance, power dissipation and circuit reliability					
CO3	Analyze and apply synchronous, clocked approaches to impose the ordering of switching events, ensuring that desired timing constraints are met					
CO4	Analyze the reliability of the memory structures					
CO5	Analyze the role of peripheral circuitry such as the decoders, sense amplifiers, drivers and control circuitry in the design of reliable and fast memories.					

Text B	ooks:
1	Jan M Rabey, AnanthaChandrakasan, Borivoje, Digital Integrated Circuits-A Design
1.	Perspective, PHI, 2nd Edition.

Reference Books:

1. M. Smith, Application Specific Integrated circuits, Addison Wesley

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO-	CO-PO-PSO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2	1	1	1	-	1	-	-	1	1	1
CO2	3	3	2	2	1	1	1	-	1	-	-	1	1	1
CO3	3	3	2	2	1	1	1	-	1	-	-	1	1	1
CO4	3	3	2	2	1	1	1	-	1	-	-	1	1	1
CO5	3	3	2	2	1	1	1	-	1	-	-	1	1	1

B.E. (VLSI Design and Technology)

	Semester: VII									
	MEMORY DEVICES AND CIRCUITS									
Course	Code:	MVJ22VL742	CIE Marks:50							
Credits	5:	L:T:P: 3:0:0	SEE Marks: 50							
Hours:		40L	SEE Duration: 3 Hrs							
Course	Learning Obje	ctives: The students will be able to								
1	Understand the evolution and significance of memory technologies in high-performance computing and AI/ML									
2	Analyze SRAM	A structures and their applications in c	lifferent computing environments.							
3	Evaluate advanced DRAM designs and architectures, considering their performance and scalability.									
4	Describe various non-volatile memory types and their architectures.									
5		ry reliability and radiation effects, pr ent memory technologies.	oposing strategies to mitigate potential							

UNIT 1	
Introduction: History of memory technologies, importance of memory technologies in high performance computing and AI/ML. Different categories of volatile and non-volatile memories Laboratory Sessions/ Experimental Learning:	
 Perform read and write operations on various memory devices. Video Link / Additional Online Information: <u>https://archive.nptel.ac.in/courses/127/105/127105234/</u> <u>https://onlinecourses.nptel.ac.in/noc20-cs43/preview</u> 	8Hrs.
UNIT 2	
Volatile memories for SRAM: Static random access memories (SRAMs): SRAM cell structure- MOS SRAM architecture, MOS SRAM cell and peripheral circuit operation, bipolar SRAM technologies, silicon on insulator (SOI) technology, advanced SRAM architectures and technologies, application specific SRAMs	8Hrs.
Laboratory Sessions/ Experimental Learning: 1. Compare bipolar SRAM with CMOS SRAM in terms of speed, power, and area.	

Video Link / Additional Online Information:

- 1. https://archive.nptel.ac.in/courses/127/105/127105234/
- 2. <u>https://onlinecourses.nptel.ac.in/noc20-cs43/preview</u>

UNIT 3

Volatile memories for DRAM: DRAM technology development, DRAMs cell theory and advanced cell structures, BiCMOS DRAMs-soft error failure in DRAMs, advanced DRAM designs and architecture, application specific DRAMs like GDRAM, high bandwidth memories (HBM).

Laboratory Sessions/ Experimental Learning:

Create a simplified circuit model of a BiCMOS DRAM cell using CAD tools. Simulate the DRAM cell operation and introduce noise or particle effects to simulate soft errors.

Video Link / Additional Online Information:

- 1. https://archive.nptel.ac.in/courses/127/105/127105234/
- 2. https://onlinecourses.nptel.ac.in/noc22_ee08/preview

UNIT 4

Nonvolatile Memories: Masked read, only memories (ROMs): High density ROMs, programmable read-only memories (PROMs)- bipolar PROMs, CMOS PROMs, EPROM, floating Gate EPROM cell- one, time programmable (OTP) (EEPROMs), EEPROM technology and architecture, nonvolatile SRAM-Flash memories (EPROMs or EEPROM), advanced flash memory architecture, advanced non-volatile random access memories MRAM, RRAM and PC-RAMs.

Laboratory Sessions/ Experimental Learning:

1. Understand the basic principles and operation of Programmable Read-Only Memories (PROMs).

Video Link / Additional Online Information:

- 1. https://archive.nptel.ac.in/courses/127/105/127105234/
- 2. <u>https://onlinecourses.nptel.ac.in/noc22_ee08/preview</u>

UNIT 5

Semiconductor Memory Reliability and Radiation Effects:General reliability issues,RAM failure modes and mechanism, non-volatile memory reliability, reliability modeling8Hrs.

8Hrs.

and failure rate prediction, design for reliability, reliability test structures, reliability screening and qualification. Radiation effects, single event phenomenon (SEP)- radiation hardening techniques, radiation hardening process and design issues, radiation-memory characteristics, radiation hardness assurance and testing, radiation dosimetry, water level radiation testing and test structures.

Laboratory Sessions/ Experimental Learning:

1. Identify common failure modes in RAM devices. Learn methods to diagnose and troubleshoot RAM failures.

Video Link / Additional Online Information:

- 1. https://archive.nptel.ac.in/courses/108/105/108105157/
- 2. https://www.digimat.in/nptel/courses/video/108105157/L15.html

Course Outcomes: After completing the course, the students will be able to

CO1	Demonstrate an understanding of the historical development and current trends in memory technologies for high-performance computing and AI/ML applications.
CO2	Analyze different SRAM architectures, including static cell designs and associative memory structures.
CO3	Evaluate advanced DRAM technologies such as DDR, HBM, and emerging designs like STT- RAM and MRAM.
CO4	Understand nonvolatile memory types including Flash memory, EEPROM, PCM, and others, focusing on their operational principles and applications.
CO5	Address the challenges and mitigation strategies related to memory reliability.

Text Books:							
	Ashok K Sharna, "Advanced Semiconductor Memories – Architecture, Design and						
1.	Applications", Wiley publication.						
2.	Yu, Shimeng. Semiconductor Memory Devices and Circuits. CRC Press, 2022.						

Reference Books:

1.	Jack Luecke, William N. Carr, "Semiconductor Memory Design & Application", Mc-Graw
	Hill.

Continuous Internal Evaluation (CIE): Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50 =100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO-PSO Mapping														
CO/PO	PO	PSO	PS0											
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2	2	-	-	-	-	-	-	-	-	-	2	2
CO2	3	2	2	-	-	-	-	-	-	-	-	-	2	2
CO3	3	2	2	-	-	-	-	-	-	-	-	-	2	2
CO4	3	2	2	-	2	2	-	-	-	-	-	-	1	2
CO5	3	2	2	2	-	2	-	-	-	-	-	-	1	2

B.E. (VLSI Design a	and Technology)
---------------------	-----------------

	Semester: VII								
	NANOELECTRONICS								
Course Code:MVJ22VL743CIE Marks:50									
Credits	S:	L:T:P: 3:0:0	SEE Marks: 50						
Hours:		40L	SEE Duration: 3 Hrs						
Course	e Learning Obje	ctives: The students will be a	ble to						
1	Understand the	e fundamentals of Ideal MOS ca	apacitor.						
2	Describe the non-idealities in MOS capacitors, such as interface traps, oxide charges, and								
2	their impact on device performance.								
3	Analyze the im	rformance, identifying the key challenges and							
limitations associated with short channel effects.									
	Evaluate the r	eliability issues in MOSFETs	such as hot carrier injection, negative bias						
4	temperature instability (NBTI), and time-dependent dielectric breakdown (TDDB), and								
propose strategies for mitigation									
5	Assess differe	nt FET structures and nano	devices, comparing their advantages and						
3	limitations in terms of performance, scalability, and application potential.								

UNIT 1

8Hrs.

Prerequisites: Physics of semiconductor device

Idea MOSCAP: Ideal MOS fundamentals, accumulation, depletion and inversion, threshold voltage, oxide and interface charges, CV characteristics of MOS, definition of technology node

Laboratory Sessions/ Experimental Learning:

1. Measure C-V characteristics of p channel MOSFET

Video Link / Additional Online Information:

1. https://nptel.ac.in/courses/117108047

UNIT 2

Non Ideal Effects: Impact of gate work function, oxide and interface charges, poly
depletion, quantum capacitance, gate leakage, effect on C-V characteristics.8Hrs.

Laboratory Sessions/ Experimental Learning:	
1. MOS parameter extraction from C-V.	
Video Link / Additional Online Information:	
1. https://nptel.ac.in/courses/117108047	
UNIT 3	
Scaling Effects: MOS Scaling theory, issues in scaling MOS transistors, short channel	
effects, channel length modulation, drain induced barrier lowering, punch through, velocity	
saturation, SiO ₂ vs high-k gate dielectrics.	
Laboratory Sessions/ Experimental Learning:	8Hrs
 Calculate the threshold voltage of n-channel mosfet. 	
Video Link / Additional Online Information:	
1. https://nptel.ac.in/courses/117108047	
UNIT 4	
MOS Transistor Reliability: Overview, negative bias temperature instability, positive bias	
temperature instability, substrate and gate current, hot carrier degradation, stress induced	
leakage current.	
Laboratory Sessions/ Experimental Learning:	8Hrs
1. To examine the I-V characteristics of p-channel MOSFET.	
Video Link / Additional Online Information:	
1. <u>https://nptel.ac.in/courses/117108047</u>	
LINET 5	
UNIT 5	[
Emerging Devices: SOI - PDSOI and FDSOI, vertical transistors - FinFET and surround	
gate FET. Emerging nano materials: Nanotubes, nanorods and other nano structures	
Laboratory Sessions/ Experimental Learning:	8Hrs
1. Draw the I-V of SOI and conventional MOSFET.	
Video Link / Additional Online Information:	

1. https://nptel.ac.in/courses/117108047

e Outcomes: After completing the course, the students will be able to
Analyze the non-ideal effects in MOSCAP
Analyze the measured I-V for MOSFET that includes the scaling effects
Apply knowledge of stress and temperature effects to understand their impact on the performance of MOSFETs.
Describe the various FET device structures and their operational principles.
Analyze the performance metrics of devices based on emerging nanomaterials and structures, comparing them to conventional materials and devices to evaluate potential benefits and limitations for future nanoelectronic applications.
ooks:
Semiconductor Device Fundamentals Book by Robert F. Pierret
nce Books:
Fundamentals of Modern VLSI Devices, Y. Taur and T. Ning, Cambridge University Press.
Silicon VLSI Technology, Plummer, Deal, Griffin, Pearson Education India.

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the

entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO/P	PO	PO	РО	PO	PO	PO	PO	РО	PO	PO1	PO1	PO1	PSO	PSO
0	1	2	3	4	5	6	7	8	9	0	1	2	1	2
CO1	3	3	2	2	1	1	1	-	1	-	-	1	2	2
CO2	3	3	2	2	1	1	1	-	1	-	-	1	2	2
CO3	3	3	2	2	1	1	1	-	1	-	-	1	2	2
CO4	3	3	2	2	1	1	1	-	1	-	-	1	2	2
CO5	3	3	2	2	1	1	1	-	1	-	-	1	2	2

High-3, Medium-2, Low-1

B.E (VLSI Design an	nd Technology)
---------------------	----------------

	Semester: VII								
	STATIC TIMING ANALYSIS								
Co	Course Code: MVJ22VL744 CIE Marks:50								
Cr	Credits: L:T:P: 3:0:0 SEE Marks: 50								
Ho	ours:	40 T	SEE Duration: 3 Hrs						
Co	urse Learning Objectives:	The students will be abl	e to						
1	Explain the static timing analysis (STA) environment and its key concepts, including setup and hold time, clock skew, and timing paths.								
2	Analyze interconnect parasitics, including resistance, capacitance, and inductance, and their impact on signal integrity.								
3	Illustrate the process of interconnect delay calculations, including the use of Elmore delay and other models to estimate propagation delays in interconnects.								
4	Utilize a standard cell library to identify timing models and delay models for various cells, and apply these models to calculate delays in digital circuits.								
5	Analyze the delay calculations and timing verification concepts of flip-flops, including setup and hold time analysis, and assess their impact on the overall timing closure of a digital design.								

UNIT-1	
Introduction: Nanometer designs, what is static timing analysis? why static timing analysis?	
crosstalk and noise, design flow, CMOS digital designs, FPGA designs, asynchronous designs,	
STA at different design phases	
STA Concepts: CMOS logic design, basic MOS structure, CMOS logic gate, standard cells,	
modeling of CMOS cells, switching waveform, propagation delay, slew of a waveform, skew	
between signals	8Hrs.
Laboratory Sessions/ Experimental Learning:	
1. Analyze static timing parameters of basic gates and flipflops.	
Video Link / Additional Online Information:	
1. http://www.digimat.in/nptel/courses/video/117106109/L28.html	
UNIT-2	
Standard Cell Library: Pin capacitance, timing modeling, linear timing model, non-linear	-
delay model, example of non-linear, delay model lookup, threshold specifications and slew	8Hrs.
derating timing models - combinational cells, delay and slew models, positive or negative	

unate, general combinational block, timing models - sequential cells

Laboratory Sessions/ Experimental Learning:	
1. Use standard cells to design digital circuits. Perform layout generation and design rule	
checking (DRC)	
Video Link / Additional Online Information:	
1. https://onlinecourses.nptel.ac.in/noc24_ee77/preview	
UNIT-3	8Hrs
Interconnect Parasitics: RLC for interconnect, wireload models, interconnect trees,	
specifying wire load models, representation of extracted parasitic, detailed standard parasitic	
format, reduced standard parasitic format, standard parasitic exchange format, representing	
coupling capacitances	
Delay Calculation: Overview, delay calculation basics, delay calculation with interconnect,	
pre-layout timing, post-layout timing, cell delay using effective capacitance, interconnect	
delay, Elmore delay, higher order interconnect delay estimation, full chip delay calculation	
Laboratory Sessions/ Experimental Learning:	
1. Analyze the delays of various basic gates and flipflops.	
Video Link / Additional Online Information:	
1. <u>https://onlinecourses.nptel.ac.in/noc24_ee77/preview</u>	
UNIT-4	
Configuring the STA Environment: What is the STA environment? specifying clocks, clock	-
uncertainty, clock latency, generated clocks, example of master clock at clock gating cell	
output, generated clock using edge and edge shift options, generated clock using invert option,	
clock latency for generated clocks, typical clock generation scenario	
	8Hr
Laboratory Sessions/Experimental Learning.	1
Laboratory Sessions/ Experimental Learning:	
1. For any combinational and sequential circuit, perform the configuration the STA	
1. For any combinational and sequential circuit, perform the configuration the STA Environment and verify the STA environment.	
 For any combinational and sequential circuit, perform the configuration the STA Environment and verify the STA environment. Video Link / Additional Online Information: 	
1. For any combinational and sequential circuit, perform the configuration the STA Environment and verify the STA environment.	
 For any combinational and sequential circuit, perform the configuration the STA Environment and verify the STA environment. Video Link / Additional Online Information: 	
 For any combinational and sequential circuit, perform the configuration the STA Environment and verify the STA environment. Video Link / Additional Online Information: 1.<u>https://onlinecourses.nptel.ac.in/noc24_ee77/preview</u> 	8Hr

hold timing check, flip-flop to flip- flop path, hold slack calculation, input to flip-flop path, flip-flop to output path with actual clock

Laboratory Sessions/ Experimental Learning:

1. For any combinational and sequential circuit, perform the timing verification.

Video Link / Additional Online Information:

https://onlinecourses.nptel.ac.in/noc24_ee77/preview

9	
Course	e Outcomes: After completing the course, the students will be able to
CO1	Utilize the principles and methodologies of Static Timing Analysis (STA) tools to evaluate the
	timing of digital circuits.
	Describe the process of calculating interconnect parasitics, including resistance, capacitance,
CO2	and inductance, and discuss their effects on signal integrity and circuit timing.
	and inductance, and discuss their effects on signal integrity and circuit timing.
	Apply techniques to calculate interconnect delays, incorporating the impact of parasitics, and
CO3	assess their implications for overall circuit performance.
CO4	Utilize timing and delay models from standard cell libraries to conduct precise timing analysis
	and optimization of digital circuits.
	Analyze delay calculations for flip-flops, understanding and verifying critical timing
CO5	parameters such as setup time, hold time, and clock-to-Q delay to ensure proper circuit
	functionality.
Text B	ooks:
1.	Bhasker, R Chadha, "Static Timing Analysis for Nanometer Designs: A Practical Approach",
1.	Springer Reference Books
2.	Sridhar Gangadharan, Sanjay Churiwala, "Constraining Designs for Synthesis and Timing
2.	Analysis – A Practical Guide to Synopsis Design Constraints (SDC)", Springer, 2013
Refere	nce Books:
1.	Naresh Maheshwari and SachinSapatnekar, "Timing Analysis and Optimization of Sequential
1.	Circuits", Springer Science and Business Media
I	

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of

quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50 =100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the entire syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO-	CO-PO-PSO Mapping													
CO/P	DO1	PO	PO1	PSO	PS0									
0	PO1	2	3	4	5	6	7	8	9	10	11	2	1	2
CO1	3	2	2	-	-	-	-	-	-	-	-	-	2	2
CO2	3	2	2	-	-	-	-	-	-	-	-	-	2	2
CO3	3	2	2	-	-	-	-	-	-	-	-	-	2	2
CO4	3	2	2	-	2	2	-	-	-	-	-	-	1	2
CO5	3	2	2	2	-	2	-	-	-	-	-	-	1	2

		Semester: V	П					
	VLSI DESIGN FOR SIGNAL PROCESSING							
Cours	Course Code: MVJ22VL751 CIE Marks:50							
Credit	ts:	L:T:P: 3:0:0	SEE Marks: 50					
Hours:		40L	SEE Duration: 3 Hrs					
Cours	e Learning Obje	ectives: The students will be ab	le to					
1	1 Explain essential DSP algorithms, including finite impulse response (FIR) and infinite impulse response (IIR) filtering, and their applications in signal processing.							
2	Apply algorithmic strength reduction techniques to digital filters and transforms, optimizing computational efficiency and resource utilization in various signal processing applications.							
3	Implement pipelining and parallel processing techniques for infinite impulse response (IIR)filters, demonstrating their effectiveness in enhancing processing speed and efficiency.							
4	Analyze and design bit-level arithmetic architectures, such as adders, multipliers, and shifters, optimizing them for performance, area efficiency, and power consumption in digital circuits.							
5	Examine the principles and implementation methodologies of synchronous wave and asynchronous pipelining techniques in digital circuit design							

B.E. (VLSI Design and Technology)

UNIT 1					
Introduction to DSP systems: Typical DSP algorithms, data flow and dependence graphs					
- critical path, loop bound, iteration bound, longest path matrix algorithm					
Pipelining and Parallel processing of FIR filters: Pipelining and parallel processing for					
low power.					
Laboratory Sessions/ Experimental Learning:					
1. Implement pipelining and parallel processing techniques to optimize the performance					
of FIR filters.					
Video Link / Additional Online Information:					
1. https://onlinecourses.nptel.ac.in/noc20_ee44/preview					
UNIT 2					

Retiming – Definitions and properties, unfolding – an algorithm for unfolding, properties	
of unfolding, sample period reduction and parallel processing application	
Algorithmic strength reduction in filters and transforms: 2-parallel FIR filter, 2-	
parallel fast FIR filter, DCT architecture, rank-order filters, odd-even merge-sort	
architecture, parallel rank-order filters.	
	011
Laboratory Sessions/ Experimental Learning:	8Hrs.
1. Implement retiming and algorithmic strength reduction techniques to optimize the	
performance of digital filters and transforms.	
Video Link / Additional Online Information:	
1. https://onlinecourses.nptel.ac.in/noc20_ee44/preview_	
UNIT 3	
Pipelining and parallel processing of IIR filters: Fast convolution – cook-toom	
algorithm, modified cook-toom algorithm, pipelined and parallel recursive filters – look-	
ahead pipelining in first-order IIR filters, look-ahead pipelining with power- of-2	
decomposition, clustered look-ahead pipelining, parallel processing of IIR filters,	
combined pipelining and parallel processing of IIR filters.	
Laboratory Sessions/ Experimental Learning:	8Hrs.
1. Implement pipelining and parallel processing techniques to optimize the performance	
of IIR filters.	
Video Link / Additional Online Information:	
1. https://onlinecourses.nptel.ac.in/noc20_ee44/preview_	
UNIT 4	
Bit-level arithmetic architectures – Parallel multipliers with sign extension, parallel	
carry-ripple and carry-save multipliers, design of Lyon's bit-serial multipliers using	
Horner's rule, bit-serial FIR filter, CSD representation, CSD multiplication using	
Horner's rule for precision improvement, distributed arithmetic fundamentals and FIR	8Hrs.
filters	
Laboratory Sessions/ Experimental Learning:	
Laboratory Sobiolio, Experimental Learning.	

1. Impl	ement and analyze bit-level arithmetic operations using ripple carry adder (RCA)		
Video L	ink / Additional Online Information:		
1. <u>https</u>	://onlinecourses.nptel.ac.in/noc20_ee44/preview		
	UNIT 5		
Synchro	onous Wave and Asynchronous Pipelining: Numerical strength reduction – sub		
-	on elimination, multiple constant multiplication, iterative matching, synchronous		
-	ng and clocking styles, clock skew in edge-triggered single phase clocking, two-		
	ocking, wave pipelining. Asynchronous pipelining bundled data versus dual rail		
protocol			
Labora	tory Sessions/ Experimental Learning:	8Hrs.	
1. Imp	blement and compare synchronous wave pipelining and asynchronous pipelining		
tecl	nniques. Analyze their performance, timing characteristics, and design		
con	siderations in digital circuitry.		
Video L	ink / Additional Online Information:		
1. <u>ht</u>	tps://onlinecourses.nptel.ac.in/noc20_ee44/preview_		
Course	Outcomes: After completing the course, the students will be able to	1	
	Illustrate the use of various DSP algorithms and represent them using block	diagrams,	
CO1	signal flow graphs, and data-flow graphs, explaining the significance	of each	
	representation.		
	Utilize pipelining and parallel processing techniques in the design of high-speed	land	
CO2	low-power applications, demonstrating improvements in processing efficiency a		
001	power consumption.		
CO3	Apply unfolding techniques in the design of parallel architectures, showcasing	how they	
005	enhance the throughput and performance of DSP systems.		
	Evaluate the effectiveness of look-ahead techniques in the implementation of pa	rallel and	
CO4	CO4 pipelined IIR digital filters, assessing their impact on filter performance and computation		
	efficiency.		

	Develop and analyze an algorithm, architecture, or circuit design for DSP applications,
CO5	focusing on optimizing key metrics such as speed, power consumption, and area
	efficiency.

Text I	Text Books:					
1.	"VLSI Digital Signal Processing Systems", Keshab K. Parhi, Wiley Eastern					
2.	Digital Signal Processing for Multimedia Systems", Keshab K. Parhi and Takao Nishitani,					
	Marcel Dekker.					
Refer	ence Books:					
1.	"Pipelined Lattice and Wave Digital Recursive Filters", J. G. Chung and Keshab K. Parhi,					
	Kluwer.					

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the entire syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO-PSO Mapping

CO/P	PO	PO1	PO1	PO1	PSO	PSO								
Ο	1	2	3	4	5	6	7	8	9	0	1	2	1	2
CO1	3	3	2	2	1	1	1	-	1	-	-	1	1	1
CO2	3	3	2	2	1	1	1	-	1	-	-	1	1	1
CO3	3	3	2	2	1	1	1	-	1	-	-	1	1	1
CO4	3	3	2	2	1	1	1	-	1	-	-	1	1	1
CO5	3	3	2	2	1	1	1	-	1	-	-	1	1	1

High-3, Medium-2, Low-1

		Semester: VII						
		BASIC VLSI DESIGN						
Course	Course Code: MVJ22VL752 CIE Marks:50							
Credits:		L:T:P: 3:0:0	SEE Marks: 50					
Hours:		40L	SEE Duration: 3 Hrs					
Course	Learning Obje	ctives: The students will be able to						
1	Explain the p	principles of MOS transistor theory an	d the fundamentals of CMOS					
1	technologies, including their operational characteristics and applications.							
2	Describe the various architectural choices in designing and realizing circuits in CMOS							
2	technology, emphasizing the design considerations and constraints.							
_	Apply knowledge of CMOS circuit design to evaluate performance trade-offs, such as							
3	power consumption, speed, and area, in different circuit implementations.							
	Analyze subsys	stem design processes in CMOS technolog	y, identifying key steps and					
4	techniques for optimizing the design and ensuring functionality.							
5		e concepts and techniques of CMOS testing						
Ũ	to ensure the re	liability and correctness of CMOS circuits						

B.E. (VLSI Design and Technology)

UNIT 1	
Introduction: A brief history, MOS transistors, MOS transistor theory, ideal I-V	
characteristics, non-ideal I-V effects, DC transfer characteristics	
Fabrication: nMOS fabrication, CMOS fabrication [P-well process, N-well process, twin	
tub process], BiCMOS technology	
Laboratory Sessions/ Experimental Learning:	8Hrs.
1. Measure and analyze the key characteristics of a MOS transistor, including the threshold	
voltage, transconductance, and the I_{DS} - V_{DS} characteristics, using SPICE simulation.	
Video Link / Additional Online Information:	
1. https://nptel.ac.in/courses/117106092	

UNIT 2	
MOS and BiCMOS Circuit Design Processes: MOS layers, stick diagrams, design rules	
and layout. basic circuit concepts: sheet resistance, area capacitances of layers, standard unit	
of capacitance, some area capacitance calculations, delay unit, inverter delays, driving large	
capacitive loads	
Laboratory Sessions/ Experimental Learning:	8Hrs.
1. Design the layout of a MOS transistor using CAD tools, ensuring adherence to design	
rules, and simulate the electrical characteristics of the layout.	
Video Link / Additional Online Information:	
1. <u>https://nptel.ac.in/courses/117106092</u>	
UNIT 3	
Scaling of MOS Circuits: Scaling models & scaling factors for device parameters	
subsystem design processes: some general considerations, an illustration of design processes,	
illustration of the design processes: regularity, design of an ALU Subsystem, the Manchester	
Carrychain and adder enhancement techniques	
Laboratory Sessions/ Experimental Learning:	011
1. Understand the impact of scaling on the performance of MOS circuits by comparing key	8Hrs.
performance metrics such as threshold voltage, current drive capability, power	
consumption, and speed for different technology nodes using SPICE simulation.	
Video Link / Additional Online Information:	
1. <u>https://nptel.ac.in/courses/117106092</u>	
UNIT 4	
Subsystem Design: Some architectural issues, switch logic, gate (restoring) logic, parity	
generators, multiplexers, the programmable logic array (PLA)	
FPGA Based Systems: Introduction, basic concepts, digital design and FPGAs, FPGA	
based system design, FPGA architecture, physical design for FPGAs	8Hrs.
oused system design, i'r o'r arenneeture, physicar design 101 i'r OAs	
Laboratory Sessions/ Experimental Learning:	

 To design, implement, and test a simple digital system using an FPGA. Create a 4-bit binary counter with an up/down control using VHDL/Verilog, synthesizing the design, and implementing it on an FPGA board.

Video Link / Additional Online Information:

1. https://nptel.ac.in/courses/117106092

UNIT 5

Memory, Registers and Aspects of system Timing: System timing considerations, some
commonly used storage/memory elements
Testing and Verification: Introduction, logic verification, logic verification principles,
manufacturing test principles, design for testability

Laboratory Sessions/ Experimental Learning:

Understand and implement testing and verification techniques for a digital system on an FPGA. Create a simle 4-bit ALU (Arithmetic Logic Unit), write testbenches for simulation, and perform in-circuit verification on an FPGA board.

Video Link / Additional Online Information:

1. <u>https://nptel.ac.in/courses/117106092</u>

Course	e Outcomes: After completing the course, the students will be able to
CO1	Demonstrate understanding of MOS transistor theory, CMOS fabrication flow, and the principles of technology scaling in semiconductor manufacturing.
CO2	Analyze memory elements in VLSI circuits, considering timing considerations such as setup time, hold time, and clock cycles, to ensure reliable operation.
CO3	Apply knowledge of FPGA-based system design to develop and implement digital systems using FPGAs for various applications.
CO4	Analyze testing and testability issues in VLSI design, evaluating methodologies and techniques to ensure comprehensive testing coverage and fault detection.
CO5	Analyze CMOS subsystems and architectural issues within the constraints of design specifications.

Text l	Text Books:					
1.	Basic VLSI Design"- Douglas A Pucknell & Kamran Eshraghian, PHI, 3rd Edition.					
2.	"CMOS VLSI Design- A Circuits and Systems Perspective", Neil H E Weste, David Harris, Ayan Banerjee, 3rd Edition, Pearson Education.					
3.	"FPGA Based System Design", Wayne Wolf, Pearson Education, Technology and Engineering					
Reference Books:						

1	Vikram Arkalgud Chandrasetty, "VLSI Design: A Practical Guide for FPGA and ASIC
1.	Implementations" Springer, 2011

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the entire syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO-PSO Mapping														
CO/P	PO	PO1	PO1	PO1	PSO	PSO								
0	1	2	3	4	5	6	7	8	9	0	1	2	1	2
CO1	3	3	2	2	1	1	1	-	1	-	-	1	1	1
CO2	3	3	2	2	1	1	1	-	1	-	-	1	1	1
CO3	3	3	2	2	1	1	1	-	1	-	-	1	1	1
CO4	3	3	2	2	1	1	1	-	1	-	-	1	1	1
CO5	3	3	2	2	1	1	1	-	1	-	-	1	1	1

High-3, Medium-2, Low-1

B.E. (VLSI Design and Technology)

	Semester: VII IC TECHNOLOGY											
Course	e Code:	MVJ22VL753	CIE Marks:50									
Credits:		L:T:P: 3:0:0	SEE Marks: 50									
Hours:		40L	SEE Duration: 3 Hrs									
Course	e Learning O	bjectives: The students will	be able to									
1	Explain the various crystal structures of semiconductors and the different methods used for semiconductor growth, including their principles and applications.											
2	Utilize the principles behind silicon dioxide oxidation and oxide charges to solve problems related to the fabrication and performance of semiconductor devices.											
3	Implement basic lithography concepts and techniques in practical scenarios, demonstrating the ability to produce patterns and structures on semiconductor wafers.											
4	Analyze the processes and outcomes of diffusion and ion implantation doping methods, comparing their effects on semiconductor properties and device performance.											
5	Evaluate metallization and etching methods in semiconductor fabrication											

UNIT 1

Prerequisites: Basic science

Introduction to Microelectronics Fabrication and Crystal Growth: Introduction and historical perspective, crystallography and crystal structure, crystal defects, Czochralski and float zone growth, sheet resistant measurement, hall measurement, basic fabrication process.

Laboratory Sessions/ Experimental Learning:

1. To study the details regarding crystal structure.

Video Link / Additional Online Information:

1. https://nptel.ac.in/courses/117106093

Thermal Oxidation:

UNIT 2

Importance of oxidation, types of oxidation techniques, growth mechanism, factors affecting

8Hrs.

the growth mechanisms, silicon oxidation model, dry & wet oxidation, oxide charges in	
Si/SiO ₂ system.	
Laboratory Sessions/ Experimental Learning:	
1. Measure the oxide thickness grown on Si wafer grown in dry furnace	
Video Link / Additional Online Information:	
1. <u>https://nptel.ac.in/courses/117106093</u>	
UNIT 3	
Lithography: Basic concepts, optical lithography, photoresists, light sources and wafer	
exposure systems, optics, modulation transfer function	
Laboratory Sessions/ Experimental Learning:	011
1. Measure the minimum feature size of patterned Silicon using optical microscopy.	8Hrs.
Video Link / Additional Online Information:	
1. <u>https://nptel.ac.in/courses/117106093</u>	
UNIT 4	
Diffusion: Diffusion mechanisms; diffusion reactor; diffusion profile; diffusion kinetics;	
Dopants and their behaviors, choice of dopants	
Ion Implantation: Reactor design, impurity distribution profile, properties of ion	
implantation, low energy and high energy ion implantation.	
	8Hrs.
Laboratory Sessions/ Experimental Learning:	
1. Measure the resistivity of doped area of wafer.	
Video Link / Additional Online Information:	
1. <u>https://nptel.ac.in/courses/117106093</u>	
UNIT 5	
Deposition: Types of deposition system, thermal deposition, e-beam deposition, sputtering.	
Etching : Performance metrics of etching; types of etching- wet and dry etching; dry etching	8Hrs.
Exeming. I enformance metrics of eterning, types of eterning- wet and dry eterning, dry eterning	

Laboratory Sessions/ Experimental Learning:

1. Measure the thickness of metal deposited onto the wafer

Video Link / Additional Online Information:

1. https://nptel.ac.in/courses/117106093

Course Outcomes: After completing the course, the students will be able to

CO1	Describe the basic process flow of CMOS fabrication process
CO2	Analyze the factor affecting the oxide growth mechanism
CO3	Apply knowledge of VLSI fabrication principles to design and optimize mask layouts for photolithography
CO4	Analyze the dose required for given doping in diffusion and ion implantation techniques.
CO5	Explain the deposition and etching techniques

Text Books: 1. Silicon VLSI Technology: Fundamentals, Practice and Modeling Book by Jim Plummer, Michael D. Deal, and Peter B. Griffin 2. The Science and Engineering of Microelectronic Fabrication by Stephen A. Campbell Reference Books:

1. VLSI Fabrication Principles: Silicon and Gallium Arsenide by Sorab K. Ghandhi

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the entire syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO-PSO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2	1	1	1	-	1	-	-	1	2	2
CO2	3	3	2	2	1	1	1	-	1	-	-	1	2	2
CO3	3	3	2	2	1	1	1	-	1	-	-	1	2	2
CO4	3	3	2	2	1	1	1	-	1	-	-	1	2	2
CO5	3	3	2	2	1	1	1	-	1	-	-	1	2	2

High-3, Medium-2, Low-1