	SEMESTER I		
	NUMERICAL METHODS AND OPTIMIZATION TECHNIC (Theory and Practice)	QUES	
	Code: MVJCSE11 CI	E Marks: 50	
Credits: L: T: P: 3:2:0 SEE Marks: 50			
		EDuration: 3	Hrs.
-	e Learning Objectives: The students will be able to		
1	Formulate Linear programming for obtaining solution for a problems	real world	
2	Learn Non-linear, geometric and dynamic programming t engineering problems.	echniques fo	or civil
3		Analyze the civil engineering data and characterize with regression	
4	Understand the techniques of numerical methods for solv	ring different	ial
	equations and their applications.	ing airerent	lai
5	Understand project management technique for use in real	l civil engine	ering
	projects	5	5
	Module-1		
	duction to optimization techniques: Nature and charac	cteristics of	
	ation research. duction to Linear programming: Graphical solution, sol	ution by	8 Hrs
	ex and revised simplex technique.		01113
Siripi	Module-2		
Non-	Linear Programming: one dimensional minimization n	nethods	
	nation methods, Fibonacci method; Dynamic progra		8 Hrs
	duction, Approaches, Application and case studies: Ge		•••••
	amming methods- Introduction, Approaches, conversion		
	equence of LP.		
45 4 5	Module-3		
Statis	tical inferences: Methods of least square and reg	gression,	
	ple regression.		8 Hrs
Conc	ept of probability: Random Variables, Binomial, Poiss	son and	
	al distribution, applications, Chi- squared test and An		
Varia	nce.	5	
	Module-4	I	
Num	erical Solutions: Solution of Ordinary differential eq	juations:	
Euler	's method, and Rangakutta 3rd and 4th order method,	Taylor's	8 Hrs
	method Solutions for Integral Equations: Trapezoid	dal rule,	
Simp	son's 1/3rd and 3/8th rule, and Weddle's Rule.		
	Module-5		
	erical solution of Partial Differential Equations: Intro		8 Hrs
Finite difference approximations to derivatives, Explicit methods-			
	erical Solution of Laplace Equation, Numerical solution		
	nsional heat equation by Bender - Schmidt's method	-	
	K-Nicholson Method, Implicit method-Numerical solution	ution of	
	limensional wave equation		
<u>Sl. No</u> 1	Programs Linear programming by graphical solution		
2	Statistical inferences		
۷			

3	Methods of least square
4	Multiple regression
5	Concept of probability : Random Variables
6	Binomial distribution
7	Poisson distribution
8	Normal distribution
9	Chi- squared test
10	Analysis of Variance
11	Solution of Ordinary differential equations
12	Solutions for Integral Equations

Course Outcomes: After completing the course, the students will be able to

	······································
CO 1	Formulate Linear programming for obtaining solution for real world
	problems
CO 2	Solve Non-linear, geometric and dynamic programming problems of civil engineering.
CO 3	Analyze the data and characterize with regression equations and test its efficacy.
CO 4	Solving differential equations using numerical methods
CO 5	Solve the project management problems using CPM and PERT

Text	Books
1.	S.D. Sharma, "Operations Research (Theory Methods & Applications)", 20th ed., Kedar Nath Ram Nath Publications, Meerut, UP, 2014.
2.	M K Jain, S.R.K Iyengar, R K. Jain, "Numerical methods for Scientific and Engg. Computation", 4th ed., New Age International, New Delhi, 20012.
3.	B.S. Grewal, "Higher Engineering Mathematics" Khanna Publishers, 43 rd Edition, 2013.
4.	Erwin Kreyszig, "Advanced Engineering Mathematics", Wiley-India publishers, 10th edition,2014.

Refer	Reference Books	
1.	Johnson, R.A. and Bhattacharya, G.K. Statistics-Principles and Methods, 4 th ed.,	
	John Wiley and Sons, New York, 2001.	
	Chitkara, K.K. "Construction Project Management: Planning, Scheduling and Control", 4th	
	ed., TataMcGraw-Hill Publishing Company, New Delhi, 2006.	

Continuous Internal Evaluation (CIE): Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks

and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Laboratory- 50 Marks

The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are awarded 10 marks. Total marks for the laboratory is 50.

Semester End Examination (SEE) Total marks: 50+50-100

SEE for 50 marks is executed by means of an examination. The Question paper consists of five questions one from each unit for 20 marks adding up to 100 marks. Each main question may have a maximum of three subdivisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level

Laboratory-50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

	SEMESTER I	
	MECHANICS OF DEFORMABLE BODIES	
Cours	(Theory) Course Code: MVJCSE12 CIE Marks: 50	
	Credits: L: T: P: 3:0:0 SEE Marks: 50	
Hours		rs.
Cours	se Learning Objectives: The students will be able to	
1	Make students to learn principles of Analysis of Stress and Strain	
2	Predict the stress-strain behaviour of continuum	
3	Evaluate the stress and strain parameters and their inter relations continuum	of the
4	Develop the Propagation of waves in solid media	
5	Apply the nonlinear stress strain relationship of concrete for design	
	Module-1	
strair and equil	ry of Elasticity: Introduction: Definition of stress and strain and a at a point, components of stress and strain at appoint of Cartesian polar coordinates, Octahedral stresses, Constitutive relations, ibrium equations, compatibility equations and boundary conditions D and 3-D cases, Generalized Hooke's law.	8 Hrs
	Module-2	
Transformation of stress and strain at a point, Principal stresses and principal strains, invariants of stress and strain, hydrostatic and deviatric stress, spherical and deviatric strains maximum shear strain.		8 Hrs
	Module-3	
Plane stress and plane strain: Airy's stress function approach to 2-0 problems of elasticity, simple problems of bending of beams. Solution of axisymmetric problems, stress concentration due to the presence of a circular hole in plates.		8 Hrs
	Module-4	
8Hrs non-a	entary problems of elasticity in three dimensions, stretching of a prismatic bar by its own weight, twist of circular shafts, torsion of circular sections, membrane analogy, Propagation of waves in solid a. Applications of finite difference equations inelasticity.	8 Hrs
Module-5		
and incre plast elast func cylir plast	bry of Plasticity: One-dimensional elastic-plastic relations, isotropic kinematic hardening, yield function, flow rule, hardening rule, emental stress-strain relationship, governing equations of elasto- cicity, Yield and failure criteria-Stress strain relations for perfect co-plastic materials-Von Mises, Tresca and Mohr-Coulon ⁻ b stress tions-simple elastic plastic problem-Expansion of a thick walled ader - incremental stress-strain relationship. Implementation of ticity in metals and concrete - principles only - metals - plastic es strain matrix for metals- nonlinear stress strain relation in crete.	

Course Outcomes: After completing the course, the students will be able to	
Achieve knowledge of design and development of problem solving skills.	
Understand the principles of stress-strain behaviour of	
Design and develop analytical skills	
Describe the continuum in land 3-dimensions	
Describe the continuum in land 3-dimensions	

Text Books		
1.	Timoshenko & Goodier, "Theory of Elasticity", 3rd Edition, McGrawl-fill, 2017.	
2.	Sadhu Singh, "Theory of Elasticity", 2nd Edition, Khanna Publishers, 2015	
3.	Varghese P.C., "Advanced Reinforced Concrete Design", II Ed. , Prentice-Hall of India, New Delhi, 2005.	

Reference Books	
1.	Verma P.D.S, "Theory of Elasticity", Vikas Publishing Pvt. Ltd, 2nd Edition, 2012.
2.	

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

	SEMESTER I		
	STRUCTURAL DYNAMICS AND EARTHQUAKE ENGINEERING (Theory)		
	e Code: MVJCSE13 CIE Marks:		
	Credits: L: T: P: 3:0:0 SEE Marks: 50		
Hours: 40L SEE Duration: 3 Hr		n: 3 Hrs.	
	e Learning Objectives: The students will be able to		
1	Learn principles of Structural Dynamics		
2	Implement these principles through different methods and to a for free and forced vibration of structures	apply the	same
3	Evaluate the dynamic characteristics of the structures		
4	Learn principles of engineering seismology		
5	Interpret the codal provisions as per IS: 1893 (part 1): 2002 and app design of RC structures	oly it to the	e
Tataa	Module-1	· · · · ·	
Conce Degre equiv	duction: Introduction to Dynamic problems in Civil Engineer ept of degrees of freedom, Basic Definition vibration of SDOF (Si ee of Freedom) Systems , Damped, UnDamped, Free Vibrati valent Viscous damping, Logarithmic decrement. Mathematels els of Single-degree-of-freedom systems.	ngle ions	8 Hrs
	Module-2		
Dynamics of Single -Degree - of - Freedom Systems (SDOF): Dynamic equations of equilibrium, Mathematical models of Single-degree-of-freedom systems system, Free vibration and forced vibration response of damped and undamped		stems 8	8 Hrs
(rotatic	nse of Single-degree-of-freedom systems to harmonic load on unbalance, reciprocating unbalance) including support mot on isolation, transmissibility.	U	
	Module-3		
Dynamics of Multi -Degree-of-Freedom Systems (MDOF): Mathematical models of multi-degree-of- freedom systems, Shear building concept, free vibration of undamped multi-degree-of-freedom systems - Natural frequencies and mode shapes – Orthogonality property of modes.		ion of	8 Hrs
norma	nse of Shear buildings for harmonic loading without damping us I mode approach. Response of Shear buildings for forced vibration nic loading with damping using normal mode approach.	u	
	Module-4	·	
irregu Design model during	uake Resistant Analysis and Design of Structures : Concept of larities and vertical irregularities, Soft storey, Torsion in buil provisions for these in IS-1893. Effect of infill masonry walls on fra- ling concepts of infill masonry walls. Behaviour of masonry buil g earthquakes, failure patterns, strength of masonry in shear	dings. ames, dings r and	8 Hrs
	e, Slenderness concept of masonry walls, concepts	for	
earth	quake resistant masonry buildings - codal provisions. Module-5		
Seismic response control concepts - Seismic demand, seismic capacity, Overview of linear and nonlinear procedures of seismic analysis, Static Push over analysis. Performance Based Seismic Engineering methodology, Seismic evaluation and retrofitting of structures.		mic	8 Hrs

Course	Course Outcomes: After completing the course, the students will be able to	
CO1	Achieve knowledge of design and development of problem solving skills	
CO2	Understand the principles of Structural Dynamics	
CO3	Summarize the Solution techniques for dynamics of Multi-degree freedom systems	
CO4	Analyse earthquake characteristics and associated effects on structures, including linear responses	
CO5	Understand the concepts of Seismic response control.	

Text Bo	Text Books		
1.	Mukhopadhaya M, "structural dynamics Vibrations", 2nd Edition, Oxford IBH, 2014.		
2.	Mario Paz "Structural Dynamics", 5th Edition, CBS publishers, 2004		
3.	Vinod Hosur, "Earthquake Resistant Design of Building Structures", 3rd Edition, WILEY (india), 2016.		
4	Duggal, "Earthquake Resistant Design of Structures", 5th Edition 2017, Oxford University Press,.		

Reference Books	
1.	Clough Er Penzi "Structural Dynamics", 2nd Edition, TMH, 2018.
2.	Pankaj Agarwal, Manish Shrikande, "Earthquake resistant design of structures" - 4th Edition, PHI India, 2016.

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

	Semester I	
	ADVANCED DESIGN OF RC STRUCTURES	
Course	CIE Marks: 50	
Credits: L: T: P: 3:0:0 SEE Marks: 50		
Hours	: 40L SEE Duration: 3 Hrs	5.
Cours	se Learning Objectives: The students will be able to	
1	Make students to learn principle of structural design	
2	Design different types of structures	
3	Detail the structures	
4	Evaluate the performance of structures	
5	Develop analytical skills in solving structural problems.	
	Module-1	
Basic	Design Concepts: Limit state of Serviceability: Deflections of	
Reinforced concrete beams and slabs, short term deflection and long term deflection, estimation of crack width in RCC members, calculation of crack widths.		8 Hrs
	Module-2	
Limit Analysis of R.C. Structures: Yield line analysis for slabs: Upper bound and lower bound theorems - yield line criterion - Virtual work and equilibrium methods of analysis for square and circular slabs with simple and continuous end conditions.		8 Hrs
	Module-3	
Design of Flat slabs : Flat slabs: Direct design method - Distribution of moments in column strips and middle strip-moment and shear transfer from slabs to columns - Shear in Flat slabs-Check for one way and two way shears - Introduction to Equivalent frame method. Limitations of Direct design method, Distribution of moments in column strips and		8 Hrs
miac	lle strip. Module-4	
Desid	gn of Reinforced Concrete Deep Beams & Corbels: Steps of	
Designing Deep Beams, Design by IS 456, Checking for Local Failures, Detailing of Deep Beams, Analysis of Forces in a Corbels, Design of Procedure of Corbels.		8 Hrs
	Module-5	
Dooic	n of Elevated Intz type of Water Tank, Design of silos and bunkers.	8 Hrs

Course	Course Outcomes: After completing the course, the students will be able to		
CO1	Achieve knowledge of design and development of problem solving skills.		
CO2	Understand the principles of Structural Design		
CO3	Design and develop analytical skills.		
CO4	Summarize the principles of Structural Design and detailing		
CO5	Understands the structural performance.		

Text Bo	poks
1.	Park A and Paulay, "Reinforced and Prestressed Concrete", lst Edition, John Wiley Er sons, 2010.
	Kong K F and Evans T H, "Reinforced and Prestressed Concrete", 3rd Edition ,CRC Press, 2013.

Reference Books		
1.	Varghese P.C., "Advanced Reinforced Concrete Design II Ed", 2nd Edition, Prentice-Hall of India, New Delhi, 2005.	
2.	Punmia B.C., Ashok Kumar Jain and Arun Kumar Jain, "Comprehensive RCC Design", 10th Edition , Laxmi Publications, 2015.	

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

	SEMESTER I		
	REPAIR AND REHABILITATION OF S	TRUCTURES	
Course	Code: MVJCSE15	CIE Marks: 50	
Credits: L: T: P: 3:0:0 SEE Marks: 50			
	Hours: 40L SEE Duration: 3 Hrs		_
	e Learning Objectives: The students will be able to		•
1	Investigate the cause of deterioration of concrete s	tructures.	
2	To strategize different repair and rehabilitation of str	ructures.	
3	To evaluate the performance of the materials for re		
6	Module-1		
Diagno asses struct corro Qualit	ral: Introduction, Cause of deterioration of concre- ostic methods & analysis, preliminary investigation sment, Investigation of damage, Evaluation of ural cracks, experimental investigations using NDT sion mapping, core drilling and other instrumer by assurance for concrete construction, as built concr	s, Rapid surface and , load testing, ntal methods,	8 Hrs
streng	gth, permeability, thermal properties and cracking		
To Out	Module-2	<u>1'</u>	
temp error meth	ence on Serviceability and Durability: Effects due erature, chemicals, wear and erosion, Design and o s, corrosion mechanism, Effects of cover thickness a ods of corrosion protection, corrosion inhibitor ant steels, coatings, and cathodic protection. Module-3	construction and cracking,	8 Hrs
rehabil measu	nance and Repair Strategies: Definitions: Maintenanc itation, Facets of Maintenance, importance of Maintena res on various aspects. Inspection, Assessment proce ting a damaged structure, causes of deterioration, test Module-4	nce, Preventive edure for	8 Hrs
Matori	als for Repair: Special concretes and mortars,	concrete	
chemi cemer	cals, special elements for accelerated strength it, polymer concrete, sulphur infiltrated concrete, Fei ced concrete. Techniques for Repair: Rust eliminato	gain, Expansive rro cement, Fiber	8 Hrs
coatin vacuui	g for rebar during repair foamed concrete, morta n concrete, Gunite and Shot Crete Epoxy injection, shoring and underpinning.	ir and dry pack,	
	Module-5		
stren fire, 1	ples of Repair to Structures: Repairs to overcome gth, Deflection, Cracking, Chemical disruption, wea eakage, marine exposure, engineered demolition to idated structures - case studies.	thering wear,	8 Hrs

Course	Course Outcomes: After completing the course, the students will be able to		
CO1	Achieve knowledge of design and development of problem solving skills.		
CO2	Understand the cause of deterioration of concrete structures.		
CO3	Design and develop analytical skills.		
CO4	Summarize the principles of repair and rehabilitation of structures		
CO5	Achieve knowledge of design and development of problem solving skills.		

Text Bo	poks
1.	Sidney, M. Johnson, "Deterioration, Maintenance and Repair of Structures", 3rd Edition,2018
2.	Denison Campbell, Allen Er Harold Roper , "Concrete Structures, Materials, Maintenance and Repair", 7th Edition, Longman Scientific and Technical, 2013.

Reference Books				
1.	R.T.Allen and S.C.	Edwards , "Repair	of	ConcreteStructures", 9th
	Edition, Blakie and Son	s, 2015.		
2.	Raiker R.N , "Learning f	or failure from Deficie	ncies i	n Design, Construction and
	Service", 5th Edition, R&	D Center (SDCPLO), 201	2.	

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Semester End Examination (SEE):

Total marks: 50+50=100

	SEMESTER I		
	Structural Engineering Lab		
<u> </u>	(Practice)		
		CIE Marks: 50	
Credits	: L: T: P: 1:0:2	SEE Marks: 50	
Hours:	30	SEE Duration: 3 Hrs.	
Course	Course Learning Objectives: The students will be able to		
1	Assess the properties of fresh concrete both normal ar	nd Self compacting Concrete	
2	Assess the properties of Hardened concrete both r Concrete	normal and Self compacting	
3	Assess the structural behaviour of beams, columns and	d slabs	
4	Determine the response of structural models using sha	ake table	
	LABORATORY EXPERIMENTS		
A Assessment of Drop ortion of French Concernets			

- A. Assessment of Properties of Fresh Concrete
 - 1. Slump Test
 - 2. Vee-Bee Consistometer Test,
 - 3. Compaction Factor Test

B. Properties of fresh SCC

- 4. Slump Flow
- 5. J-Ring,
- 6. L-Box
- 7. V-Funnel
- 8. U-Box Tests

$\ensuremath{\text{c.}}$ Mechanical properties of Hardened concrete (Conventional Concrete and Self

Compacting Concrete)

- 9. Compressive strength
- 10. Flexural Strength
- 11. Split Tensile strength
- 12. Modulus of Elasticity (Static and Dynamic) and Bond Strength (Demonstration)
- 13. NDT methods UPV Test, Rebound Hammer Test
- 14. Permeability Sorption Diffusion, RCP, Initial Surface Absorption, Water permeability
- 15. Resistance to Acid, Chloride, Sulphate Attach, Shrinkage and Creep (Demonstration of Experiments)
- 16. Behaviors of Structural Elements Beams in Flexure & Shear Demonstration

Course	Course Outcomes: After completing the course, the students will be able to		
CO1	Assess the properties of fresh concrete both normal and Self compacting Concrete		
CO2	Assess the properties of Hardened concrete both normal and Self compacting Concrete		
CO3	Assess the structural behavior of beams, columns and slabs		

Reference Books

1.	M.S. Shetty, "Concrete Technology - Theory and Practice", 8 th edition, S. Chand and Company, New Delhi, 2019.
2.	Neville A.M. "Properties of Concrete", 4 th edition, Pearson Publishers, New Delhi,1995.
3.	A.R. Santha Kumar, "Concrete Technology", 2 nd edition, Oxford University Press, New Delhi, 2018.

Continuous Internal Evaluation (CIE): Laboratory-50 Marks

The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are awarded 10 marks. Total marks for the laboratory is 50.

Semester End Examination (SEE): Laboratory 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.