M.TECH - Electronics and Communication Engineering (Advanced Communication Technology)

Choice Based Credit System (CBCS) and Outcome Based Education (OBE)

(Effective from the academic year2022-23)

SEMESTER-I

ADVANCI	ED ENGINEERING MAT	THEMATICS	
Course Code	MVJ22MATE11	CIE Marks	50
Teaching Hours/Week (L:P:T:S)	3:0:0	SEE Marks	50
Total Hours of Pedagogy	40 Hours Theory	Total Marks	100
Credits	03	Exam Hours	03
Course Learning objectives: This of	course will enable students	I	
• Understand the concept of vector	or space and linear transform	mations.	
• Understand the concept of ei	gen values and eigen vec	tors, Numerical techn	iques for orthogon
basis for a vector space.			
• Understand the concept of pro-	bability distributions in a	analyzing the probabili	ity models arising
engineering field.			
• Understand the concept of Rand	om processes		
	MODULE-1		
Linear Algebra-I : Introduction t example. Linearly independent and ransformations-definitions. Matrix for	dependent vectors- Basis-	-definition and problem	ns. Linear 8hrs
	MODULE-2		
Linear Algebra-II : Computation of	Eigen values and Eigen ve	ectors of real symmetric	matrices- 8hrs
Given's method. Orthogonal vector	s and orthogonal bases.	Gram-Schmidt orthogo	onalization
process.			
	MODULE-3		I
Calculus of Variations: Concept of	functional – Euler's equati	on. Functional depende	ent on first 8hrs
nd higher order derivatives, Functio	nal on several dependent v	ariables. Isoperimetric	problems-
variation problems with moving boun	daries.		
	MODULE-4		I
Probability Theory: Review of bas	ic probability theory. Defi	nitions of random varia	bles and 8hrs
probability distributions, probability	mass and density function	s, expectation, moments	s, central
probability distributions, probability moments, characteristic functions,	-	-	

MODULE-5

Text	t Books:
1	'Linear Algebra and its Applications', David CLay, Steven R Lay and J J McDonald,
	Pearson Education Ltd., 5 th Edition, 2015
2	'Advanced Engineering Mathematics', E. Kreyszig, Wiley, 10th edition, 2015
3	'Probability, Statistics and Random Process', T Veerarajan, TataMc-GrawHillCo.,3 rd
	Edition,2016

Refer	rence Books:
1	'Introduction to Linear Algebra', Gilbert Strang, Wellesley-Cambridge Press, 5 th Edition,2016
2	'Schaum's Outlines of Theory and Problems of Matrix Operations', Richard Bronson, McGraw-Hill,1988
3	'Probability and Random Process with application to Signal Processing', Scott L Miller, Donald G Childers, Elsevier Academic Press, 2 nd Edition, 2013

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE.

A student shall be deemed to have satisfied the academic requirements (passed) and earned the credits allotted to each subject/ course if the student secures not less than 50% of the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- 1. Three Unit Tests each of 50 Marks.
- 2. Two assignments each of 20 Marks or one Skill Development Activity of 40 marks to attain the COs and POs.

The sum of three tests, two assignments/skill Development Activities, will be scaled down to 50 marks. CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

- 1. The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.
- 2. The question paper will have ten full questions carrying equal marks.

- **3.** Each full question is for 20 marks. There will be two full questions (with a maximum of four subquestions) from each module.
- **4.** Each full question will have a sub-question covering all the topics under a module.
- 5. The students will have to answer five full questions, selecting one full question from each module.

Course Learning Outcomes: After the completion of the course, students will be able to:

SI.	Description	Blooms
No.		Level
C01	Understand vector spaces, basis, linear transformations and the process of obtaining matrix of linear transformations arising in magnification and rotation of images.	Explain
CO2	Apply the technique of singular value decomposition for data compression, least square approximation in solving inconsistent linear systems.	Understand
CO3	Utilize the concepts of functional and their variations in the applications of communication systems, decision theory, synthesis and optimization of digital circuits.	Analyze
CO4	Learn the idea of random variables (discrete/continuous) and probability distributions in analyzing the probability models arising in control systems and system communications.	Analyze
CO5	Analyze random process through parameter-dependent variables in various random processes	Design and analyze

Program Outcomes for this Course:

Description	POs
An ability to independently carry out research/investigation and development	PO1
work to solve practical problems.	
An ability to write and present a substantial technical report/document.	PO2
Students should be able to demonstrate a degree of mastery over the area as per	PO3
the specialization of the program. The mastery should beat a level higher than the	
requirements in the appropriate bachelor program.	
An ability to create, select, apply appropriate techniques, resources and modern	PO4
tools to solve complex engineering activities with an understanding of their	
limitations.	
An ability to apply Professional ethics, responsibilities and norms of the	PO5
engineering.	
An ability to recognize the need to engage in independent and life-long learning	PO6
in various Communication domain.	
	 An ability to independently carry out research/investigation and development work to solve practical problems. An ability to write and present a substantial technical report/document. Students should be able to demonstrate a degree of mastery over the area as per the specialization of the program. The mastery should beat a level higher than the requirements in the appropriate bachelor program. An ability to create, select, apply appropriate techniques, resources and modern tools to solve complex engineering activities with an understanding of their limitations. An ability to apply Professional ethics, responsibilities and norms of the engineering. An ability to recognize the need to engage in independent and life-long learning

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	1	1	1	2	1	1
CO2	1	1	1	2	1	1
CO3	2	1	2	2	1	1
CO4	1	1	1	2	1	1
CO5	1	1	1	2	1	1

ADVANCI	ED DIGITAL SIGNAL PRO	UCESSING	
Course Code	MVJ22LAC12	CIE Marks	50
Teaching Hours/Week (L:P:T:S)	3:0:2:0	SEE Marks	50
Total Hours of Pedagogy	40 L + 13 P	Total Marks	100
Credits	04	Exam Hours	03
Course Learning objectives: This	course will enable students:		
• To know the analysis of discrete	e time signals.		
• To study the modern digital sig	nal processing algorithms and	l applications.	
• To Have a min-depth knowledg	ge of use of digital systems in	real time applications	
• To apply the algorithms for wid	le area of recent applications		
	MODULE-1		
Introduction to Digital Signal Pro	cessing. Review of Discrete	time signals and sys	stems and
frequency analysis of discrete time li	-		8hr
systems, correlation of discrete time	-	-	
by a factor 'I', sampling rate conv		-	-
conversion, Multistage implementation	•		0
	MODULE-2		
Multirate Digital Signal Processing	• Multirate signal processing	and its applications	Design of 8hr
Digital filters, Design of FIR filters			_
filter banks, two channel Quadrature		-	s, Digitui
	MODULE-3		
Lincon prediction and Optimum 1		als Completion Fund	tions and 8hr
Linear prediction and Optimum I	0		
Power Spectra, Innovations Represe Backward Linear Prediction. Solution			
Properties of the Linear Prediction-E	-	ne Levinson-Duroni A	.igoriumi.
	MODULE-4		
Adaptive filters: Applications of		ntive Channel Faus	lization, 8hr
Adaptive noise cancellation, Linear	-		
FIR filters-The LMS algorithm, Pr			
RLS algorithm.	operates of Linis ungontumit.	Traphice uncer form	

Power Spectrum Estimation: Non parametric Methods for Power Spectrum Estimation -8hrsBartlett Method, Welch Method, Blackman & Tukey Methods. Parametric Methods for PowerSpectrum Estimation: Relationship between the auto correlation and the model parameters, Yuleand Walker methods for the AR Model Parameters, Burg Method for the AR Model parameters,Unconstrained least-squares method for the AR Model parameters, Sequential estimation methodsfor the AR Model parameters, ARMA Model for Power Spectrum Estimation.

Text	Books:
1	Digital Signal Processing Principles, Algorithms, and Applications by John G. Proakis, Prentice-Hall InternationalInc.,4th Edition, 2012.
2	Theory and Application of Digital Signal Processing by Lawrence R. Rabiner and BernardGold.

Refe	rence Books:
1	Oppenheim, Alan V. Discrete-time signal processing. Pearson Education India, 1999.
2	Mitra, Sanjit Kumar, and Yong hong Kuo. Digital signal processing: a computer-based
	approach. Volume 2. New York: McGraw-Hill Higher Education, 2006.

PRACTICAL COMPONENT OF IPCC:

Conduct the experiments using MATLAB/Scilab/TMS320C5XDSP Processors

Sl.	Experiments
No	
1	Generate various fundamental discrete time signals
2	Basic operations on signals (Multiplication, Folding, Scaling).
3	Find out the DFT &IDFT of a given sequence without using in built instructions.
4	Interpolation & decimation of a given sequence.
5	Generation of DTMF (Dual Tone Multiple Frequency) signals
6	Estimate the PSD of a noisy signal using periodogram and modified periodogram
7	Estimation of PSD using different methods (Bartlett, Welch, Blackman-Tukey).
8	Design of Chebyshev Type I, II Filters.
9	Cascade Digital IIR Filter Realization.
10	Parallel Realization of IIR filter.
11	Estimation of power spectrum using parametric methods (Yule Walker &Burg).
12	Time-Frequency Analysis with the Continuous Wavelet Transform.

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE. A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 50% (50 marks out of 100)in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

CIE for the theory component of IPCC

- 1. Two Tests each of 50 Marks
- 2. Two assignments each of 10 Marks/One Skill Development Activity of 20 marks
- 3. Total Marks of two tests and two assignments/one Skill Development Activity added will be CIE for 60marks, marks scored will be proportionally scaled down to **30marks**.

CIE for the practical component of IPCC

- On completion of every experiment/program in the laboratory, the students shall be evaluated and marks shall be awarded on the same day. The **15 marks** are for conducting the experiment and preparation of the laboratory record, the other **05 marks shall be for the test** conducted at the end of the semester.
- The CIE marks awarded in the case of the Practical component shall be based on the continuous evaluation of the laboratory report. Each experiment report can be evaluated for 10 marks. Marks of all experiments' write-ups are added and scaled down to 15marks.
- The laboratory test at the end /after completion of all the experiments shall be conducted for 50 marks and scaled down to 05 marks.
- Scaled-down marks of write-up evaluations and tests added will be CIE marks for the laboratory component of IPCC for **50 marks**.

SEE for IPCC

Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the course (duration 03Hours)

The question paper will be set for 100 marks and marks scored will be scaled down proportionately to 50marks.

- The question paper will have ten questions. Each question is set for50marks.
- There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), **should have a mix of topics** under that module.
- The students have to answer 5 full questions, selecting one full question from each module.

The theory portion of the IPCC shall be for both CIE and SEE, whereas the practical portion will have a CIE component only. Questions mentioned in the SEE paper shall include questions from the

practical component).

• The minimum marks to be secured in CIE to appear for SEE shall be the 15 (50% of maximum marks-30) in the theory component and 10 (50% of maximum marks -20) in the practical component. The laboratory component of the IPCC shall be for CIE only. However, in SEE, the questions from the laboratory component shall be included. The maximum of 04/05 questions to be set from the practical Component of IPCC, the total marks of all questions should not bemorethanthe20marks.

Sl.	Description	Blooms
No.		Level
CO1	Able to analyze and implement the frequency analysis & correlation of	Analyze
	discrete- Time linear time invariant systems.	
CO2	Able to implement sampling rate conversion by decimation & Interpolation	Analyze
	Process and design digital filter banks	
CO3	Able to analyze forward and backward linear prediction of a stationary	Analyze
	random Process using Levinson-Durbin Algorithm	
CO4	Able to understand and analyze adaptive filters and its application using	Analyze
	LMS Algorithm & RLS algorithm.	
CO5	Able to understand parametric & non-parametric methods for power	Understand
	spectrum estimation.	

Course Learning Outcomes: After the completion of the course, students will be able to:

Program Outcomes for this Course:

Sl.	Description	POs
No.		
1	An ability to independently carry out research/investigation and development work to solve practical problems.	PO1
2	An ability to write and present a substantial technical report/document.	PO2
3	Students should be able to demonstrate a degree of mastery over the area as per the specialization of the program. The mastery should beat a level higher than the requirements in the appropriate bachelor program.	
4	An ability to create, select, apply appropriate techniques, resources and modern tools to solve complex engineering activities with an understanding of their limitations.	PO4
5	An ability to apply Professional ethics, responsibilities and norms of the engineering.	PO5

I	6	An ability to recognize the need to engage in independent and life-long learning	PO6
		in various Communication domain.	

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	1	1	1	2	1	1
CO2	1	1	1	2	1	1
CO3	2	1	2	2	1	1
CO4	1	1	1	2	1	1
CO5	1	1	1	2	1	1

ADVAN	NCED COMMUNICATION	N SYSTEM-1		
Course Code	MVJ22LAC13	CIE Marks	50	
Teaching Hours/Week (L:P:T:S)	3:0:0	SEE Marks	50	
Total Hours of Pedagogy	40 L	Total Marks	100	
Credits	04	Exam Hours	03	
Course Learning objectives: This of	course will enable students:	I I		
• To know modulation techniques	3.			
• To study the demodulation tech	niques.			
• To Have a min-depth knowledg	e of band limited channels an	d equalizers		
• To understand spread spectrum.				
	MODULE-1			
Signal Representation: Low pass rep	presentation of bandpass sigr	nals, Low pass represe	entation of	
band pass random process. Mod	ulation: Representation of	digitally modulated	Signals,	8hrs
Modulation Schemes without memo	ry (Band Limited Schemes	- PAM, BPSK, QPSI	K, MPSK,	
MQAM, Power Limited Schemes -	FSK, MFSK, DPSK, DQP	SK), modulation sche	emes with	
memory (Basics of CPFSK and CPM	I – Full Treatment of MSK)	, Transmit PSD for M	Iodulation	
Schemes.				
	MODULE-2		I	
Demodulation: Vector Channel, Vec	ctor Channel + AWGN, Perf	formance parameters,	Optimum	8hrs
Coherent Detection for power limited	and Bandlimited schemes,	Optimal Coherent det	ection for	
schemes with memory, Optimal Non	-Coherent detection for sche	emes without and with	n memory	
(FSK, DPSK, DQPSK), Comparison	of detection schemes.			
	MODULE-3		I	
Bandlimited Channels: Bandlimited	d channel characterization, s	signaling through ban	d limited	8hrs
inear filter channels, Sinc, RC,		0 0 0		
Optimum receiver for channel with I	SI and AWGN. Linear Equa	alizers: Zero forcing l	Equalizer,	
MSE and MMSE, Baseband and Pass	band Linear Equalizers. Perf	formance of ZFE and I	MSE.	
	MODULE-4			
Non-Linear Equalizers: Decision -	feedback equalization, Predic	ctive DFE, Performance	ce of DFE	8hrs
Adaptive equalization: Adaptive	linear equalizer, adaptive	decision feedback ed	qualizer,	
Adaptive Fractionally spaced Equa	lizer (Tap Leakage Algorith	m), Adaptive equaliz	ation of	
Trellis-coded signals				
	MODULE-5		I	
Spread spectrum signals for digit	tal communication: Model	of spread spectrum	digital	8hrs
communication system, Direct seque	ence spread spectrum signal	s. some applications	of DS	

spread spectrum signals, generation of PN sequences, Frequency hopped spread spectrum signals, Time hopping SS, Synchronization of SS systems.

i	Books:
1 4	'Digital Communications', John G. Proakis, Masoud Salehi, Pearson Education, ISBN:978-
9	9332535893, 5 th edition, 2014

Refe	Reference Books:		
1 Digital Communications: Fundamentals and Applications: Fundamentals & Applic			
	Bernard Sklar, Pearson Education, ISBN:9788131720929, 2nd edition, 2009		
2	'Digital Communications Systems', Simon Haykin, Wiley, ISBN:9788126542314,1st edition,		
	2014		

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE. A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 50% (50 marks out of 100)in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- Three Unit Tests each of **50 Marks**.
- Two assignments each of **20 Marks** or **one Skill Development Activity of 40 marks** to attain the COs and POs.
- The sum of three tests, two assignments/skill Development Activities, will bescaleddownto50marks.

CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

- The SEE question paper will be set for100 marks and the marks scored will beproportionatelyreducedto50.
- The question paper will have ten full questions carrying equal marks.
- Each full question is for 20 marks. There will be two full questions (with a maximum of four subquestions) from each module.
- Each full question will have a sub-question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module

Course Learning Outcomes: After the completion of the course, students will be able to:

Sl.	Description	Blooms
No.		Level
CO1	Ability to explain the concept of low pass and Band pass signals	Explain
	representations at the Transmitter, the process of Detection and Estimation	
	at the receiver in the Presence of AWGN only.	
CO2	Able to Evaluate Receiver performance for various types of single carrier	Understand
	symbol Modulations through ideal and AWGNN on-band limited and band	
	limited channels.	
CO3	Analyze and demonstrate the model of discrete time channel with ISI & the	Analyze
	Model of discrete time channel by equalizer.	
CO4	Design single carrier equalizers for various symbol modulation schemes and	Analyze
	Detection methods for defined channel models, and compute parameters to	
	meet desired rate and performance requirements.	
CO5	Design and Evaluate Non band limited and Non power limited spread	Design and
	spectrum systems for communications in a Jamming environment, multi	analyze
	user situation and Low power intercept environment.	

Program Outcomes for this Course:

Sl.	Description	POs
No.		
1	An ability to independently carry out research/investigation and development work to solve practical problems.	PO1
2	An ability to write and present a substantial technical report/document.	PO2
3	Students should be able to demonstrate a degree of mastery over the area as per the specialization of the program. The mastery should beat a level higher than the requirements in the appropriate bachelor program.	
4	An ability to create, select, apply appropriate techniques, resources and modern tools to solve complex engineering activities with an understanding of their limitations.	PO4
5	An ability to apply Professional ethics, responsibilities and norms of the engineering.	PO5
6	An ability to recognize the need to engage in independent and life-long learning in various Communication domain.	PO6

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	1	1	1	2	1	1
CO2	1	1	1	2	1	1
CO3	2	1	2	2	1	1
CO4	1	1	1	2	1	1
CO5	1	1	1	2	1	1

ADVANCED EN	NGINEERING ELECTRON	IAGNETICS			
Course Code	MVJ22LAC14	CIE Marks	50		
Teaching Hours/Week (L:P:T:S)	3:0:0	SEE Marks	50		
Total Hours of Pedagogy	40 L	Total Marks	100		
Credits 03 Exam Hours 03					
Course Learning objectives: This	course will enable students:				
• To introduce the basic mathematic	atical concepts related to elect	romagnetic vector fie	elds.		
• To impart knowledge on the co	ncepts of electrostatics, electri	c potential, energy d	ensity and their		
applications.					
• To impart knowledge on the co	ncepts of magnetostatics, mag	netic flux density, so	alar and vector		
potential and its applications.					
• To impart knowledge on the co	ncepts of Faraday 's law, indu	ced emf and Maxwe	ll 's equations.		
• To impart knowledge on the co	ncepts of Concepts of electron	nagnetic waves and '	Fransmission lines		
	MODULE-1				
Vector Analysis: Review of vector	or algebra, Review of cartes	ian, Cylindrical and	l spherical		
coordinate systems, Introduction to	del (operator, Use of del op	erator as gradient, c	livergence, 8hrs		
curl). Smith Chart: Description and c	letailed analysis				
	MODULE-2				
Electrostatic fields: Introduction	to coulomb's law, Gaussian	law and its appli	cations in 8hrs		
determination of field of spherical a	nd cylindrical geometries, Lap	place's and poission'	s equation		
in various coordinate systems. Effect	of dielectric on capacitance, I	Boundary conditions	at electric		
interfaces, Method of images and its	applications.				
	MODULE-3				
Magnetostatics: Introduction to a	npere's law, Magnetic vecto	or potential, Magne	tic forces, 8hrs		
Boundary conditions at magnetic inte		1 , 2			
	MODULE-4				
Time Varying Fields and Ma	_		-		
-	displacement current, Maxwell's equation in integral and differential form: for static fields, for				
time varying fields, for free space, for good conductors, for harmonically varying fields,					
Poynting theorem: Energy stored a			-		
conductor and dielectrics, Wave equ	MODULE-5	quations for conduct	UIS.		
Uniform Diona Warser Interded		magation Wi	nationa Ol		
Uniform Plane Waves: Introduction Transverse nature of uniform plane					

waves in charge free, Current free dielectric, Reflection by ideal conductor: Normal incidence, reflection and transmission with normal incidence at another dielectric, Plane wave in lossy dielectric, Wave impedance and propagation constant, Depth of penetration, Surface impedance and surface resistance, Application of EM propagation through Transmission Lines and Rectangular Waveguides

Text	Text Books:		
1	Kraus, J.D., Electromagnetics, McGraw-Hill (2006).		
2	Sadiku, M.N.O, Elements of Electromagnetics, Oxford University Press (2009).		

Refe	Reference Books:		
1	Hayt, W.H., Engineering Electromagnetics, Tata McGraw Hill (2008).		
2	Jordan, E.C. and Balmain K.G., Electromagnetic Waves and Radiating Systems, Prentice Hall of India (2008).		
3	Paramanik, A, Electromagnetism: Theory and Applications, Prentice Hall of India (2006)		

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE. A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 50% (50 marks out of 100)in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- Three Unit Tests each of **50 Marks.**
- Two assignments each of **20 Marks** or **one Skill Development Activity of 40 marks** to attain the COs and POs.

The sum of three tests, two assignments/skill Development Activities, will bescaleddownto50marks.

CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

- The SEE question paper will be set for100 marks and the marks scored will beproportionatelyreducedto50.
- The question paper will have ten full questions carrying equal marks.
- Each full question is for 20 marks. There will be two full questions (with a maximum of four subquestions) from each module.
- Each full question will have a sub-question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module

Course Learning Outcomes: After the completion of the course, students will be able to:

Sl.	Description	Blooms
No.		Level
CO1	Appraise need analysis for different coordinate systems in electromagnetics and their interrelations.	Explain
CO2	Apply vector calculus to solve field theory problems.	Understand
CO3	Calculate electric and magnetic fields in different coordinates for various charge and current configurations.	Analyze
CO4	Exhibit the concept of time varying fields and demonstrate different aspects of plane wave in dielectric and conducting media.	Understand
CO5	Realize the analogy of wave with transmission line and determine the transmission line performance.	Understand

Program Outcomes for this Course:

Sl.	Description	POs
No.		
1	An ability to independently carry out research/investigation and development work to solve practical problems.	PO1
2	An ability to write and present a substantial technical report/document.	PO2
3	Students should be able to demonstrate a degree of mastery over the area as per the specialization of the program. The mastery should beat a level higher than the requirements in the appropriate bachelor program.	PO3
4	An ability to create, select, apply appropriate techniques, resources and modern tools to solve complex engineering activities with an understanding of their limitations.	PO4
5	An ability to apply Professional ethics, responsibilities and norms of the engineering.	PO5
6	An ability to recognize the need to engage in independent and life-long learning in various Communication domain.	PO6

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	1	1	2	1	1	1
CO2	1	1	1	2	1	1
CO3	2	1	2	1	1	1
CO4	1	1	1	2	1	1
CO5	1	2	1	1	1	1

Course Code	MVJ22LAC15	CIE Marks	50		
Teaching Hours/Week (L:P:T:S)	3:0:0	SEE Marks	50		
Total Hours of Pedagogy	40 L	40 L Total Marks 10	100	100	
Credits	03	Exam Hours	03		
 Course Learning objectives: This of To know the networking conception To study the networking protocol To have an in-depth knowledge To have knowledge on security. 	ts. ols. of congestion control and res MODULE-1		1.:4 4		
Foundation: Building a Networl Implementing Network Software, Per	k, Applications, Requiren formance.	nents, Network Arc		Bhrs	
	MODULE-2				
Advanced Internetworking: The C Multiprotocol Label Switching (MP Reliable Byte Stream (TCP).				Bhrs	
	MODULE-3				
Congestion Control and Resource location, Queuing Disciplines, TCP Quality of Service.	_		esource a	3hrs	
	MODULE-4				
Applications: Traditional Applicati Wide Web (HTTP), Multimedia Applicati (DNS), Network Management (SNM	oplications, Infrastructure So			Bhrs	
-	MODULE-5				
End-to End data : Presentation for attacks, Cryptographic building ble Firewalls.	-	-	•	8hrs	

Text Books:		
1	'Computer Networks: A System Approach', Larry Peterson and Bruce S Davis, 5thEdition, Elsevier-2014.	
2	'Internetworking with TCP/IP, Principles, Protocols and Architecture', Douglas E Comer, 6th Edition, PHI–2014	

Refer	Reference Books:		
1	'Computer Networks, Protocols, Standards and Interfaces', Uyless Black,2ndEdition, PHI.		
2	'TCP /IP Protocol Suite', Behrouz A Forouzan, 4thEdition, Tata McGraw-Hill		

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE. A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 50% (50 marks out of 100)in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- Three Unit Tests each of **50 Marks.**
- Two assignments each of **20 Marks** or **one Skill Development Activity of 40 marks** to attain the COs and POs.

The sum of three tests, two assignments/skill Development Activities, will bescaleddownto50marks.

CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

- The SEE question paper will be set for100 marks and the marks scored will beproportionatelyreducedto50.
- The question paper will have ten full questions carrying equal marks.
- Each full question is for 20 marks. There will be two full questions (with a maximum of four subquestions) from each module.
- Each full question will have a sub-question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module

Sl.	Description	Blooms
No.		Level
CO1	Classify network services, protocols and architectures, explain why they are layered.	Understand
CO2	Knowledge on Advanced Internetworking applications and their protocols, and ability to work on their own applications (e.g. Client Server applications, Web Services).	Analyze
CO3	To analyze various techniques for Congestion avoidance and Resource Allocation.	Analyze
CO4	Gain the knowledge of application layer protocols.	Understand
CO5	Understand the concept of Network Security through cryptographic blocks, authentication protocols and Firewalls.	Apply

Course Learning Outcomes: After the completion of the course, students will be able to:

Program Outcomes for this Course:

SI.	Description	POs
No.		

1	An ability to independently carry out research/investigation and development work to solve practical problems.	PO1
2	An ability to write and present a substantial technical report/document.	PO2
3	Students should be able to demonstrate a degree of mastery over the area as per the specialization of the program. The mastery should beat a level higher than the requirements in the appropriate bachelor program.	
4	An ability to create, select, apply appropriate techniques, resources and modern tools to solve complex engineering activities with an understanding of their limitations.	PO4
5	An ability to apply Professional ethics, responsibilities and norms of the engineering.	PO5
6	An ability to recognize the need to engage in independent and life-long learning in various Communication domain.	PO6

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	1	1	2	2	-	2
CO2	1	1	2	2	-	2
CO3	1	1	2	2	-	2
CO4	1	1	2	2	-	2
CO5	1	1	2	2	-	2

Course Code	MVJ22RM16	CIE Marks	50		
	3:0:0	SEE Marks	50		
Teaching Hours/Week (L:P:T:S)		SEE Marks	50		
Total Hours of Pedagogy	40 L	Total Marks	100	0	
Credits	03	Exam Hours	03		
Course Learning objectives: This	course will enable students:				
• To give an overview of the re-	search methodology and expl	ain the technique of	defining a re	esearch	
problem					
• To explain the functions of th	e literature review in research				
• To explain carrying out a liter	ature search, its review, deve	loping theoretical and	d conceptual	1	
frameworks and writing a rev	iew.				
• To explain various research de	esigns and their characteristic	s.			
• To explain the details of samp	ling designs, and also differe	nt methods of data co	ollections.		
• To explain the art of interpret	ation and the art of writing res	search reports.			
• To explain various forms of the	ne intellectual property, its rel	evance and business	impact in th	ne	
changing global business envi	ronment.				
• To discuss leading Internation	al Instruments concerning In	tellectual Property R	ights		
	MODULE-1				
Research Methodology: Introduc	tion, Meaning of Researc	h, Objectives of	Research,		
Motivation in Research, Types of R	esearch, Research Approach	es, Significance of	Research,	8hrs	
Research Methods versus Methodo	ology, Research and Scient	tific Method, Impo	rtance of		
Knowing How Research is Done, Ro	esearch Process, Criteria of G	Good Research, and	Problems		
Encountered by Researchers in India.					
Defining the Research Problem:	Research Problem, Selectin	ng the Problem, Ne	ecessity of		
Defining the Problem, Technique Inv	olved in Defining a Problem,	An Illustration.			
	MODULE-2				
Reviewing the literature: Place of t	he literature review in resear	ch, Bringing clarity	and focus	8hrs	
to your research problem, Improvin					
research area, Enabling contextual fin					
literature, reviewing the selected lite			Ũ		
conceptual framework, Writing about		,	10		
Research Design: Meaning of Resea		ch Design, Features o	of a Good		
Design, Important Concepts Relating to Research Design, Different Research Designs, Basic					
Principles of Experimental Designs, I		-			
	MODULE-3			<u> </u>	

Desi	gn of Sampling: Introduction, Sample Design, Sampling and Non-sampling Errors, Sample	8hrs
Surv	ey versus Census Survey, Types of Sampling Designs.	
Mea	surement and Scaling: Qualitative and Quantitative Data, Classifications of Measurement	
Scale	es, Goodness of Measurement Scales, Sources of Error in Measurement Tools, Scaling, Scale	
Class	sification Bases, Scaling Technics, Multidimensional Scaling, Deciding the Scale. Data	
Colle	ection: Experimental and Surveys, Collection of Primary Data, Collection of Secondary	
Data	, Selection of Appropriate Method for Data Collection, Case Study Method.	
	MODULE-4	I
Testi	ing of Hypotheses: Hypothesis, Basic Concepts Concerning Testing of Hypotheses,	8hrs
Testi	ng of Hypothesis, Test Statistics and Critical Region, Critical Value and Decision Rule,	
Proc	edure for Hypothesis Testing, Hypothesis Testing for Mean, Proportion, Variance, for	
Diffe	erence of Two Mean, for Difference of Two Proportions, for Difference of Two Variances,	
P-Va	lue approach, Power of Test, Limitations of the Tests of Hypothesis.	
Chi-s	square Test: Test of Difference of more than Two Proportions, Test of Independence of	
Attri	butes, Test of Goodness of Fit, Cautions in Using Chi Square Tests.	
	MODULE-5	I
Inter	pretation and Report Writing: Meaning of Interpretation, Technique of Interpretation,	8hrs
Preca	aution in Interpretation, Significance of Report Writing, Different Steps in Writing Report,	
Layo	ut of the Research Report, Types of Reports, Oral Presentation, Mechanics of Writing a	
Rese	arch Report, Precautions for Writing Research Reports.	
Intel	lectual Property: The Concept, Intellectual Property System in India, Development of	
TRIF	PS Complied Regime in India, Patents Act, 1970, TradeMarkAct, 1999, The Designs Act,	
2000	, The Geographical Indications of Goods (Registration and Protection) Act 1999, Copyright	
Act,	1957, The Protection of Plant Varieties and Farmers' Rights Act, 2001, The Semi-	
Conc	luctor Integrated Circuits Layout Design Act, 2000, Trade Secrets, Utility Models, IPR and	
Biod	iversity, The Convention on Biological Diversity (CBD) 1992, Competing Rationales for	
Prote	ection of IPRs, Leading International Instruments Concerning IPR, World Intellectual	
Prop	erty Organisation (WIPO), WIPO and WTO.	
		1
'ext l	Books:	
	Research Methodology: Methods and Techniques', C.R. Kothari, Gaurav Garg, New Ag	ge
	International, 4th Edition, 2018	
-		

2	'Research Methodology a step-by-step guide for beginners., Ranjit Kumar, SAGE
	Publications, 3rd Edition, 2011

3 Study Material (For the topic Intellectual Property under module 5) Professional Programme

Intellectual Property Rights, Law and Practice, The Institute of Company Secretaries of India, Statutory Body Under an Act of Parliament, September 2013.

Refe	rence Books:
1	'Research Methods: the concise knowledge base', Trochim, Atomic Dog Publishing, 2005
2	'Conducting Research Literature Reviews: From the Internet to Paper', Fink A, Sage
	Publications, 2009

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE. A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 50% (50 marks out of 100)in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- Three Unit Tests each of **50 Marks.**
- Two assignments each of **20 Marks** or **one Skill Development Activity of 40 marks** to attain the COs and POs.

The sum of three tests, two assignments/skill Development Activities, will bescaleddownto50marks.

CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

- The SEE question paper will be set for100 marks and the marks scored will beproportionatelyreducedto50.
- The question paper will have ten full questions carrying equal marks.
- Each full question is for 20 marks. There will be two full questions (with a maximum of four subquestions) from each module.
- Each full question will have a sub-question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module

Course Learning Outcomes: After the completion of the course, students will be able to:

Sl.	Description	Blooms

No.		Level
CO1	Discuss research methodology and the technique of defining a research	Understand
	problem.	
CO2	Explain the functions of the literature review in research, carrying out a	Analyze
	literature search, developing theoretical and conceptual frameworks and	
	writing a review.	
CO3	Explain various research designs, sampling designs, measurement and	Analyze
	scaling techniques and also different methods of data collections.	
CO4	Explain several parametric tests of hypotheses, Chi-square test, art of	Understand
	interpretation and writing research reports	
CO5	Discuss various forms of the intellectual property, its relevance and business	Apply
	impact in the changing global business environment and leading	
	International Instruments concerning IPR.	

	Course Code	MVJ22LACL17	CIE Marks	50
Teac	hing Hours/Week(L:T:P:S)	0:2:0	SEE Marks	50
	Credits	02	Exam Hours	03
Course o	bjectives: This course will enable	e students to:		
•]	To know the analysis of discrete ti	me signals.		
	To study the modern digital signal		-	
	To Have a min-depth knowledge o	Ç .	al time applications	
	To apply the algorithms for wide a			
Sl. No.		Experiments		
1	Generate various fundamental di			
2	Basic operations on signals (Mul			
3	Find out the DFT & IDFT of a g		in built instructions.	
4	Interpolation & decimation of a g			
5	Generation of DTMF (Dual Tone	e Multiple Frequency) signals	8	
6	Estimate the PSD of a noisy sign	al using periodogram and mo	odified periodogram	
7	Estimation of PSD using differer	t methods (Bartlett, Welch, H	Blackman-Tukey).	
8	Design of Chebyshev Type I, II I	Filters.		
9	Cascade Digital IIR Filter Realiz	ation.		
10	Parallel Realization of IIR filter.			
11	Estimation of power spectrum us	ing parametric methods (Yul	e Walker & Burg).	
12	Time-Frequency Analysis with the	he Continuous Wavelet Trans	sform.	
13	Signal Reconstruction from Cont	inuous Wavelet Transform C	Coefficients.	
Conduct	the experiments using MATLA	B/ Scilab /TMS320C5X DS	P Processors	
Course o	utcomes (Course Skill Set): At t	he end of the course the stude	ent will be able to:	
1	. Able to generate discrete time si	gnals and perform DFT, IDF	T on the signals.	
2	Able to estimate the PSD using	different methods.		
3	Able to design and realize FIR a	nd IIR filters.		
4	Able to estimate power spectrum	n using Parametric methods.		
5	5. Able to analyze in Time and Fre	quency domain and reconstru	uct the signal using Wavel	et Transform.

SEMESTER-II

ADVA	NCED COMMUNICATION S	SYSTEMS-2	
Course Code	MVJ22LAC21	CIE Marks	50
Teaching Hours/Week (L:P:T:S)	3:0:0:0	SEE Marks	50
Total Hours of Pedagogy	40L	Total Marks	100
Credits	03	Exam Hours	03

Course Learning objectives: This course will enable students:

- To describe models for fading channels, and concepts of diversity in time, antenna and frequency.
- To understand concepts of multi-channel signaling (including OFDM) scheme and synchronization for carrier and symbol timing recovery at receiver.
- To Understand the capacity and degradation in performance of various symbol signaling schemes in a multipath fading environment.
- Develop & analyze multiplexing capability and modelling of MIMO channels
- Develop and evaluate the performance of a MIMO scheme to meet specified rate in a given multipath environment.

Prerequisites: Band limited channels

MODULE-1

Point-to-Point Communication-Detection in a Rayleigh Fading Channel, Time Diversity, Antenna **8hrs** Diversity, Frequency Diversity.

Fading–Large scale, small scale, signal time spreading- in time domain and frequency domain. Time

variance of the channel caused by motion- in time domain, Doppler-shift domain, degradation categories due to time variance, viewed in the doppler shift domain, Mitigating the degradation effects of fading.

MODULE-2

Fading Contd.: Small scale multipath propagation- factors influencing small scale fading, Doppler8hrsshift, Small scale multipath measurements, Parameters of mobile multipath channels, Types ofsmall scale fading, Simulation of Clarke and Gans Fading model.

Multicarrier Signaling: Multicarrier Communications in AWGN channel- Single carrier vs

Multicarrier, OFDM-Matrix representation, FFT Implementation, Peak to Average Power Ratio.

Wideband Systems: CDMA

MODULE-3

Capacity of wireless channel: AWGN channel capacity, Linear time invariant Gaussian channel,8hrsCapacity of Fading Channels.

MODULE-4

MIMO spatial multiplexing and channel modeling: Multiplexing capability of deterministic **8hrs** MIMO channels, Physical modeling of MIMO channels, Modeling of MIMO fading channels.

MODULE-5

MIMO capacity and multiplexing architectures: The VBLAST architecture, Fast fading MIMO channel, Capacity with CSI at receiver, Performance gains, Full CSI, Performance gains in a MIMO channel, Receiver architectures – (Linear decorrelator, Successive cancellation, Linear MMSE receiver), Information theoretic optimality, Connections with CDMA multiuser detection and ISI equalization, Slow fading MIMO channel.

Text	Books:
1	⁶ Digital Communications Fundamentals and applications', Bernad Sklar, Pearson Education, ISBN:8178083736,2 nd edition, 2004
2	'Fundamentals of Wireless Communication', David Tse, Pramod Viswanath, Cambridge University Press, ISBN:0521845270,1st edition, 2005
3	'Wireless Communications', Theodore S. Rappaport, Cambridge University Press, ISBN:8120323815,2 nd edition, 2005
4	'Wireless Communications', Andrea Goldsmith, Cambridge University Press, ISBN:9780521837163,2 nd edition, 2005

ſ	Reference Books:		
	1	'Digital Communication Systems', Simon Haykin, Wiley, ISBN:978-0471-64735-5,2014	
	2	⁶ Digital Communications ² , John G. Proakis, Masoud Salehi, Pearson Education, ISBN:9789332535 893,5 th edition,2014	

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE.

A student shall be deemed to have satisfied the academic requirements (passed) and earned the credits allotted to each subject/ course if the student secures not less than 50% of the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- 1. Three Unit Tests each of 50 Marks.
- 2. Two assignments each of 20 Marks or one Skill Development Activity of 40 marks to attain the COs and POs.

The sum of three tests, two assignments/skill Development Activities, will be scaled down to 50 marks. CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

- 1. The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.
- 2. The question paper will have ten full questions carrying equal marks.
- 3. Each full question is for 20 marks. There will be two full questions (with a maximum of four subquestions) from each module.
- 4. Each full question will have a sub-question covering all the topics under a module.
- 5. The students will have to answer five full questions, selecting one full question from each module.

Course Learning Outcomes: After the completion of t	he course, students will be able to:
---	--------------------------------------

Sl. No.	Description	Blooms Level
CO1	To describe models for fading channels, and concepts of diversity in time, antenna and frequency.	Explain
CO2	Explain the concepts of multi-channel signaling (including OFDM) scheme and Synchronization for carrier and symbol timing recovery at receiver.	Understand
CO3	Evaluate the capacity and degradation in performance of various symbol signaling schemes in a multipath fading environment.	Analyze
CO4	Develop & analyze multiplexing capability and modelling of MIMO channels.	Analyze
CO5	Develop and evaluate the performance of a MIMO scheme to meet Specified rate in a given multipath environment.	Analyze

Program Outcomes for this Course:

Sl. No.	Description	Pos
1	An ability to independently carry out research/investigation and development work to solve practical problems.	PO1
2	An ability to write and present a substantial technical report/document.	PO2
3	Students should be able to demonstrate a degree of mastery over the area as per	PO3
	the specialization of the program. The mastery should beat a level higher than the	
	requirements in the appropriate bachelor program.	
4	An ability to create, select, apply appropriate techniques, resources and modern tools to solve complex engineering activities with an understanding of their limitations.	
5	An ability to apply Professional ethics, responsibilities and norms of the engineering.	PO5
6	An ability to recognize the need to engage in independent and life-long learning	PO6
	in various Communication domain.	

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	1	1	2	1	2
CO2	2	2	1	1	1	1
CO3	3	1	2	2	1	1
CO4	3	2	2	2	2	3
CO5	3	2	2	2	2	3

Course Code	MVJ22LAC22	ESIGN CIE Marks	50
Teaching Hours/Week (L:P:T:S)	3:2:0:Y	SEE Marks	50
Total Hours of Pedagogy	40L + 13P		
		Total Marks	100
Credits	04	Exam Hours	03
Course Learning objectives: This co			
 To classify different types of a To define and illustrate variou 			
 To design antennas like Yagi- 	•••	her broad band anter	nnas
 To describe different antenna 			
• To apply methods like Method	•	integral equation, So	ource modeling.
Prerequisites: Electromagnetic theor	y. MODULE-1		
Antenna Fundamentals and Definiti		Overview, EM Fund	damentals.
Solution of Maxwell's Equations fo			8hrs
-		-	putterns,
Directivity and Gain, Antenna impeda	nce, Kadiation efficiency, An	lienna polarization.	
	MODULE-2		
Arrays: Array factor for linear array	s, Uniformly excited equally	y spaced linear array	ys, Pattern 8hrs
multiplication, Directivity of linear an	rays, Non-uniformly excited	l equally spaced line	ear arrays,
Mutual coupling.			
Antenna Synthesis: Formulation of	the synthesis problem, Synt	hesis principles, Lir	ne sources
	-		
shaped beam synthesis, Linear array s	haped beam synthesis, Fouri	er series, Woodward	
shaped beam synthesis, Linear array si sampling method, Comparison of shape			- Lawson
sampling method, Comparison of shape	ed beam synthesis methods, lo	ow side lobe narrow r	- Lawson
sampling method, Comparison of shape	ed beam synthesis methods, lo	ow side lobe narrow r	- Lawson
sampling method, Comparison of shape synthesis methods, Dolph Chebyshev I	ed beam synthesis methods, lo linear array, Taylor line sourc MODULE-3	ow side lobe narrow r ce method.	- Lawson nain beam
sampling method, Comparison of shape synthesis methods, Dolph Chebyshev I Resonant Antennas: Wires and Patche	ed beam synthesis methods, lo linear array, Taylor line sourc MODULE-3 es, Dipole antenna, Yagi-Uda	ow side lobe narrow r ce method. antennas, Micro-stri	p antenna. 8hrs
	ed beam synthesis methods, lo linear array, Taylor line source MODULE-3 es, Dipole antenna, Yagi-Uda ve antennas Helical antenna	ow side lobe narrow r ce method. antennas, Micro-stri as, Biconical antenna	 Lawson nain beam p antenna. 8hrs as, Sleeve
sampling method, Comparison of shape synthesis methods, Dolph Chebyshev I Resonant Antennas: Wires and Patche Broadband antennas: Traveling wa	ed beam synthesis methods, lo linear array, Taylor line source MODULE-3 es, Dipole antenna, Yagi-Uda ve antennas Helical antenna	ow side lobe narrow r ce method. antennas, Micro-stri as, Biconical antenna	 Lawson nain beam p antenna. 8hrs as, Sleeve
sampling method, Comparison of shape synthesis methods, Dolph Chebyshev I Resonant Antennas: Wires and Patche Broadband antennas: Traveling wa antennas, and Principles of frequency	ed beam synthesis methods, lo linear array, Taylor line source MODULE-3 es, Dipole antenna, Yagi-Uda ve antennas Helical antenna	ow side lobe narrow r ce method. antennas, Micro-stri as, Biconical antenna	 Lawson nain beam p antenna. 8hrs as, Sleeve
sampling method, Comparison of shape synthesis methods, Dolph Chebyshev I Resonant Antennas: Wires and Patche Broadband antennas: Traveling wa antennas, and Principles of frequency antennas.	ed beam synthesis methods, le linear array, Taylor line source MODULE-3 es, Dipole antenna, Yagi-Uda ve antennas Helical antenna independent antennas, Spira MODULE-4	ow side lobe narrow r ce method. antennas, Micro-stri as, Biconical antenna al antennas, and Log	- Lawson main beam p antenna. as, Sleeve g -periodic
sampling method, Comparison of shape synthesis methods, Dolph Chebyshev I Resonant Antennas: Wires and Patche Broadband antennas: Traveling wa antennas, and Principles of frequency antennas. Aperture antennas: Techniques for	ed beam synthesis methods, le linear array, Taylor line source MODULE-3 es, Dipole antenna, Yagi-Uda ve antennas Helical antenna independent antennas, Spira MODULE-4 e evaluating gain, Reflector	ow side lobe narrow r ce method. antennas, Micro-stri as, Biconical antenna al antennas, and Log antennas, Parabolic	 Lawson nain beam p antenna. as, Sleeve g -periodic c reflector 8hrs
sampling method, Comparison of shape synthesis methods, Dolph Chebyshev I Resonant Antennas: Wires and Patche Broadband antennas: Traveling wa antennas, and Principles of frequency antennas. Aperture antennas: Techniques for antenna principles, Axi-symmetric pa	ed beam synthesis methods, le linear array, Taylor line source MODULE-3 es, Dipole antenna, Yagi-Uda ve antennas Helical antenna independent antennas, Spira MODULE-4 e evaluating gain, Reflector rabolic reflector antenna, of	ow side lobe narrow r ce method. antennas, Micro-stri as, Biconical antenna al antennas, and Log antennas, Parabolic fset parabolic reflec	 Lawson nain beam p antenna. as, Sleeve g -periodic c reflector 8hrs
sampling method, Comparison of shape synthesis methods, Dolph Chebyshev I Resonant Antennas: Wires and Patche Broadband antennas: Traveling war antennas, and Principles of frequency antennas. Aperture antennas: Techniques for antenna principles, Axi-symmetric par reflector antennas, Gain calculations	ed beam synthesis methods, le linear array, Taylor line source MODULE-3 es, Dipole antenna, Yagi-Uda ve antennas Helical antenna independent antennas, Spira MODULE-4 r evaluating gain, Reflector rabolic reflector antenna, of for reflector antennas, Feed	ow side lobe narrow r ce method. antennas, Micro-stri as, Biconical antenna al antennas, and Log antennas, Parabolic fset parabolic reflect antennas for reflect	- Lawson nain beam p antenna. 8hrs as, Sleeve g -periodic c reflector 8hrs tors, Dual tors, Field
sampling method, Comparison of shape synthesis methods, Dolph Chebyshev I Resonant Antennas: Wires and Patche Broadband antennas: Traveling war antennas, and Principles of frequency antennas. Aperture antennas: Techniques for antenna principles, Axi-symmetric par reflector antennas, Gain calculations representations, Matching the feed to	ed beam synthesis methods, le linear array, Taylor line source MODULE-3 es, Dipole antenna, Yagi-Uda ve antennas Helical antenna independent antennas, Spira MODULE-4 r evaluating gain, Reflector rabolic reflector antenna, of for reflector antennas, Feed	ow side lobe narrow r ce method. antennas, Micro-stri as, Biconical antenna al antennas, and Log antennas, Parabolic fset parabolic reflect antennas for reflect	- Lawson nain beam p antenna. 8hrs as, Sleeve g -periodic c reflector 8hrs tors, Dual tors, Field
sampling method, Comparison of shape synthesis methods, Dolph Chebyshev I Resonant Antennas: Wires and Patche Broadband antennas: Traveling war antennas, and Principles of frequency antennas. Aperture antennas: Techniques for antenna principles, Axi-symmetric par reflector antennas, Gain calculations representations, Matching the feed to	ed beam synthesis methods, le linear array, Taylor line source MODULE-3 es, Dipole antenna, Yagi-Uda ve antennas Helical antenna independent antennas, Spira MODULE-4 r evaluating gain, Reflector rabolic reflector antenna, of for reflector antennas, Feed	ow side lobe narrow r ce method. antennas, Micro-stri as, Biconical antenna al antennas, and Log antennas, Parabolic fset parabolic reflect antennas for reflect	- Lawson nain beam p antenna. 8hrs as, Sleeve g -periodic c reflector 8hrs tors, Dual tors, Field
sampling method, Comparison of shape synthesis methods, Dolph Chebyshev I Resonant Antennas: Wires and Patche Broadband antennas: Traveling wa antennas, and Principles of frequency	ed beam synthesis methods, le linear array, Taylor line source MODULE-3 es, Dipole antenna, Yagi-Uda ve antennas Helical antenna independent antennas, Spira MODULE-4 r evaluating gain, Reflector rabolic reflector antenna, of for reflector antennas, Feed the reflector, General feed MODULE-5	ow side lobe narrow r ce method. antennas, Micro-stri as, Biconical antenna al antennas, and Log antennas, Parabolic fset parabolic reflect antennas for reflect model, Feed antenna	- Lawson main beam p antenna. as, Sleeve g -periodic tors, Dual tors, Field as used in

CEM for antennas: The method of moments: Introduction of the methods moments, Pocklington's integral equation, Integral equation and Kirchhoff's networking equations, Source modeling weighted residual formulations and computational consideration, Calculation of antenna and scatter characteristics.

Text Books:	
1	Antenna Theory Analysis and Design', C.A. Balanis, John Wiley, 2 nd Edition, 2007

Reference Books:		
1	Antennas and Wave Propagation', J.D. Krauss, McGraw Hill TMH,4thEdition, 2010.	
2	2 Antenna and Wave Propagation, K.D.Prasad, Satya Prakashan, New Delhi,2021.	

PRACTICAL COMPONENT OF IPCC:

Conduct the experiments using MATLAB/Scilab/any antenna simulation tool

Sl. No	Experiments
1	MATLAB/C implementation to obtain the radiation pattern of an antenna.
2	Study of radiation pattern of different antennas.
3	Determine the directivity and gains of Horn/Yagi/dipole/Parabolic antennas.
4	Impedance measurements of Horn/Yagi/dipole/Parabolic antennas
5	Study of radiation pattern of E&H plane horns.
6	Significance of Pocklington's integral equation.
7	Determine the directivity and gains of dipole antennas.
8	Impedance measurements of Yagi antennas.
9	Determine the directivity and gains of Parabolic antennas.
10	Study of radiation pattern of E plane horns

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE.

A student shall be deemed to have satisfied the academic requirements (passed) and earned the credits allotted to each subject/ course if the student secures not less than 50% of the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- 1. Three Unit Tests each of 50 Marks.
- 2. Two assignments each of 20 Marks or one Skill Development Activity of 40 marks to attain the COs and POs.

The sum of three tests, two assignments/skill Development Activities, will be scaled down to 50 marks. CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

- 1. The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.
- 2. The question paper will have ten full questions carrying equal marks.
- 3. Each full question is for 20 marks. There will be two full questions (with a maximum of four subquestions) from each module.
- 4. Each full question will have a sub-question covering all the topics under a module.
- 5. The students will have to answer five full questions, selecting one full question from each module.

Sl. No.	Description	Blooms Level
CO1	To classify different types of antennas.	
CO2	To define and illustrate various types of array antennas.	Understand
CO3	To design antennas like Yagi-Uda, Helical antennas and other broadband	Understand
	Antennas.	
CO4	To describe different antenna synthesis methods and apply methods like	Understand
	Method of Moments, Pocklington's integral equation, Source modelling	
CO5	To measure s-parameter, Radiation and Gain of various antenna.	Analyze

Course Learning Outcomes: After the completion of the course, students will be able to:

Program Outcomes for this Course:

Sl. No.	Description	
	1 An ability to independently carry out research/investigation and development work to solve practical problems.	
2	2 An ability to write and present a substantial technical report/document.	
	Students should be able to demonstrate a degree of mastery over the area as per the specialization of the program. The mastery should beat a level higher than the requirements in the appropriate bachelor program.	

4	4 An ability to create, select, apply appropriate techniques, resources and modern tools to solve complex engineering activities with an understanding of their limitations.		
5	An ability to apply Professional ethics, responsibilities and norms of the engineering.	PO5	
6	An ability to recognize the need to engage in independent and life-long learning in	PO6	
	various Communication domain.		

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	1	1	1	1	1	1
CO2	1	1	1	2	1	1
CO3	2	1	1	1	1	1
CO4	1	1	1	2	1	1
CO5	1	1	2	1	1	1

W	VIRELESS SENSOR NETW	ORKS	
Course Code	MVJ22LAC231	CIE Marks	50
Teaching Hours/Week (L:P:T:S)	3:0:0:0	SEE Marks	50
Total Hours of Pedagogy	40L	Total Marks	100
Credits	03	Exam Hours	03
Course Learning objectives: This	course will enable students:		
• Learn the basic concepts of V	Wireless sensor networks arch	nitecture and protocols.	
• Understand the challenges in	n designing a Wireless sensor	network.	
	Data link and Network layer P	rotocols.	
• Understand the function of T	1 1		
	work system for different appl	lications under conside	ration.
Prerequisites: Wireless Communic	MODULE-1		
Introduction: Sensor Mote Platform		tocol Stack,	
WSN Applications: Military Application			ions 8hrs
Home Applications, Industrial Applic			
	MODULE-2	1 0 1 1 1	1
Factors Influencing WSN Design: H	Hardware Constraints Fault To	olerance Scalability Pro	duction 8hrs
Costs WSN Topology, Transmission	Media, Power Consumption.		
Physical Layer: Physical Layer T	echnologies, Overview of F	RF Wireless Commun	ication,
Channel Coding (Error Control Cod	ding), Modulation, Wireless	Channel Effects, PHY	Z Layer
Standards.			
	MODULE-3		
Medium Access Control: Challenge	es for MAC, CSMA Mechanis	m, Contention-Based N	Medium 8hrs
Access, Reservation-Based Medium	Access, Hybrid Medium Acce	ess.	
Network Layer: Challenges for	Routing, Data-centric and	Flat Architecture Pre-	otocols,
Hierarchical Protocols, Geographical	Routing Protocols.		
	MODULE-4		
Transport Layer: Challenges for Tr	ransport Layer, Reliable Mul	ti Segment Transport (RMST) 8hrs
Protocol, Pump Slowly, Fetch Quick	kly (PSFQ) Protocol, Conges	tion Detection and Av	oidance
(CODA) Protocol, Event-to-Sink Rel	liable Transport (ESRT) Proto	ocol, GARUDA	
Application Layer: Source Cod	ing (Data Compression),	Query Processing, N	Jetwork
Management.			
	MODULE-5		I
Wireless Sensor and Actor Networ	ks: Characteristics, Sensor A	ctor coordination, Acto	or Actor 8hrs
coordination, WSAN protocol stack,	Wireless Multimedia Sensor	Networks, Grand Chall	lenges.

Text Book:

1	Wireless Sensor Networks, Ian F. Akyildiz and Mehmet Can Vuran, John Wiley & Sons Ltd.
	ISBN978-0-470-3601-3(H/B),2010

Ref	Reference Book:	
1	Wireless Sensor Networks: Signal Processing and Communications Perspectives', Ananthram	
	Swami, et.al,	
	John Wiley & Sons Ltd., ISBN978-0470-03557-3, 2007.	

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE.

A student shall be deemed to have satisfied the academic requirements (passed) and earned the credits allotted to each subject/ course if the student secures not less than 50% of the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- 1. Three Unit Tests each of 50 Marks.
- 2. Two assignments each of 20 Marks or one Skill Development Activity of 40 marks to attain the COs and POs.

The sum of three tests, two assignments/skill Development Activities, will be scaled down to 50 marks. CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

- 1. The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.
- 2. The question paper will have ten full questions carrying equal marks.
- 3. Each full question is for 20 marks. There will be two full questions (with a maximum of four subquestions) from each module.
- 4. Each full question will have a sub-question covering all the topics under a module.
- 5. The students will have to answer five full questions, selecting one full question from each module.

Sl. No.	Description			
CO1	Acquire knowledge of Wireless sensor network architecture and protocols.			
CO2	2 Apply various transport layer protocols.			
	Understand the multiple radio access techniques, radio standards and Communication protocols to be used for wireless sensor.	Understand		
	Design wireless sensor network system for different applications under consideration.	Analyze		
	CO5 Understand the hardware details of different types of sensors and select right type of sensor for various applications.			

Course Learning Outcomes: After the completion of the course, students will be able to:

Sl.	Description	POs
No.		
1	An ability to independently carry out research/investigation and development work to solve practical problems.	PO1
2	An ability to write and present a substantial technical report/document.	PO2
3	Students should be able to demonstrate a degree of mastery over the area as per the	PO3
	specialization of the program. The mastery should beat a level higher than the	
	requirements in the appropriate bachelor program.	
4	An ability to create, select, apply appropriate techniques, resources and modern tools to solve complex engineering activities with an understanding of their limitations.	PO4
5	An ability to apply Professional ethics, responsibilities and norms of the engineering.	PO5
6	An ability to recognize the need to engage in independent and life-long learning in	PO6
	various Communication domain.	

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	1	-	1	3	-	2
CO2	1	-	1	3	-	2
CO3	1	-	1	3	-	2
CO4	1	1	1	3	-	2
CO5	1	1	1	3	-	2

	NANO ELECTRONIO	CS	
Course Code	MVJ22LAC232	CIE Marks	50
Teaching Hours/Week (L:P:T:S)	3:0:0:0	SEE Marks	50
Total Hours of Pedagogy	40L	Total Marks	100
Credits	03	Exam Hours	03
Course Learning objectives: This			
• Know the principles behind	6 6		
• Apply the knowledge to prep			
• Know the effect of particles of nano materials.	size on mechanical, merinal,	, optical and electrical pro	operties
 Design the process flow requ 	uired to fabricate state of the	art transistor technology.	
Analyze the requirements for	r new materials and device s	•••	
	MODULE-1		[
Introduction to Physics of the solid	state: Structure, Energy bar	nds, Localized particles	8hrs
Generic methodologies for nanote	echnology: classification an	d fabrication: Introducti	on and
classification, Summary of the electro			
ength scale, Fabrication methods:			
templating the growth of nanomateria			43 101
emplating the growth of hanomateria	MODULE-2	5.	
Characterization: Classification, Mi		ion microscopy, scanning	probe 8hrs
techniques, diffraction techniques:			-
techniques: photon, radiofrequency, e			
Ion beam, Reflectometry, Techniques	· · · · · ·		
thermal properties.			5,
	MODULE-3		
norganic semiconductor nanostr		viconductor physics Ou	antum 8hrs
confinement in semiconductor nano			
	-	quantum wires, quantum	uois,
super-lattices, band offsets, and electron	•	1 1 / 1	. 1
Carbon Nanostructures: Introduct	tion, carbon molecules, car	bon clusters, carbon na	notubes,
applications of carbon nanotubes.			
	MODULE-4		
Fabrication techniques: requirem	ents of ideal semiconducto	r, epitaxial growth of q	uantum 8hrs
wells, lithography and etching, clea	aved-edge over growth, gro	wth of vicinal substrates	s, strain
induced dots and wires, electrostatica	ally induced dots and wires, (Quantum well width fluct	uations,
thermally annealed quantum wells,	, semiconductor nanocrystal	ls, colloidal quantum do	ts, self-
assembly techniques.			
Dhysical mussions usedulation d	laning guantum hall offer	noconont tunnolling	horging
Physical processes: modulation d	loping, quantum nan errect	, resonant tunnening, c	narging

processes, phonon bottleneck, quantum confined stark effect, nonlinear effects, coherence and dephasing, characterization of semiconductor.

MODULE-5

Methods of measuring properties: atomic, crystallography, microscopy, spectroscopy8hrsApplications: Injection lasers, quantum cascade lasers, single photon sources, biological
tagging, optical memories, Coulomb blockade devices, photonic structures.8hrs

Text	Text Books:		
1	'Nano scale Science and Technology', Ed Robert Kelsall, Ian Hamley, Mark Geoghegan, John		
	Wiley, 2007.		
2	'Introduction to Nanotechnology', Charles Poole, Jr, Frank J Owens, John Wiley, Copyright 2006,		
	Reprint 2011.		

Refer	rence Books:
1	'Hand Book of Nanoscience Engineering and Technology', Ed William A Goddard III, Donald W
	Brenner, Sergey E. Lyshevski, Gerald Jlafrate, CRC press, 2003.

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE.

A student shall be deemed to have satisfied the academic requirements (passed) and earned the credits allotted to each subject/ course if the student secures not less than 50% of the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- 1. Three Unit Tests each of 50 Marks.
- 2. Two assignments each of 20 Marks or one Skill Development Activity of 40 marks to attain the COs and POs.

The sum of three tests, two assignments/skill Development Activities, will be scaled down to 50 marks. CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

- 1. The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.
- 2. The question paper will have ten full questions carrying equal marks.
- 3. Each full question is for 20 marks. There will be two full questions (with a maximum of four subquestions) from each module.
- 4. Each full question will have a sub-question covering all the topics under a module.
- 5. The students will have to answer five full questions, selecting one full question from each module.

Course Learning Outcomes: After the con	pletion of the course	, students will be able to:
---	-----------------------	-----------------------------

Sl. No.	Description	Blooms Level
CO1	Know the principles behind Nanoscience engineering and Nanoelectronics.	Understand
CO2	Apply the knowledge to prepare and characterize nano materials.	Apply
	Know the effect of particles size on mechanical, thermal, optical and electrical Properties of nanomaterials	Understand
CO4	Design the process flow required to fabricate state of the art transistor technology	Apply
CO5	Analyze the requirements for new materials and device structure in the future technologies.	Apply

Program Outcomes for this Course:

Sl. No.	Description	POs
1	An ability to independently carry out research/investigation and development work to solve practical problems.	PO1
2	An ability to write and present a substantial technical report/document.	PO2
3	Students should be able to demonstrate a degree of mastery over the area as per the specialization of the program. The mastery should beat a level higher than the requirements in the appropriate bachelor program.	PO3
4	An ability to create, select, apply appropriate techniques, resources and modern tools to solve complex engineering activities with an understanding of their limitations.	PO4
5	An ability to apply Professional ethics, responsibilities and norms of the engineering.	PO5
6	An ability to recognize the need to engage in independent and life-long learning in various Communication domain.	PO6

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	-	1	2	2	-	-
CO2	2	1	2	2	-	-
CO3	2	1	2	2	-	-
CO4	2	1	2	2	-	-
CO5	-	1	2	2	-	-

Course Code		ESSING	
	MVJ22LAC233	CIE Marks	50
Teaching Hours/Week (L:P:T:S)	3:0:0:0	SEE Marks	50
Total Hours of Pedagogy	40L	Total Marks	100
Credits	03	Exam Hours	03
Analyze ECG and EEG sign Understand use of bio signal Prerequisites: Basic Signal Process Introduction to Computers in Medici characteristics of cell membrane, Ele Electrocardiogram: Introduction an cardiovascular system, cardiovascul ECG. Electroencephalogram: Introductio brain, Evoked Potentials, Diseases of	s of acquiring bio signals. of bio signal distortions and it al with characteristic feature p ls in diagnosis, patient monitor sing, Basic concepts on biome <u>MODULE-1</u> ne, overview of electric activit ctric Data Acquisition. <u>MODULE-2</u> nd overview, function and str ar diseases and ECG, Proces <u>MODULE-3</u>	points. ring and physiologica dical instruments. ties of biological cell ructure of the heart, ssing and feature ext	al investigation. s, Electric 8hrs signal of raction of
Electromyogram: Introduction and and EMG, other applications of EMC	xtraction of EEG. MODULE-4 overview, muscle, signal of m G, processing and feature extra	uscles, neuromuscula	essment of
Electromyogram: Introduction and and EMG, other applications of EMC Other biomedical signals.	xtraction of EEG. MODULE-4 overview, muscle, signal of m G, processing and feature extra MODULE-5	uscles, neuromuscula action of EMG.	essment of ar diseases 8hrs
Electromyogram: Introduction and and EMG, other applications of EMC Other biomedical signals. Introduction to X-Ray, X-Ray Detect	xtraction of EEG. MODULE-4 overview, muscle, signal of m G, processing and feature extra MODULE-5 ion, Biomedical CT Scanners,	uscles, neuromuscula action of EMG. Magnetic Resonance	essment of ar diseases 8hrs e Imaging: 8hrs
Electromyogram: Introduction and and EMG, other applications of EMC Other biomedical signals. Introduction to X-Ray, X-Ray Detect Physical and physiological principles	xtraction of EEG. MODULE-4 overview, muscle, signal of m G, processing and feature extra MODULE-5 ion, Biomedical CT Scanners, s of MRI, MR Imaging, Proce	uscles, neuromuscula action of EMG. Magnetic Resonance essing and feature ext	essment of ar diseases 8hrs e Imaging: 8hrs raction of
Electromyogram: Introduction and and EMG, other applications of EMC Other biomedical signals. Introduction to X-Ray, X-Ray Detect Physical and physiological principles	xtraction of EEG. MODULE-4 overview, muscle, signal of m G, processing and feature extra MODULE-5 ion, Biomedical CT Scanners, s of MRI, MR Imaging, Proce	uscles, neuromuscula action of EMG. Magnetic Resonance essing and feature ext	e Imaging: 8hrs raction of
Electromyogram: Introduction and and EMG, other applications of EMC Other biomedical signals. Introduction to X-Ray, X-Ray Detect Physical and physiological principles MRI, Ultrasound Imaging: Introduct	xtraction of EEG. MODULE-4 overview, muscle, signal of m G, processing and feature extra MODULE-5 ion, Biomedical CT Scanners, s of MRI, MR Imaging, Proce ion, Why Ultrasound Imaging	uscles, neuromuscula action of EMG. Magnetic Resonance essing and feature ext	e Imaging: 8hrs raction of
Anesthesia, Processing and feature ex Electromyogram: Introduction and and EMG, other applications of EMC Other biomedical signals. Introduction to X-Ray, X-Ray Detect Physical and physiological principles MRI, Ultrasound Imaging: Introduct Ultrasound waves, Optical Microscop Text Books:	xtraction of EEG. MODULE-4 overview, muscle, signal of m G, processing and feature extra MODULE-5 ion, Biomedical CT Scanners, s of MRI, MR Imaging, Proce ion, Why Ultrasound Imaging	uscles, neuromuscula action of EMG. Magnetic Resonance essing and feature ext	e Imaging: 8hrs raction of
Electromyogram: Introduction and and EMG, other applications of EMC Other biomedical signals. Introduction to X-Ray, X-Ray Detect Physical and physiological principles MRI, Ultrasound Imaging: Introduct Ultrasound waves, Optical Microsco	xtraction of EEG. MODULE-4 overview, muscle, signal of m G, processing and feature extra MODULE-5 ion, Biomedical CT Scanners, s of MRI, MR Imaging, Proce ion, Why Ultrasound Imaging py, Infrared Imaging.	uscles, neuromuscula action of EMG. Magnetic Resonance essing and feature ext g, Generation and De	essment of ar diseases 8hrs e Imaging: 8hrs raction of etection of

Taylor & Francis Group.

Refer	Reference Books:			
1	'Biomedical Signal Processing (in IV parts)', R Challisand R I Kitney, Medical and Biological			
	Engg. and current computing, 1990-91.			
2	Special issue on 'Biological Signal Processing', Proc. IEEE1972.			
3	'Bio medical Signal Processing', Arnon Cohen, Volumes I&II, CRC Press.			
4	'Time, frequency and Wavelets in Biomedical Signal Processing', Metin Akay, IEEE Press, 1999.			

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE.

A student shall be deemed to have satisfied the academic requirements (passed) and earned the credits allotted to each subject/ course if the student secures not less than 50% of the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- 1. Three Unit Tests each of 50 Marks.
- 2. Two assignments each of 20 Marks or one Skill Development Activity of 40 marks to attain the COs and POs.

The sum of three tests, two assignments/skill Development Activities, will be scaled down to 50 marks. CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

- 1. The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.
- 2. The question paper will have ten full questions carrying equal marks.
- 3. Each full question is for 20 marks. There will be two full questions (with a maximum of four subquestions) from each module.
- 4. Each full question will have a sub-question covering all the topics under a module.
- 5. The students will have to answer five full questions, selecting one full question from each module.

Sl. No.	Description	Blooms Level
CO1	Describe models for a biomedical system.	Explain
CO2	Understand various methods of acquiring bio signals.	Understand
CO3	Understand various sources of bio-signal distortions and its remedial techniques.	Analyze
CO4	Analyze ECG and EEG signal with characteristic feature points	Analyze
	Understand use of bio signals in diagnosis, patient monitoring and physiological investigation.	Understand

Course Learning Outcomes: After the completion of the course, students will be able to:

Program Outcomes for this Course:

Sl.	Description	POs
No.		
1	An ability to independently carry out research/investigation and development work to solve practical problems.	PO1
2	An ability to write and present a substantial technical report/document.	PO2
3	Students should be able to demonstrate a degree of mastery over the area as per	PO3
	the specialization of the program. The mastery should beat a level higher than	
	the requirements in the appropriate bachelor program.	
4	An ability to create, select, apply appropriate techniques, resources and modern tools to solve complex engineering activities with an understanding of their limitations.	PO4
5	An ability to apply Professional ethics, responsibilities and norms of the engineering.	PO5
6	An ability to recognize the need to engage in independent and life-long learning	PO6
	in various Communication domain.	

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	1	1	1	1	2	1
CO2	1	1	1	2	1	1
CO3	2	1	2	1	1	1
CO4	1	1	1	2	1	1
CO5	1	1	2	1	1	1

- Of	PTICAL COMMUNICATIO NETWORKING			
Course Code	MVJ22LAC241	CIE Marks	50	
Teaching Hours/Week (L:P:T:S)	3:0:0:0	SEE Marks	50 100	
Total Hours of Pedagogy	40L	Total Marks		
Credits	03	Exam Hours	03	
 Course Learning objectives: This Understand the various option 	cal devices and how they operation	ate.		
Recognize and choose variou	us components for optical network		e with the esta	ablishe
design requirements.	amonte of data transmission 1	and a bata also and a th	or notwork of	aaratin
• Acquire knowledge of the el artifacts.	ements of data transmission, lo	oss obstacles, and oth	er network oj	peratin
	oblems associated with setting		the optical ne	etwork
-	ping up with current data trans			
	explore the management of co	mponents and netwo	rks.	
Prerequisites: Advanced Communic	Cation Systems-1 MODULE-1			
Introduction to optical networks:		acket switching, Pr	opagation of	
signals in Optical fiber: Different los		<u> </u>	10	8hrs
Optical Components: Couplers, Iso	lators and Circulators.			
	MODULE-2			
Optical Components: Multiplexers	and Filters, Optical Amplifiers	s, detectors.		8hrs
Modulation-Demodulation: Forma	ts, Ideal receivers, Practical d	lirect detection recei	vers, Optical	
preamplifiers, Bit error rates, Cohere	nt detection.			
	MODULE-3			
Transmission System Engineerin	ng: System model, Power	penalty, Transmitte	r, Receiver,	8hrs
Crosstalk. Client Layers of optical	layer: SONET/SDH: Multip	olexing, layers, Frar	ne structure.	
Asynchronous Transfer Mode: ATM	functions, Adaptation layers,	Quality of Service (Q	oS) and flow	
control, Signaling and Routing.				
	MODULE-4			
WDM network elements: Optical	line terminals, Optical line a	mplifiers, Optical A	dd/ Drop	8hr
Multiplexers, Optical cross-connects				S
WDM Network Design: Cost trade	e-offs, LTD and RWA proble	ems, Routing and w	avelength	
assignment, Wavelength conversion.				
	MODULE-5			
Control and Management: Ne	twork management function protocols, Layers within the	e e	-	8hrs

Management: Performance and fault management, Impact of transparency, BER measurement,

Optical trace, Alarm management, Configuration management, Optical Safety.

Text	Books:
1	'Optical Networks', Rajiv Ramaswami, Kumar N. Sivarajan and Galan H Sasaki, Morgan Kaufman
	Publishers, 3rd edition, 2010.

Refer	Reference Books:		
1	'Optical fiber Communication', John M. Senior, Pearson edition, 2000.		
2	'Optical fiber Communication', Gerd Keiser, John Wiley, New York, 5th Edition, 2017.		
3	'Fiber Optic Networks', P. E. Green, Prentice Hall, 1994.		

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE.

A student shall be deemed to have satisfied the academic requirements (passed) and earned the credits allotted to each subject/ course if the student secures not less than 50% of the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- 1. Three Unit Tests each of 50 Marks.
- 2. Two assignments each of 20 Marks or one Skill Development Activity of 40 marks to attain the COs and POs.

The sum of three tests, two assignments/skill Development Activities, will be scaled down to 50 marks. CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

- 1. The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.
- 2. The question paper will have ten full questions carrying equal marks.
- 3. Each full question is for 20 marks. There will be two full questions (with a maximum of four subquestions) from each module.
- 4. Each full question will have a sub-question covering all the topics under a module.
- 5. The students will have to answer five full questions, selecting one full question from each module.

Sl. No.	Description	Blooms Level
CO1	Comprehend the various optical devices and their working strategies.	Understand
CO2	Recognize and select various optical networking components according to	Understand
	the prescribed design specifications.	
CO3	Learn the aspects of data transmission, loss hindrances and other artifacts	Understand
	affecting the network operation.	
CO4	Learn the issues involved in setting up and maintaining access part of the	Understand
	optical network with the latest trends in the data communication.	
CO5	Design a WDM network and study the component and network management	Analyze
	Aspects.	

Program Outcomes for this Course:

Sl.	Description	POs
No.		
1	An ability to independently carry out research/investigation and development work to solve practical problems.	PO1
2	An ability to write and present a substantial technical report/document.	PO2
3	Students should be able to demonstrate a degree of mastery over the area as per	PO3
	the specialization of the program. The mastery should beat a level higher than the	
	requirements in the appropriate bachelor program.	
4	An ability to create, select, apply appropriate techniques, resources and modern tools to solve complex engineering activities with an understanding of their limitations.	PO4
5	An ability to apply Professional ethics, responsibilities and norms of the engineering.	PO5
6	An ability to recognize the need to engage in independent and life-long learning	PO6
	in various Communication domain.	

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	1	1	1	1	2	1
CO2	1	1	1	2	1	1
CO3	2	1	2	1	1	1
CO4	1	1	1	2	1	1
CO5	1	1	2	1	1	1

Course Code	ATISTICAL SIGNAL PRO	CLODING	
Course Coue	MVJ22LAC242	CIE Marks	50
Teaching Hours/Week (L:P:T:S)	3:0:0:0	SEE Marks	50
Total Hours of Pedagogy	40L	Total Marks	100
Credits	03	Exam Hours	03
Course Learning objectives: This	course will enable students:	· · ·	
• Understand random processe	s and its properties.		
• Understand the basic theory of	of signal detection and estima	tion.	
• Identify the engineering prob	elems that can be put into the f	frame of statistical sign	al processing
• Solve the identified problems	s using the standard technique	es learned through this c	course.
• Make contributions to the the	eory and the practice of statist	ical signal processing.	
rerequisites: Basic Signal Processi	ing concepts		
	MODULE-1		
Random Processes: Random var	iables, random processes, wh	ite noise, filtering rando	om 8h r
rocesses, spectral factorization, AR	MA, AR and MA processes.		0111
	MODULE-2		
ignal Modeling: Least squares	method, Pade approximation	on, Prony's method,	finite data 8hr
ecords, stochastic models, Levinso	on-Durbin recursion; Schur	recursion; Levinson re	ecursion.
	MODULE-3		
pectrum Estimation: Non-pa	rametric methods, minimun	n-variance spectrum	estimation, 8hr
naximum entropy method, param	etric methods, frequency es	stimation, principal co	omponents
pectrum estimation.			
	MODULE-4		
Optimal and Adaptive Filtering:		Discrete Kalman filt	ter, FIR 8hr
Adaptive filters: Steepest descent,			
•	LIVIS, LIVIS-Dased algorithi	ins, adaptive recursive	inters,
RLS algorithms.			
	MODULE-5		
Array Processing: Array fun	damentals, beam-forming,	, optimum array p	processing, 8hr
Array Processing: Array fun erformance considerations, adapt			. U,

1	Monson H. Hayes, "Statistical Digital Signal Processing and Modeling", John Wiley & Sons (Asia) Pvt. Ltd.,2002.
2	Dimitris G. Manolakis, Vinay K. Ingle, and Stephen M. Kogon, "Statistical and Adaptive
	Signal Processing: Spectral Estimation, Signal Modeling, Adaptive Filtering And Array
	Processing", McGraw-Hill International Edition, 2000.

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%.

The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE.

A student shall be deemed to have satisfied the academic requirements (passed) and earned the credits allotted to each subject/ course if the student secures not less than 50% of the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- 3. Three Unit Tests each of 50 Marks.
- 4. Two assignments each of 20 Marks or one Skill Development Activity of 40 marks to attain the COs and POs.

The sum of three tests, two assignments/skill Development Activities, will be scaled down to 50 marks. CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

- 6. The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.
- 7. The question paper will have ten full questions carrying equal marks.
- 8. Each full question is for 20 marks. There will be two full questions (with a maximum of four subquestions) from each module.
- 9. Each full question will have a sub-question covering all the topics under a module.
- 10. The students will have to answer five full questions, selecting one full question from each module.

Sl. No.	Description	Blooms Level
C01	Design statistical DSP algorithms to meet desired needs.	Analyze
CO2	Apply vector space methods to statistical signal processing problems.	Apply
	Identify the engineering problems that can be put into the frame of statistical signal processing.	Understand
CO4	Understand Wiener filter theory and design discrete and continuous Wiener filters.	Understand
CO5	Understand Kalman Filter theory and design discrete Kalman filters.	Understand

Course Learning Outcomes: After the completion of the course, students will be able to:

Program Outcomes for this Course:

Sl.	Description	POs
	Description	rus
No.		
1	An ability to independently carry out research/investigation and development work to solve practical problems.	PO1
2	An ability to write and present a substantial technical report/document.	PO2
3	Students should be able to demonstrate a degree of mastery over the area as per	PO3
	the specialization of the program. The mastery should beat a level higher than the	
	requirements in the appropriate bachelor program.	
4	An ability to create, select, apply appropriate techniques, resources and modern tools to solve complex engineering activities with an understanding of their limitations.	PO4
5	An ability to apply Professional ethics, responsibilities and norms of the engineering.	PO5
6	An ability to recognize the need to engage in independent and life-long learning	PO6
	in various Communication domain.	

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	1	1	1	1	2	1
CO2	1	1	1	2	1	1
CO3	2	1	2	1	1	1
CO4	1	1	1	2	1	1
CO5	1	1	2	1	1	1

	ATLAB for Advanced Appli			
Course Code	MVJ22LAC243	CIE Marks	50	
Teaching Hours/Week (L:P:T:S)	3:0:0:0	SEE Marks	50	
Total Hours of Pedagogy	40L	Total Marks	100	
Credits	03	Exam Hours	03	
Course Learning objectives: This				
• Solve ordinary differential eq	-	operations using MA	TLAB	
• Implement and Analyze Neur				
• Design fuzzy logic systems MATLAB			user interface	tools in
• Analyze and Process Digital S	с с с			
• Model wireless communicati	on channels and generate var	ious fading channe	ls for MIMO	systems
using MATLAB Prerequisites: MATLAB basic con	cents. Advanced Communica	ation System-1		
1	MODULE-1			
MATLAB for Numerical Computing	ng:			01
Executing a function, function sub	programs, Types of functior	ns, function handle	s, errors and	8hrs
warning, matlab debugger. Matlab Gr	aphics-2D plots, Multiple plot	s, Sub plots, speciali	ized 2D plots,	
3D plots Ordinary Differential	Equation solvers, Calculus	using Symbolic	mathematics,	
simplification functions.				
	MODULE-2			01
MATLAB Applications in Neural N	Networks:			8hrs
Generation of Input-Output Training	ng data, creating a Neural	Network, training	a Multilayer	
perceptron, Generation of Input-Ou	tput Test Data, Simulating N	letwork, Preprocess	ing and Post	
processing Inputs and Outputs, Usin	ng Graphical User Interface	for creating Multila	yered Neural	
Network. Implementation of ANN ba	sed Control, Creating RBF No	eural Network.		
	MODULE-3			
MATLAB Applications in Fuzzy L	ogic Systems:			8hrs
Fuzzy operations, fuzzy Inference s	ystems-fuzzification of input	variables, applicati	ons of fuzzy	
operators, mapping of degree of matching to fuzzy outputs, aggregation of outputs, defuzzification,				
Washing Machine problem, Building	systems with Graphical User	Interface-FIS editor,	Membership	
function editor, Rule editor, Rule vie	wer, surface viewer, Fuzzy co	ntroller example-fuz	zzy controller	
for water bath system.				
	MODULE-4			
MATLAB Applications in Digital Sigr	al Processing:			8hr
Classification and representation of	basic discrete signals, operation	ons on discrete sign	als, multirate	S
signal processing functions, Convolu	ution, Fast Fourier transform,	Inverse Fast Fourie	er Transform,	
		Filter design and ana		

and FIR using FDA tool.

MODULE-5

MATLAB Applications in Wireless Communication:

Free space path loss model, outdoor propagation model Hata model and okumura model, generate Raleigh channels, Rician fading channels, Time domain FWGN channel model, Generation of correlated MIMO fading channel, Ergodic Channel Capacity, Ergodic Channel Capacity for Various Antenna Configuration.

Text	Text Books:			
1	Raj kumar Bansal, Ashok Kumar Goel and Manoj Kumar Sharma, MATLAB and its Applications			
	in Engineering, Pearson India Education Services Pvt Ltd, 2017.			
2	Yong Soo Cho, Jaekwon Kim, Won Young Yang, Chung G. Kang, MIMO-OFDM Wireless			
	Communications with MATLAB, John Wiley & Sons Pvt Ltd, 2010.			

Refer	rence Books:
1	Chapman Stephen J, MATLAB Programming for Engineers, New Delhi Cengage Learning
	India 2008.
2	Rudra Pratap, Getting Started with MATLAB-Oxford University Press-2017, ISBN: 978-0-19-
	060206-2.
3	C.F. Van Loan and KY.D. Fan, Insight Through Computing: A MATLAB Introduction to
	Computational
	Science and Engineering, SIAM, 2010.
4	Bhagali a c., Digital Signal Processing with Matlab Programs, Kolhapur Mahalakshmi Pub 2001.
	Stormy Attaway, MATLAB: A Practical Introduction to Programming and Problem Solving,
	Elsevier, 2022.

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE.

A student shall be deemed to have satisfied the academic requirements (passed) and earned the credits allotted to each subject/ course if the student secures not less than 50% of the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- 5. Three Unit Tests each of 50 Marks.
- 6. Two assignments each of 20 Marks or one Skill Development Activity of 40 marks to attain the COs and POs.

The sum of three tests, two assignments/skill Development Activities, will be scaled down to 50 marks. CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

- 11. The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.
- 12. The question paper will have ten full questions carrying equal marks.
- 13. Each full question is for 20 marks. There will be two full questions (with a maximum of four subquestions) from each module.

8hrs

14. Each full question will have a sub-question covering all the topics under a module.

15. The students will have to answer five full questions, selecting one full question from each module.

Sl. No.	Description	Blooms Level
CO1	Apply MATLAB for solving ordinary differential equations and calculus problems.	Apply
CO2	Analyze and Implement Neural network models through MATLAB.	Analyze
CO3	Apply fuzzy logic models for various applications using MATLAB.	Apply
CO4	Analyze and process digital signals and digital filters using MATLAB toolboxes	Analyze
CO5	Design different indoor and outdoor propagation models and MIMO fading channels through MATLAB.	Apply

Program Outcomes for this Course:

Sl. No.	Description	POs
1	An ability to independently carry out research/investigation and development work to solve practical problems.	PO1
2	An ability to write and present a substantial technical report/document.	PO2
3	Students should be able to demonstrate a degree of mastery over the area as per	PO3
	the specialization of the program. The mastery should beat a level higher than the	
	requirements in the appropriate bachelor program.	
4	An ability to create, select, apply appropriate techniques, resources and modern tools to solve complex engineering activities with an understanding of their limitations.	PO4
5	An ability to apply Professional ethics, responsibilities and norms of the engineering.	PO5
6	An ability to recognize the need to engage in independent and life-long learning	PO6
	in various Communication domain.	

Mapping	of CPS and	POs _{PO2}	PO3	PO4	PO5	PO6
CO1	1	1	2	2	-	-
CO2	2	1	2	2	-	2
CO3	2	1	2	2	-	2
CO4	2	1	2	2	-	2
CO5	2	1	2	2	-	2

	AD	VANCED COMMUNICAT	ION LAB			
Course	Code	e MVJ22LACL26		50		
Teachin	g Hours/Week (L:P:T:S)	0:2:0:0	SEE Marks	50		
Total Hours of Pedagogy			Total Marks	100		
Credits		02	Exam Hours	03		
Course	Learning objectives: This	course will enable students:				
• 1	Achieve high levels of spect	rum usage efficiency through	QAM.			
		ata rate to be lower than would	ld be required by a si	ngle stream of similar		
	oandwidth.					
	Digitally represent analog si	-				
		ous signals in a single transi	mission channel by	optimizing the use of		
	pandwidth.					
	Increase the amount of data	that can be transmitted over a	<u> </u>			
Sl. No.	Experiments					
1	Measurement of Bit Error	Rate using Binary Data.				
2	Efficiency of Direct Seque	ence Spread Spectrum Techni	que.			
3	Simulation of Frequency I	Hopping (FH) Spread- Spectru	um.			
4	Measurement of effect of Inter Symbol Interference.					
5	Design of FSK system.					
6	BPSK Modulation and De	modulation techniques.				
7	DPSK Modulation and Demodulation techniques.					
8	4-QAM Modulation and Demodulation techniques.					
9	OFDM Transmitter and Receiver design.					
10	Performance evaluation of CDMA system.					
11	BER performance of QPSK modulation with AWGN and Rayleigh multipath fading.					
12	DPCM Generation and De					
13	Measurement of losses in	a given optical fibre (prop	agation loss, bending	g loss) and numerical		
	aperture.					
14	Analog and digital (with T	DM) communication link usi	ing optical fibre.			

Note: Conduct any ten experiments using any simulation tool kits

Course Learning Outcomes: After the completion of the course, students will be able to:

- Achieve high levels of spectrum usage efficiency through QAM.
- Enable each sub stream's data rate to be lower than would be required by a single stream of similar bandwidth.
- Digitally represent analog signals.
- Know how occupy numerous signals in a single transmission channel by optimizing the use of bandwidth.
- Increase the amount of data that can be transmitted over a single optical fiber.

	icrowave Devices and Appli	CIE Marks	
Course Code	e MVJ22LAC31		50
Teaching Hours/Week (L:P:T:S)	3:0:0	SEE Marks	50
Total Hours of Pedagogy	40 L Total Marks 100		100
Credits	03	Exam Hours	03
Course Learning objectives: This	course will enable students:		
• Describe the microwave proper	ties and its transmission med	lia.	
• Describe microwave devices fo	r several applications.		
• Understand the concept of smit	h Chart.		
• Understand the different types of	of Microwave Amplifiers.		
• Understand the concepts of Mic	rowave Circuit Design		
	MODULE-1		
Introduction to Microwaves: Hist	ory of Microwaves, Microw	vave Frequency band	s, General
Applications of Microwaves, Advant	ages of Microwaves		8hr
Analysis of Microwave Transmissi	on Lines: Transmission line	equations & solutions	s, Analysis
of simple circuit in Phasor Domain,	High Frequency Parameters	s, Formulation of S Pa	arameters,
Properties of S Parameters, Transmis	sion Matrix, Generalized s p	parameters.	
	MODULE-2		
Microwave Passive components: D	irectional Coupler, Magic To	ee, Wave-guide Corne	ers, Bends, 8hr
Twists, Attenuator, Circulator, Isolat	or.		
Microwave Active components: Tu		1 2	· ·
Barrier diodes, PIN diodes, Gun			Parametric
Amplifiers, Microwave Transistors, I		lixers.	
Microwave tubes: Klystron and Trav	2		
Curith Chart and its Armitest's	MODULE-3	Derivation of Consider Cl	out 0 : 41 01
Smith Chart and its Applications:		verivation of Smith Ch	hart, Smith 8hr
Chart Circular and Radical scales, Ap	MODULE-4		
RF Microwave Amplifiers: Small		Tupes of Amplifians	Design of 8hr
different types of Amplifiers.	signal Design. Infouuction,	Types of Ampimers,	
RF/Microwave frequency Conversi	on Mixers Introduction Mi	xer types Conversion	losses for
SSB Mixers, SSB Versus DSB Mixer		•	100000 101
	MODULE-5		

RF and Microwave Control Circuit Design: Introduction, PN Junction Devices, Phase Shifters, **8hrs** Digital Phase shifters, Semiconductor Phase Shifters, PIN Diode attenuators.

RF and Microwave IC Design: MIC, MIC Materials, Types of MIC, Hybrid Versus Monolithic IC.

Text	Books:
1	Radio Frequency and Microwave Electronics (Illustrated) , Mathew M. Radmanesh,
	Pearson India, 2015.

Refe	Reference Books:			
1	RF Circuit design theory and applications' Reinhold Ludwig, and Pavel Bretchko, Pearson			
	Education edition, 2004.			

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE.

A student shall be deemed to have satisfied the academic requirements (passed) and earned the credits allotted to each subject/ course if the student secures not less than 50% of the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- Three Unit Tests each of 50 Marks.
- Two assignments each of 20 Marks or one Skill Development Activity of 40 marks to attain the COs and POs.

The sum of three tests, two assignments/skill Development Activities, will be scaled down to 50 marks. CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

- 1. The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.
- 2. The question paper will have ten full questions carrying equal marks.
- **3.**Each full question is for 20 marks. There will be two full questions (with a maximum of four subquestions) from each module.
- 4. Each full question will have a sub-question covering all the topics under a module.
- 5. The students will have to answer five full questions, selecting one full question from each module.

Course Learning Outcomes: After the completion of the course, students will be able to:

Sl.	Description	Blooms
No.		Level
CO1	Design and analyze microwave transmission lines.	Explain
CO2	Identify various passive microwave components for different applications.	Understand
CO3	Design and analyze Characteristic impedance using smith Chart.	Analyze
CO4	Examine various amplifiers and Mixers for Microwave Circuit design.	Analyze
CO5	Design Microwave Circuit using Phase Shifters.	Design and analyze

Program Outcomes for this Course:

Sl.	Description	POs
No.		
1	An ability to independently carry out research/investigation and development work to solve practical problems.	PO1
2	An ability to write and present a substantial technical report/document.	PO2
3	Students should be able to demonstrate a degree of mastery over the area as per the specialization of the program. The mastery should beat a level higher than the requirements in the appropriate bachelor program.	PO3
4	An ability to create, select, apply appropriate techniques, resources and modern tools to solve complex engineering activities with an understanding of their limitations.	PO4
5	An ability to apply Professional ethics, responsibilities and norms of the engineering.	PO5
6	An ability to recognize the need to engage in independent and life-long learning in various Communication domain.	PO6

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	1	1	1	2	1	1
CO2	1	1	1	2	1	1
CO3	2	1	2	2	1	1
CO4	1	1	1	2	1	1
CO5	1	1	1	2	1	1

PROFESSIONAL ELECTIVE-4			
PATTERN RECOGN	ITION AND MACHINE	LEARNING	
Course Code	MVJ22LAC321	CIE Marks	50
Teaching Hours/Week (L:P:T:S)	3:0:0	SEE Marks	50
Total Hours of Pedagogy	40 L	Total Marks	100
Credits	03	Exam Hours	03

Course Learning objectives: This course will enable students:

- Develop the mathematical tools required for the pattern recognition.
- Enable the student with basic knowledge on the techniques to build an intellectual machine for making decisions behalf of humans.
- Understand the techniques on how to make learning by a model, how it can be evaluated, what are all Different algorithms to construct a learning model.
- Enable the student to Identify the deep learning algorithm hicharemore appropriate for various types of learning tasks.
- Understand the student to Implement deep learning algorithms and Execute performance metrics of Deep Learning Techniques.

MODULE-1

Introduction: Probability Theory, Model Selection, The Curse of Dimensionality, Decision Theory, Information Theory.

Distributions: Binary and Multinomial Variables, The Gaussian Distribution, The Exponential Family, Nonparametric Methods.

MODULE-2

Supervised Learning - Linear Regression Models: Linear Basis Function Models, The Bias, Shrs Variance Decomposition, Bayesian Linear Regression, Bayesian Model Comparison Classification & Linear Discriminant Analysis: Discriminant Functions, Probabilistic Generative Models, Probabilistic Discriminative Mode.

MODULE-3

Kernels: Dual Representations, Constructing Kernels, Radial Basis Function Network, **8hrs** Gaussian Processes. **Support Vector Machines:** Maximum Margin Classifiers, Relevance Vector Machines. **Neural Networks:** Feedforward Network, Network Training, Error Backpropagation

MODULE-4

Machine Learning Basics: Learning Algorithms, Capacity, Overfitting and Underfitting,
Hyper parameters and Validation Sets, Estimator, Bias and Variance, Maximum Likelihood
Estimation, Bayesian Statistics, Supervised Learning Algorithms, Unsupervised Learning
Algorithms, Stochastic Gradient Decent, building a Machine Learning Algorithm, Challenges
Motivating Deep Learning.8hrs

MODULE-5

Optimization for Training Deep Models: How Learning Differs from Pure Optimization,
Challenges in Neural Network Optimization, Basic Algorithms. Parameter Initialization
Strategies, Algorithms with Adaptive Learning Rates.8hrsConvolutional Networks:
The Convolution Operation, Motivation, Pooling, Convolution
and Pooling as an Infinitely Strong Prior, Variants of the Basic Convolution Function,
Structured Outputs, Data Types, Efficient Convolution Algorithms, Random or8hrs

Text	Text Books:				
1	"Pattern Recognition (An Introduction)", V Susheela Devi, M Narsimha Murthy, Universities Press,2011.				
2	"Pattern Recognition & Image Analysis", Earl Gose, Richard Johnson baugh, Steve Jost, PH, 1996.				
3	"Deep Learning", Lan Good fellow and Yoshua Bengio and Aaron Courville, MIT Press,2016.				

Refer	Reference Books:			
1	'Pattern Classification', Duda R.O., P.E. Hart, D.G. Stork, John Wiley and sons, 2000.			
2	"Pattern Recognition and machine Learning", Chirstopher Bishop,2007.			

Assessment Details (both CIE and SEE)

Unsupervised Features

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE.

A student shall be deemed to have satisfied the academic requirements (passed) and earned the credits allotted to each subject/ course if the student secures not less than 50% of the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- Three Unit Tests each of 50 Marks.
- Two assignments each of 20 Marks or one Skill Development Activity of 40 marks to attain the COs and POs.

The sum of three tests, two assignments/skill Development Activities, will be scaled down to 50 marks. CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

- The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.
- The question paper will have ten full questions carrying equal marks.
- Each full question is for 20 marks. There will be two full questions (with a maximum of four subquestions) from each module.

- Each full question will have a sub-question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Course Learning Outcomes: After the completion of the course, students will be able to:

Sl.	Description	Blooms
No.		Level
CO1	Explain pattern recognition principals.	Understand
CO2	Develop algorithms for Pattern Recognition.	Understand
CO3	Design the nearest neighbor classifier.	Analyze
CO4	Identify the deep learning algorithms which are more appropriate for various types of learning tasks.	Understand
CO5	ImplementdeeplearningalgorithmsandExecuteperformancemetricsofDeep Learning Techniques.	Apply

Program Outcomes for this Course:

Sl.	Description	POs
No.		
1	An ability to independently carry out research/investigation and development work to solve practical problems.	PO1
2	An ability to write and present a substantial technical report/document.	PO2
3	Students should be able to demonstrate a degree of mastery over the area as per the specialization of the program. The mastery should beat a level higher than the requirements in the appropriate bachelor program.	PO3
4	An ability to create, select, apply appropriate techniques, resources and modern tools to solve complex engineering activities with an understanding of their limitations.	PO4
5	An ability to apply Professional ethics, responsibilities and norms of the engineering.	PO5
6	An ability to recognize the need to engage in independent and life-long learning in various Digital Communication and Networking domain.	PO6

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	1	1	-	-	-	2
CO2	1	1	-	-	-	2
CO3	2	1	1	-	-	2
CO4	2	1	1	2	-	2
CO5	2	1	2	-	2	2

RF MEMS					
Course Code	MVJ22LAC322	CIE Marks	50		
Teaching Hours/Week (L:P:T:S)	3:0:0	SEE Marks	50		
Total Hours of Pedagogy	40 L	Total Marks	100		
Credits	03	Exam Hours	03		

Course Learning objectives: This course will enable students:

- Comprehend the need for micromachining and MEMS based systems for RF and micro wave applications
- Describe the micro machining techniques and their use in the fabrication of micro switches, capacitors and inductors
- Design MEMS based microwave components aimed at reducing insertion loss and increasing bandwidth.
- Realize high Q micromechanical filters for frequencies up to and beyond10 MHz, and micro machined surface acoustic wave (SAW) filters filling the gap up to 2 GHz.
- Describe the packaging approaches used for these RF MEMS devices

MODULE-1

Review: Introduction to MEMS: Fabrication for MEMS transducers and actuators, Micro
sensing for MEMS, Materials for MEMS. MEMS materials and fabrication techniques: Metals,
Semiconductors, Thin films, Materials for polymer MEMS, Bulk machining for Silicon based
MEMS, Surface machining for Silicon based MEMS, Micro stereo-lithography for polymer
MEMS.8hrs

MODULE-2

RF MEMS Switches and micro-relays: Switch parameters, Basics of switching, Switches for RF **8hrs** and Microwave applications, Actuation mechanisms, Micro-relays and micro-actuators, Dynamic of switch operations; MEMS switch design and design consideration, MEMS inductors and capacitors.

MODULE-3

Micro machined RF filters and phase shifters: RF filters, Modelling of mechanical filters, 8hrs Micro-mechanical filters, SAW filters - Basic, Design consideration. Bulk acoustic wave filters, Micro-machined filters for millimeter wave frequencies. Micro-machined phase shifters, Types and limitations, MEMS and Ferroelectric phase shifters, Applications.

MODULE-4

Micro machined transmission line and components: Micro machined transmission line: Losses 8hrs in Transmission line, coplanar lines, Micro shield and membrane supported lines, Micro shield components, Micro machined waveguides, Directional couplers and Mixers, Resonators and Filters

MODULE-5

Micromachined antennas: design, Fabrication and measurements. Integration and packaging for 8hrs RF MEMS. Roles and types of packages, Flip chip techniques, Multichip module packaging and Wafer bonding, Reliability issues and thermal issues.

Text Books:

1

'RF MEMS and their Applications', Vijay K Varadan, K. J. Vinoy and K. A. Jose, Wiley
India Pvt. Ltd., ISBN-10: 8126529911,2011.

Refe	erence Books:
1	'RF MEMS circuit design', J De Los Santos, Artech House, 2002.
2	'Transaction Level Modelling with System C: T L M concepts and applications for Embedded Systems', Frank Ghenassia, Springer, 2005.
3	'Networks on chips: Technology and Tools', Luca Beninid, Morgan Kaufmann Publishers,
	2006.

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE.

A student shall be deemed to have satisfied the academic requirements (passed) and earned the credits allotted to each subject/ course if the student secures not less than 50% of the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- Three Unit Tests each of 50 Marks.
- Two assignments each of 20 Marks or one Skill Development Activity of 40 marks to attain the COs and POs.

The sum of three tests, two assignments/skill Development Activities, will be scaled down to 50 marks. CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

- 11. The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.
- **12.** The question paper will have ten full questions carrying equal marks.
- **13.** Each full question is for 20 marks. There will be two full questions (with a maximum of four subquestions) from each module.
- 14. Each full question will have a sub-question covering all the topics under a module.

Sl.	Description	Blooms
No.		Level
CO1	Comprehend the need for micro machining and MEMS based systems for RF and microwave applications	Understand
CO2	Describe the micro machining techniques and their use in the fabrication of micro switches, capacitors and inductors.	Apply
CO3	Design MEMS based microwave components aimed at reducing insertion loss and increasing bandwidth.	Analyze
CO4	Realize high Q micro mechanical filters for frequencies upto and beyond 10MHz, and micro machined surface acoustic wave (SAW) filters filling the gap up to 2GHz	Apply
CO5	Describe the packaging approaches used for these RF MEMS devices.	Analyze

Course Learning Outcomes: After the completion of the course, students will be able to:

Program Outcomes for this Course:

Sl.	Description	POs
No.		
1	An ability to independently carry out research/investigation and development work to solve practical problems.	PO1
2	An ability to write and present a substantial technical report/document.	PO2
3	Students should be able to demonstrate a degree of mastery over the area as per the specialization of the program. The mastery should beat a level higher than the requirements in the appropriate bachelor program.	
4	An ability to create, select, apply appropriate techniques, resources and modern tools to solve complex engineering activities with an understanding of their limitations.	PO4
5	An ability to apply Professional ethics, responsibilities and norms of the engineering.	PO5
6	An ability to recognize the need to engage in independent and life-long learning in various Communication domain.	PO6

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	1	2	2	2	-	2
CO2	1	2	2	2	-	2
CO3	1	2	2	2	-	2
CO4	1	2	2	2	-	2
CO5	1	2	2	2	-	3

5	G-Radio Access Techno	logies	
Course Code	MVJ22LAC323	CIE Marks	50
Teaching Hours/Week (L:P:T:S)	3:0:0	SEE Marks	50
Total Hours of Pedagogy	40 L	Total Marks	100
Credits	03	Exam Hours	03
Course Learning objectives: This	course will enable students:		
• 5G channel modelling and use	cases		
• Get Idea on Multiple-input mul	tiple-output (MIMO) systems	8	
• To know about 5G architecture	and Importance of 5G Techn	ology	
• To understand Device-to-de vic	ce (D2D) communication and	standardization	
• Analyze the 5G radio-access te	chnologies		
	MODULE-1		
5G Channel Modelling and Use C	Cases Modeling requirements	and scenarios, Chan	nel model
requirements, Propagation scenario	os, Relaying multi-hop and	cooperative commu	inications: 8hrs
Principles of relaying, fundamentals	of relaying, Cognitive radio:	Architecture, spectrur	n sensing,
Software Defined Radio(SDR).			
	MODULE-2		
Multiple-input multiple-output (MI	MO) systems: Introduction	to Multi-antenna	Systems, 8hrs
Motivation, Types of multi-antenn	•	-	-
exploiting multipath diversity, tran	smit diversity, Space-time of	codes, The Alamouti	scheme,
Delay diversity, Cyclic delay dive		s, Receive diversity,	Therake
receiver, Combining techniques, Spa			
	MODULE-3		
The 5G architecture Introduction,			C
requirements for the 5G architectu		•	
split criteria, Functional split alter	· · · · ·	1 17	
Integration of LTE and new air in		rements, Enhanced N	Iulti-RAT
coordinate features, Physical archite			
	MODULE-4		
Device-to-device(D2D) communica			
D2D, D2D in5G: research challer	-	-	
D2D, RRM techniques for mobile		•	
D2D RRM concept: an example	-	-	-
emergency, services, National secu	my and public safety requi	rements in 5 GPP an	u WELIS,

Device discovery without and with network assistance.

MODULE-5

Access design principles for multi-user communications, Orthogonal multiple-access **8hrs** systems, Spread spectrum multiple-access systems, Capacity limits of multiple-access methods, Sparse code multiple access (SCMA), Interleave division multiple access(IDMA), Radio access for dense deployments, OFDM numerology for small-cell deployments, Small-cell sub-frame structure, Radio access for V2X communication, Medium access control for nodes on the move, Radio access for massive machine-type communication.

Text	t Books:
1	Afif Osseiran, Jose F. Monserrat, Patrick Marsch, 5G Mobile and Wireless Communications
	Technology, Cambridge University Press, Second Edition, 2011
2	Erik Dahlman, Stefan Parkvall, Johan Sköld ,5G NR: The Next Generation Wireless Access
	Technology, Elsevier, First Edition, 2016

Reference Books:		
	1	Jonathan Rodriguez Fundamentals of 5G Mobile Networks, Wiley, First Edition, 2010.

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE.

A student shall be deemed to have satisfied the academic requirements (passed) and earned the credits allotted to each subject/ course if the student secures not less than 50% of the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- Three Unit Tests each of 50 Marks.
- Two assignments each of 20 Marks or one Skill Development Activity of 40 marks to attain the COs and POs.

The sum of three tests, two assignments/skill Development Activities, will be scaled down to 50 marks. CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

- The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.
- The question paper will have ten full questions carrying equal marks.

- Each full question is for 20 marks. There will be two full questions (with a maximum of four sub-questions) from each module.
- Each full question will have a sub-question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Course Learning Outcomes: After the completion of the course, students will be able to:

Sl. No.	Description	Blooms Level
CO1	Understand and explain the channel models of 5G and the use cases for 5G.	Understand
CO2	Analyze use of MIMO in 5G and its techniques.	Understand
CO3	Draw and explain 5G architecture, its components and functional criteria.	Understand
CO4	Understand device to device (D2D) communication and standardization.	Understand
CO5	Study the in-depth functioning of 5G radio access technologies.	Apply

Program Outcomes for this Course:

Sl.	Description	POs
No.		
1	An ability to independently carry out research/investigation and development work to solve practical problems.	PO1
2	An ability to write and present a substantial technical report/document.	PO2
3	Students should be able to demonstrate a degree of mastery over the area as per the specialization of the program. The mastery should beat a level higher than the requirements in the appropriate bachelor program.	
4	An ability to create, select, apply appropriate techniques, resources and modern tools to solve complex engineering activities with an understanding of their limitations.	PO4
5	An ability to apply Professional ethics, responsibilities and norms of the engineering.	PO5
5	An ability to recognize the need to engage in independent and life-long learning in various Communication domain.	PO6

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	1	1	1	1	2	1
CO2	1	1	1	2	1	1
CO3	2	1	2	1	1	1
CO4	1	1	1	2	1	1
CO5	1	1	2	1	1	1

Course Code	MATTON & COOL		50			
	MVJ22LAC331	CIE Marks				
Teaching Hours/Week (L:P:T:S)	3:0:0	SEE Marks	50			
Total Hours of Pedagogy	40 L	Total Marks	40 L Total Marks		100	
Credits	03	Exam Hours	03			
Course Learning objectives: This	course will enable students:					
• Understand the representation	n of the digital image and its	properties.				
• Apply pre-processing techniq	ues required to enhance the in	mage for its further	analysis.			
• Use segmentation techniques	to select Interest in the image	e for analysis.				
• Represent the image based on	its shape and edge information	on and also describe	the objects pi	resent i		
the image based on its proper	ties and structure.					
• Use morphological operatio characteristics of the objects.		quantify and pres	erve the ma	uin sha		
	MODULE-1					
The image, its representations and		ntations a few conc				
digitization, Digital image properties	s, Color images.			8hrs		
	MODULE-2					
Image Pre-processing: Pixel bright	ness transformations, geome	etric transformations	s, local pre-	8hrs		
processing.						
processing.	MODULE-3					
	MODULE-3	lge image threshol	ding, Edge	8hrs		
Segmentation: Thresholding, Edg	MODULE-3 re-based segmentation – Ec	0 0		8hrs		
processing. Segmentation: Thresholding, Edg relaxation, Border tracing, Hough tr Region splitting, Splitting and me	MODULE-3 ge-based segmentation – Ec ansforms; Region – based se	egmentation – Regio	on merging,	8hrs		
Segmentation: Thresholding, Edg relaxation, Border tracing, Hough tr Region splitting, Splitting and me	MODULE-3 ge-based segmentation – Ec ansforms; Region – based se	egmentation – Regio	on merging,	8hrs		
Segmentation: Thresholding, Edg relaxation, Border tracing, Hough tr Region splitting, Splitting and me	MODULE-3 ge-based segmentation – Ec ansforms; Region – based se	egmentation – Regio	on merging,	8hrs		
Segmentation: Thresholding, Edg relaxation, Border tracing, Hough tr Region splitting, Splitting and mo processing.	MODULE-3 ge-based segmentation – Ec ansforms; Region – based se erging, Water shed segmen MODULE-4	egmentation – Regionatation, Regionaro	on merging, wing post-			
Segmentation: Thresholding, Edg relaxation, Border tracing, Hough tr Region splitting, Splitting and mo processing. Shape representation and dese	MODULE-3 ge-based segmentation – Ec ansforms; Region – based se erging, Water shed segmen MODULE-4 cription: Region identifie	egmentation – Regionatation, Regionaro	on merging, wing post-			
Segmentation: Thresholding, Edg relaxation, Border tracing, Hough tr Region splitting, Splitting and mo processing. Shape representation and desc representation and description–Cha	MODULE-3 ge-based segmentation – Ec ansforms; Region – based se erging, Water shed segmen MODULE-4 cription: Region identifie	egmentation – Region ntation, Region gro	on merging, wing post-			
Segmentation: Thresholding, Edg relaxation, Border tracing, Hough tr Region splitting, Splitting and me processing. Shape representation and description–Cha representation and description–Cha transforms of boundaries,	MODULE-3 ge-based segmentation – Ec ansforms; Region – based se erging, Water shed segmen MODULE-4 cription: Region identifie in codes, Simple geometric	egmentation – Regionatation, Region gro ntation, Region gro cation; Contour-ba border representati	on merging, wing post- used shape on, Fourier			
Segmentation: Thresholding, Edg relaxation, Border tracing, Hough tr Region splitting, Splitting and mo processing. Shape representation and desc representation and description–Cha transforms of boundaries, Boundary description using segmen	MODULE-3 ge-based segmentation – Ec ansforms; Region – based se erging, Water shed segmen MODULE-4 cription: Region identific in codes, Simple geometric t sequences, B-spline repres	egmentation – Regionatation, Region gro nation, Region gro cation; Contour-ba border representati	on merging, wing post- used shape on, Fourier			
Segmentation: Thresholding, Edg relaxation, Border tracing, Hough tr Region splitting, Splitting and mo processing.	MODULE-3 ge-based segmentation – Ec ansforms; Region – based se erging, Water shed segmen MODULE-4 cription: Region identific in codes, Simple geometric t sequences, B-spline repress ple scalar region descriptors,	egmentation – Regionatation, Region gro nation, Region gro cation; Contour-ba border representati	on merging, wing post- used shape on, Fourier			
Segmentation: Thresholding, Edg relaxation, Border tracing, Hough tr Region splitting, Splitting and mo processing. Shape representation and desc representation and description–Cha transforms of boundaries, Boundary description using segmen	MODULE-3 ge-based segmentation – Ec ansforms; Region – based se erging, Water shed segmen MODULE-4 cription: Region identified in codes, Simple geometric t sequences, B-spline repress ple scalar region descriptors, MODULE-5	egmentation – Regionatation, Region gro nation, Region gro cation; Contour-ba border representati sentation; Region-ba Moments, Convex h	on merging, wing post- used shape on, Fourier used shape null.			

Text Books:

1'Image Processing, Analysis, and Machine Vision', Milan Sonka, Vaclav H lavac, Roger
Boyle, Cengage Learning, ISBN:978-81-315-1883-0, 2013

Reference Books:

1	'Digital Image Processing for Medical Applications', Geoff Doughertry, Cambridge University
	Press,2010.
2	'Digital Image Processing', S Jayaraman, S Esakkirajan, T Veerakumar, Tata Mc Graw
	Hill, 2011.

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE.

A student shall be deemed to have satisfied the academic requirements (passed) and earned the credits allotted to each subject/ course if the student secures not less than 50% of the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- Three Unit Tests each of 50 Marks.
- Two assignments each of 20 Marks or one Skill Development Activity of 40 marks to attain the COs and POs.

The sum of three tests, two assignments/skill Development Activities, will be scaled down to 50 marks. CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

- 6. The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.
- 7. The question paper will have ten full questions carrying equal marks.
- **8.**Each full question is for 20 marks. There will be two full questions (with a maximum of four subquestions) from each module.
- 9. Each full question will have a sub-question covering all the topics under a module.
- **10.** The students will have to answer five full questions, selecting one full question from each module.

Course Learning Outcomes: After the completion of the course, students will be able to:

SI.	Description	Blooms
No.		Level

CO1	Understand the representation of the digital image and its properties.	Understand
CO2	Apply pre-processing techniques required to enhance the image for its further analysis.	Understand
CO3	Use segmentation techniques to select the region of interest in the image for analysis.	Understand
CO4	Represent the image based on its shape and edge information and also describe the objects present in the image based on its properties and structure.	Understand
CO5	Use morphological operations to simplify images, and quantify and preserve the main shape characteristics of the objects.	Apply

Program Outcomes for this Course:

Sl.	Description	POs
No.		
1	An ability to independently carry out research/investigation and development work to solve practical problems.	PO1
2	An ability to write and present a substantial technical report/document.	PO2
3	Students should be able to demonstrate a degree of mastery over the area as per the specialization of the program. The mastery should beat a level higher than the requirements in the appropriate bachelor program.	PO3
4	An ability to create, select, apply appropriate techniques, resources and modern tools to solve complex engineering activities with an understanding of their limitations.	PO4
5	An ability to apply Professional ethics, responsibilities and norms of the engineering.	PO5
6	An ability to recognize the need to engage in independent and life-long learning in various Communication domain.	PO6

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	1	1	1	1	2	1
CO2	1	1	1	2	1	1
CO3	2	1	2	1	1	1
CO4	1	1	1	2	1	1
CO5	1	1	2	1	1	1

Course Code	MVJ22LAC332	CIE Marks	50	
Teaching Hours/Week (L:P:T:S)	3:0:0	SEE Marks	50	
Total Hours of Pedagogy	40 L Total Mark		100	
Credits	03	Exam Hours	03	
Course Learning objectives: This	course will enable students:			
• Classify various wavelet transfe	orm and explain importance of	of it.		
• Describe Continuous Wavelet 7	Fransform (CWT) and Discre	te Wavelet Transform	(DWT).	
• Explain the properties and appl	cation of wavelet transform.			
• Develop and realize computation	nally efficient wavelet-based	l algorithms for signal	and image	e
processing.				
• Explain brief features and stren	gth of transform beyond wav	elet.		
	MODULE-1			
Continuous Wavelet Transform:	Continuous time frequency	representation of sign	nals, The	
Windowed Fourier Transform, Un	certainty Principle and tim	e frequency tiling, W	Vavelets,	8hrs
specifications, admissibility condit	ions, Continuous wavelet tra	nsform, CWT as a cor	rrelation,	
CWT as an operator, Inverse CWT.				
	MODULE-2			
Discrete wavelet Transform: Ap	proximations of vectors in	nested linear vector	spaces,	8hrs
Example of an MRA, Formal definit	tion of MRA, Construction	of genera orthonormal	MRA, a	
Wavelet basis for MRA, Digital fi	ltering interpretations- Deco	mposition and Recon	struction	
filters, examples of orthogonal bas	is generating wavelets, inter	preting orthonormal N	MRA for	
Discrete time signals, Mallat algorit	hm Filter bank implementati	on of DWT.		
	MODULE-3			
Alternative wavelet representation	s- Biorthogonal Wavelets: b	iorthogonality in vecto	or space,	8hrs
piorthogonalwavelet bases, signal rep	presentation using biorthogor	nal wavelet system, ad	vantages	
of biorthogonal wavelets, biorthogor	al analysis and synthesis, Fil	lter bank implementati	ion, Two	
dimensional Wavelets, filter bank im	plementation of two-dimens	ional wavelet transform	m.	
	MODULE-4			
Lifting scheme: Wavelet Transfo	orm using polyphase matri	ix factorization, Geo	ometrical	8hrs
foundations of the lifting scheme, lift	ing scheme in the z-domain, i	mathematical prelimin	naries for	
polyphase factorization, Dealing with	n Signal Boundary.			
	MODULE-5			

Applications: Image Compression: EZW Coding, SPIHT, Wavelet Difference Reduction8hrsCompression Algorithm, Denoising, speckle removal, edge detection and object isolation, audiocompression, communication applications – scaling functions as signaling pulses, DiscreteWavelet Multitone Modulation.Variation

Beyond Wavelet: Ridge lets and curve lets: Ridge let transform and Digital Curve let transform, Curve let construction, Properties and applications.

	Text Books:		
$\label{eq:constraint} 1 \qquad Wavelet Transforms-Introduction and applications-Raguveer M. Rao and Ajit S. Bopardikar$			
PearsonEducation, 2008		PearsonEducation, 2008	

Refe	Reference Books:					
1	Insight into Wavelets from Theory to practice - K. P Soman, K. I. Ramachandran, PHI, 2006					
2 Fundamentals of Wavelets: Theory, Algorithms and Applications- J C Goswamy and						
	Chan, Wiley Inder science Publications, John Wiley and Sons, 1999.					

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE.

A student shall be deemed to have satisfied the academic requirements (passed) and earned the credits allotted to each subject/ course if the student secures not less than 50% of the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- Three Unit Tests each of 50 Marks.
- Two assignments each of 20 Marks or one Skill Development Activity of 40 marks to attain the COs and POs.

The sum of three tests, two assignments/skill Development Activities, will be scaled down to 50 marks. CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

- The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.
- The question paper will have ten full questions carrying equal marks.
- Each full question is for 20 marks. There will be two full questions (with a maximum of four subquestions) from each module.

- Each full question will have a sub-question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI.	Description	Blooms	
No.		Level	
CO1	Classify various wavelet transform and explain importance of it.	Understand	
CO2	Describe Continuous Wavelet Transform (CWT) and Discrete Wavelet Transform (DWT).	Understand	
CO3	Explain the properties and application of wavelet transform.	Analyze	
CO4	Develop and realize computationally efficient wavelet-based algorithms for signal and image processing.	Apply	
CO5	Explain brief features and strength of transform beyond wavelet.	Analyze	

Course Learning Outcomes: After the completion of the course, students will be able to:

Program Outcomes for this Course:

SI.	Description			
No.				
1	An ability to independently carry out research/investigation and development work to solve practical problems.	PO1		
2	An ability to write and present a substantial technical report/document.	PO2		
3	Students should be able to demonstrate a degree of mastery over the area as per the specialization of the program. The mastery should beat a level higher than the requirements in the appropriate bachelor program.	PO3		
4	An ability to create, select, apply appropriate techniques, resources and modern tools to solve complex engineering activities with an understanding of their limitations.	PO4		
5	An ability to apply Professional ethics, responsibilities and norms of the engineering.	PO5		
6	An ability to recognize the need to engage in independent and life-long learning in various Communication domain.	PO6		

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	1	1	1	2	1
CO2	1	1	1	2	1	1
CO3	2	1	2	1	1	1
CO4	1	1	1	2	1	1
CO5	1	1	2	1	1	1

VLSI DESIGN FOR SIGNAL PROCESSING					
Course CodeMVJ22LAC333CIE Marks50					
Teaching Hours/Week (L:P:T:S)	3:0:0	SEE Marks	50		
Total Hours of Pedagogy	40 L	Total Marks	100		
Credits	03	Exam Hours	03		

Course Learning objectives: This course will enable students:

- Familiarize with essential DSP algorithms such as filtering (FIR and IIR)
- Gain proficiency in algorithmic strength reduction techniques for digital filters and transforms, aiming to optimize computational efficiency and resource utilization in signal processing applications
- Develop expertise in pipelining and parallel processing techniques specifically tailored for Infinite Impulse Response (IIR) filters
- Master the design and implementation of bit-level arithmetic architectures, including adders, multipliers, and shifters, with a focus on optimizing performance, area efficiency, and power consumption in digital circuits
- Explore and understand the principles and implementation methodologies of synchronous wave and asynchronous pipelining techniques in digital circuit design, emphasizing their impact on performance, timing, and design complexity

MODULE-1

Introduction to DSP systems: Typical DSP algorithms, Data flow and Dependence graphs -
critical path, Loop bound, iteration bound, Longest path matrix algorithm8hrsPipelining and Parallel processing of FIR filters: Pipelining and Parallel processing for low8

power.

MODULE-2

Retiming – Definitions and properties, Unfolding – an algorithm for unfolding, properties of **8hrs** unfolding, sample period reduction and parallel processing application

Algorithmic strength reduction in filters and transforms: 2-parallel FIR filter, 2- parallel fast FIR filter, DCT architecture, rank-order filters, Odd-Even merge-sort architecture, parallel rankorder filters.

MODULE-3

Pipelining and parallel processing of IIR filters: Fast convolution – Cook-Toom algorithm, **8hrs** modified Cook-Toom algorithm, Pipelined and parallel recursive filters – Look-Ahead pipelining in first-order IIR filters, Look-Ahead pipelining with power- of-2 decomposition, Clustered look-ahead pipelining, Parallel processing of IIR filters, combined pipelining and parallel processing of IIR filters.

MODULE-4

Bit-level arithmetic architectures – parallel multipliers with sign extension, parallel carry-ripple8hrsand carry-save multipliers, Design of Lyon's bit-serial multipliers using Horner's rule, bit-serialFIR filter, CSD representation, CSD multiplication using Horner's rule for precision improvement,Distributed Arithmetic fundamentals and FIR filters.

MODULE-5

Synchronous Wave and Asynchronous Pipelining: Numerical strength reduction – sub **8hrs** expression elimination, multiple constant multiplication, iterative matching, synchronous pipelining and clocking styles, clock skew in edge-triggered single-phase clocking, two-phase clocking, wave pipelining. Asynchronous pipelining bundled data versus dual rail protocol.

Text Books: 1 "VLSI Digital Signal Processing Systems", Keshab K. Parhi, Wiley Eastern.

Refe	Reference Books:				
1	Digital Signal Processing for Multimedia Systems", Keshab K. Parhi and Takao Nishitani,				
	Marcel Dekker.				
2	"Pipelined Lattice and Wave Digital Recursive Filters", J. G. Chung and Keshab K. Parhi,				
	Kluwer.				

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE.

A student shall be deemed to have satisfied the academic requirements (passed) and earned the credits allotted to each subject/ course if the student secures not less than 50% of the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- Three Unit Tests each of 50 Marks.
- Two assignments each of 20 Marks or one Skill Development Activity of 40 marks to attain the COs and POs.

The sum of three tests, two assignments/skill Development Activities, will be scaled down to 50 marks. CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

• The SEE question paper will be set for 100 marks and the marks scored will be proportionately

reduced to 50.

- The question paper will have ten full questions carrying equal marks.
- Each full question is for 20 marks. There will be two full questions (with a maximum of four subquestions) from each module.
- Each full question will have a sub-question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Course Learning Outcomes: After the completion of the course, students will be able to:

Sl.	Description	Blooms
No.		Level
CO1	Illustrate the use of various DSP algorithms and addresses their representation using block diagrams, signal flow graphs and data-flow graphs	Explain
CO2	Use pipelining and parallel processing in design of high-speed /low-power applications	Understand
CO3	Apply unfolding in the design of parallel architecture	Analyze
CO4	Evaluate the use of look-ahead techniques in parallel and pipelined IIR Digital filters.	Analyze
CO5	Develop an algorithm or architecture or circuit design for DSP applications	Design and analyze

Program Outcomes for this Course:

Sl.	Description		
No.			
1	An ability to independently carry out research/investigation and development	PO1	
	work to solve practical problems.		
2	An ability to write and present a substantial technical report/document.	PO2	
3	Students should be able to demonstrate a degree of mastery over the area as per	PO3	
	the specialization of the program. The mastery should beat a level higher than the		
	requirements in the appropriate bachelor program.		
4	An ability to create, select, apply appropriate techniques, resources and modern	PO4	
	tools to solve complex engineering activities with an understanding of their		
	limitations.		
5	An ability to apply Professional ethics, responsibilities and norms of the	PO5	
	engineering.		
6	An ability to recognize the need to engage in independent and life-long learning	PO6	
	in various Communication domain.		

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	2	2	1	1
CO2	3	3	2	2	1	1
CO3	3	3	2	2	1	1
CO4	3	3	2	2	1	1
CO5	3	3	2	2	1	1