Course Title	Transforms and Statistical Methods	Semester	III
Course Code	MVJ22MAS31	CIE	50
Total No. of Contact Hours	40 L: T: P: 3: 0: 0	SEE	50
No. of Contact Hours/week	4	Total	100
Credits	3	Exam. Duration	3hrs

Course objective is to:

This course will enable students to

• Comprehend and use of analytical and numerical methods in different engineering fields.

- Apprehend and apply Fourier Series.
- Realize and use of Fourier transforms.
- Realize and use of Z-Transforms.
- Use of statistical methods in curve fitting applications.

Module-1 L1, L2 & L3 8 Hours	Ivioquie-1		8 Hours
--	------------	--	---------

Laplace Transform:

Definition and Laplace transforms of elementary functions. Laplace transforms of Periodic functions and unit-step function and problems.

Inverse Laplace Transform:

Definition and problems, Convolution theorem to find the inverse Laplace transforms and problems. Applications: Solution of linear differential equations using Laplace transforms.

Module-2	L1, L2 & L3	8 Hours
Fourier series:	·	

Recapitulation of Series, Continuous and Discontinuous functions, Periodic functions, Dirichlet's
conditions, Fourier series of periodic functions of period 2π and arbitrary period $2l$, Half-range
Fourier sine and cosine series. Practical Harmonic Analysis and Problems.

Module-3	L1, L2 & L3	8 Hours

Fourier transforms:

Infinite Fourier transform, Infinite Fourier sine and cosine transforms, Inverse Fourier transforms, Inverse Fourier sine and cosine transforms, Convolution theorem.

Module-4	L1, L2 & L3	8 Hours

Z-Transforms:

Z-transform: Difference equations, basic definition, z-transform -definition, Standard z-transforms, damping rule, Shifting rule, Initial value and final value theorems (without proof) and problems,

Inverse Z-transform.

Applications: Application of Z- transforms to solve difference equations.

Module-5	L1, L2& L3	8 Hours

Curve Fitting:

Curve fitting by the method of least squares. Fitting of the curves of the form y = ax + b, $y = ax^2 + bx + c$, $y = ae^{bx}$.

Statistical Methods:

Introduction, Correlation and coefficient of correlation, Regression, lines of regression and problems.

Course ou	utcomes:
CO201.1	Use Laplace transform and inverse transforms techniques in solving differential equations.
CO201.2	Demonstrate Fourier Transform as a tool for solving Integral equations.
CO201.3	Demonstrate Fourier Transform as a tool for solving Integral equations.
CO201.4	Apply Z Transform to solve Difference Equation.Use Method of Least Square for appropriate Curves.
CO201.5	Fit a suitable curve by the method of least squares and determine the lines of regression
	for a set of statistical data.

Text B	sooks:
1	Prof G.B.Gururajachar "Engineering Mathematics-III , Academic Excellent series
	Publications, 2016-17
2	B.S. Grewal, "Higher Engineering Mathematics" Khanna Publishers, 43 rd Edition, 2013
Refere	ence Books:
1	Erwin Kreyszig, "Advanced Engineering Mathematics", Wiley-India publishers,
1	10thedition,2014.
2	Ramana B. V., "Higher Engineering Mathematics", Tata McGraw-Hill, 2006.
3	Bali N. P. & Manish Goyal, "A text book of Engineering Mathematics", Laxmi
3	Publications, 8 th Edition.
CIE A	ssessment:

CIE is based on quizzes, tests, assignments/seminars, and any other form of evaluation. Generally, there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of three tests

Quizzes/mini tests (10 marks)

Assignment (10 marks)

SEE Assessment:

Question paper for the SEE consists of two parts i.e., Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.

Part B also covers the entire syllabus consisting of five questions having choices and may contain sub-divisions, each carrying 16 marks. Students have to answer five full questions.

One question must be set from each unit. The duration of examination is 3 hours.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	0	3	0	0	0	0	0	0	1	0
CO2	3	3	0	3	0	0	0	0	0	0	0	1
CO3	2	3	0	3	0	0	0	0	0	0	1	0
CO4	3	3	0	3	0	0	0	0	0	0	0	0
CO5	3	3	0	2	0	0	0	0	0	0	0	1

		Semester: III					
	N	IECHANICS OF MATER	IALS				
Course Code:MVJ22AS32CIE Marks:50+50							
Total No. of Contact Hours:50 L: T: P: 3: 0: 2SEE Marks: 50 +50							
Hours: 40 L+ 26 P SEE Duration: 03+03 Hou							
Cou	urse Learning Objectives: Th	e students will be able to					
1	Comprehend the basic conce	pts of strength of materials.					
2	Acquire the knowledge of stresses due to bending						
3	Understand the different failure in materials						
4	Understand the relations amo	ong materials and their prope	erties.				
5	Acquire the practical knowle	dge of metallographic testin	g of engineering materials.				

UNIT-I	
Basics of linear elasticity: The concept of stress & strain, state of stress & Strain at a point,	10 Hrs
Equilibrium equations, The state of plane stress and plane strain. Compatibility equations,	
Constitutive Laws (Hooke's Law), Stress strain curves for brittle and ductile materials,	
Allowable stress, Material selection for structural performance.	
Simple & Compound Stresses: Extension / Shortening of a bar, bars with cross sections	
varying in steps, bars with continuously varying cross sections. Elongation due to self-	
weight. Volumetric strain, expression for volumetric strain, elastic constants, simple shear	
stress, shear strain, temperature stresses, Introduction to Plane stress, stresses on inclined	
sections, principal stresses & strains, Analytical & graphical method (Mohr's Circle) to	
find principal stresses & strains.	
Laboratory Sessions/ Experimental learning: UTM in Material Testing Lab	
Applications: Testing of Mild steel components, Bricks	
UNIT-II	
Bending Moment and Shear Force in Beams: Introduction, Types of beams, loads and	10 Hrs
reactions, shear forces and bending moments, rate of loading, sign conventions,	
relationship between shear force and bending moments. Shear force and bending moment	
diagrams for different beams subjected to concentrated loads, uniformly distributed load,	
(UDL) uniformly varying load (UVL) and couple for different types of beams.	
Euler-Bernoulli beam theory: The Euler-Bernoulli assumptions, Implications of the	
Euler-Bernoulli assumptions, the Euler-Bernoulli Beam theory derivation, bending stress	
equation, Moment carrying capacity of a section. Shearing stresses in beams, shear stress	
across rectangular, circular, symmetrical I and T sections (Only Numerical).	

properties, fatigue testing and S-N diagram. Laboratory Sessions/ Experimental learning: Impact Tests in MT lab for Fracture.	
Fatigue: Types of fatigue loading with examples, Mechanism of fatigue, fatigue	
properties, stress relaxation.	
Creep: Description of the phenomenon with examples. Three stages of creep, creep	
Fracture: Type I, Type II and Type III.	
Mechanical Properties of materials:	10 Hrs
UNIT-V	
study of forces and movement of a mechanical system.	
Applications: Virtual work arises in the application of the principle of least action to the	
be explained from Structures Lab.	
Laboratory Sessions/ Experimental learning: Few of the Energy Method Theorems can	
complementary, Energy theorems, Reciprocity theorems, Saint-Venant's principle	
Development of a finite element formulation for trusses, Principle of minimum	
energy in springs, Strain energy in beams, Strain energy in solids, Applications to trusses,	
Energy methods: Conservative forces, Principle of minimum total potential energy, Strain	
complementary virtual work, internal virtual work in beams and solids.	
work applied to truss structures, Principle of virtual work applied to beams. Principle of	
virtual work, Principle of virtual work applied to mechanical systems, Principle of virtual	
Virtual work principles: Introduction, Equilibrium and work fundamentals, Principle of	10 Hrs
UNIT-IV	
Applications: Civil Construction and Automobile Transmission.	
Torsion Test apparatus available in MT Lab.	
Laboratory Sessions/ Experimental learning: Beam Experiment in Structures lab and	
of shafts. Power transmitted by solid and hollow circular shafts.	
assumptions, derivation of torsional equations, polar modulus, torsional rigidity / stiffness	
simply supported beams for point load, UDL, UVL and Couple. Macaulay's method. Torsion of Circular Shafts and Elastic Stability of Columns: Introduction. Pure torsion,	
deflection, slope and bending moment. Double integration method for cantilever and	
Deflection of Beams: Introduction, Differential equation for deflection. Equations for	10 Hrs
UNIT-III	
Applications: Civil Construction with Symmetrical I & T sections	
Structures Lab	

1.Hardness Testing-Brinell ar	nd Rockwell Hardness tes	t
2.Tensile Test		
3.Flexural Test		
4. Torsional Test	-	
5.Preparation of s	specimen for meta	allographic examination of different
engineering materials		
6.Dye penetration testing		
7.Magnetic particle inspectio	on	
8.Heat treatment: a	annealing, normalizing	, hardening and tempering of steel
9.Impact Test – Izod and Ch	arpy Test	
10.Shear Test		

Course O	Course Outcomes: After completing the course, the students will be able to					
CO202.1	Apply the basic concepts of strength of materials.					
CO202.2	Compute stress, strain under different loadings.					
CO202.3	Acquire the knowledge of deflection of beams					
CO202.4	Acquire the knowledge of virtual work principle and energy methods					
CO202.5	Identify different failures					

Text	Textbooks:				
1	T.H.G Megson "Introduction to Aircraft Structural Analysis", Butterworth- Heinemann Publications, 2007, ISBN 13: 9781856179324				
2	Beer F.P. and Johnston.R, Mechanics of Materials, McGraw Hill Publishers, 2006, ISBN13:978-0073380285.				

Ref	erence Books
1.	Timoshenko and Young, Elements of Strength of Materials, East-West Press, 1976,
	ISBN 10: 8176710199
2.	

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes

are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Laboratory- 50 Marks

The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are awarded 10 marks. Total marks for the laboratory is 50.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	1	1	1	1	1	1		1
CO2	3	3	2	2	1	1	1	1	1	1		1
CO3	3	3	2	2	1	1	1	1	1	1		1
CO4	3	3	2	2	1	1	1	1	1	1		1
CO5	3	3	2	2	1	1	1	1	1	1		1

Semester: III			
MECHANICS OF FLUIDS			
Course Code:	MVJ22AS33	CIE Marks:50+50	

Cre	dits:	L: T: P: 3: 0: 2	SEE Marks: 50 +50		
Hou	Irs:	40 L	SEE Duration: 03+03 Hours		
Cou	rse Learning Objectives: The stude	ents will be able to			
1	Understand the basic fluid properties	S.			
2	To estimate velocity, acceleration, and stream function for an incompressible and inviscid flow along with governing equations of fluid flow.				
3	Understand the dimensional analysis and apply Bernoulli's and Euler's equation for flow measuring devices				
4	To calculate boundary layer thickness and drag co-efficient for laminar and turbulent flows				
5	Acquire the knowledge of compressible flows and boundary Layers				

UNIT-I	
Basic Considerations:	10 Hr
Introduction, Dimensions- Modules and physical quantities, Continuum view of gases and	
liquids, Pressure and Temperature scales, Physical properties of fluids.	
Fluid Statics:	
Pressure distribution in a static fluid, Pressure and its measurement, hydrostatic forces on	
plane and curved surfaces, buoyancy, illustration by examples.	
Laboratory Sessions/ Experimental learning: Use of piezometer and manometers	
Applications: For pressure measurements by using different types of manometers.	
UNIT-II	
Fluids in motion:	10 Hrs
Methods of describing fluid motion, types of fluid flow, continuity equation in 3	
dimensions, velocity potential function and stream function. Types of motion, Source	
sink, doublet, plotting of stream lines and potential lines Numerical problems.	
Fluid Kinematics:	
Kinematics of fluid motion and the constitutive equations, Integral (global) form of	
conservation equations (mass, momentum, energy) and applications, Differential form of	
conservation equations (continuity, Navier-Stokes equations, energy equation).	
Laboratory Sessions/ Experimental learning: An experimental study of the continuity	
equation and Bernoulli's equation by using Venturimeter, Orificemeter and pitot tube.	
Applications: For rotational and irrotational fluid flows, laminar and turbulent fluid flows.	
UNIT-III	

Fluid Dynamics:	10 Hrs
Equations of motion: Euler's and Bernoulli's equation of motion for ideal and real fluids.	
Momentum equation, Fluid flow measurements. Numerical problems.	
Dimensional analysis and similarity:	
Dimensional homogeneity, methods of dimensional analysis, model analysis, types of	
similarity and similitude. Dimensionless numbers. Model laws. Numerical problems	
Laboratory Sessions/ Experimental learning: An experimental study of the continuity	
equation and Bernoulli's equation by using Venturimeter, Orificemeter and pitot tube.	
Applications: flow measuring devices and model studies.	
UNIT-IV	
Flow past Immersed bodies:	10 Hrs
Introduction to boundary layer, boundary layer thickness, karman's integral momentum	
theory, drag on a flat plate for laminar and turbulent flow, Drag on immersed bodies.	
Expression for drag and lift. Kutta –joukowsky theorem; Fundamentals of airfoil theory	
Numerical problems.	
Laboratory Sessions/ Experimental learning: Determination of boundary layer thickness.	
Applications: Flow over a sloid body, separation point and understanding of lift and drag.	
UNIT-V	
Compressible flow and Boundary Layers theory:	10 Hrs
Steady, one-dimensional gas dynamics, Propagation of pressure waves in a compressible	
medium, velocity of sound, Mach number, Mach cone, Stagnation properties, Bernoulli's	
eqn for isentropicflow, normal shock waves . Numerical Problem; Laminar and turbulent	
boundary layers.	
Laboratory Sessions/ Experimental learning: Propagation of disturbance for different	
Mach number	
Applications: Compressible flows through nozzles, diffusers, turbines etc Video link /	

Course O	Course Outcomes: After completing the course, the students will be able to					
CO203.1	Evaluate the effects of fluid properties					
CO203.2	Estimate velocity, acceleration and stream function for an incompressible and invisid					
	flow along with governing equations of fluid flow.					
CO203.3	Perform dimensional analysis and apply Bernoulli's and Eulers equation for various flow					
	situations involving venturimeter, orificemeter and pitot-tube					

CO203.4	Calculate boundary layer thickness and drag co-efficient for laminar and turbulent flows.
CO203.5	Illustrate the basic concepts of compressible flows.

Text	tbooks:
1	Bansal, R.K, Fluid Mechanics and Hydraulics Machines, Laxmi Publications (P) Ltd.,
1	New Delhi 2015, ISBN-13: 978-8131808153
2	Yunus A. Cengel& John M Cimbala, Fluid Mechanics and Applications, McGraw
2	Hill Education; 3 rd edition, 2013, ISBN-13: 978-0073380322.

R	efe	erence Books
1	l.	Rathakrishnan. E, Fluid Mechanics, Prentice-Hall of India Pvt.Ltd, 2010, ISBN 13:
		9788120331839.
2	2.	Ramamritham. S, Hydraulic Fluid Mechanics and Fluid Machines, Dhanpat Rai& Sons,

Continuous Internal Evaluation (CIE):

Delhi, 1988, ISBN 13: 9788187433804

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the self -study are 20 (2 presentations are be held for 10 marks each). The marks obtained in test, quiz and self -studies are added to get marks out of 100 and report CIE for 50 marks.

Laboratory- 50 Marks

The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are awarded 10 marks. Total marks for the laboratory is 50.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks are executed by means of an examination.

The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	1	1	1	1	1	1		1
CO2	3	3	2	2	1	1	1	1	1	1		1
CO3	3	3	2	2	1	1	1	1	1	1		1
CO4	3	3	2	2	1	1	1	1	1	1		1
CO5	3	3	2	2	1	1	1	1	1	1		1

Course Title	ELEMENS OF AEROSPACE TECHNOLOGY	Semester	III
Course Code	MVJ22AS34	CIE	50
Total No. of Contact Hours	40 L: T : P :: 3: 0 : 0	SEE	50
No. of Contact Hours/week	4	Total	100
Credits	3	Exam. Duration	3 Hours

Course objective is to:

1. Understand basic principles of Aircraft and the history of space vehicles.

2. Acquire the basic principles of flight.

3.Learn the basic principle of Aircraft & Rocket propulsion.

4. Understand the Aircraft Structures and Materials.

5. Acquire the basics of Aircraft Instruments & systems.

Module-1	RBT Level	Hours

Introduction to Aircrafts: History of aviation, International Standard atmosphere, Atmosphere and its properties, Temperature, pressure and altitude relationships, Classification of aircrafts, V/STOL machines.

Introduction to Space Flight: History of Space Flight & spacecraft technologies Difference between space and atmosphere, upper atmosphere, Introduction to basic orbital mechanics, types of Orbits (LEO, MEO, Geosynchronous and Geostationary, Polar orbits), Kepler's Laws of planetary motion. Laboratory Sessions/ Experimental learning: Ornithopter modelling, Paper plane. Applications: Environmental conditions

Module-2	RBT Level	Hours			
Basic principles of flight: Significance of speed of sound, Propagation of sound, Mach number,					
subsonic, transonic, supersonic, hypersonic flows, Bernoulli's theorem, Aerodynamic forces and					
moments on an Airfoil, Lift and drag components, lift curve, drag curve, types of drag, factors					
affecting lift and drag; Centre of pressure and its significance, Aerodynamic centre, Aspect ratio,					
Airfoil nomenclature, Basic characteristics of airfoils, NACA nomenclature, Simple problems on lift					
and drag.					

Laboratory Sessions/ Experimental learning: Aerodynamics lab Applications: Aircraft Flow dynamics

Module-3	RBT Level	Hours	

Aircraft Propulsion: Introduction, Classification, Piston Engine & its application, Brayton cycle, Principle of operation of Turboprop, turbojet and turbofan engines, Introduction to ramjets and scramjets; performance characteristics. Rocket Propulsion: Principles of operation of rocket, Classification of Rockets, Types of rockets and typical applications, Introduction to Space Exploration. Laboratory Sessions/ Experimental learning: Propulsion lab Applications: Aircraft engines **Module-4 RBT Level** Hours Aircraft and Spacecraft - Structures and Materials: Introduction- General types of construction, Monocoque, Semi-Monocoque and Geodesic structures. Typical wing and fuselage structure; Metallic and non-metallic materials for aircraft application. Use of aluminum alloy, titanium, stainless steel and composite materials. Materials selection for spacecraft application. Laboratory Sessions/ Experimental learning: Structures lab Applications: Material & Structural Dynamics of Aircraft Module-5 **RBT Level** Hours **Instrument:** Instrument Displays, Introduction to Navigation Instruments, Basic Air data systems & Probes, Mach meter, Air speed indicator, Vertical speed indicator, Altimeter, Gyro based instruments, Introduction to spacecraft instruments. Inertial & GPS based sensors. **Systems:** Introduction to Hydraulic and pneumatic systems, Air Conditioning and Cockpit pressurization system, Generation and distribution of Electricity on board the airplane, Aircraft Fuel System, Fire Protection, Ice and Rain Protection System Laboratory Sessions/ Experimental learning: Instrumentation lab. Applications: Aircraft Instruments. **Course outcomes:** Differentiate the different concepts of aircrafts and spacecraft's in flight. CO204.1 CO204.2 Describe the Principle of aviation and space flight. CO204.3 Explain the Fundamentals of Rocket Propulsion and Aircraft Propulsion. Apply the concepts of aircraft materials and structures. CO204.4 Appreciate the complexities involved during development of flight vehicles systems. CO204.5

Text	Textbooks:						
John D. Anderson, "Introduction to Flight", McGraw-Hill Education, 8 th edition,							
1	2015, ISBN: 978-0078027673.						
2	Lalit Gupta and O P Sharma, Fundamentals of Flight Vol-I to Vol-IV, Himalayan						
2	Books. 2006, ISBN: 9788170020752						

Reference Books

1.	Ian Moir, Allan Seabridge, "Aircraft Systems: Mechanical, Electrical and Avionics	
	Subsystems Integration", John Wiley & Sons, 3 rd edition, 2011, ISBN: 9781119965206	
2.	Sutton G.P., "Rocket Propulsion Elements", John Wiley, New York, 9th edition,2016,	
	ISBN: 9781118753910	

CIE Assessment:

CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation. Generally, there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA

marks to be awarded will be the average of three tests

Quizzes/mini tests (4 marks)

Mini Project / Case Studies (8 Marks)

Activities/Experimentations related to courses (8 Marks)

SEE Assessment:

Question paper for the SEE consists of two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.

Part B also covers the entire syllabus consisting of five questions having choices and may contain subdivisions, each carrying 16 marks. Students have to answer five full questions.

One question must be set from each unit. The duration of examination is 3 hours.

CO-PO Mappin	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	0	0	0	1	3	0	0	0	0	3
CO2	3	3	2	0	0	1	3	0	0	0	0	3
CO3	3	3	2	0	0	1	3	0	0	0	0	3
CO4	3	3	2	0	0	1	3	0	0	0	0	3
CO5	3	0	2	0	0	1	3	0	0	0	0	3

High-3, Medium-2, Low-1

Course Title	MACHINE SHOP	Semester	III
Course Code	MVJ19ASL35	CIE	50
Total No. of Contact Hours	L: T: P: 3: 0: 0	SEE	50
No. of Contact Hours/week	03	Total	100
Credits	02	Exam. Duration	3 Hours

Course objective is to:

- Practice general-purpose machine tools and manufacturing process.
- Operate the special purpose machine tools
- Prepare physical models using different manufacturing processes.

Sl No	Experiment Name	RBT Level	Hours
	PART A		
1	Introduction to Machining operations & tools (i.e., Lath machine & shaper machine etc.)	L1, L2, L3	03
2	Machining and machining time estimation for plain turning taper turning & step turning	L1, L2, L3	03
3	Machining and machining time estimation for thread cutting	L1, L2, L3	03
4	Machining and machining time estimation for knurling	L1, L2, L3	03
5	Machining and machining time estimation for knurling operation	L1, L2, L3	03
6	Machining and machining time estimation for drilling operation	L1, L2, L3	03
7	Machining and machining time estimation for boring operation	L1, L2, L3	03
	PART B		
8	Machining and machining time estimation for internal thread cutting	L1, L2, L3	03
9	Machining and machining time estimation for external thread cutting	L1, L2, L3	03
10	Machining and machining time estimation for eccentric turning	L1, L2, L3	03
11	Machining of hexagon in shaping machine	L1, L2, L3	03
12	Machining of square in shaping machine	L1, L2, L3	03
13	Cutting of gear teeth using milling machine	L1, L2, L3	03
14	Grinding operations using grinding machine	L1, L2, L3	03
Cour	se outcomes:	1	

CO1	Demonstrate the operation of general-purpose machine tools and manufacturing process.
CO2	Identify the special purpose machine tools for specific requirements
CO3	Develop physical models using different mechanical processes.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	0	0	0	0	0	0	0	0
CO2	3	3	3	2	0	0	0	0	0	0	0	0
CO3	3	3	2	1	0	0	0	0	0	0	0	0

Course Title	AEROSPCE MATERIALS	Semester	III
Course Code	MVJ22AS361	CIE	50
Total No. of Contact Hours	40 L: T: P: 3: 0: 0	SEE	50
No. of Contact Hours/week	4	Total	100
Credits	3	Exam. Duration	3 Hours

Course objective is to:

To impart knowledge on the basics of phase diagrams and their applications.

To make the students to understand the use of non-ferrous materials in aircraft construction:

To introduce various ferrous materials for aircraft construction

To learn about the various applications of Composite materials in an aircraft

To impart knowledge about Wood, fabric, and other non- metals in Aircraft construction.

	L1, L2	8Hours				
Phase diagrams and Microstructures:						
Basic concepts - Gibbs phase rule - Unary phase diagram (iron) - Binary phase diagrams:						
isomorphous systems (Cu-Ni).						
The Fe-Fe3C phase diagram: phases, invariant reactions, development of microstructure in eutectoid,						
hypoeutectoid and hypereutectoid alloys – influence of other alloying elements in the Fe-C system.						
Microstructures: pearlite, bainite, spheroidite and martensite.						
Module-2	L1, L2	8Hours				
Non-ferrous materials in aircraft construction:						
Aluminium and its alloys: Types and identification. Properties	- Castings - Heat tre	atment processes				
- Surface treatments.						
Magnesium and its alloys: Cast and Wrought alloys - Aircrat	ft application, featur	res specification				
fabrication problems, Special treatments.						
	Titanium and its alloys: Applications, machining, forming, welding, and heat treatment.					
· ·	ling, and heat treatm	ent.				
	ling, and heat treatm	ent.				
	ling, and heat treatm	ent. 8Hours				
Titanium and its alloys: Applications, machining, forming, welc						
Titanium and its alloys: Applications, machining, forming, welc Module-3 Ferrous materials in aircraft construction:	L1, L2	8Hours				
Titanium and its alloys: Applications, machining, forming, welc Module-3	L1, L2	8Hours				
Titanium and its alloys: Applications, machining, forming, welc Module-3 Ferrous materials in aircraft construction: Steels: low, medium and high carbon steels , alloy steels,	L1, L2	8Hours				

Welding, He	eat treatment.					
Module-4		L1, L2	8Hours			
Composites	:	1				
Definition a	nd comparison of composites with conventional monolithic	e materials, cl	assification, role			
of matrix an	d reinforcement -Reinforcing fibers and Matrix materials. H	Fabrication pr	ocesses involved			
in polymer o	composites, metal matrix composites, applications in aerosp	pace.				
Introduction	to modern ceramic materials, cermets, glass ceramics,	Carbon/Carb	on composites –			
properties an	nd applications. Introduction to nano composites.					
Module-5		L1, L2	8Hours			
Non-Metals	in Aircraft construction:					
Wood: Typ	es, properties, and applications. Fabric in aircraft constructi	on and spec	ifications. Glues.			
Glass: Type	s, properties, and applications.					
Plastics &r	bber in aircraft: Types, characteristics, and applications.					
Course out	comes:					
CO206.1.1	Apply the knowledge about the phase diagrams and micro	ostructure of a	alloys.			
CO206.1.2	Explain the applications of Non-ferrous alloys in Aircraft	and Aerospa	ce industry.			
CO206.1.3	CO206.1.3 Gain knowledge about the application of Ferrous alloys in Aircraft construction					
CO206.1.4	1.4 Explain the applications of Polymer, Metal matrix composites.					
CO206.1.5						

Text	tbooks:
1	Titterton G F, Aircraft Material and Processes, English Book Store, New Delhi, 5 th
1	edition, 1998, ISBN-13: 978-8175980136
2	Introduction to Physical Metallurgy by Sydney Avner, Tata McGraw-Hill Edition
2	1997.

Ref	erence Books
1.	Hill E T, The Materials of Aircraft Construction, Pitman London.
2.	C G Krishnadas Nair, Handbook of Aircraft materials, Interline publishers, Bangalore,
	1993
3.	H Buhl, Advanced Aerospace Materials, Springer, Berlin1992, ISBN-13: 978-

CIE Assessment:

CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation. Generally, there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA

marks to be awarded will be the average of three tests

Quizzes/mini tests (4 marks)

Mini Project / Case Studies (8 Marks)

Activities/Experimentations related to courses (8 Marks)

SEE Assessment:

i. Question paper for the SEE consists of two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.

i. Part B also covers the entire syllabus consisting of five questions having choices and may contain sub-divisions, each carrying 16 marks. Students have to answer five full questions.

One question must be set from each unit. The duration of examination is 3 hours.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	0	0	1	0	0	0	0	1	1
CO2	3	1	1	0	1	2	0	0	0	0	0	1
CO3	3	2	1	2	0	2	1	0	0	0	1	1
CO4	3	1	1	0	0	1	0	0	0	0	0	1
CO5	3	1	1	1	0	2	0	0	0	0	0	1

Course Title	MECHANISM & MACHINE THEORY	Semester	3
Course Code	MVJ22AS362	CIE	50
Total No. of Contact Hours	40 L: T: P: 3: 1: 0	SEE	50
No. of Contact Hours/week	4	Total	100
Credits	3	Exam. Duration	3 Hours

Course objective is to:

• Understand the theory of mechanisms including velocity, acceleration, and static force analysis.

• Acquire knowledge of spur gears, gear train, balancing of rotating and reciprocating masses.

• Understand the concept of governors and gyroscope.

	Module-1	L1, L2, L3	8Hours
--	----------	------------	--------

Introduction to Mechanisms:

Types of constrained motion, Link and its types, joints and its types, kinematic pair and its types, degrees of freedom, Grubler's criterion, Types of kinematic chains and inversions: Inversions of Four bar chain: Beam engine, coupling rod of a locomotive, Watt's indicator mechanism. Inversions of Single Slider Crank Chain: Pendulum pump or Bull engine, oscillating cylinder engine, Rotary internal combustion engine, Crank and slotted lever quick return motion mechanism, Whitworth quick return motion mechanism. Inversions of Double Slider Crank Chain: Elliptical trammels, Scotch yoke mechanism, Oldham's coupling. Straight line motion mechanisms: Peaucellier's mechanism and Robert's mechanism. Intermittent Motion mechanisms: Geneva wheel mechanism and Ratchet and Pawl mechanism, Ackerman steering gear mechanism.

Laboratory Sessions/ Experimental learning: Whitworth quick return motion mechanism. (Machine Shop) **Applications:** Ackerman steering gear mechanism.

Module-2	L1, L2, L3	8Hours

Velocity, Acceleration, and static force analysis of Mechanisms (Graphical Methods):

Velocity and acceleration analysis of Four Bar mechanism, slider crank mechanism and Simple Mechanisms by vector polygons. Static force analysis: Introduction: Static equilibrium, Equilibrium of two and three force members. Members with two forces and torque. Free body diagrams, principle of virtual work. Static force analysis of four bar mechanism and slider-crank mechanism with and without friction

Module-3

L1, L2, L3 8Hours

Spur Gears and Gear Trains

Spur Gears: Gear terminology, law of gearing, Path of contact, Arc of contact, contact ratio of spur

gear, Interference in involute gears, Methods of avoiding interference.

Gear Trains: Simple gear trains, Compound gear trains, Reverted gear trains, Epicyclic gear trains, Analysis of epicyclic gear train (Algebraic and tabular methods), torques in epicyclic trains. Applications: Design Of spur Gear

**	~ · ·				
Module-4		L1, L2, L3	8Hours		
Balancing of Rotating and Reciprocating Masses Balancing of Rotating Masses: Balancing of					
Several Mas	Several Masses Rotating in the Same Plane, Balancing of Several Masses Rotating in Different Planes				
(only Graph	ical Methods). Balancing of Reciprocating Masses: Primar	y and Seconda	ry Unbalanced		
Forces of R	eciprocating Masses, Partial Balancing of Unbalanced Prim	ary Force in a	Reciprocating		
Engine, Bal	ancing of Primary and secondary Forces of Multi-cylinder	In-line Engines	s, Balancing of		
Radial Engi	nes (only Graphical Methods)				
Module-5		L1, L2, L3	8Hours		
Types of go	overnors; force analysis of Porter and Hartnell governors,	Controlling f	orce, stability,		
sensitivenes	s, isochronism, effort, and power of Porter and Hartnell gove	ernors. Gyrosco	opes: Vectorial		
representati	on of angular motion, gyroscopic couple, effect of gyrosco	pic couple on	plane disc and		
aeroplane					
Laboratory	Sessions/ Experimental learning: Porter and Hartnell govern	ors (Design la	b)		
Application	s:: Working Of Governors				
Course out	comes:				
00206.2.1	Apply the theory of velocity, acceleration, and static force	analysis to des	sign of		
CO206.2.1 mechanisms.					
CO206.2.2	Analyze static and dynamic force analysis of mechanisms.				
CO206.2.3	CO206.2.3 Design of spur gears & Gear train.				
CO206.2.4 Evaluate spur gears, gear train, balancing of rotating and reciprocating masses.					
CO206.2.5 Analyse governors and gyroscope					

Text	books:
1	Rattan S.S, "Theory of Machines", Tata McGraw-Hill Publishing Company Ltd., New Delhi, and
1	3rd edition -2009, ISBN: 007014477X, 9780070144774.
2	J.J. Uicker, G.R. Pennock, J.E. Shigley. "Theory of Machines & Mechanisms", OXFORD 3rd
2	Ed. 2009, ISBN-13: 978-0195371239

Reference Books

 R. S. Khurmi, J.K. Gupta, "Theory of Machines", Eurasia Publishing House, 2008, ISBN 13: 9788121925242.

CIE Assessment:

CIE is based on quizzes, tests, assignments/seminars, and any other form of evaluation. Generally, there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of three tests

Quizzes/mini tests (4 marks)

Mini Project / Case Studies (8 Marks)

Activities/Experimentations related to courses (8 Marks)

SEE Assessment:

Question paper for the SEE consists of two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.

Part B also covers the entire syllabus consisting of five questions having choices and may contain subdivisions, each carrying 16 marks. Students have to answer five full questions.

One question must be set from each unit. The duration of examination is 3 hours.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	1	1	0	0	0	0	0	0	0	0
CO2	3	3	3	3	0	0	0	0	0	0	0	0
CO3	3	3	2	3	0	0	0	0	0	0	0	0
CO4	3	3	3	2	0	0	0	0	0	0	0	0
CO5	3	3	3	1	0	0	0	0	0	0	0	0

Course Title	Introduction to Drone Technologies	Semester	3
Course Code	MVJ22AS363	CIE	50
Total No. of Contact Hours	40 L: T: P: 3: 0: 0	SEE	50
No. of Contact Hours/week	4	Total	100
Credits	3	Exam. Duration	3 Hours

Course objective is to: Comprehend the basic evolution of Drones / UAV systems. Acquire the knowledge of basic aerodynamics, performance, stability and control. Understand the propulsion, loads and structures. Understand Regulations and Certification aspects 8Hours Module-1 L1, L2, L3 Basics: Introduction, History, UV types: UGV, UAV, USV, UUWV, Drones in India, Future scope. Introduction to nano drones and Swarm Drones Principles, Newton's Laws, Degrees of Freedom, Stick Movements, Flight Modes, Basic Manoeuvres, Take-off, Pitch, Roll, Yaw, Landing. L1, L2, L3 8Hours Module-2 Components and Systems: Basic components, Micro controllers, microprocessors, Sensors, Pre-Flight Checks, Flight Planning, Transmitter, Receiver. Introduction to Arduino Sensors, Program Structures, Flight Controllers, Telemetry, Mission Planning, Camera, Binding, etc. Module-3 L1, L2, L3 8Hours Air Worthiness: DGCA Rules and Regulations, Pilot Licensing requirements, NPNT Compliance. Certifications. Module-4 L1, L2, L3 8Hours Basics of Structures: Configurations, Payload Configurations, Design Considerations. Basics of Propulsion: Batteries, Hybrid Propulsions, IC Engines, Mini Turbines, Solar, L1. L2. L3 8Hours Module-5

mouule o		11, 12, 10	onours
Tuning, Tes	ting, Manufacturing Constraints, Simulator Training, Appli	cations CASE	Studies:
Construction	n and testing of a basic drone.		
Course out	comes:		
CO206.3.1	Apply the basic concepts of UAV systems.		
CO206.3.2	Explain the basic aerodynamics, performance, stability and cont	trol required for	UAV.
CO206.3.3	Select the propulsion system and materials for structures.		

CO206.3.4	Understand Regulatory and Certification aspects
CO206.3.5	Understand basic flight with experimentation

Textbooks:

1	Introduction to UAV Systems Paul Gerin, Fahlstrom, Thomas James Wiley Publication 4th Edition,2012
2	Unmanned Aerial Vehicles: DOD's Acquisition Efforts Alpha Editions.

Reference Books

1. Handbook of Unmanned Aerial Vehicles Valavanis, K., Vachtsevano S, George J Springer

CIE Assessment:

CIE is based on quizzes, tests, assignments/seminars, and any other form of evaluation. Generally, there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA

marks to be awarded will be the average of three tests

Quizzes/mini tests (4 marks)

Mini Project / Case Studies (8 Marks)

Activities/Experimentations related to courses (8 Marks)

SEE Assessment:

ii. Question paper for the SEE consists of two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.

Part B also covers the entire syllabus consisting of five questions having choices and may contain sub-divisions, each carrying 16 marks. Students have to answer five full questions.

One question must be set from each unit. The duration of examination is 3 hours.

CO-PO Mapping	5											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	1	1	0	0	0	0	0	0	0	0
CO2	3	3	3	3	0	0	0	0	0	0	0	0
CO3	3	3	2	3	0	0	0	0	0	0	0	0
CO4	3	3	3	2	0	0	0	0	0	0	0	0
CO5	3	3	3	1	0	0	0	0	0	0	0	0

Course Title	AIRCRAFT MATERIALS AND PROCESSES	Semester	3
Course Code	MVJ22AS364	CIE	50
Total No. of Contact Hours	40 L: T: P: 3: 0: 0	SEE	50
No. of Contact Hours/week	4	Total	100
Credits	3	Exam. Duration	3 Hours

Course Objectives:

This course will enable students to:

Acquire knowledge of different aerospace materials & their properties.

Understand the Heat Treatment processes of aircraft metals and alloys

Characteristics and Applications of Aluminium alloys, Ceramics, Composites and Material Testing

Module-1	L1, L2, L3	8Hours						
Mechanical Behaviour of Engineering Materials: Introduction	n to aerospace	e materials and their						
classification, Linear and non-linear elastic properties- Stress and Strain	classification, Linear and non-linear elastic properties- Stress and Strain Curves-Yielding and strain Hardening,							
Toughness- Modules of resilience Bauchinger's effect- Effect of notches-Testing and flaw detection of								
materials and components, knowledge of various material testing machines								
Module-2	L1, L2, L3	8Hours						
Non-ferrous materials in aircraft construction: Aluminum and Its Alloys: Types and identification.								
Properties -Castings-Heat treatment processes —Surface treatments.								
Magnesium and its alloys: Cast and Wrought alloys-Aircraft application, features specification, fabrication								
	· 1	,						

Titanium and its alloys: Applications, machining, forming, welding and heat treatment, Copper

Alloys.Wood and fabric in aircraft construction and specifications- Glues Use of glass, plastics & rubber in aircraft, Introduction to glass & carbon composite

|--|

Ferrous materials in aircraft construction: Steels: Plain and low carbon steels, various low alloy steels, aircraft steel specifications, corrosion and heat-resistant steels, structural applications.

Maraging Steels: Properties and Applications.

Super Alloys: Use -Nickel base-Cobalt base- Iron base -Forging and Casting of Super Alloys-Welding, Heat treatment

Module-4	L1, L2, L3	8Hours
Ceramics and Composites: Introduction, modern ceramic materials, ce	ermets, glass cer	amic, production of
semi-fabricated forms, Carbon/Carbon composites, Fabrication processe	es and its aerosp	ace applications
involved in metal matrix composites, polymer composites.		

Module-5	L1, L2, L3	8Hours
Matavial Testing		

Material Testing:

Corrosion, its detection and prevention. Protective finishes. Testing: Destructive and non-destructive testing techniques. Crack detection, inspection of parts by hot oil and chalk, dye-penetrant, fluorescent and magnetic particles, X-ray, ultrasonic, eddy current and acoustic emission methods

Course outcomes:							
CO206.4.1	Apply the knowledge about the mechanical behaviour of different aircraft & aerospace materials.						
CO206.4.2	Explain the applications of Aluminium alloys, Ceramics and Composites Materials.						
CO206.4.3	3 Evaluate the importance of high temperature materials and their characterization.						

Text	Textbooks:						
Titterton G F, Aircraft Material and Processes, English Book Store, New Delhi, 5 th edition,							
1	ISBN-13: 978-8175980136						
2	Introduction to Physical Metallurgy by Sydney Avner, Tata McGraw-Hill Edition 1997.						

Ref	Reference Books							
1.	Hill E T, The Materials of Aircraft Construction, Pitman London.							
2.	C G Krishnadas Nair, Handbook of Aircraft materials, Interline publishers, Bangalore, 1993							
3.	H Buhl, Advanced Aerospace Materials, Springer, Berlin1992, ISBN-13: 978-3540558880							

CIE Assessment:

CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation. Generally, there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of three tests

Quizzes/mini tests (4 marks)

Mini Project / Case Studies (8 Marks)

Activities/Experimentations related to courses (8 Marks)

SEE Assessment:

 Question paper for the SEE consists of two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.

- ii. Part B also covers the entire syllabus consisting of five questions having choices and may contain sub-divisions, each carrying 16 marks. Students have to answer five full questions.
- iii. One question must be set from each unit. The duration of examination is 3 hours.

CO-PO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	1	1	0	0	0	0	0	0	0	0		
CO2	3	3	3	3	0	0	0	0	0	0	0	0		
CO3	3	3	2	3	0	0	0	0	0	0	0	0		
CO4	3	3	3	2	0	0	0	0	0	0	0	0		
CO5	3	3	3	1	0	0	0	0	0	0	0	0		

		Semester:	III			
Course Tit	le	Ability Enhancement Cou	arse on Astronomy (I	Level 1)		
Course Co	de	MVJ22AEC07	CIE	50Marks		
Total No. o	of Contact Hours	30 (L: T: P: 1: 0: 2)	SEE 50 Marks			
No. of Con	tact hours/week	03	Total	100 Marks		
Credits		2	Exam. Duration	2 Hours		
Course ob	jective is to:	I	_1	I		
Electromag	netic Spectrum, Sp	ace Communication and Te	elescopes.	es, Stars, Solar Systems, ace and structure of planets.		
Module 1.	Introduction to As	stronomy	RBT Level L1, L2, L3	8 Hrs.		
		·		ig Bang Theory, Galaxies,		
Stars, Solar	Systems, Electrom	agnetic Spectrum, Space C	ommunication, Astron	nomical Instruments, Types		
of telescop	es.					
Module 2.	Solar Systems		RBT Level L1, L2, L3	7 Hrs.		
Overview of	of our planetary syst	em, Composition and struc	, ,	of the solar system, surface		
of the plane	ets, Planetary Confi	gurations, Orbit of the eart	h and visibility of the	sun, orbit of the moon.		
Module 3.	Activities/Project	work	RBT Level L1, L2, L3	15 Hrs.		
Newton's u	niversal law of grav	vitation, Kepler's laws of p		oof of the laws, Theoretical		
Calculation	of Earth's Properti	es.				
Course out	tcomes: After the c	ompletion of course, stude	nts will be able to			
	quate knowledge al	entals of Astronomy bout our planetary system.	, orbits of the moon a	and earth and properties of		
Textbooks	:					
	t Ray Moulton, "Ai	n Introduction to Astronom	y Hardcover", The Ma	acmillan Company, New		
1 and F	Revised Edition, 201	18.				
2 Sally	R. Ball, "Astronom	y for Beginners: The Intro	duction Guide to Spac	e, Cosmos, Galaxies and		
Celes	tial Bodies", Blue s	source and Friends, 2020.				
Reference	Books					
1. Johnso	on B. K "Optics and	l Optical Instruments", Do	ver Publications, Inc. 1	New York. 2001.		
2. Whitle	ock LA, Pulliam K	"Laboratory exercises for	introductory radio as	tronomy with a small radio		
4-1	ope". iUniverse. 20	10				

	Semester: III							
	Diploma Mathematics-I							
Cou	rse Code:	MVJ22MATDIP31	CIE Marks:100					
Credits:		L: T: P: 1: 2: 0	SEE Marks: 100					
Hou	rs:	30L+26T	SEE Duration: 3 Hrs					
Cou	rse Learning Objectives: The stu	idents will be able to						
	To familiarize the important an	nd basic concepts of	Differential calculus and Differential					
1	Equation, ordinary/partial diffe	erential equations an	d Vector calculus and analyse the					
	engineering problems.							

UNIT-I	
Differential calculus: Recapitulations of successive differentiations -n th derivative -	8 Hrs
Leibnitz theorem and Problems, Mean value theorem -Rolle's theorem, Lagrange's Mean	
value theorem , Cauchy's theorem and Taylor's theorem for function of one variables.	
UNIT-II	
Integral Calculus:	8 Hrs
Review of elementary Integral calculus, Reduction formula	
$\int_0^{\frac{\pi}{2}} \sin^m x dx$, $\int_0^{\frac{\pi}{2}} \cos^m x dx$, $\int_0^{\frac{\pi}{2}} \sin^m \cos^n x dx$ and problems. Evaluation of double	
and triple integrals and Simples Problems.	
UNIT-III	
Vector Calculus: Derivative of vector valued functions, Velocity, Acceleration and	8 Hrs
related problems, Scalar and Vector point functions, Gradient, Divergence, Curl,	
Solenoidal and Irrotational vector fields. Vector identities - div (φ A), curl (φ A), curl	
(grad φ), div (curl A).	
UNIT-IV	
Probability:	8 Hrs
Introduction-Conditional Probability, Multiplication theorem, Independent events ,Baye's	
theorem and Problems.	
UNIT-V	
Differential equation: Homogenous differential equation, Linear differential equation,	8 Hrs
Bernoulli's differential equation and Exact differential equation.	

Course Outcomes: After completing the course, the students will be able to

CO1	Apply the knowledge of Differential calculus in the modeling of various physical and engineering phenomena
CO2	Apply the concept of change of order of integration and variables to evaluate multiple integrals and their usage in computing the area and volumes.
CO3	Study on Vector calculus to understand the various solution to Application to Engineering problems.
CO4	Understand the basic Concepts of Probability
CO5	Solve first order linear differential equation analytically using standard methods.

Text	Textbooks:						
1	B.S. Grewal, "Higher Engineering Mathematics" Khanna Publishers, 43 rd Edition, 2013.						
2	Ramana B. V., "Higher Engineering Mathematics", Tata Mc Graw-Hill, 2006.						

Ref	Cerence Books
1.	Erwin Kreyszig, "Advanced Engineering Mathematics", Wiley-India publishers, 10th
	edition,2014.
2.	G. B. Gururajachar: Calculus and Linear Algebra, Academic Excellent Series Publication,
	2018-19

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	2	0	0	0	0	0	0	0	0
CO2	3	3	2	2	0	0	0	0	0	0	0	0
CO3	3	3	3	3	0	0	0	0	0	0	0	0
CO4	3	3	3	3	0	0	0	0	0	0	0	0
CO5	3	3	3	2	0	0	0	0	0	0	0	0

	Semester: IV							
	(COMPLEX VARIABLES & 1	NUMERICAL METHODS					
Course Code:		MVJ22MAS41	CIE Marks:50					
Cree	dits: L: T: P: S	3: 0: 0: 0	SEE Marks: 50					
Hou	rs:	40	SEE Duration: 3 Hrs					
Cou	rse Learning Ol	bjectives: The students will be	e able to					
1	Understand the Problems.	concepts of Complex variab	les and transformation for solving Engineering					
2	Understand the concepts of complex integration, Poles and Residuals in the stability analysis of engineering problems.							
3	Apply the concept to find external of functional.							
4	Solve initial value problems using appropriate numerical methods.							
5	Students learn t	o obtain solution s of ordinary	and partial differential equations numerically.					

UNIT-I	
Complex variables - 1:	10 Hrs
Functions of complex variables, Analytic function, Cauchy-Riemann Equations in	
Cartesian and polar coordinates, Consequences of Cauchy-Riemann Equations,	
Construction of analytic functions (Using Milne-Thomson method).	
Transformations:	
Bilinear Transformation, Conformal transformation, Discussion of the transformations	
$w = z^2, w = e^z$ and $w = z + \frac{a}{z}, (z \neq 0)$.	
UNIT-II	
Complex variables 2:	10 Hrs
Complex integration - Cauchy theorem, Cauchy's Integral Theorem-Problems, Taylor &	
Laurent series- Problems, Singularities, Types of Singularities, Poles, Residues-	
definitions, Cauchy residue theorem - Problems.	
UNIT-III	
Numerical methods 1:	10 Hrs
Numerical solution of Ordinary Differential Equations of first order and first degree,	
Taylor's series method, Modified Euler's method, Runge-Kutta method of fourth order,	

Milne's and Adam-Bashforth Predictor and Corrector method.	
UNIT-IV	
Numerical methods 2:	10 Hrs
Numerical solution of Ordinary Differential Equations of second order: Runge-Kutta	
method of fourth order, Milne's Predictor and Corrector method.	
Calculus of variations:	
Variation of function and Functional, variational problems, Euler's equation, Geodesics.	
Applications: Hanging Chain problem.	
UNIT-V	
Numerical methods 3:	10 Hrs
Numerical solution of Partial Differential Equations: Introduction, Finite difference	
approximations to derivatives, Numerical Solution of Laplace Equation, Numerical	
solution of one-dimensional heat equation by Bender - Schmidt's method and by Crank-	
Nicholson Method, Numerical solution of one-dimensional wave equation.	

Course O	utcomes: After completing the course, the students will be able to
CO211.1	State and prove Cauchy - Riemann equation with its consequences and demonstrate Con-
0211.1	formal Transformation.
CO211.2	Illustrate Complex Integration using Cauchy's Integral theorem, Cauchy's Integral
	formula, and Cauchy's Residue theorem.
CO211.3	Identify appropriate numerical methods to solve ODE.
CO211.4	Determine the extremals of functionals and solve the simple problems of the calculus of
	variations.
CO211.5	Choose appropriate numerical methods to solve Partial Differential Equations.

Text	tbooks:
1	Prof G.B.Gururajachar "Engineering Mathematics-III, Academic Excellent series
	Publications, 2016-17
2	B.S. Grewal, "Higher Engineering Mathematics" Khanna Publishers, 43 rd Edition, 2013.

Ref	erence Books
1.	B.V.Ramana, "Higher Engineering Mathematics", Tata McGraw-Hill, 2006
2.	N.P. Bali & Manish Goyal, "A text book of Engineering Mathematics", Laxmi Publications,
	8 th Edition.
3.	H K Dass: "Advanced Engineering Mathematics"- S Chand & Company Ltd.12 th edition.

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	0	3	0	0	0	0	0	0	1	0
CO2	3	3	0	3	0	0	0	0	0	0	0	1
CO3	2	3	0	3	0	0	0	0	0	0	1	0
CO4	3	3	0	3	0	0	0	0	0	0	0	0
CO5	3	3	0	2	0	0	0	0	0	0	0	1

		Semester: IV	
	INCO	MPRESSIBLE AERODY	YNAMICS
Co	urse Code:	MVJ22AS42	CIE Marks:50
Cre	edits: L: T: P: S	3: 0: 2: 0	SEE Marks: 50
Ho	urs: 40L	40L + 26P	SEE Duration: 3 Hrs
Co	urse Learning Objectives: Th	e students will be able to	
1	Understand the basics of flu	d mechanics as a prerequis	te to Aerodynamics
2	Acquire knowledge on typic	al airfoil characteristics and	d two-dimensional flows over airfoil
3	Acquire knowledge of incom	pressible flows over airfoi	1
4	Understand the fundamental	s of incompressible flow ov	ver finite wings
5	Assimilate the understanding	g of application of finite wi	ng theory and high lift systems

UNIT-I

UNIT-I	
Review of Basic Fluid Mechanics	10
Continuity, momentum and energy equation, Control volume approach to Continuity,	Hrs
momentum and energy equation, Types of flow, pathlines, streamlines, and streaklines, units	
and dimensions, inviscid and viscous flows, compressibility, Mach number regimes.	
Vorticity, Angular velocity, Stream function, velocity potential function, Circulation,	
Numericals, Mach cone and Mach angle, Speed of sound.	
Laboratory Sessions/ Experimental learning: Smoke flow visualization studies on a two	
dimensional airfoil at different angles of incidence at low speeds	
Applications: provides a proper understanding of the flow properties and their characteristics	
features which helps in the study of flow over airfoils	
UNIT-II	
Airfoil Characteristics	10
Fundamental aerodynamic variables, Airfoil nomenclature, airfoil characteristics. wing	Hrs
Fundamental aerodynamic variables, Airfoil nomenclature, airfoil characteristics. wing planform geometry, aerodynamic forces and moments, centre of pressure, pressure	Hrs
	Hrs
planform geometry, aerodynamic forces and moments, centre of pressure, pressure	Hrs
planform geometry, aerodynamic forces and moments, centre of pressure, pressure coefficient, aerodynamic center, calculation of airfoil lift and drag from measured surface	Hrs
planform geometry, aerodynamic forces and moments, centre of pressure, pressure coefficient, aerodynamic center, calculation of airfoil lift and drag from measured surface pressure distributions, typical airfoil aerodynamic characteristics at low speeds. Types of	Hrs
planform geometry, aerodynamic forces and moments, centre of pressure, pressure coefficient, aerodynamic center, calculation of airfoil lift and drag from measured surface pressure distributions, typical airfoil aerodynamic characteristics at low speeds. Types of drag-Definitions.	Hrs

UNIT-III	
Two Dimensional Flows & Incompressible Flow Over Airfoil	10
Uniform flow, Source flow, Sink flow, Combination of a uniform flow with source and sink.	Hrs
Doublet flow. Non-lifting flow over a circular cylinder. Vortex flow. Lifting flow over a	
circular cylinder. Kutta-Joukowski theorem and generation of Lift, D'Alembert's paradox,	
Numericals, Incompressible flow over airfoils: Kelvin's circulation theorem and the starting	
vortex, vortex sheet, Kutta condition, Classical thin airfoil theory for symmetric and	
cambered airfoils. KuttaJoukowski theorem. and generation of Lift, Numerical.	
Laboratory Sessions/ Experimental learning: Calculation of total drag of a two-dimensional	
circular cylinder at low speeds using pitot-static probe wake survey.	
Applications: study the lifting and non lifting flows over cylinders and arbitrary bodies and	
understanding the theory behind lift generation	
UNIT-IV	
Incompressible Flow Over Finite Wings	10
Biot-Savart law and Helmholtz's theorems, Vortex filament: Infinite and semi-infinite vortex	Hrs
filament, Induced velocity. Prandtl's classical lifting line theory: Downwash and induced	
drag. Elliptical and modified elliptical lift distribution. Lift distribution on wings. Limitations	
of Prandtl's lifting line theory. Extended lifting line theory-lifting surface theory, vortex	
lattice method for wings. Lift, drag and moment characteristics of complete airplane	
Laboratory Sessions/ Experimental learning: Surface pressure distributions on a two-	
dimensional cambered airfoil at different angles of incidence and calculation of lift and	
pressure drag.	
Applications: understanding the theory of lift generation over finite wings and their flow	
patterns	
UNIT-V	
Applications of Finite Wing Theory & High Lift Systems	10
Simplified horse-shoe vortex model, influence of downwash on tail plane, ground effects.	Hrs
Swept wings: Introduction to sweep effects, swept wings, pressure coefficient, and typical	
aerodynamic characteristics. Introduction to high-lift systems, flaps, leading-edge slats and	
typical high – lift characteristics. Effects of thickness, camber and aspect ratio of wings, tip	
effects. Introduction to	
Source panel & vortex lattice method	
Laboratory Sessions/ Experimental learning: Calculation of aerodynamic coefficients forces	

Laboratory Sessions/ Experimental learning: Calculation of aerodynamic coefficients forces acting on a model aircraft using force balance at various angles of incidence, speed.

Applications: study the typical aerodynamics characteristics of swept wings and different types of high lift devices

SI NoExperiment NameRBT LevelHow1Calibration of a subsonic wind tunnel: test section static pressure and total head distributions.L1, L2, L3032Smoke flow visualization studies on a two-dimensional circular cylinder at low speeds.L1, L2, L3033Smokeflow visualization studies on a two-dimensional circular nglesofincidenceatlowspeedsL1, L2, L3034Smoke flow visualization studies on a two dimensional wing with flaps and slats at different angles of incidence at low speedsL1, L2, L3035Tuft flow visualization on a wing model at different angles of incidence at low speeds: identify zones of attached and separated flows.L1, L2, L3036Surface pressure distributions on a two-dimensional wing of cylinder at low speeds and calculation of pressure drag.L1, L2, L3037Surface pressure distributions on a two-dimensional wing of cambered airfoil and estimation of Center of pressure and Aerodynamic centerL1, L2, L3038Surface pressure distributions on a two-dimensional wing of cambered airfoil at different angles of incidence, and estimation of Center of pressure and Aerodynamic center.039Calculation of total drag of a two-dimensional circular cylinder at low airfoil at low speeds at incidence using pitot-static probe wake survey.0310Calculation of total drag of a two-dimensional wing of airfoil at low speeds at incidence using pitot-static probe wake survey.L1, L2, L30311Measurement of a typical boundary layer velocity profile on the boundary layer displacement and momentum thickness.<		LABORATORY EXPERIMENTS		
total head distributions.L1, L2, L3032Smoke flow visualization studies on a two-dimensional circular cylinder at low speeds.L1, L2, L3033Smokeflowvisualizationstudiesonatwodimensionalairfoilatdifferenta nglesofincidenceatlowspeedsL1, L2, L3034Smoke flow visualization studies on a two dimensional wing with flaps and slats at different angles of incidence at low speedsL1, L2, L3035Tuft flow visualization on a wing model at different angles of incidence at low speeds: identify zones of attached and separated flows.L1, L2, L3036Surface pressure distributions on a two-dimensional smooth circular cylinder at low speeds and calculation of pressure drag.L1, L2, L3037Surface pressure distributions on a two-dimensional wing of cambered airfoil and estimation of Center of pressure and Aerodynamic centerL1, L2, L3038Surface pressure distributions on a two-dimensional wing of center of pressure and Aerodynamic center.L1, L2, L3039Calculation of total drag of a two-dimensional circular cylinder at low speeds using pitot-static probe wake survey.L1, L2, L30310Calculation of total drag of a two-dimensional wing of airfoil at low speeds at incidence using pitot-static probe wake survey.L1, L2, L30311Measurement of a typical boundary layer velocity profile on the tunnel wall (at low speeds) using a pitot probe and calculation of boundary layer displacement and momentum thickness.L1, L2, L30312Calculation of aerodynamic forces and moments acting on a model aircraft at vario	Sl No	Experiment Name	RBT Level	Hours
2Smoke flow visualization studies on a two-dimensional circular cylinder at low speeds.L1, L2, L3033Smokeflowvisualizationstudiesonatwodimensionalairfoilatdifferenta nglesofincidenceatlowspeedsL1, L2, L3034Smoke flow visualization studies on a two dimensional wing with flaps and slats at different angles of incidence at low speedsL1, L2, L3035Tuft flow visualization on a wing model at different angles of incidence at low speeds: identify zones of attached and separated flows.L1, L2, L3036Surface pressure distributions on a two-dimensional smooth circular cylinder at low speeds and calculation of pressure drag.L1, L2, L3037Surface pressure distributions on a two-dimensional wing of cambered airfoil and estimation of Center of pressure and Aerodynamic centerL1, L2, L3038Surface pressure distributions on a two-dimensional wing of cambered airfoil at different angles of incidence, and estimation of Center of pressure and Aerodynamic center.L1, L2, L3039Calculation of total drag of a two-dimensional ving of airfoil at low speeds at incidence using pitot-static probe wake survey.L1, L2, L30310Calculation of total drag of a two-dimensional wing of boundary layer displacement and momentum thickness.L1, L2, L30312Calculation of a typical boundary layer velocity profile on the boundary layer displacement and momentum thickness.L1, L2, L30312Calculation of aerodynamic forces and moments acting on a model aircraft at various Angle of Attack and speeds using windL1, L2, L303<	1	Calibration of a subsonic wind tunnel: test section static pressure and	L1, L2, L3	03
cylinder at low speeds.Image of the speeds of t		total head distributions.		
3Smokeflowvisualizationstudiesonatwodimensionalairfoilatdifferenta nglesofincidenceatlowspeedsL1, L2, L3034Smoke flow visualization studies on a two dimensional wing with flaps and slats at different angles of incidence at low speedsL1, L2, L3035Tuft flow visualization on a wing model at different angles of incidence at low speeds: identify zones of attached and separated flows.L1, L2, L3036Surface pressure distributions on a two-dimensional smooth circular cylinder at low speeds and calculation of pressure drag.L1, L2, L3037Surface pressure distributions on a two-dimensional wing of symmetric airfoil and estimation of Center of pressure and Aerodynamic centerL1, L2, L3038Surface pressure distributions on a two-dimensional wing of center of pressure and Aerodynamic center.L1, L2, L3039Calculation of total drag of a two-dimensional circular cylinder at low speeds using pitot-static probe wake survey.L1, L2, L30310Calculation of total drag of a two-dimensional wing of airfoil at low speeds at incidence using pitot-static probe wake survey.L1, L2, L30311Measurement of a typical boundary layer velocity profile on the tunnel wall (at low speeds) using a pitot probe and calculation of boundary layer displacement and momentum thickness.L1, L2, L30312Calculation of aerodynamic forces and moments acting on a model aircraft at various Angle of Attack and speeds using windL1, L2, L303	2	Smoke flow visualization studies on a two-dimensional circular	L1, L2, L3	03
nglesofincidenceatlowspeedsImage: 10 minimization studies on a two dimensional wing with flaps and slats at different angles of incidence at low speedsL1, L2, L3035Tuft flow visualization on a wing model at different angles of incidence at low speeds: identify zones of attached and separated flows.L1, L2, L3036Surface pressure distributions on a two-dimensional smooth circular cylinder at low speeds and calculation of pressure drag.L1, L2, L3037Surface pressure distributions on a two-dimensional wing of symmetric airfoil and estimation of Center of pressure and Aerodynamic centerL1, L2, L3038Surface pressure distributions on a two-dimensional wing of cambered airfoil at different angles of incidence, and estimation of Center of pressure and Aerodynamic center.L1, L2, L3039Calculation of total drag of a two-dimensional circular cylinder at low speeds at incidence using pitot-static probe wake survey.L1, L2, L30310Calculation of total drag of a two-dimensional wing of airfoil at low speeds at incidence using pitot-static probe wake survey.L1, L2, L30311Measurement of a typical boundary layer velocity profile on the tunnel wall (at low speeds) using a pitot probe and calculation of boundary layer displacement and momentum thickness.L1, L2, L30312Calculation of aerodynamic forces and moments acting on a model aircraft at various Angle of Attack and speeds using windL1, L2, L303		cylinder at low speeds.		
4Smoke flow visualization studies on a two dimensional wing with flaps and slats at different angles of incidence at low speedsL1, L2, L3035Tuft flow visualization on a wing model at different angles of incidence at low speeds: identify zones of attached and separated flows.L1, L2, L3036Surface pressure distributions on a two-dimensional smooth circular cylinder at low speeds and calculation of pressure drag.L1, L2, L3037Surface pressure distributions on a two-dimensional wing of symmetric airfoil and estimation of Center of pressure and Aerodynamic centerL1, L2, L3038Surface pressure distributions on a two-dimensional wing of cambered airfoil at different angles of incidence, and estimation of Center of pressure and Aerodynamic center.L1, L2, L3039Calculation of total drag of a two-dimensional wing of airfoil at low speeds at incidence using pitot-static probe wake survey.L1, L2, L30310Calculation of total drag of a two-dimensional wing of boundary layer displacement and momentum thickness.L1, L2, L30312Calculation of a typical boundary layer velocity profile on the boundary layer displacement and momentum thickness.L1, L2, L303	3	Smokeflowvisualizationstudiesonatwodimensionalairfoilatdifferenta	L1, L2, L3	03
flaps and slats at different angles of incidence at low speedsImage: Constraint of the speed of t		nglesofincidenceatlowspeeds		
5Tuft flow visualization on a wing model at different angles of incidence at low speeds: identify zones of attached and separated flows.L1, L2, L3036Surface pressure distributions on a two-dimensional smooth circular cylinder at low speeds and calculation of pressure drag.L1, L2, L3037Surface pressure distributions on a two-dimensional wing of Aerodynamic centerL1, L2, L3038Surface pressure distributions on a two-dimensional wing of cambered airfoil at different angles of incidence, and estimation of Center of pressure and Aerodynamic center.L1, L2, L3039Calculation of total drag of a two-dimensional wing of airfoil at low speeds at incidence using pitot-static probe wake survey.L1, L2, L30310Calculation of total drag of a two-dimensional wing of airfoil at low speeds at incidence using pitot-static probe wake survey.L1, L2, L30311Measurement of a typical boundary layer velocity profile on the tunnel wall (at low speeds) using a pitot probe and calculation of boundary layer displacement and momentum thickness.L1, L2, L30312Calculation of aerodynamic forces and moments acting on a model aircraft at various Angle of Attack and speeds using windL1, L2, L303	4	Smoke flow visualization studies on a two dimensional wing with	L1, L2, L3	03
incidence at low speeds: identify zones of attached and separated flows.Image: constraint of the separated flows.Image: constraint of the separated flows.6Surface pressure distributions on a two-dimensional smooth circular cylinder at low speeds and calculation of pressure drag.L1, L2, L3037Surface pressure distributions on a two-dimensional wing of symmetric airfoil and estimation of Center of pressure and Aerodynamic centerL1, L2, L3038Surface pressure distributions on a two-dimensional wing of cambered airfoil at different angles of incidence, and estimation of Center of pressure and Aerodynamic center.L1, L2, L3039Calculation of total drag of a two-dimensional wing of cambered airfoil at low speeds at incidence using pitot-static probe wake survey.L1, L2, L30310Calculation of total drag of a two-dimensional wing of cambered airfoil at low speeds at incidence using pitot-static probe wake survey.L1, L2, L30311Measurement of a typical boundary layer velocity profile on the tunnel wall (at low speeds) using a pitot probe and calculation of boundary layer displacement and momentum thickness.L1, L2, L30312Calculation of aerodynamic forces and moments acting on a model aircraft at various Angle of Attack and speeds using windL1, L2, L303		flaps and slats at different angles of incidence at low speeds		
flows.Image: constraint of the second se	5	Tuft flow visualization on a wing model at different angles of	L1, L2, L3	03
6Surface pressure distributions on a two-dimensional smooth circular cylinder at low speeds and calculation of pressure drag.L1, L2, L3037Surface pressure distributions on a two-dimensional wing of symmetric airfoil and estimation of Center of pressure and Aerodynamic centerL1, L2, L3038Surface pressure distributions on a two-dimensional wing of cambered airfoil at different angles of incidence, and estimation of Center of pressure and Aerodynamic center.L1, L2, L3039Calculation of total drag of a two-dimensional circular cylinder at low speeds using pitot-static probe wake survey.L1, L2, L30310Calculation of total drag of a two-dimensional wing of airfoil at low speeds at incidence using pitot-static probe wake survey.L1, L2, L30311Measurement of a typical boundary layer velocity profile on the boundary layer displacement and momentum thickness.L1, L2, L30312Calculation of aerodynamic forces and moments acting on a model aircraft at various Angle of Attack and speeds using windL1, L2, L303		incidence at low speeds: identify zones of attached and separated		
cylinder at low speeds and calculation of pressure drag.L1, L2, L3037Surface pressure distributions on a two-dimensional wing of symmetric airfoil and estimation of Center of pressure and Aerodynamic centerL1, L2, L3038Surface pressure distributions on a two-dimensional wing of cambered airfoil at different angles of incidence, and estimation of Center of pressure and Aerodynamic center.L1, L2, L3039Calculation of total drag of a two-dimensional circular cylinder at low speeds using pitot-static probe wake survey.L1, L2, L30310Calculation of total drag of a two-dimensional wing of cambered airfoil at low speeds at incidence using pitot-static probe wake survey.L1, L2, L30311Measurement of a typical boundary layer velocity profile on the tunnel wall (at low speeds) using a pitot probe and calculation of boundary layer displacement and momentum thickness.L1, L2, L30312Calculation of aerodynamic forces and moments acting on a model aircraft at various Angle of Attack and speeds using windL1, L2, L303		flows.		
 7 Surface pressure distributions on a two-dimensional wing of symmetric airfoil and estimation of Center of pressure and Aerodynamic center 8 Surface pressure distributions on a two-dimensional wing of cambered airfoil at different angles of incidence, and estimation of Center of pressure and Aerodynamic center. 9 Calculation of total drag of a two-dimensional circular cylinder at low speeds using pitot-static probe wake survey. 10 Calculation of total drag of a two-dimensional wing of airfoil at low speeds at incidence using pitot-static probe wake survey. 11 Measurement of a typical boundary layer velocity profile on the tunnel wall (at low speeds) using a pitot probe and calculation of boundary layer displacement and momentum thickness. 12 Calculation of aerodynamic forces and moments acting on a model aircraft at various Angle of Attack and speeds using wind 	6	Surface pressure distributions on a two-dimensional smooth circular	L1, L2, L3	03
symmetric airfoil and estimation of Center of pressure and Aerodynamic centerL1, L2, L3038Surface pressure distributions on a two-dimensional wing of cambered airfoil at different angles of incidence, and estimation of Center of pressure and Aerodynamic center.L1, L2, L3039Calculation of total drag of a two-dimensional circular cylinder at low speeds using pitot-static probe wake survey.L1, L2, L30310Calculation of total drag of a two-dimensional wing of cambered airfoil at low speeds at incidence using pitot-static probe wake survey.L1, L2, L30311Measurement of a typical boundary layer velocity profile on the boundary layer displacement and momentum thickness.L1, L2, L30312Calculation of aerodynamic forces and moments acting on a model aircraft at various Angle of Attack and speeds using windL1, L2, L303		cylinder at low speeds and calculation of pressure drag.		
Aerodynamic centerImage: Aerodynamic center8Surface pressure distributions on a two-dimensional wing of cambered airfoil at different angles of incidence, and estimation of Center of pressure and Aerodynamic center.Image: L1, L2, L3039Calculation of total drag of a two-dimensional circular cylinder at low speeds using pitot-static probe wake survey.L1, L2, L30310Calculation of total drag of a two-dimensional wing of cambered airfoil at low speeds at incidence using pitot-static probe wake survey.L1, L2, L30311Measurement of a typical boundary layer velocity profile on the tunnel wall (at low speeds) using a pitot probe and calculation of boundary layer displacement and momentum thickness.L1, L2, L30312Calculation of aerodynamic forces and moments acting on a model aircraft at various Angle of Attack and speeds using windL1, L2, L303	7	Surface pressure distributions on a two-dimensional wing of	L1, L2, L3	03
 8 Surface pressure distributions on a two-dimensional wing of cambered airfoil at different angles of incidence, and estimation of Center of pressure and Aerodynamic center. 9 Calculation of total drag of a two-dimensional circular cylinder at low speeds using pitot-static probe wake survey. 10 Calculation of total drag of a two-dimensional wing of cambered airfoil at low speeds at incidence using pitot-static probe wake survey. 11 Measurement of a typical boundary layer velocity profile on the tunnel wall (at low speeds) using a pitot probe and calculation of boundary layer displacement and momentum thickness. 12 Calculation of aerodynamic forces and moments acting on a model aircraft at various Angle of Attack and speeds using wind 		symmetric airfoil and estimation of Center of pressure and		
cambered airfoil at different angles of incidence, and estimation of Center of pressure and Aerodynamic center.L1, L2, L3039Calculation of total drag of a two-dimensional circular cylinder at low speeds using pitot-static probe wake survey.L1, L2, L30310Calculation of total drag of a two-dimensional wing of cambered airfoil at low speeds at incidence using pitot-static probe wake survey.L1, L2, L30311Measurement of a typical boundary layer velocity profile on the tunnel wall (at low speeds) using a pitot probe and calculation of boundary layer displacement and momentum thickness.L1, L2, L30312Calculation of aerodynamic forces and moments acting on a model aircraft at various Angle of Attack and speeds using windL1, L2, L303		Aerodynamic center		
Center of pressure and Aerodynamic center.L1, L2, L3039Calculation of total drag of a two-dimensional circular cylinder at low speeds using pitot-static probe wake survey.L1, L2, L30310Calculation of total drag of a two-dimensional wing of cambered airfoil at low speeds at incidence using pitot-static probe wake survey.L1, L2, L30311Measurement of a typical boundary layer velocity profile on the tunnel wall (at low speeds) using a pitot probe and calculation of boundary layer displacement and momentum thickness.L1, L2, L30312Calculation of aerodynamic forces and moments acting on a model aircraft at various Angle of Attack and speeds using windL1, L2, L303	8	Surface pressure distributions on a two-dimensional wing of	L1, L2, L3	03
9Calculation of total drag of a two-dimensional circular cylinder at low speeds using pitot-static probe wake survey.L1, L2, L30310Calculation of total drag of a two-dimensional wing of cambered airfoil at low speeds at incidence using pitot-static probe wake survey.L1, L2, L30311Measurement of a typical boundary layer velocity profile on the tunnel wall (at low speeds) using a pitot probe and calculation of boundary layer displacement and momentum thickness.L1, L2, L30312Calculation of aerodynamic forces and moments acting on a model aircraft at various Angle of Attack and speeds using windL1, L2, L303		cambered airfoil at different angles of incidence, and estimation of		
speeds using pitot-static probe wake survey.L1, L2, L30310Calculation of total drag of a two-dimensional wing of cambered airfoil at low speeds at incidence using pitot-static probe wake survey.L1, L2, L30311Measurement of a typical boundary layer velocity profile on the tunnel wall (at low speeds) using a pitot probe and calculation of boundary layer displacement and momentum thickness.L1, L2, L30312Calculation of aerodynamic forces and moments acting on a model aircraft at various Angle of Attack and speeds using windL1, L2, L303		Center of pressure and Aerodynamic center.		
10Calculation of total drag of a two-dimensional wing of cambered airfoil at low speeds at incidence using pitot-static probe wake survey.L1, L2, L30311Measurement of a typical boundary layer velocity profile on the tunnel wall (at low speeds) using a pitot probe and calculation of boundary layer displacement and momentum thickness.L1, L2, L30312Calculation of aerodynamic forces and moments acting on a model aircraft at various Angle of Attack and speeds using windL1, L2, L303	9	Calculation of total drag of a two-dimensional circular cylinder at low	L1, L2, L3	03
airfoil at low speeds at incidence using pitot-static probe wake survey.L1, L2, L30311Measurement of a typical boundary layer velocity profile on the tunnel wall (at low speeds) using a pitot probe and calculation of boundary layer displacement and momentum thickness.L1, L2, L30312Calculation of aerodynamic forces and moments acting on a model aircraft at various Angle of Attack and speeds using windL1, L2, L303		speeds using pitot-static probe wake survey.		
11Measurement of a typical boundary layer velocity profile on the tunnel wall (at low speeds) using a pitot probe and calculation of boundary layer displacement and momentum thickness.L1, L2, L30312Calculation of aerodynamic forces and moments acting on a model aircraft at various Angle of Attack and speeds using windL1, L2, L303	10	Calculation of total drag of a two-dimensional wing of cambered	L1, L2, L3	03
tunnel wall (at low speeds) using a pitot probe and calculation of boundary layer displacement and momentum thickness.L1, L2, L312Calculation of aerodynamic forces and moments acting on a model aircraft at various Angle of Attack and speeds using windL1, L2, L3		airfoil at low speeds at incidence using pitot-static probe wake survey.		
boundary layer displacement and momentum thickness.12Calculation of aerodynamic forces and moments acting on a model aircraft at various Angle of Attack and speeds using windL1, L2, L3	11	Measurement of a typical boundary layer velocity profile on the	L1, L2, L3	03
12Calculation of aerodynamic forces and moments acting on a model aircraft at various Angle of Attack and speeds using windL1, L2, L303		tunnel wall (at low speeds) using a pitot probe and calculation of		
model aircraft at various Angle of Attack and speeds using wind		boundary layer displacement and momentum thickness.		
	12	Calculation of aerodynamic forces and moments acting on a	L1, L2, L3	03
tunnel balance With Yaw.		model aircraft at various Angle of Attack and speeds using wind		
		tunnel balance With Yaw.		

13	Calculation of aerodynamic coefficients and forces acting on a model aircraft at various Angle of Attack and speeds using wind tunnel balance Without Yaw.	L1, L2, L3	03
14	Pressure measurements on aerofoil for a case of reverse flow.	L1, L2, L3	03
Course	outcomes:		
CO1	Apply the flow visualization techniques		
CO2	Estimate the pressure distribution over the bodies		
CO3	Calculate the forces and moments on models.		

Course O	utcomes: After completing the course, the students will be able to
CO212.1	Describe the fundamental equations of continuity, momentum & energy of fluid flow.
CO212.2	Evaluate typical airfoil characteristics and two-dimensional flows over airfoil
CO212.3	Analyze the incompressible flow over airfoil
CO212.4	Compute and analyze the incompressible flow over finite wings
CO212.5	Apply finite wing theory and analyze high lift systems

Tex	t books
1.	Anderson J.D, Fundamental of Aerodynamics, 5th edition, McGraw-Hill International Edition,
	New York (2011), ISBN-13: 978-0073398105.
2.	E. L. Houghton, P.W. Carpenter, Aerodynamics for Engineering Students, 5th edition, Elsevier,
	New York. (2010), ISBN-13: 978-0080966328
Ref	erence Books
1.	Clancy L. J., Aerodynamics, Sterling book house, New Delhi. (2006), ISBN 13: 9780582988804
2.	Louis M. Milne-Thomson, Theoretical Aerodynamics, Imported Edition, Dover Publications,
	USA (2011), ISBN 9780486619804.
3.	John J. Bertin (autor.), Russell M. Cummings, Aerodynamics for Engineers, Sixth edition
	Cambridge University Press (2021)
4.	Steven H. Collicott, Daniel T. Valentine, E. L. Houghton, P. W. Carpenter, Aerodynamics for
	Engineering Students, Edition 8, Elsevier (2024), ISBN: 032395815X, 9780323958158

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are

conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mappi	ng											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	0	1	1	0	1	1	0	1
CO2	3	3	2	3	0	1	1	0	1	1	0	1
CO3	3	3	3	3	1	1	1	0	1	1	0	1
CO4	3	3	3	3	1	1	1	0	1	1	0	1
CO5	3	3	3	2	1	1	1	0	1	1	0	1

High-3, Medium-2, Low-1

Semester: IV							
THERMODYNAMICS							
Course Code	MVJ22AS43	CIE	50				
Total No. of Contact Hours	50 L: T : P :: 3 : 2 : 0	SEE	50				
No. of Contact Hours/week	5	Total	100				
Credits	4	Exam. Duration	3 Hours				

Course objective is to: This course will enable students to					
Understand various concepts and definitions of thermodynamics.					
Comprehend the I-law of thermodynamics.					
Comprehend the II-law of thermodynamics					
Acquire the knowledge of Pure Substances & various types of gas cycles					
Acquire the knowledge of Heat transfer.					
Module-1L1, L2, L310 Hours					
Fundamental Concepts & Definitions:					

Thermodynamics definition and scope, Microscopic and Macroscopic approaches. Some practical applications of engineering thermodynamic Systems, Characteristics of system boundary and control surface, examples. Thermodynamic properties; definition and Modules, intensive and extensive properties. Thermodynamic state, state point, state diagram, path and process, quasi-static process, cyclic and non-cyclic; processes; Thermodynamic equilibrium; definition, mechanical equilibrium; diathermic wall, thermal equilibrium, chemical equilibrium. Zeroth law of thermodynamics, Temperature; concepts, scales, fixed points, and measurements.

Work and Heat:

Mechanics-definition of work and its limitations. Thermodynamic definition of work; examples, sign convention. Displacement work; as a part of a system boundary, as a whole of a system boundary, expressions for displacement work in various processes through p-v diagrams. Shaft work; Electrical work. Other types of work

Laboratory Sessions / Experimental learning:

To determine the unknown area of a given drawing using planimeter

Applications:

1.For temperature measurements

2.To obtain displacement work

Module-2

L1, L2, L3 10Hours

First Law of Thermodynamics:

Joules experiments, equivalence of heat and work. Statement of the First law of thermodynamics,

extension of the First law to non - cyclic processes, energy, energy as a property, modes of energy, pure substance; definition, two-property rule, Specific heat at constant volume, enthalpy, specific heat at constant pressure. Extension of the First law to control volume; steady state-steady flow energy equation, important applications.

Laboratory Sessions/ Experimental learning:

Applications:

- 1. Conservation of energy principle to Heat and Thermodynamic processes
- 2. Compressors, Blowers, Steam or Gas Turbines, IC engines

Module-3 L1, L2, L3 10Hours

Second Law of Thermodynamics:

Devices converting heat to work; (a) in a thermodynamic cycle, (b) in a mechanical cycle. Thermal reservoir. Direct heat engine; schematic representation and efficiency. Devices converting work to heat in a thermodynamic cycle; reversed heat engine, schematic representation, coefficients of performance. Kelvin - Planck statement of the Second law of Thermodynamics; PMM I and PMM II, Clausius statement of Second law of Thermodynamics, Equivalence of the two statements; Reversible and Irreversible processes; factors that make a process irreversible, reversible heat engine, Carnot cycle, Carnot principles.

Entropy:

Clausius inequality; Statement, proof, application to a reversible cycle. Entropy: definition, a property, change of entropy, principle of increase in entropy, entropy as a quantitative test for irreversibility, calculation of entropy using Tds relations, entropy as a coordinate.

Laboratory Sessions/ Experimental learning:

Applications:

- 1. All types of heat engine cycles including Otto, Diesel, etc
- 2. Refrigerators and heat pumps based on the Reversed Carnot Cycle
- 3. Mixing of two fluids, heat transfer through a finite temperature difference

Module-4	L1, L2, L3	10Hours

Pure Substances:

Mixture of ideal gases and real gases, ideal gas equation, compressibility factor use of charts. P-T and P-V diagrams, triple point, and critical points. Sub-cooled liquid, Saturated liquid, mixture of saturated liquid and vapour, saturated vapour, and superheated vapour states of pure substance with water as example. Enthalpy of change of phase (Latent heat). Dryness fraction (quality), T-S and HS diagrams, representation of various processes on these diagrams.

Gas Cycles:

Efficiency of air standard cycles, Carnot, Otto, Diesel cycles, P-V & T-S diagram, calculation of efficiency, Numerical

Laboratory Sessions/ Experimental learning:

Applications: Working fluids and its properties, in power plants for power generations.

	Module-5L1, L2, L310Hours
--	---------------------------

Heat Transfer:

Introduction to heat transfer, Modes of heat transfer, conduction, convection, radiation heat transfer, heat exchangers, types of heat exchangers(shell and tube heat exchanger, plate heat exchanger) Application of heat transfer in Aeronautical and Aerospace engineering.

Applications:

IC engines, Gas turbine engines etc..

	LABORATORY EXPERIMENTS		
Sl No	Experiment Name	RBT Level	Hours
1	Determination of Flash point and Fire point of lubricating oil using	L1,L2,L3	03
	Abel Pensky and Pensky Martins Apparatus.		
2	Determination of Calorific value of solid, liquid and gaseous fuels.	L1,L2,L3	03
3	Determination of Viscosity of lubricating oil using Torsion viscometers.	L1,L2,L3	03
4	Valve Timing diagram of 4-stroke IC Engine.	L1,L2,L3	03
5	Calculation of work done and heat transfer from PV and TS diagram using Planimeter.	L1,L2,L3	03
6	Performance Teston Four Stroke Petrol Engine and calculations of IP, BP, Thermal efficiencies, SFC, FP and to draw heat balance sheet.	L1,L2,L3	03
7	Performance Test on Four stroke Multi cylinder Engine and calculations of IP, BP, Thermal efficiencies, SFC, FP and to draw heat balance sheet.	L1,L2,L3	03
8	Calibration of Venturi meter.	L1,L2,L3	03
9	Determination of Coefficient of discharge for a small orifice by a constant head method.	L1,L2,L3	03
10	Verification of Bernoulli's equation.	L1,L2,L3	03
11	Investigate the effect of changes in hot fluid and cold fluid flow on temperature, efficiency and overall heat transfer coefficient using different working fluids	L1,L2,L3	03
12	Determination of Convective heat transfer coefficient for the composite materials	L1,L2, L3	03
Cour	se outcomes:		

CO1	Operate the instrument and measure the BP, FP, IP and AF ratio.
CO2	Find the efficiency of the engine and Estimate the calorific value of the given fuel.
CO3	Verify the Bernoulli's equation.

Course outco	omes:
CO203.1	Apply the concepts of thermodynamics in various engineering problems.
CO203.2	Differentiate thermodynamic work and heat and apply I law of thermodynamics to
	different process
CO203.3	Differentiate thermodynamic work and heat and apply II law of thermodynamics to
	different process
CO203.4	Apply the concepts of Pure Substances & of various gas cycles
CO203.5	Apply the principles heat transfer

Text	tbooks:
1	A Venkatesh, Basic Engineering Thermodynamics, Universities Press, India, 2007, ISBN 13:
1	9788173715877
2	P K Nag, Basic and Applied Thermodynamics, 2nd Ed., Tata McGraw Hill Pub. 2002, ISBN
4	13: 9780070151314

Ref	ference Books									
1.	YunusA.Cenegal and Michael A.Boles, Thermodynamics: An Engineering Approach,									
	TataMcGraw Hill publications, 2002, ISBN 13: 9780071072540									
2.	J.B.Jones and G.A.Hawkins, Engineering Thermodynamics, Wiley 1986, ISBN 13:									
	9780471812029									

CIE Assessment:

CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation. Generally, there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of three tests

Quizzes/mini tests (4 marks)

Mini Project / Case Studies (8 Marks)

Activities/Experimentations related to courses (8 Marks)

SEE Assessment:

vi. Question paper for the SEE consists two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.

ii. Part B also covers the entire syllabus consisting of five questions having choices and may contain sub-divisions, each carrying 16 marks. Students have to answer five full questions.

iii. One question must be set from each unit. The duration of examination is 3 hours.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	3	3	2	2	1	1	1	1	1	1		1
CO2	3	3	2	2	1	1	1	1	1	1		1
CO3	3	3	2	2	1	1	1	1	1	1		1
CO4	3	3	2	2	1	1	1	1	1	1		1
CO5	3	3	2	2	1	1	1	1	1	1		1
High,3, Mediu	High,3, Medium,2, Low,1											

		Semester:	IV						
	COMPUTER AIDED AIRCRAFT DRAWING								
Cour	rse Code	MVJ22ASL44	CIE	50)				
Tota	l No. of Contact Hours	40	SEE	50)				
No. of Contact Hours/week03Total100									
Cred	lits	02	Exam. Duratio	n 3	Hours				
Cour	rse objective is to:								
•	Understand and interpret	drawings of machine	e and aircraft comp	onents					
•	Prepare assembly drawin	igs either manually or	r by using standard	CAD packages.					
•	Familiarize with standard	d components and the	eir assembly of an a	aircraft					
Sl No	Experiment Name			L1, L2, L3, L4	20Hour s				
		PART A	Α						
Secti	ons of Solids: Sections of F	Pyramids, Prisms, Cul	bes, Tetrahedrons,	Cones and Cylin	ders				
restin	ng only on their bases (No p	problems on axis incli	inations, spheres ar	nd hollow solids)	. True				
shape	e of sections.								
Ortho	ographic Views: Conversion	n of pictorial views ir	nto orthographic pr	ojections of simp	ole				
mach	ine parts with or without se	ection. (Bureau of Ind	lian Standards conv	ventions are to be	e followed				
for th	e drawings) Hidden line co	onventions. Precedence	ce of lines.						
Labo	ratory Sessions/ Experiment	tal learning: CAAD	Lab						
Appl	ications: Helps to understar	nd Engineering Draw	ing.						
	т								
	ł	PART B		L1, L2, L3, L4	10Hour s				
Thre	ad Forms: Thread termino				S				
		ology, sectional views	s of threads. ISO N	Aetric (Internal &	S				
BSW	ad Forms: Thread termino	plogy, sectional views re and Acme. Sellers	s of threads. ISO N thread, American	Aetric (Internal & Standard thread.	s z External)				
BSW Faste	ead Forms: Thread termino (Internal & External) squa	blogy, sectional views re and Acme. Sellers olt and nut with wash	s of threads. ISO M thread, American S er (assembly), squa	Aetric (Internal & Standard thread. are headed bolt a	s External)				
BSW Faste wash	ead Forms: Thread termino (Internal & External) squa eners: Hexagonal headed be	blogy, sectional views re and Acme. Sellers olt and nut with wash ably using stud bolts v	s of threads. ISO M thread, American S er (assembly), squa with nut and lock n	Aetric (Internal & Standard thread. are headed bolt a ut. Flanged nut,	s External)				
BSW Faste wash taper	ead Forms: Thread termino (Internal & External) squa eners: Hexagonal headed be er (assembly) simple assem	blogy, sectional views re and Acme. Sellers olt and nut with wash ably using stud bolts ounter sunk head scree	s of threads. ISO M thread, American S er (assembly), squa with nut and lock n ew, grub screw, All	Aetric (Internal & Standard thread. are headed bolt a ut. Flanged nut, len screw.	s c External) and nut with				
BSW Faste wash taper Keys	ead Forms: Thread termino (Internal & External) squa eners: Hexagonal headed be er (assembly) simple assem and split pin for locking, c	blogy, sectional views re and Acme. Sellers olt and nut with wash ably using stud bolts ounter sunk head scree per key, Feather key,	s of threads. ISO M thread, American S er (assembly), squa with nut and lock n ew, grub screw, All Gibhead key and V	Aetric (Internal & Standard thread. are headed bolt a ut. Flanged nut, en screw. Woodruff key.	s External) and nut with slotted nut,				
BSW Faste wash taper Keys Rive	ad Forms: Thread termino (Internal & External) squa eners: Hexagonal headed be er (assembly) simple assem and split pin for locking, c & Joints: Parallel key, Ta	blogy, sectional views re and Acme. Sellers olt and nut with wash ably using stud bolts ounter sunk head scree per key, Feather key, ble riveted lap joints,	s of threads. ISO M thread, American S er (assembly), squa with nut and lock n ew, grub screw, All Gibhead key and V butt joints with sin	Aetric (Internal & Standard thread. are headed bolt a ut. Flanged nut, len screw. Woodruff key. gle/double cover	s External) and nut with slotted nut,				
BSW Faste wash taper Keys Rive Coup	ad Forms: Thread termino (Internal & External) squa eners: Hexagonal headed be er (assembly) simple assem and split pin for locking, c & Joints: Parallel key, Ta ted Joints: Single and doub	blogy, sectional views re and Acme. Sellers olt and nut with wash ably using stud bolts ounter sunk head scree per key, Feather key, ble riveted lap joints, , protected type flang	s of threads. ISO M thread, American S er (assembly), squa with nut and lock n ew, grub screw, All Gibhead key and V butt joints with sin ed coupling, pin (b	Aetric (Internal & Standard thread. are headed bolt a ut. Flanged nut, len screw. Woodruff key. gle/double cover	s External) and nut with slotted nut,				
BSW Faste wash taper Keys Rive Coup Oldh	ad Forms: Thread termino (Internal & External) squa eners: Hexagonal headed be er (assembly) simple assem and split pin for locking, c & Joints: Parallel key, Ta ted Joints: Single and doul plings: Split Muff coupling	ology, sectional views re and Acme. Sellers olt and nut with wash obly using stud bolts ounter sunk head scree per key, Feather key, ole riveted lap joints, , protected type flang l coupling (Hooks' Jo	s of threads. ISO M thread, American S er (assembly), squa with nut and lock n ew, grub screw, All Gibhead key and V butt joints with sin ed coupling, pin (b bint)	Aetric (Internal & Standard thread. are headed bolt a ut. Flanged nut, len screw. Woodruff key. gle/double cover	s External) and nut with slotted nut,				
BSW Faste wash taper Keys Rive Coup Oldh Labo	ad Forms: Thread termino (Internal & External) squa eners: Hexagonal headed be er (assembly) simple assem and split pin for locking, c & Joints: Parallel key, Ta ted Joints: Single and doul plings: Split Muff coupling am's coupling and universa	ology, sectional views re and Acme. Sellers olt and nut with wash obly using stud bolts ounter sunk head scree per key, Feather key, ole riveted lap joints, , protected type flang l coupling (Hooks' Jo ntal learning: CAAD 1	s of threads. ISO M thread, American S er (assembly), squa with nut and lock n ew, grub screw, All Gibhead key and V butt joints with sin ed coupling, pin (b bint) Lab	Aetric (Internal & Standard thread. are headed bolt a ut. Flanged nut, len screw. Woodruff key. gle/double cover	s External) and nut with slotted nut,				

			S					
1	Modelling of propeller and hub assembly							
2	Modelling of wing assembly							
3	Modelling of fuselage assembly							
4	Modelling of Engine Mounts							
5	Modelling of main rotor blade assembly of helicopter							
6	Modelling of UAV assembly							
7	Modelling of Landing Gear Assembly							
	Laboratory Sessions/ Experimental learning: CAAD Lab Applicat	tions: To Design a	ın					
	Aircraft Model.							
Cours	se outcomes:							
CO1	Distinguish drawings of machine and aircraft components							
CO2	Identify assembly drawings either manually or by using standard	CAD packages.						
CO3	Practice with standard components and their assembly of an aircra	ıft.						

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	3	2	1	0	2	0	0	2
CO2	3	3	2	2	3	2	1	0	2	0	0	2
CO3	3	3	2	3	3	2	2	1	3	0	0	3

	CIE Assessment:
	CIE is based on quizzes, tests, assignments/seminars, and any other form of evaluation.
	Generally, there will be: Three Internal Assessment (IA) tests during the semester (30
	marks each), the final IA marks to be awarded will be the average of three tests
	Quizzes/mini tests (4 marks)
	Mini Project / Case Studies (8 Marks)
	Activities/Experimentations related to courses (8 Marks)
	SEE Assessment:
х.	c. Question paper for the SEE consists of two parts i.e., Part A and Part B. Part A is
	compulsory and consists of objective type or short answer type questions of 1 or 2 marks
	each for total of 20 marks covering the whole syllabus.

i. Part B also covers the entire syllabus consisting of five questions having choices and may contain sub-divisions, each carrying 16 marks. Students have to answer five full questions.

ii. One question must be set from each unit. The duration of examination is 3 hours.

	CO, PO Mapping													
CO/P	РО	РО	РО	РО	PO	РО	РО	РО	РО	PO1	PO1	PO1	PSO	PSO
0	1	2	3	4	5	6	7	8	9	0	1	2	1	2
CO1	3	3	1	1	2	1	1	1	2	2	1	2	1	1
CO2	3	3	2	2	2	1	1	1	2	2	1	2	1	1
CO3	3	3	2	2	2	1	1	1	2	2	1	2	1	1
CO4	3	3	3	2	2	1	1	1	2	2	1	2	1	1
CO5	3	3	2	2	2	1	1	1	2	2	1	2	1	1
High,3, l	Mediur	n,2, Lo	w,1											

	Semester: IV							
AIRCRAFT SYSTEMS & INSTRUMENTATION								
Course Code	MVJ20AS451	CIE	50					
Total No. of Contact Hours	50 L: T : P :: 3 : 2: 0	SEE	50					
No. of Contact Hours/week	5	Total	100					
Credits	4	Exam. Duration	3 Hrs.					

Course objective is to:							
Gain knowledge of the aircraft control systems.							
Understand the applications of hydraulics and pneumatics in aircraft systems.							
Acquire knowledge regarding aircraft engine systems.							
Comprehend the aircraft auxiliary systems							
Acquire the knowledge of aircraft instruments.	1						
Module 1	L1,L2,L3	10 Hrs.					
Airplane Control Systems: Conventional Systems, fully powered flight con	trols, Power actu	ated systems,					
Modern control systems, Digital fly by wire systems, Auto pilot system active	control Technolo	gy.					
LaboratorySessions/ Experimental learning:							
How it works, flight controls PID controls.							
Applications:							
Pilot training, UAV design and piloting, RC aircraft design and piloting.							
Module 2	L1,L2,L3,	10 Hrs.					
Aircraft Systems: Hydraulic systems, Study of typical workable system, co	mponents, Pneur	natic systems,					
Advantages, Working principles, Typical Air pressure system, Brake system, Ty	pical Pneumatic	power system,					
Components, Landing Gear systems, Classification.							
Laboratory Sessions/ Experimental learning:							
Calculation on force required for hydraulic system and pneumatic system in air	craft application	s.					
Applications:							
Hydraulic lifts, pneumatic door openings and closing, landing gears, breaks.							
Module 3	L1,L2,L3	10 Hrs.					
Engine Systems: Fuel systems for Piston and jet engines, Components of mu	lti engines. lubrio	cating systems					
for piston and jet engines - Starting and Ignition systems - Typical examples for	r piston and jet e	ngines.					
Laboratory Sessions/ Experimental learning:							
Engine Fuel and Fuel Metering Systems (Lab session IIT Kanpur, Virtual lab)							
https://www.youtube.com/watch?v=xEssM_sYtd8							
Applications:							
Applications: Range and Endurance calculation, actions to take in case of engine failures.							
	L1,L2,L3	10 Hrs.					

Evaporative air cycle systems, Fire protection systems, Deicing and anti-icing systems.									
Laboratory Sessions/ Experimental learning:									
Response time and operations of firefighting systems in case of engine failure.									
Application	Applications:								
Firefighting,	Firefighting, precautions, how to fight different classes of fire.								
Module 5		L1,L2	10 Hrs.						
Aircraft Ins	truments: Flight Instruments and Navigation Instruments, Gyrosco	ope, Accelerome	ters, Air speed						
Indicators, 7	AS, EAS, Mach Meters, Altimeters, Principles and operation, Stu	udy of various ty	pes of engine						
instruments,	Tachometers, Temperature gauges, Pressure gauges, Operation and	d Principles.							
Laboratory	Sessions/ Experimental learning:								
Gyroscope w	orking and applications, Avionics lab instruments working.								
Application	S:								
Understandi	ng readings of the flight instruments, prediction of failure or troub	le before actual	encounter and						
taking neces	sary precautions.								
Course outo	omes:								
Upon compl	etion of the course, students will be able to:								
CO315.1.1	Distinguish the conventional and modern control systems.								
CO315.1.2	Analyse the aircraft systems.								
CO315.1.3	Analyse the working of Aircraft engine systems.								
CO315.1.4	CO315.1.4 Describe aircraft Auxiliary systems								
CO315.1.5	CO315.1.5 Applydifferent aircraft instruments.								

Tex	tbooks:
1	Ian Moirand Allan Seabridge, Aircraft Systems: Mechanical, Electrical and Avionics-Subsystem
	Integration, Wiley India Pvt Ltd, 3 rd edition, 2012.
2	Lalit Gupta and OP. Sharma, Aircraft Systems (Fundamentals of Flight Vol. IV), Himalayan Books,
2	2006.

Ref	Reference Books						
1.	William A Neese, Aircraft Hydraulic Systems, Himalayan Books, 2007						
2.	SR. Majumdar, Pneumatic Systems, Tata McGraw Hill Publishing Co, 1st Edition, 2001						

CIE Assessment:

CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation. Generally, there will

be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of three tests

Quizzes/mini tests (4 marks)

Mini Project / Case Studies (8 Marks)

Activities/Experimentations related to courses (8 Marks)

SEE Assessment:

Question paper for the SEE consists two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.

Part B also covers the entire syllabus consisting of five questions having choices and may contain subdivisions, each carrying 16 marks. Students have to answer five full questions.

One question must be set from each unit. The duration of examination is 3 hours.

CO, PO Mapping														
CO/P	PO	РО	РО	РО	РО	РО	РО	РО	РО	PO1	PO1	PO1	PSO	PSO
0	1	2	3	4	5	6	7	8	9	0	1	2	1	2
CO1	3	2	1	0	0	0	0	0	0	0	0	1	1	0
CO2	3	2	1	0	0	0	0	0	0	0	0	1	1	0
CO3	3	2	1	0	0	1	1	0	0	0	0	1	1	0
CO4	3	2	1	0	0	1	1	0	0	0	0	1	1	0
CO5	3	2	1	0	0	0	0	0	0	0	0	1	1	0
High,3,	Medi	um,2,	Low,1	•	•	•	•	•	•	•	•	•	1	•

	Semester: IV				
I	FINITE ELEMENT METH	ODS			
Course Code	MVJ22AE452	CIE		50	
Total No. of Contact Hours	50 L: T: P: 3: 2: 0	SEE	,	50	
No. of Contact Hours/week	5	Tota	ıl	100	
Credits	4	Exa	m. Duration	3 Hrs	
The course objective is to:					
Understand the importance of di	scretization of domain using	different fini	te elements.		
Acquire the knowledge of differ	ent loading and boundary cor	nditions.			
Understand the governing metho	ods of finite element analysis.				
Comprehend the higher order dis	scretization.				
Gain the knowledge offield prob	lems.				
N. 1 1 4			L1,L2,L3	10	
Module 1					
Introduction, Pagia Concenta		~			
Plane stress, Plane strain, Bound for the FEM, Potential Energy a	and Equilibrium, The Raylei	lacement Rel	ations, simple	elemen	
Plane stress, Plane strain, Bound for the FEM, Potential Energy a Saint Venant's Principle, Von M Finite Element Modeling, node Matrix and assembly, Propertie convergence requirements of sha Laboratory Sessions/ Experim Applications: Solving practica	dary Conditions, Strain-Displ and Equilibrium, The Rayleig ises Stress, , element, Coordinates and s of K, Use of local and na ape functions. ental learning: 2D plane stread	lacement Rel gh-Ritz Meth Shape Funct tural coordir ss analysis us scientific a	ations, simple nod, Galerkin's ions, Element nates, compatib	element Methoo Stiffnes bility an	
Plane stress, Plane strain, Bound for the FEM, Potential Energy a	dary Conditions, Strain-Displ and Equilibrium, The Rayleig ises Stress, , element, Coordinates and s of K, Use of local and na ape functions. ental learning: 2D plane stread	lacement Rel gh-Ritz Meth Shape Funct tural coordir ss analysis us scientific a	ations, simple nod, Galerkin's ions, Element nates, compatib sing ANSYS nd mathematio	element Methoo Stiffnes bility an cal tools	
Plane stress, Plane strain, Bound for the FEM, Potential Energy a Saint Venant's Principle, Von M Finite Element Modeling, node Matrix and assembly, Propertie convergence requirements of sha Laboratory Sessions/ Experim Applications: Solving practica Calculating the global stiffness r	dary Conditions, Strain-Displ and Equilibrium, The Rayleig ises Stress, , element, Coordinates and s of K, Use of local and na ape functions. ental learning: 2D plane stread	lacement Rel gh-Ritz Meth Shape Funct tural coordir ss analysis us scientific a	ations, simple nod, Galerkin's ions, Element nates, compatib	element Methoo Stiffnes bility an	
Plane stress, Plane strain, Bound for the FEM, Potential Energy a Saint Venant's Principle, Von M Finite Element Modeling, node Matrix and assembly, Propertie convergence requirements of sha Laboratory Sessions/ Experim Applications: Solving practica Calculating the global stiffness r Module 2	dary Conditions, Strain-Displ and Equilibrium, The Rayleig ises Stress, , element, Coordinates and s of K, Use of local and na ape functions. ental learning: 2D plane stre al technical problems using natrix in the finite element m	lacement Rel gh-Ritz Meth Shape Funct tural coordir ss analysis us scientific a	ations, simple nod, Galerkin's ions, Element nates, compatib sing ANSYS nd mathematio	elemen Methoo Stiffnes oility an cal tool	
Plane stress, Plane strain, Bound for the FEM, Potential Energy a Saint Venant's Principle, Von M Finite Element Modeling, node Matrix and assembly, Propertie convergence requirements of sha Laboratory Sessions/ Experim Applications: Solving practica Calculating the global stiffness r Module 2 Analysis of bars, truss, frames	dary Conditions, Strain-Displ and Equilibrium, The Rayleig ises Stress, , element, Coordinates and s of K, Use of local and na ape functions. ental learning:2D plane stre al technical problems using matrix in the finite element m	lacement Rel gh-Ritz Meth Shape Funct tural coordir ss analysis us scientific an ethod	ations, simple nod, Galerkin's ions, Element nates, compatib sing ANSYS nd mathematic L1,L2,L3,	elemen Methoo Stiffnes oility an cal tool 10 Hrs.	
Plane stress, Plane strain, Bound for the FEM, Potential Energy a Saint Venant's Principle, Von M Finite Element Modeling, node Matrix and assembly, Propertie convergence requirements of sha Laboratory Sessions/ Experim Applications: Solving practica Calculating the global stiffness r Module 2 Analysis of bars, truss, frames Construction of shape function	dary Conditions, Strain-Displand Equilibrium, The Rayleig ises Stress, , element, Coordinates and s of K, Use of local and na ape functions. ental learning:2D plane stre d technical problems using natrix in the finite element m	lacement Rel gh-Ritz Meth Shape Funct tural coordir ss analysis us scientific an ethod	ations, simple nod, Galerkin's ions, Element nates, compatib sing ANSYS nd mathematic L1,L2,L3,	elemen Methoo Stiffnes oility an cal tool 10 Hrs.	
Plane stress, Plane strain, Bound for the FEM, Potential Energy a Saint Venant's Principle, Von M Finite Element Modeling, node Matrix and assembly, Propertie convergence requirements of sha Laboratory Sessions/ Experim Applications: Solving practica Calculating the global stiffness r Module 2 Analysis of bars, truss, frames Construction of shape function	dary Conditions, Strain-Displand Equilibrium, The Rayleig ises Stress, , element, Coordinates and s of K, Use of local and na ape functions. ental learning:2D plane stread technical problems using natrix in the finite element m and beams: ns for bar element and beat ensional Frames	lacement Rel gh-Ritz Meth Shape Funct tural coordir ss analysis us scientific an ethod	ations, simple nod, Galerkin's ions, Element nates, compatib sing ANSYS nd mathematic L1,L2,L3, Plane trusses	elemen Metho Stiffnes oility an cal tool 10 Hrs. s, Three	
Plane stress, Plane strain, Bound for the FEM, Potential Energy a Saint Venant's Principle, Von M Finite Element Modeling, node Matrix and assembly, Propertie convergence requirements of sha Laboratory Sessions/ Experim Applications: Solving practica Calculating the global stiffness r Module 2 Analysis of bars, truss, frames Construction of shape function Dimensional trusses, Three-dime	dary Conditions, Strain-Displand Equilibrium, The Rayleig ises Stress, , element, Coordinates and s of K, Use of local and na ape functions. ental learning:2D plane stread technical problems using matrix in the finite element m and beams: ns for bar element and beam s for bar element and beam	lacement Rel gh-Ritz Meth Shape Funct tural coordir ss analysis us scientific an ethod am element, Bar	ations, simple nod, Galerkin's ions, Element nates, compatib sing ANSYS nd mathematic L1,L2,L3, Plane trusses	element Methoo Stiffnes oility an cal tool 10 Hrs. s, Three form ba	
Plane stress, Plane strain, Bound for the FEM, Potential Energy a Saint Venant's Principle, Von M Finite Element Modeling, node Matrix and assembly, Propertie convergence requirements of sha Laboratory Sessions/ Experim Applications: Solving practica Calculating the global stiffness r Module 2 Analysis of bars, truss, frames Construction of shape function Dimensional trusses, Three-dime Construction of shape functions	dary Conditions, Strain-Displand Equilibrium, The Rayleig ises Stress, , element, Coordinates and a s of K, Use of local and na ape functions. ental learning:2D plane stread technical problems using matrix in the finite element m and beams: ns for bar element and beam ensional Frames s for bar element and beam anical and thermal loading, v	lacement Rel gh-Ritz Meth Shape Funct tural coordir ss analysis us scientific ar ethod am element, Bar varying sectio	ations, simple nod, Galerkin's ions, Element nates, compatib sing ANSYS nd mathematic L1,L2,L3, Plane trusses	elemen Metho Stiffne: oility ar cal tool 10 Hrs. s, Three form ba	

stress for given cantilever beam using ANSYS

Applications: 2D and 3 D elements to apply boundary conditions, The direct stiffness method to compute degrees of freedom at the element nodes.

To determine the value of state variable at any point of element based on values of state variable.

	10
Module 3	Hrs.

Analysis of Two- and Three-dimensional Elements: Shape functions of Triangular, Rectangular and Quadrilateral elements, different types of higher order elements, constant and linear strain triangular elements, stiffness matrix Four-Noded Tetrahedral Element (TET 4), Eight-Noded Hexahedral Element (HEXA 8), Tetrahedral elements, Hexahedral elements: Serendipity family, Hexahedral elements: Lagrange family. Numerical

Laboratory Sessions/ Experimental learning: Analysis of CST Element by using ANSYS Applications:

To approximate the *shape* of the object and to compute the displacement of points inside the boundary of the object

	111010	10
Module 4	L1,L2,L3	Hrs.

Theory of Isoparametric Elements and Axisymmetric: Isoparametric, sub parametric and superparametric elements, characteristics of Isoparametric quadrilateral elements, structure of computer program for FEM analysis, description of different modules, pre and post processing, Axisymmetric formulation finite element modeling of triangular and quadrilateral element. Numerical

Laboratory Sessions/ Experimental learning: Analysis of Long Cylinder (Axiymmetric Problem) using Quadrilateral Elements in ANSYS

Applications:

To create shape functions that would ensure the compatibility of the displacement between neighboring elements while maintaining the requirements for shape functions

Higher-order approximation of the unknown function over a bounding surface described by nonplanar elements.

Madala 5	111010	10
Module 5	L1, L2, L3	Hrs.

Field Problems: Heat transfer problems, Steady state fin problems, 1D heat conduction governing equation, Derivation of element matrices for two dimensional problems, Dynamic consideration-Formulation-Hamilton's principle, Element mass matrices. Numerical

Laboratory Sessions/ Experimental learning: Performing Heat Transfer Analysis Using ANSYS **Applications:** Problem involving heat flow ,

Structural dynamics

Course outcomes:

Upon compl	Upon completion of the course, students will be able to:						
CO315.2.1 Apply discretization technique for domain using different finite elements							
CO315.2.2 Evaluate the effects of different loading and boundary conditions							
CO315.2.3 Analyze the governing equations of finite element analysis							
CO315.2.4	Formulating mathematical model using higher order element type						
CO315.2.5	CO315.2.5 Analyze heat flow problem by considering dynamic consideration						

Text	tbooks:					
1Chandru Patla T. R, PHI Finite Elements in engineering, , 3rd edition, 2002						
2	BhaviKatti, Finite element Analysis, New Age International, 3rd edition,2015					

Ref	Reference Books							
1.	Zienkiewicz. O.C, The Finite Element Method, Elsevier, 7th edition,2013							
2.	C.S. Krishnamurthy, Finite Element analysis - Theory and Programming, Tata McGraw Hill Co. Ltd,							
	New Delhi, 2nd edition,2011							
3.	Rao S. S, Elsevier, Finite Elements Method in Engineering, 5th edition, 2008							

CIE Assessment:

CIE is based on quizzes, tests, assignments/seminars, and any other form of evaluation. Generally,

there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final

IA marks to be awarded will be the average of three tests

Quizzes/mini tests (4 marks)

Mini Project / Case Studies (8 Marks)

Activities/Experimentations related to courses (8 Marks)

SEE Assessment:

i.Question paper for the SEE consists of two parts i.e., Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.

ii.Part B also covers the entire syllabus consisting of five questions having choices and may contain sub-divisions, each carrying 16 marks. Students have to answer five full questions.

iii.One question must be set from each unit. The duration of examination is 3 hours.

CO, PO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	1	1	2	1	1	1	2	2	1	2	1	1
CO2	3	3	2	2	2	1	1	1	2	2	1	2	1	1
CO3	3	3	2	2	2	1	1	1	2	2	1	2	1	1
CO4	3	3	3	2	2	1	1	1	2	2	1	2	1	1
CO5	3	3	2	2	2	1	1	1	2	2	1	2	1	1
High,3,	Medi	um,2, 1	Low,1	1	1	1	1	1	1	l.	1	1	1	1

	Semester: IV								
INTRODUCTION TO SPACE TECHNOLOGY									
Course Code	MVJ22AS453	CIE	50						
Total No. of Contact Hours	3 L: T: P: 3: 0: 0	SEE	50						
No. of Contact Hours/week	4	Total	100						
Credits	3	Exam. Duration	3 Hrs.						

The course objective is to:

Understand the fundamentals of aerospace propulsion.

Understand the orbit mechanics and orbit maneuvers.

Acquire the knowledge of satellite attitude dynamics and space mission operations.

Acquire the knowledge of satellite attitude dynamics and space mission	n operations.	
Module 1	L1, L2, L3	10 Hrs.
ndamentals of Aerospace Propulsion: Space Mission, Types, Space Enviro	nment, Launch	Vehicle
Selection. Introduction to rocket propulsion-fundamentals of soli	d propellant i	ockets,
Fundamentals of liquid propellant rockets, Rocket equation, Tsiolko	vsky rocket ec	luation,
Concepts of Specific Impulse.		
o-dimensional trajectories of rockets and missiles, multi-stage		
kets-Vehicle sizing, two stage Multi-stage Rockets, Trade-off Ratios-	Single Stage to	Orbit,
Sounding Rocket, Aerospace Plane, Gravity Turn Trajectories, Impact point	nt calculation, in	njection
conditions-Flight dispersions, Burnout velocity.		
Module 2	L1, L2, L3,	10 Hrs.
Atmospheric Reentry: Introduction-Steep Ballistic Reentry, Ballistic	c Orbital Reen	try, Skip
Reentry, "Double-Dip" Reentry, Aero-braking, Lifting Body Reentry.		
Module 3	L1, L2, L3	10 Hrs.
Fundamentals of Orbit Mechanics, Orbit Maneuvers: Two-body m	otion, Circular	, elliptic,
hyperbolic, and parabolic orbits-Basic Orbital Elements, Ground trace	In-Plane Orbit	changes,
Hohmann Transfer, Bielliptical Transfer, Plane Changes, Combined M	aneuvers, Propu	ulsion for
Maneuvers.		
Module 4	L1, L2, L3	10 Hrs.
Satellite Attitude Dynamics: Torque free Axi-symmetric rigid body, Attit	ude Control for	Spinning
Spacecraft, Attitude Control for Non-spinning Spacecraft, The Yo-Yo	Mechanism, G	ravity —
Gradient Satellite, Dual Spin Spacecraft, Attitude Determination.		
Module 5	L1, L2, L3	10 Hrs.
Space Mission Operations: Supporting Ground Systems Architecture	•	1
and Team interfaces, Mission phases and Core operations, Team	Responsibilities	, Mission

Diversity, Standard Operations Practices.

Course outcomes:

Upon completion of the course, students will be able to:

- CO315.3.1 Distinguish the types of aerospace propulsion.
- CO315.3.2 Determine the attitude of the satellites.
- CO315.3.3 Support the space mission operations

Textbooks:

- 1 W.E. Wiesel," Spaceflight Dynamics",McGraw Hi11,2nd edition,2014,ISBN-13: 978-9332901650
- 2 J.W. Cornelisse, "Rocket Propulsion and Space Dynamics", J.W. Freeman & Co., Ltd., London, 1982.

Reference Books

- **1.** Vincet L. Pisacane Fundamentals of Space Systems Oxford University Press 2005
- 2. Understanding Space: An Introduction to Astronautics J.Sellers McGraw Hill 2nd edition,2000

CIE Assessment:

CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation. Generally, there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of three tests.

Quizzes/mini tests (4 marks)

Mini Project / Case Studies (8 Marks)

Activities/Experimentations related to courses (8 Marks)

SEE Assessment:

- i. Question paper for the SEE consists of two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.
- ii. Part B also covers the entire syllabus consisting of five questions having choices and may contain sub-divisions, each carrying 16 marks. Students have to answer five full questions.
- iii. One question must be set from each unit. The duration of examination is 3 hours.

CO, PO) Mapp	oing												
CO/P	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO
0	1	2	3	4	5	6	7	8	9	0	1	2	1	2
CO1	3	3	1	1	2	1	1	1	2	2	1	2	1	1
CO2	3	3	2	2	2	1	1	1	2	2	1	2	1	1
CO3	3	3	2	2	2	1	1	1	2	2	1	2	1	1
CO4	3	3	3	2	2	1	1	1	2	2	1	2	1	1
CO5	3	3	2	2	2	1	1	1	2	2	1	2	1	1

Course Title	TURBOMCHINES	Semester	IV
Course Code	MVJ20AE454	CIE	50
Total No. of Contact Hours	40 L: T : P :: 3 : 0 : 0	SEE	50
No. of Contact Hours/week	4	Total	100
Credits	3	Exam. Duration	3 Hours

Course objective is to:

Understand the basics of turbomachines

Understanding the concept of energy transfer taking place in turbomachines

Acquire the knowledge on design of centrifugal and axial compressors

Acquire the knowledge on design of centrifugal and axial turbines

Assimilate the understanding of hydraulic pumps and turbines

Module-1	L1,L2	8Hours

Introduction to turbomachines:

Classification and parts of a turbo machines; comparison with positive displacement machines; dimensionless parameters and their physical significance; specific speed; illustrative examples on dimensional analysis and model studies.

Energy transfer in turbomachines:

Basic Euler turbine equation and its alternate form; components of energy transfer; general expression for degree of reaction; construction of velocity triangles for different values of degree of reaction.

Laboratory Sessions/ Experimental learning: Aircraft propulsion lab for acquiring knowledge of Gas turbine engine.

Applications: Study of Turbomachines, components of gas turbine engines.

	Module-2	L1,L2,L3	8Hours
--	----------	----------	--------

General analysis of Turbomachines

Axial flow machines-general analysis, degree of reaction, velocity triangles, diagram efficiency, maximum utilization factor for different R values, Numerical Problems

Radial flow machines –general analysis, Expression for degree of reaction, velocity triangles, Effect of blade discharge angle on energy transfer and degree of reaction, Effect of blade discharge angle on performance.

Laboratory Sessions/ Experimental learning: Aircraft Propulsion lab and Fluid Mechanics lab for compressor and turbines.

Applications: Compressors and Turbines in Aircraft engines.

Module-3	L1,L2,L3	8Hours
Compression process:		
Overall isentropic efficiency of compression; stage efficience	cy; comparison and r	elation between
overall efficiency and stage efficiency; polytropic efficiency; p	oreheat factor.	
Expansion process:		
Overall isentropic efficiency for a turbine; stage efficiency for	or a turbine; compari	son and relation
between stage efficiency and overall efficiency, polytropic e	fficiency; reheat facto	or for expansion
process.		
Laboratory Sessions/ Experimental learning: Fluid Mechani	cs lab for compressor	and turbines and
Aircraft propulsion lab: Study of gas turbine turbojet engine		
Applications: Turbojet, turbofan, turbo shaft engines.		
Module-4	L1,L2,L3	8Hours
Design and performance analysis of Centrifugal compres	sors: Types, design p	parameters, flow
analysis in impeller blades, volutes and diffusers, losses, slip	factor, characteristic	curves, surging,
choking. Construction details.		
Design and performance analysis of axial fans and cor	npressors: Stage vel	locity diagrams
enthalpy-entropy diagrams, stage losses and efficiency, work	done, simple stage d	lesign problems,
performance characteristics, instability in axial compressors. C	Construction details.	
Laboratory Sessions/ Experimental learning: Aircraft propu	lsion lab: Study of gas	s turbine turbojet
Laboratory Sessions/ Experimental learning: Aircraft propuengine	lsion lab: Study of gas	s turbine turbojet
	lsion lab: Study of gas	s turbine turbojet
engine	lsion lab: Study of gas	s turbine turbojet
engine Applications: Turbojet, turbofan, turbo shaft engines.		
engine Applications: Turbojet, turbofan, turbo shaft engines. Module-5	L1,L2	8Hours
engine Applications: Turbojet, turbofan, turbo shaft engines. Module-5 Design and performance analysis of axial flow turbines:	L1,L2	8Hours
engine Applications: Turbojet, turbofan, turbo shaft engines. Module-5 Design and performance analysis of axial flow turbines: Turbine stage, work done, degree of reaction, losses and efficie	L1,L2	8Hours
engine Applications: Turbojet, turbofan, turbo shaft engines. Module-5 Design and performance analysis of axial flow turbines: Turbine stage, work done, degree of reaction, losses and efficie and supersonic turbines, multi-staging of turbine; exit flow cor	L1,L2 ency, flow passage; sub	8Hours
engine Applications: Turbojet, turbofan, turbo shaft engines. Module-5 Design and performance analysis of axial flow turbines: Turbine stage, work done, degree of reaction, losses and efficie and supersonic turbines, multi-staging of turbine; exit flow cor Design and performance analysis of radial turbines:	L1,L2 ency, flow passage; sub	8Hours
engine Applications: Turbojet, turbofan, turbo shaft engines. Module-5 Design and performance analysis of axial flow turbines: Turbine stage, work done, degree of reaction, losses and efficie and supersonic turbines, multi-staging of turbine; exit flow con Design and performance analysis of radial turbines: Thermodynamics and aerodynamics of radial turbines; radi	L1,L2 ency, flow passage; sub aditions; turbine coolin al turbine characteris	8Hours
engine Applications: Turbojet, turbofan, turbo shaft engines. Module-5 Design and performance analysis of axial flow turbines: Turbine stage, work done, degree of reaction, losses and efficie and supersonic turbines, multi-staging of turbine; exit flow con Design and performance analysis of radial turbines: Thermodynamics and aerodynamics of radial turbines; radial efficiency; design of radial turbine.	L1,L2 ency, flow passage; sub aditions; turbine coolin al turbine characteris	8Hours
engine Applications: Turbojet, turbofan, turbo shaft engines. Module-5 Design and performance analysis of axial flow turbines: Turbine stage, work done, degree of reaction, losses and efficie and supersonic turbines, multi-staging of turbine; exit flow con Design and performance analysis of radial turbines: Thermodynamics and aerodynamics of radial turbines; radial efficiency; design of radial turbine. Laboratory Sessions/ Experimental learning: Aircraft propu	L1,L2 ency, flow passage; sub aditions; turbine coolin al turbine characteris	8Hours
engine Applications: Turbojet, turbofan, turbo shaft engines. Module-5 Design and performance analysis of axial flow turbines: Turbine stage, work done, degree of reaction, losses and efficie and supersonic turbines, multi-staging of turbine; exit flow con Design and performance analysis of radial turbines: Thermodynamics and aerodynamics of radial turbines; radial efficiency; design of radial turbine. Laboratory Sessions/ Experimental learning: Aircraft propu	L1,L2 ency, flow passage; sub aditions; turbine coolin al turbine characteris	8Hours
engine Applications: Turbojet, turbofan, turbo shaft engines. Module-5 Design and performance analysis of axial flow turbines: Turbine stage, work done, degree of reaction, losses and efficie and supersonic turbines, multi-staging of turbine; exit flow cor Design and performance analysis of radial turbines: Thermodynamics and aerodynamics of radial turbines; radi efficiency; design of radial turbine. Laboratory Sessions/ Experimental learning: Aircraft propu Applications: Turbojet, turbofan, turbo shaft engines.	L1,L2 ency, flow passage; sub aditions; turbine coolin al turbine characteris alsion lab and Fluid mo	8Hours
engine Applications: Turbojet, turbofan, turbo shaft engines. Module-5 Design and performance analysis of axial flow turbines: Turbine stage, work done, degree of reaction, losses and efficie and supersonic turbines, multi-staging of turbine; exit flow con Design and performance analysis of radial turbines: Thermodynamics and aerodynamics of radial turbines; radi efficiency; design of radial turbine. Laboratory Sessions/ Experimental learning: Aircraft propu Applications: Turbojet, turbofan, turbo shaft engines. Course outcomes:	L1,L2 ency, flow passage; sub aditions; turbine coolin al turbine characteris alsion lab and Fluid mo	8Hours

CO315.4.4	Apply dimensionless parameters for turbomachines
CO315.4.5	Analyse Compression and Expansion process

Text	tbooks:
1	S.M.Yahya, Turbines, Compressors & Fans, Tata McGrawHill Co. ,2 nd Edition (2002),ISBN 13: 9780070707023.
2	D.G.Shephered,PrinciplesofTurboMachinery,TheMacmillanCompany(1964),ISBN-13: 978-0024096609.

Reference Books

 V. Kadambi and Manohar Prasad, An introduction Energy conversion, VolumeIII, Turbo machinery, Wiley Eastern Ltd, 1977, ISBN: 9780852264539

CIE Assessment:

CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation. Generally, there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of three tests

Quizzes/mini tests (4 marks)

Mini Project / Case Studies (8 Marks)

Activities/Experimentations related to courses (8 Marks)

SEE Assessment:

- Question paper for the SEE consists of two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.
- ii. Part B also covers the entire syllabus consisting of five questions having choices and may contain sub-divisions, each carrying 16 marks. Students have to answer five full questions.
- iii. One question must be set from each unit. The duration of examination is 3 hours.

CO-PO Map	ping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	1	0	0	0	0	0	0	0	0	0
CO2	3	3	3	3	0	0	0	0	0	0	0	0
CO3	3	3	3	2	0	0	0	0	0	0	0	0
CO4	3	3	2	1	0	0	0	0	0	0	0	0
CO5	3	3	2	0	0	0	0	0	0	0	0	0

High-3, Medium-2, Low-1

	Semester: IV					
Ability	Enhancement Course on .	Astronon	ny (Level 2)			
Course Code	MVJ22AEC07		CIE		50 Marks	
Total No. of Contact Hours	30 (L: T: P: 1: 0: 2)		SEE		50 Marks	
No. of Contact hours/week	02	02 Total			100 Marks	
Credits	2	Exam. Durati		n	2 Hours	
Course objective is to:						
Understand the Planets of the so			•	•	•	
Familiarize with the Evolution	of Stars, birth and death of st	ars, Star F RBT L		pertie	s of the stars.	
Module 1. The Planets				8 H	rs.	
Planetary properties, Planetary o	rbits, Planetary atmospheres,	Planets of	f the solar system	– Mei	rcury, Venus	
Earth, Moon, Mars, Jupiter, Satur	rn, Uranus, Neptune, Pluto an	d other mi	nor planets.			
Module 2. The Stars		RBT Level L1, L2, L3		7 Hrs.		
The birth of stars, Star Formation	n, The properties of the stars,	,	/	stem, S	Star Clusters	
Evolution of Stars, Death of Stars	s, Variable Stars, Compact St	ars.				
Module 3. Activities/Project	work	RBT L	.evel L1, L2, L3]	15 Hrs.	
Theoretical Calculation of S		arth, Hoh		Biellip	otic Transfer	
Interplanetary Hohmann Transfer Course outcomes: After the c		nts will b	e able to			
COs atmospheres. Understand the Evolut stars.	ts of the solar system, Pla				-	
1 Johnson B. K "Optics an	d Optical Instruments", Do					
1Johnson B. K "Optics anWhitlock LA, Pulliam K	d Optical Instruments", Do					
1Johnson B. K "Optics anWhitlock LA, Pulliam K	. "Laboratory exercises for					
1Johnson B. K "Optics an2Whitlock LA, Pulliam Kradio telescope". iUniver	. "Laboratory exercises for					
1 Johnson B. K "Optics an 2 Whitlock LA, Pulliam K radio telescope". iUniversity Reference Books	. "Laboratory exercises for	introduc	tory radio astrono	omy v	vith a small	
1 Johnson B. K "Optics an 2 Whitlock LA, Pulliam K radio telescope". iUniver Reference Books	n Introduction to Astronom	introduc	tory radio astrono	omy v	vith a small	
2 Whitlock LA, Pulliam K radio telescope". iUniver Reference Books 1. Forest Ray Moulton, "A New and Revised Edition	n Introduction to Astronom	introduct	tory radio astrono	omy v millar	vith a small	

	Semester: IV		
	Diploma Mathematics-II		
Course Code	MVJ22MATDIP-II	CIE	50
Total No. of Contact Hours	40	SEE	50
No. of Contact Hours/week	4	Total	100
Credits	-	Exam. Duratio	n 3 Hours
Course objective is to: This co	urse viz., aims to prepare the stude	nts:	
, i i i i i i i i i i i i i i i i i i i	and basic concepts of Differ		and Differential
-	ifferential equations and Ve		and analysethe
engineering problems.	1		5
Module-1		L1, L2	8Hrs.
Linear Algebra:			
Introduction, Rank of a matrix	-echelon form. Solution of system	of linear equation	ns – consistency.
Gauss-elimination method and	problems. Eigen values and Eig	en vectors of sq	uare matrix and
Problems.			
Module-2		L1, L2	8 Hrs.
Differential calculus:			
Tangent and normal, sub tange	ent and subnormal both Cartesian	and polar forms	. Increasing and
decreasing functions, Maxima	and Minima for a function of one	variable. Point c	of inflections and
Problems			
Beta and Gamma functions:			
Beta functions, Properties of Be	ta function and Gamma function, F	Relation Between	beta and Gamma
function-simple problems.			
Module-3		L1, L2	8Hrs.
Analytical solid geometry:			
Introduction –Directional cosin	e and Directional ratio of a line, E	quation of line ir	space- different
forms, Angle between two-line	, shortest distance between two lir	e, plane and equ	ation of plane in
different forms and problems.			
Module-4		L1, L2, L3	8 Hrs.
Probability:			
Random variable, Discrete pr	obability distribution, Mean and	variance of Ra	andom Variable,
Theoretical Distribution-Binom	ial distribution, Mean and variance	Binomial distrib	oution -Problems.
Poisson distribution as a limit	ing case of Binomial distribution	, Mean and vari	ance of Poisson
distribution. Normal Distribution	on-Basic properties of Normal distr	ribution –standard	d form of normal
distribution and Problems.			

Modu	ule-5 L1, L2, L3 8 Hrs.
Parti	al differential equation: Formation of PDE's by elimination of arbitrary constants and
functi	ions. Solution of non-homogeneous PDE by direct integration. Homogeneous PDEs involving
deriva	ative with respect to one independent variable only.
Cour	se outcomes:
CO1	Apply the knowledge of Matrices to solve the system of linear equations and to understand the concepts of Eigen value and Eigen vectors for engineering problems.
CO2	Demonstrate various physical models, find Maxima and Minima for a function of one variable., Point of inflections and Problems. Understand Beta and Gamma function
CO3	Understand the 3-Dimentional geometry basic, Equation of line in space- different forms, Angle between two line and studying the shortest distance.
CO4	Concepts OF Probability related to engineering applications.
CO5	Construct a variety of partial differential equations and solution by exact methods.

Text	Books:										
1	B.S. Grewal, "Higher Engineering Mathematics" Khanna Publishers, 43 rd Edition, 2013.										
2	Ramana B. V., "Higher Engineering Mathematics", Tata Mc Graw-Hill, 2006.										
Refer	Reference Books:										
1	Erwin Kreyszig, "Advanced Engineering Mathematics", Wiley-India publishers, 10thedition,2014.										
2	G. B. Gururajachar: Calculus and Linear Algebra, Academic Excellent Series Publication, 2018-19										

CIE Assessment:
CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation. Generally,
there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA
marks to be awarded will be the average of three tests
Quizzes/mini tests (8 marks)
SEE Assessment:
i. Question paper for the SEE consists of two parts i.e., Part A and Part B. Part A is compulsory

and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.

- ii. Part B also covers the entire syllabus consisting of five questions having choices and may contain sub-divisions, each carrying 16 marks. Students have to answer five full questions.
- iii. One question must be set from each unit. The duration of examination is 3 hours.

Course Title	AVIATION MANAGEMENT	Semester	V
Course Code	MVJ22AS51	CIE	50
Total No. of Contact Hours	40 L: T: P: 3: 0 :0	SEE	50
No. of Contact Hours/week	4	Total	100
Credits	3	Exam. Duration	3 Hours

Course objective is to: This course will enable students to

- Introduce the field of management, task of the manager, importance of planning and types of planning, staff recruitment and selection process.
- Explain need of coordination between the manager and staff, the social responsibility of business and leadership.
- Comprehend the fundamentals of maintenance and certification.
- Understand the Aircraft Management Maintenance.
- Acquire knowledge of maintenance safety and trouble shooting in Airlines.

Module-1	L1,L2	8Hours
Managements Definition Immentance Nature and Characteristics of Mana	annent Managan	want Ennetions

Management: Definition, Importance – Nature and Characteristics of Management, Management Functions, Roles of Manager, Levels of Management, Managerial Skills, Management & Administration, Management as a Science, Art & Profession.

Planning: Nature, Importance and Purpose Of Planning, Types of Plans, Steps in Planning, Limitations of Planning, Decision Making – Meaning, Types of Decisions- Steps in Decision Making.

Laboratory Sessions/ Experimental learning: Case study on decision making process in a corporate.

Applications: Planning in engineering field.

Module-2	L1., L2	8Hours
Organizing and Staffing, Manning, Nature and Characteristics of Organizati	on Drococco	f Organization

Organizing and Staffing: Meaning, Nature and Characteristics of Organization – Process of Organization, Principles of Organization, Departmentalization, Committees – meaning, Types of Committees, Centralization Vs Decentralization of Authority and Responsibility, Span of Control, Nature and Importance of Staffing, Process of Selection and Recruitment.

Directing and Controlling: Meaning and Nature of Directing-Leadership Styles, Motivation Theories, Communication – Meaning and Importance, Coordination- Meaning and Importance, Techniques of Coordination. Controlling – Meaning, Steps in Controlling.

Laboratory Sessions/ Experimental learning: Case study of steel plant departmentalization.

Applications: Effective communication in a corporate.

Mod	lule-3							L1., L2	8Hours
	-	-	 			-	-	 	

Fundamentals of Maintenance & Certification: Types of maintenance, Redesign, Failure rate pattern, Other maintenance considerations. Aviation industry certification requirements, Type certificate (FAA form 8110.9), Airworthiness certificate (FAA form 8100-2), Aviation maintenance certifications, General, Airframe, Power plant, Avionics courses.

Laboratory Sessions/ Experimental learning: A demo on maintenance procedure in wind tunnel lab. **Applications:** Apply the certification process in Aircraft industry.

Module-4	L1., L2	8Hours

Aircraft Management Maintenance

Structure, Role of aviation management, Line supervisory management, Management areas of concern in airlines, Manager of overhaul shops, Line maintenance control center flight line (preflight& post flight), Aircraft Logbook, Maintenance crew skill requirements.

Laboratory Sessions/ Experimental learning: A demo on aircraft logbook.

Applications: Implement the aviation management in airlines.

Module-5	L1., L2	8Hours

Maintenance Safety & Trouble shooting

Safety regulations, occupational safety and health standards maintenance safety program, Airlines safety management, General safety rules, Accident & injury reporting, Hazardous materials storage and handling aircraft furnishing practices trouble shooting, Knowledge of malfunctions.

Laboratory Sessions/ Experimental learning: A demo on safety system in wind tunnel lab.

Applications: Apply the safety regulations, OSHA safety programs and troubleshooting systems in aircraft.

Course outcomes:

CO301.1	Understand the concept of Management
CO301.2	Understand the staffing process
CO301.3	Apply the certification procedure for aircraft maintenance.
CO301.4	Apply the management system in aircraft maintenance.
CO301.5	Examine the quality control and calibration on Aircraft.

Text Bool	<s:< th=""></s:<>
1	Stephen P.Robbins & Mary Coulter, Management, Prentice Hall(India)Pvt.Ltd.,10 th Edition, 2009
2	Harry A Kinnison, Tariq Siddiqui, Aviation Maintenance Management, Mc Graw Hill education
2	(India) Private Ltd, 2013.
Reference	e Books:
1	Kroes, Watkins, Delp, Aircraft maintenance and repair, Mc Graw Hill,2013.
2	Larry Reithmaier, Aircraft Repair Manual, Palmar Books, Marquette, 1992.

CIE Assessment:

CIE is based on quizzes, tests, assignments/seminars, and any other form of evaluation. Generally, there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of three tests.

- Quizzes/mini tests (4 marks)
- Mini Project / Case Studies (8 Marks)
- Activities/Experimentations related to courses (8 Marks)

- iv. Question paper for the SEE consists of two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.
- v. Part B also covers the entire syllabus consisting of five questions having choices and may contain subdivisions, each carrying 16 marks. Students have to answer five full questions.
- vi. One question must be set from each unit. The duration of examination is 3 hours.

CO-PO	CO-PO Mapping																				
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12									
CO1	2	3	3	2				1	1		1	1									
CO2	2	2	1	2	2			1	1	1	1	1									
CO3	2	2	1	2	2		1	1	1		1	1									
CO4	2	2	1	1							1	1									
CO5	3	3	2	2	2			1	1	1	1	1									
High,3, 1	Medium	n,2, Lov	v,1									High,3, Medium,2, Low,1									

Course Title	FUNDAMENTALS OF AEROSPACE STRUCTURES	Semester	V
Course Code	MVJ22AS52	CIE	50
Total No. of Contact Hours	50 L : T : P :: 3 : 0 : 2	SEE	50
No. of Contact Hours/week	5	Total	100
Credits	4	Exam. Duration	3 Hours

The course objective is to:

- 1. Acquire the knowledge of types of loads on aerospace vehicles.
- 2. Understand the theory of elasticity and understand the different failure theories and to learn the concept of static strength
- 3. Illustrate the methods to design a structure against impact and fatigue loads
- 4. Understand the different methods to analyze columns
- 5. Describe about symmetrical and unsymmetrical sections

Module 1						L2		10 Hrs.
I and a an	A imama ft	a m d	Cross and ft at	Chana atranal	 Truess	of loods	1	d fastan

Loads on Aircraft and Spacecrafts: Structural nomenclature, Types of loads, load factor, Aerodynamic loads, Symmetric manoeuvre loads, Velocity diagram, Function of structural components.

Design considerations, Codes and Standards. Factor of safety, Safe life and fail-safe approach.

Laboratory Sessions/ Experimental learning:

1. Determination of Deflection in a beam by applying point load and combined loading.

2. Determine the deflection of composite beam

Applications: Analysis of Loads, Determinate and Indeterminate structures.

Module 2	L3	10 Hrs.
		1

Theory of Elasticity: Theory of Elasticity: Concept of stress and strain, derivation of Equilibrium equations, strain displacement relation, compatibility conditions and boundary conditions. Plane stress and Plane strain problems in 2D elasticity. Principal Stresses and Orientation of Principal Directions.

Theories of failure: Maximum normal stress theory, Maximum shear stress theory, Maximum strain theory, Strain energy theory, and Distortion energy theory, failure of brittle and ductile materials. Stress concentration, and Determination of Stress concentration factor.

Laboratory Sessions/ Experimental learning:

1. Determination of Stress concentration factor for static load.

2. Determine the strain in x-y-z directions using strain gauge for a given beam

Applications: Stress Analysis, Theory of failures

Module 3	L3	10 Hrs.
Impact Strongth: Introduction Impact strasses due to exist handing and	torgional loada	affact of

Impact Strength: Introduction, Impact stresses due to axial, bending and torsional loads, effect of

inertia.

Fatigue Strength: Introduction, S-N Diagram, Low cycle fatigue, High cycle fatigue, Endurance limit, modifying factors: size effect, surface effect, Stress concentration effects, Fluctuating stresses, Goodman and Soderberg relationship, stresses due to combined loading.

Laboratory Sessions/ Experimental learning:

1. Determine the notch sensitivity and impact toughness of engineering materials.

2. Demonstrate how fatigue tests are conducted and how to interpret results

Applications: Fatigue Testing, Combined Loading

Module 4 L.3 10 Hrs. Spacecraft Structures: Statically Determinate and Indeterminate structures, Analysis of plane truss, Method of joints, 3D Truss, Plane frames, Composite beam, Clapeyron's Three Moment Equation. Columns: Columns with various end conditions, Euler's Column curve, Rankine's formula, Column with initial curvature, Eccentric loading, southwell plot, Beam-column. Laboratory Sessions/ Experimental learning: 1. 1. Determine the Spring Stiffness for the given spring. 2. 2. Buckling load of slender Eccentric Columns and Construction of Southwell Plot Applications: Stress and Strain displacement, Columns 10 Hrs. Module 5 Symmetrical and unsymmetrical bending L4 10 Hrs. Introduction: Elementary theory of bending – Introduction to semi-Monocoque structures - Stresses in beams of symmetrical and unsymmetrical sections. General formula for bending stresses- principal axes method – Neutral axis method. Laboratory Sessions/ Experimental learning: Stress analysis on a flat plate using Ansys. Applications: To differentiate and analyze the components of aircraft components. Course outcomes: Upon completion of the course, students will be able to: Co302.1 C0302.2 Assess compatibility conditions and boundary conditions to find the stress and strain of an elastic material. C0302.3 Design a structure against fatigue loads and to design a material for impact load. C0302.4 Formulat different me	Applicatio	ons: Faligue Testing, Combined Loading						
Method of joints, 3D Truss, Plane frames, Composite beam, Clapeyron's Three Moment Equation. Columns: Columns with various end conditions, Euler's Column curve, Rankine's formula, Column with initial curvature, Eccentric loading, southwell plot, Beam-column. Laboratory Sessions/ Experimental learning: 1. Determine the Spring Stiffness for the given spring. 2. Buckling load of slender Eccentric Columns and Construction of Southwell Plot Applications: Stress and Strain displacement, Columns Module 5 Symmetrical and unsymmetrical bending L4 Introduction: Elementary theory of bending – Introduction to semi-Monocoque structures - Stresses in beams of symmetrical and unsymmetrical sections. General formula for bending stresses- principal axes method – Neutral axis method. Laboratory Sessions/ Experimental learning: Stress analysis on a flat plate using Ansys. Applications: To differentiate and analyze the components of aircraft components. Course outcomes: Upon completion of the course, students will be able to: CO302.1 Understand the various loads experienced by an aircraft in flight and functions of different components. CO302.2 Assess compatibility conditions and boundary conditions to find the stress and strain of an elastic material. CO302.3 Design a structure against fatigue loads and to design a material for impact load. CO302.4 Formulate different Energy methods in calculations related to structural compo	Module 4		L3	10 Hrs.				
Columns: Columns with various end conditions, Euler's Column curve, Rankine's formula, Column with initial curvature, Eccentric loading, southwell plot, Beam-column. Laboratory Sessions/ Experimental learning: 1. Determine the Spring Stiffness for the given spring. 2. Buckling load of slender Eccentric Columns and Construction of Southwell Plot Applications: Stress and Strain displacement, Columns Module 5 Symmetrical and unsymmetrical bending L4 Introduction: Elementary theory of bending – Introduction to semi-Monocoque structures - Stresses in beams of symmetrical and unsymmetrical sections. General formula for bending stresses- principal axes method – Neutral axis method. Laboratory Sessions/ Experimental learning: Stress analysis on a flat plate using Ansys. Applications: To differentiate and analyze the components of aircraft components. Course outcomes: Upon completion of the course, students will be able to: CO302.1 Understand the various loads experienced by an aircraft in flight and functions of different components. CO302.2 Assess compatibility conditions and boundary conditions to find the stress and strain of an elastic material. CO302.3 Design a structure against fatigue loads and to design a material for impact load. CO302.4 Formulate different Energy methods in calculations related to structural components and to understand the different methods to analyse columns. CO302.5 Anal	Spacecrat	ft Structures: Statically Determinate and Indeterminate structure	s, Analysis of J	plane truss,				
 with initial curvature, Eccentric loading, southwell plot, Beam-column. Laboratory Sessions/ Experimental learning: Determine the Spring Stiffness for the given spring. Buckling load of slender Eccentric Columns and Construction of Southwell Plot	Method of	f joints, 3D Truss, Plane frames, Composite beam, Clapeyron's T	Three Moment	Equation.				
Laboratory Sessions/ Experimental learning: 1. Determine the Spring Stiffness for the given spring. 2. Buckling load of slender Eccentric Columns and Construction of Southwell Plot Applications: Stress and Strain displacement, Columns Module 5 Symmetrical and unsymmetrical bending L4 10 Hrs. Introduction: Elementary theory of bending – Introduction to semi-Monocoque structures - Stresses in beams of symmetrical and unsymmetrical sections. General formula for bending stresses - principal axes method – Neutral axis method. Laboratory Sessions/ Experimental learning: Stress analysis on a flat plate using Ansys. Applications: To differentiate and analyze the components of aircraft components. Course outcomes: Upon completion of the course, students will be able to: CO302.1 Understand the various loads experienced by an aircraft in flight and functions of different components. CO302.2 Assess compatibility conditions and boundary conditions to find the stress and strain of an elastic material. CO302.3 Design a structure against fatigue loads and to design a material for impact load. CO302.4 Formulate different Energy methods in calculations related to structural components and to understand the different methods to analyse columns. CO302.5 Analyse the direct stress distribution for unsymmetrical bending section LABORATORY EXPERIMENTS 1 <td< td=""><td>Columns</td><td>Columns with various end conditions, Euler's Column curve, Ra</td><td>nkine's formu</td><td>la, Column</td></td<>	Columns	Columns with various end conditions, Euler's Column curve, Ra	nkine's formu	la, Column				
1. Determine the Spring Stiffness for the given spring. 2. Buckling load of slender Eccentric Columns and Construction of Southwell Plot Applications: Stress and Strain displacement, Columns Module 5 Symmetrical and unsymmetrical bending L4 10 Hrs. Introduction: Elementary theory of bending – Introduction to semi-Monocoque structures - Stresses in beams of symmetrical and unsymmetrical sections. General formula for bending stresses- principal axes method – Neutral axis method. Laboratory Sessions/ Experimental learning: Stress analysis on a flat plate using Ansys. Applications: To differentiate and analyze the components of aircraft components. Course outcomes: Upon completion of the course, students will be able to: CO302.1 Understand the various loads experienced by an aircraft in flight and functions of different components. CO302.2 Assess compatibility conditions and boundary conditions to find the stress and strain of an elastic material. CO302.3 Design a structure against fatigue loads and to design a material for impact load. CO302.4 Formulate different Energy methods in calculations related to structural components and to understand the different methods to analyse columns. CO302.5 Analyse the direct stress distribution for unsymmetrical bending section LABORATORY EXPERIMENTS 1 1 Deflection of a Cantilever Beam	with initia	l curvature, Eccentric loading, southwell plot, Beam-column.						
2. Buckling load of slender Eccentric Columns and Construction of Southwell Plot Applications: Stress and Strain displacement, Columns Module 5 Symmetrical and unsymmetrical bending L4 10 Hrs. Introduction: Elementary theory of bending – Introduction to semi-Monocoque structures - Stresses in beams of symmetrical and unsymmetrical sections. General formula for bending stresses- principal axes method – Neutral axis method. Laboratory Sessions/ Experimental learning: Stress analysis on a flat plate using Ansys. Applications: To differentiate and analyze the components of aircraft components. Course outcomes: Upon completion of the course, students will be able to: CO302.1 Understand the various loads experienced by an aircraft in flight and functions of different components. CO302.2 Assess compatibility conditions and boundary conditions to find the stress and strain of an elastic material. CO302.3 Design a structure against fatigue loads and to design a material for impact load. CO302.4 Formulate different Energy methods in calculations related to structural components and to understand the different methods to analyse columns. CO302.5 Analyse the direct stress distribution for unsymmetrical bending section LABORATORY EXPERIMENTS 1 1 Deflection of a Simply Supported Beam 2 Deflection of a Cantilever Beam	Laborator	y Sessions/ Experimental learning:						
Applications: Stress and Strain displacement, Columns Module 5 Symmetrical and unsymmetrical bending L4 10 Hrs. Introduction: Elementary theory of bending – Introduction to semi-Monocoque structures - Stresses in beams of symmetrical and unsymmetrical sections. General formula for bending stresses- principal axes method – Neutral axis method. Laboratory Sessions/ Experimental learning: Stress analysis on a flat plate using Ansys. Applications: To differentiate and analyze the components of aircraft components. Course outcomes: Upon completion of the course, students will be able to: CO302.1 Understand the various loads experienced by an aircraft in flight and functions of different components. CO302.2 Assess compatibility conditions and boundary conditions to find the stress and strain of an elastic material. CO302.3 Design a structure against fatigue loads and to design a material for impact load. CO302.4 Formulate different Energy methods in calculations related to structural components and to understand the different methods to analyse columns. CO302.5 Analyse the direct stress distribution for unsymmetrical bending section LABORATORY EXPERIMENTS 1 Deflection of a Simply Supported Beam 2 2 Deflection of a Cantilever Beam 3 Beam with Combined Loading by using Superposition Theorem <td>1. Determ</td> <td>ine the Spring Stiffness for the given spring.</td> <td></td> <td></td>	1. Determ	ine the Spring Stiffness for the given spring.						
Module 5 Symmetrical and unsymmetrical bending L4 10 Hrs. Introduction: Elementary theory of bending – Introduction to semi-Monocoque structures - Stresses in beams of symmetrical and unsymmetrical sections. General formula for bending stresses- principal axes method – Neutral axis method. Laboratory Sessions/ Experimental learning: Stress analysis on a flat plate using Ansys. Applications: To differentiate and analyze the components of aircraft components. Course outcomes: Upon completion of the course, students will be able to: CO302.1 Understand the various loads experienced by an aircraft in flight and functions of different components. CO302.2 Assess compatibility conditions and boundary conditions to find the stress and strain of an elastic material. CO302.3 Design a structure against fatigue loads and to design a material for impact load. CO302.4 Formulate different Energy methods in calculations related to structural components and to understand the different methods to analyse columns. CO302.5 Analyse the direct stress distribution for unsymmetrical bending section LABORATORY EXPERIMENTS 1 1 Deflection of a Cantilever Beam 2 Deflection of a Cantilever Beam 3 Beam with Combined Loading by using Superposition Theorem	2. Bucklin	g load of slender Eccentric Columns and Construction of Southy	well Plot					
Introduction: Elementary theory of bending – Introduction to semi-Monocoque structures - Stresses in beams of symmetrical and unsymmetrical sections. General formula for bending stresses- principal axes method – Neutral axis method. Laboratory Sessions/ Experimental learning: Stress analysis on a flat plate using Ansys. Applications: To differentiate and analyze the components of aircraft components. Course outcomes: Upon completion of the course, students will be able to: CO302.1 Understand the various loads experienced by an aircraft in flight and functions of different components. CO302.2 Assess compatibility conditions and boundary conditions to find the stress and strain of an elastic material. CO302.3 Design a structure against fatigue loads and to design a material for impact load. CO302.4 Formulate different Energy methods in calculations related to structural components and to understand the different methods to analyse columns. CO302.5 Analyse the direct stress distribution for unsymmetrical bending section LABORATORY EXPERIMENTS 1 Deflection of a Simply Supported Beam 2 2 Deflection of a Cantilever Beam 3 Beam with Combined Loading by using Superposition Theorem	Applicatio	ons: Stress and Strain displacement, Columns						
of symmetrical and unsymmetrical sections. General formula for bending stresses- principal axes method – Neutral axis method. Laboratory Sessions/ Experimental learning: Stress analysis on a flat plate using Ansys. Applications: To differentiate and analyze the components of aircraft components. Course outcomes: Upon completion of the course, students will be able to: CO302.1 Understand the various loads experienced by an aircraft in flight and functions of different components. CO302.2 Assess compatibility conditions and boundary conditions to find the stress and strain of an elastic material. CO302.3 Design a structure against fatigue loads and to design a material for impact load. CO302.4 Formulate different Energy methods in calculations related to structural components and to understand the different methods to analyse columns. CO302.5 Analyse the direct stress distribution for unsymmetrical bending section LABORATORY EXPERIMENTS 1 Deflection of a Simply Supported Beam 2 2 Deflection of a Cantilever Beam 3 Beam with Combined Loading by using Superposition Theorem	Module 5	Symmetrical and unsymmetrical bending	L4	10 Hrs.				
Neutral axis method. Laboratory Sessions/ Experimental learning: Stress analysis on a flat plate using Ansys. Applications: To differentiate and analyze the components of aircraft components. Course outcomes: Upon completion of the course, students will be able to: CO302.1 Understand the various loads experienced by an aircraft in flight and functions of different components. CO302.2 Assess compatibility conditions and boundary conditions to find the stress and strain of an elastic material. CO302.3 Design a structure against fatigue loads and to design a material for impact load. CO302.4 Formulate different Energy methods in calculations related to structural components and to understand the different methods to analyse columns. CO302.5 Analyse the direct stress distribution for unsymmetrical bending section LABORATORY EXPERIMENTS 1 Deflection of a Simply Supported Beam 2 2 Deflection of a Cantilever Beam 3 Beam with Combined Loading by using Superposition Theorem	Introductio	n: Elementary theory of bending – Introduction to semi-Monocoque st	ructures - Stress	ses in beams				
Laboratory Sessions/ Experimental learning: Stress analysis on a flat plate using Ansys. Applications: To differentiate and analyze the components of aircraft components. Course outcomes: Upon completion of the course, students will be able to: CO302.1 Understand the various loads experienced by an aircraft in flight and functions of different components. CO302.2 Assess compatibility conditions and boundary conditions to find the stress and strain of an elastic material. CO302.3 Design a structure against fatigue loads and to design a material for impact load. CO302.4 Formulate different Energy methods in calculations related to structural components and to understand the different methods to analyse columns. CO302.5 Analyse the direct stress distribution for unsymmetrical bending section LABORATORY EXPERIMENTS 1 Deflection of a Simply Supported Beam 2 2 Deflection of a Cantilever Beam 3 Beam with Combined Loading by using Superposition Theorem	of symmet	rical and unsymmetrical sections. General formula for bending stresse	es- principal axe	es method –				
Applications: To differentiate and analyze the components of aircraft components. Course outcomes: Upon completion of the course, students will be able to: CO302.1 Understand the various loads experienced by an aircraft in flight and functions of different components. CO302.2 Assess compatibility conditions and boundary conditions to find the stress and strain of an elastic material. CO302.3 Design a structure against fatigue loads and to design a material for impact load. CO302.4 Formulate different Energy methods in calculations related to structural components and to understand the different methods to analyse columns. CO302.5 Analyse the direct stress distribution for unsymmetrical bending section LABORATORY EXPERIMENTS 1 Deflection of a Simply Supported Beam 2 2 Deflection of a Cantilever Beam 3 Beam with Combined Loading by using Superposition Theorem	Neutral axi	s method.						
Course outcomes: Upon completion of the course, students will be able to: CO302.1 Understand the various loads experienced by an aircraft in flight and functions of different components. CO302.2 Assess compatibility conditions and boundary conditions to find the stress and strain of an elastic material. CO302.3 Design a structure against fatigue loads and to design a material for impact load. CO302.4 Formulate different Energy methods in calculations related to structural components and to understand the different methods to analyse columns. CO302.5 Analyse the direct stress distribution for unsymmetrical bending section LABORATORY EXPERIMENTS 1 Deflection of a Simply Supported Beam 2 Deflection of a Cantilever Beam 3 Beam with Combined Loading by using Superposition Theorem	Laboratory	Sessions/ Experimental learning: Stress analysis on a flat plate using a	Ansys.					
Upon completion of the course, students will be able to:CO302.1Understand the various loads experienced by an aircraft in flight and functions of different components.CO302.2Assess compatibility conditions and boundary conditions to find the stress and strain of an elastic material.CO302.3Design a structure against fatigue loads and to design a material for impact load.CO302.4Formulate different Energy methods in calculations related to structural components and to understand the different methods to analyse columns.CO302.5Analyse the direct stress distribution for unsymmetrical bending section1Deflection of a Simply Supported Beam2Deflection of a Cantilever Beam3Beam with Combined Loading by using Superposition Theorem	Application	ns: To differentiate and analyze the components of aircraft components	s.					
CO302.1Understand the various loads experienced by an aircraft in flight and functions of different components.CO302.2Assess compatibility conditions and boundary conditions to find the stress and strain of an elastic material.CO302.3Design a structure against fatigue loads and to design a material for impact load.CO302.4Formulate different Energy methods in calculations related to structural components and to understand the different methods to analyse columns.CO302.5Analyse the direct stress distribution for unsymmetrical bending section LABORATORY EXPERIMENTS1Deflection of a Simply Supported Beam2Deflection of a Cantilever Beam3Beam with Combined Loading by using Superposition Theorem	Course ou	tcomes:						
components.CO302.2Assess compatibility conditions and boundary conditions to find the stress and strain of an elastic material.CO302.3Design a structure against fatigue loads and to design a material for impact load.CO302.4Formulate different Energy methods in calculations related to structural components and to understand the different methods to analyse columns.CO302.5Analyse the direct stress distribution for unsymmetrical bending sectionLABORATORY EXPERIMENTS1Deflection of a Simply Supported Beam2Deflection of a Cantilever Beam3Beam with Combined Loading by using Superposition Theorem	Upon comp	•						
CO302.2 Assess compatibility conditions and boundary conditions to find the stress and strain of an elastic material. CO302.3 Design a structure against fatigue loads and to design a material for impact load. CO302.4 Formulate different Energy methods in calculations related to structural components and to understand the different methods to analyse columns. CO302.5 Analyse the direct stress distribution for unsymmetrical bending section LABORATORY EXPERIMENTS 1 Deflection of a Simply Supported Beam 2 Deflection of a Cantilever Beam 3 Beam with Combined Loading by using Superposition Theorem	CO302.1	Understand the various loads experienced by an aircraft in flight	and functions	of different				
Image: Construction of a Simply Supported Beam2Deflection of a Cantilever Beam3Beam with Combined Loading by using Superposition Theorem								
CO302.3 Design a structure against fatigue loads and to design a material for impact load. CO302.4 Formulate different Energy methods in calculations related to structural components and to understand the different methods to analyse columns. CO302.5 Analyse the direct stress distribution for unsymmetrical bending section LABORATORY EXPERIMENTS 1 Deflection of a Simply Supported Beam 2 Deflection of a Cantilever Beam 3 Beam with Combined Loading by using Superposition Theorem	CO302.2	Assess compatibility conditions and boundary conditions to fin	nd the stress ar	nd strain of				
CO302.4 Formulate different Energy methods in calculations related to structural components and to understand the different methods to analyse columns. CO302.5 Analyse the direct stress distribution for unsymmetrical bending section LABORATORY EXPERIMENTS 1 Deflection of a Simply Supported Beam 2 Deflection of a Cantilever Beam 3 Beam with Combined Loading by using Superposition Theorem		an elastic material.						
understand the different methods to analyse columns.CO302.5Analyse the direct stress distribution for unsymmetrical bending sectionLABORATORY EXPERIMENTS1Deflection of a Simply Supported Beam2Deflection of a Cantilever Beam3Beam with Combined Loading by using Superposition Theorem	CO302.3	Design a structure against fatigue loads and to design a material for	impact load.					
CO302.5 Analyse the direct stress distribution for unsymmetrical bending section LABORATORY EXPERIMENTS 1 Deflection of a Simply Supported Beam 2 Deflection of a Cantilever Beam 3 Beam with Combined Loading by using Superposition Theorem	CO302.4	Formulate different Energy methods in calculations related to str	uctural compon	ents and to				
LABORATORY EXPERIMENTS 1 Deflection of a Simply Supported Beam 2 Deflection of a Cantilever Beam 3 Beam with Combined Loading by using Superposition Theorem		understand the different methods to analyse columns.						
1Deflection of a Simply Supported Beam2Deflection of a Cantilever Beam3Beam with Combined Loading by using Superposition Theorem	CO302.5	Analyse the direct stress distribution for unsymmetrical bending sec	tion					
2 Deflection of a Cantilever Beam 3 Beam with Combined Loading by using Superposition Theorem		LABORATORY EXPERIMENTS						
3 Beam with Combined Loading by using Superposition Theorem	1	Deflection of a Simply Supported Beam						
	2	Deflection of a Cantilever Beam						
4 Verification of Maxwell's Reciprocal Theorem for Beam with	3	Beam with Combined Loading by using Superposition Theorem						
	4	Verification of Maxwell's Reciprocal Theorem for Beam with						

	a) Constant cross section
	b) varying Cross section
5	Determination of Young's Modulus and Poisson Ratio using Strain Gages.
6	Buckling Load of Slender Eccentric Column sand Construction of South Well Plot
7	Shear Failure of Bolted and Riveted Joint
8	Bending Modulus of Sandwich Beam
9	Determine the Index Factor K in a Tensile Field of Wagner Beam
10	Tensile, Compressive and Flexural Testing of a Composite Material Plate
11	Determination of Natural Frequency and Mode Shapes of a Cantilever Beam for the
	Following Cases
	a) Constant cross section
	b) Varying cross section
12	Determination of Shear Centre for Following Cases through Deflection
	a) Close section–Symmetrical bending
	b) Open section–Unsymmetrical bending
13	Determination of Shear flow for Following Cases
	a) Close section–Symmetrical bending
	b) Open section–Unsymmetrical bending
14	Determining of Shear Centre Through Shear Flow Measurement for Following Cases
	a) Close section–Symmetrical bending
	b) Open section–Unsymmetrical bending

Textbooks:					
	Megson, T.H.G., "Aircraft Structures for Engineering Students", Edward Arnold, 6th				
1 Edition 2017, Elsevier Aerospace Engineering series, ISBN-13: 978-0081009147, ISBN					
	9780081009147.				
2	Bruhn E.F., "Analysis and Design of Flight Vehicles Structures", Tri-State offset Co.USA,1985				

Reference Books						
1.	Bruce K Donaldson, "Analysis of Aircraft structures", Cambridge Aerospace Series, reprint 2012,					
	ISBN- 9780511801631					
2.	Peery, D.J., and Azar, J.J., "Aircraft Structures", McGraw, Hill, N.Y, 2nd edition, 1993					

CIE Assessment:

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the project based assignments are 20 (2)

presentations are be held for 10 marks each). The marks obtained in test, quiz and self -studies are added to get marks out of 100 and report CIE for 50 marks.

Laboratory- 50 Marks

The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are awarded 10 marks. Total marks for the laboratory is 50.

SEE Assessment:

SEE for 50 marks are executed by means of an examination.

The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the complete syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

CO, PO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	1	1	1	1	0	1	1	0	1	1	2
CO2	3	2	2	1	1	1	1	1	1	1	0	1	1	2
CO3	2	2	2	1	1	1	1	0	1	1	0	1	1	2
CO4	3	2	2	1	1	1	1	0	1	1	0	1	1	2
CO5	3	2	2	1	1	1	1	1	1	1	0	1	1	2
High,3, 1	High,3, Medium,2, Low,1													

Course Title	COMPRESSIBLE	Semester	V
	AERODYNAMICS	Semester	, ,
Course Code	MVJ22AS53	CIE	50
Total No. of Contact Hours	50 L: T: P: 3:2:0	SEE	50
No. of Contact Hours/week	5	Total	100
Credits	4	Exam. Duration	3 Hrs.
The course objective is to:			
1. Understand the concepts of con	npressible flow		
2. Acquire knowledge of normal s	shock waves		
3. Comprehend the phenomenon	of oblique shocks and expansion	waves	
4.Understand the concepts of Diff	ferential Equations of Motion for	Steady Compressible Flow	S
5. Gain knowledge of flow measu	rement techniques		
Module 1		L2	10 Hrs.
One Dimensional Compressible	Flow: Energy, Momentum, conti	nuity and state equations, v	elocity of sound
Adiabatic steady state flow equ	ations, Flow through converging	g, diverging passages, Pe	rformance unde
various back pressures. Numerica	1		
Laboratory Sessions/ Experime	ntal learning: Visualization of Fl	ow analysis in Ansys Lab	
Applications: Understanding the	close coupling of thermodynamic	s and fluid dynamics	
and analyse typical aircraft system	ns like nozzles, diffusers, intakes		
and analyse typical aircraft system Module 2	ns like nozzles, diffusers, intakes	L2	10 Hrs.
	quation and Rankine – Hugonoit number, Numerical, Moving Nor ntal learning: Visualization of ai ersonic flow problems involving	relation, Normal shock eq mal Shock wave. Shock tu rfoil cross-section in Aeroo normal shock waves to de	uations: Propert be. dynamics Lab
Module 2 Normal Shock: Prandtl Meyer ed ratios in terms of upstream Mach Laboratory Sessions/ Experime Applications: Analyzing the sup	quation and Rankine – Hugonoit number, Numerical, Moving Nor ntal learning: Visualization of ai ersonic flow problems involving	relation, Normal shock eq mal Shock wave. Shock tu rfoil cross-section in Aeroo normal shock waves to de	uations: Propert be. dynamics Lab
Module 2 Normal Shock: Prandtl Meyer ex ratios in terms of upstream Mach Laboratory Sessions/ Experime Applications: Analyzing the sup aircraft systems like nozzles, diffu	quation and Rankine – Hugonoit number, Numerical, Moving Nor ntal learning: Visualization of ai ersonic flow problems involving users, intakes, shock tubes, wind t	relation, Normal shock eq mal Shock wave. Shock tu rfoil cross-section in Aero normal shock waves to de unnels, pipe flows. L2	uations: Propert be. dynamics Lab sign and analyz 10 Hrs.
Module 2 Normal Shock: Prandtl Meyer ed ratios in terms of upstream Mach Laboratory Sessions/ Experime Applications: Analyzing the sup aircraft systems like nozzles, diffu Module 3	quation and Rankine – Hugonoit number, Numerical, Moving Nor ntal learning: Visualization of ai ersonic flow problems involving users, intakes, shock tubes, wind t	relation, Normal shock equal Shock wave. Shock turn foil cross-section in Aerochart normal shock waves to de unnels, pipe flows.	uations: Propert be. dynamics Lab sign and analyz 10 Hrs. n, Normal shoc
Module 2 Normal Shock: Prandtl Meyer ed ratios in terms of upstream Mach Laboratory Sessions/ Experime Applications: Analyzing the sup aircraft systems like nozzles, diffu Module 3 Oblique shocks and Expansion	quation and Rankine – Hugonoit number, Numerical, Moving Nor ntal learning: Visualization of ai ersonic flow problems involving users, intakes, shock tubes, wind t	relation, Normal shock equal Shock wave. Shock turn foil cross-section in Aeroch normal shock waves to de unnels, pipe flows.	aations: Propert be. lynamics Lab sign and analyz 10 Hrs. n, Normal shoc
Module 2 Normal Shock: Prandtl Meyer exactly a stream Mach Laboratory Sessions/ Experime Applications: Analyzing the sup aircraft systems like nozzles, diffu Module 3 Oblique shocks and Expansion equations, Pitot static tube, correct	quation and Rankine – Hugonoit number, Numerical, Moving Nor ntal learning: Visualization of ai ersonic flow problems involving users, intakes, shock tubes, wind t	relation, Normal shock equal Shock wave. Shock turn foil cross-section in Aeroch normal shock waves to de unnels, pipe flows.	ations: Propert be. dynamics Lab sign and analyz 10 Hrs. n, Normal shoc nd correspondin e corners, strong
Module 2 Normal Shock: Prandtl Meyer ed ratios in terms of upstream Mach Laboratory Sessions/ Experime: Applications: Analyzing the sup aircraft systems like nozzles, diffu Module 3 Oblique shocks and Expansion equations, Pitot static tube, correct equations, Hodograph and pressur weak and detached shocks, Flow	quation and Rankine – Hugonoit number, Numerical, Moving Nor ntal learning: Visualization of ai ersonic flow problems involving users, intakes, shock tubes, wind t waves : Prandtl equation and Ra ctions for subsonic and supersonic re turning angle, shock polars, flow	relation, Normal shock equal Shock wave. Shock turn foil cross-section in Aeroch normal shock waves to de unnels, pipe flows.	ations: Propert be. dynamics Lab sign and analyz 10 Hrs. n, Normal shoc nd correspondin e corners, strong
Module 2 Normal Shock: Prandtl Meyer ed ratios in terms of upstream Mach Laboratory Sessions/ Experime Applications: Analyzing the sup aircraft systems like nozzles, diffu Module 3 Oblique shocks and Expansion equations, Pitot static tube, correct equations, Hodograph and pressur	quation and Rankine – Hugonoit number, Numerical, Moving Nor ntal learning: Visualization of ai ersonic flow problems involving users, intakes, shock tubes, wind t waves: Prandtl equation and Ra ctions for subsonic and supersonic re turning angle, shock polars, flow w past convex corners, Prandtl – on waves.	relation, Normal shock equal Shock wave. Shock tur rfoil cross-section in Aeroch normal shock waves to de unnels, pipe flows.	uations: Propert be. dynamics Lab sign and analyz 10 Hrs. n, Normal shoc ad correspondin e corners, strong n, Reflection an
Module 2 Normal Shock: Prandtl Meyer ed ratios in terms of upstream Mach Laboratory Sessions/ Experime Applications: Analyzing the sup aircraft systems like nozzles, diffu Module 3 Oblique shocks and Expansion equations, Pitot static tube, correct equations, Hodograph and pressur weak and detached shocks, Flow interaction of shocks and expansion	quation and Rankine – Hugonoit number, Numerical, Moving Nor ntal learning: Visualization of ai ersonic flow problems involving users, intakes, shock tubes, wind t waves: Prandtl equation and Ra ctions for subsonic and supersonic re turning angle, shock polars, flo v past convex corners, Prandtl – on waves. ntal learning: Visualization of ai	relation, Normal shock equal Shock wave. Shock tur foil cross-section in Aeroconormal shock waves to de unnels, pipe flows. L2 ankine – Hugonoit relation of flows, Oblique shocks and w past wedges and concave Meyer expansion function function for flows of the section of the se	uations: Propert be. dynamics Lab sign and analyz 10 Hrs. n, Normal shoc ad correspondin e corners, strong n, Reflection an dynamics Lab
Module 2 Normal Shock: Prandtl Meyer exactly and the sup of the su	quation and Rankine – Hugonoit number, Numerical, Moving Nor ntal learning: Visualization of ai ersonic flow problems involving users, intakes, shock tubes, wind t waves: Prandtl equation and Ra- ctions for subsonic and supersonic re turning angle, shock polars, flow v past convex corners, Prandtl – on waves. ntal learning: Visualization of ai ersonic flow problems involving	relation, Normal shock equal Shock wave. Shock tur foil cross-section in Aeroonormal shock waves to de unnels, pipe flows. L2 ankine – Hugonoit relationer flows, Oblique shocks and concave Meyer expansion functioner foil cross-section in Aeroopoblique shock waves to de coblique shock waves to de cobligue shock w	uations: Proper be. dynamics Lab sign and analyz 10 Hrs. n, Normal shood ad corresponding e corners, strond n, Reflection ar dynamics Lab

Module 4		L2	10 Hrs.					
Differentia	l Equations of Motion for Steady Compressible Flows	Basic potentia	equations for					
compressib	le flow. Linearisation of potential equation-small perturbation	h theory. Methods	for solution of					
nonlinear p	otential equation –Introduction, Method of characteristics, Bound	ary conditions, Pre	ssure coefficient					
expression,	small perturbation equation for compressible flow - Prandtl, Gla	uret and Geothert's	s rules - Ackert's					
supersonic	airfoil theory, Von-Karman rule for transonic flow, Lift, drag pitc	hing moment and c	enter of pressure					
of supersor	ic profiles							
Laborator	y Sessions/ Experimental learning: Flow Problems using Ansys	s Lab						
Applicatio	ns: Analyze and interpret the flow behavior							
Module 5		L2	10Hrs.					
Measuren	nents in High-speed Flow: Types of subsonic wind tunne	ls Balances and	measurements -					
Interference	e effects transonic, Supersonic, and hypersonic wind tunnels	and characteristic	c features, their					
operation a	nd performance – Shock tubes and shock tunnels - Free flight to	esting - Measurem	ents of pressure,					
velocity an	d Mach number -Flow visualization methods of subsonic and sup	personic flows.						
Laborator	y Sessions/ Experimental learning: Wind Tunnel model force n	neasurements						
Applicatio	ns: Understand the significance of wind tunnels in Aeronautics/A	verospace and perfo	orm experiments					
on appropri	ate model's wind tunnel							
Course out	tcomes:							
Upon comp	pletion of the course, students will be able to:							
CO303.1	Apply the basic concepts of compressible flow							
CO303.2	Evaluate the concepts of normal shock phenomenon							
CO303.3	Apply the concepts of oblique shock and expansion wave form	ation.						
CO303.4	Utilize the concepts of Differential Equations of Motion for Sta	eady Compressible	Flows					
CO303.5	Investigate the parameters of high-speed flow.							
Textbooks	I •							
1	John D Anderson, Modern Compressible Flow, McGraw Hill,3	Brd edition,2012, IS	SBN-13: 978-					
1.	1259027420.							
2	Radhakrishnan, E., Gas Dynamics, Prentice Hall of India,5th e	dition,2014, ISBN-	-13: 978-					
2.	8120348394							
Reference	Books:							
1	Ascher.H. Saphiro, Dynamics and Thermodynamics of Comp	pressible fluid flow	v, John Wiley&					
1.	Sons,1st edition,1977, ISBN-13: 978-0471066910.							
2	Yahya, S.M., Fundamentals of Compressible flow, NEW AGE	, 2009, ISBN-13: 9	978-					
2.	8122426687.							
	Steven H. Collicott, Daniel T. Valentine, E. L. Houghton,	P. W. Carpenter,	Aerodynamics					
3. for Engineering Students, Edition 8, Elsevier (2024), ISBN: 032395815X, 978032395								
	H.W. Liepmann and A. Roshko, Elements of Gas Dynamics, Dover Publications Inc,2003,							
4.	ISBN-13: 978-0486419633.		. ,					
CIE Asses								

CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation. Generally, there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of three tests

- Quizzes/mini tests (4 marks)
- Mini Project / Case Studies (8 Marks)
- Activities/Experimentations related to courses (8 Marks)

SEE Assessment:

- vii. Question paper for the SEE consists of two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.
- viii. Part B also covers the entire syllabus consisting of five questions having choices and may contain subdivisions, each carrying 16 marks. Students have to answer five full questions.

ix. One question must be set from each unit. The duration of examination is 3 hours.

						CO,	PO M	lappin	g					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	0	0	0	0	0	0	0	0	0	0	3	1
CO2	3	3	2	2	0	0	0	0	0	0	0	0	3	1
CO3	3	3	0	2	0	0	0	0	0	0	0	0	3	1
CO4	3	3	3	2	0	0	0	0	0	0	0	0	3	1
CO5	3	3	2	2	0	0	0	0	0	0	0	0	2	1
High,3, 1	ligh,3, Medium,2, Low,1													

Course Ti	METROLOGY LAB					
Course Co	ode	MVJ22ASL54	CIE		50	
Total No.	of Contact Hours	40 L : T : P :: 0 : 0 : 2	SEE		50	
No. of Co	ntact Hours/week	03	Total		100	
Credits		01	Exam. Du	uration	3 Hours	
LeUs	se the concept of accuracy,	ical measurements and metrology error and calibration sic metrological instruments				
Sl No	Experiment Name			RBT Leve	el Hours	
1	Calibration of Pressure G	auge		L1,L2,L3	03	
2	Calibration of Thermocou	ıple		L1,L2,L3	03	
3	Calibration of LVDT			L1,L2,L3	03	
4	Calibration of Load cell	L1,L2,L3	03			
5	Determination of modulus of elasticity of a mild steel specimen using L1,L2,L3 03 strain gauges. 03					
6	Comparison and measure	L1,L2,L3	03			
7	Measurement of vibration	L1,L2,L3	03			
8	Measurements using Opti	cal Projector / Toolmaker Microsco	ope.	L1,L2,L3	03	
9	Measurement of angle us	ing Sine Center / Sine bar / bevel pr	otractor	L1,L2,L3	03	
10	Measurement of alignment	nt using Autocollimator / Roller set		L1,L2,L3	03	
11	Measurement of Screw th wire method.	reads Parameters using Two-wire of	or Three-	L1,L2,L3	03	
12	Measurements of Surface Comparator	roughness, Using Tally Surf/Mech	anical	L1,L2,L3	03	
13	Measurement of gear tool micrometer	h profile using gear tooth vernier /0	Gear tooth	L1,L2,L3	03	
14	Calibration of Microme	eter using slip gauges		L1,L2,L3	03	
15	Digital Profilometer.	ch, Thread Pitch, and Thread Diame	eter Using a	L1,L2,L3	03	
Course ou						
CO304.1	Use different measuring to	ools related to experiments				
CO304.2	Identify, define, and expla	in accuracy, precision, and some ac	lditional term	inology.		
CO304.3		et, and present measurement data fro n, and some additional terminology		ents Identify	, define, and	

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	0	2	0	0	0	0	0	1	0	0	0
CO2	3	0	1	0	0	0	0	0	1	0	0	0
CO3	3	1	3	0	0	0	0	0	1	0	1	1
High-3, Mediun	High-3, Medium-2, Low-1											

Professional Elective-I

Course Title	THOERY OF VIBRATION	Semester	V					
Course Code	MVJ22AS551	CIE	50					
Total No. of Contact Hours	40 L: T: P: 3 :0: 0	SEE	50					
No. of Contact Hours/week	4	Total	100					
Credits	3	Exam. Duration	3 Hrs.					
Course objective is to:								
1.Understand the basic concepts	s of vibrations							
2.Gain the knowledge of the un	damped free vibration and damped	l free vibrations						
3. Learn the vibration measurin	g instrumentation							
4. Acquire knowledge of two de	egrees of freedom systems							
5. Understand numerical metho	ds for Multi-Degree Freedom Syst	ems						
Module 1		L3	08 Hrs.					
Types of vibrations, S.H.M, princip	ble of super position applied to Si	mple Harmonic Motions.	Beats, Fourier					
theorem and simple problems.								
Laboratory Sessions/ Experimenta	al learning:							
Simple pendulum experiment to understand concept of wave motion								
Applications: Various types of vibr	ations and its real time application	S						
Concept of wave and its characteristics.								
Module 2	Module 2 L3 08 Hrs.							
Undamped Free Vibrations: Singl	le degree of freedom systems. Und	lamped free vibration, nat	ural frequency					
of free vibration, Spring and Mass e	lements, effect of mass of spring, (Compound Pendulum.						
Damped Free Vibrations: Single of	degree of freedom systems, differe	ent types of damping, cond	cept of critical					
damping and its importance, study of	of response of viscous damped sys	tems for cases of under dat	mping, critical					
and over damping, Logarithmic decr	rement							
Laboratory Sessions/ Experimenta	al learning:							
Identifying Damping ration experim	ent allows students to understand	behavior of vicious damper	r. [Design lab]					
Applications: Various types of dam	pers and its real time applications.							
Module 3		L3	08 Hrs.					
Forced Vibration: Single degree	of freedom systems, steady state	solution with viscous da	mping due to					
harmonic force. Solution by Com	plex algebra, reciprocating and	rotating unbalance, vibra	tion isolation,					
transmissibility ratio due to harmoni	harmonic force. Solution by Complex algebra, reciprocating and rotating unbalance, vibration isolation, transmissibility ratio due to harmonic excitation and support motion.							
Vibration Measuring Instruments & Whirling of Shafts: Vibration of elastic bodies – Vibration of strings –								
•	**	of elastic bodies – Vibrati	on of strings –					
•	& Whirling of Shafts: Vibration	of elastic bodies – Vibrati	on of strings –					
Vibration Measuring Instruments	& Whirling of Shafts: Vibration Vibrations.	of elastic bodies – Vibrati	on of strings –					
Vibration Measuring Instruments Longitudinal, lateral, and torsional V	& Whirling of Shafts: Vibration Vibrations. al learning:	of elastic bodies – Vibrati	on of strings –					
Vibration Measuring Instruments Longitudinal, lateral, and torsional V Laboratory Sessions/ Experimenta	& Whirling of Shafts: Vibration Vibrations. al learning:	of elastic bodies – Vibrati	on of strings –					
Vibration Measuring Instruments Longitudinal, lateral, and torsional V Laboratory Sessions/ Experimenta Whirling of shaft experiment [Desig	& Whirling of Shafts: Vibration Vibrations. al learning:	of elastic bodies – Vibrati	on of strings –					
Vibration Measuring Instruments Longitudinal, lateral, and torsional V Laboratory Sessions/ Experimenta Whirling of shaft experiment [Desig Applications:	& Whirling of Shafts: Vibration Vibrations. al learning:	of elastic bodies – Vibrati L3	on of strings – 08 Hrs.					

coordinate coupling, generalized and principal co-ordinates, Free vibration in terms of initial conditions. Geared systems. Forced Oscillations-Harmonic excitation. Applications: Vehicle suspension, Dynamic vibrationabsorber and Dynamics of reciprocating Engines.

Continuous Systems: Introduction, vibration of string, longitudinal vibration of rods, Torsional vibration of rods, Euler's equation for beams.

Laboratory Sessions/ Experimental learning: Determination of two natural frequencies, or modes, for the system

Applications: Dynamic vibration absorber and its application in reciprocating engine.

Mod	ule 5					L2	08 Hrs.
N .T			-	-	a .		

Numerical Methods for Multi-Degree Freedom Systems:

Introduction, Influence coefficients, Maxwell reciprocal theorem, Dunkerley's equation. Orthogonality of principal modes, Method of matrix iteration-Method of determination of all the natural frequencies using sweeping matrix and Orthogonality principle. Holzer's method, Stodola method.

Non-Linear Vibration: (Advance theory of vibration by ssrao)

Laboratory Sessions/ Experimental learning:

Plotting displacement curve using Analytical Approach.

Applications:

Understanding non linear behavior of waves or vibration.

Course outcomes:	
Upon completion of	of the course, students will be able to:
CO305. 1.1	Apply the principle of super position to Simple Harmonic Motions.
CO305. 1.2	Analyse undamped free and damped free vibration
CO305. 1.3	Perform measurements of vibrations
CO305. 1.4	Evaluate the equations of twodegrees of freedom systems.
CO305. 1.5	Evaluate themulti degree of freedom system.

Textb	oooks:
1	J.B.K Das, P L Srinivasa Murthy, Mechanical vibrations, Sapna publications
2	V.P. Singh, Mechanical Vibrations, DhanpatRai& Company Pvt. Ltd, 2016

	Reference Books
1.	W.T. Thomson and MarieDillonDahleh, Theory of Vibration with Applications, Pearson Education, 2008
2.	V.P. Singh, Mechanical Vibrations, DhanpatRai& Company Pvt. Ltd, 2016
3.	S.S. Rao, Mechanical Vibrations, Pearson Education Inc, 2003
4.	S. Graham Kelly, Mechanical Vibrations, Tata McGraw Hill, 2007

CIE Assessment:

CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation. Generally, there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of three tests

- Quizzes/mini tests (4 marks)
- Mini Project / Case Studies (8 Marks)
- Activities/Experimentations related to courses (8 Marks)

SEE Assessment:

- x. Question paper for the SEE consists two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.
- xi. Part B also covers the entire syllabus consisting of five questions having choices and may contain subdivisions, each carrying 16 marks. Students have to answer five full questions.

xii. One question must be set from each unit. The duration of examination is 3 hours.

CO,PO	CO,PO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	3	3	1	1	1	1	1	1	0	2	3	1	1
CO2	3	3	1	3	1	1	0	1	1	0	1	3	1	1
CO3	3	3	2	3	2	1	0	0	1	0	1	3	1	1
CO4	3	3	2	3	3	2	0	0	1	0	01	3	1	1
CO5	2	2	2	2	1	1	0	1	1	0	0	3	1	1
High,3,	High,3, Medium,2, Low,1													

Course Title	INTRODUCTION TO ASTROPHYSICS AND SPACE ENVIRONMENT	Semester	v
Course Code	MVJ22AS552	CIE	50
Total No. of Contact Hours	40 L: T : P :: 3 :0 : 0	SEE	50
No. of Contact Hours/week	4	Total	100
Credits	3	Exam. Duration	3 Hrs.

Course objective is to:

- Understand the basics of Astrophysics
- Acquire basic knowledge of Stellar Atmosphere.
- Acquire knowledge of types of Astrophysics and related instrumentations
- Acquire knowledge of the sun and solar system.
- Learn the Space Environment

Module 1	L2	08 Hrs.

Introduction:Overview of major contents of universe, Black body radiation, specific intensity, flux density, luminosity, Basics of radiative transfer (Emission/absorption coefficients, source functions), Magnitudes, distance modulus, Colour index, Extinction, Colour temperature, effective temperature, Brightness temperature, bolometric magnitude/luminosity, Excitation temperature, kinetic temperature, Utility of stellar spectrum.

Laboratory Sessions/ Experimental learning:

1.Lower Solar atmosphere- Waves & transients

Applications:

1. Theoretical models of astrophysical objects like Neutron Stars,

2. White Dwarfs, and Black Holes

Module 2	L2	08 Hrs.
Basic knowledge of stellar atmospheres: Binaries, variable stars, clusters, open a	and globular cluster	s, Laws of

planetary motion, Motions and Distances of Stars, Statistical and moving cluster parallax, Velocity Dispersion, Compact objects (BH-systems, Accretion rate/efficiency, Eddington luminosity), Shape, size and contents of our galaxy, Normal and active galaxies, High energy physics (introduction to X-ray and Gamma ray radiation processes), Newtonian cosmology, microwave background, early universe.

Laboratory Sessions/ Experimental learning:

1.Solar Terrestrial studies & Radio astronomy

Applications:

1.Use the distance of the particle and the brightness of its signal to determine the size and mass of the particle in Space.

	Module 3	L3	08 Hrs.
--	----------	----	---------

Astrophysics:

Radio astronomy, optical astronomy, infra-red astronomy, ultra violet, x-ray and r-ray astronomy using space

telesc	copes.	Instrumentation	aspects-sky	mappers,	spectrograph,	observatorie	es etc.
Labo	oratory S	essions/ Experimen	tal learning:				
1. ob:	servatorio	es					
Appl	ications:						
1. Un	derstand	ing of formation of u	iniverse				
Mod	ule 4				L	3	08 Hrs.
Sun	& Solar	System: The sun, he	lioseismology, co	onvection, sola	r magnetism: flux	tubes, sun spots	s, dynamo,
solar	cycle, cł	romosphere, corona	, solar wind, phy	vsical processe	s in the solar syste	em; dynamics o	f the solar
syste	m; physio	es of planetary atmo	spheres; individu	al planets; con	nets, asteroids, and	d other constitue	ents of the
solar	system; o	extra-solar planets; fo	ormation of the se	olar system, sta	rs, and planets.		
Labo	oratory S	essions/ Experimen	tal learning:				
1.Sol	ar Interio	r Dynamics & Helio	seismology,				
2.Sol	ar Magne	etic fields & radiative	e transfer				
Appl	ications:						
1. Ob	servatior	ns of the Sun & predi	ict the eruptions a	and periods wit	h particular intens	ive radiation.	
Mod	ule 5				L2	2	08 Hrs.
Spac	e Enviro	nment: Introduction	, Vacuum Enviro	onments and its	s effect, Neutral er	vironment and	its effects,
Plasn	na enviro	nment, Radiation En	vironment and it	s effects, Debri	s Environment and	d its effects.	
Labo	oratory S	essions/ Experimen	tal learning:				
1. 9	Study of	the chemical & dyr	namical history o	of Milky way g	galaxy		
Appl	ications:						
1. Me	easureme	nts and modulations	of the space envi	ronment and th	neir consequences.		
Cour	se outco	mes:					
Upon	complet	ion of the course, stu	idents will be abl	e to:			
CO3()5. 2.1	Apply the basics of	of astrophysics				
CO3()5. 2.2	Evaluate thebasic	knowledge on St	tellar atmosphe	res & their proper	ties.	
CO3()5. 2.3	Analyse Astrophy	vsics with related	instrumentatio	ns		
CO3()5. 2.4	Interpret the Solar	r system				
CO3()5. 2.5	Evaluate the space	e environment				
Text	books:						
1	Shu, F	, The Physical Uni	verse Universit	y of Californi	a 1981		
•	Padma	nabhan, T., Theore	tical Astrophys	ics, Cambridg	e University Pre	ss, south Asiar	1
2	edition	,2010,ISBN-13: 97	78-1107400597.				
Refe	erence B	ooks					
1.	Sakura	i, JJ., Advanced Qu	antum Mechan	ics.Pearson E	ducation India. 19	st edition.2002	
2		ho Sun: An Introdu					

- 2. Stix, The Sun: An Introduction,M,Springer, Reprinted edition,2012
- 3. Alan C. Tribble, The Space Environment, Princeton University Press, Revised edition,2003

CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation. Generally, there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of three tests

- Quizzes/mini tests (4 marks)
- Mini Project / Case Studies (8 Marks)
- Activities/Experimentations related to courses (8 Marks)

SEE Assessment:

xiii. Question paper for the SEE consists two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.

xiv.Part B also covers the entire syllabus consisting of five questions having choices and may contain subdivisions, each carrying 16 marks. Students have to answer five full questions.

xv. One question must be set from each unit. The duration of examination is 3 hours.

				(CO-PO	-PSO N	/lapping	5						
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2	1	-	-	1	1	1	1	1	-	1
CO2	3	3	2	2	1	-	-	1	1	1	1	1	-	1
CO3	3	3	2	2	1	-	-	1	1	1	1	1	-	1
CO4	3	3	2	2	1	-	-	1	1	1	1	1	-	1
CO5	3	3	2	2	1	-	-	1	1	1	1	1	3	3
High,3, I	Mediun	n,2, Lov	w,1											

Course Title	OPTIMIZATION TECHNIQUES AND PROBABILITY THEORY	Semester	V
Course Code	MVJ22AS553	CIE	50
Total No. of Contact Hours	40 L : T : P :: 3: 0 : 0	SEE	50
No. of Contact Hours/week	4	Total	100
Credits	3	Exam. Duration	3hrs

Course objective is to:

- Ability to apply the theory of optimization methods and algorithms to develop and for solving various types of optimization problems
- Ability to go in research by applying optimization techniques in problems of Engineering and Technology

L3

8Hrs.

• Understand and apply probability distribution, sampling theory and joint probability distributions.

Module-1

Linear Programming: Introduction to Linear Programming Problem (LPP): Prototype example, Assumptions of LPP, Formulation of LPP and Graphical method various examples. The simplex method, Two phase method and dual simplex method. Self study topic: Big-M method

Application: Graphical solution procedure and algorithms to solve problems.

Application: Graphical solution procedure and algorithms to solve problems.		
Module-2	L3	8Hrs.
Unconstrained optimization Techniques:		
Introduction, Direct search method-Random Search method, Univariate method, Decen	nt methods- Gradier	nt of a
function, conjugate gradient method (Fletcher-Reeves method), Quasi-Newton methods	s.	
Self study topic: Secant method		
Applications: Design of aerospace vehicles and aircraft vehicles.		
Module-3	L4	8Hrs.

Constrained optimization Techniques: Local maxima and minima for single and multi variables, Karush-Kuhn-Tucker conditions, Applications of the FONC, SONC, and SOSC conditions.

Self study topic: Lagrange multiplier method

Applications: Design of aerospace vehicles and aircraft vehicles.

Module-4L38Hrs.Probability Distributions: Random variables (discrete and continuous), probability mass/density functions.
Binomial distribution, Poisson distribution. Exponential and normal distributions- problems.
Joint probability distribution: Joint Probability distribution for two discrete random variables, expectation,
covariance, correlation coefficient.

Self study topic: Joint Probability distribution for two continuous random variables

Application: Finding correlation between random variables.

Application. Plinding correlation between random variables.		
Module-5	L3	8Hrs.
Sampling Theory: Sampling, Sampling distributions, standard error, test of hypothesis for confidence limits for means, student's t-distribution and Chi-square distribution.	or means and prope	ortions,
Self study topic: confidence limits for probabilities. Application: Testing the level of significance and the goodness of fit for large sample a	nd small sample.	

CO305.3.1	Solve the mathematical formulation of linear programming problem.
CO305.3.2	Able to analyze external problems and functions and to establish mathematical models
CO305.3.3	Be able to model engineering minima/maxima problems as optimization problems
CO305.3.4	Develop probability distribution of discrete, continuous random variables and joint probability distribution occurring in digital signal processing, information theory and design engineering.
CO305.3.5	Demonstrate testing of hypothesis of sampling distributions.

Textbooks:	
1.	B.S. Grewal, "Higher Engineering Mathematics" Khanna Publishers, 43rd Edition, 2013.
2.	S. S. Rao John Wiley & Sons, "Engineering Optimization Theory and Practice", Fourth Edition, 2009.
Reference Books	
1.	A. D. Belegundu and T.R. Chanrupatla, "Optimisation Concepts and Applications in Engineering", Cambridge University Press 2011.
2.	Joaquim R. R. A. Martins, Andrew Ning, "Engineering Design Optimization ", Cambridg University Press.

					CO-]	PO Map	ping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	0	0	0	0	0	0	1	0
CO2	3	3	3	3	0	0	0	0	0	0	1	1
CO3	2	3	3	3	0	0	0	0	0	0	1	0
CO4	3	3	1	3	0	0	0	0	0	0	0	0
CO5	3	3	0	2	0	0	0	0	0	0	0	1

High-3, Medium-2, Low-1

Course Title	HEAT & MASS TRANSFER IN	Samastan	v	
Course Title	AEROSPACE APPLICATION	Semester	v	
Course Code	MVJ21AS554	CIE	50	
Total No. of Contact Hours	40 L: T: P: 3 :0: 0	SEE	50	
No. of Contact Hours/week	4	Total	100	
<i>a</i> . 1 ¹		Exam.		
Credits	3	Duration	3 Hrs.	
The course objective is to:				
1. Understand the different mo	odes of heat transfer.			
2. Understand the conduction	mode of heat transfer			
3. Understand the free convect	ion and forced convection.			
4. Acquire the knowledge of h	eat exchangers.			
5. Acquire knowledge on the a	upplication of heat exchangers in Aerospac	ce Industry		
Module 1		L2	08 Hrs.	
Fundamentals:				
Different modes of heat transfer an	d mass and momentum transfer, element	s of mass diffusio	n and boundary	
layer theory. Mass transfer definiti	ion and terms used in mass transfer analy	ysis, Fick's First l	aw of diffusion.	
Numerical problems		, ,		
rumeneur problems				
*	al learning:Heat and mass transfer lab			
Laboratory Sessions/ Experimenta	al learning:Heat and mass transfer lab Heat exchangers in Aero applications.			
Laboratory Sessions/ Experimenta	al learning:Heat and mass transfer lab Heat exchangers in Aero applications.	L3	08 Hrs.	
Laboratory Sessions/ Experimenta Applications: Gas turbine engines, Module 2	Heat exchangers in Aero applications.	L3 Cartesian coordina		
Laboratory Sessions/ Experimenta Applications: Gas turbine engines, Module 2 Conduction: Derivation of general t	Heat exchangers in Aero applications.	Cartesian coordina		
Laboratory Sessions/ Experimenta Applications: Gas turbine engines, Module 2 Conduction: Derivation of general t discussion on 3-D conduction in cyl	Heat exchangers in Aero applications. hree-dimensional conduction equation in G indrical and spherical coordinate systems.	Cartesian coordina	te, special cases,	
Laboratory Sessions/ Experimenta Applications: Gas turbine engines, Module 2 Conduction: Derivation of general t discussion on 3-D conduction in cyl	Heat exchangers in Aero applications.	Cartesian coordina	te, special cases,	
Laboratory Sessions/ Experimenta Applications: Gas turbine engines, Module 2 Conduction: Derivation of general to discussion on 3-D conduction in cyl Effect of variation of thermal conduction infinite solids - Extended surfaces.	Heat exchangers in Aero applications. Three-dimensional conduction equation in C indrical and spherical coordinate systems. ctivity on heat transfer in solids - Heat tran	Cartesian coordina	te, special cases,	
Laboratory Sessions/ Experimenta Applications: Gas turbine engines, Module 2 Conduction: Derivation of general t discussion on 3-D conduction in cyl Effect of variation of thermal conduc infinite solids - Extended surfaces. One dimensional transient heat cond	Heat exchangers in Aero applications. hree-dimensional conduction equation in O indrical and spherical coordinate systems. ctivity on heat transfer in solids - Heat tran luction: Systems with negligible internal re-	Cartesian coordina	te, special cases,	
Laboratory Sessions/ Experimenta Applications: Gas turbine engines, Module 2 Conduction: Derivation of general t discussion on 3-D conduction in cyl Effect of variation of thermal conduc infinite solids - Extended surfaces. One dimensional transient heat cond Fourier Numbers, Chart solutions of	Heat exchangers in Aero applications. hree-dimensional conduction equation in O indrical and spherical coordinate systems. ctivity on heat transfer in solids - Heat tran luction: Systems with negligible internal re f transient conduction systems.	Cartesian coordina	te, special cases,	
Laboratory Sessions/ Experimenta Applications: Gas turbine engines, Module 2 Conduction: Derivation of general t discussion on 3-D conduction in cyl Effect of variation of thermal conduc infinite solids - Extended surfaces. One dimensional transient heat cond Fourier Numbers, Chart solutions of Laboratory Sessions/ Experimenta	Heat exchangers in Aero applications. hree-dimensional conduction equation in G indrical and spherical coordinate systems. ctivity on heat transfer in solids - Heat tran luction: Systems with negligible internal re- f transient conduction systems. al learning: Heat conduction experiment in	Cartesian coordina	te, special cases,	
Laboratory Sessions/ Experimenta Applications: Gas turbine engines, Module 2 Conduction: Derivation of general t discussion on 3-D conduction in cyl Effect of variation of thermal conduc infinite solids - Extended surfaces. One dimensional transient heat cond Fourier Numbers, Chart solutions of Laboratory Sessions/ Experimenta	Heat exchangers in Aero applications. hree-dimensional conduction equation in O indrical and spherical coordinate systems. ctivity on heat transfer in solids - Heat tran luction: Systems with negligible internal re f transient conduction systems.	Cartesian coordina	te, special cases,	
Laboratory Sessions/ Experimenta Applications: Gas turbine engines, Module 2 Conduction: Derivation of general t discussion on 3-D conduction in cyl Effect of variation of thermal conduc infinite solids - Extended surfaces. One dimensional transient heat cond Fourier Numbers, Chart solutions of Laboratory Sessions/ Experimenta Applications: Gas turbine combusti Module 3	Heat exchangers in Aero applications. hree-dimensional conduction equation in G indrical and spherical coordinate systems. ctivity on heat transfer in solids - Heat tran luction: Systems with negligible internal re- f transient conduction systems. al learning: Heat conduction experiment in	Cartesian coordina Isfer problems in ir esistance, Significa in HMT lab	te, special cases, nfinite and semi- ance of Biot and 08 rs.	
Laboratory Sessions/ Experimenta Applications: Gas turbine engines, Module 2 Conduction: Derivation of general t discussion on 3-D conduction in cyl Effect of variation of thermal conduc infinite solids - Extended surfaces. One dimensional transient heat cond Fourier Numbers, Chart solutions of Laboratory Sessions/ Experimenta Applications: Gas turbine combusti Module 3 Convection: Concepts of Continuit	Heat exchangers in Aero applications. Three-dimensional conduction equation in C indrical and spherical coordinate systems. ctivity on heat transfer in solids - Heat trans- fuction: Systems with negligible internal re- f transient conduction systems. al learning: Heat conduction experiment in ion chamber, turbine and afterburners etc	Cartesian coordina asfer problems in ir esistance, Significa in HMT lab L3 mensional analysis	te, special cases, nfinite and semi- ance of Biot and 08 rs. s-Buckingham's	
Laboratory Sessions/ Experimenta Applications: Gas turbine engines, Module 2 Conduction: Derivation of general t discussion on 3-D conduction in cyl Effect of variation of thermal conduc infinite solids - Extended surfaces. One dimensional transient heat cond Fourier Numbers, Chart solutions of Laboratory Sessions/ Experimenta Applications: Gas turbine combusti Module 3 Convection: Concepts of Continuit Pi Theorem - Application for develo	Heat exchangers in Aero applications. Three-dimensional conduction equation in G indrical and spherical coordinate systems. ctivity on heat transfer in solids - Heat tran fuction: Systems with negligible internal re- f transient conduction systems. al learning: Heat conduction experiment in tion chamber, turbine and afterburners etc ry, Momentum and Energy Equations. Dim	Cartesian coordina asfer problems in ir esistance, Significa in HMT lab L3 mensional analysis	te, special cases, nfinite and semi- ance of Biot and 08 rs. s-Buckingham's er	
Laboratory Sessions/ Experimenta Applications: Gas turbine engines, Module 2 Conduction: Derivation of general t discussion on 3-D conduction in cyl Effect of variation of thermal conduc infinite solids - Extended surfaces. One dimensional transient heat cond Fourier Numbers, Chart solutions of Laboratory Sessions/ Experimenta Applications: Gas turbine combusti Module 3 Convection: Concepts of Continuit Pi Theorem - Application for develop Free Convection: Development of	Heat exchangers in Aero applications. Three-dimensional conduction equation in G indrical and spherical coordinate systems. ctivity on heat transfer in solids - Heat trans- fuction: Systems with negligible internal re- f transient conduction systems. al learning: Heat conduction experiment in tion chamber, turbine and afterburners etc y, Momentum and Energy Equations. Dim- ping non-dimensional correlation for conv Thydrodynamic and thermal boundary la	Cartesian coordina asfer problems in ir esistance, Significa in HMT lab L3 mensional analysis vective heat transfe	te, special cases, nfinite and semi- ance of Biot and 08 rs. s-Buckingham's er	
Laboratory Sessions/ Experimenta Applications: Gas turbine engines, Module 2 Conduction: Derivation of general t discussion on 3-D conduction in cyl Effect of variation of thermal conduc infinite solids - Extended surfaces. One dimensional transient heat cond Fourier Numbers, Chart solutions of Laboratory Sessions/ Experimenta Applications: Gas turbine combusti Module 3 Convection: Concepts of Continuit Pi Theorem - Application for develop Free Convection: Development of empirical relations for Vertical plate	Heat exchangers in Aero applications. Three-dimensional conduction equation in G indrical and spherical coordinate systems. ctivity on heat transfer in solids - Heat trans- fuction: Systems with negligible internal re- f transient conduction systems. al learning: Heat conduction experiment in ion chamber, turbine and afterburners etc ry, Momentum and Energy Equations. Dim- ping non-dimensional correlation for con- transient conduction and thermal boundary larges and pipes.	Cartesian coordina asfer problems in ir esistance, Significa in HMT lab L3 mensional analysis vective heat transfo tyer along a vertic	te, special cases, nfinite and semi- ance of Biot and 08 rs. s-Buckingham's er cal plate, Use of	
Laboratory Sessions/ Experimenta Applications: Gas turbine engines, Module 2 Conduction: Derivation of general t discussion on 3-D conduction in cyl Effect of variation of thermal conduc infinite solids - Extended surfaces. One dimensional transient heat cond Fourier Numbers, Chart solutions of Laboratory Sessions/ Experimenta Applications: Gas turbine combusti Module 3 Convection: Concepts of Continuit Pi Theorem - Application for develop Free Convection: Development of empirical relations for Vertical plate Forced Convection: External Flows	Heat exchangers in Aero applications. Three-dimensional conduction equation in G indrical and spherical coordinate systems. ctivity on heat transfer in solids - Heat trans- luction: Systems with negligible internal re- f transient conduction systems. al learning: Heat conduction experiment in ion chamber, turbine and afterburners etc ry, Momentum and Energy Equations. Dim- pping non-dimensional correlation for com- r Hydrodynamic and thermal boundary larses and pipes. s, Concepts of hydrodynamic and thermal boundary larses and pipes.	Cartesian coordina asfer problems in ir esistance, Significa in HMT lab L3 mensional analysis vective heat transfo yer along a vertic	te, special cases, nfinite and semi- ance of Biot and 08 rs. s-Buckingham's er cal plate, Use of use of empirical	
Laboratory Sessions/ Experimenta Applications: Gas turbine engines, Module 2 Conduction: Derivation of general to discussion on 3-D conduction in cyl Effect of variation of thermal conduct infinite solids - Extended surfaces. One dimensional transient heat conduct Fourier Numbers, Chart solutions of Laboratory Sessions/ Experimenta Applications: Gas turbine combusti Module 3 Convection: Concepts of Continuit Pi Theorem - Application for develop Free Convection: Development of empirical relations for Vertical plate Forced Convection: External Flows correlations for Flat plates and Cyl	Heat exchangers in Aero applications. Three-dimensional conduction equation in G indrical and spherical coordinate systems. ctivity on heat transfer in solids - Heat trans- fuction: Systems with negligible internal re- transient conduction systems. al learning: Heat conduction experiment in tion chamber, turbine and afterburners etc ry, Momentum and Energy Equations. Dim- ping non-dimensional correlation for com- r Hydrodynamic and thermal boundary larses and pipes. s, Concepts of hydrodynamic and thermal boundary larses and pipes. s, Concepts of hydrodynamic and thermal boundary larses and pipes.	Cartesian coordina asfer problems in ir esistance, Significa in HMT lab L3 mensional analysis vective heat transfer tyer along a vertic poundary layer and Hydrodynamic and	te, special cases, nfinite and semi- ance of Biot and 08 rs. s-Buckingham's er cal plate, Use of use of empirical	
Laboratory Sessions/ Experimenta Applications: Gas turbine engines, Module 2 Conduction: Derivation of general t discussion on 3-D conduction in cyl Effect of variation of thermal conduc infinite solids - Extended surfaces. One dimensional transient heat cond Fourier Numbers, Chart solutions of Laboratory Sessions/ Experimenta Applications: Gas turbine combusti Module 3 Convection: Concepts of Continuit Pi Theorem - Application for develo Free Convection: Development of empirical relations for Vertical plate Forced Convection: External Flows correlations for Flat plates and Cyl Lengths, use of empirical correlation	Heat exchangers in Aero applications. Three-dimensional conduction equation in G indrical and spherical coordinate systems. ctivity on heat transfer in solids - Heat trans- luction: Systems with negligible internal re- f transient conduction systems. al learning: Heat conduction experiment in ion chamber, turbine and afterburners etc ry, Momentum and Energy Equations. Dim- pping non-dimensional correlation for com- r Hydrodynamic and thermal boundary larses and pipes. s, Concepts of hydrodynamic and thermal boundary larses and pipes.	Cartesian coordina asfer problems in ir esistance, Significa in HMT lab L3 mensional analysis vective heat transfe ayer along a vertic poundary layer and Hydrodynamic and low.	te, special cases, finite and semi- ance of Biot and 08 rs. s-Buckingham's er cal plate, Use of use of empirical I Thermal Entry	

Module 4		L3	08 Hrs.
		LS	U8 HIS.
Radiation:			
• Intro	oduction to physical mechanism - Radiation properties - Radiation sh	ape factors He	at exchange
betv	veen non-black bodies – Radiation shields		
Heat Excha	ngers:		
• Hea	t Exchangers used in Aerospace Industry: Classification of heat exch	angers; overal	l heat transfer
coef	ficient, Heat exchanger components, Numerical problems.		
Laboratory	Sessions/ Experimental learning: Radiation experiment in HMT la	ıb	
Application	s: Combustion chambers in Rockets and varies gas turbine engines.		
Module 5		L3	08 Hrs.
Heat and M	lass Transfer Problems in Aerospace Engineering:		
	ative heat transfer, heat transfer in rocket thrust chambers. Heat and r	nass transfor i	a sotollita
ADIA	arve near transfer, near transfer in focket thrust chambers. Heat and f		1 Satemite
syste			
•			
	cecraft environmental control. Thermal control in re-entry vehicles.		
• Spac		n lab	
• Space	cecraft environmental control. Thermal control in re-entry vehicles.		nd nozzle blades
• Space	cecraft environmental control. Thermal control in re-entry vehicles. Sessions/ Experimental learning: Basics in Aerospace propulsion s: Rocket thrust chambers - Aerodynamic heating -Ablative heat tran		nd nozzle blades
• Space Laboratory Application Course outo	cecraft environmental control. Thermal control in re-entry vehicles. Sessions/ Experimental learning: Basics in Aerospace propulsion s: Rocket thrust chambers - Aerodynamic heating -Ablative heat tran		nd nozzle blades
• Space Laboratory Application Course outo	cecraft environmental control. Thermal control in re-entry vehicles. Sessions/ Experimental learning: Basics in Aerospace propulsion s: Rocket thrust chambers - Aerodynamic heating -Ablative heat transcomes:		nd nozzle blades
• Space Laboratory Application Course outo Upon compl	cecraft environmental control. Thermal control in re-entry vehicles. Sessions/ Experimental learning: Basics in Aerospace propulsion s: Rocket thrust chambers - Aerodynamic heating -Ablative heat tran comes: etion of the course, students will be able to:	nsfer turbine an	
• Space Laboratory Application Course out Upon compl CO305.4.1	cecraft environmental control. Thermal control in re-entry vehicles. Sessions/ Experimental learning: Basics in Aerospace propulsion s: Rocket thrust chambers - Aerodynamic heating -Ablative heat transcomes: etion of the course, students will be able to: Analyze the fundamentals of heat and mass transfer	nsfer turbine an	
• Space Laboratory Application Course out Upon compl CO305.4.1	cecraft environmental control. Thermal control in re-entry vehicles. Sessions/ Experimental learning: Basics in Aerospace propulsion s: Rocket thrust chambers - Aerodynamic heating -Ablative heat transmess: etion of the course, students will be able to: Analyze the fundamentals of heat and mass transfer Explain the concept of one dimensional steady and transient heat	nsfer turbine an	
• Space Laboratory Application Course out Upon compl CO305.4.1 CO305.4.2	cecraft environmental control. Thermal control in re-entry vehicles. Sessions/ Experimental learning: Basics in Aerospace propulsion s: Rocket thrust chambers - Aerodynamic heating -Ablative heat transmers: comes: etion of the course, students will be able to: Analyze the fundamentals of heat and mass transfer Explain the concept of one dimensional steady and transient he systems	nsfer turbine an	

Text	Textbooks:					
1	Ozisik, Heat transfer-A basic approach, Tata McGraw Hill 2002					
2	Holman Heat Transfer, J.P McGraw Hill Book Co., Inc., New York 8th edition, 1996					

Refere	Reference Books								
1.	Sachdeva. Fundamentals of Engineering Heat and Mass Transfer, S.C Wiley Eastern Ltd., New								
	Delhi 1981								
2.	Yunus A- Cengel, Heat transfer, a practical approach, Tata McGraw Hill, 3rd edition,								
	2007.								
3.	Sutton, Rocket Propulsion Elements, G.P John Wiley and Sons 5th Edn. 1986								
4.	P.K. Nag, Heat transfer, Tata McGraw Hill 2002								
CIE Assessment:									

CIE is based on quizzes, tests, assignments/seminars, and any other form of evaluation. Generally, there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of three tests

- Quizzes/mini tests (4 marks)
- Mini Project / Case Studies (8 Marks)
- Activities/Experimentations related to courses (8 Marks)

SEE Assessment:

- i. Question paper for the SEE consists of two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.
- ii. Part B also covers the entire syllabus consisting of five questions having choices and may contain subdivisions, each carrying 16 marks. Students have to answer five full questions.
- iii. One question must be set from each unit. The duration of examination is 3 hours.

	CO, PO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2	0	0	0	0	0	0	1	1	1	1
CO2	3	3	2	3	0	0	0	0	0	0	1	2	1	1
CO3	3	3	3	3	0	0	0	0	0	0	0	2	1	1
CO4	3	3	2	3	0	0	0	0	0	0	0	1	1	1
CO5	3	2	2	2	0	0	0	0	0	0	1	1	1	1
	High,3, Medium,2, Low,1													

		Semester: V								
		Innovation & Entrepreneur								
Cour	rse Code:	MVJ22A8555	CIE Marks:50							
Cred	Credits: L: T:P: 2:1:0 SEE Marks: 50									
Hou		40L	SEE Duration: 3 Hrs							
Cour	-	Objectives: The students will be ab								
1	-	evelop entrepreneurial mindset and a	attributes; entrepreneurial skill se	ts for						
		ation and intrapreneurial leadership								
_	Apply the process of problem-opportunity identification and feasibility assessment b									
2		a macro perspective of the real market		rs while						
	using desig	n thinking principles to refine and piv	ot their venture idea.							
2	-	stomer and Market segmentation, es	stimate Market size, and develop	and						
3	validate Cu	stomer Persona.								
4	Initiate Solu	ution design, develop MVP, and deter	mine Product-Market fit prototype	s.						
	_	Business plan, Develop go-to-market								
5		a persuasive and defensible Venture P		,						
	110000000	UNIT-I								
Entr	enreneurshir	Fundamentals & Context								
 play-based exploration aligned to one's short-term career aspiration and ambition. An understanding of how to build an entrepreneurial mindset, skillsets, attributes, and networks while on campus. Core Teaching Tool: Simulation, Game, Industry Case Studies (Personalized for students – 16 industries to choose from), Venture Activity 										
		UNIT-II								
Unde socio Ident Analy custo perso Core	erstanding and p-economic, a ifying passio yzing proble omer fit. Und onas. Competi Teaching Te	mer Identification: I analyzing the macro-problem and Im- nd urbanization trends and their im- n, identifying and defining problems ms and validating with the potenti- erstanding customer segmentation, of tion and Industry trends mapping and pol: Several types of activities includin- nd Venture Activities.	nplication on new opportunities. s using Designthinking principles. ial customer. Iterating problem- creating and validating customer assessing initial opportunity.	8Hrs						
		UNIT-III								
innov propo MVP benef	vative solutionsition. Develops 2. Developing fits. Initial tes	Prototyping: Understanding Custon n design to map to customers' ne oping Problem-solution fit iteratively g a feasibility prototype with diffe ting for proof-of-concept and iteration pol: Venture Activity, no code Innova	eeds and create a strong value v. Understanding prototyping and prentiating values, features, and n on the prototype.	8Hrs						

UNIT-IV	
Opportunity Assessment and Sizing, Business & Financial Model: Assess relative market position via competition analysis, sizing the market, and assessing the scope and potential scale of the opportunity. Core Teaching Tool: Class and Venture Activity Introduction to Business model and types, Lean approach, 9 block lean canvas model, riskiest assumptions to Business models. Importance of Build–Measure–Lean approach. Business planning: components of Business plan- Sales plan, People plan, and financialplan.	8Hrs
UNIT-V	
Go-to-Market Plan, Scale Outlook, and Venture Pitch Readiness: Financial Planning: Types of costs, preparing a financial plan for profitability using a financial template, understanding the basics of Unit economics, and analyzing financialperformance. Introduction to Marketing and Sales, Selecting the Right Channel, creatinga digital presence, and building customer acquisition strategy. Choosing a form of business organization specific to your venture, identifying sources of funds: Debt & Equity, Map the Start-up Lifecycle to Funding Options. Core Teaching Tool: Founder Case Studies – Sama and Securely Share; Class activity and discussions; Venture Activities. Scale Outlook and Venture Pitch readiness : Understand and identify potential and aspiration for scale vis a vis your venture idea. Persuasive Storytelling and its key components. Build an Investor-ready pitch deck. Core Teaching Tool : Expert talks; Cases; Class activity and discussions; Venture Activities	8Hr:

CO	Course Outcomes	POs							
CO1	Understand Entrepreneurial Skillset and Mindset	1,2,3,9,12							
CO2	Understand and analyze industry problems and Enhance customer personas based on market/other feedback	3,4,5,12							
CO3	Understand and develop MVPs	3,5,6,9,12							
CO4	Understand and apply Business models and Business planning.	3,5,9,12							
CO5	Develop a go-to-market strategy and build a Persuasive sales pitch	3,6,7,8,10,12							
1	tbooks Robert D. Hisrich, Michael P. Peters, Dean A. Shepherd, Sabyasachi Sinh	a							
	(2020).Entrepreneurship, McGrawHill, 11th Edition.								
	 Ries, E. (2011). The Lean Startup: How Today's Entrepreneurs Use Continuous Innovation to Create Radically Successful Businesses. Crown Business 								
	Osterwalder, A., & Pigneur, Y. (2010). Business Model Generation: A Ha forVisionaries, Game Changers, and Challengers. John Wiley & Sons.	ndbook							
	Chowdhry Ajay, (2023) Just Aspire: Notes on Technology, Entrepreneurship and the Future.								

5	Simon Sinek (2011) Start with Why, Penguin Books limited.
6	Brown Tim (2019) Change by Design Revised & Updated: How Design Thinking
	Transforms Organizations and Inspires Innovation, Harper Business
7	Namita Thapar (2022) The Dolphin and the Shark: Stories on Entrepreneurship,
	PenguinBooks Limited.
Refe	rences
1	Collins Jim, Porras Jerry, (2004) Built to Last: Successful Habits of
	VisionaryCompanies
2	Burlington Bo, (2016) Small Giants: Companies That Choose to Be Great Instead of
	Big3 Saras D. Sarasvathy, (2008) Effectuation: Elements of Entrepreneurial
	Expertise, Elgar Publishing Ltd
Web	Resources
1	Learning resource- IgniteX Course Wadhwani platform (Includes 200+ components
	of custom created modular content + 500+ components of the most relevant curated
	content)

OF COs AND POs: MAPPING

CO/															
POs	PO1	P02	PO3	P04	PO5	PO6	PO7	PO8	P09	P010	PO11	P012	PSO1	PSO2	PSO3
CO1	2	2	2						2			2	2		
CO2			2	2	2							2			
CO3			2		2	2			2			2			
CO4			2		2				2			2			
CO5			2			2	2	2		2		2			

	Semester: V										
	Essence of Research Methodology and IPR										
Cou	rse Code:	MVJ22RMI57	CIE Marks:50								
Cree	dits: L:T:P:S:	1:2:0:0	SEE Marks: 50								
Hou	rs:	30	SEE Duration: 3 Hrs								
Cou	Course Learning Objectives: The students will be able to										
1	To give an overview of the research methodology and explain the technique										
1	of defining a research problem and explain the basic ethics in research.										
2	To develop a suitable outli	To develop a suitable outline for research studies through various sources of information from									
2	literature review and data collection.										
3	To develop an understand	ing of the results and on anal	ysis of the work carried.								
4	To Demonstrate enhanced	Scientific writing skills.									
5	To Develop an Understar	nding on Various Intellectua	1 Property Rights and importance of								
5	filing patents.		_								

UNIT-I	
Research Methodology: Introduction, Meaning of Research, Objectives of Research, Types of Research, Research Approaches, Significance of Research, Research Methods versus Methodology, Research and Scientific Method, Research Process, Criteria of Good Research, Defining the Research Problem: Research Problem, Selecting the Problem, Necessity of Defining the Problem. Ethics in Engineering Research: Ethics in Engineering Research Practice, Types of Research Misconduct, Ethical Issues Related to Authorship.	6 Hrs
UNIT-II	
Research Writing and Journal Publication Skills:	6 Hrs
Understanding the importance of quality research papers, Differences between conference papers, journal articles, and other academic publications, criteria for selecting a journal, understanding impact factors and journal rankings. place of the literature review in research, how to review the literature, structure of a research paper, effective use of figures and tables, preparing a cover letter and author contributions, Responding to reviewers' comments. Attributions and Citations: Giving Credit Wherever Due, Citations: Functions and Attributes, Impact of Title and Keywords on Citations, Knowledge Flow through Citation, Citing Datasets, Styles for Citations, Tools for citation management, Acknowledgments and Attributions, What Should Be Acknowledged, Acknowledgments in, Books Dissertations, Dedication or Acknowledgments.	
UNIT-III	
Research Design: Meaning of Research Design, Need for Research Design, Features of a Good Design, Important Concepts Relating to Research Design, Different Research Designs, Basic Principles of Experimental Designs, Important Experimental Designs. Results and Analysis: Importance and scientific methodology in recording results, importance of negative results, different ways of recording, industrial requirement, artifacts versus true results, types of analysis (analytical, objective, subjective), outcome as new idea, hypothesis, concept, theory, model etc.	6 Hrs
UNIT-IV	
Interpretation and Report Writing: Meaning of Interpretation, Technique of Interpretation, Precaution in Interpretation, Significance of Report Writing, Different Steps in Writing Report, Layout of the Research Report, Oral Presentation, Mechanics of Writing a Research Report, Precautions for Writing Research Reports. UNIT-V	6 Hrs

Introduction to Intellectual Property Rights: Meaning of property, Origin, Nature,	6 Hrs
Meaning of Intellectual Property Rights.	
Kinds of Intellectual property rights—Copy Right, Patent, Trademark, Trade Secret and	
trade dress, Design, Layout Design, Geographical Indication, Plant Varieties and	
Traditional Knowledge.	
Patents: Trips Definition, Patentable and Non-Patentable inventions, Legal requirements	
for patents.	
Patent application process: Prior art search, Drafting of a patent, Filing of a patent, Patent	
document: specification and claims, Granting of patent, Management of IP,	
Commercialization of IP – Assignment, licensing and infringement.	

Course Outcomes: After completing the course, the students will be able to

CO1 formulate the research problem and follow research ethics.

CO2 carry to carrying out a Literature survey for the topic identified

CO3 Analyse the research and interpret the outcomes of the research.

CO4 Enhance their technical writing skills

CO5 Understand the importance of Patenting, Licensing and technology transfer.

Text Books

1.	C.R. Kothari, Research Methodology, Methods and Techniques, 2 nd Revised edition,
	New Age International Publishers, 2015

2. Neeraj Pandey and Khushdeep Dharni, Intellectual Property Rights, PHI Learning Pvt Ltd, 2014

Reference Books

- 1. Geoffrey Marczyk, David De Matteo, David Festinger (2005) Essentials of Research Design and Methodology, John Wiley & Sons, Inc.
- 2. Carol Ellison (2010) McGraw-Hill's Concise Guide to Writing Research Papers, McGraw-Hill
- 3. Sinha, S.C. and Dhiman, A.K., (2002). Research Methodology, Ess Publications. 2nd volume.
- 4. Wadehra, B.L. (2000). Law relating to patents, trademarks, copyright designs and geographical indications. Universal Law Publishing

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%.

The student has to obtain a minimum of 40% of maximum marks in CIE and a minimum of 40% of maximum marks in SEE.

Semester End Exam (SEE) is conducted for 50 marks (2 hours duration).

Based on this grading will be awarded.

The student has to score a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

Three Unit Tests each of 30 Marks (30 MCQ's) (duration 01 hour)

- 1. First test at the end of 5th week of the semester.
- 2. Second test at the end of the 10th week of the semester.
- 3. Third test at the end of the 15th week of the semester.

Report Writing /Presentation/ Assignment to attain the COs and POs for 20 Marks, (Students can decide the topic for Mini Project and start doing literature survey, report of literature survey can be considered for assignments) At the end of the 13th week of the semester

The average of three tests and report writing/presentation/Assignment summing to 50 marks Semester End Examination:

Theory SEE will be conducted by College as per the scheduled timetable, with common question paper for the subject

SEE paper will be set for 50 questions of each of 01 marks. The pattern of the question paper is MCQ. The time allotted for SEE is 02 hours

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	2	-	1	2	2	-	-	1	1	1	2	
CO2	3	2	3	2	2	2	-	1	1	1	-	1	
CO3	1	2	3	3	2	2	-	1	1	1	-	1	
CO4	1	2	3	3	3	2	-	1	1	-	1	2	
CO5	1	2	3	3	3	2	-	1	1	-	1	2	
High-3,	High-3, Medium-2, Low-1												

	Semester: V		
	Environmental Studi	es	
	(Theory)		
Cour	rse Code: MVJ22ENV58	CIE Marks: 50	
Credits: L:T:P: 2:0:0 SEE Marks: 50			
Hours: 30L SEE Duration: 3 Hrs.			
Cour	rse Learning Objectives: The students will be able to		
1	Relate interdisciplinary approach to complex environ the natural and social sciences including geo-syste political science and international processes		
2	Study drinking water quality standards and to illustrate	e qualitative analysis of water.	
3	Critically evaluate the science and policy ramifications and water quality, climate, weapons proliferation and	C , 1	

UNIT-I	L1,L2
Introduction to environmental studies, Multidisciplinary nature of environmental	6 Hrs
studies; Scope and importance; Concept of sustainability and sustainable	
development.	
Ecosystems (Structure and Function): Forest, Desert, Rivers, Ocean Biodiversity:	
Types, Hot spots; Threats and Conservation of biodiversity, Deforestation.	
UNIT-II	L1,L2
Advances in Energy Systems (Merits, Demerits, Global Status and Applications):	6 Hrs
Hydrogen, Solar, Tidal and Wind.	
Natural Resource Management (Concept and case-study): Disaster Management,	
Sustainable Mining and Carbon Trading.	
UNIT-III	L1,L2
Environmental Pollution: Surface and Ground Water Pollution, Noise pollution,	6 Hrs
Soil Pollution and Air Pollution.	
Waste Management & Public Health Aspects: Bio-medical Waste, Solid waste,	
Hazardous waste and E-waste.	
UNIT-IV	L1,L2
Global Environmental Concerns (Concept, policies, and case-studies): Global	6 Hrs
Warming, Climate Change, Acid Rain, Ozone Depletion and Fluoride problem in	
drinking water.	
UNIT-V	L1,L2
Latest Developments in Environmental Pollution Mitigation Tools (Concept and	6 Hrs
Applications): G.I.S. & Remote Sensing, Environment Impact Assessment,	
Environmental Management Systems.	
Environmentai management Systems.	

Course O	Course Outcomes: After completing the course, the students will be able to									
CO308.	Describe the principles of ecology and environmental issues that apply to air, land, and									
1	water issues on a global scale.									
CO308.	Develop critical thinking and/or observation skills, and apply them to the analysis of a									
2	problem or question related to the environment.									
CO308.	Demonstrate ecology knowledge of a complex relationship between biotic and Abiotic									
3	components.									
CO308.	Apply their ecological knowledge to illustrate and graph a problem									
4										

CO30	8. Describe the realities that managers face when dealing with complex issues.
5	
Refere	ence Books
1.	Raman Siva kumar, "Principals of Environmental Science and Engineering", 2 nd Edition,
	Cengage learning, Singapur.
2.	G.Tyler Miller, "Environmental Science – working with the Earth", 11 th Edition, Jr.
	Thomson Brooks /Cole publications, California.
3	Pratiba Singh, Anoop Singh & Piyush Malaviya, "Environmental and Ecology", 1st Edition
	, ACME Learning Pvt. Ltd. New Delhi.
Conti	nuous Internal Evaluation (CIE): Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):	Total marks:
50+50=100	

SEE for 50 marks are executed by means of an examination.

The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the entire syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2												
CO3												
CO4												
CO5												
High-3,	High-3, Medium-2, Low-1											

VI SEMESTER

Course Title	AEROSPACE PROPULSION	Semester	VI
Course Code	MVJ22AS61	CIE	50
Total No. of Contact Hours	50 L : T : P :: 3 : 0 : 2	SEE	50
No. of Contact Hours/week	5	Total	100
Credits	4	Exam. Duration	3 Hours

Course objective is to:

- Understand the basic principle and working of Air breathing and Non-Air breathing engines
- Acquire knowledge on the significance of Supersonic Inlets
- Acquire knowledge on the design and working of combustion chambers and nozzles
- Understand the fundamentals of rocket propulsion
- Acquire knowledge on Rocket Testing and materials used in Rockets

Module-1							L3	10 H	Iours
	_			-	 	 -		 -	

Introduction: Review of thermodynamic principles, Principles of aircraft propulsion, Types of power plants, Illustration of working of gas turbine engine–The thrust equation–Factors affecting thrust–Effect of pressure, velocity and temperature changes of air entering compressor– Methods of thrust augmentation–Characteristics of turboprop, turbofan and turbojet– Performance characteristics. – Numerical

Supersonic inlets: Supersonic inlets, starting problem in supersonic inlets, Shock swallowing by area variation, External deceleration. Modes of inlet operation.

Laboratory Sessions/ Experimental learning:

1. Identify and demonstrate the various components of Guiberson T-1020 (9 cylinder radial engine) and Tumansky R-25-300 R-26(Jet engine)

Applications: Gas turbine industries and Power plants

Module-2	L2	10 Hours
		•

Combustion chamber & Nozzles

Combustion chamber: Classification of combustion chambers, important factors affecting combustion chamber design, Combustion process, Combustion chamber performance Effect of operating variables on performance, Flame tube cooling, Flame stabilization Use of flame holders

Nozzles: Theory of flow in isentropic nozzles, Convergent nozzles and nozzle choking, Nozzle throat conditions. Nozzle efficiency, Losses in nozzles. Over-expanded and under-expanded nozzles, Ejector and variable area nozzles, Thrust reversal

Laboratory Sessions/ Experimental learning:

Study of an aircraft jet engine (Includes study of assembly of sub systems, various components, their functions and operating principles)

Performance studies on a scaled jet engine

Applications: Gas turbine and aircraft engine design industries

Module-3

L2

Compressor and Turbine:

Compressor: Axial flow compressor- geometry- twin spools- three spools- stage analysis- velocity polygonsdegree of reaction – radial equilibrium theory- performance maps

Turbine: Axial flow turbines- geometry- velocity polygons- stage analysis- performance maps- thermal limit of blades and vanes.

Laboratory Sessions/ Experimental learning: Study of an aircraft jet engine

Applications: Gas turbine industries

Module-4						 		L2	10 Ho	ours
	 -	 a	 •	-	1	 1	0	1	 	0 1 1 1

Rocket Propulsion Fundamentals: Classification of rockets-principle of rocket propulsion-analysis of ideal chemical rocket, The chemical rocket, **solid propellant rockets**- Basic relations and propellant burning rate, performance issues, propellant grain and grain configuration, propellant grain stress and strain, Classification, propellant characteristics, hazards, propellant ingredients, propellant processing and manufacturing.liquid propellant rockets- Types of propellants, propellant tanks, propellant feed systems, propellant properties, liquid oxidizers, liquid fuels, liquid monopropellants, gaseous propellant, safety and environment concern and hybrid rockets.

Fundamentals and Definitions – Thrust, Exhaust Velocity, Energy and efficiencies, multiple propulsion systems, typical performance values, variable thrust and simple problems.

Laboratory Sessions/ Experimental learning: Computation of burning rate of the propellant.

Applications: Rockets & missile and Testing manufacturing industries

Appl	icatio	ns: Rockets & missile and Testing manufacturing industries		
Mod	ule-5		L2	10 Hours
Adva	anced	Propulsion systems: Cryogenic rockets, nuclear propulsion, el	ectro thermal -	- electrostatic –
elect	romag	netic thrusters- geometries of Ion thrusters- beam/plume characteris	stics – hall thrus	ters-Solar rocket
engir	ne. R o	ocket Testing: Ground Testing, Flight Testing, Trajectory monito	ring, post -accie	lent procedures.
Desc	riptio	n of a typical space launch vehicle-launch procedure.		
Labo	ratory	Sessions/ Experimental learning: Determination of heat of combus	stion of aviation	fuel.
Make	e Suga	ar rocket by using potassium nitrate (small size)		
Appl	icatio	ns: Rockets & missile and Testing manufacturing industries		
Cour	rse ou	tcomes:		
CO3	10.1	Apply the basic thermodynamic principles and theories in aircraft p Supersonic Inlets	propulsion & per	formance of
CO3	10.2	Analyse the performance of Combustion chambers and Nozzles		
CO3	10.3	Understanding how multistage compressors or turbines work and u estimate their performance	sing velocity tria	ingles to
CO3	10.4	Apply the basic principles of rocket propulsion and Analyse Rocke	t testing	
CO3	10.5	Examine the propellant based on the application		
Text	book	s:		
1	Bha	skar Roy, Aircraft propulsion, Elsevier (2011), ISBN-13: 9788131214	4213	
2	V. C	anesan, Gas Turbines, Tata McGraw-Hill,2010, New Delhi, India, I	SBN: 007068192	29
Refe	erenc	e Books		
1.	G. P.	Sutton, Rocket Propulsion Elements, Wiley India Pvt Ltd,7the,2010	, ISBN 9781118	753651

2.	Hill, Philip G., and Carl R. Peterson. "Mechanics and Thermodynamics of Propulsio	n, 0201146	592."
	(2010).		
3.	Cohen, H.Rogers, G.F.C. and Saravanamuttoo, H.I.H., Gas Turbine Theory, Longman, 1989,	ISBN	13:
	9780582236325		

	LABORATORY EXPERIMENTS
Sl No	Experiment Name
1	Study of an aircraft jet engine (Includes study of assembly of sub systems, various components,
	their functions, and operating principles)
2	Study of forced convective heat transfer over.
3	Study of free convective heat transfer over a flat plate.
4	Determination of heat of combustion of aviation fuel.
5	Measurement of burning velocity of a premixed flame.
6	Flame stability of pre-mixed flame through flame stability setup.
7	Study of Free Jet/Wall Jet.
8	Investigation of the pressure in a convergent-divergent nozzle for under expanding and
	overexpanding conditions.
9	Preparation of a Solid Propellant.
10	Computation of burning rate of the propellant.
11	Determine the Calorific value of liquid fuel.
12	Measurement of Ignition delay of a single propellant with different shapes.
13	Determine the specific impulse of solid motor.
14	Performance study of Hybrid Motor using a thrust stand
Course	outcomes:
CO310.6	Analyze heat transfer phenomenon
CO310.7	Investigate flame propagations
CO310.8	Evaluate propellant burning

CIE Assessment:

CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation. Generally, there will be:

Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of three tests

- Quizzes/mini tests (4 marks)
- Mini Project / Case Studies (8 Marks)
- Activities/Experimentations related to courses (8 Marks)

SEE Assessment:

- i. Question paper for the SEE consists two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.
- ii. Part B also covers the entire syllabus consisting of five questions having choices and may contain subdivisions, each carrying 16 marks. Students have to answer five full questions.
- iii. One question must be set from each unit. The duration of examination is 3 hours.

CO-PO	Mappin	g										
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	1	2	1	1	1	0	1	1	-	1
CO2	3	2	1	1	1	1	1	0	1	1	-	1
CO3	3	2	1	1	1	1	1	0	1	1	-	1
CO4	3	1	1	-	-	1	1	0	1	1	-	1
CO5	3	1	1	-	-	1	1	0	1	1	-	1
High-3,	Mediu	im-2, L	Low-1									

Course Title	AEROSPACE SRUCTURAL ANALYSIS	Semester	VI
Course Code	MVJ22AS62	CIE	50
Total No. of Contact Hours	40 L: T : P :: 3:0:0	SEE	50
No. of Contact Hours/week	4	Total	100
Credits	3	Exam. Duration	3 Hrs.

Course objective is to:

- 1. To Acquire the knowledge of Structural Idealization on open section tubes
- 2. To Acquire the knowledge of Structural Idealization on closed section tubes
- 3. To Acquire the knowledge of Structural Idealization on multi section tubes
- 4. To illustrate the different types of Buckling of Plates, Joints and Fitting
- 5. To Comprehend the stress analysis on Launch Vehicle and Spacecraft Structure

Module 1	L3	08 Hrs.
Shear Flow: Shear stresses in beams – Shear flow	v in stiffened panels - Shear	flow in thin-walled
open tubes -Shear center - Shear flow in open section		
Laboratory Sessions/ Experimental learning: Shear	center and angle of twist in A	Aerospace Structures
laboratory		
Applications: To analyze shear flow in aircraft/space	cecraft skin panels.	
Module 2	L3	8 Hrs.
Shear Flow Analyses of closed section: Shear flo	ow in closed sections with	stiffeners- Angle of
twist. Shear center - Shear flow in thin-walled close	ed tubes - Bredt-Batho theor	·y.
Laboratory Sessions/ Experimental learning: She	ar flow analyses for close	ed section in Ansys
workbench.		
Applications: To analyze the shear flow in closed the		craft/spacecraft.
Module 3	L3	8 Hrs.
Shear Flow Analyses of multi cell: Shear flow in tw	wo flange and three flange box	beams - Shear center
- Torsional shear flow in multi cell tubes - Flexural shea	r flow in multi cell stiffened s	tructures.
Laboratory Sessions/ Experimental learning: Si	hear flow analyses for clos	ed section in Ansys
workbench.		
Applications: To analyze the shear flow in closed t		rcraft/spacecraft.
Module 4	L3	8 Hrs.
Failure concepts: Stability problems of thin-w		0
compression, shear, bending and combined loads -	· · ·	
methods-Sheet stiffener panels- Effective width, I	Inter rivet and sheet wrinkl	ing failures-Tensior
field web beams (Wagner's).		
Laboratory Sessions/ Experimental learning: H	Fatigue analysis can be an	alyzed using Ansys
workbench.		
Applications: Used to predict the product life cycle		
Module 5	L2	8Hrs.
Launch Vehicle and Spacecraft Structures: Laun	nch vehicle structures – Loa	ds and stresses, thin-
walled pressure vessels, Buckling of beams, thin wa	ll assumption. spacecraft - n	nini, microstructures
inflatable structures, flying effector, Nano tubing		
Laboratory Sessions/ Experimental learning:	Fuselage Pressure Vessel	experiment can be
conducted using Ansys Workbench.		
	C	

Applications: Helps to analyze the stress in Aircraft components.

Course outcomes	
Upon completion of	of the course, students will be able to:
CO311.1	Identify the shear flow distribution for open section structural member.
CO311.2	Investigate shear flow distribution for closed section structural member under torsion.
CO311.3	Investigate shear flow distribution for multi cell idealized structures
CO311.4	Solve different methods to find out buckling load for a given structural panel, Joints and Fittings
CO311.5	Examine the stress distribution in Pressure Vessels and Spacecraft Structures
Textbooks:	
1 Megson, T	.H.G., AircraftStructures for Engineering Students, Edward Arnold, 1995

2	Perry D J & Azar J J, Aircraft Structures, 2nd edition, McGraw Hill N.Y.,1993

Reference Books

- 1. BruhnE.F., Analysis and Design of Flight Vehicles Structures, Tri-Stateoffset Co.USA,1985
- 2. T.H.G Megson Introduction to Aircraft Structural Analysis, Elsevier, 2nd Edition, 2014

CIE Assessment:

CIE is based on quizzes, tests, Project/assignments and any other form of evaluation. Generally, there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of three tests

- Quizzes/mini tests (4 marks)
- Mini Project / Case Studies (8 Marks)
- Activities/Experimentations related to courses (8 Marks)

SEE Assessment:

- i. Question paper for the SEE consists two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.
- ii. Part B also covers the entire syllabus consisting of five questions having choices and may contain sub-divisions, each carrying 16 marks. Students have to answer five full questions.
- iii. One question must be set from each unit. The duration of examination is 3 hours.

						CO,	PO M	lappin	g					
CO/P	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO
0	1	2	3	4	5	6	1	8	9	0	1	2	1	2
CO1	3	3	2	1		1		2		1	1	2	1	1
CO2	3	3	2	1		1		2		1	1	2	1	1
CO3	3	3	2	3		1		2		1	1	2	1	1
CO4	3	3	2	2		1		2		1	1	2	1	1
CO5	3	3	2	2		1		2		1	1	2	1	1

High,3, Medium,2, Low,1

Professional Elective-II

	ROCKETS AND N	MISSILES
Course Code:	MVJ22AS631	CIE Marks:50
Credits	3 : L:T:P:S: 3:1:0:0	SEE Marks: 50
Hours:	40 Hours	SEE Duration: 3 Hrs

Course Learning Objectives: The students will be able to

- Basics of Rockets and Missiles is an elective course offered in 5th semester Aeronautical Engineering curriculum.
- This subject covers extensively regarding design and analysis of rockets and missiles.
- The different types of Airframe components, types of propulsion system, and types of guidance systems are also covered in this subject.
- This subject will make student to understand advanced problems facing in launch vehicles and missiles.

Module 1 L2	
INTRODUCTION	8 Hrs
Space launch Vehicles and military missiles, function, types, role, mission, mission profile, thrust	
profile, propulsion system, payload, staging, control and guidance requirements, performance	
measures, design, construction, operation, similarities and differences. Some famous space launch	
vehicles and strategic missiles.	
Applications:	
Module 2 L3	
Solid Propellant Rocket Motor Systems: Solid Propellant rocket motors, principal features,	8 Hrs
applications. Solid propellants, types, composition, properties, performance. Propellant grain,	
desirable properties, grain configuration, preparation, loading, structural design of grain. Liners,	
insulators and inhibitors, function, requirements, materials. Rocket motor casing - materials.	
Nozzles, types, design, construction, thermal protection. Igniters, types, construction. Description	
of modern solid boosters I) Space Shuttle SRB, II) the Arienne SRB	
Liquid Propellant Rocket Motor Systems: Liquid propellants, types, composition, properties,	
performance. Propellant tanks, feed systems, pressurization, turbo-pumps, valves and feed lines,	
injectors, starting and ignition. Engine cooling, support structure. Control of engine Starting and	
thrust build up, system calibration, integration and optimisation - safety and environmental	

concerns. Description of the space shuttle main engine. Propellant slosh, propellant hammer,	
geysering effect in cryogenic rocket engines.	
Applications:	
Module 3 L2	
AERODYNAMICS OF ROCKETS AND MISSILES	8 Hrs
Classification of missiles. Airframe components of rockets and missiles, Forces acting on a missile	
while passing through atmosphere, method of describing aerodynamic forces and moments, lift and	
drag forces, drag estimation, body upwash and downwash in missiles. Rocket dispersion, re-entry	
body design considerations.	
Applications:	
Module 4 L2	l
LAUNCH VEHICLE DYNAMICS & ATTITUDE CONTROL OF ROCKETS	8
Launch Vehicle Dynamics: Tsiolskovsky's rocket equation, range in the absence of gravity, vertical	Hrs
motion in the earth's gravitational field, inclined motion, flight path at constant pitch angle, motion	
in the atmosphere, the gravity turn - the culmination altitude, multi staging. Earth launch trajectories	
- vertical segment, the gravity turn, constant pitch trajectory, orbital injection. Actual launch vehicle	
trajectories, types. Examples, the Mu 3-S-II, Ariane, Pegasus launchers. Reusable launch vehicles,	
future launchers, launch assist technologies.	
Attitude Control Of Rockets And Missiles: Rocket Thrust Vector Control - Methods of Thrusts	
Vector Control for solid and liquid propulsion systems, thrust magnitude control, thrust termination;	
stage separation dynamics, separation techniques	
Applications	
Module 5 L2	
ROCKET TESTING AND MATERIALS	8
Rocket Testing: Ground Testing and Flight Testing, Types of Tests facilities and safeguards,	Hrs
monitoring and control of toxic materials, instrumentation and data management. Ground Testing,	
Flight Testing, Trajectory monitoring, post -accident procedures. Description of atypical space	
launch vehicle launch procedure.	
Materials: Criteria for selection of materials for rockets and missiles, requirements for choice of	
materials for propellant tanks, liners, insulators, inhibitors, at cryogenic temperatures, requirements	
of materials at extremely high temperatures, requirements of materials for Thermal protection and	
for pressure vessels.	
Applications:	

Course Outcom	es: After completing the course, the students will be able to
CO312.1.1	Identify the types of space launch vehicles and missiles.
CO312.1.2	Distinguish the solid and liquid propellant motors.
CO312.1.3	Classify different types of missiles, understand missile aerodynamics.
CO312.1.4	Acquire the knowledge on launch vehicle dynamics, Attitude control

rocket testing

Tex	tbooks:
1	George P Sutton and Oscar Biblarz,' Rocket Propulsion Element', John Wiley and Sons Inc,7th edition,2010,ISBN-13: 978-8126525775
2	Jack N Neilson, 'Missile Aerodynamics', AIAA, 1st edition, 1988, ISBN-13: 978- 0962062902
Ref	erence Books
1.	SS Chin, 'Missile Configuration Design'.
2.	Cornelisse, J.W., Schoyer H.F.R. and Wakker, K.F., Rocket Propulsion and Space-Flight Dynamics, Pitman, 1979, ISBN-13: 978-0273011415
3.	Turner, M.J.L., Rocket and Spacecraft propulsion, Springer, 3rd edition, 2010, ISBN-13: 978- 3642088698.
Con	tinuous Internal Evaluation (CIE): Theory for

50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE): Marks

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO N	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	1	1	1	1	1	1	1	3
CO2	3	3	3	3	1	1	1	1	1	1	1	3
CO3	3	3	3	3	1	1	1	1	1	1	1	3
CO4	3	3	3	3	1	1	1	1	1	1	1	3
CO5	3	3	3	3	1	1	1	1	1	1	1	3

Theory for 50

Course Title	REUSABLE LAUNCH VEHICLE	Semester	VI
Course Code	MVJ22AS632	CIE	50
Total No. of Contact Hours	40 L: T:P: 3 :0 :0	SEE	50
No. of Contact Hours/week	4	Total	100
Credits	3	Exam. Duration	3 Hrs.

The course objective is to:

- 1. Learn thelaunch vehicle dynamics and stage separation techniques
- 2. Understand the basics of reusable launch vehicles
- 3. Study the primary structure of the reusable launch vehicles
- 4. Acquire knowledge on the operation of re-entry vehicles and its applications
- 5. Comprehend knowledge on mission and flight dynamics operations

Module 1: Launch Vehicle Dynamics	L3	08Hrs.
-----------------------------------	----	--------

Launch Vehicle Dynamics: Tsiolskovsky's rocket equation, range in the absence of gravity, vertical motion in the earth's gravitational field, inclined motion, flight path at constant pitch angle, motion in the atmosphere, the gravity turn – the culmination altitude, multi staging. Earth launch trajectories – vertical segment, the gravity turn, constant pitch trajectory, orbital injection. Actual launch vehicle trajectories, types. Examples, the Mu 3-S-II, Ariane, Pegasus launchers. Reusable launch vehicles, future launchers, launch assist technologies. Attitude Control Of Rockets And Missiles: Rocket Thrust Vector Control – Methods of Thrusts Vector Control for solid and liquid propulsion systems, thrust magnitude control, thrust termination; stage separation dynamics, separation techniques

Laboratory Sessions/ Experimental learning:

Simulation of the mission profile of a launch vehicle using simulation software

Applications: Aerospace Industry

Module 2: Introduction to Reusable Launch Vehicle	L3	08Hrs.

Understanding the Development of Reusable Launch Vehicles -Recent History and Current Programs – Technical challenges - Economic Considerations - Legal and Policy Issues - Threat Considerations, Reusable Launch Vehicle Missions and Applications, Military Utility of Reusable Launch Vehicles, Commercial Utility of Reusable Launch Vehicles, fully and partially reusable launch systems -lift-off stages, orbital insertion stages, Reusable orbiter. Introduction to space shuttle, docking in space.

Laboratory Sessions/ Experimental learning:

Simulation of the mission profile of a reusable launch vehicle using simulation software

Applications: Aerospace Industry

Module 3: Primary Vehicle Structure	L3	08Hrs.		
Introduction, Components of Major Structures, Reusable Cryogenic Tank System- Al-Li cryogenic tanks- LC				
Tank- LH2 Tank- Organic-Matrix Composite Tanks, Thermal Protection Sys	stem, propulsion-	Existing AND		
New Engines-Engine Performance- Throttling- Revolutionary Reusable Tech	nology Turbopun	np (RRTT) and		

0.011

Reentry flight environment- system design process - system mission management, Re-entry Dynamics, Ballistic Bodies Re-entry Influence of Re-entry Flight Path Angle, Influence of Vehicl Lift on the Re-entry System, Skipping Trajectory Reentry System, Range Capabilities and Reentry Foot-Prin Winged-Reentry Vehicles Laboratory Sessions/ Experimental learning; Thermal Simulation of Reentry heat shield using simulation software. Applications: Aerospace industry Module 5: Space operations L2 08Hrs. Overview Space Segment The Space Environment, Space Systems Objectives and Requirements, Design Drivers and Trade-off Fundamentals of Space Communications Mission Operations: Orbital Dynamics, Attitude Dynamics, mission planning, mission planning for lumanned systems, Mission Planning for Human Spaceflight Missions Laboratory Sessions/ Experimental learning: Flow Simulation of Reentry heat shield using simulation software Applications: Aerospace industry Course outcomes: Upon completion of the course, students will be able to: C0312.2.1 Evaluate the launch vehicle dynamics and stage separation techniques C0312.2.2 Analyse the mission and flight dynamics operations C0312.2.3 Configure reusable launch vehicle C0312.2.4 Analyse the mission and flight dynamics operations C0312.2.5 Analyse the	Аррисации	s: Aerospace Industry		
software. Applications: Aerospace industry Module 5: Space operations L2 08Hrs. Overview Space Segment The Space Environment, Space Systems Objectives and Requirements, Design Drivers and Trade-off Fundamentals of Space Communications Mission Operations: Mission Operations Preparation, Mission Operations Execution, Flight Experience Flight Dynamic Operations: Orbital Dynamics, Attitude Dynamics, mission planning, mission planning for unmanned systems, Mission Planning for Human Spaceflight Missions Laboratory Sessions/ Experimental learning: Flow Simulation of Reentry heat shield using simulation software Applications: Aerospace industry Course outcomes: Upon completion of the course, students will be able to: CO312.2.1 Evaluate the launch vehicle dynamics and stage separation techniques C0312.2.2 Explain the basics of reusable launch vehicle C0312.2.3 Configure reusable launch vehicle C0312.2.4 Analyse Re-entry vehicle dynamics operations C0312.2.5 Analyse the mission and flight dynamics operations C0312.2.5 Analyse the mission and space operations. 2000. 2 Suresh, B. and K. Sivan, Integrated design for space transportation system. 2015: Springer. Reference Books I<	Module 4 :]	Reentry Mission	L3	08Hrs.
Re-entry Dynamics and Re-entry Vehicle Configurations Re-entry Dynamics, Ballistic Bodies Re-entry, Influence of Re-entry Flight Path Angle, Influence of Vehicl Lift on the Re-entry System, Skipping Trajectory Reentry System, Range Capabilities and Reentry Foot-Prin Winged-Reentry Vehicles Laboratory Sessions/ Experimental learning: Thermal Simulation of Reentry heat shield using simulatio software. Applications: Aerospace industry Module 5: Space operations L.2 08Hrs. Overview Space Segment The Space Environment, Space Systems Objectives and Requirements, Design Drivers and Trade-off Fundamentals of Space Communications Mission Operations: Orbital Dynamics, Attitude Dynamics, mission planning, mission planning for Jummaned systems, Mission Operations Preparation, Mission Operations Execution, Flight Experience Flight Dynamic Systems, Mission Planning for Human Spaceflight Missions Laboratory Sessions/ Experimental learning: Flow Simulation of Reentry heat shield using simulatio Single aunch vehicle dynamics and stage separation techniques CO12:2.1 Evaluate the launch vehicle Co13:2.2.1 Evaluate the launch vehicle Co13:2.2.2 Explain the basics of reusable launch	Operating e	nvironment and reentry system design guidelines	1	I
Re-entry Dynamics, Ballistic Bodies Re-entry, Influence of Re-entry Flight Path Angle, Influence of Vehicl Lift on the Re-entry System, Skipping Trajectory Reentry System, Range Capabilities and Reentry Foot-Prin Winged-Reentry Vehicles Laboratory Sessions/ Experimental learning: Thermal Simulation of Reentry heat shield using simulatio software. Applications: Aerospace industry Module 5: Space operations L2 08Hrs. Overview Space Segment The Space Environment, Space Systems Objectives and Requirements, Design Drivers and Trade-off Fundamentals of Space Communications Mission Operations: Orbital Dynamics, Attitude Dynamics, mission planning, mission planning for ummanned systems, Mission Planning for Human Spaceflight Missions Laboratory Sessions/ Experimental learning: Flow Simulation of Reentry heat shield using simulatio software Applications: Aerospace industry Course outcomes: Upon completion of the course, students will be able to: CO312.2.1 Evaluate the launch vehicle dynamics and stage separation techniques CO312.2.2 Explain the basics of reusable launch vehicle CO312.2.3 Configure reusable launch vehicle CO312.2.4 Analyse the mission and flight dynamics operations CO312.2.5	Reentry fligh	t environment- system design process - system mission manager	nent,	
Lift on the Re-entry System, Skipping Trajectory Reentry System, Range Capabilities and Reentry Foot-Prin Winged-Reentry Vehicles Laboratory Sessions/ Experimental learning: Thermal Simulation of Reentry heat shield using simulatio software. Applications: Aerospace industry Module 5: Space operations L2 08Hrs. Overview Space Segment The Space Environment, Space Systems Objectives and Requirements, Design Drivers and Trade-off Fundamentals of Space Communications Mission Operations: Mission Operations Preparation, Mission Operations Execution, Flight Experience Flight Dynamic Operations: Orbital Dynamics, Attitude Dynamics, mission planning, mission planning for unmanned systems, Mission Planning for Human Spaceflight Missions Laboratory Sessions/ Experimental learning: Flow Simulation of Reentry heat shield using simulatio software Applications: Aerospace industry Course outcomes: Upon completion of the course, students will be able to: CO312.2.1 Evaluate the launch vehicle dynamics and stage separation techniques CO312.2.2 Explain the basics of reusable launch vehicle CO312.2.4 Analyse Re-entry vehicle dynamics and configurations CO312.2.5 Analyse the mission and flight dynamics operations. 2000. 2 Suresh, B. and K. Sivan, Integrated design for space transportation system. 2015: Springer. Reference Books 1. Council, N.R., Reusable launch vehicle: Technology development and test program. 1996: Nation: Academies Press.	Re-entry Dy	namics and Re-entry Vehicle Configurations		
Winged-Reentry Vehicles Laboratory Sessions/ Experimental learning: Thermal Simulation of Reentry heat shield using simulation software. Applications: Aerospace industry Module 5: Space operations L2 08Hrs. Overview Space Segment The Space Environment, Space Systems Objectives and Requirements, Design Drivers and Trade-off Fundamentals of Space Communications Mission Operations: Mission Operations Preparation, Mission Operations Execution, Flight Experience Flight Dynamic Operations: Orbital Dynamics, Attitude Dynamics, mission planning, mission planning for unmanned systems, Mission Planning for Human Spaceflight Missions Laboratory Sessions/ Experimental learning: Flow Simulation of Reentry heat shield using simulation software Applications: Aerospace industry Course outcomes: Upon completion of the course, students will be able to: C0312.2.1 Evaluate the launch vehicle dynamics and stage separation techniques C0312.2.2 Explain the basics of reusable launch vehicle C0312.2.3 Configure reusable launch vehicle C0312.2.4 Analyse Re-entry vehicle dynamics and configurations C0312.2.5 Analyse the mission and flight dynamics operations Textbooks: 1 1 Ward, J.E., Reusable launch vehicles and space operations. 2000. 2 <td>Re-entry Dy</td> <td>namics, Ballistic Bodies Re-entry, Influence of Re-entry Flight</td> <td>Path Angle, Inf</td> <td>fluence of Vehicl</td>	Re-entry Dy	namics, Ballistic Bodies Re-entry, Influence of Re-entry Flight	Path Angle, Inf	fluence of Vehicl
Laboratory Sessions/ Experimental learning: Thermal Simulation of Reentry heat shield using simulation software. Applications: Aerospace industry Module 5: Space operations L2 08Hrs. Overview Space Segment The Space Environment, Space Systems Objectives and Requirements, Design Drivers and Trade-off Fundamentals of Space Communications Mission Operations: Mission Operations Preparation, Mission Operations Execution, Flight Experience Flight Dynamic Operations: Orbital Dynamics, Attitude Dynamics, mission planning, mission planning for unmanned systems, Mission Planning for Human Spaceflight Missions Laboratory Sessions/ Experimental learning: Flow Simulation of Reentry heat shield using simulation software Applications: Aerospace industry Course outcomes: Upon completion of the course, students will be able to: C0312.2.1 Evaluate the launch vehicle dynamics and stage separation techniques C0312.2.2 Explain the basics of reusable launch vehicle C0312.2.3 Configure reusable launch vehicle C0312.2.4 Analyse Re-entry vehicle dynamics and configurations C0312.2.5 Analyse the mission and flight dynamics operations Textbooks: I 1 Ward, J.E., Reusable launch vehicles and space operations. 2000. 2 Suresh, B. and K. Sivan, Integrated design fo	Lift on the R	e-entry System, Skipping Trajectory Reentry System, Range Cap	pabilities and R	eentry Foot-Prin
Applications: Aerospace industry L2 08Hrs. Module 5: Space operations L2 08Hrs. Overview Space Segment The Space Environment, Space Systems Objectives and Requirements, Design Drivers and Trade-off Fundamentals of Space Communications Mission Operations: Mission Operations Preparation, Mission Operations Execution, Flight Experience Flight Dynamic Operations: Orbital Dynamics, Attitude Dynamics, mission planning, mission planning for unmanned systems, Mission Planning for Human Spaceflight Missions Laboratory Sessions/ Experimental learning: Flow Simulation of Reentry heat shield using simulation software Applications: Aerospace industry Course outcomes: Voltametric Course, students will be able to: C0312.2.1 Evaluate the launch vehicle dynamics and stage separation techniques C0312.2.2 C0312.2.2 Explain the basics of reusable launch vehicle C0312.2.3 C0312.2.4 Analyse Re-entry vehicle dynamics and configurations C0312.2.4 C0312.2.5 Analyse the mission and flight dynamics operations. 2000. Textbooks: 1 Ward, J.E., Reusable launch vehicles and space operations. 2000. Springer. Reference Books I. Courcit, N.R., Reusable launch vehicle: Technology development and test program. 1996: Nation Academies Press.	Winged-Ree	ntry Vehicles		
Overview Space Segment The Space Environment, Space Systems Objectives and Requirements, Design Drivers and Trade-off Fundamentals of Space Communications Mission Operations: Mission Operations Preparation, Mission Operations Execution, Flight Experience Flight Dynamic Operations: Orbital Dynamics, Attitude Dynamics, mission planning, mission planning for unmanned systems, Mission Planning for Human Spaceflight Missions Laboratory Sessions/ Experimental learning: Flow Simulation of Reentry heat shield using simulation software Applications: Aerospace industry Course outcomes: Upon completion of the course, students will be able to: CO312.2.1 Evaluate the launch vehicle dynamics and stage separation techniques CO312.2.2 Explain the basics of reusable launch vehicle CO312.2.3 Configure reusable launch vehicle CO312.2.4 Analyse Re-entry vehicle dynamics and configurations CO312.2.5 Analyse the mission and flight dynamics operations Textbooks: 1 1 Ward, J.E., Reusable launch vehicles and space operations. 2000. 2 Suresh, B. and K. Sivan, Integrated design for space transportation system. 2015: Springer. Reference Books 1 1. Council, N.R., Reusable launch vehicle: Technology development and test program.	Laboratory	Sessions/ Experimental learning: Thermal Simulation of Reer	ntry heat shield	l using simulation
Module 5: Space operations L2 08Hrs. Overview Space Segment 08Hrs. 08Hrs. The Space Environment, Space Systems Objectives and Requirements, Design Drivers and Trade-off Fundamentals of Space Communications Mission Operations: Mission Operations Preparation, Mission Operations Execution, Flight Experience Flight Dynamic Operations: Orbital Dynamics, Attitude Dynamics, mission planning, mission planning for unmanned systems, Mission Planning for Human Spaceflight Missions Laboratory Sessions/ Experimental learning: Flow Simulation of Reentry heat shield using simulation software Applications: Aerospace industry Course outcomes: Upon completion of the course, students will be able to: CO312.2.1 Evaluate the launch vehicle dynamics and stage separation techniques CO312.2.2 Explain the basics of reusable launch vehicle CO312.2.3 Configure reusable launch vehicle CO312.2.4 Analyse the mission and flight dynamics operations Textbooks: 1 1 Ward, J.E., Reusable launch vehicles and space operations. 2000. 2 Suresh, B. and K. Sivan, Integrated design for space transportation system. 2015: Springer. Reference Books 1. 1. Council, N.R., Reusable launch vehicle: Technology development and test program. 1996: Nation Academies Press.	software.			
Overview Space Segment The Space Environment, Space Systems Objectives and Requirements, Design Drivers and Trade-off Fundamentals of Space Communications Mission Operations: Mission Operations Preparation, Mission Operations Execution, Flight Experience Flight Dynamic Operations: Orbital Dynamics, Attitude Dynamics, mission planning, mission planning for unmanned systems, Mission Planning for Human Spaceflight Missions Laboratory Sessions/ Experimental learning: Flow Simulation of Reentry heat shield using simulation software Applications: Aerospace industry Course outcomes: Upon completion of the course, students will be able to: CO312.2.1 Evaluate the launch vehicle dynamics and stage separation techniques CO312.2.2 Explain the basics of reusable launch vehicle CO312.2.3 Configure reusable launch vehicle CO312.2.4 Analyse Re-entry vehicle dynamics and configurations CO312.2.5 Analyse the mission and flight dynamics operations Textbooks: 1 1 Ward, J.E., Reusable launch vehicles and space operations. 2000. 2 Suresh, B. and K. Sivan, Integrated design for space transportation system. 2015: Springer. Reference Books 1 1. Council, N.R., Reusable launch vehicle: Technology development and test program.	Application	s: Aerospace industry		
The Space Environment, Space Systems Objectives and Requirements, Design Drivers and Trade-off Fundamentals of Space Communications Mission Operations: Mission Operations Preparation, Mission Operations Execution, Flight Experience Flight Dynamic Operations: Orbital Dynamics, Attitude Dynamics, mission planning, mission planning for unmanned systems, Mission Planning for Human Spaceflight Missions Laboratory Sessions/ Experimental learning: Flow Simulation of Reentry heat shield using simulation software Applications: Aerospace industry Course outcomes: Upon completion of the course, students will be able to: CO312.2.1 Evaluate the launch vehicle dynamics and stage separation techniques CO312.2.2 Explain the basics of reusable launch vehicle CO312.2.3 Configure reusable launch vehicle CO312.2.4 Analyse Re-entry vehicle dynamics and configurations CO312.2.5 Analyse the mission and flight dynamics operations Textbooks: 1 1 Ward, J.E., Reusable launch vehicles and space operations. 2000. 2 Suresh, B. and K. Sivan, Integrated design for space transportation system. 2015: Springer. Reference Books 1 1 Council, N.R., Reusable launch vehicle: Technology development and test program. 1996: Nation Academies Press. </td <td>Module 5: S</td> <td>pace operations</td> <td>L2</td> <td>08Hrs.</td>	Module 5: S	pace operations	L2	08Hrs.
Fundamentals of Space Communications Mission Operations: Mission Operations Preparation, Mission Operations Execution, Flight Experience Flight Dynamic Operations: Orbital Dynamics, Attitude Dynamics, mission planning, mission planning for unmanned systems, Mission Planning for Human Spaceflight Missions Laboratory Sessions/ Experimental learning: Flow Simulation of Reentry heat shield using simulation software Applications: Aerospace industry Course outcomes: Upon completion of the course, students will be able to: CO312.2.1 Evaluate the launch vehicle dynamics and stage separation techniques C0312.2.2 Explain the basics of reusable launch vehicle CO312.2.3 Configure reusable launch vehicle CO312.2.4 Analyse Re-entry vehicle dynamics and configurations CO312.2.5 Analyse the mission and flight dynamics operations. Textbooks: 1 1 Ward, J.E., Reusable launch vehicles and space operations. 2000. 2 Suresh, B. and K. Sivan, Integrated design for space transportation system. 2015: Springer. Reference Books 1 1, Council, N.R., Reusable launch vehicle: Technology development and test program. 1996: Nation Academies Press.	Overview S	pace Segment		
Mission Operations: Mission Operations Preparation, Mission Operations Execution, Flight Experience Flight Dynamic Operations: Orbital Dynamics, Attitude Dynamics, mission planning, mission planning for unmanned systems, Mission Planning for Human Spaceflight Missions Laboratory Sessions/ Experimental learning: Flow Simulation of Reentry heat shield using simulation software Applications: Aerospace industry Course outcomes: Upon completion of the course, students will be able to: CO312.2.1 Evaluate the launch vehicle dynamics and stage separation techniques CO312.2.2 Explain the basics of reusable launch vehicle CO312.2.3 Configure reusable launch vehicle CO312.2.4 Analyse Re-entry vehicle dynamics and configurations CO312.2.5 Analyse the mission and flight dynamics operations Textbooks: 1 1 Ward, J.E., Reusable launch vehicles and space operations. 2000. 2 Suresh, B. and K. Sivan, Integrated design for space transportation system. 2015: Springer. Reference Books 1 1. Council, N.R., Reusable launch vehicle: Technology development and test program. 1996: National Academies Press.	The Space	Environment, Space Systems Objectives and Requirements, 2	Design Drivers	s and Trade-offs
Flight Dynamic Operations: Orbital Dynamics, Attitude Dynamics, mission planning, mission planning for unmanned systems, Mission Planning for Human Spaceflight Missions Laboratory Sessions/ Experimental learning: Flow Simulation of Reentry heat shield using simulation software Applications: Aerospace industry Course outcomes: Upon completion of the course, students will be able to: CO312.2.1 Evaluate the launch vehicle dynamics and stage separation techniques CO312.2.2 Explain the basics of reusable launch vehicle CO312.2.3 Configure reusable launch vehicle CO312.2.4 Analyse Re-entry vehicle dynamics and configurations CO312.2.5 Analyse the mission and flight dynamics operations Textbooks: 1 1 Ward, J.E., Reusable launch vehicles and space operations. 2000. 2 Suresh, B. and K. Sivan, Integrated design for space transportation system. 2015: Springer. Reference Books 1 1, Council, N.R., Reusable launch vehicle: Technology development and test program. 1996: National Academies Press.	Fundamenta	s of Space Communications		
software Applications: Aerospace industry Course outcomes: Upon completion of the course, students will be able to: CO312.2.1 Evaluate the launch vehicle dynamics and stage separation techniques CO312.2.2 Explain the basics of reusable launch vehicle CO312.2.3 Configure reusable launch vehicle CO312.2.4 Analyse Re-entry vehicle dynamics and configurations CO312.2.5 Analyse the mission and flight dynamics operations Textbooks: 1 Ward, J.E., Reusable launch vehicles and space operations. 2000. 2 Suresh, B. and K. Sivan, Integrated design for space transportation system. 2015: Springer. Reference Books 1. Council, N.R., Reusable launch vehicle: Technology development and test program. 1996: National Academies Press.	Mission Op	erations: Mission Operations Preparation, Mission Operations E	xecution, Flight	t Experience
Laboratory Sessions/ Experimental learning: Flow Simulation of Reentry heat shield using simulation software Applications: Aerospace industry Course outcomes: Upon completion of the course, students will be able to: CO312.2.1 Evaluate the launch vehicle dynamics and stage separation techniques CO312.2.2 Explain the basics of reusable launch vehicle CO312.2.3 Configure reusable launch vehicle CO312.2.4 Analyse Re-entry vehicle dynamics and configurations CO312.2.5 Analyse the mission and flight dynamics operations Textbooks: 1 1 Ward, J.E., Reusable launch vehicles and space operations. 2000. 2 Suresh, B. and K. Sivan, Integrated design for space transportation system. 2015: Springer. Reference Books 1. 1. Council, N.R., Reusable launch vehicle: Technology development and test program. 1996: Nationa Academies Press.	Flight Dyna	mic Operations: Orbital Dynamics, Attitude Dynamics, missio	n planning, mi	ssion planning fo
Applications: Aerospace industry Course outcomes: Upon completion of the course, students will be able to: CO312.2.1 Evaluate the launch vehicle dynamics and stage separation techniques CO312.2.2 Explain the basics of reusable launch vehicle CO312.2.3 Configure reusable launch vehicle CO312.2.4 Analyse Re-entry vehicle dynamics and configurations CO312.2.5 Analyse the mission and flight dynamics operations Textbooks: I 1 Ward, J.E., Reusable launch vehicles and space operations. 2000. 2 Suresh, B. and K. Sivan, Integrated design for space transportation system. 2015: Springer. Refererce Books I 1. Council, N.R., Reusable launch vehicle: Technology development and test program. 1996: Nationa Academics Press.	unmanned sy	stems, Mission Planning for Human Spaceflight Missions		
Applications: Aerospace industry Course outcomes: Upon completion of the course, students will be able to: CO312.2.1 Evaluate the launch vehicle dynamics and stage separation techniques CO312.2.2 Explain the basics of reusable launch vehicle CO312.2.3 Configure reusable launch vehicle CO312.2.4 Analyse Re-entry vehicle dynamics and configurations CO312.2.5 Analyse the mission and flight dynamics operations Textbooks: I 1 Ward, J.E., Reusable launch vehicles and space operations. 2000. 2 Suresh, B. and K. Sivan, Integrated design for space transportation system. 2015: Springer. Refererce Books I 1. Council, N.R., Reusable launch vehicle: Technology development and test program. 1996: Nationa Academics Press.	Laboratory	Sessions/ Experimental learning: Flow Simulation of Reen	try heat shield	using simulation
Course outcomes: Upon completion of the course, students will be able to: CO312.2.1 Evaluate the launch vehicle dynamics and stage separation techniques CO312.2.2 Explain the basics of reusable launch vehicle CO312.2.3 Configure reusable launch vehicle CO312.2.4 Analyse Re-entry vehicle dynamics and configurations CO312.2.5 Analyse the mission and flight dynamics operations Textbooks: 1 Vard, J.E., Reusable launch vehicles and space operations. 2000. 2 Suresh, B. and K. Sivan, Integrated design for space transportation system. 2015: Springer. Reference Books 1. Council, N.R., Reusable launch vehicle: Technology development and test program. 1996: National Academies Press.	software			
Upon completion of the course, students will be able to: CO312.2.1 Evaluate the launch vehicle dynamics and stage separation techniques CO312.2.2 Explain the basics of reusable launch vehicle CO312.2.3 Configure reusable launch vehicle CO312.2.4 Analyse Re-entry vehicle dynamics and configurations CO312.2.5 Analyse the mission and flight dynamics operations Textbooks: I 1 Ward, J.E., Reusable launch vehicles and space operations. 2000. 2 Suresh, B. and K. Sivan, Integrated design for space transportation system. 2015: Springer. Reference Books I 1. Council, N.R., Reusable launch vehicle: Technology development and test program. 1996: National Academies Press.	Application	s: Aerospace industry		
 CO312.2.1 Evaluate the launch vehicle dynamics and stage separation techniques CO312.2.2 Explain the basics of reusable launch vehicle CO312.2.3 Configure reusable launch vehicle CO312.2.4 Analyse Re-entry vehicle dynamics and configurations CO312.2.5 Analyse the mission and flight dynamics operations Textbooks: 1 Ward, J.E., Reusable launch vehicles and space operations. 2000. 2 Suresh, B. and K. Sivan, Integrated design for space transportation system. 2015: Springer. Reference Books 1. Council, N.R., Reusable launch vehicle: Technology development and test program. 1996: National Academies Press. 	Course outc	omes:		
CO312.2.2 Explain the basics of reusable launch vehicle CO312.2.3 Configure reusable launch vehicle CO312.2.4 Analyse Re-entry vehicle dynamics and configurations CO312.2.5 Analyse the mission and flight dynamics operations Textbooks: 1 Ward, J.E., Reusable launch vehicles and space operations. 2000. 2 Suresh, B. and K. Sivan, Integrated design for space transportation system. 2015: Springer. Reference Books 1. Council, N.R., Reusable launch vehicle: Technology development and test program. 1996: National Academies Press.	Upon comple	etion of the course, students will be able to:		
CO312.2.3 Configure reusable launch vehicle CO312.2.4 Analyse Re-entry vehicle dynamics and configurations CO312.2.5 Analyse the mission and flight dynamics operations Textbooks: 1 Ward, J.E., Reusable launch vehicles and space operations. 2000. 2 Suresh, B. and K. Sivan, Integrated design for space transportation system. 2015: Springer. Reference Books 1. Council, N.R., Reusable launch vehicle: Technology development and test program. 1996: National Academies Press.	CO312.2.1	Evaluate the launch vehicle dynamics and stage separation	n techniques	
CO312.2.4 Analyse Re-entry vehicle dynamics and configurations CO312.2.5 Analyse the mission and flight dynamics operations Textbooks: 1 Ward, J.E., Reusable launch vehicles and space operations. 2000. 2 Suresh, B. and K. Sivan, Integrated design for space transportation system. 2015: Springer. Reference Books 1. Council, N.R., Reusable launch vehicle: Technology development and test program. 1996: National Academies Press.	CO312.2.2	Explain the basics of reusable launch vehicle		
CO312.2.5 Analyse the mission and flight dynamics operations Textbooks: 1 Ward, J.E., Reusable launch vehicles and space operations. 2000. 2 Suresh, B. and K. Sivan, Integrated design for space transportation system. 2015: Springer. Reference Books 1. Council, N.R., Reusable launch vehicle: Technology development and test program. 1996: National Academies Press.	CO312.2.3	Configure reusable launch vehicle		
CO312.2.5 Analyse the mission and flight dynamics operations Textbooks: 1 Ward, J.E., Reusable launch vehicles and space operations. 2000. 2 Suresh, B. and K. Sivan, Integrated design for space transportation system. 2015: Springer. Reference Books 1. Council, N.R., Reusable launch vehicle: Technology development and test program. 1996: National Academies Press.	CO312.2.4	Analyse Re-entry vehicle dynamics and configurations		
Textbooks: 1 Ward, J.E., Reusable launch vehicles and space operations. 2000. 2 Suresh, B. and K. Sivan, Integrated design for space transportation system. 2015: Springer. Reference Books 1. Council, N.R., Reusable launch vehicle: Technology development and test program. 1996: National Academies Press.				
1 Ward, J.E., Reusable launch vehicles and space operations. 2000. 2 Suresh, B. and K. Sivan, Integrated design for space transportation system. 2015: Springer. Reference Books 1. Council, N.R., Reusable launch vehicle: Technology development and test program. 1996: National Academies Press.	CO312.2.5	Anaryse the mission and ment dynamics operations		
 2 Suresh, B. and K. Sivan, Integrated design for space transportation system. 2015: Springer. Reference Books Council, N.R., Reusable launch vehicle: Technology development and test program. 1996: National Academies Press. 				
Reference Books 1. Council, N.R., Reusable launch vehicle: Technology development and test program. 1996: National Academies Press.	Textbooks			
1. Council, N.R., Reusable launch vehicle: Technology development and test program. 1996: National Academies Press.	Textbooks:1	I, J.E., Reusable launch vehicles and space operations. 2000.	atom 2015, 9	ringor
Academies Press.	Textbooks:1Ward2Sure	d, J.E., Reusable launch vehicles and space operations. 2000. sh, B. and K. Sivan, Integrated design for space transportation system.	stem. 2015: Spi	ringer.
	Textbooks:1Ward2SureReference	d, J.E., Reusable launch vehicles and space operations. 2000. sh, B. and K. Sivan, Integrated design for space transportation sys Books		
	Textbooks:1Ward2SureReference 11.Court	d, J.E., Reusable launch vehicles and space operations. 2000. sh, B. and K. Sivan, Integrated design for space transportation sy Books ncil, N.R., Reusable launch vehicle: Technology development a		
	Textbooks:1Ward2SureReference 11.Court	 d, J.E., Reusable launch vehicles and space operations. 2000. sh, B. and K. Sivan, Integrated design for space transportation systematical syst		

Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of three tests

- Quizzes/mini tests (4 marks)
- Mini Project / Case Studies (8 Marks)
- Activities/Experimentations related to courses (8 Marks)

SEE Assessment:

- Question paper for the SEE consists two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.
- Part B also covers the entire syllabus consisting of five questions having choices and may contain subdivisions, each carrying 16 marks. Students have to answer five full questions.
- One question must be set from each unit. The duration of examination is 3 hours.

						CO	-PO M	apping						
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	3								1	3	1
CO2	3	3	1									1	3	1
CO3	3	3	2	2								1	3	1
CO4	3	3	2	3								1	3	1
CO5	3	3	2	3								1	3	1
High,3, I	High,3, Medium,2, Low,1													

Course Title	AEROSPACE SYSTEMS AND AVIONICS	Semester	VI
Course Code	MVJ22AS633	CIE	50
Total No. of Contact Hours	40 L : T : P :: 3 : 0: 0	SEE	50
No. of Contact Hours/week	4	Total	100
Credits	3	Exam. Duration	3 Hrs.

The course objective is to:

- 6. Understand the power distribution system and need for avionics.
- 7. Acquire knowledge of control and navigation systems
- 8. Gain knowledge of display technologies and avionics system architectures
- 9. Understand the Microprocessors and cockpit display technologies
- 10. Apprehend the functioning of data buses

Module 1Power Distribution System		L2	 	08 Hrs.
	 	-		

Power Distribution System: Bus Bar, split bus bar system, special purpose cables. Electrical diagram and identification scheme. Circuit controlling devices. Power utilization-typical application to avionics. Introduction to integrated avionics and 5G systems.

Laboratory Sessions/ Experimental learning: Programming using microprocessor

Applications: Data Transfer, Communication

Module 2 Inertial Navigation & Electronic Flight Control System	L3	08 Hrs.	
---	----	---------	--

Inertial Navigation System: Gyroscopic versus Inertial platform. Structure of stable platform. Inertial Navigation units. Inertial alignment. Inertial interface system. Importance of Compass swing. Navigation System in Aerospace Industries

Electronic Flight Control System: Fly-by-wire system: basic concept and features. Pitch and Roll rate: command and response. Control Laws. Frequency response of a typical FBW actuator. Avionics system architecture generations - Data buses: MILSTD-1553B, ARINC 429, AFDX/ARINC 664 - Fiber optic Data buses: IEEE STD 1393, MIL STD 1773.

Laboratory Sessions/ Experimental learning: Validation of truth tables for different logic circuits Applications: Communication, Tracking

Module 3 Electronic Flight Instrument & Avionics Sub Systems	L3	08 Hrs.				
Electronic Flight Instrument Systems: Display-units, presentation, failure, and annunciation. Display of air						
data. Typical avionics sub systems. Amplifier, oscillator, aircraft communication system, transmitter, receiver,						
antenna.						

Modelling of Physical Systems: Mathematical Models of Mechanical, Electrical, Thermal, Hydraulic Systems.

Laboratory Sessions/ Experimental learning: Construct 7 segment display circuit using IC timer

App	lications:	Attitude Estimation, Navigation, Control		
Mod	lule 4 Digi	tal Systems & Flight Deck and Cockpits	L3	08 Hrs.
Prin	ciples of I	Digital Systems: Digital Computers, Microprocessors, Memories.		
Flig	ht Deck a	nd Cockpits: Control and display technologies CRT, LED, LCD,	EL and plasm	a panel, Touch
scree	en, Direct	voice input (DVI)-Civil cockpit and military cockpit: MFDS, HUD	, MFK, and H	OTAS.
Lab	oratory Se	essions/ Experimental learning: Data transfer using ARINC420 d	ata bus	
App	lications:	Position Estimation, Guidance, Control		
Mod	lule 5 Avi	onics Systems Integration	L3	08 Hrs.
Avio	onics Syste	ems Integration: Avionics equipment fit. Electrical data bus syste	em. Communic	cation Systems
Navi	gation sys	stems, Flight control systems, Radar, Electronic Warfare, and fi	ire control system	stem. Avionic
syste	em archited	cture, Data buses, MIL–STD1553B		
Lab	oratory Se	essions/ Experimental learning: Data transfer using MIL-STD 15	53B Data bus	
App	lications:	Navigation, Guidance, Control		
Cou	rse outcor	nes:		
Upor	n completi	on of the course, students will be able to:		
CO3	12.3.1	Analyse the power distribution system in avionics.		
CO3	12.3.2	Apply the knowledge of control and navigation systems		
CO3	12.3.3	Utilise the knowledge of display technologies and avionics syste	m architecture	S
CO3	12.3.4	Evaluate the Microprocessors and cockpit display technologies		
CO3	12.3.5	Analyse the functioning of data buses		
Tex	tbooks:			
1	R.P.G. C	Collinson, Introduction to Avionics Systems, 3rd Edition, 2011, Springer	inger.	
2	Ian Moin	r, Allan Seabridge and Malcolm Jukes, Civil Avionics Systems, 2 nd	Edition, 2003	, Wiley.
Refe	erence Bo	ooks		
1.	R. Cundy	Dale, Introduction to Avionics, 2010, Pearson Education.		
CIE	Assessme	nt:		
CIE	is based or	n quizzes, tests, assignments/seminars and any other form of evalua	tion. Generally	y, there will be
Thre	e Internal	Assessment (IA) tests during the semester (30 marks each), the f	inal IA marks	to be awarded
will	be the ave	rage of three tests		
-	Quizzes/	mini tests (4 marks)		
-	Mini Pr	oject / Case Studies (8 Marks)		
-	Activitie	s/Experimentations related to courses (8 Marks)		
SEE	Assessme	ent:		
-	Questi	on paper for the SEE consists of two parts i.e. Part A and Part I	B. Part A is c	ompulsory an
	consist	s of objective type or short answer type questions of 1 or 2 mark	ks each for tot	al of 20 mark
	coveri	ng the whole syllabus.		
-	Part B	also covers the entire syllabus consisting of five questions having	choices and m	ay contain sub
	divisio	ns, each carrying 16 marks. Students have to answer five full ques	tions.	

- One question must be set from each unit. The duration of examination is 3 hours.

CO, PO Mapping														
CO/P	РО	РО	РО	РО	РО	РО	РО	РО	РО	PO1	PO1	PO1	PSO	PSO
0	1	2	3	4	5	6	7	8	9	0	1	2	1	2
CO1	2	2	2					2				2	3	2
CO2	2	2	2									2	1	
CO3	2	2	2									2		
CO4	3	3	2			2	2					3	2	1
CO5	3	3	3			2	2					3	3	3
High,3,	ligh,3, Medium,2, Low,1													

Course Title	ARTIFICIAL INTELLIGENCE AND ROBOTICS	Semester	VI	
Course Code	MVJ22AS634	CIE	50	
Total No. of Contact Hours	40 L: T:P: 3 :0 :0	SEE	50	
No. of Contact Hours/week	4	Total	100	
Credits	3	Exam. Duration 3 Hi		
The course objective is to:		I		
1. Understand the basic technique	ues of artificial intelligence			
2. Understand Non-monotonic r	reasoning and statistical reasoning			
3. Introduce the electronics and	software aspects in the design of robo	ts		
4. Introduce the latest state of the	ne art robots			
5. Understand the usage of AI in	n Robots			
Module 1 Introduction to AI		L3	08 Hrs.	
Computerized reasoning - Artifici	al Intelligence (AI) - characteristics	s of an AI prob	olem – Problem	
representation in AI - State space rej	presentation - problem reduction-Conc	ept of small talk p	programming	
Laboratory Sessions/ Experimenta	al learning: Compare the theoretical s	solution to the for	ward kinematics	
problem with a physical implementa	tion on the robot.			
Applications: Design, Supply chain	management, Prediction of in-service	damages		
Applications: Design, Supply chain Module 2Search Process &Knowle		damages	08 Hrs.	
Module 2Search Process &Knowle		L3		
Module 2Search Process & Knowle Search Process: AI and search proc	edge Representation	L3 Depth first - Bre	adth first search	
Module 2Search Process & Knowle Search Process: AI and search proc techniques - Hill climbing - Best firs	edge Representation cess - Brute force search techniques -	L3 Depth first - Bre ithm - Constraint	adth first search satisfaction.	
Module 2Search Process & Knowle Search Process: AI and search proc techniques - Hill climbing - Best firs Knowledge Representation: Logic	edge Representation cess - Brute force search techniques - st search - AND/OR graphs - A* algor	L3 Depth first - Bre ithm - Constraint Contradiction -	eadth first search satisfaction. Normal forms -	
Module 2Search Process & Knowle Search Process: AI and search proc techniques - Hill climbing - Best firs Knowledge Representation: Logic	edge Representation cess - Brute force search techniques - st search - AND/OR graphs - A* algor c, Propositional logic - Tautology - ce - Resolution - Unification algorith	L3 Depth first - Bre ithm - Constraint Contradiction -	eadth first search satisfaction. Normal forms -	
Module 2Search Process & Knowle Search Process: AI and search proc techniques - Hill climbing - Best firs Knowledge Representation: Logic Predicate logic - Rules of inference networks - Frames – Scripts - Conce	edge Representation cess - Brute force search techniques - st search - AND/OR graphs - A* algor c, Propositional logic - Tautology - ce - Resolution - Unification algorith	L3 Depth first - Bre ithm - Constraint Contradiction - hm -Production r	eadth first search satisfaction. Normal forms - rules - Semantic	
Module 2Search Process & Knowle Search Process: AI and search proc techniques - Hill climbing - Best firs Knowledge Representation: Logic Predicate logic - Rules of inference networks - Frames – Scripts - Conce	edge Representation ess - Brute force search techniques - st search - AND/OR graphs - A* algorite c, Propositional logic - Tautology - ce - Resolution - Unification algorite eptual dependency.	L3 Depth first - Bre ithm - Constraint Contradiction - hm -Production r	eadth first search satisfaction. Normal forms - rules - Semantic	
Module 2Search Process & Knowle Search Process: AI and search proc techniques - Hill climbing - Best firs Knowledge Representation: Logic Predicate logic - Rules of inference networks - Frames – Scripts - Conce Laboratory Sessions/ Experiments problem for the robot	edge Representation ess - Brute force search techniques - st search - AND/OR graphs - A* algorite c, Propositional logic - Tautology - ce - Resolution - Unification algorite eptual dependency.	L3 Depth first - Bre ithm - Constraint Contradiction - hm -Production r solution to the in	eadth first search satisfaction. Normal forms - rules - Semantic verse kinematics	
Module 2Search Process & Knowle Search Process: AI and search proc techniques - Hill climbing - Best firs Knowledge Representation: Logic Predicate logic - Rules of inference networks - Frames – Scripts - Conce Laboratory Sessions/ Experimenta problem for the robot Applications: Predictive Maintenan	edge Representation cess - Brute force search techniques - st search - AND/OR graphs - A* algorite c, Propositional logic - Tautology - ce - Resolution - Unification algorite eptual dependency. al learning: Derive and implement a ce, Flight performance Optimization, 1	L3 Depth first - Bre ithm - Constraint Contradiction - hm -Production r solution to the in	eadth first search satisfaction. Normal forms - rules - Semantic verse kinematics	
Module 2Search Process & Knowle Search Process: AI and search proces	edge Representation cess - Brute force search techniques - st search - AND/OR graphs - A* algorite c, Propositional logic - Tautology - ce - Resolution - Unification algorite eptual dependency. al learning: Derive and implement a ce, Flight performance Optimization, 1	L3 Depth first - Bre ithm - Constraint Contradiction - hm -Production r solution to the in Reverse Engineer L3	adth first search satisfaction. Normal forms - rules - Semantic verse kinematics ing 08 Hrs.	
Module 2Search Process & Knowle Search Process: AI and search proceed techniques - Hill climbing - Best firs Knowledge Representation: Logic Predicate logic - Rules of inference networks - Frames – Scripts - Conce Laboratory Sessions/ Experimenta problem for the robot Applications: Predictive Maintenan Module 3 Introduction to Robotics	edge Representation cess - Brute force search techniques - st search - AND/OR graphs - A* algor c, Propositional logic - Tautology - ce - Resolution - Unification algorithe ptual dependency. al learning: Derive and implement a ce, Flight performance Optimization, 1 s	L3 Depth first - Bre ithm - Constraint Contradiction - hm -Production r solution to the in Reverse Engineer L3	adth first search satisfaction. Normal forms - rules - Semantic verse kinematics ing 08 Hrs.	
Module 2Search Process & Knowle Search Process: AI and search proceed techniques - Hill climbing - Best firs Knowledge Representation: Logic Predicate logic - Rules of inference networks - Frames – Scripts - Concee Laboratory Sessions/ Experimenta problem for the robot Applications: Predictive Maintenan Module 3 Introduction to Robotics Scope of Robots: The scope of inder robots.	edge Representation cess - Brute force search techniques - st search - AND/OR graphs - A* algor c, Propositional logic - Tautology - ce - Resolution - Unification algorithe ptual dependency. al learning: Derive and implement a ce, Flight performance Optimization, 1 s	L3 Depth first - Bread ithm - Constraint Contradiction - hm -Production r solution to the interpreter Reverse Engineer L3 ustrial robot - Ne	adth first search satisfaction. Normal forms - rules - Semantic verse kinematics ing 08 Hrs.	
Module 2Search Process & Knowle Search Process: AI and search proceed techniques - Hill climbing - Best first Knowledge Representation: Logic Predicate logic - Rules of inference networks - Frames – Scripts - Concee Laboratory Sessions/ Experimentate problem for the robot Applications: Predictive Maintenan Module 3 Introduction to Robotics Scope of Robots: The scope of inder robots.	edge Representation edge Representation ess - Brute force search techniques - st search - AND/OR graphs - A* algorithe c, Propositional logic - Tautology - ce - Resolution - Unification algorithe eptual dependency. al learning: Derive and implement a ce, Flight performance Optimization, I s dustrial Robots - Definition of an ind s of Robot Technology - Automation	L3 Depth first - Bread ithm - Constraint Contradiction - hm -Production r solution to the interpreter Reverse Engineer L3 ustrial robot - Ne	adth first search satisfaction. Normal forms - rules - Semantic verse kinematics ing 08 Hrs.	
Module 2Search Process & Knowle Search Process: AI and search proceed techniques - Hill climbing - Best first Knowledge Representation: Logic Predicate logic - Rules of inference networks - Frames – Scripts - Concee Laboratory Sessions/ Experimenta problem for the robot Applications: Predictive Maintenan Module 3 Introduction to Robotics Scope of Robots: The scope of inder robots. Robot Components: Fundamentals Work volume- Precision of moveme	edge Representation edge Representation ess - Brute force search techniques - st search - AND/OR graphs - A* algorithe c, Propositional logic - Tautology - ce - Resolution - Unification algorithe eptual dependency. al learning: Derive and implement a ce, Flight performance Optimization, I s dustrial Robots - Definition of an ind s of Robot Technology - Automation	L3 Depth first - Bread ithm - Constraint Contradiction - hm -Production r solution to the in Reverse Engineer L3 ustrial robot - Ne and Robotics - H	adth first search satisfaction. Normal forms - rules - Semantic verse kinematics ing 08 Hrs. red for industrial Robot anatomy -	
Module 2Search Process & Knowle Search Process: AI and search proceed techniques - Hill climbing - Best first Knowledge Representation: Logic Predicate logic - Rules of inference networks - Frames – Scripts - Concee Laboratory Sessions/ Experimentate problem for the robot Applications: Predictive Maintenan Module 3 Introduction to Robotics Scope of Robots: The scope of inder robots. Robot Components: Fundamentals Work volume- Precision of moveme Laboratory Sessions/ Experimenta	edge Representation edge Representation ess - Brute force search techniques - est search - AND/OR graphs - A* algorithe c, Propositional logic - Tautology - e - Resolution - Unification algorithe eptual dependency. al learning: Derive and implement a ce, Flight performance Optimization, B s hustrial Robots - Definition of an ind s of Robot Technology - Automation ent - End effectors - Sensors	L3 Depth first - Bre ithm - Constraint Contradiction - hm -Production r solution to the in solution to the in Reverse Engineer L3 ustrial robot - Ne and Robotics - H ng the programmi	adth first search satisfaction. Normal forms - rules - Semantic verse kinematics ing 08 Hrs. red for industrial Robot anatomy -	

Aerobots - Advanced robotics in Space - Specific features of space robotics systems - long term technical

developments - Next generation robots.					
Laboratory Sessions/ Experimental learning: Integrate computer vision	and control of	the robot			
Applications: Training, Smart Repairs Management					
Module 5 AI in RoboticsL208 Hrs.					
Robotic perception, localization - mapping- configuring space - planning	uncertain mov	ements - dynamics			
and control of movement, Ethics and risks of artificial intelligence in robot	ics.				
Laboratory Sessions/ Experimental learning: Integrate forward and it	nverse kinema	tics and computer			
vision to control the robot.					
Applications: AI Autopilot in commercial flights, Knowledge-Based Engi	neering				
Course outcomes:					
Upon completion of the course, students will be able to:					
CO312.4.1 Apply the basic techniques of artificial intelligence					
CO404.4.2 Compare and contrast non-monotonic reasoning and sta	tistical reason	ing			
CO404.4.3 Design and develop robotic based systems					
CO404.4.4 Develop automatic solution for replacing humans in life	threatening a	rea			
CO404.4.5 Interpret basic AI algorithms in Robotics					
Textbooks:					
1 Elaine Rich And Kevin Knight, Artificial Intelligence, Tata Mcgraw-	Hill, 3 rd edition	,2008.			
2 Barry Leatham - Jones, Elements of industrial Robotics, Pitman Pub	lishing, 1987				
Reference Books					
1. J. M. Selig, Introductory Robotics, Prentice Hall, 1992		I			
2. David Jefferis, Artificial Intelligence: Robotics and Machine Evoluti	on, Crabtree Pu	ublishing Company, 199			
CIE Assessment:					
CIE is based on quizzes, tests, assignments/seminars and any other form o	f evaluation. G	enerally, there will			
be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA m	narks to be awarded			
will be the average of three tests					
- Quizzes/mini tests (4 marks)					
- Mini Project / Case Studies (8 Marks)					
- Activities/Experimentations related to courses (8 Marks)					
SEE Assessment:					
- Question paper for the SEE consists two parts i.e. Part A and Part B.	Part A is comp	ulsory and consists			
of objective type or short answer type questions of 1 or 2 marks early a state of the state of t	ach for total of	20 marks covering			
the whole syllabus.					
- Part B also covers the entire syllabus consisting of five questions	having choice	s and may contain			
sub-divisions, each carrying 16 marks. Students have to answer five	e full questions	5.			
- One question must be set from each unit. The duration of examinat	tion is 3 hours.				

	CO,PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	-	-	-	-	-	-	-	-	-	-
CO2	3	3	-	-	3	-	-	-	-	-	-	-
CO3	-	-	-	-	-	3	-	-	-	-	-	-
CO4	-	-	3	-	-	2	3	-	-	-	-	3
CO5	3	3	3	-	3	-	2	-	-	-	-	3
High,3, I	High,3, Medium,2, Low,1											

Open Elective-I

	Semester: VI					
	BASICS O	F AEROSPACE	ENGINEERING			
Co	urse Code:	MVJ22AS641	CIE Marks:50			
Credits:		3 L:T:P:S:	SEE Marks: 50			
	3:0:0:0					
Но	Hours: 40L SEE Duration: 3 Hrs					
Co	urse Learning Objectives: The	students will be a	ble to			
1	Understand basic principles of Aircraft and the history of space vehicles.					
2	Acquire the basic principles of	flight.				
3	Learn the basic principle of Ai	rcraft & Rocket pr	ropulsion.			
4	Understand the Aircraft Struct	ares and Materials.				
5	Acquire the basics of Aircraft	Instruments & syst	ems.			
UNI	JNIT-I L2					
Intro	duction to Aircrafts: History of	of aviation, Interr	International Standard atmosphere, 8 Hrs			
Atmo	osphere and its properties, Te	mperature, pressu	re and altitude relationships,			

Classification of aircrafts, V/STOL machines.

Introduction to Space Flight: History of Space Flight & spacecraft technologies Difference between space and atmosphere, upper atmosphere, Introduction to basic orbital mechanics, types of Orbits (LEO, MEO, Geosynchronous and Geostationary, Polar orbits), Kepler's Laws of planetary motion.

Laboratory Sessions/ Experimental learning: Ornithopter modelling, Paper plane. Applications: Environmental conditions

UNIT-IIL2Basic principles of flight: Significance of speed of sound, Propagation of sound, Mach
number, subsonic, transonic, supersonic, hypersonic flows, Bernoulli's theorem,
Aerodynamic forces and moments on an Airfoil, Lift and drag components, lift curve,
drag curve, types of drag, factors affecting lift and drag; Centre of pressure and its
significance, Aerodynamic centre, Aspect ratio, Airfoil nomenclature, Basic
characteristics of airfoils, NACA nomenclature, Simple problems on lift and drag.
Laboratory Sessions/ Experimental learning: Aerodynamics lab Applications: Aircraft
Flow dynamicsUNIT-IIIL2

Aircraft Propulsion: Introduction, Classification, Piston Engine & its application,8 HrsBrayton cycle, Principle of operation of Turboprop, turbojet and turbofan engines,

Introduction	to ramjets and scramjets; performance characteristics.						
Rocket Prop	ulsion: Principles of operation of rocket, Classification of Rockets, Types						
of rockets and typical applications, Introduction to Space Exploration.							
Laboratory Sessions/ Experimental learning: Propulsion lab							
Applications:	Aircraft engines						
UNIT-IV	L2						
Aircraft and	Spacecraft - Structures and Materials:	8 Hrs					
Introduction-	Introduction- General types of construction, Monocoque, Semi-Monocoque and						
Geodesic stru	actures. Typical wing and fuselage structure; Metallic and non-metallic						
materials for	aircraft application. Use of aluminium alloy, titanium, stainless steel and						
composite ma	aterials. Materials selection for spacecraft application.						
Laboratory S	essions/ Experimental learning: Structures lab						
Applications:	Material & Structural Dynamics of Aircraft						
UNIT-V	L2						
Instrument:	Instrument Displays, Introduction to Navigation Instruments, Basic Air	8 Hrs					
data systems & Probes, Mach meter, Air speed indicator, Vertical speed indicator,							
Altimeter, G	yro based instruments, Introduction to spacecraft instruments. Inertial &						
GPS based se	nsors.						
Systems: Int	roduction to Hydraulic and pneumatic systems, Air Conditioning and						
Cockpit press	surization system, Generation and distribution of Electricity on board the						
airplane, Airc	raft Fuel System, Fire Protection, Ice and Rain Protection System						
Laboratory S	essions/ Experimental learning: Instrumentation lab.						
Applications:	Aircraft Instruments.						
Course Outo	omes: After completing the course, the students will be able to						
CO313.1.1	Differentiate the different concepts of aircrafts and spacecrafts in flight	ıt.					
CO313.1.2	Describe the Principle of aviation and space flight.						
CO313.1.3	Explain the Fundamentals of Rocket Propulsion and Aircraft Propulsion	on.					
CO313.1.4	Apply the concepts of aircraft materials and structures.						
CO21215	Appreciate the complexities involved during development of flight veh	nicles					
CO313.1.5	systems.						
Textbooks:	1						
1	John D. Anderson, "Introduction to Flight", McGraw-Hill Education, 8th ed	lition,					
1	2015, ISBN: 978-0078027673.						
2	Lalit Gupta and O P Sharma, Fundamentals of Flight Vol-I to Vol-IV, Him	alayan					
2	Books. 2006, ISBN: 9788170020752						

1							
1. Ian Moir, Allan Seabridge, "Aircraft Systems: Mechanical, Electrical and							
	Subsystems Integration", John Wiley & Sons, 3 rd edition, 2011, ISBN: 9781119965206						
	Sutton G.P., "Rocket Propulsion Elements", John Wiley, New York, 9 th edition,2016,ISBN: 9781118753910						

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE): Total marks: 50+50=100

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the entire syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	0	0	0	1	3	0	0	0	0	3
CO2	3	3	2	0	0	1	3	0	0	0	0	3
CO3	3	3	2	0	0	1	3	0	0	0	0	3
CO4	3	3	2	0	0	1	3	0	0	0	0	3
CO5	3	0	2	0	0	1	3	0	0	0	0	3
High-3, Med	High-3, Medium-2, Low-1											

Course Title	INTRODUCTION TO SPACE VEHICLES AND SATELLITE TECHNOLOGIES.	Semester	VI
Course Code	MVJ22AS642	CIE	50
Total No. of Contact Hours	40 L: T : P :: 3 :0 : 0	SEE	50
No. of Contact Hours/week	4	Total	100
Credits	3	Exam. Duration	3 Hrs.

The course objective is to:

- 1. Gain basic knowledge of developments in history of spacecraft flight.
- 2. Understand the basic rocket propulsion fundamentals.
- 3. Learn the spacecraft basic structure and materials used.
- 4. Understand the satellite mission and configuration.
- 5. Acquire knowledge of satellite attitude and orbit control

Module 1	L2	08 Hrs.
Introduction to Space Flight: History of Space Flight & spacecraft technologies	Difference betw	een space
and atmosphere, upper atmosphere, Introduction to basic orbital mechanics, type	s of Orbits (LE	O, MEO,

Geosynchronous and Geostationary, Polar orbits), Kepler's Laws of planetary motion.

Laboratory Sessions/ Experimental learning: aerospace simulation lab

Applications: Spacecraft technologies

Module 2	L2	08 Hrs.
----------	----	---------

Rocket Propulsion Fundamentals

Classification of rockets-principle of rocket propulsion-analysis of ideal chemical rocket, The chemical rocket, solid propellant rockets- grain configuration, liquid propellant rockets, hybrid rockets, cryogenic rockets nuclear propulsion, electro dynamic propulsion, photon propulsion, propulsive efficiency

Laboratory Sessions/ Experimental learning:

1.Make Sugar rocket by using potassium nitrate (small size)

Applications: Rockets and missile manufacturing industries

Module 3	L2	08 Hrs.
Spacecraft - Structures and Materials:		

Spacecraft - Structures and Materials:

Loads experienced by spacecraft. Introduction- General types of construction, Monocoque, Semi-Monocoque and Geodesic structures. Typical spacecraft structure; Metallic and non-metallic materials for spacecraft application. Use of aluminium alloy, titanium, stainless steel and composite materials. Materials selection for spacecraft application.

Laboratory Sessions/ Experimental learning: Structures lab

Applications: Material & Structures of spacecraft

Module 4	L2	08 Hrs.
Satellite Mission and Configuration: Mission overview, requirements for d	lifferent missio	ons, space

environment, spacecraft configuration, spacecraft bus, payloads, requirements and constraints, initial configuration decisions and trade-offs, spacecraft configuration process, broad design of spacecraft bus, subsystem layout, and types of satellites, constellations, and applications.

Laboratory Sessions/ Experimental learning: Spacecraft Simulation Lab

Applications: Spacecraft mission analysis and overview of configuration process.

	Module 5	L2	08 Hrs.
--	----------	----	---------

Attitude and Orbit Control System: Coordinate systems, Requirements of attitude and orbit control systems

(AOCS), Environment effects, Attitude stabilization, Attitude sensors and actuators,

Laboratory Sessions/ Experimental learning: Aerospace simulation lab

Applications: Place a satellite into orbit and bring the deviated satellite back into its correct orbit

Course outcomes:

Upon completion of the course, students will be able to:

CO313.2.1	Explain developments in history of spacecraft flight.
CO313.2.2	Analyse the basic rocket propulsion.
CO313.2.3	Explain the spacecraft basic structure and materials used
CO313.2.4	Identify satellite mission and configuration.
CO313.2.5	Analyze satellite attitude and orbit control

Textbooks:

1	E. Stuhlinger and G. Mesmer. Space Science and Engineering. 1st Edition, McGraw-Hill, New
T	York (1965).

2 Megson, T.H.G., "*Aircraft Structures for Engineering Students*", Edward Arnold, 6thEdition 2017, Elsevier Aerospace Engineering series, ISBN-13: 978-0081009147, ISBN10: 9780081009147.

Reference Books

1.	Sutton G.P., "Rocket Propulsion Elements", John Wiley, New York, 9th edition,2016, ISBN:
	9781118753910

2. Marcel J.S., Spacecraft Dynamics and control, Cambridge University Press, UK, 2000

CIE Assessment:

CIE is based on quizzes, tests, assignments/seminars, and any other form of evaluation. Generally, there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of three tests.

- Quizzes/mini tests (4 marks)
- Mini Project / Case Studies (8 Marks)
- Activities/Experimentations related to courses (8 Marks)

SEE Assessment:

- i. Question paper for the SEE consists of two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.
- ii. Part B also covers the entire syllabus consisting of five questions having choices and may contain subdivisions, each carrying 16 marks. Students must answer five full questions.
- iii. One question must be set from each unit. The duration of examination is 3 hours.

	CO, PO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	1	1	1	1	1	1	1	1	1	1	1	1
CO2	2	2	1	1	1	1	1	1	1	1	1	1	1	1
CO3	2	2	1	1	1	1	1	1	1	1	1	1	1	1
CO4	2	2	1	1	1	1	1	1	1	1	1	1	1	1
CO5	2	2	1	1	1	1	1	1	1	1	1	1	1	1
High,3, N	Medium,2	, Low,	1											

Semester VI									
INTRODUCTION TO ROCKETS AND MISSILES									
Course MVJ22AS643 CIE Marks:50									
Code:									
Credits 3 : L:T:P:S: 3:0:0:0 SEE Marks: 50									
Hours: 40 Hours SEE Duration: 3 Hrs									
Course Lea	rning Objectives: The students w	rill be able to							
• Basi	cs of Rockets and Missiles is a	an elective course offered in 5th semester Aeronautical							
Eng	ineering curriculum.								
• This subject covers extensively regarding design and analysis of rockets and missiles.									
• The different types of Airframe components, types of propulsion system, and types of guidance									
syst	ems are also covered in this subj	ect.							

• This subject will make student to understand advanced problems facing in launch vehicles and missiles.

Module 1	L2
INTRODUCTION	8 Hrs
Space launch Vehicles and military missiles, function, types, role, mission, mission profile, thrust	
profile, propulsion system, payload, staging, control and guidance requirements, performance	
measures, design, construction, operation, similarities and differences. Some famous space launch	
vehicles and strategic missiles.	
Applications:	
Module 2 L3	
Solid Propellant Rocket Motor Systems: Solid Propellant rocket motors, principal features,	8
applications. Solid propellants, types, composition, properties, performance. Propellant grain,	Hrs
desirable properties, grain configuration, preparation, loading, structural design of grain. Liners,	
insulators and inhibitors, function, requirements, materials. Rocket motor casing - materials.	
Nozzles, types, design, construction, thermal protection. Igniters, types, construction. Description	
of modern solid boosters I) Space Shuttle SRB, II) the Arienne SRB	
Liquid Propellant Rocket Motor Systems: Liquid propellants, types, composition, properties,	
performance. Propellant tanks, feed systems, pressurization, turbo-pumps, valves and feed lines,	
injectors, starting and ignition. Engine cooling, support structure. Control of engine Starting and	
thrust build up, system calibration, integration and optimisation - safety and environmental	
concerns. Description of the space shuttle main engine. Propellant slosh, propellant hammer,	
geysering effect in cryogenic rocket engines.	
Applications:	
Module 3 L2	
AERODYNAMICS OF ROCKETS AND MISSILES	8

Classification of missiles. Airframe components of rockets and missiles, Forces acting on	a missile Hrs				
while passing through atmosphere, method of describing aerodynamic forces and moment					
drag forces, drag estimation, body upwash and downwash in missiles. Rocket dispersion, re-entry					
body design considerations.					
Applications:					
Module 4	L2				
LAUNCH VEHICLE DYNAMICS & ATTITUDE CONTROL OF ROCKETS	8				
Launch Vehicle Dynamics: Tsiolskovsky's rocket equation, range in the absence of gravity					
motion in the earth's gravitational field, inclined motion, flight path at constant pitch angle	-				
in the atmosphere, the gravity turn – the culmination altitude, multi staging. Earth launch tr					
- vertical segment, the gravity turn, constant pitch trajectory, orbital injection. Actual laund	-				
trajectories, types. Examples, the Mu 3-S-II, Ariane, Pegasus launchers. Reusable launch	venicies,				
future launchers, launch assist technologies.	C TTI I				
Attitude Control Of Rockets And Missiles: Rocket Thrust Vector Control – Methods of					
Vector Control for solid and liquid propulsion systems, thrust magnitude control, thrust ter	mination;				
stage separation dynamics, separation techniques					
Applications					
	L2				
ROCKET TESTING AND MATERIALS	8				
Rocket Testing: Ground Testing and Flight Testing, Types of Tests facilities and safeguards,					
monitoring and control of toxic materials, instrumentation and data management. Ground	d Testing,				
Flight Testing, Trajectory monitoring, post -accident procedures. Description of atypi	cal space				
launch vehicle launch procedure.					
Materials: Criteria for selection of materials for rockets and missiles, requirements for	choice of				
materials for propellant tanks, liners, insulators, inhibitors, at cryogenic temperatures, requ	uirements				
of materials at extremely high temperatures, requirements of materials for Thermal prote	ection and				
for pressure vessels.					
Applications:					
Course Outcomes: After completing the course, the students will be able to	I				
CO313.3.1 Identify the types of space launch vehicles and missiles.					
CO313.3.2 Distinguish the solid and liquid propellant motors.					
CO313.3.3 Classify different types of missiles, understand missile aerodynamics.					
CO313.3.4 Acquire the knowledge on launch vehicle dynamics, Attitude control					
CO313.3.5 Identify different types of materials used in rockets, missiles and acquire knowledg rocket testing					
Textbooks:					
Textbooks: 1 George P Sutton and Oscar Biblarz,' Rocket Propulsion Element', John Wiley and	Sons Inc,7th				

Ref	Reference Books										
1.	SS Chin, 'Missile Configuration Design'.										
2.	Cornelisse, J.W., Schoyer H.F.R. and Wakker, K.F., Rocket Propulsion and Space-Flight										
	Dynamics, Pitman, 1979,ISBN-13: 978-0273011415										
3.	Turner, M.J.L., Rocket and Spacecraft propulsion, Springer, 3rd edition, 2010, ISBN-13: 978-										
	3642088698.										

Continuous Internal Evaluation (CIE): Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE): Theory for 50 Marks

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Total marks: 50+50=100

2

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	1	1	1	1	1	1	1	3
CO2	3	3	3	3	1	1	1	1	1	1	1	3
CO3	3	3	3	3	1	1	1	1	1	1	1	3
CO4	3	3	3	3	1	1	1	1	1	1	1	3
CO5	3	3	3	3	1	1	1	1	1	1	1	3
High-3, N	ledium-	2, Low-	1	•	•			•			•	•

Course Title	Airline and Airport management	Semester	VI
Course Code	MVJ22AS644	CIE	50
Total No. of Contact Hours	40	SEE	50
No. of Contact Hours/week	4	Total	100
Credits	3	Exam. Duration	3
	5		Hrs.

The course objective is to:

- 1. To understand and acquire a sound understanding on basic management aspect of airport and airlines system
- 2. To understand and acquire a sound understanding on Airports layout
- 3. To understand and acquire a sound understanding on Air traffic control
- 4. To understand and acquire a sound understanding on Landing procedure
- 5. To understand and acquire a sound understanding on Scheduling
- 6. Flight planning and other economic and commercial activities.

		8
Module 1	L2	Ure
		1115.

AIRPORTS AND AIRPORT SYSTEMS Introduction-Airport Management on an international level- Rules that govern airport management- Organization and administration Airport ownership and organization, responsibilities of Airport manager. Component of an airport-The Airfield-Navigation aids (NAVAIDS) located on airfields-Air traffic Control and surveillance facilities located on the airfield.

Laboratory Sessions/ Experimental learning: Case study on Operating at scale

Applications: Airport Management includes all airport and airline operations such as managing, supervising, maintaining, and coordinating

		8
Module 2	L2	LIng
	1	Hrs.

AIRPORT OPERATIONS MANAGEMENT: Airspace and air traffic management, Airport operations management under FAR Part 139, Airport terminals and ground access, Airport security and Administration - Security at commercial service airports-Security at general aviation airports.

Laboratory Sessions/ Experimental learning: Case study on Passenger transportation Applications: airport operations encompass all the processes involved at an airport to ensure your experience runs as smoothly as possible.

Module 3						L3	8 Hrs.
AIRPORT	ADMINISTRATION	AND	FINANCIAL	MANAGEMENT,	CAP	ACITY AND I	DELAY

concept of Airport planning and financial accounting-Revenue strategies at commercial airports- Pricing of airport facilities and services, , The future of airport management. Defining capacity-Factors affecting capacity and delay-estimating capacity-Simulation Models- Defining delay-Estimating delay-Analytical estimates of delay.

Laboratory Sessions/ Experimental learning:

Applications: Airport Management includes all airport and airline operations such as managing, supervising, maintaining, and coordinating

Module 4	L3	8
		Hrs.
INTRODUCTION TO AIRLINE PLANNING: Structure of Airline Industry (Dor	nestic & Internati	onal) -
Growth and Regulation-Deregulation-Major and National Carriers-Regional Carriers-	Economic characte	eristics
of the Airlines Airline Planning Process-Airline Terminology and Measures: airline	demand, airline s	supply,
average load factor, unit revenue, Airline Planning Decisions		

Laboratory Sessions/ Experimental learning: Case study on Operating at scale **Applications**: Airline planning and scheduling

Appi		. Annue planning and scheduling		8
Modu	ule 5		L3	o Hrs.
FLEI	ET PLA	NNING AND ROUTE EVALUATION: Factors in Fleet Planning-I	Hub-and-Spoke S	ystem-
Techr	nical Asp	ects-Fleet Rationalization-Fleet Commonality-Long Range Aircraft-No	ise Restrictions- I	Factors
in De	sign and	Development-Fleet Planning Process; Route Evaluation in Hub Network	orks-Route profit	tability
estim	ation issu	es-Demand Driven Dispatch.		
Appl super	lications	essions/ Experimental learning: route planning evaluation : Airport Management includes all airport and airline operation naintaining, and coordinating	ns such as man	aging,
		on of the course, students will be able to:		
^	313.4.1	Understand the functioning of the airline industry.		
COS)13.4.1	onderstand the functioning of the arrine industry.		
CO3	313.4.2	Focus on the underlying marketing, financial, operational and competi	tive factors that	
		influence airline viability.		
CO3	313.4.3	Investigate how the sensitivity of airline profitability impacts airline m	nanagement decisi	ons.
CO3	313.4.4	Analyse the principles of airline economics, costs and pricing.		
CO3	313.4.5	The student and assess the individual characteristics of low-cost carrie airlines	rs and business of	nly
Text	books:			
1	Airpo	rt Planning and Management 6/E 0006 Edition by Young Seth, M	c GRAW Hills	
2	Airpo	rt Management by Ravindran P.C.K, Asian Law House.		
Refe	rence Bo	ooks		
1.	Aviatio	on Maintenance Management, Second Edition by Harry A. Kin	nison, Tariq Si	ddiqui
	Publish	ned: November 13th 2012, ISBN: 9780071805025		
2.	Air Tra	ansportation: A Management Perspective (Fifth Edition) by Alexa	nder T.Wells and	d John
	G.Wen	sveen, Brooks Cole,2003		
3.	Busine	ss and Corporate Aviation Management, Second Edition, John	J. Sheehan Publ	ished:
	April 2	3rd 2013 and ISBN: 9780071801904		
4.	Airpor	t Management by C. Daniel Prather		
	1			

CIE Assessment:

CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation. Generally, there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of three tests

- Quizzes/mini tests (4 marks)
- Mini Project / Case Studies (8 Marks)
- Activities/Experimentations related to courses (8 Marks)

SEE Assessment:

- Question paper for the SEE consists of two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.
- Part B also covers the entire syllabus consisting of five questions having choices and may contain subdivisions, each carrying 16 marks. Students have to answer five full questions.
- One question must be set from each unit. The duration of examination is 3 hours.

					CO, 1	PO Ma	pping							
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	3	2	1	1	2	1	2	2	2	3	1	1	1
CO2	2	3	2	1	1	2	1	2	2	2	3	1	1	1
CO3	2	3	2	1	1	2	1	2	2	2	3	1	1	1
CO4	2	3	2	1	1	2	1	2	2	2	3	1	1	1
CO5	2	3	2	1	1	2	1	2	2	2	3	1	1	1
High,3, 1	Mediur	n,2, Lo	w,1											

Course Title	DESIGN, MODELING AND ANALYSIS LAB	Semester	VI
Course Code	MVJ22ASL66	CIE	50
Total No. of Contact Hours	40 L:T:P:0:0:2	SEE	50
No. of Contact Hours/week	03	Total	100
Credits	01	Exam. Duration	3 Hours

Course objective is to:

- Understand the procedure to draw the geometric models of symmetric, cambered aerofoil, nozzle, wing and other structures.
- Acquire the knowledge of types of meshing.
- Understand the basics of flow and stress analysis.

SUNG	Experiment Name	RBT	Hamme
Sl No	Experiment Name	Level	Hours
1	Study of FEA package. Modeling and stress analysis of Trusses	L3	03
2	Bars of constant cross section area, tapered cross section area and stepped	L3	03
	bars		
3	Beams: Cantilever, simply supported, overhanging beams with self-	L3	03
	weight, Concentrated loads, UDL, Direct moment and UVL with different		
	support conditions		
4	Stress analysis of rectangular plate with circular hole	L3	03
5	Stress analysis of taper plate with circular hole	L3	03
6	Stress analysis under defined load conditions on a spar of 3D wing.	L3	03
7	Stress analysis under defined load conditions in a bulkhead.	L3	03
8	Stress analysis 3D wing.	L3	03
9	Dynamic Analysis: Modal analysis of Beams	L3	03
10	Geometric Modeling and Mesh Generation of 2-D Convergent	L3	03
	Divergent Nozzle and Analyses of Flow for Adiabatic Conditions.		
11	Thermal Analysis of 2-D pipe for conduction and convection heat transfer	L3	03
12	Heat transfer analysis through composite plate.	L3	03
13	Study of FEA package. Modeling and stress analysis of Trusses	L3	03
14	Bars of constant cross section area, tapered cross section area and stepped	L3	03
	bars		
Course ou	itcomes:	I	
CO315.1	Draw the geometric models of symmetric, cambered aerofoil, nozzle, win structures.	g and othe	r
CO315.2	Apply different types of meshing.		

CO315.3	Perform the flow and stress analysis.
---------	---------------------------------------

CO-PO Mappin	ng											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3	1	1	1	1	1	1	1
CO2	3	3	3	3	3	1	1	1	1	1	1	1
CO3	3	3	3	3	3	1	1	1	1	1	1	1
High-3, Medium	n-2, Lov	<i>w</i> -1										

Ability Enhancement Course / Skill Enhancement Course-V

Course Title	9		As	tronom	ıy – Ex	plore th	ie spac	e				
Course Cod	e		М	VJ22A	6053			CIE			50 M	arks
Total No. of	Contact H	ours	30	(L: T:	P: 1: 0	: 2)		SEE	1		50 M	arks
No. of Conta	act hours/w	veek	03					Tota	ıl		100 N	Iarks
Credits			2					Exa	m. Dur	ation	2 Ho	urs
• To e	erstand the ompower stu	dents w	ith skill	ls of cre	ativity,	innovat		itical th	inking,	design t	hinking,	social
	eross-cultur elp build a					adershij	þ					
Module 1. G	alaxies and	d Obser	ving th	e Univ	erse		R	BT Lev	vel L3		8 Hrs.	
Observing th	e sky, Obse	rvation	s outsid	e earth'	s atmos	phere, (Drbits a	and grav	vity, Th	e milky v	way gala	xy, Types
of galaxies, l	Properties o	f Galaxi	ies, Evo	olution a	and dist	ribution	of gala	axies.				
Module 2. A	stronomica	al Instr	uments				R	BT Lev	vel L3		7	Hrs.
Optical Teles	scope: Theo	retical v	vorking	princip	le of op	tical tele	escope.	Eleme	ntary ge	eometrica	al optics,	refractive
index: reflec	tion and ref	raction	at a pla	ne bour	ndary; te	otal inte	rnal ref	flection	. Image	e formati	on by re	flection a
muer, renee			-						0			
			•	vex mi	rrors. R	eal and	virtual	images	Ū	nification	. Image	
a spherical b	oundary; co	oncave a	and con					•	Ū	nification	. Image	
a spherical b by refraction	oundary; co at a spheric	oncave a	and con					nses.	Ū		-	
a spherical b by refraction Module 3. 1	oundary; co at a spherio Project wor	oncave a cal bour k	and con	conver	rging ar	nd diver	ging lei	nses.	s. Magr	l L3	15	formation
a spherical b by refraction Module 3. 1 Fabrication o	oundary; co at a spheric Project wor of small opti	oncave a cal bour k ical tele	and con adary by scope (1	conver Reflecti	rging ar	nd diver	ging ler	nses. RB s, meas	s. Magr	l L3	15	formation
a spherical b by refraction Module 3. 1 Fabrication o Course outc	oundary; co at a spheric Project wor of small opti omes: Afte	oncave a cal bour k ical tele r the co	and con adary by scope (l mpletio	Reflecti	rging ar ve teles urse, stu	nd diver	ging lei aterials	nses. RB s, meas ble to	s. Magr	l L3	15	formation
a spherical b by refraction Module 3. 1 Fabrication o Course outo CO316.5.1	oundary; co at a spheric Project wor of small opti omes: Afte	oncave a cal bour k ical tele r the cor e and ur	and con adary by scope (I mpletio	Reflecti n of cou	ve teles urse, stu	nd diver scope, m idents w ntals of	ging lei aterials ill be a Astrone	nses. RB s, meas ble to omy	S. Magr	l L3 ts, lens E	15 Etc)	formatior Hrs.
a spherical b by refraction Module 3. 1 Fabrication of Course outo CO316.5.1 CO316.5.2	oundary; co at a spheric Project wor of small opti omes: Afte Familiarize	oncave a cal bour k ical tele r the cor e and ur knowled	and con adary by scope (I mpletio aderstan lge to se	Reflecti n of cou nd the fu elect a s	ve teles urse, stu indame	nd diver scope, m idents w ntals of materia	ging ler aterials ill be a Astronal	nses. RB s, meas ble to omy e fabric	S. Magr T Leve uremen	l L3 ts, lens E f small o	15 Etc)	formatior Hrs.
a spherical b by refraction Module 3. 1 Fabrication of Course outo CO316.5.1 CO316.5.2 CO316.5.3	oundary; co at a spheric Project wor of small opti omes: Afte Familiarize Adequate I Understand	oncave a cal bour k ical tele r the cor e and ur knowled	and con adary by scope (I mpletio aderstan lge to se	Reflecti n of cou nd the fu elect a s	ve teles urse, stu indame	nd diver scope, m idents w ntals of materia	ging ler aterials ill be a Astronal	nses. RB s, meas ble to omy e fabric	S. Magr T Leve uremen	l L3 ts, lens E f small o	15 Etc)	formatior Hrs.
a spherical b by refraction Module 3. I Fabrication of Course outo CO316.5.1 CO316.5.2 CO316.5.3 Textbooks:	oundary; co at a spheric Project wor of small opti omes: Afte Familiarize Adequate I Understand	oncave a cal bour k ical tele r the con e and ur knowled d the inn	and con adary by scope (I mpletion aderstan alge to se novative	conver Reflecti n of cou ad the fu elect a s e produc	rging ar ve teles urse, stu indame specific ct devel	nd diver scope, m idents w ntals of materia	ging len aterials ill be a Astrona l for the cycle o	RB s, meas ble to omy e fabric of Optio	s. Magr T Leve uremen	l L3 its, lens E f small o escope	15 Etc)	formatior Hrs.
a spherical b by refraction Module 3. I Fabrication of Course outo CO316.5.1 CO316.5.2 CO316.5.3 Textbooks: 1 Johnso	oundary; co at a spheric Project wor of small opti omes: Afte Familiarize Adequate I Understand	oncave a cal bour k ical tele r the cor e and ur knowled d the inn otics and	and con adary by scope (I mpletio aderstan lge to se novative	Reflecti n of cou nd the fu elect a s e produc	rging ar ve teles urse, stu indame specific ct devel ments"	nd diver scope, m idents w ntals of materia lopment	ging len haterials ill be a Astrona l for the cycle of Publica	nses. RB s, meas ble to omy e fabric of Optic ations, T	S. Magr T Leve uremen cation o cal Tele	l L3 Its, lens E f small o escope w York.	15 Etc)	formation Hrs.
a spherical b by refraction Module 3. 1 Fabrication of Course outo CO316.5.1 CO316.5.2 CO316.5.3 Textbooks: 1 Johnso 2 Whitlo	oundary; co at a spheric Project wor of small opti omes: Afte Familiarize Adequate I Understand	oncave a cal bour k ical tele r the cor e and ur knowled d the inn otics and liam K.	and con adary by scope (I mpletio aderstan lge to so novative l Optica "Labor	Reflecti n of cou nd the fu elect a s e produc	rging ar ve teles urse, stu indame specific ct devel ments"	nd diver scope, m idents w ntals of materia lopment	ging len haterials ill be a Astrona l for the cycle of Publica	nses. RB s, meas ble to omy e fabric of Optic ations, T	S. Magr T Leve uremen cation o cal Tele	l L3 Its, lens E f small o escope w York.	15 Etc)	formation Hrs.
a spherical b by refraction Module 3. 1 Fabrication of Course outo CO316.5.1 CO316.5.2 CO316.5.3 Textbooks: 1 Johnso 2 Whitlo	oundary; co at a spheric Project wor of small opti omes: Afte Familiarize Adequate I Understand on B. K "Op ock LA, Pul	oncave a cal bour k ical tele r the cor e and ur knowled d the inn otics and liam K.	and con adary by scope (I mpletio aderstan lge to so novative l Optica "Labor	Reflecti n of cou nd the fu elect a s e produc	rging ar ve teles urse, stu indame specific ct devel ments"	nd diver scope, m idents w ntals of materia lopment	ging len haterials ill be a Astrona l for the cycle of Publica	nses. RB s, meas ble to omy e fabric of Optic ations, T	S. Magr T Leve uremen cation o cal Tele	l L3 Its, lens E f small o escope w York.	15 Etc)	formation Hrs.
a spherical b by refraction Module 3. I Fabrication of Course outo CO316.5.1 CO316.5.2 CO316.5.3 Textbooks: 1 Johnso 2 Whitlo telesco Reference	oundary; co at a spheric Project wor of small opti omes: Afte Familiarize Adequate I Understand on B. K "Op ock LA, Pul	oncave a cal bour k ical tele r the cor e and ur knowled d the inn otics and liam K. erse. 200	and con adary by scope (I mpletio aderstan lge to so novative l Optica "Labor 08.	Reflecti n of cou nd the fu elect a s e produc al Instru	rging ar ve teles urse, stu indame specific ct devel ments"	nd diver scope, m idents w ntals of materia opment , Dover s for intr	ging len aterials ill be a Astronal for the cycle of Publica	nses. RB s, meas ble to omy e fabric of Optic ations, T	S. Magr T Leve uremen cation o cal Tele Inc. Ne	l L3 Its, lens E f small o escope w York.	15 Etc) optical Te 2001. h a small	formation Hrs. elescope
a spherical b by refraction Module 3. 1 Fabrication of Course outo CO316.5.1 CO316.5.2 CO316.5.3 Textbooks: 1 Johnso 2 Whitlo telesco Reference 1 1. Forest	oundary; co at a spheric Project wor of small opti omes: Afte Familiarize Adequate I Understand on B. K "Op ock LA, Pul ope". iUnive Books	oncave a cal bour k ical tele r the cor e and ur knowled d the inn otics and liam K. erse. 200	and con adary by scope (I mpletio aderstan lge to so novative l Optica "Labor 08.	Reflecti n of cou nd the fu elect a s e produc al Instru	rging ar ve teles urse, stu indame specific ct devel ments"	nd diver scope, m idents w ntals of materia opment , Dover s for intr	ging len aterials ill be a Astronal for the cycle of Publica	nses. RB s, meas ble to omy e fabric of Optic ations, T	S. Magr T Leve uremen cation o cal Tele Inc. Ne	l L3 Its, lens E f small o escope w York.	15 Etc) optical Te 2001. h a small	formation Hrs. elescope
a spherical b by refraction Module 3. 1 Fabrication of Course outo CO316.5.1 CO316.5.2 CO316.5.3 Textbooks: 1 Johnso 2 Whitlo telesco Reference 1 1. Forest Revised	oundary; co at a spheric Project wor of small opti omes: Afte Familiarize Adequate I Understand on B. K "Op ock LA, Pul ope". iUnive Books Ray Moulto	oncave a cal bour k ical tele r the cor e and ur knowled d the inn otics and liam K. erse. 200 on, "An 018.	and con adary by scope (I mpletio aderstan lge to se novative d Optica "Labor 08. Introdu	Reflecti n of cou ad the fu elect a s e produc al Instru ratory ez	ve teles urse, stu indame specific ct devel ments" xercises	nd diver scope, m idents w ntals of materia lopment , Dover s for intr nomy H	ging len aterials ill be a Astron l for the cycle o Publica oductor	nses. RB s, meas ble to omy e fabric of Option ations, T ry radion er", Th	S. Magr T Leve uremen cation o cal Tele Inc. Ne astron	el L3 Its, lens E f small o escope w York. omy with nillan Co	15 Etc) optical Te 2001. h a small	formation Hrs. elescope radio New and
a spherical b by refraction Module 3. 1 Fabrication of Course outo CO316.5.1 CO316.5.2 CO316.5.3 Textbooks: 1 Johnso 2 Whitlo telesco Reference 1 1. Forest Revised 2. Sally F	oundary; co at a spheric Project wor of small opti omes: Afte Familiarize Adequate I Understand on B. K "Op ock LA, Pul ope". iUnive Books Ray Moulto d Edition, 20	oncave a cal bour k ical tele r the cor e and ur knowled d the inn otics and liam K. erse. 200 on, "An 018.	and con adary by scope (I mpletio aderstan lge to se novative d Optica "Labor 08. Introdu	Reflecti n of cou ad the fu elect a s e produc al Instru ratory es action to Beginne	ve teles urse, stu indame specific ct devel ments" xercises	nd diver scope, m idents w ntals of materia lopment , Dover s for intr nomy H e Introdu	ging len aterials ill be a Astron l for the cycle o Publica oductor	nses. RB s, meas ble to omy e fabric of Option ations, T ry radion er", Th	S. Magr T Leve uremen cation o cal Tele Inc. Ne astron	el L3 Its, lens E f small o escope w York. omy with nillan Co	15 Etc) optical Te 2001. h a small	formation Hrs. elescope radio New and
a spherical b by refraction Module 3. 1 Fabrication of Course outo CO316.5.1 CO316.5.2 CO316.5.3 Textbooks: 1 Johnso 2 Whitlo telesco Reference 1 1. Forest Revised 2. Sally F Celesti	oundary; co at a spheric Project wor of small opti omes: Afte Familiarize Adequate I Understand on B. K "Op ock LA, Pul ope". iUnive Books Ray Moulte d Edition, 20 R. Ball, "As al Bodies",	oncave a cal bour k ical tele r the cor e and ur knowled d the inn otics and liam K. erse. 200 on, "An 018.	and con adary by scope (I mpletio aderstan lge to se novative d Optica "Labor 08. Introdu	Reflecti n of cou ad the fu elect a s e produc al Instru ratory es action to Beginne	ve teles urse, stu indame specific ct devel ments" xercises	nd diver scope, m idents w ntals of materia lopment , Dover s for intr nomy H e Introdu	ging len aterials ill be a Astron l for the cycle o Publica oductor	nses. RB s, meas ble to omy e fabric of Option ations, T ry radion er", Th	S. Magr T Leve uremen cation o cal Tele Inc. Ne astron	el L3 Its, lens E f small o escope w York. omy with nillan Co	15 Etc) optical Te 2001. h a small	formation Hrs. elescope radio New and
a spherical b by refraction Module 3. 1 Fabrication of Course outo CO316.5.1 CO316.5.2 CO316.5.3 Textbooks: 1 Johnso 2 Whitlo telesco Reference 1 1. Forest Revised 2. Sally F	oundary; co at a spheric Project wor of small opti omes: Afte Familiarize Adequate I Understand on B. K "Op ock LA, Pul ope". iUnive Books Ray Moulte d Edition, 20 R. Ball, "As al Bodies",	oncave a cal bour k ical tele r the cor e and ur knowled d the inn otics and liam K. erse. 200 on, "An 018.	and con adary by scope (I mpletio aderstan lge to se novative d Optica "Labor 08. Introdu	Reflecti n of cou ad the fu elect a s e produc al Instru ratory es action to Beginne	ve teles urse, stu indame specific ct devel ments" xercises	nd diver scope, m idents w ntals of materia lopment , Dover s for intr nomy H e Introdu	ging len aterials ill be a Astron l for the cycle o Publica oductor	nses. RB s, meas ble to omy e fabric of Option ations, T ry radion er", Th	S. Magr T Leve uremen cation o cal Tele Inc. Ne astron	el L3 Its, lens E f small o escope w York. omy with nillan Co	15 Etc) optical Te 2001. h a small	formation Hrs. elescope radio New and

CO2	3	3	3	3	3	1	1	1	1	1	1	1
CO3	3	3	3	3	3	1	1	1	1	1	1	1

High-3, Medium-2, Low-1

				Semester: VI			
			IN	DIAN KNOWLEDGE SY	YSTEMS		
				(Theory)			
			(Common to All UG Prog	rams)		
Cours	e Code	:	MVJ22IKK6		CIE	:	50 Marks
			8				
Credit	s: L:T:P	:	1: 0: 0		SEE	:	50 Marks
Total]	Hours	:	15L		SEE Duration	:	02 Hours
Cours	e Learning	; Ol	bjectives: The st	udents will be able to			
1	To facilita	te tl	he students with	the concepts of Indian trad	litional knowledge	and	to makethem
	understand	l th	e Importance of	roots of knowledge system	1.		
2	To make t	he s	students understa	and the traditional knowled	lge and analyse it	and a	apply it
	to their day	y-to	o-day life.				
				Unit-I			05 Hrs
Introd	luction to	Ind	lian Knowledge	Systems (IKS): Overvie	ew, Vedic Corpus	, Phi	losophy,Character
scope	and import	anc	e, traditional kn	owledge vis-a-vis indigeno	ous knowledge,		
traditio	onal knowle	edge	e vs. western kno	owledge.			
				Unit – II			05 Hrs
Tradi	tional K	nov	vledge in H	umanities and Scien	ces: Lingistics,	Νι	umber and
measu	rements- M	ath	ematics, Chemis	try, Physics, Art, Astronor	ny, Astrology, Cra	fts ai	nd Tradein India and
Engine	eering and T	Fecl	hnology.				
				Unit -III			05 Hrs
Tradi	tional Kno	wle	dge in Professi	onal domain: Town plann	ning and architectu	re-C	Construction, Health,
wellne	ess and Psyc	chol	logy-Medicine,	Agriculture, Governance an	nd public		
admin	istration, U	nite	d Nations Sustai	nable development goals.			
Cours	e Outcome	es: A	After completin	g the course, the students	will be able to		
CO1:	Provide	an o	overview of the	concept of the Indian Know	wledge System and	its i	mportance.
CO2:	Apprecia	ate	the need and imp	ortance of protecting tradi	tional knowledge.		
CO3:	Recogni	ze t	he relevance of '	Fraditional knowledge in d	lifferent domains.		
CO4:	Establis	n th	e significance of	Indian Knowledge system	is in the contempor	ary v	world.
Refer	ence Books						
]	ntroductio	n t	o Indian Knowl	edge System- concepts ar	nd applications, B	Mał	nadevan,Vinayak
1	Rajat Bhat,	Na	gendra Pavana	R N, 2022, PHI Learning	Private Ltd, ISBN	-978	-93-
ç	91818-21-0						
]	Fraditional	Kı	nowledge Syster	n in India , Amit Jha, 2009	, Atlantic Publishe	rs an	d Distributors
(P) Ltd., ISI	3N-	13: 978-812691	2230,			
	Knowledge	Tr	aditions and Pr	actices of India, Kapil Ka	poor, Avadesh Ku	mar	Singh, Vol. 1,
2	2005, DK P	rint	World (P) Ltd.,	ISBN 81-246-0334,			

	Suggested Web Links:						
1.	https://www.youtube.com/wa	tch?v=LZP1StpYEPM					
2.	http://nptel.ac.in/courses/121	106003/					
3.	http://www.iitkgp.ac.in/departm	ent/KS;jsessionid=C5042785F727F6EB46CBF432D7683B63 (Centr					
	of Excellence for Indian Know	ledge System, IIT Kharagpur)					
4.	https://www.wipo.int/pressroor	n/en/briefs/tk ip.html					
5.	https://unctad.org/system/files/	official-document/ditcted10_en.pdf					
6.	http://nbaindia.org/uploaded/dc	ocs/traditionalknowledge 190707.pdf					
7.	https://unfoundation.org/what-v	we-do/issues/sustainable-development-					
	goals/?gclid=EAIaIQobChMIn	p-Jtb_p8gIVTeN3Ch27LAmPEAAYA	SAAEgIm1vD_BwE				
	ASSESSI	MENT AND EVALUATION PATTE	CRN				
VEI	GHTAE	50% (CIE)	50%(SEE)				
QUI	IZZES						
Quiz	z-I	Each quiz is evaluated for 05	****				
Quiz	z-II	marks adding up to 10 Marks.					
TH	EORY COURSE - (Bloom's T	Faxonomy Levels: Remembering,					
Und	erstanding,						
App	lying, Analyzing, Evaluating, and	d Creating)					
Test	- I	Each test will be conducted for 25					
		Marks adding upto 50 marks. Final	****				
Test	$-\mathrm{II}$	test marks will be reduced					
		to 20 Marks					
EXI	PERIENTIAL LEARNING	20	****				
Case	e Study-based Teaching-						
Lear	rning						
Sect	or wise study & consolidation						
(viz.	, Engg.Semiconductor Design,		****				
Hea	lthcare &						
Pha	maceutical, FMCG,						
Auto	omobile, Aerospace and IT/						
ITeS	5)						
Vide	eo based seminar (4-5						
min	utes perstudent)						
Max	ximum Marks for the Theory		50 Marks				
Pra	ctical						
	al Marks for the Course	50	50				

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	-	-	-	-	-	3	-	-	-	1
CO2	-	-	-	-	-	2	-	-	-	-	-	-
CO3	-	-	2	2	-	-	-	-	-	-	-	-
CO4	-	-	-	-	-	3	2	-	-	-	-	-
High-3 :	Mediur	n-2 : Lo	ow-1	1		1		1			1	

		Semester	VII
Course Code	MVJ22AS71	СІЕ	50
Fotal No. of Contact Hours	50 L: T: P: 3 :0: 2	SEE	50
No. of Contact Hours/week	5	Total	100
Credits	4	Exam. Duration	3 Hrs.

- Acquire knowledge of orbit mechanics and orbit maneuvers.
- Gain knowledge of satellite injection and satellite attitude dynamics
- Understand interplanetary trajectories and atmospheric re-entry problems. •
- Comprehend ballistic missile trajectory

Module 1	L2	10
		Hrs.
Space Environment: Flight & spacecraft technologies Difference between	space and atmospher	e, upper

atmosphere. Peculiarities of space environment and its description, effect of space environment on materials of spacecraft structure and astronauts, manned space missions, effect on satellite lifetime. The solar system, reference frames and coordinate systems, terminology related to the celestial sphere and its associated concepts

Laboratory Sessions/ Experimental learning: Determination of satellite lifetime.

Applications: Spacecraft

Module 2	L2	10 Hrs.
Basic Concepts and the General N-Body of Orbit Mechanics, Orbit M	anoeuvres: Kepler'	s laws of
planetary motion and proof of the laws, Newton's universal law of gravitat	ion, the many body	problem,
Lagrange-Jacobi identity, the circular restricted three body problem, liberation	on points, the genera	ıl N-body
problem, two body problem, relations between position and time. Typ	bes of Orbits (LE), MEO,
Geosynchronous, and Geostationary, Polar orbits) Two-body motion: Circ	ular, elliptic, hyperl	polic, and
parabolic orbits-Basic Orbital Elements, Ground trace In-Plane Orbit changes,	Hohmann Transfer,	Bielliptic
Transfer, Plane Changes, Combined Manoeuvres, Propulsion for Manoeuvres		
Laboratory Sessions/ Experimental learning: Perform Hohmann transfer	orbit simulation.	
Applications: Spacecraft		
Module 3	L2	10 Hrs.

Satellite Injection and Satellite Perturbations: General aspects of satellite injection, satellite orbit transfer, various cases, orbit deviations due to injection errors, special and general perturbations, Cowell's method and Encke's method, method of variations of orbital elements, general perturbations approach, Injection conditions - Flight dispersions, Burnout velocity.

Satellite Attitude Dynamics: Torque free axisymmetric rigid body, Attitude Control for Spinning Spacecraft, Attitude Control for Non-spinning Spacecraft, The Yo-Yo Mechanism, Gravity – Gradient Satellite, Dual Spin Spacecraft, Attitude Determination.

Laboratory Sessions/ Experimental learning: Perform Torque free axisymmetric rigid body satellite attitude simulation.

Applications: Orbital Mechanics

Iodule 4	L2	10 Hrs.
Interplanetary Trajectories: Two-dimensional interplanetary trajectories,	fast interplanetary t	rajectories,
three dimensional interplanetary trajectories, launch of interplanetary spa	cecraft, trajectory	estimation
about the target planet, concept of sphere of influence, Lambert's theorem.	Gravity Turn Trajec	tories
Atmospheric Re-entry: Introduction-Steep Ballistic Re-entry, Ballistic G	Orbital Re-entry, S	kip Re-
entry, "Double-Dip" Re-entry, Aero-braking, Lifting Body Re-entry.		
Laboratory Sessions/ Experimental learning: Perform trajectory simu	lation for small at	mospheric
reentry module		
Applications: Spacecraft (Re-entry)		
Iodule 5	L2	10 Hrs.
Introduction to ballistic missile trajectories Introduction to ballistic missile trajectories		
	boost phase, the bal	llistic phase
Ballistic Missile Trajectories: Introduction to ballistic missile trajectories,	boost phase, the bal	llistic phase
Ballistic Missile Trajectories: Introduction to ballistic missile trajectories, trajectory geometry, optimal flights, time of flight, re-entry phase, the position	boost phase, the bal	llistic phase
Ballistic Missile Trajectories: Introduction to ballistic missile trajectories, trajectory geometry, optimal flights, time of flight, re-entry phase, the position influence coefficients. Sounding Rocket, Aerospace Plane	boost phase, the bal	calculation

Upon comp	bletion of the course, students will be able to:
CO401.1	Apply the basic concepts of space environment

CO401.2	Apply the knowledge of orbital mechanics of satellite.
CO401.3	Analyze satellite injection and satellite dynamics
CO401.4	Determine inter-planetary trajectories and atmospheric re-entry problems
CO401.5	Evaluate ballistic missile trajectory

	Lab Component		
Sl	Experiment Name	RBT	Hours

No		Level	
1	Draw Pole – Zero map of dynamics system model with plot customization	L1,L2,L3	03
	option.		
2	Plot root locus for a given Transfer Function and find Gain and Phase Margins	L1,L2,L3	03
3	Plot root locus for a higher order system taking unity feedback.	L1,L2,L3	03
4	Draw Bode plot from a transfer function in MATLAB and find gain and phase	L1,L2,L3	03
	margin.		
5	Demonstrate the effect of lead and lag phase compensations on close-loop	L1,L2,L3	03
	performance of a linear system.		
6	Simulate a model space craft (space shuttle) landing with parachute deployed.	L1,L2,L3	03
7	Simulate Hohmann transfer orbit.	L1,L2,L3	03
8	Perform a planetary orbit simulation.	L1,L2,L3	03
9	Model and simulate RCS signature.	L1,L2,L3	03
10	Model a satellite motion and determine time period for its orbital motion.	L1,L2,L3	03
11	Perform trajectory simulation of a small atmospheric re-entry module.	L1,L2,L3	03
12	Perform 3-DOF Gyroscope experiment for System Identification.	L1,L2,L3	03
13	Perform 2- DOF Rotor System experiment for Coupled Dynamic Analysis	L1,L2,L3	03
14	Model and simulate a simple Magnetic Levitation system and validate with	L1,L2,L3	03
	the experimental setup.		
Cour	se outcomes:		
CO4	D1.6 Determine system stability through MATLAB.		
CO4	01.7 Simulate the Satellite orbit manoeuvring.		
	1.7 Simulate the Salemie of oit manoed vinig.		
CO4	1.8 Analyses the gyroscope experiments		
Text	books:		
1	George P. Sutton and Oscar Biblarz, Rocket Propulsion Elements, 7th Edition, 201	0	
2	Thomson, Introduction to Space Dynamics, Dover publications, Revised edition, 201		
		2012	
	rence Books		
1.	Vandekamp, Elements of Astro mechanics, Pitman, 1979		
2.	William E wiesel, Space Flight Dynamics, Create space Independent Pub; 3rd edi 2010)	tion (3 June	

CIE Assessment:

CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation. Generally, there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of three tests

- Quizzes/mini tests (4 marks)
- Mini Project / Case Studies (8 Marks)
- Activities/Experimentations related to courses (8 Marks)

SEE Assessment:

- i. Question paper for the SEE consists two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.
- ii. Part B also covers the entire syllabus consisting of five questions having choices and may contain subdivisions, each carrying 16 marks. Students must answer five full questions.
- iii. One question must be set from each unit. The duration of examination is 3 hours.

CO, PC	CO, PO Mapping														
CO/P	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO	
0	1	2	3	4	5	6	7	8	9	0	1	2	1	2	
CO1	3	2	2	1	1	2	2	0	1	1	2	3	1	1	
CO2	3	3	1	3	1	2	2	1	2	0	1	3	1	1	
CO3	3	3	2	3	2	2	0	0	2	0	0	3	1	1	
CO4	3	3	2	2	3	2	0	0	1	0	0	2	1	1	
CO5	3	2	2	2	2	3	3	2	3	3	3	3	1	1	

High,3, Medium,2, Low,1

Course Title	COMPUTATIONAL FLUID DYNAMICS	Semeste	r	VII	
Course Code	MVJ22AS72	CIE		50	
Total No. of Contact Hours	50 L : T : P :: 3 : 0:2	SEE		50	
No. of Contact Hours/week	5	Total		100	
Credits	Exam. I	Duration	3hrs		
The Course objective is to:		I		I	
1. Gain knowledge of CF	D ideas, and Flow Equations				
C	al behaviour of PDEs vis a visnature of	flow			
	n techniques in finite difference				
	ation and adaptive grids				
0.0	solve CFD problems through finite vol	ume techniqu	16		
	Module-1	unie teeninge	L3	10Hrs.	
International CED internation		6			
	inderstand, CFD Application, Need	U 1			
-	ce of velocity. Flow models, Continuity	-		-	
	ns. Physical Boundary conditions. Con				
<u>,</u>	ential Forms of Equations. Form of Eq	uations parti	cularly suit	able for CFD	
work. Shock capturing, Shock fi	0				
Laboratory Sessions/ Experimer	ntal learning: Ansys Lab				
Applications:Flow Analysis					
	Module-2		L4	10Hrs.	
Mathematical Behaviour of Pa	artial Differential Equations: Classifi	ication of par	tial differe	ntial equations	
- Cramer Rule, Eigenvalue me	thod. Hyperbolic, parabolic, and ellip	tic form of o	equations.	Mixed type of	
equations. Classification of gove	erning equations for one-dimensional of	compressible	inviscid fl	ow. Impact of	
classification on physical and c	computational fluid dynamics. Case st	udies-steady	inviscid su	personic flow	
unsteady inviscid flow, steady be	oundary layer flow, unsteady thermal co	onduction, an	d steady su	bsonic inviscid	
flow.					
Laboratory Sessions/ Experime	ntal learning: Ansys Lab				
Applications: Flow analysis					
	Module-3		L4	10Hrs.	
-	scretization: Essence of discretizatio				
	nd Implicit approach. Errors and stal			-	
Space marching. Reflection B	oundary condition. Relaxation techr	nique; succe	ssive over	relaxation/	
successive under relaxation. Alte	ernating Direction Implicit (ADI) Metho	od. Upwind a	nd Mid-po	int leap frog	
schemes. Numerical and artificia	al viscosity.				
Laboratory Sessions/ Experime	tal laaming. Anava Lah				
Eaboratory Sessions/ Experimer	ital learning: Ansys Lab				

	Module-4	L4	10Hrs.						
Grid generat	ion & Adaptive Grid Methods: Need for grid generation and Body	-fitted coordi	nate system.						
Structured gri	ds-essential feature. Structured grids generation techniques-algebrai	c and numerio	cal methods.						
Unstructured	grid generation Techniques-Delaunay-Voronoi diagram, advancing	front method,	multi-block						
grid generatio	n, Grid quality, adaptive grids.								
Adaptive Stru	ctured Grid Generation, Unstructured adaptive grid Methods.								
Transformat	ion: Matrices & Jacobian of transformation. Transformation of Equ	ation from ph	ysical plane						
into computat	ional Plane-examples.								
Laboratory Se	ssions/ Experimental learning: Ansys Lab								
Applications:	Grid formulation and transformation of planes								
	Module-5	L4	10Hrs.						
Finite Volum	e Techniques and some Applications: Spatial discretisation:-Cell C	Centred Formu	lation and						
Cell vertex Fo	rmulation (overlapping control volume, duel control volume). Tempo	al discretisation	on:						
- Explicit time	e-stepping and Implicit time- stepping, time step calculation								
Applications	Aspects of numerical dissipation & dispersion. Approximate fact	orization, Flu	x Vector						
splitting. Diff	usion problem. Heat through conduction and radiation. Up wind	ling techniqu	e. Post-						
	d visualization, contour plots, vector plots etc. Sessions/ Experimental learning: Ansys Lab								
Applications	Flow analysis through Finite Volume Technique								
Course outco	mes:								
CO402.1	Apply knowledge of CFD ideas, and Flow Equations								
CO402.1	CO402.1 Assimilate Mathematical behaviour of PDEs vis a vis nature of flow								
CO402.2 Utilise finite difference techniques.									
CO402.3 Generate &Utilise grids									
CO402.4 Apply finite volume techniques									

	Lab Component											
Sl No	Experiment Name	RBT Level	Hours									
1	Modeling of Symmetric Aerofoil Geometry and Generation of Body Fitting Adaptive Mesh.	L1,L2,L3	03									
2	Modeling of Cambered Aerofoil Geometry and Generation of Body Fitting Adaptive Mesh.	L1,L2,L3	03									
3	Modeling of 2D incompressible and Inviscid flow over symmetrical airfoil and plotting of pressure distribution and velocity vectors for subsonic Mach	L1,L2,L3	03									

	nos.		
4	Modeling of 2D incompressible and Inviscid flow over cambered airfoil and plotting of pressure distribution and velocity vectors for subsonic Mach nos.	L1,L2,L3	03
5	Modeling of 2D viscous flow over symmetrical airfoil and plotting ofpressure distribution and velocity vectors for subsonic Mach nos.	L1,L2,L3	03
6	Modeling of 2D viscous flow over cambered airfoil and plotting of pressuredistribution and velocity vectors for subsonic Mach nos.	L1,L2,L3	03
7	Modeling of 2D incompressible and Inviscid flow over symmetrical airfoil and plotting of pressure distribution and velocity vectors for supersonic Mach nos.	L1,L2,L3	03
8	Modeling of 2D incompressible and Inviscid flow over cambered airfoil and plotting of pressure distribution and velocity vectors for supersonic Mach nos.	L1,L2,L3	03
9	Isentropic flow analysis in a 2D subsonic diffuser and a subsonic nozzle.	L1,L2,L3	03
10	Isentropic flow analysis in a 2D supersonic diffuser and a supersonic nozzle.	L1,L2,L3	03

Tex	tbooks
1.	John D. Anderson, Computational Fluid Dynamics – The Basics with Application, Indian Edition, McGraw Hill Education (India) Private Limited (1995).
2.	S C Gupta, Applied Computational Fluid Dynamics, first edition, Wiley India Pvt. Ltd (2019)
Ref	erence Books:
1.	F. Wendt (Editor), Computational Fluid Dynamics - An Introduction, Springer – Verlag, Berlin; 1992.
2.	Charles Hirsch, Numerical Computation of Internal and External Flows, Vols. I and II. John Wiley& Sons, New York; 1988.
3.	Fletcher, C.A.J, Computational Techniques for Fluid Dynamics, Springer, Berlin,2nd edition, 2002, ISBN-13: 978-3540543046
4.	H. K. Versteeg, W. Malalasekera, An Introduction to Computational Fluid Dynamics, A finite volume approach, Second Edition, 2007.

CIE Assessment:

CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation. Generally, there

will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of three tests

- Quizzes/mini tests (4 marks)
- Mini Project / Case Studies (8 Marks)
- Activities/Experimentations related to courses (8 Marks)

SEE Assessment:

- iv. Question paper for the SEE consists two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.
- v. Part B also covers the entire syllabus consisting of five questions having choices and may contain subdivisions, each carrying 16 marks. Students have to answer five full questions.

					(CO-PO	-PSO N	Aapping	B					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	PSO
													1	2
CO1	3	3	2	2	1	-	-	1	1	1	1	1	-	1
CO2	3	3	2	2	1	-	-	1	1	1	1	1	-	1
CO3	3	3	2	2	1	-	-	1	1	1	1	1	-	1
CO4	3	3	2	2	1	-	-	1	1	1	1	1	-	1
CO5	3	3	2	2	1	-	-	1	1	1	1	1	3	3
High-3,	Mediu	m-2, Lo	ow-1											

vi. One question must be set from each unit. The duration of examination is 3 hours.

	AEROSPACE VEHICLE				
Course Title	DESIGN	Semester		VII	
Course Code	MVJ22AS73	CIE		50	
Total No. of Contact Hours	50 L: T:P:: 3 :0 :0	SEE		50	
No. of Contact Hours/week	Total		100		
Credits	4	Exam. D	uration	3 Hrs.	
Course objective is to:					
1. Understand the concepts	s of launch vehicles.				
2. Acquire the knowledge of	of Aerospace propulsion and re-entry	vehicles.			
3. Acquire the knowledge of	of Aerospace launch vehicle structure.				
4. Illustrate the different ty	pes of vibration taking place in the lat	unch vehicle.			
5. Explore the future space	technologies and its working principl	es.			
Module 1			L3	10 Hrs.	
Introduction to Launch Vehicle: J	Launch Vehicles Available, Launch	Vehicle Capabi	lities Decidi	ing, Which	
Launch Vehicle to Use. Characte	eristics of Spacecraft Necessary to C	Choose a Laun	ch Vehicle	Structures.	
Primary Structural Design Other J	Functional Divisions Mechanisms Us	ed by the Othe	r Subsystem	. Materials	
for Constructing Spacecraft Manu	facturing Techniques Applicable to th	e Structure.			
Laboratory Sessions/ Experime	ntal learning: Basic stress analysis	on launch vehi	cle compone	ents can be	
analyzed using Ansys workbench.					
Applications: Used in the launch	vehicles design				
Module 2			L3,	10 Hrs.	
Propulsion: Rocket Propulsion Fu	ndamentals, Ascent Flight Mechanics	, Launch Vehic	le selection,	Entry	
flight Mechanics, Entry heating, e	ntry vehicle design, Aero assisted orb	it transfer.			
Laboratory Sessions/ Experimer	ntal learning: Different types of nozz	le analysis can	be done usir	ng Ansys	
workbench.					
Applications: Used in rocket and	spacecraft engines.				
			T A		
Wodule 3			L3	10 Hrs.	
	on the vehicle structures, Stages, Moto	or case, Base sh			
Launch Vehicle structures: Loads	on the vehicle structures, Stages, Moto functions Modeling and Analysis Struc		roud, Inter s	tages, Heat	
Launch Vehicle structures: Loads of shield, Equipment Bay and their f		ctures. Loads an	roud, Inter s	tages, Heat	
Launch Vehicle structures: Loads of shield, Equipment Bay and their for Pressure Vessels Buckling of Bear	unctions Modeling and Analysis Struc	etures. Loads an ment Analysis.	roud, Inter s d Stresses T	tages, Heat hin-Walled	
shield, Equipment Bay and their f Pressure Vessels Buckling of Bear	functions Modeling and Analysis Structions Thin-Wall Assumption. Finite Ele	etures. Loads an ment Analysis.	roud, Inter s d Stresses T	tages, Heat hin-Walled	
Launch Vehicle structures: Loads of shield, Equipment Bay and their f Pressure Vessels Buckling of Bear Laboratory Sessions/ Experime	functions Modeling and Analysis Structors Thin-Wall Assumption. Finite Ele	etures. Loads an ment Analysis.	roud, Inter s d Stresses T	tages, Heat hin-Walled	

Vehicle Dynamics: Mode shape and frequencies of launch vehicles, Vibrations. Flexible Body Dynamics of Liquid propellant in Moving containers Sloshing, POGO Orbital Vibration Mitigation Vibrations Aero elastic phenomenon of launch vehicles.

Laboratory Sessions/ Experimental learning: Vibrational analysis can be conducted using Ansys workbench. Applications: Used to find the aeroelasticity(vibration) and to damp the vibration in the Launch vehicles.

L2

Module 5

10 Hrs

Advanced Aerospace Technologies: Available Technologies, Available Launch Vehicles, New Technologies. Magnetically Inflated Cable System Flying Effector Nano tubing Example, Load and Deflection Nodal Analysis Example, Material Selection Analysis Example, Strained Example, Reaction Wheel Example, Space Shuttle Landing Example, Vibrations Example.

Laboratory Sessions/ Experimental learning: Virtual experiments can be used to demonstrate the technologies.

Applications: Used in Aerospace vehicles.

Course ou	Course outcomes:									
CO401.1	CO401.1 Classify the space mission analysis and design process.									
CO401.2	CO401.2 Explain the working principle of rocket propulsion and re-entry mission.									
CO401.3	Investigate the launch vehicle structural components for product lifecycle management.									
CO401.4	Apply the concepts of space craft attitude control and instrumentation.									
CO401.5	Summarize spacecraft configuration and advance technologies.									

Text Bo	Text Books:										
1.	Space Vehicle Design M.D. Griffin, J.R. French AIAA Series 1991.										
2	Spacecraft Systems Engineering P. Fortescue, J. stark, and G. Swinerd Wiley-Blackwell 4th										
	revised edition,2011										

Ref	Reference Books:									
1.	Space Mission Analysis and designW.J. Larson andJ. R. Wertz., Springer2nd edition, 1992.									
2.	Rocket and Spacecraft PropulsionM.J.L. TurnerSpringer3rd edition,2009.									
3.	Sutton, Rocket Propulsion Elements, G.P John Wiley and Sons 5th Edn.1986									

CIE Assessment:

CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation. Generally, there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of three tests

- Quizzes/mini tests (4 marks)

- Mini Project / Case Studies (8 Marks)
- Activities/Experimentations related to courses (8 Marks)

SEE Assessment:

i. Question paper for the SEE consists two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.

ii. Part B also covers the entire syllabus consisting of five questions having choices and may contain sub-divisions, each carrying 16 marks. Students have to answer five full questions.

iii. One question must be set from each unit. The duration of examination is 3 hours.

CO,PO	CO,PO Mapping														
CO/P	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
Ο															
CO1	3	3	3	2	2	1	2	1	2	2	1	3	1	1	
CO2	3	3	3	2	2	1	2	1	2	2	1	3	1	1	
CO3	3	3	3	2	2	1	2	1	2	2	1	3	1	1	
CO4	3	3	3	2	2	1	2	1	2	2	1	3	1	1	
CO5	3	3	3	2	2	1	2	1	2	2	1	3	1	1	

High,3, Medium,2, Low,1

Professional Elective-III

Course Title	HYPERSONIC FLOWS	Semester	VII
Course Code	MVJ22AS741	CIE	50

Total No. of Contact Hours	40 L: T: P: 3 :0 :0	SEE	50
No. of Contact Hours/week	4	Total	100
Credits	3	Exam. Duration	3 Hrs.

The course objective is to:

1. Understand the basics of hypersonic flows.

2. Understand the surface inclination methods for inviscid hypersonic flows.

3. Learn the Approximate Methods For Inviscid Hypersonic Flows

4. Acquire the knowledge of viscous interactions in hypersonic flows.

5. Acquire knowledge on the Testing facilities & measurements of Hypersonic flows.

Module 1	L3	08 Hrs.
Basics of Hypersonic Flows: Thin shock layers, entropy layers, low density	and high-density	y flows,
hypersonic flight paths hypersonic flight similarity parameters, shock wave and ex-	pansion wave rela	ations of
inviscid hypersonic flows.		
Laboratory Sessions/ Experimental learning:		
1. High speed flow analysis past blunt object in presence of a bow shock wave (DESIGN, MODEI	LLING
& ANALYSIS LAB)		
Applications:		
1. Investigation of the parameters of wake flow at high speeds		
Module 2	L3	08 Hrs.
Surface Inclination Methods for Hypersonic Inviscid Flows: Local surface inc	lination methods,	modified
Newtonian Law, Newtonian theory – tangent wedge or tangent cone and shock ex	pansion methods,	
Calculation of surface flow properties.		
Laboratory Sessions/ Experimental learning:		
1. Experimental analysis of Hypersonic flow over an Elliptic Cone.		
Applications:		
1. Obtain the total force and moment structure on the high-speed vehicle		
Module 3	L3	08 Hrs.

Approximate M	fethods For Inviscid Hypersonic Flows: Approximate methods hypersonic small	disturbance		
equation and th	neory, thin shock layer theory, blast wave theory, entropy effects, rotational	method of		
characteristics, h	hypersonic shock wave shapes and correlations			
Laboratory Ses	sions/ Experimental learning:			
Applications:	al characterization of the hypersonic flow around a cuboid operation of a practical hypersonic vehicle			
Module 4	L3	08 Hrs.		
Viscous Interac	ctions In Hypersonic Flows: Strong and weak viscous interactions, hypersonic			
shockwaves and	boundary layer interactions, Estimation of hypersonic boundary layer transition, F	Role of		
similarity param	eter for laminar viscous interactions in hypersonic viscous flow			
Laboratory Ses	sions/ Experimental learning:			
1. Grid generati	ion on fore portion of a spacecraft model (DESIGN, MODELLING & ANALYSIS	LAB).		
Applications:				
1. In engine inl e	et & Inward-turning inlet of High speed vehicles.			
Module 5	L2	08 Hrs.		
Hypersonic Flo	ws: Testing facilities & Measurements: Hypersonic Test facilities-Hypersonic V	Vind		
Tunnel, Types of	f Hypersonic Wind Tunnel, Calibration, Hypersonic Flow Parameter estimation in	Wind		
tunnel, Hypersoi	nic Impulse Facilities, Shock Tunnel & its types, Other Hypersonic test facilities-	Iot Shot		
tunnel & Launch	her test facility, Heat transfer rate Measurement, Flow Visualization for High Spee	ds		
1.Experimental	sions/ Experimental learning: I investigation on drag and heat flux reduction in supersonic/hypersonic flows:			
Applications:				
1. Design &Op	eration of a practical hypersonic vehicle			
Course outcome	25:			
Upon completion	n of the course, students will be able to:			
CO404.1.1 Interpret the basics of Hypersonic flows				
CO404.1.2	Analyse the surface inclination methods for inviscid hypersonic flows.			
CO404.1.3 Evaluate the Approximate methods for inviscid hypersonic flows				

CO404.1.3	Evaluate the Approximate methods for invised hypersonic nows
CO404.1.4	Evaluate the hypersonic boundary layers & effects involved with hypersonic aerodynamic heating
CO404.1.5	Illustrate the hypersonic Flow Parameters & Hypersonic Testing facilities

Text Books:							
1	John D Anderson Jr., Hypersonic & High Temperature Gas dynamics, AIAA series, 2 nd						
1.	revised edition,2006						

	John D	Ander	son Jr.,	Moder	n Comj	pressibl	le flow	& Hist	orical p	erspecti	ve Hyp	ersonic		
	Series, McGraw Hill, 3 rd edition, 2012.													
leferen	rence Books:													
•	William H Heiser and David T Pratt, Hypersonic Air Breathing Propulsion, AIAA, 1994.													
	John T	. Bertir	n, Hype	rsonic A	Aerothe	ermody	namics,	, AIAA	Inc, 19	94				
CIE Ass	essmer	nt:												
IE is b	ased on	ı quizze	es, tests	, assigr	ments/	semina	rs and a	any oth	ner form	n of eva	luation	. Gener	ally, th	ere will
e: Three	e Intern	al Asse	ssment	(IA) te	sts duri	ng the s	semeste	er (30 n	harks ea	ch), the	final L	A marks	s to be a	warded
ill be tl	he avera	age of t	hree tes	sts										
- Ç	Quizzes	mini te	sts (4 n	narks)										
-]	Mini Pr	oject / (Case St	udies (8	8 Marks	5)								
	Activiti	es/Expe	eriment	ations 1	elated t	to cours	ses (8 N	(larks)						
EE Ass	essmen	ıt:												
-	Questi	on pape	er for th	ne SEE	consist	s two p	arts i.e.	Part A	and Pa	rt B. Pa	rt A is	compu	lsory an	d
	consis	ts of ob	jective	type or	short a	inswer	type qu	estions	of 1 or	2 mark	s each	for tota	l of 20 i	narks
	coveri	ng the v	whole s	yllabus										
-	Part B	also co	overs the	e entire	syllabı	us cons	isting o	of five c	question	is havin	g choic	es and	may co	ntain
	sub-di	visions,	, each c	arrying	16 ma	rks. Stu	idents h	nave to	answer	five ful	l quest	ions.		
-	One qu	uestion	must b	e set fro	om each				f exami	nation i	is 3 hou	ırs.		
						CO,1	PO Maj	pping						
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	3	2	2	1	1	1	1	1	1	1	1
CO2	3	3	3	3	2	2	1	1	1	1	1	1	1	1
CO3	3	3	3	3	2	2	1	1	1	1	1	1	1	1
CO4	3	3	3	3	2	2	1	1	1	1	1	1	1	1
CO4 CO5					2	2	1	1	1	1	1	1	1	1

	CRYOGENICS	Semester	VII	
Course Code	MVJ22AS742	CIE	50	
Total No. of Contact Hours	40 L: T:P: 3 :0 :0	SEE	50	
No. of Contact Hours/week	4	Total	100	
Credits	3	Exam. Duration		
The course objective is to:				
1. Study the basics of cryogen	ic technology and applications			
2. Learn the properties of cryo	ogenic materials and their process			
3. Understand the techniques	of cryogenic insulation			
4. Acquire knowledge on stor	age and instrumentation of cryogenic liqu	uids		
5. Learn the basics of cryogen	ic equipment			
Module 1-Introduction to cryogeni	c Engineering	L3	08 Hrs.	
Thermo-Physical and Fluid Dynami	cs Properties of Liquid and Gas Hydrog	gen, Thermo-Physi	cal and Fluid	
Dynamics Properties of Liquid and	Gas Helium, Liquefaction System of	Hydrogen and H	lelium Gases,	
Refrigeration and Liquefaction Prin	ciples, Joule Thomson Effect and Inve	rsion Curve, Adia	batic and	
Isenthalpic Expansion and Their Com	nparison			
Applications:	•			
Aerospace and chemical Industry			00.11	
Module 2 – Properties		L3	08 Hrs.	
Cryogenic Fluids, Solids at Cryoge	enic Temperatures, Superconductivity,	Recuperative-Lin	de–Hampson,	
· ^	Collins, Simon, Regenerative – Sterling		-	
Refrigerator, Gifford-Mcmahon Refr	Collins, Simon, Regenerative – Sterling gerator, Vulilleumier Refrigerator, Pulse		-	
Refrigerator, Gifford-Mcmahon Refr of Natural Gas			-	
Refrigerator, Gifford-Mcmahon Refr of Natural Gas Applications:			-	
Refrigerator, Gifford-Mcmahon Refr of Natural Gas			-	
Refrigerator, Gifford-Mcmahon Refr of Natural Gas Applications:			-	
Refrigerator, Gifford-Mcmahon Refr of Natural Gas Applications: Aerospace and chemical Industry Module 3 -Cryogenic Insulation		Tube Refrigerator	, Liquefaction	
Refrigerator, Gifford-Mcmahon Refr of Natural Gas Applications: Aerospace and chemical Industry Module 3 -Cryogenic Insulation	igerator, Vulilleumier Refrigerator, Pulse	Tube Refrigerator	, Liquefaction	
Refrigerator, Gifford-Mcmahon Refr of Natural Gas Applications: Aerospace and chemical Industry Module 3 -Cryogenic Insulation Vacuum Insulation, Evacuated Porou	igerator, Vulilleumier Refrigerator, Pulse	Tube Refrigerator	, Liquefaction	
Refrigerator, Gifford-Mcmahon Refr of Natural Gas Applications: Aerospace and chemical Industry Module 3 -Cryogenic Insulation Vacuum Insulation, Evacuated Porou Multilayer Insulation, Liquid and Va	igerator, Vulilleumier Refrigerator, Pulse	Tube Refrigerator	, Liquefaction	
Refrigerator, Gifford-Mcmahon Refr of Natural Gas Applications: Aerospace and chemical Industry Module 3 -Cryogenic Insulation Vacuum Insulation, Evacuated Porou Multilayer Insulation, Liquid and Va Applications:	igerator, Vulilleumier Refrigerator, Pulse s Insulation, Gas Filled Powders and Fibr por Shields, Composite Insulations	Tube Refrigerator	, Liquefaction	
Refrigerator, Gifford-Mcmahon Refri of Natural Gas Applications: Aerospace and chemical Industry Module 3 -Cryogenic Insulation Vacuum Insulation, Evacuated Porou Multilayer Insulation, Liquid and Va Applications: Aerospace and chemical Industry Module 4 – Storage and instrument	igerator, Vulilleumier Refrigerator, Pulse s Insulation, Gas Filled Powders and Fibr por Shields, Composite Insulations	Tube Refrigerator L3 rous Materials, Soli L3	, Liquefaction 08 Hrs. d Foams, 08 Hrs.	
Refrigerator, Gifford-Mcmahon Refri of Natural Gas Applications: Aerospace and chemical Industry Module 3 -Cryogenic Insulation Vacuum Insulation, Evacuated Porou Multilayer Insulation, Liquid and Va Applications: Aerospace and chemical Industry Module 4 – Storage and instrument Design Considerations of Storage Ve	igerator, Vulilleumier Refrigerator, Pulse s Insulation, Gas Filled Powders and Fibr por Shields, Composite Insulations tation of cryogenic liquids	Tube Refrigerator L3 rous Materials, Soli L3 'essels, Storage of essels,	, Liquefaction 08 Hrs. d Foams, 08 Hrs. Cryogenic	
Refrigerator, Gifford-Mcmahon Refri of Natural Gas Applications: Aerospace and chemical Industry Module 3 -Cryogenic Insulation Vacuum Insulation, Evacuated Porou Multilayer Insulation, Liquid and Va Applications: Aerospace and chemical Industry Module 4 – Storage and instrument Design Considerations of Storage Ve Fluids in Space, Transfer Systems an	igerator, Vulilleumier Refrigerator, Pulse s Insulation, Gas Filled Powders and Fibr por Shields, Composite Insulations tation of cryogenic liquids ssel-Dewar Vessels- Industrial Storage V	Tube Refrigerator L3 rous Materials, Soli L3 'essels, Storage of essels,	, Liquefaction 08 Hrs. d Foams, 08 Hrs. Cryogenic sfer Lines,	
Refrigerator, Gifford-Mcmahon Refri of Natural Gas Applications: Aerospace and chemical Industry Module 3 - Cryogenic Insulation Vacuum Insulation, Evacuated Porou Multilayer Insulation, Liquid and Va Applications: Aerospace and chemical Industry Module 4 – Storage and instrument Design Considerations of Storage Ve Fluids in Space, Transfer Systems an Two Phase System in Transfer Syste	igerator, Vulilleumier Refrigerator, Pulse s Insulation, Gas Filled Powders and Fibr por Shields, Composite Insulations tation of cryogenic liquids ssel-Dewar Vessels- Industrial Storage V d Lines for Cryogenic Liquids, Cryogeni	Tube Refrigerator L3 rous Materials, Soli	, Liquefaction 08 Hrs. d Foams, 08 Hrs. Cryogenic sfer Lines, ment of Strain	
Refrigerator, Gifford-Mcmahon Refri of Natural Gas Applications: Aerospace and chemical Industry Module 3 - Cryogenic Insulation Vacuum Insulation, Evacuated Porou Multilayer Insulation, Liquid and Va Applications: Aerospace and chemical Industry Module 4 – Storage and instrument Design Considerations of Storage Ve Fluids in Space, Transfer Systems an Two Phase System in Transfer Syste	igerator, Vulilleumier Refrigerator, Pulse s Insulation, Gas Filled Powders and Fibr por Shields, Composite Insulations tation of cryogenic liquids ssel-Dewar Vessels- Industrial Storage V d Lines for Cryogenic Liquids, Cryogeni ms, Cool-Down of Storage and Transfer	Tube Refrigerator L3 rous Materials, Soli	, Liquefaction 08 Hrs. d Foams, 08 Hrs. Cryogenic sfer Lines, ment of Strain	
Refrigerator, Gifford-Mcmahon Refri of Natural Gas Applications: Aerospace and chemical Industry Module 3 - Cryogenic Insulation Vacuum Insulation, Evacuated Porou Multilayer Insulation, Liquid and Va Applications: Aerospace and chemical Industry Module 4 – Storage and instrument Design Considerations of Storage Ve Fluids in Space, Transfer Systems an Two Phase System in Transfer Syste , Pressure , Flow, Liquid Level and T	igerator, Vulilleumier Refrigerator, Pulse s Insulation, Gas Filled Powders and Fibr por Shields, Composite Insulations tation of cryogenic liquids ssel-Dewar Vessels- Industrial Storage V d Lines for Cryogenic Liquids, Cryogeni ms, Cool-Down of Storage and Transfer	Tube Refrigerator L3 rous Materials, Soli	, Liquefaction 08 Hrs. d Foams, 08 Hrs. Cryogenic sfer Lines, ment of Strain	
Refrigerator, Gifford-Mcmahon Refri of Natural Gas Applications: Aerospace and chemical Industry Module 3 - Cryogenic Insulation Vacuum Insulation, Evacuated Porou Multilayer Insulation, Liquid and Va Applications: Aerospace and chemical Industry Module 4 – Storage and instrument Design Considerations of Storage Ve Fluids in Space, Transfer Systems an Two Phase System in Transfer Syste , Pressure , Flow, Liquid Level and T <u>Aerospace and chemical Industry</u> Module 5 – Cryogenic Equipment Cryogenic Heat Exchangers, Recupe System Performance, Cryogenic Cor	igerator, Vulilleumier Refrigerator, Pulse s Insulation, Gas Filled Powders and Fibr por Shields, Composite Insulations tation of cryogenic liquids ssel-Dewar Vessels- Industrial Storage V d Lines for Cryogenic Liquids, Cryogeni ms, Cool-Down of Storage and Transfer	L3 rous Materials, Solid L3 rous Materials, Solid L3 ressels, Storage of a c Valves and Trans Systems, Measure Cryostats Applicat L3 exting Heat Exchant ltimators, Effect of	08 Hrs. 08 Hrs. d Foams, 08 Hrs. Cryogenic sfer Lines, ment of Strain ions: 08 Hrs. ogen hrs. of Component	

Cryopumping, Cryogenic Engineering Application in Energy, Aeronautics, Space, Industry, Biology, Preservation Application of Cryogenic Engineering in Transport

Applications:

Aerospace and chemical Industry

Course outcomes:

Upon complet	Upon completion of the course, students will be able to:				
CO404.2.1	O404.2.1 Analyze cryogenic technology and its applications				
CO404.2.2	Apply the properties of cryogenic materials and their process				
CO404.2.3	Demonstrate the different cryogenic insulation methods				
CO404.2.4	Apply the knowledge of storage and instrumentation of cryogenic liquids				
CO404.2.5	Evaluate cryogenic equipment for their application				

Tex	Textbooks:					
1	Flynn T. Cryogenic Engineering revised and expanded. CRC Press; 2004 Nov 30.					
2	Weisend, J. G. Handbook of cryogenic engineering. Vol. 325. Philadelphia: Taylor & Francis, 1998.					

Ref	Reference Books					
1.	Barron, Randall F. "Cryogenic systems." Monographs on cryogenics (1985).					
2.	Timmerhaus, Klaus D., and Richard P. Reed, eds. Cryogenic engineering: fifty years of progress. Springer Science & Business Media, 2007.					
CIE	TE Assessment:					

CIE is based on quizzes, tests, assignments/seminars, and any other form of evaluation. Generally, there will

be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of three tests.

- Quizzes/mini tests (4 marks)
- Mini Project / Case Studies (8 Marks)
- Activities/Experimentations related to courses (8 Marks)

SEE Assessment:

- Question paper for the SEE consists of two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.
- Part B also covers the entire syllabus consisting of five questions having choices and may contain subdivisions, each carrying 16 marks. Students must answer five full questions.
- One question must be set from each unit. The duration of examination is 3 hours.

CO/P	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1	PSO1	PSO2
0												2		
CO1	3	3	2			1						1	3	1
CO2	3	3	2			1						1	3	1
CO3	3	3	2			1						1	3	1
CO4	3	3	2			1						1	3	1
CO5	3	3	2			1						1	3	1

High,3, Medium,2, Low,1

Course Title	CONTROL ENGINEERING	Seme	ester	VII	
Course Code	MVJ22AS743	CIE		50	
Total No. of Contact Hours	40 L: T:P: 3 :0 :0	SEE	SEE		
No. of Contact Hours/week	4	Tota	1	100	
Credits	3	Exar	n. Duration	3 Hrs.	
The course objective is to:		•		•	
	ots of control systems and mathematical	models			
	t diagrams and signal flow graphs.	models.			
	analysis in Laplace domain through var	ious tech	niques		
с ·	sponse specifications and polar plots		linques		
5. Understand the requirement Module 1	for controller and compensation gain.		L3	08 Hrs.	
Introduction to Control Systems	and Mathematical Models Introducti	on: Con	cept of control		
	nples, Concepts of feedback and basic st		•		
requirements of an ideal control s		i detuie o		iti or system,	
•	function models of mechanical system	ns electi	rical circuits	DC and AC	
	gous systems: Force voltage and Force c				
	ntal learning:1. Draw pole zero plot fo			system for	
Applications: Aircraft Controls			•		
Module 2			L3	08 Hrs.	
Block Diagrams and Signal Fl	ow Graphs: Transfer functions definit	ition and	l its properties	s, block	
representation of control systems	s and terminologies, block diagram alg	gebra an	d reduction of	f block	
diagrams, Signal flow graph meth	od, Mason's gain formula and its application	ations.			
Transient and Steady State Re	sponse Analysis: Introduction, type an	d order	of systems, tin	me response	
specifications, first order and sec	ond order system response to step, ram	np and in	npulse inputs,	concepts of	
time constant and its importance.					
Laboratory Sessions/ Experiments step and ramp input	ntal learning: 1. Study the behaviour of	f second	order system	with impulse	
Applications:1. simplifies comple	ex control system 2. Analyse the steady a	nd transi	ent behaviour	of a system	
Module 3			L3	08 Hrs.	
System stability analysis using R	outh's – Hurwitz Criterion Root Locus F	lots Defi	nition of root l	loci, General	
rules for constructing root loci, A	Analysis using root locus plots, Determ	ination c	of desired gain	ı, limit gain,	
gain margin and conditional stabil	lity.				
Frequency Response Analysis	Using Bode Plots: Bode attenuation di	agrams f	for first and s	econd order	
systems, Simplified Bode diagram	ns, Stability analysis using Bode plots a	and deter	rmination of p	hase margin	
and gain margin and gain					
Laboratory Sessions/ Experime	ntal learning:				
1. Analyse the stability using roc	ot locus plot for a dynamic system				
2. Analyse the stability using boo					

2. Analyse the stability using bode plot for transfer function

Applications:								
1. Stability A	Analysis of a SISO system							
	gain in stability of a system							
Effect of frequ Module 4	Effect of frequency in stability of a system L3 08 Hrs.							
	esponse Specification and Analysis using Polar plots: Specification: Frequency response							
	quency response specifications and its relationship with time response specifications.							
-	lar plots, Nyquist stability criterion, Stability analysis, Relative stability concepts, Gain							
U	hase margin, M&N circles.							
	Sessions/ Experimental learning: plot for a transfer function							
2. Determine	e gain and phase margin from nyquist plot							
Applications:								
Module 5	bility of an aircraft L2 08 Hrs.							
Feedback con	ntrol systems: Types of controllers – Proportional, Integral, Derivative controllers, Proportiona							
	oportional – Integral – Derivative controllers; Compensation methods – Series and feedbac							
compensation	, Lead, Lag and Lead-Lag Compensators.							
State Variab	le Characteristics of Linear Systems: Introduction to concepts of states and state variabl							
representation	n of linear systems, Advantages and Disadvantages over conventional transfer functio							
representation	n, state equations of linear continuous data system. Matrix representation of state equations							
Solution of sta	ate equation, State transition matrix and its properties, controllability and observability, Kalma							
and Gilberts to	est.							
Laboratory S	Sessions/ Experimental learning:							
1. Design PI	D controller for non linear system							
Applications:								
	opilot design for lateral directional motion							
Provide suitab Course outco	ble controller for non linear or complex system.							
	etion of the course, students will be able to:							
CO404.3.1	CO404.3.1 Apply the concepts of control models							
CO404.3.2	CO404.3.2 Generate block diagrams and signal flow graphs							
CO404.3.3	CO404.3.3 Perform the stability analysis in Laplace domain through various techniques							
CO404.3.4	CO404.3.4 Evaluate the frequency response specifications and Nyquist criteria							
CO404.3.5	CO404.3.5 Determine controller and compensation gain for feedback control system							
Textbooks:								
1. U.A. Ba	akshi and V.U. Bakshi, "Control Engineering", Technical Publications							
2. A. Nago	oorKani, "Control Systems Engineering", RBA Publications, 2014							

Reference Books

1.	Katsuhiko Ogatta, "Modern C	ontrol Engineering", Pearson Education, 2004
----	-----------------------------	--

2. N.S. Nise, "Control Systems Engineering", Wiley, 6th Edition, 2012

CIE Assessment:

CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation. Generally, there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of three tests

- Quizzes/mini tests (4 marks)
- Mini Project / Case Studies (8 Marks)
- Activities/Experimentations related to courses (8 Marks)

SEE Assessment:

- Question paper for the SEE consists of two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.
- Part B also covers the entire syllabus consisting of five questions having choices and may contain sub-divisions, each carrying 16 marks. Students have to answer five full questions.
- One question must be set from each unit. The duration of examination is 3 hours.

	CO,PO Mapping													
CO/PO	PO	РО	РО	РО	PO	РО	РО	PO	РО	PO1	PO1	PO1	PSO	PSO
	1	2	3	4	5	6	7	8	9	0	1	2	1	2
CO1	3	2	3	0	0	0	0	0	0	0	2	3	1	1
CO2	3	3	2	1	1	0	0	0	0	0	1	1	1	1
CO3	3	3	2	1	3	0	0	0	0	0	2	2	1	1
CO4	3	2	3	3	3	0	0	0	0	0	2	3	1	1
CO5	3	3	2	2	3	0	0	0	0	0	1	1	1	1

High,3, Medium,2, Low,1

Course Title	ATMOSPHERIC FLIGHT MECHANICS	Semester	VII
Course Code	MVJ22AS744	CIE	50
Total No. of Contact Hours	40 L: T: P :: 3 :0 : 0	SEE	50
No. of Contact Hours/week	4	Total	100
Credits	3	Exam. Duration	3 Hrs.

The course objective is to:

- 1. Understand the Flight environment and Steady Performance – Level Flight, Climb & Glide
- 2. Understand airplane's range and endurance, and gain the knowledge of take-off, landing, and maneuvering flights.

08

Hrs.

- 3. Understand the static longitudinal stability with Control stick fixed & free conditions
- 4. Acquire the knowledge of Static Directional and Lateral stability &control

5.	Gain the knowledge of equations of motions and dynamic Stability d	erivatives.
dule 1		L3

Module 1

Atmosphere: ISA, Geopotential and Geometric altitude, Troposphere and Stratosphere, stability of atmosphere. Airplane Performance in Steady and Level Flight: Equations of motion of aircraft, variation of drag with flight, power required and power available, minimum drag and minimum power conditions, climbing and gliding performance.

Laboratory Sessions/ Experimental learning: Effect of Static margin on Longitudinal Stability of Aircraft-Flight Simulation Lab

Applications: Determine the Longitudinal stability of Aircraft with Stick fixed

Module 2	L3	08 Hrs.

Airplane Performance in Accelerated Flight: Take off and landing distances, Jet Assisted Take off, Range

and Endurance. Turning flight performance

Laboratory Sessions/ Experimental learning:

Calculate the variation of Trim Tabs during Stick free Neutral point condition

Applications:

Determine the Longitudinal stability of Aircraft with controls free

Module 3 L3 08 Hrs .

Static longitudinal stability: Stick fixed static longitudinal stability, neutral point, power effects, stick free

static longitudinal stability. Hinge moments, Aerodynamic Balancing, Static Margin. In flight measurement

of stick fixed and stick free neutral points.

Laboratory Sessions/ Experimental learning: Effect of Static margin on Longitudinal Stability of Aircraft-Flight Simulation Lab

Applications: Determine the Longitudinal stability of Aircraft with Stick fixed

Module 4		L3	08 Hrs.
Lateral and I	Directional Stability and Control: Asymmetric flight, weather cock s	stability, Rudd	er fixed and
Rudder free s	tatic directional stability - Rudder lock, dihedral effect. Control in R	oll, Aileron co	ntrol power.
Cross couplir	ng of lateral and directional effects. Numerical problems		
Laboratory	Sessions/ Experimental learning:		
Effect of ailer	ron input in lateral and directional motion of Aircraft		
Applications	:		
Effect of Dire	ectional and Lateral stability on Aircraft	r	
Module 5		L3	10Hrs.
Dynamic Sta	bility: Equations of motion of airplane, stability derivatives. Dyna	mic longitudii	nal stability.
Types of mod	les of motion: phugoid motion, short period motion. Routh's stability	y criteria. Facto	ors affecting
period and d	amping of oscillations. Flying qualities in pitch. Cooper-Harper S	cale. Dynamic	ateral and
directional st	ability. Response to aileron step-function, side-slip excursion. Dutch	roll and Spira	l instability.
Auto- rotatio	n and spin. Stability derivatives for lateral and directional dynamics.		
Laboratory	Sessions/ Experimental learning:		
	effect of stability derivatives on aircraft due to changes in forward spe e in roll rate and yaw rate & determine short period and phugoid osci :	•	U U
Stability deriv	vative estimation for a stable aircraft & determine relative stability of	an Aircraft	
Course outco	omes:		
Upon comple	tion of the course, students will be able to:		
CO404.4.1	Describe the Flight environment and apply the basic concepts of ai	rcraft perform	ance.
CO404.4.2	Analyze range and endurance, and illustrate take-off, landing, and	maneuvering	
CO404.4.3	Compare the longitudinal stability for stick fixed &stick free case.		
CO404.4.4	Analyze static lateral and directional stability		
CO404.4.5	Estimate the dynamic stability derivatives.		
Textbooks			
1.	John D. Anderson, Jr, Introduction to Flight by; McGraw-Hill Inte Science/Technology Editions, 2000	rnational, Aero	ospace
2	Nelson, R.C. Flight Stability and Automatic Control, McGraw-Hill	Book Co., 200)7.
Reference Bo	oks:		
1	Perkins, C.D., and Hage, R.E., Airplane Performance stability and Inc, New York, 1988	Control, John	Wiley Son
2	Bernard Etkin, Dynamics of Flight Stability and Control, John Wild Edition, 1982	ey & Sons, Sec	rond

	3		N. Parr n Series		rformai	nce, Sta	bility, I	Dynami	cs, and	Control	l of Air	planes,	AIAA2	2nd
CIE A	ssessme	ent:												
CIE is	based o	n quizz	es, tests	s, assigi	nments/	semina	rs and a	any othe	er form	of eval	uation.	Genera	lly, the	re will
be: Th	ree Inte	ernal As	ssessme	ent (IA)	tests o	luring 1	the sem	nester (.	30 mar	ks each), the f	inal IA	marks	to be
awarde	d will t	be the av	verage (of three	tests									
-	Quizze	s/mini t	ests (4	marks)										
-	Mini I	Project /	Case S	tudies ((8 Mark	as)								
-	Activit	ies/Exp	eriment	tations 1	elated	to cours	ses (8 M	larks)						
SEE A	ssessm	ent:												
i.	Quest	ion pap	er for	the SEE	E consi	sts two	parts i	.e. Part	A and	Part B	. Part A	A is con	npulso	ry and
	consis	sts of ol	ojective	type of	short a	answer	type qu	estions	of 1 or	2 mark	s each	for tota	1 of 20	marks
	cover	ing the	whole s	yllabus										
ii	. Part E	also c	overs tl	ne entir	e syllat	ous con	sisting	of five	questio	ns havi	ng choi	ces and	l may c	ontain
	sub-di	ivisions	, each c	arrying	; 16 ma	rks. Stu	dents h	ave to a	nswer	five ful	l questi	ons.		
ii	i.One q	uestion	must b	e set fro	om each	n unit. T	The dura	ation of	examir	nation is	s 3 hour	·s.		
						CO-PO	-PSO N	/Iapping	5					
<u> </u>		200	D 00	D O (201		205	200	DO	DOI	DOI	DOI	200	200
CO/P	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO	PO1	PO1	PO1	PSO	PSO
0									9	0	1	2	1	2
CO1	3	3	2	2	1	1	1	1	1	1	1	1	2	1
CO2	3	+++3	2	2	1	-	-	1	1	1	1	1	2	1

-

-

-

High,3, Medium,2, Low,1

-

-

-

CO3

CO4

CO5

Open Elective-II

Course Title	EARTH AND SPACE SCIENCES	Semester		VII				
Course Code	MVJ22AS751	CIE		50				
Total No. of Contact Hours	40 L: T:P: 3 :0 :0	SEE		50				
No. of Contact Hours/week	4	Total		100				
Credits	3	Exam. Dura	ation	3 Hrs.				
The course objective is to:								
1. Understand the basics of	Earth Science							
2. Acquire the knowledge of	Space Science							
3. Connect the concepts of H	Earth and Space Science for Aerospace	e Engineering	5					
4. Understand the basics of planets, comets, plasma physics.								
5. Acquire the knowledge of space, solar activity, physics of sun								
Module 1			L2	08 Hrs.				
Earth System Science, Doing Scien	ce, Earth in Space, Near-Earth Objects,	Plate tectonics	s, Continental	Drift,				
Plate Boundaries, The Science of E	arth Quakes, Seismic Waves, Earth qua	ke hazards						
Module 2			L2	08 Hrs.				
Volcanoes and Mountains, Rocks a	nd Minerals, weathering and Soils, Phys	sical Weatherin	ng, weathering	g rates,				
Oceans and Coastlines, Ocean Wat	ers, Oceanic Circulations, Shoreline feat	ture and protect	ction, The atm	osphere,				
Earth's climate System.								
Module 3			L2	08 Hrs.				
A brief History of discovery, Explo	pration of Solar System, The Sun and the	e Beyond, Rem	note Sensing o	f The				
Earth's Climate System, Remote Sensing Methodology, Measurement by remote sensing, Atmospheric factors,								
Instrumental factors, Using Reflect	ed Sunlight, Using Thermal Emission, U	Jsing Radar						
Module 4			L2	08 Hrs.				

•	rrestrial Planets, Outer Planets, Comets, Asteroids, Ma	ignetosphere, Missior	ns, Space
Plasma Physics			
Module 5			2 08 Hrs.
Space Weather Solar	Activity, The Solar Wind, Aurora, Solar flares, The Ic	nosphere Coronal M	lass Ejections
-	•	inosphere, coronario	Liss Ejections
and Geomagnetic Stor	ms, The Physics of the Sun, X-Ray Astronomy		
~			
Course outcomes:			
Upon completion of the	ne course, students will be able to:		
CO405.1.1	Appreciate the foundations of Earth Science		
CO 405 1 2			
CO405.1.2	Apply the knowledge of Space Science		
CO405.1.3	Analyse Earth and Space Sciences for Aerospa	ce Engineering	
CO405.1.4	Apply the knowledge of plasma physics in spa	ce science.	
CO405.1.5	Apply the knowledge of physics of sun.		

,	Text	tbooks:
	1	Exploring Earth Science - 16 edition ISBN13: 978-0078096143 by Stephen Reynolds
4	2	Space Science by Louise K Harra and K O Mason , Imperial College Press

Ref	erence Books
1.	Principles of Environmental Science: Inquiry and Applications. William Cunningham, Mary
	Cunningham ISBN13: 9780073532516
2.	Earth Science / Edition 13 by Edward J. Tarbuck
3.	Concepts in Space Science by RR Daniel
CIE A	Assessment:

CIE is based on quizzes, tests, assignments/seminars and any other form of evaluation. Generally, there will be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of three tests

- Quizzes/mini tests (4 marks)
- Mini Project / Case Studies (8 Marks)
- Activities/Experimentations related to courses (8 Marks)

SEE Assessment:

- Question paper for the SEE consists of two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.
- Part B also covers the entire syllabus consisting of five questions having choices and may contain subdivisions, each carrying 16 marks. Students have to answer five full questions.
- One question must be set from each unit. The duration of examination is 3 hours.

	CO, PO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2			1						1	3	1
CO2	3	3	2			1						1	3	1
CO3	3	3	2			1						1	3	1
CO4	3	3	2			1						1	3	1
CO5	3	3	2			1						1	3	1

High,3, Medium,2, Low,1

Course Title	AVIATION AND INTERNET INFRASTRUCTURE	Semes	ter	VII						
Course Code	MVJ22AS752	CIE		50						
Total No. of Contact Hours	40 L: T:P: 3 :0 :0	SEE		50						
No. of Contact Hours/week	4	Total		100						
Credits	3	Exam. Duration 3 H								
The course objective is to:				<u> </u>						
7. Understanding the importa	nce of the customer service									
8. Understanding the knowle	edge of air cargo.									
9. Apply supply chain managed	9. Apply supply chain management in aviation.									
10. Understanding the custom	ner.									
11. Know the reasons for com	plaints and their redressal									
Module 1			L2	08 Hrs.						
Introduction – Customer Service –	A better standard of Customer Service	– Airline	Industry Change	es – Airline						
Deregulation – Global Alliances –	The Rise of Low Cost Carrier – The R	lole of the	e Internet – Airlin	ne Industry						
Challenges – Customer Service in t	he Age of the Customer – Age of the C	ustomer –	Customer Servi	ce as a Key						
Differentiator - Operational Exce	ellence – The Customer Centric Cult	ture – M	ission Statement	t – Airline						
Customer Service – On the Front L	ine – Duties and Responsibilities of Fr	ont Line S	Staff – Who is a G	Customer –						
The High Cost of Losing a Custor	ner – Customer Expectations of Servic	e – What	is Customer Ser	rvice – The						
Peripheral Services – Objectives of	f Customer Service - Benefits of Custo	mer Servi	ce.							
Laboratory session /Experiment	al Learning: A case study on improv	ving custo	mer satisfaction	and travel						
ease										
Applications – Travel time and cu	stomer ease of travel to be improved									
Module 2			L2	08 Hrs.						

Operations and Industry Regulations – Service Function – Organization & Liabilit	y – SLI – Types o	of Cargo –
Handling of Perishable, Valuable & Special Cargo – Air Cargo Tariff, Rates & C	harges – Valuatio	n Charges
and Disbursement Airway Bill – Function, Purpose & Validation.		
Laboratory session /Experimental Learning: A case study on improving the car	go services	
Applications – Effectively handling cargo and see that reaches destination in time		
Module 3	L2	08 Hrs.
Definition – Objectives of SCM – Key Issues in SCM – Supply Chain Drivers – D	emand – Forecast	ing – 3
PLs - Advantages - 4 PLs - Benefits - Difference between Logistics & Supply Ch	ain Management	– SCM
Processes – 7 Principles of SCM – 6 Components of SCM – Stages of Supply Cha	in.	
Laboratory session /Experimental Learning: SCM concepts and their importance	in aviation throug	gh Internet
Applications – Good understanding of the travel time and its importance from the	customer end	
Module 4	L2	08 Hrs.
Customer Contact Techniques - Making a Good First Impression - Self Presen	tation Skills – Pr	eparing to
receive the Customer - Steps to receive the Customer - Telephone Communication	tion – How to A	nswer the
Telephone – Hints for Developing Better Telephone Listening Skills – Email Etic	quette – Handling	Common
Questions from Customers - Communication with Customers through Social Med	ia – How Airlines	are Using
social media - Responding to Customer Complaints through Social Media - Soc	ial System and Ta	act : Cross
Cultural Awareness – The Importance of Self Awareness – Personality – Assertive	e vs Responsive B	Behaviours
- What is Your Social Style? - Characteristics of the Four Social Styles - Social Styles	tyle and Customer	Service –
Identifying a Customer's Social Service – Flexing Strategies – Cross Cultural Aw	areness – What is	Culture –
Cultural Differences – The Importance of Cross-Cultural Awareness.		
Laboratory session /Experimental Learning: A case study for improving custon	ner service	
Applications – Good customer service a key for airline growth		
Module 5	L2	08 Hrs.
Dealing with Complaints - Lack of Complaints - Why do Customer Complain	– Developing a	Customer

Servi	ce Strateg	y – Legitimate vs Illegitimate Complaints – Preventing Complaints – How to Handle Complaints
effec	tively – Tl	he Five Types of Customers who complain and How to Handle them – The Complaints System
- De	aling with	Disengagement – Handling Customer Aggression as Airline Employee.
Labo	oratory se	ssion /Experimental Learning: A case study for addressing and mitigate complaints
App	ications –	Steps to understand how to mitigate the complaints.
Cour	rse outcon	nes:
Upor	n completio	on of the course, students will be able to:
CO4	05.2.1	Importance of customer service
CO4	05.2.2	Handling of cargo and their functions
CO4	05.2.3	Importance of the supply chain management
CO4	05.2.4	Knowing the customer contact techniques
CO4	05.2.5	Knowing the complaints and the reasons and their redressal
Text	books:	
1	Aink Ku	mar Hai, Customer Relationship Management Concept & Cases Prentice Hall of India Private
	Limited	
2	Shangus	taram, Customer Relationship Management, Prentice Hall of India Private Limited
Refe	rence Bo	oks
1.	Kaushik I	Mukherjee. Customer Relationship Management, Prunicu Hall of India Private Limited.
CIE	Assessme	nt:
CIE i	s based on	quizzes, tests, assignments/seminars and any other form of evaluation. Generally, there will be:
Thre	e Internal	Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded
will l	be the aver	rage of three tests
-	Quizzes/1	mini tests (4 marks)
-	Mini Pro	oject / Case Studies (8 Marks)
-	Activities	s/Experimentations related to courses (8 Marks)

SEE Ass	sessme	nt:												
- (Questic	on pape	er for t	he SEE	E consi	sts of t	wo pa	ts i.e.	Part A	and Par	t B. Pa	rt A is c	compulse	ory and
	consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks													
	coverin	ig the w	whole s	yllabus										
-]	Part B a	also co	vers the	e entire	syllab	us cons	isting o	of five	questio	ns havin	g choice	es and m	ay conta	in sub-
	divisio	ns, eacł	ı carryi	ng 16 i	marks.	Studen	ts have	to ans	wer fiv	e full qu	estions.			
- (One qu	estion	must be	e set fro	om eac	h unit. '	The du	ration o	of exan	nination	is 3 hou	rs.		
					CO,	PO Ma	pping							
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	3	1	1	1	1	1	1	1	1	1	1	1	1
CO2	2	3	1	1	2	2	1	1	1	3	1	3	2	1
CO3	1	3	1	1	1	1	1	1	1	1	1	1	3	1
CO4	2	3	1	1	2	2	1	1	1	3	1	2	3	1
CO5	2	1	1	1	1	1	1	1	2	2	1	1	1	1
High,3, 1	Mediur	n,2, Lo	w,1											

Course Title	INDUSTRIAL AERODYNAMICS	Semester		VII	
Course Code	MVJ22AS753	CIE		50	
Total No. of Contact Hours	40 L: T:P: 3 :0 :0	SEE		50	
No. of Contact Hours/week	4	Total		100	
Credits	3	Exam. Du	ration	3 Hrs.	
The course objective is to:					
1. Familiarize the learner with	the atmosphere and its effect on the stru	ctures.			
2. Understand the effect of wi	nd on different structures.				
3. Familiarize non-aeronautic	al uses of aerodynamics in road vehicles.				
4. Familiarize non-aeronautic	cal uses of aerodynamics in buildings	and to Und	erstand me	thods fo	
constructing various tall str	uctures.				
5. Understand the problems of	f flow induced vibrations.				
Module 1			L2	8 Hrs	
ATMOSPHERE: Types of winds, G	Causes of variation of winds, Atmospheri	c boundary la	ayer, Effect	of terrain	
on gradient height, Structure of turk	bulent flows. Case Study – Measurement	of basic win	d parameter	rs in oper	
atmospheric condition					
Applications:					
1. Measurement of wind para	meters in given atmospheric condition.				
Module 2			L2	8 Hrs	
WIND ENERGY COLLECTORS	Horizontal axis and vertical axis ma	achines, Pow	ver coeffici	ent, Betz	
coefficient by momentum theory.					
Applications:					
1. Power generation and reduc	cing carbon footprint.				
			TO	0.11	
Module 3			L2	8 Hrs	

angle, Aerody	namics of trains and Hovercraft.		
Applications:			
1. To ur	derstand flow of air through the vehicle's body.		
2. To ur	derstand flow processes within the vehicle's machinery.		
Module 4		L2	8 Hrs.
BUILDING	AERODYNAMICS Pressure distribution on low rise buildings, wind	forces on b	ouildings.
Environmenta	al winds in city blocks, Special problems of tall buildings, building codes, Bu	ilding ventil	ation and
architectural	aerodynamics. Case Study – Experimental analysis of high-rise buildings.		
Applications:			
1. To ur	iderstand fluid and structure interaction.		
Module 5		L2	8 Hrs.
FLOW INDU	JCED VIBRATIONS Effects of Reynolds number on wake formation of	bluff shapes	s, Vortex
induced vibra	tions, Galloping and stall flutter.		
Applications:	To understand low frequency vibrations due to fluid flow.		
Course outco	mes: Upon completion of the course, students will be able to:		
CO405.3.1	To familiarize the learner with atmosphere and its effect on the structures.		
CO405.3.2	To understand the effect of wind on different structures.		
CO405.3.3	To Familiarize non-aeronautical uses of aerodynamics in road vehicles.		
CO405.3.4	To Familiarize non-aeronautical uses of aerodynamics in buildings and to	Understand	methods
	for constructing various tall structures.		
CO405.3.5	To Understand the problems of flow induced vibrations.		
Text Books:	1		
1.	M.Sovran (Ed), "Aerodynamics and drag mechanisms of bluff bodies	and road v	vehicles",
1.	Plenum press, New York, 1978.		
2.	N.G. Calvent, "Wind Power Principles", Charles Griffin & Co., London,	1979.	
Reference Bo	poks:		

1.		P. Sacl	ns, "Wi	nds for	rces in	engine	ering",	Pergan	non Pre	ess, 1978	3.			
2.		R.D. B	levins,	"Flow	induce	ed vibra	ations",	, Van N	lostran	d, 1990				
3.		M Kaushik "Theoretical and experimental aerodynamics", Springer,2019												
CIE Ass	essme	nt:												
CIE is b	ased or	n quizz	es, test	s, assig	gnment	s/semir	nars, ar	nd any	other fo	orm of e	valuatio	n. Gene	rally, the	ere will
be: Thre	e Interi	nal Ass	essmen	t (IA) t	ests du	ring th	e seme	ster (30	marks	each), t	he final	IA mark	s to be a	warded
will be t	he aver	age of	three te	ests.		C								
- Qı	ıizzes/ı	nini tes	sts (4 m	narks)										
- N	lini Pro	oject / C	Case Stu	udies (8	8 Mark	s)								
- Ac	tivities	s/Exper	imenta	tions re	elated to	o cours	es (8 N	/larks)						
SEE As								,						
- '	The au	estion 1	paper fo	or the S	SEE co	nsists o	of two i	parts i.e	e. Part	A and P	art B. Pa	art A is c	compulse	orv and
	•							•					tal of 20	•
			whole sy			unswei	type c	14050101	15 01 1	01 2 1114		101 u to	ui 01 20	, ma ng
		•	•			us cons	sisting a	of five	questio	ns havir	o choice	es and m	ay conta	in sub-
					•		Ũ		•	e full qu	0	ob und m		in suc
			-	-						nination		re		
_	one qu	cstion 1	inust of			PO Ma				mation	15 5 1100	15.		
<u>CO/DO</u>	DO1	DO2	DO1	DO 4				DOO	DOO	DO10	DO11	DO10	DCO1	DCOO
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	1	2	2										
CO2	3	2	2	2	1	1								
CO3	3	2	2	2	1	1								
CO4	3	2	2	2	1	1								
CO5	3	2	2	2		1								

Course Title	AVIONICS	Semester	VII
Course Code	MVJ22AS754	CIE	50
Total No. of Contact Hours	40 L: T:P: 3 :0 :0	SEE	50
No. of Contact Hours/week	4	Total	100
Credits	3	Exam. Duration	3 Hrs.
The course objective is to:			1
1. Understand the power distr	ibution system and need for avionics.		
2. Acquire knowledge of cont	rol and navigation systems		
3. Gain knowledge of display	technologies and avionics system arch	itectures	
4. Understand the Microproce	ssors and cockpit display technologies		
5. Apprehend the functioning	of data buses		
Module 1 Power Distribution Syst	em	L2	08 Hrs.
Power Distribution System: Bus	Bar, split bus bar system, special pur	pose cables. Electri	cal diagram and
identification scheme. Circuit contr	olling devices. Power utilization-typic	al application to av	ionics. Need for
Avionics in civil and military aircra	ft.		
Laboratory Sessions/ Experimenta	al learning: Programming using micro	processor.	
Applications: Data Transfer, Comm	nunication		
Module 2 Inertial Navigation &El	ectronic Flight Control System	L3	08 Hrs.
Inertial Navigation System: Gyr	oscopic versus Inertial platform. Str	ructure of stable pl	latform. Inertial
Navigation units. Inertial alignment.	Inertial interface system. Importance	of Compass swing.	
Electronic Flight Control System	: Fly-by-wire system: basic concept	and features. Pitch	and Roll rate:
command and response. Control La	ws. Frequency response of a typical F	BW actuator. Coop	er Harper scale.
Redundancy and failure survival. Co	ommon mode of failures and effects an	alysis.	
Laboratory Sessions/ Experimenta	al learning: Validation of truth tables	for different logic ci	rcuits
Applications: Communication, Tra-	cking		
Module 3 Electronic Flight Instru	ment &Avionics Sub Systems	L3	08 Hrs.

Electronic Flig	ght Instrument Systems: Display-units, presentation, failure, and	annunciatio	n. Display of air
data.			
Introduction	to Avionics Sub Systems and Electronic Circuits: Typical avio	nics sub sys	tems. Amplifier,
oscillator, aircr	aft communication system, transmitter, receiver, antenna.		
Laboratory Se	essions/ Experimental learning: Construct 7 segment display circ	uit using IC (timer
Applications:	Attitude Estimation, Navigation, Control		
Module 4 Digi	tal Systems& Flight Deck and Cockpits	L3	08 Hrs.
Principles of I	Digital Systems: Digital Computers, Microprocessors, Memories.		
Flight Deck an	d Cockpits: Control and display technologies CRT, LED, LCD,	EL and plass	ma panel, Touch
screen, Direct	voice input (DVI)-Civil cockpit and military cockpit: MFDS, HUD	, MFK, and	HOTAS.
Laboratory Se	essions/ Experimental learning: Data transfer using ARINC420 d	ata bus.	
Applications:	Position Estimation, Guidance, Control		
Module 5 Avie	onics Systems Integration	L3	08 Hrs.
Avionics Syste	ems Integration: Avionics equipment fit. Electrical data bus syste	m. Commun	ication Systems,
Navigation sys	stems, Flight control systems, Radar, Electronic Warfare, and fi	re control s	ystem. Avionics
system archited	cture, Data buses, MIL–STD1553B		
Laboratory Se	essions/ Experimental learning: Data transfer using MIL-STD 15	53B Data bu	s
Applications:	Navigation, Guidance, Control		
Course outcor	nes:		
Upon completi	on of the course, students will be able to:		
CO405.4.1	Analyse the power distribution system in avionics.		
CO405.4.2	Apply the knowledge of control and navigation systems		
CO405.4.3	Utilise the knowledge of display technologies and avionics system	m architectu	*es
CO405.4.3			.00
	Evaluate the Microprocessors and cockpit display technologies		
CO405.4.5	Analyse the functioning of data buses		

Texth	ooks:													
1	R.P.G. C	ollinso	n, Intro	oduction	n to Av	vionics	System	ns, 3 rd E	Edition,	2011, S	pringer.			
2	Ian Moir	, Allan	Seabri	dge and	l Malco	olm Jul	kes, Civ	vil Avi	onics S	ystems,	2 nd Editi	ion, 2003	3, Wiley	
Refer	ence Bo	oks								-			-	
1. I	R. Cundy	Dale, 1	Introdu	ction to	Avior	nics, 20	10, Pea	arson E	ducatio	on.				
	ssessme					,	,							
	based on		es. tests	. assigr	ments	/semina	ars and	anv otl	ner form	n of eva	uation.	Generall	v. there	will be:
	Internal A	•		· · ·				•					•	
	average			,	L L					,,				
	Quizzes/1			narks)										
	Mini Pro				8 Mark	s)								
-	Activities	s/Expei	rimenta	tions re	elated t	o cours	ses (8 N	/larks)						
SEE A	ssessme	ent:												
-	Questio	on pape	er for th	e SEE	consist	s two p	arts i.e	. Part A	A and P	art B. Pa	art A is c	compulse	ory and c	onsists
	of obje	ctive ty	pe or s	hort an	swer ty	pe que	stions	of 1 or	2 mark	s each fo	or total o	of 20 mai	ks cover	ing the
	whole	syllabu	s.											
-	Part B	also co	vers the	e entire	syllab	us cons	sisting	of five	questic	ons havir	ng choice	es and m	ay conta	in sub-
	divisio	ns, eacl	h carryi	ing 16 i	narks.	Studen	ts have	e to ans	wer fiv	e full qu	estions.			
-	One qu	estion	must be	e set fro	om eac	h unit. '	The du	ration o	of exan	nination	is 3 hou	rs.		
						CO	,PO M	apping	5					
CO/PO	D PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1								2				2	3	2
CO2												2	1	
CO3	2	2	2									2		
CO4	3	3	2			2	2					3	2	1
	Ŭ	Ŭ	-			-	-					Ľ	-	*

CO5	3	3	3		2	2			3	3	3
High,3,	Mediu	ım,2, I	Low,1								