

MVJCE CURRICULUM for

Department of Information Science and Engineering

(2022 Scheme) 3rd semester to 7th semester syllabus

III Semester

Mathematics for Computer Science Semester								
Course Code	MVJ22CS31/AI31/CG31/IS31/DS31	CIE Marks	50					
Teaching Hours/Week (L: T:P: S)	2:2:0:0	SEE Marks	50					
Total Hours of Pedagogy	30 hours Theory + 10 Hours Tutorial	Total Marks	100					
Credits	03	Exam Hours	3					
Examination type (SEE)	Theory							

Course objectives: This course will enable the students to:

- 1. To introduce the concept of random variables, probability distributions, specific discrete and continuous distributions with practical application in Computer Science Engineering and social life situations.
- 2. To Provide the principles of statistical inferences and the basics of hypothesis testing with emphasis on some commonly encountered hypotheses.
- 3. To Determine whether an input has a statistically significant effect on the system's response through ANOVA testing.

Teaching-Learning Process

Pedagogy (General Instructions):

Teachers can use the following strategies to accelerate the attainment of the various course outcomes.

- 1. In addition to the traditional lecture method, different types of innovative teaching methods may be adopted so that the delivered lessons shall develop students' theoretical and applied Mathematical skills.
- 2. State the need for Mathematics with Engineering Studies and Provide real-life examples.
- 3. Support and guide the students for self-study.
- 4. You will assign homework, grading assignments and quizzes, and documenting students' progress.
- 5. Encourage the students to group learning to improve their creative and analytical skills.
- 6. Show short, related video lectures in the following ways:
 - As an introduction to new topics (pre-lecture activity).
 - As a revision of topics (post-lecture activity).
 - As additional examples (post-lecture activity).
 - As an additional material of challenging topics (pre-and post-lecture activity).
 - As a model solution of some exercises (post-lecture activity).

Module-1: Probability Distributions

Probability Distributions: Review of basic probability theory. Random variables (discrete and continuous), probability mass and density functions. Mathematical expectation, mean and variance. Binomial, Poisson and normal distributions- problems (derivations for mean and standard deviation for Binomial and Poisson distributions only)-Illustrative examples. Exponential distribution. (12

Hours)

(RBT Levels: L1, L2 and L3)

Pedagogy	Chalk and Board, Problem-based learning
Modu	Ile-2: Joint probability distribution & Markov Chain

Joint probability distribution: Joint Probability distribution for two discrete random variables, expectation, covariance and correlation.

Markov Chain: Introduction to Stochastic Process, Probability Vectors, Stochastic matrices, Regular stochastic matrices, Markov chains, Higher transition probabilities, Stationary distribution of Regular Markov chains and absorbing states. (12

Hours)

(RBT Levels: L1, L2 and L3)								
Pedagogy	Chalk and Board, Problem-based learning							
Module-3: Statistical Inference 1								
Introduction, sampling distribution, standard error, testing of hypothesis, levels of significance,								
test of significance, co	onfidence limits, simple sampling of attributes, test of significance for large							
samples, comparison	of large samples. (12							
Hours)								
(RBT Levels: L1, L2	2 and L3)							
Pedagogy	Chalk and Board, Problem-based learning							
Module-4: Statistical Inference 2								
Sampling variables,	Sampling variables, central limit theorem and confidences limit for unknown mean. Test of							
Significance for mea	ns of two small samples, students 't' distribution, Chi-square distribution							
as a test of goodness	of fit. F-Distribution. (12							
Hours)								
(RBT Levels: L1, L2	and L3)							
Pedagogy	Chalk and Board, Problem-based learning							
	Module-5: Design of Experiments & ANOVA							
Principles of experim	entation in design, Analysis of completely randomized design, randomized							
block design. The AN	NOVA Technique, Basic Principle of ANOVA, One-way ANOVA, Two-							
way ANOVA, La	tin-square Design, and Analysis of Co-Variance. (12 Hours)							
(RBT Levels: L1, L2	(RBT Levels: L1, L2 and L3)							
Pedagogy Chalk and Board, Problem-based learning								

Test component, there are 25 marks.

- The first test will be administered after 40-50% of the syllabus has been covered, and thesecond test will be administered after 85-90% of the syllabus has been covered
- Any two assignment methods mentioned in the 22OB2.4, if an assignment is project-based then only one assignment for the course shall be planned. The teacher should not conduct two assignments at the end of the semester if two assignments are planned.
- For the course, CIE marks will be based on a scaled-down sum of two tests and other methods of assessment.

Internal Assessment Test question paper is designed to attain the different levels of Bloom'staxonomy as per the outcome defined for the course. Semester-End Examination:

Theory SEE will be conducted by the University as per the scheduled timetable, with commonquestion papers for the course (**duration 03 hours**).

- 1. The question paper will have ten questions. Each question is set for 20 marks.
- 2. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), **should have a mix of topics** under that module.

3. The students must answer 5 full questions, selecting one full question from each module.Marks scored shall be proportionally reduced to 50 marks

Suggested Learning Resources:

Textbooks:

- **1. Ronald E. Walpole, Raymond H Myers, Sharon L Myers & Keying Ye** "Probability &Statistics for Engineers & Scientists", Pearson Education, 9th edition, 2017.
- 2. Peter Bruce, Andrew Bruce & Peter Gedeck "Practical Statistics for DataScientists" O'Reilly Media, Inc., 2nd edition 2020.

Reference Books: (Name of the author/Title of the Book/ Name of the publisher/Edition and Year)

- Erwin Kreyszig, "Advanced Engineering Mathematics", John Wiley & Sons,9th Edition, 2006.
- 2. **B. S. Grewal** "Higher Engineering Mathematics", Khanna publishers, 44th Ed., 2021.
- 3. **G Haribaskaran** "Probability, Queuing Theory & Reliability Engineering", LaxmiPublication, Latest Edition, 2006
- 4. **Irwin Miller & Marylees Miller,** John E. Freund's "Mathematical Statistics withApplications" Pearson. Dorling Kindersley Pvt. Ltd. India, 8th edition, 2014.
- 5. **S C Gupta and V K Kapoor**, "Fundamentals of Mathematical Statistics", S Chand andCompany, Latest edition.
- Robert V. Hogg, Joseph W. McKean & Allen T. Craig. "Introduction to Mathematical Statistics", Pearson Education 7th edition, 2013.
- 7. Jim Pitman. Probability, Springer-Verlag, 1993.
- 8. Sheldon M. Ross, "Introduction to Probability Models" 11th edition. Elsevier, 2014.
- 9. A. M. Yaglom and I. M. Yaglom, "Probability and Information". D.
- 10. Reidel PublishingCompany. Distributed by Hindustan Publishing

Corporation (India) Delhi, 1983.

- 11. P. G. Hoel, S. C. Port and C. J. Stone, "Introduction to Probability Theory", Universal Book Stall, (Reprint), 2003.
- 12. S. Ross, "A First Course in Probability", Pearson Education India, 6th Ed., 2002.
- 13. W. Feller, "An Introduction to Probability Theory and its Applications", Vol. 1, Wiley, 3rd Ed.,
- 14. N.P. Bali and Manish Goyal, A Textbook of Engineering Mathematics, Laxmi Publications, Reprint, 2010.
- 15. Veerarajan T, Engineering Mathematics (for semester III), Tata McGraw-Hill, New Delhi, 2010

Web links and Video Lectures (e-Resources):

http://nptel.ac.in/courses.php?disciplineID=111 http://www.class-central.com/subject/math(MOOCs) http://academicearth.org/ http://www.bookstreet.in. VTU EDUSAT PROGRAMME – 20 WTU a Shikshara Programm

VTU e-Shikshana Program

Activity-Based Learning (Suggested Activities in Class)/Practical-Based Learning

- Programming Assignment
- Seminars

	CO-PO/PSO Mapping															
CO/ PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

OPERATINGSYSTEMS Semester							
Course Code	MVJ22CS32/AI32/CG32/IS32/DS32	CIE Marks	50				
Teaching Hours/Week (L:T:P: S)	3:0:2:0	SEE Marks	50				
Total Hours of Pedagogy	40 hours Theory + 20 hours practical	Total Marks	100				
Credits	04	Exam Hours	3				
Examination nature (SEE)	Theory						

Course objectives:

- To Demonstrate the need for OS and different types of OS
- To discuss suitable techniques for management of different resources
- To demonstrate different APIs/Commands related to processor, memory, storage and file system management.

Teaching-Learning Process (General Instructions)

Teachers can use the following strategies to accelerate the attainment of the various course outcomes.

- 1. Lecturer methods (L) need not to be only traditional lecture method, but alternative effective teaching methods could be adopted to attain the outcomes.
- 2. Use of Video/Animation to explain functioning of various concepts.
- 3. Encourage collaborative (Group Learning) Learning in the class.
- 4. Adopt Problem Based Learning (PBL), which fosters students' Analytical skills, develop design thinking skills such as the ability to design, evaluate, generalize, and analyze information rather than simply recall it.
- 5. Role play for process scheduling.
- 6. Demonstrate the installation of any one Linux OS on VMware/Virtual Box

MODULE-1

8 Hours

Introduction to operating systems, System structures: What operating systems do; Computer System organization; Computer System architecture; Operating System structure; Operating System operations; Process management; Memory management; Storage management; Protection and Security; Distributed system; Special-purpose systems; Computing environments.

Operating System Services: User - Operating System interface; System calls; Types of system calls; System programs; Operating system design and implementation; Operating System structure; Virtual machines; Operating System debugging, Operating System generation; System boot.

Textbook 1: Chapter – 1 (1.1-1.12), 2 (2.2-2.11)

MODULE-2

8 Hours

Process Management: Process concept; Process scheduling; Operations on processes; Inter process communication

Multi-threaded Programming: Overview; Multithreading models; Thread Libraries; Threading issues.

Process Scheduling: Basic concepts; Scheduling Criteria; Scheduling Algorithms; Thread scheduling; Multiple-processor scheduling,

Textbook 1: Chapter – 3 (3.1-3.4), 4 (4.1-4.4), 5 (5.1 -5.5)

MODULE-3

Process Synchronization: Synchronization: The critical section problem; Peterson's solution; Synchronization hardware; Semaphores; Classical problems of synchronization;

Deadlocks: System model; Deadlock characterization; Methods for handling deadlocks; Deadlock prevention; Deadlock avoidance; Deadlock detection and recovery from deadlock.

Textbook 1: Chapter – 6 (6.1-6.6), 7 (7.1 -7.7)

MODULE-4

8 Hours

8 Hours

Memory Management: Memory management strategies: Background; Swapping; Contiguous memory allocation; Paging; Structure of page table; Segmentation.

Virtual Memory Management: Background; Demand paging; Copy-on-write; Page replacement; Allocation of frames; Thrashing.

MODULE-5

Textbook 1: Chapter -8 (8.1-8.6), 9 (9.1-9.6)

File System, Implementation of File System: File system: File concept; Access methods; Directory and Disk structure; File system mounting; File sharing; **Implementing File system:** File system structure; File system implementation; Directory implementation; Allocation methods; Free space management.

Secondary Storage Structure, Protection: Mass storage structures; Disk structure; Disk attachment; Disk scheduling; Disk management; Protection: Goals of protection, Principles of protection, Domain of protection, Access matrix.

Textbook 1: Chapter – 10 (10.1-10.5) ,11 (11.1-11.5),12 (12.1-12.5), 14 (14.1-14.4)

PRACTICAL COMPONENT OF IPCC(*May cover all / major modules*)

SI.N	Experiments
1	Develop a c program to implement the Process system calls (fork (), exec(), wait(), create process, terminate process)
2	Simulate the following CPU scheduling algorithms to find turnaround time and waiting time a) FCFS b) SJF c) Round Robin d) Priority.
3	Develop a C program to simulate producer-consumer problem using semaphores.
4	Develop a C program which demonstrates interprocess communication between a reader process and a writer process. Use mkfifo, open, read, write and close APIs in your program.
5	Develop a C program to simulate Bankers Algorithm for DeadLock Avoidance.
6	Develop a C program to simulate the following contiguous memory allocation Techniques: a) Worst fit b) Best fit c) First fit.
7	Develop a C program to simulate page replacement algorithms:
8	Simulate following File Organization Techniques
	a) Single level directory b) Two level directory

9	Develop a C program to simulate the Linked file allocation strategies.
10	Develop a C program to simulate SCAN disk scheduling algorithm.
11	Debug a given C program //Moving Disk head to the inner most requested cylinder because this is Circular LOOK. queue[i]=queue2[0];
	<pre>//Copying second array queue2[] after that first one is copied, into queue [] for(i=temp1+1,j=0;j<temp2;i++,j++) pre="" {<=""></temp2;i++,j++)></pre>
	<pre>queue[i]=queue2[j]; }</pre>
	//At this point, we have the queue[] with the requests in the
	//correct order of execution as per C-LOOK algorithm.
	queue[0]=headposition;
	// Calculating SEEK TIME. seek is initially set to 0 in the declaration part.
	for(j=0; j <n; (ie.="" 0th="" from="" headposition.="" index="" j++)="" loop="" of="" queue)="" starts="" td="" {<=""></n;>
	<pre>// Finding the difference between next position and current position. difference = absoluteValue(queue[j+1]-queue[j]);</pre>
	<pre>// Adding difference to the current seek time value seek = seek + difference;</pre>
	<pre>// Displaying a message to show the movement of disk head printf("Disk head moves from position %d to %d with Seek %d \n", queue[j], queue[j+1], difference); }</pre>
Cours	e outcomes (Course Skill Set):
At the	end of the course, the student will be able to:
$\begin{bmatrix} CO 1. \\ CO 2 \end{bmatrix}$	Explain the structure and functionality of operating system
$\begin{bmatrix} CO 2 \\ CO 3 \end{bmatrix}$	Apply appropriate CPU scheduling algorithms for the given problem.
CO 3.	Apply the various techniques for memory management
CO 5.	Explain file and secondary storage management strategies.
CO 6.	Describe the need for information protection mechanisms

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). A student shall be deemed tohave satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

CIE for the theory component of the IPCC (maximum marks 50)

- IPCC means practical portion integrated with the theory of the course.
- CIE marks for the theory component are **25 marks** and that for the practical component is **25 marks**.
- 25 marks for the theory component are split into **15 marks** for two Internal Assessment Tests (Two Tests, each of 15 Marks with 01-hour duration, are to be conducted) and **10 marks** for other assessment methods mentioned in 22OB4.2. The first test at the end of 40-50% coverage of the syllabus and the second test after covering 85-90% of the syllabus. Scaled-down marks of the sum of two tests and other assessment methods will be CIE marks for the theory component of IPCC (that is for **25 marks**).
- The student has to secure 40% of 25 marks to qualify in the CIE of the theory component of IPCC.

CIE for the practical component of the IPCC

- **15 marks** for the conduction of the experiment and preparation of laboratory record, and **10 marks** for the test to be conducted after the completion of all the laboratory sessions.
- On completion of every experiment/program in the laboratory, the students shall be evaluated including viva-voce and marks shall be awarded on the same day.
- The CIE marks awarded in the case of the Practical component shall be based on the continuous evaluation of the laboratory report. Each experiment report can be evaluated for 10 marks. Marks of all experiments' write-ups are added and scaled down to **15 marks**.
- The laboratory test (duration 02/03 hours) after completion of all the experiments shall be conducted for 50 marks and scaled down to 10 marks.
- Scaled-down marks of write-up evaluations and tests added will be CIE marks for the laboratory component of IPCC for **25 marks**.

• The student has to secure 40% of 25 marks to qualify in the CIE of the practical component of the IPCC. **SEE for IPCC**

Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the course (**duration 03 hours**)

- The question paper will have ten questions. Each question is set for 20 marks.
- There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), **should have a mix of topics** under that module.
- The students have to answer 5 full questions, selecting one full question from each module.
- Marks scoredby the student shall be proportionally scaled down to 50 Marks

The theory portion of the IPCC shall be for both CIE and SEE, whereas the practical portion will have a

• CIE component only. Questions mentioned in the SEE paper may include questions from the practical component.

Suggested Learning Resources:

Textbooks

1. Abraham Silberschatz, Peter Baer Galvin, Greg Gagne, Operating System Principles 8th edition, Wiley-India, 2015

Reference Books

1. Ann McHoes Ida M Fylnn, Understanding Operating System, Cengage Learning, 6th Edition

2. D.M Dhamdhere, Operating Systems: A Concept Based Approach 3rd Ed, McGraw-Hill, 2013.

3. P.C.P. Bhatt, An Introduction to Operating Systems: Concepts and Practice 4th Edition, PHI(EEE), 2014.

4. William Stallings Operating Systems: Internals and Design Principles, 6th Edition, Pearson.

Web links and Video Lectures (e-Resources):

- 1. https://youtu.be/mXw9ruZaxzQ
- 2. https://youtu.be/vBURTt97EkA
- https://www.youtube.com/watch?v=783KABtuE4&list=PLIemF3uozcAKTgsCIj82voMK3TMR0YE_
- https://www.youtube.com/watch?v=3 ITLMMeeXY&list=PL3pGy4HtqwD0n7bQfHjPnsWzke
 Rn6mkO

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

- Assessment Methods
 - Case Study on Unix Based Systems (10 Marks)

Lab Assessment (25 Marks)

	CO-PO/PSO Mapping															
CO/ PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

0 0	d Computer Organization	Semester	3						
Course Code	MVJ22CS33/AI33/CG33/IS33/DS33	CIE Marks	50						
Teaching Hours/Week (L:T:P: S)	3:0:0:0	SEE Marks	50						
Total Hours of Pedagogy	40 hours	Total Marks	100						
Credits	03	Exam Hours	3						
Examination nature (SEE)	Theory								
Course objectives: • To demonstrate the functionalities of binary logic system • To explain the working of combinational and sequential logic system • To realize the basic structure of computer system • To illustrate the working of I/O operations and processing unit Teaching-Learning Process (General Instructions) These are sample Strategies; that teachers can use to accelerate the attainment of the various course outcomes. 1. Chalk and Talk 2. Live Demo with experiments 3. Power point presentation									
	MODULE-1		8 Hr						
MAND and NOR Implementation, Other Hardware Description Language – Verilog Model of a simple circuit. Text book 1: 1.9, 2.4, 2.5, 2.8, 3.1, 3.2, 3.3, 3.5, 3.6, 3.9 MODULE-2 8 Hr Combinational Logic: Introduction, Combinational Circuits, Design Procedure, Binary Adder- Subtractor, Decoders, Encoders, Multiplexers. HDL Models of Combinational Circuits – Adder, Multiplexer, Encoder. Sequential Logic: Introduction, Sequential Circuits, Storage Elements: Latches, Flip-Flops.									
Combinational Logic: Introduction Decoders, Encoders, Multiplexers. Sequential Logic: Introduction, Se Text book 1: 4.1, 4.2, 4.4, 4.5, 4.9,	 on, Combinational Circuits, Design Procedu HDL Models of Combinational Circuits – equential Circuits, Storage Elements: Latches 4.10, 4.11, 4.12, 5.1, 5.2, 5.3, 5.4. 	re, Binary Adder- S Adder, Multiplexer, s, Flip-Flops.	ubtractor, Encoder.						
Combinational Logic: Introduction Decoders, Encoders, Multiplexers. Sequential Logic: Introduction, Se Text book 1: 4.1, 4.2, 4.4, 4.5, 4.9,	on, Combinational Circuits, Design Procedu HDL Models of Combinational Circuits – equential Circuits, Storage Elements: Latches 4.10, 4.11, 4.12, 5.1, 5.2, 5.3, 5.4.	re, Binary Adder- S Adder, Multiplexer, s, Flip-Flops.	ubtractor, Encoder.						
Combinational Logic: Introduction Decoders, Encoders, Multiplexers. Sequential Logic: Introduction, Se Text book 1: 4.1, 4.2, 4.4, 4.5, 4.9,	on, Combinational Circuits, Design Procedu HDL Models of Combinational Circuits – equential Circuits, Storage Elements: Latches 4.10, 4.11, 4.12, 5.1, 5.2, 5.3, 5.4. MODULE-3	re, Binary Adder- S Adder, Multiplexer, s, Flip-Flops.	ubtractor, Encoder. 8 Hr						
Combinational Logic: Introduction Decoders, Encoders, Multiplexers. Sequential Logic: Introduction, Sec Text book 1: 4.1, 4.2, 4.4, 4.5, 4.9, Basic Structure of Computers: F Processor Clock, Basic Performance and Programs: Memory Locat sequencing, Addressing Modes. Text book 2: 1.2, 1.3, 1.4, 1.6, 2.2	on, Combinational Circuits, Design Procedu HDL Models of Combinational Circuits – equential Circuits, Storage Elements: Latches 4.10, 4.11, 4.12, 5.1, 5.2, 5.3, 5.4 . MODULE-3 unctional Units, Basic Operational Concepts e Equation, Clock Rate, Performance Measu ion and Addresses, Memory Operations,	re, Binary Adder- S Adder, Multiplexer, s, Flip-Flops. , Bus structure, Perfo rement. Machine Ins Instruction and I	8 Hr Structions B Hr						
Combinational Logic: Introduction Decoders, Encoders, Multiplexers. Sequential Logic: Introduction, Sec Text book 1: 4.1, 4.2, 4.4, 4.5, 4.9, Basic Structure of Computers: F Processor Clock, Basic Performance and Programs: Memory Locat sequencing, Addressing Modes. Text book 2: 1.2, 1.3, 1.4, 1.6, 2.2	And Addresses, Memory Operations, Module Science And Addresses, Memory Operations, Module Science And Addresses, Memory Operations, Module Science Addresses, Memory Operations, Memory	re, Binary Adder- S Adder, Multiplexer, s, Flip-Flops. , Bus structure, Perfo rement. Machine Ins Instruction and I	8 Hr 8 Hr 8 Hr 8 Hr 8 Hr						

Text book 2: 4.1, 4.2.1, 4.2.2, 4.2.3, 4.4, 5.4, 5.5.1

MODULE-5

Basic Processing Unit: Some Fundamental Concepts: Register Transfers, Performing ALU operations, fetching a word from Memory, Storing a word in memory. Execution of a Complete Instruction. **Pipelining:** Basic concepts, Role of Cache memory, Pipeline Performance.

Text book 2: 7.1, 7.2, 8.1

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). A student shall be deemed tohave satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

CIE for the theory component of the IPCC (maximum marks 50)

- IPCC means practical portion integrated with the theory of the course.
- CIE marks for the theory component are **25 marks** and that for the practical component is **25 marks**.
- 25 marks for the theory component are split into **15 marks** for two Internal Assessment Tests (Two Tests, each of 15 Marks with 01-hour duration, are to be conducted) and **10 marks** for assessment methods mentioned in 220B4.2. The first test at the end of 40-50% coverage of thesyllabus and the second test after covering 85-90% of the syllabus.
- Scaled-down marks of the sum of two tests and other assessment methods will be CIE marks for the theory component of PCC (that is for **50 marks)**.
- The student has to secure 40% of 25 marks to qualify in the CIE of the theory component of PCC. **SEE for PCC**

Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the course (**duration 03 hours**)

- 1. The question paper will have ten questions. Each question is set for 20 marks.
- 2. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), **should have a mix of topics** under that module.
- 3. The students have to answer 5 full questions, selecting one full question from each module.
- 4. Marks scored by the student shall be proportionally scaled down to 50 Marks

The theory portion of the PCC shall be for both CIE and SEE, whereas the practical portion will have a CIE component only.

Suggested Learning Resources:

Books

1. M. Morris Mano & Michael D. Ciletti, Digital Design With an Introduction to Verilog Design, 5e, Pearson Education.

2. Carl Hamacher, ZvonkoVranesic, SafwatZaky, Computer Organization, 5th Edition, Tata McGraw Hill.

Web links and Video Lectures (e-Resources): https://cse11-iiith.vlabs.ac.in/

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

Assign the group task to Design the various types of counters and display the output accordingly

Assessment Methods

- Lab Assessment (25 Marks)
- GATE Based Aptitude Test

	CO-PO/PSO Mapping															
CO/ PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

	DATA STRUCTURES AND APPLICATIONSSemester3								
	Course Code	MVJ22CS34/AI34/CG34/IS34/DS34	CIE Marks	50					
	Teaching Hours/Week (L: T:P: S)	3:0:0:0	SEE Marks	50					
	Total Hours of Pedagogy	40	Total Marks	100					
	Credits	03	Exam Hours	3					
	Examination type (SEE) Theory								
	Course objectives: CLO 1. To explain fundamentals of data structures and their applications. CLO 2. To illustrate representation of Different data structures such as Stack, Queues, Linked Lists, Trees, and Graphs. CLO 3. To Design and Develop Solutions to problems using Linear Data Structures CLO 4. To discuss applications of Nonlinear Data Structures in problem solving. CLO 5. To introduce advanced Data structure concepts such as Hashing and Optimal Binary Search Trees								
	Teaching-Learning Process (General Instructions) Teachers can use following strategies to accelerate the attainment of the various course outcomes. 1. Chalk and Talk with Black Board 2. ICT based Teaching 3. Demonstration based Teaching								
	Module-1 8Hours								
	INTRODUCTION TO DATA STRUCTURES: Data Structures, Classifications (Primitive								
	& Non-Primitive), Data structu	are Operations							
	Review of pointers and dynam	ic Memory Allocation,	G4 4 11	т ·					
	ARRAYS and STRUCTURE	S: Arrays, Dynamic Allocated Arrays,	Structures and U	nions,					
	STACKS: Stacks Stacks Usin	representation of Multidimensional A	rrays, Strings	accione					
	Text Book: Chapter-1:1.2 Cha	nter-2.2.1 to 2.7 Chapter-3.3.1.3.2.3	6	28810118					
	Reference Book 1: 1.1 to 1.4	per-2. 2.1 to 2.7 Chapter-5. 5.1,5.2,5	.0						
		Module-2	8	BHours					
	QUEUES: Queues, Circular Queues, Using Dynamic Arrays, Multiple Stacks and queues. LINKED LISTS : Singly Linked, Lists and Chains, Representing Chains in C, Linked Stacks and Queues, Polynomials Text Book: Chapter-3: 3.3, 3.4, 3.7 Chapter-4: 4.1 to 4.4								
		Module-3		8Hours					
	LINKED LISTS : Additional List Operations, Sparse Matrices, Doubly Linked List. TREES: Introduction, Binary Trees, Binary Tree Traversals, Threaded Binary Trees. Text Book: Chapter-4: 4.5,4.7,4.8 Chapter-5: 5.1 to 5.3, 5.5								
F		Module-4	8	BHours					
	TREES(Cont): Binary Search trees, Selection Trees, Forests, Representation of Disjoint sets, Counting Binary Trees, GRAPHS: The Graph Abstract Data Types, Elementary Graph Operations Text Book: Chapter-5: 5.7 to 5.11 Chapter-6: 6.1, 6.2								
	Text Book: Chapter-5: 5.7 to 5	.11 Chapter-6: 6.1, 6.2							

HASHING: Introduction, Static Hashing, Dynamic Hashing PRIORITY QUEUES: Single and double ended Priority Queues, Leftist Trees INTRODUCTION TO EFFICIENT BINARY SEARCH TREES: Optimal Binary Search Trees

Text Book: Chapter 8: 8.1 to 8.3 Chapter 9: 9.1, 9.2 Chapter 10: 10.1

Course outcome (Course Skill Set)

At the end of the course the student will be able to:

CO 1. Explain different data structures and their applications.

CO 2. Apply Arrays, Stacks and Queue data structures to solve the given problems.

CO 3. Use the concept of linked list in problem solving.

CO 4. Develop solutions using trees and graphs to model the real-world problem.

CO 5. Explain the advanced Data Structures concepts such as Hashing Techniques and Optimal Binary Search Trees.

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). A student shall be deemed to have satisfied the academic requirements and earned the creditsallotted to each subject/ course if the student secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- For the Assignment component of the CIE, there are 25 marks and for the Internal Assessment Test component, there are 25 marks.
- The first test will be administered after 40-50% of the syllabus has been covered, and the second test will be administered after 85-90% of the syllabus has been covered
- Any two assignment methods mentioned in the 220B2.4, if an assignment is project-based then only one assignment for the course shall be planned. The teacher should not conduct two assignments at the end of the semester if two assignments are planned.
- For the course, CIE marks will be based on a scaled-down sum of two tests and other methods of assessment.

Internal Assessment Test question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester-End Examination:

Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the course (**duration 03 hours**).

- $1. \quad The question paper will have ten questions. Each question is set for 20 marks.$
- 2. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), **should have a mix of topics** under that module.
- 3. The students have to answer 5 full questions, selecting one full question from each module.
- 4. Marks scored shall be proportionally reduced to 50 marks

Suggested Learning Resources:

Textbook:

 Ellis Horowitz, Sartaj Sahni and Susan Anderson-Freed, Fundamentals of Data Structures in C, 2nd Ed, Universities Press, 2014

Reference Books:

- Seymour Lipschutz, Data Structures Schaum's Outlines, Revised 1st Ed, McGraw Hill, 2014.
- 2. Gilberg & Forouzan, Data Structures: A Pseudo-code approach with C, 2nd Ed, Cengage Learning, 2014.
- 3. Reema Thareja, Data Structures using C, 3rd Ed, Oxford press, 2012.
- 4. Jean-Paul Tremblay & Paul G. Sorenson, An Introduction to Data Structures with Applications, 2nd Ed, McGraw Hill, 2013
- 5. A M Tenenbaum, Data Structures using C, PHI, 1989
- 6. Robert Kruse, Data Structures and Program Design in C, 2nd Ed, PHI, 1996.

Web links and Video Lectures (e-Resources):

- http://elearning.vtu.ac.in/econtent/courses/video/CSE/06CS35.html
- https://nptel.ac.in/courses/106/105/106105171/
- http://www.nptelvideos.in/2012/11/data-structures-and-algorithms.html
- https://www.youtube.com/watch?v=3Xo6P_V-qns&t=201s
- https://ds2-iiith.vlabs.ac.in/exp/selection-sort/index.html
- https://nptel.ac.in/courses/106/102/106102064/
- https://ds1-iiith.vlabs.ac.in/exp/stacks-queues/index.html
- https://ds1-iiith.vlabs.ac.in/exp/linked-list/basics/overview.html
- https://ds1-iiith.vlabs.ac.in/List%20of%20experiments.html
- https://ds1-iiith.vlabs.ac.in/exp/tree-traversal/index.html
- https://ds1-iiith.vlabs.ac.in/exp/tree-traversal/depth-first-traversal/dft-practice.html
- https://infyspringboard.onwingspan.com/web/en/app/toc/lex_auth_013501595428077568125 59/overview

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

- Role Play
- Flipped classroom
- Assessment Methods for 25 Marks (opt two Learning Activities)
 - Case Study
 - Programming Assignment
 - $\circ \quad \ \ {\rm Gate\,Based\,Aptitude\,Test}$
 - $\circ \quad \text{MOOC Assignment for selected Module}$

	DATA STRUCT SEM	URES LABORAT	ORY	
Course Co	de	MVJ22CSL35/AI /IS/CG/DS	CIE Marks	50
Number of	f Contact Hours/Week	0:0:2	SEE Marks	50
Total Num	ber of Lab Contact Hours	28	Exam Hours	03
		Credits – 1		
Course Le	arning Objectives:			
This labora and evaluat	tory course enables students to get pra tion/testing of	ctical experience in	design, develop, ir	nplement, analyze
• Dy	namic memory management			
• Lir	near data structures and their application	ons such as stacks, c	queues and lists	
• No	on-Linear data structures and their appl	ications such as tree	es and graphs	
Description	ns (if any):			
• Im	plement all the programs in "C" Progr	amming Language	and Linux OS.	
Programs	List:			
1.	Develop a Program in C for the follow	ving:		
	 a) Declare a calendar as an array 7 days of a week. Each Elem field is the name of the Day date of the Day (A integer), the day (A dynamically allocated b) Write functions create (), rea from the keyboard and to print 	y of 7 elements (A of ent of the array is a (A dynamically all the third field is the d String). (a) and display(); the tweeks activity de	dynamically Create a structure having t located String), The escription of the ac to create the calend stails report on scree	d array) to represent hree fields. The first e second field is the tivity for a particular lar, to read the data en.
2.	Develop a Program in C for the follo a. Read a main String (STR), a b. Perform Pattern Matching O with REP if PAT exists in S in STR Support the program with function functions	owing operations or Pattern String (PA' peration: Find and I TR. Report suitable as for each of the	Strings. Γ) and a Replace St Replace all occurrer e messages in case above operations.	ring (REP) aces of PAT in STR PAT does not exist Don't use Built-in
3.	 Develop a menu driven Program in G (Array Implementation of Stack with a. Push an Element on to Stack b. Pop an Element from Stack c. Demonstrate how Stack can d. Demonstrate Overflow and G e. Display the status of Stack f. Exit Support the program with appropriate 	C for the following on maximum size MA be used to check Pa Jnderflow situation e functions for each	operations on STAG AX) llindrome s on Stack of the above opera	CK of Integers

4.	Develop a Program in C for converting an Infix Expression to Postfix Expression. Program should support for both parenthesized and free parenthesized expressions with the operators: +, -, *, /, % (Remainder), ^ (Power) and alphanumeric			
	operands.			
5.	Develop a Program in C for the following Stack Applications			
	a. Evaluation of Suffix expression with single digit operands and operators: $+, -, *, /, \%$,			
	Λ			
	b. Solving Tower of Hanoi problem with n disks			

6.	Develop a menu driven Program in C for the following operations on Circular QUEUE of Characters (Array Implementation of Queue with maximum size MAX) a. Insert an Element on to Circular OUEUE
	b Delete an Element from Circular OUEUE
	c Demonstrate Overflow and Underflow situations on Circular OUEUE
	d Display the status of Circular OUEUE
	e. Exit
	Support the program with appropriate functions for each of the above operations
7.	Develop a menu driven Program in C for the following operations on Singly Linked List
	(SLL) of Student Data with the fields: USN, Name, Programme, Sem,
	PhNo
	a. Create a SLL of N Students Data by using <i>front insertion</i> .
	b. Display the status of SLL and count the number of nodes in it
	c. Perform Insertion / Deletion at End of SLL
	d. Perform Insertion / Deletion at Front of SLL(Demonstration of stack)
	e. Exit
8.	Develop a menu driven Program in C for the following operations on Doubly Linked List
	(DLL) of Employee Data with the fields: SSN, Name, Dept, Designation,
	Sal, PhNo
	a. Create a DLL of N Employees Data by using <i>end insertion</i> .
	b. Display the status of DLL and count the number of nodes in it
	c. Perform Insertion and Deletion at End of DLL
	d. Perform Insertion and Deletion at Front of DLL
	e. Demonstrate how this DLL can be used as Double Ended Queue.
	f. Exit
9.	Develop a Program in C for the following operationson Singly Circular Linked List (SCLL)
	with header nodes
	a. Represent and Evaluate a Polynomial $P(x,y,z) = 6x^2y^2z-4yz^3+3x^3yz+2xy^3z-2xyz^3$
	b. Find the sum of two polynomials $POLY1(x,y,z)$ and $POLY2(x,y,z)$ and store the
	result in POLYSUM(x,y,z)
10	Support the program with appropriate functions for each of the above operations
10.	Develop a menu driven Program in C for the following operations on Binary Search Tree
	(BST) of Integers.
	a. Create a BST of N Integers: 0, 9, 5, 2, 8, 15, 24, 14, 7, 8, 5, 2
	b. I raverse the BST in Inorder, Preorder and Post Order
	d Evit
11	u. EXIL Develop a Program in C for the following operations on Graph(C) of Cities
11.	a Create a Graph of N cities using Adjacency Matrix
	b. Drint all the nodes reachable from a given starting node in a digraph using DES/DES
	method
	monou

12. Given a File of N employee records with a set K of Keys (4-digit) which uniquely determine the records in file F. Assume that file F is maintained in memory by a Hash Table (HT) of m memory locations with L as the set of memory addresses (2-digit) of locations in HT. Let the keys in K and addresses in L are Integers. Develop a Program in C that uses Hash function H: K →L as H(K)=K mod m (remainder method), and implement hashing technique to map a given key K to the address space L. Resolve the collision (if any) using linear probing.
Note: During the lab sessions the data structures using python codes will be demonstrated.

Laboratory Outcomes: The student should be able to:

- Analyze various linear and non-linear data structures
- Demonstrate the working nature of different types of data structures and their applications
- Use appropriate searching and sorting algorithms for the give scenario.
- Apply the appropriate data structure for solving real world problems

Conduct of Practical Examination:

- Experiment distribution
 - For laboratories having only one part: Students are allowed to pick one experiment from the lot with equal opportunity.
 - For laboratories having PART A and PART B: Students are allowed to pick one experiment from PART A and one experiment from PART B, with equal opportunity.
- Change of experiment is allowed only once and marks allotted for procedure to be made zero of the changed part only.
- Marks Distribution (*Need to change in accordance with university regulations*)
 - c) For laboratories having only one part Procedure + Execution + Viva-Voce: 15+70+15 = 100 Marks
 - d) For laboratories having PART A and PART B
 - i. Part A Procedure + Execution + Viva = 6 + 28 + 6 = 40 Marks
 - ii. Part B Procedure + Execution + Viva = 9 + 42 + 9 = 60 Marks

Program	mming using Java	Semester	3		
Course Code	MVJ22CS361/AI361/CG361/IS361/DS3 61	CIE Marks	50		
Teaching Hours/Week (L: T:P: S)	2:0:2	SEE Marks	50		
Total Hours of Pedagogy	28 Hours of Theory + 20 Hours of Practical	Total Marks	10 0		
Credits	03	Exam Hours	03		
Examination type (SEE)	Theory				
Note - Students who have un BPLCK105C/205C" in first y	ndergone " Basics of Java Programmi rear are not eligible to opt this cours	ing- se			
Course objectives:					
• To learn primitive construc	ts JAVA programming language.				
• To understand Object Orien	ated Programming Features of IAVA				
• To understand object offen					
To gain knowledge on: pack	ages, multi threaded programming and exceptio	ns.			
Teaching-Learning Process (Gene These are sample Strategies, which	ral Instructions) teachers can use to accelerate the attainment o	f the various course	!		
outcomes and make Teaching -Lean	ming more effective				
1. Use Online Java Compiler II	DE: https://www.jdoodle.com/online-java-com	piler/ or any other.			
2. Demonstration of programm	2. Demonstration of programming examples.				
3. Chalk and board, power poi	nt presentations				
4. Online material (Tutorials)	and video lectures.				
	Module-1				
An Overview of Java: Object-Ori Principles), Using Blocks of Code, L The Java Keywords).	ented Programming (Two Paradigms, Abstra exical Issues (Whitespace, Identifiers, Literals,	ction, The Three (Comments, Separat)OP ors,		
Data Types, Variables, and Arra	ys: The Primitive Types (Integers, Floating-Po	oint Types, Charact	ers,		
Booleans), Variables, Type Conver Introducing Type Inference with Le	Booleans), Variables, Type Conversion and Casting, Automatic Type Promotion in Expressions, Arrays, Introducing Type Inference with Local Variables				
Operators: Arithmetic Operators, Operator, The ? Operator, Operator	Relational Operators, Boolean Logical Opera Precedence, Using Parentheses,	ators, The Assignm	ent		
Control Statements: Java's Selec	tion Statements (if, The Traditional switch)	, Iteration Stateme	ents		
(while, do-while, for, The For-Each	(while, do-while, for, The For-Each Version of the for Loop, Local Variable Type Inference in a for Loop,				
Nested Loops), Jump Statements (U	Nested Loops), Jump Statements (Using break, Using continue, return).				
Chapter 2, 3, 4, 5					
Module-2					
Introducing Classes: Class Fund	Introducing Classes: Class Fundamentals, Declaring Objects, Assigning Object Reference Variables.				
Introducing Methods, Constructors, The this Keyword, Garbage Collection.					
Methods and Classes: Overloadi	Methods and Classes: Overloading Methods, Objects as Parameters, Argument Passing, Returning				
Objects, Recursion, Access Control,	Objects, Recursion, Access Control, Understanding static, Introducing final, Introducing Nested and Inner				
Classes.	Classes.				
Chapter 6, 7					
	Module-3				

Inheritance: Inheritance Basics, Using super, Creating a Multilevel Hierarchy, When Constructors Are Executed, Method Overriding, Dynamic Method Dispatch, Using Abstract Classes, Using final with Inheritance, Local Variable Type Inference and Inheritance, The Object Class. Interfaces: Interfaces, Default Interface Methods, Use static Methods in an Interface, Private Interface Methods.

Chapter 8, 9

Module-4

Packages: Packages, Packages and Member Access, Importing Packages.

Exceptions: Exception-Handling Fundamentals, Exception Types, Uncaught Exceptions, Using try and catch, Multiple catch Clauses, Nested try Statements, throw, throws, finally, Java's Built-in Exceptions, Creating Your Own Exception Subclasses, Chained Exceptions.

Chapter 9, 10

Module-5

Multithreaded Programming: The Java Thread Model, The Main Thread, Creating a Thread, Creating Multiple Threads, Using isAlive() and join(), Thread Priorities, Synchronization, Interthread Communication, Suspending, Resuming, and Stopping Threads, Obtaining a Thread's State.

Enumerations, Type Wrappers and Autoboxing: Enumerations (Enumeration Fundamentals, The values() and valueOf() Methods), Type Wrappers (Character, Boolean, The Numeric Type Wrappers), Autoboxing (Autoboxing and Methods, Autoboxing/Unboxing Occurs in Expressions, Autoboxing/Unboxing Boolean and Character Values).

Chapter 11, 12

Course outcome (Course Skill Set)

At the end of the course, the student will be able to:

- 1. Demonstrate proficiency in writing simple programs involving branching and looping structures.
- 2. Design a class involving data members and methods for the given scenario.
- 3. Apply the concepts of inheritance and interfaces in solving real world problems.
- 4. Use the concept of packages and exception handling in solving complex problem
- 5. Apply concepts of multithreading, autoboxing and enumerations in program development

Programming Experiments (Suggested and are not limited to)

- 1. Develop a JAVA program to add TWO matrices of suitable order N (The value of N should be read from command line arguments).
- 2. Develop a stack class to hold a maximum of 10 integers with suitable methods. Develop a JAVA main method to illustrate Stack operations.
- 3. A class called Employee, which models an employee with an ID, name and salary, is designed as shown in the following class diagram. The method raiseSalary (percent) increases the salary by the given percentage. Develop the Employee class and suitable main method for demonstration.
- 4. A class called MyPoint, which models a 2D point with x and y coordinates, is designed as follows:
 - Two instance variables x (int) and y (int).
 - A default (or "no-arg") constructor that construct a point at the default location of (0, 0).
 - A overloaded constructor that constructs a point with the given x and y coordinates.
 - A method setXY() to set both x and y.
 - A method getXY() which returns the x and y in a 2-element int array.
 - A toString() method that returns a string description of the instance in the format "(x, y)".
 - A method called distance(int x, int y) that returns the distance from this point to another point at the given (x, y) coordinates
 - An overloaded distance(MyPoint another) that returns the distance from this point to the given MyPoint instance (called another)
 - Another overloaded distance() method that returns the distance from this point to the origin (0,0) Develop the code for the class MyPoint. Also develop a JAVA program (called TestMyPoint) to test all the methods defined in the class.
- 5. Develop a JAVA program to create a class named shape. Create three sub classes namely: circle, triangle and square, each class has two member functions named draw () and erase (). Demonstrate polymorphism concepts by developing suitable methods, defining member data and main program.
- 6. Develop a JAVA program to create an abstract class Shape with abstract methods calculateArea() and calculatePerimeter(). Create subclasses Circle and Triangle that extend the Shape class and implement the respective methods to calculate the area and perimeter of each shape.
- 7. Develop a JAVA program to create an interface Resizable with methods resizeWidth(int width) and resizeHeight(int height) that allow an object to be resized. Create a class Rectangle that implements the Resizable interface and implements the resize methods
- 8. Develop a JAVA program to create an outer class with a function display. Create another class inside the outer class named inner with a function called display and call the two functions in the main class.
- 9. Develop a JAVA program to raise a custom exception (user defined exception) for DivisionByZero using try, catch, throw and finally.
- 10. Develop a JAVA program to create a package named mypack and import & implement it in a suitable class.
- 11. Write a program to illustrate creation of threads using runnable class. (start method start each of the newly created thread. Inside the run method there is sleep() for suspend the thread for 500 milliseconds).
- 12. Develop a program to create a class MyThread in this class a constructor, call the base class constructor, using super and start the thread. The run method of the class starts after this. It can be observed that both main thread and created child thread are executed concurrently.

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

CIE for the theory component of the IPCC (maximum marks 50)

- IPCC means practical portion integrated with the theory of the course.
- CIE marks for the theory component are **25 marks** and that for the practical component is **25 marks**.
- 25 marks for the theory component are split into **15 marks** for two Internal Assessment Tests (Two Tests, each of 15 Marks with 01-hour duration, are to be conducted) and **10 marks** for other assessment methods mentioned in 220B4.2. The first test at the end of 40-50% coverage of the syllabus and the second test after covering 85-90% of the syllabus.
- Scaled-down marks of the sum of two tests and other assessment methods will be CIE marks for the theory component of IPCC (that is for **25 marks)**.

• The student has to secure 40% of 25 marks to qualify in the CIE of the theory component of IPCC.

CIE for the practical component of the IPCC

- **15 marks** for the conduction of the experiment and preparation of laboratory record, and **10 marks** for the test to be conducted after the completion of all the laboratory sessions.
- On completion of every experiment/program in the laboratory, the students shall be evaluated including viva-voce and marks shall be awarded on the same day.
- The CIE marks awarded in the case of the Practical component shall be based on the continuous evaluation of the laboratory report. Each experiment report can be evaluated for 10 marks. Marks of all experiments' write-ups are added and scaled down to **15 marks**.
- The laboratory test (duration 02/03 hours) after completion of all the experiments shall be conducted for 50 marks and scaled down to 10 marks.
- Scaled-down marks of write-up evaluations and tests added will be CIE marks for the laboratory component of IPCC for **25 marks**.

• The student has to secure 40% of 25 marks to qualify in the CIE of the practical component of the IPCC. **SEE for IPCC**

Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the course (**duration 03 hours**)

- 1. The question paper will have ten questions. Each question is set for 20 marks.
- 2. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), **should have a mix of topics** under that module.
- 3. The students have to answer 5 full questions, selecting one full question from each module.
- 4. Marks scored by the student shall be proportionally scaled down to 50 Marks

The theory portion of the IPCC shall be for both CIE and SEE, whereas the practical portion will have a CIE component only. Questions mentioned in the SEE paper may include questions from the practical component.

Suggested Learning Resources:

Textbook:

Java: The Complete Reference, Twelfth Edition, by Herbert Schildt, November 2021, McGraw-Hill, ISBN: 9781260463422

Reference Books

1. Programming with Java, 6th Edition, by E Balagurusamy, Mar-2019, McGraw Hill Education, ISBN: 9789353162337.

2. Thinking in Java, Fourth Edition, by Bruce Eckel, PrenticeHall, 2006 (https://sd.blackball.lv/library/thinking_in_java_4th_edition.pdf)

Web links and Video Lectures (e-Resources):

- Java Tutorial: https://www.geeksforgeeks.org/java/
- Introduction To Programming In Java (by Evan Jones, Adam Marcus and Eugene Wu): https://ocw.mit.edu/courses/6-092-introduction-to-programming-in-java-january-iap-2010/
- Java Tutorial: <u>https://www.w3schools.com/java/</u>
- Java Tutorial: https://www.javatpoint.com/java-tutorial

Activity Based Learning (Suggested Activities)/ Practical Based learning

- 1. Installation of Java (Refer: https://www.java.com/en/download/help/index_installing.html)
- 2. Demonstration of online IDEs like geeksforgeeks, jdoodle or any other Tools
- 3. Demonstration of class diagrams for the class abstraction, type visibility, composition and inheritance

Assessment Method

• Programming Assignment / Course Project

	Data Ana	Semester	3			
Programming						
Course	Code	MVJ22CS363/AI363/CG363 /IS363/DS363	CIE Marks	50		
Teachi	ng Hours/Week (L: T:P: S)	0:0:2:0	SEE Marks	50		
Credits		01	Exam Hours	02		
Examin	ation type (SEE)	Practical				
Course	objectives:					
•	To explore and understand how I	R and R Studio interactive environment.				
•	To understand the different data	Structures, data types in R.				
•	To learn and practice programmi	ng techniques using R programming.				
•	To import data into R from variou	is data sources and generate visualizations.				
•	To draw insights from datasets us	sing data analytics techniques.				
Sl.NO		Experiments				
1	Demonstrate the steps for instal	lation of R and R Studio. Perform the following:				
	a) Assign different type of	f values to variables and display the type of va	riable. Assign differ	cent types		
	such as Double, Intege	r, Logical, complex and character and unders	tand the difference	e between		
	b) Demonstrate Arithmeti	c and Logical Operations with simple examples.				
	c) Demonstrate generatio	n of sequences and creation of vectors.				
	d) Demonstrate Creation of	of Matrices				
	e) Demonstrate the Creati	on of Matrices from Vectors using Binding Func	tion.			
	f) Demonstrate element e	xtraction from vectors, matrices and arrays				
	Suggested Reading – Text Boo	K I – Chapter I (What IS K, Installing K, Choos Related Software), Chapter 2 (Mathematic	ing an IDE – RStud	10, HOW to		
	Assigning Variables Special Nu	mbers Logical Vectors) Chapter 3 (Classes I	Different Types of	Numbers		
	Other Common Classes, Checkir	ig and Changing Classes, Examining Variables)				
2	Assess the Financial Statement	of an Organization being supplied with 2 vector	ors of data: Monthly	y Revenue		
	experiment) Calculate the follow	wing financial metrics:	sample data vecto	r for this		
	a. Profit for each month.	ving interictal metrics.				
	b. Profit after tax for each	month (Tax Rate is 30%).				
	c. Profit margin for each r	nonth equals to profit after tax divided by rever	iue.			
	d. Good Months – where t	he profit after tax was greater than the mean fo	r the year.			
	e. Bad Months – where th	e profit after tax was less than the mean for the	year.			
	I. The best month – when	e the profit after tax was max for the year.				
	Note:	the the pront after tax was min for the year.				
	a. All Results need to be p	resented as vectors				
	b. Results for Dollar value	s need to be calculated with \$0.01 precision, b	ut need to be prese	ented in		
	Units of \$1000 (i.e 1k) with no o	lecimal points				
	c. Results for the profit ma	argin ratio need to be presented in units of % w	rith no decimal poir	ıt.		
	d. It is okay for tax to be negative for any given month (deferred tax asset)					
	e. Generate CSV me for the data. Suggested Reading – Text Book 1 – Chapter 4 (Vectors Combining Matrices)					
3	Develop a program to create tw	o 3 X 3 matrices A and B and perform the follow	wing operations a)			
_	Transpose of the matrix b) addi	tion c) subtraction d) multiplication	8 - p			
	Suggested Reading – Text Bool	x 1 – Chapter 4 (Matrices and Arrays – Array Ar	ithmetic)			
4	Develop a program to find the fa	ctorial of given number using recursive function	on calls.			
	Suggested Reading – Reference	e Book 1 – Chapter 5 (5.5 – Recursive Programn	ning)			
	Text Book 1 – Chapter 8 (Flov	v Control and Loops – If and Else. Vectorized	l If, while loops. fo	or loops).		
	Chapter 6 (Creating and Calling Functions, Passing Functions to and from other functions)					

5	Develop an R Program using functions to find all the prime numbers up to a specified number by the				
	method of Sieve of Eratosthenes.				
	Suggested Reading – Reference Book				
	1 - Chapter 5 (5.5 – Recursiv				
Text Book 1 – Chapter 8 (Flow Control and Loops – If and Else, Vectorized If, while loops,					
	Chapter 6 (Creating and Calli	ng Functions, Passing Functions to a	nd from other functions)		
6	The built-in data set mammal	s contain data on body weight versus	s brain weight. Develop R		
	commands to:				
	a) Find the Pearson and Spear	rman correlation coefficients. Are the	ey similar?		
	b) Plot the data using the plot	command.	1.00		
	c) Plot the logarithm (log) of	Plot the logarithm (log) of each variable and see if that makes a difference.			
	Suggested Reading – Text B	bok I –Chapter 12 – (Built-In Dataset	s) Chapter 14 – (Scatterplots)		
	Reference Book 2 – 13.2.5 (C	ovariance and Correlation)			
7	Develop R program to create	a Data Frame with following details a	and do the following operations.		
	itemCode	itemCategory	itemPrice		
	1001	Electronics	700		
	1002	Desktop Supplies	300		
	1003	Office Supplies	350		
	1004	USB	400		
	1005	CD Drive	800		
	a) Subset the Data frame an	d display the details of only those ite	ms whose price is greater than or equal		
	to 350.	to 350.			
	b) Subset the Data frame an	b) Subset the Data frame and display only the items where the category is either "Office Supplies" or			
	"Desktop Supplies"				
	c) Create another Data Frame called "item-details" with three different fields itemCode, ItemQtyonHand				
	Suggested Reading – Textbook 1: Chapter 5 (Lists and Data Frames)				
8	Let us use the built-in datase	et air quality which has Daily air qu	ality measurements in New York May to		
Ũ	September 1973, Develop F	program to generate histogram h	by using appropriate arguments for the		
	following statements.	· · · · · · · · · · · · · · · · · · ·	-,,		
	a) Assigning names, usi	ng the air quality data set.			
	b) Change colors of the	Histogram			
	c) Remove Axis and Ad	d labels to Histogram			
	d) Change Axis limits of	a Histogram			
	e) Add Density curve to	the histogram			
	Suggested Reading –Referen	nce Book 2 – Chapter 7 (7.4 – The gg	nlot2 Package), Chapter 24 (Smoothing		
	and Shading)				
9	Design a data frame in R for storing about 20 employee details. Create a CSV file named "input csy" that				
	defines all the required inform	nation about the employee such as ic	d, name, salary, start_date, dept. Import		
	into R and do the following a	nalysis.			
	a) Find the total number	r rows & columns			
b) Find the maximum salary					
	c) Retrieve the details of	of the employee with maximum salary	y		
	d) Retrieve all the empl	oyees working in the IT Department.	wie greater than 20000 and write these		
1	e) Retrieve the employees in the IT Department whose salary is greater than 20000 and write these				

	details into another file "output.csv" Suggested Reading – Text Book 1 – Chapter 12(CSV and Tab Delimited Files)				
10	10 Using the built in dataset mtcars which is a popular dataset consisting of the design and fuel consumption patterns of 32 different automobiles. The data was extracted from the 1974 Motor Trend US magazine, and comprises fuel consumption and 10 aspects of automobile design and performance for 32 automobiles (1973-74 models). Format A data frame with 32 observations on 11 variables : [1] mpg Miles/(US) gallor [2] cyl Number of cylinders [3] disp Displacement (cu.in.), [4] hp Gross horsepower [5] drat Rear axle ratio,[6] wt Weight (lb/1000) [7] qsec 1/4 mile time, [8] vs V/S, [9] am Transmission (0 = automatic, 1 = manual), [10] gear Number of forward gears, [11] carb Number of carburetors				
	 Develop R program, to solve the following: a) What is the total number of observations and variables in the dataset? b) Find the car with the largest hp and the least hp using suitable functions c) Plot histogram / density for each variable and determine whether continuous variables are normally distributed or not. If not, what is their skewness? d) What is the average difference of gross horse power(hp) between automobiles with 3 and 4 number of cylinders(cyl)? Also determine the difference in their standard deviations. e) Which pair of variables has the highest Pearson correlation? 				
	References (Web links):				
	 https://cran.r-project.org/web/packages/explore/vignettes/explore_mtcars.html https://www.w3schools.com/r/r_stat_data_set.asp https://rpubs.com/BillB/217355 				
11	Demonstrate the progression of salary with years of experience using a suitable data set (You can create your own dataset). Plot the graph visualizing the best fit line on the plot of the given data points. Plot a curve of Actual Values vs. Predicted values to show their correlation and performance of the model. Interpret the meaning of the slope and y-intercept of the line with respect to the given data. Implement using lm function. Save the graphs and coefficients in files. Attach the predicted values of salaries as a new column to the original data set and save the data as a new CSV file.				
	Suggested Reading – Reference Book 2 – Chapter 20 (General Concepts, Statistical Inference, Prediction)				
Note: [Data analytics part is also included in the mathematics.				
Course At the e	end of the course the student will be able to:				
•	Explain the fundamental syntax of R data types, expressions and the usage of the R-Studio IDE				
•	Develop a program in R with programming constructs: conditionals, looping and functions.				
•	Apply the list and data frame structure of the R programming language.				
•	Use visualization packages and file handlers for data analysis				

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together

Continuous Internal Evaluation (CIE):

CIE marks for the practical course are **50 Marks**.

The split-up of CIE marks for record/ journal and test are in the ratio **60:40**.

- Each experiment is to be evaluated for conduction with an observation sheet and record write-up. Rubrics for the evaluation of the journal/write-up for hardware/software experiments are designed by the faculty who is handling the laboratory session and are made known to students at the beginning of the practical session.
- Record should contain all the specified experiments in the syllabus and each experiment write-up will be evaluated for 10 marks.
- Total marks scored by the students are scaled down to **30 marks** (60% of maximum marks).
- Weightage to be given for neatness and submission of record/write-up on time.
- Department shall conduct a test of 100 marks after the completion of all the experiments listed in the syllabus.
- In a test, test write-up, conduction of experiment, acceptable result, and procedural knowledge will carry a weightage of 60% and the rest 40% for viva-voce.
- The suitable rubrics can be designed to evaluate each student's performance and learning ability.
- The marks scored shall be scaled down to **20 marks** (40% of the maximum marks).

The Sum of scaled-down marks scored in the report write-up/journal and marks of a test is the total CIE marks scored by the student.

Semester End Evaluation (SEE):

- SEE marks for the practical course are 50 Marks.
- SEE shall be conducted jointly by the two examiners of the same institute, examiners are appointed by the Head of the Institute.
- The examination schedule and names of examiners are informed to the university before the conduction of the examination. These practical examinations are to be conducted between the schedule mentioned in the academic calendar of the University.
- All laboratory experiments are to be included for practical examination.
- (Rubrics) Breakup of marks and the instructions printed on the cover page of the answer script to be strictly adhered to by the examiners. OR based on the course requirement evaluation

rubrics shall be decided jointly by examiners.

- Students can pick one question (experiment) from the questions lot prepared by the examiners jointly.
- Evaluation of test write-up/ conduction procedure and result/viva will be conducted jointly by examiners.

General rubrics suggested for SEE are mentioned here, writeup-20%, Conduction procedure and result in -60%, Viva-voce 20% of maximum marks. SEE for practical shall be evaluated for 100 marks and scored marks shall be scaled down to 50 marks (however, based on course type, rubrics shall be decided by the examiners)

Change of experiment is allowed only once and 15% of Marks allotted to the procedure part are to be made zero.

The minimum duration of SEE is 02 hours

Suggested Learning Resources:

Book:

1. Cotton, R. (2013). Learning R: A Step by Step Function Guide to Data Analysis. 1st ed. O'Reilly Media Inc. **References:**

- 1. Jones, O., Maillardet. R. and Robinson, A. (2014). Introduction to Scientific Programming and Simulation Using R. Chapman & Hall/CRC, The R Series.
- 2. Davies, T.M. (2016) The Book of R: A First Course in Programming and Statistics. No Starch Press.

MVJ22SCR37– Social Connec	t & Responsibility 2022 Scheme &	Semester	3 rd	
syllabus for 3 rd sem				
Course Code	BSCK307 Common for all dept	CIE Marks	100	
Teaching Hours/Week (L:T:P: S)	SEE Marks			
Total Hours of Pedagogy	40 hour Practical Session +15 hour Planning	Total Marks	100	
Examination nature For CIE Assessment - Activities Report Evaluation by College N				
(No SEE – Only CIE)	lo SEE – Only CIE) Officer / HOD / Sports Dept / Any Dept.			
Credits 01 - Credit				
Course objectives: The cours	e will enable the students to:			
1. Provide a formal platform for	r students to communicate and connect to the surrounding	5.		
2. create a responsible connecti	on with the society.			
3. Understand the community in	n general in which they work.			
4. Identify the needs and proble	ems of the community and involve them in problem -solv	ing.		
5. Develop among themselves a	a sense of social & civic responsibility & utilize their kno	wledge		
in finding practical solutions	to individual and community problems.	-1-:11 -		
 Develop competence require in mobilizing community par 	ticipation to acquire leadership qualities and democratic	KIIIS attitudes		
 These are sample Strategies, which tea 1. In addition to the traditional that the activities will devel 2. State the need for activities 3. Support and guide the stude 4. You will also be responsible students' progress in real activities 5. Encourage the students for activity-based thuman beings, nature, society, and the thuman beings, nature, society, and the thuman beings are students for activities conducted by faculty ment activities conducted by faculty ment and the following a set of activities place 	achers can use to accelerate the attainment of the various l lecture method, different types of innovative teaching n lop students' theoretical and applied social and cultural s and its present relevance in the society and Provide real- ents for self-planned activities. e for assigning homework, grading assignments and quiz ctivities in the field. group work to improve their creative and analytical skills that will offer a set of activities for the student that enable he world at large. interactive sessions, open mic, reading group, storytelling ors. anned for the course have been listed:	course outcomes. iethods may be ado kills. life examples. zes, and documenti es them to connect y g sessions, and sem	pted so ng with fellow ester-long	
	anned for the course have been listed.			
3	Contorta			
De est I.	Contents			
Part I:				
Plantation and adoption of a t	tree:			
Plantation of a tree that will be adopted	ed for four years by a group of BE / B.Tech students. (C	NE STUDENT O	NE TREE)	
They will also make an excerpt either	r as a documentary or a photo blog describing the plant'	s origin, its usage i	n daily life,	
its appearance in folklore and literat	ure - Objectives, Visit, case study, report, outcomes.		- /	
Part II :				

Heritage walk and crafts corner:

Heritage tour, knowing the history and culture of the city, connecting to people around through their history, knowing the city and its craftsman, photo blog and documentary on evolution and practice of various craft forms – Objectives, Visit, case study, report, outcomes.

Part III :

Organic farming and waste management:

Usefulness of organic farming, wet waste management in neighboring villages, and implementation in the campus – Objectives, Visit, case study, report, outcomes.

Part IV:

Water conservation:

Knowing the present practices in the surrounding villages and implementation in the campus, documentary or photoblog presenting the current practices – Objectives, Visit, case study, report, outcomes.

Part V :

Food walk:

City's culinary practices, food lore, and indigenous materials of the region used in cooking – Objectives, Visit, case study, report, outcomes.

Course outcomes (Course Skill Set):

At the end of the course, the student will be able to:

CO1: Communicate and connect to the

surrounding. CO2: Create a responsible

connection with the society.

CO3: Involve in the community in general in which they work.

- CO4: Notice the needs and problems of the community and involve them in problem -solving.
- CO5: Develop among themselves a sense of social & civic responsibility & utilize their knowledgein finding practical solutions to individual and community problems.
- CO6: Develop competence required for group-living and sharing of responsibilities & gain skills in mobilizing community participation to acquire leadership qualities and democratic attitudes.

Activities:

Jamming session, open mic, and poetry: Platform to connect to others. Share the stories withothers. Share the experience of Social Connect. Exhibit the talent like playing instruments, singing, one-act play, art-painting, and fine art.

PEDAGOGY:

The pedagogy will include interactive lectures, inspiring guest talks, field visits, social immersion, and a course project. Applying and synthesizing information from these sources to define the social problem to address and take up the solution as the course project, with your group. Social immersionwith NGOs/social sections will be a key part of the course. Will all leadto the course project that will address the needs of the social sector?

COURSE TOPICS:

The course will introduce social context and various players in the social space, and present approaches to discovering and understanding social needs. Social immersion and inspiring conversional will culminate in developing an actual, idea for problem-based intervention, basedon an in-depth understanding of a key social problem.

Duration :

A total of 40 - 50 hrs engagement per semester is required for the 3rd semester of the B.E. /B.Tech. program. The students will be divided into groups. Each group will be handled by faculty mentor. Faculty mentor will design the activities (particularly Jamming sessions open mic ,and poetry) Faculty mentors has to design the evaluation system as per VTU guidelines ofscheme & syllabus.

Guideline for Assessment Process: Continuous Internal Evaluation (CIE):

After completion of the course, the student shall prepare, with daily diary as reference, a comprehensive report in consultation with the mentor/s to indicate what he has observed and learned in the social connect period. The report should be signed by the mentor. The report shall be evaluated on the basis of the following criteria and/or other relevant criteria pertaining to the activity completed. Marks allotted for the diary are out of 50. Planning and scheduling the socialconnect Information/Data collected during the social connect Analysis of the information/data and report writing Considering all above points allotting the marks as mentioned below

Excellent	: 80 to 100
Good	: 60 to 79
Satisfactory: 40) to 59
Unsatisfactory a	and fail : <39

Pedagogy – Guidelines :

It may differ depending on local resources available for the study as well as environment and climatic differences, location and time of execution.

SI No	Торіс	Group size	Location	Activity execution	Reporting	Evaluation Of the Topic
1.	Plantation and adoption of a tree:	May be individual or team	Farmers land/ parks / Villages / roadside/ community area / College campus etc	Site selection /proper consultation/Contin uous monitoring/ Information board	Report should be submitted by individual to the concerned evaluation authority	Evaluation as per the rubrics Of scheme and syllabus by Faculty
2.	Heritage walk and crafts corner:	May be individual or team	Temples / monumental places / Villages/ City Areas / Grama panchayat/ public associations/Governme nt Schemes officers/ campus etc	Site selection /proper consultation/Contin uous monitoring/ Information board	Report should be submitted by individual to the concerned evaluation authority	Evaluation as per the rubrics Of scheme and syllabus by Faculty
3.	Organic farming and waste management:	May be individual or team	Farmers land / parks / Villages visits / roadside/ community area / College campus etc	Group selection / proper consultation / Continuous monitoring / Information board	Report should be submitted by individual to the concerned evaluation authority	Evaluation as per the rubrics Of scheme and syllabus by Faculty
4.	Water conservation: & conservation techniques	May be individual or team	Villages/ City Areas / Grama panchayat/ public associations/Governme nt Schemes officers / campus etc	site selection / proper consultation/Contin uous monitoring/ Information board	Report should be submitted by individual to the concerned evaluation authority	Evaluation as per the rubrics Of scheme and syllabus by Faculty
5.	Food walk: Practices in society	May be individual or team	Villages/ City Areas / Grama panchayat/ public associations/Governme nt Schemes officers/ campus etc	Group selection / proper consultation / Continuous monitoring / Information board	Report should be submitted by individual to the concerned evaluation authority	Evaluation as per the rubrics Of scheme and syllabus by Faculty

SI.NO **Practice Session Description** 1 Lecture session in field to start activities 2 Students Presentation on Ideas 3 Commencement of activity and its progress 4 Execution of Activity 5 Execution of Activity 6 **Execution of Activity** 7 **Execution of Activity** 8 Case study based Assessment, Individual performance Sector/ Team wise study and its consolidation 9 10 Video based seminar for 10 minutes by each student At the end of semester with Report. Each student should do activities according to the scheme and syllabus. • At the end of semester student performance has to be evaluated by the faculty for the assigned activity progress and its completion. At last consolidated report of all activities from 1st to 5th, compiled report should be submitted as per the instructions and scheme. Assessment Details for CIE (both CIE and SEE) Weightage **CIE – 100%** Implementation strategies of the project (NSS work). Field Visit, Plan, Discussion 10 Marks The last report should be signed by • Commencement of activities and its progress 20 Marks NSS Officer, the HOD and principal. Case study based Assessment 20 Marks At last report should be evaluated by the NSS • Individual performance with report Sector wise study & its consolidation 5*5 = 2525 Marks officer of the institute. Video based seminar for 10 minutes by each 25 Marks Finally the consolidated marks sheet should student At the end of semester with Report. be sent to the university and also to be made Activities 1 to 5, 5*5 = 25available at LIC visit. 100 Marks Total marks for the course in each semester For each activity, 20 marks CIE will be evaluated for IA marks at the end of semester, Report and assessment copy should be made available in the department. Students should present the progress of the activities as per the schedule in the prescribed practical session in the field. There should be positive progress in the vertical order for the benefit of society in general through activities.

Plan of Action (Execution of Activities)
IV Semester

Course Title	ANALYSIS AND DESIGN OF ALGORITHMS	Semester	04
Course Code	MVJ22IS41	CIE	50
Total No. of Contact Hours	40 L : T : P :: 40 : 10 : 0	SEE	50
No. of Contact Hours/week	3	Total	100
Credits	3	Exam. Duration	3 Hours

Course objective is to: This course will enable students to

- Identify the importance of different asymptotic notation.
- Determine the complexity of recursive and non-recursive algorithms.
- Compare the efficiency of various design techniques like greedy method, backtracking etc.
- Apply appropriate method to solve a given problem.

	RBT Level	Hours 10
Module-1	L1,L2 , L3	110015 10

Basic Concept of Algorithms: Introduction-What is an Algorithm, Algorithm Specification, Analysis Framework, Performance Analysis: Space complexity, Time complexity. Asymptotic Notations: Big-Oh notation (O), Omega notation (Ω), Theta notation (Θ), Mathematical analysis of Non-Recursive and recursive Algorithms with Examples.

Applications: developing computational tools and bioinformatics software, Mathematics.

Video link / Additional online information (related to module if any):

- http://www.nptelvideos.com/video.php?id=1442
- https://nptel.ac.in/courses/106105085/

	RBT Level	
Module-2		Hours 10
	L2,L3	

Simple Design Techniques – Brute force : Selection sort, Bubble sort, Sequential Search and Brute-Force String Matching, Exhaustive search –Traveling Salesman problem, Knapsack problem, Assignment Problem.

Divide and Conquer: General method, Binary search, Finding the maximum and minimum , Merge sort, Quick sort , Strassen's matrix multiplication.

Applications: power distribution (electrical field), Online shopping and delivery (real time)

Video link / Additional online information (related to module if any):

- https://nptel.ac.in/courses/106102064/
- https://www.youtube.com/watch?v=MFfD57DTDQY

	RBT Level	
Module-3		Hours 10
	L2,L3 , L4	

Decrease and Conquer approach: Topological Sort, Decrease-by-a-Constant-Factor

Greedy Method: General method, Coin Change Problem, Knapsack Problem, Job sequencing with deadlines. Minimum cost spanning trees: Prim's Algorithm, Kruskal's Algorithm. Single source shortest paths: Dijkstra's Algorithm. Huffman Trees and Codes.

Laboratory Sessions/ Experimental learning: Solving real time problems using Greedy Technique.

Applications: Optimization Problems.

Video link : https://nptel.ac.in/courses/106/106/106106131/

	RBT Level	
Module-4		Hours 10
	L3,L4 , L6	

Dynamic Programming: General method with Examples, Multistage Graphs. Transitive Closure: Warshall's Algorithm, All Pairs Shortest Paths: Floyd's Algorithm, Optimal Binary Search Trees, Knapsack problem, Bellman-Ford Algorithm, Travelling Sales Person problem.

Laboratory Sessions/ Experimental learning: Solving real time problems using Dynamic Programming.

Applications: Computer Networks.

Video link: https://nptel.ac.in/courses/106/106/106106131/

	RBT Level	
Module-5		Hours 10
	L4,L5 ,L6	

Backtracking: General method, N-Queens problem, Sum of subsets problem, Graph coloring, Hamiltonian cycles Programme and Bound: Assignment Problem, Travelling Sales Person problem, 0/1 Knapsack problem.

LC Programme and Bound solution : FIFO Programme and Bound solution. NP-Complete and NP-Hard problems: P, NP, NP-Complete, and NP-Hard classes.

Laboratory Sessions/ Experimental learning: Solving real time problems using Backtracking Technique.

Applications: To solve puzzles such as crosswords, Sudoku etc.

Video link: https://nptel.ac.in/courses/106/106/106106131/

Course	e outcomes:
CO1	Describe the need of algorithm and the notations used in design analysis.
CO2	Compare the efficiency of brute force, divide and conquer techniques for problem solving.
CO3	Ability to apply greedy algorithms, hashing and string matching algorithms.
CO4	Ability to design efficient algorithms using various design techniques.
CO5	Ability to apply the knowledge of complexity classes P, NP, and NP Complete and prove certain problems are NP-Complete.
Text B	ooks:
1	Introduction to the Design and Analysis of Algorithms, Anany Levitin:, 2rd Edition, 2009. Pearson.
2	Computer Algorithms/C++, Ellis Horowitz, Satraj Sahni and Rajasekaran, 2nd Edition, 2014, Universities Press
	Reference Books :

1.	Design and Analysis of Algorithms, S. Sridhar, Oxford (Higher Education).
	Introduction to Algorithms, Thomas H. Cormen, Charles E. Leiserson, Ronal L. Rivest,
Ζ.	Clifford Stein, 3rd Edition, PHI.

						CO-P	O/PSO	Mapp	oing					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3				1							2	2	-
CO2	2	3			2								2	-
CO3	3	3	2	2								2	2	2
CO4	3	3	3						1			2	3	2
CO5	2	2	2	1	3							3	3	3

High-3, Medium-2, Low-1

Г

	S	Semester:IV		
	Ad (Theo	dvanced Java ory and Practice)		
Cou	rse Code:MVJ22IS42	CIE Marks:50+50		
Crec	L:T:P: 3:0:2	SEE Marks: 50 +50		
Hou	rs:40 L+ 26 P	SEE Duration: 03+03 Hours		
Cou	rse Learning Objectives: The students	will be able to		
1	Understanding the fundamentals of col	lection framework		
2	Demonstrate the fundamental concept	s of String operations and Swing applications		
3	3 Design and develop web applications using Java servlets and JSP			
4	Apply database interaction through Jav	a database Connectivity		

UNIT-I	
The collections and Framework: Collections Overview, The Collection Interfaces, The	9Hrs
Collection Classes, Accessing a collection Via an Iterator, Storing User Defined Classes	
in Collections, The Random Access Interface, Working With Maps, Comparators, The	
Collection Algorithms, Arrays,, The legacy Classes and Interfaces, Parting Thoughts on	
Collections.	
Text Book 1: Ch. 17	
UNIT-II	
String Handling : The String Constructors, String Length, Special String Operations, Character Extraction, String Comparison, Searching Strings, Modifying a String, Data Conversion Using valueOf(), Changing the Case of Characters Within a String, joining strings, Additional String Methods, StringBuffer, StringBuilder.	9Hrs
Text Book 1: Ch 15	
UNIT-III	
Introducing Swing: The Origin of Swing, Swing Is Built on AWT, Two Key Swing Features, The MVC Connection, Components and Containers, The Swing Packages, A Simple Swing Application, Event Handling, Painting in Swing.	9Hrs
Exploring Swing : ILabel and ImageIcon.JTextField.The Swing Buttons-JButton.	
JToggleButton, Check Boxes, Radio Buttons.	
Text Book 1: Ch 29 and Ch. 30	
UNIT-IV	
Introducing servlets: Background; The Life Cycle of a Servlet; Using Tomcat for	9Hrs
Servlet Development; A simple Servlet; The Servlet API; The Jakarta. Servlet Package;	
Reading Servlet Parameter; The Jakarta.servlet.http package; Handling HTTP Requests	
and Responses; Using Cookies; Session Tracking.	
Java Server Pages (JSP): JSP tags, Variables and Objects, Methods, Control statements,	

Loops, Request String, Parsing other information, User sessions, Cookies, Session Objects.

Text Book 1: Ch 31

Text Book2: Ch 11

UNIT-V

JDBC Objects: The Concept of JDBC; JDBC Driver Types; JDBC Packages; A Brief Overview of the JDBC process; Database Connection; Associating the JDBC/ODBC Bridge with the Database; Statement Objects; ResultSet; Transaction Processing; Metadata, Data types; Exceptions.

TextBook 2: Ch 06

LABORATORY EXPERIMENTS

- 1. Implement a java program to demonstrate creating an ArrayList, adding elements, removing elements, sorting elements of ArrayList. Also illustrate the use of toArray() method.
- 2. Implement a java program to illustrate the use of comparator.
- 3. Implement a java program to illustrate storing user defined classes in collection.
- 4. Implement a java program to illustrate the use of different types of string class constructors.
- 5. Implement a java program to illustrate the use of different types of character extraction, string comparison, string search and string modification methods.
- 6. Implement a java program to illustrate the use of different types of StringBuffer methods
- 7. Demonstrate a swing event handling application that creates 2 buttons Alpha and Beta and displays the text "Alpha pressed" when alpha button is clicked and "Beta pressed" when beta button is clicked.
- 8. A program to display greeting message on the browser "Hello UserName", "How Are You?", accept username from the client using servlet.
- 9. A servlet program to display the name, USN, and total marks by accepting student detail
- 10. A Java program to create and read the cookie for the given cookie name as "EMPID" and its value as "AN2356".
- 11. Write a JAVA Program to insert data into Student DATA BASE and retrieve info based on particular queries(For example update, delete, search etc...).
- 12. A program to design the Login page and validating the USER_ID and PASSWORD using JSP and DataBase.

Any 10 experiments to be conducted

Cours	se Outcomes: After completing the course, the students will be able to
CO1	Apply appropriate collection class/interface to solve the given problem

CO2	Demonstrate the concepts of String operations in Java					
CO3	Apply the concepts of Swings to build Java applications					
CO4	Develop web based applications using Java servlets and JSP					
CO5	Use JDBC to build database applications					
Text l	Books					
1.	Herbert Schildt: JAVA the Complete Reference, 7th/9th Edition, Tata McGraw Hill, 2007.					
2.	Jim Keogh: J2EE-TheCompleteReference, McGraw Hill, 2007.					

Refere	Reference Books									
1.	Stephanie Bodoff et al: The J2EE Tutorial, 2nd Edition, Pearson Education, 2004.									
2.	Y. Daniel Liang: Introduction to JAVA Programming, 7th Edition, Pearson Education, 2007.									
3.	Uttam K Roy, Advanced JAVA programming, Oxford University press, 2015.									

g

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the self -study are 20 (2 presentations are be held for 10 marks each). The marks obtained in test, quiz and self -studies are added to get marks out of 100 and report CIE for 50 marks.

Laboratory- 50 Marks

The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of weeks is considered for 30 marks. At the end of the semester a test is conducted for 10 marks. The students are encouraged to implement additional innovative experiments in the lab and are awarded 10 marks. Total marks for the laboratory is 50.

Semester End Examination (SEE):

Total marks: 50+50=100

SEE for 50 marksare executed by means of an examination.

The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the complete syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1			3	2	2	2		2				1
CO2		3	3	2	2	2		2				2
CO3		3	3	2	2	2		2				3
CO4		3	3	2	2	2		2				2
CO5		3	3	2	2	2		2				3

	Semester: IV								
	Database Management Systems								
Cou	rse Code:	MVJ22IS43	CIE Marks:50						
Cre	dits:	4	SEE Marks: 50						
L:T	:P:S:	3:0:2:0	SEE Duration: 3 Hrs						
Hou	rs:	40L+26T							
Cou	rse Learning Objectives: The student	ts will be able to							
1	To Provide a strong foundation in data	base concepts, techr	nology, and practice.						
2	To Practice SQL programming through	n a variety of databa	se problems						
3	To Understand the relational database	design principles							
4	To Demonstrate the use of concurrency and transactions in database.								
5	To Design and build database applicat	ions for real world p	problems						
6	To become familiar with database stor	age structures and a	ccess techniques						

UNIT-I

Introduction to Databases : Introduction, Characteristics of database approach, Advantages of using the DBMS approach. History of database applications.	8 Hrs				
Overview of Database Languages and Architectures: Data Models, Schemas, and Instances. Three schema architecture and data independence, database languages, and interfaces, The Database System environment.					
Conceptual Data Modelling using Entities and Relationships : Entity types, Entity sets and structural constraints, Weak entity types, ER diagrams, Specialization and Generalization.					
Textbook 1:Ch 1.1 to 1.8, 2.1 to 2.6, 3.1 to 3.10					
RBT: L1, L2, L3					
UNIT-II					
 Relational Model: Relational Model Concepts, Relational Model Constraints and relational database schemas, Update operations, transactions, and dealing with constraint violations. Relational Algebra: Unary and Binary relational operations, additional relational operations (aggregate, grouping, etc.) Examples of Queries in relational algebra. Mapping Conceptual Design into a Logical Design: Relational Database Design using ER- to-Relational mapping. SQL: SQL data definition and data types, Schema change statements in SQL, specifying constraints in SQL, retrieval queries in SQL, INSERT, DELETE, and UPDATE statements in SQL, Additional features of SQL Textbook 1: Ch 5.1 to 5.3, Ch 8.1 to 8.5; Ch 9.1 to 9.2 Ch 6.1 to 6.5 Textbook 2: 3.5 RBT: L1, L2, L3 	8 Hrs				

SQL: Advanced Queries: More complex SQL retrieval queries, Specifying constraints as	8 Hrs					
assertions and action triggers, Views in SQL.						
Normalization: Database Design Theory – Introduction to Normalization using Functional and						
Multivalued Dependencies: Informal design guidelines for relation schema, Functional						
Dependencies, Normal Forms based on Primary Keys, Second and Third Normal Forms, Boyce-						
Codd Normal Form, Multivalued Dependency and Fourth Normal Form, Join Dependencies and						
Fifth Normal Form.						
Textbook 1: Ch 14.1 to 14.7, Ch 20.1 to 20.6 RBT: L1, L2, L3						
UNIT-IV						
Transaction Processing: Introduction to Transaction Processing, Transaction and System	8 Hrs					
concepts, Desirable properties of Transactions, Characterizing schedules based on recoverability,						
Characterizing schedules based on Serializability, Transaction support in SQL.						
Textbook 1: Ch 7.1 to 7.3,						
RBT: L1, L2, L3						
UNIT-V						
Concurrency Control in Databases: Two-phase locking techniques for Concurrency control,	8 Hrs					
Concurrency control based on Timestamp ordering, Multiversion Concurrency control						
techniques, Validation Concurrency control techniques, Granularity of Data items and Multiple						
Granularity Locking. NOSQL Databases and Big Data Storage Systems: Introduction to						
NOSQL Systems, The CAP Theorem, Document-Based NOSQL Systems and MongoDB,						
NOSQL Key-Value Stores, Column-Based or Wide Column NOSQL Systems, NOSQL Graph						
Databases and Neo4j						
Textbook 1:Chapter 21.1 to 21.5, Chapter 24.1 to 24.6						
RBT: L1, L2, L3						

PRACTICAL COMPONENTS FOR IPCC

Exp 1:	Create	a	table	called	Employee	С	execute	the	following.	2 hrs
	Employee(EMPNO,ENAME,JOB, MANAGER_NO, SAL, COMMISSION)									
	1. Create a user and grant all permissions to the user.									
	2. Insert the any three records in the employee table contains attributes									
	EMPNO,EI	NAM	1E JOB, N	MANAGEI	R_NO, SAL, C	OMM	ISSION and	use rollb	ack. Check	
	the result.									
Exp 2:	Create	a	table	called	Employee	С	execute	the	following.	2 hrs
	Employee(l	EMP	NO,ENA	ME,JOB, 1	MANAGER_N	O, SA	L, COMMIS	SSION)		
	3. Add primary key constraint and not null constraint to the employee table.									
	4. Insert null values to the employee table and verify the result.									
Exp 3:	Create a tabl	le cal	led Emplo	oyee that co	ntain attributes I	EMPN	O,ENAME,J	OB, MG	R,SAL C	2 hrs
	execute the	follo	owing.							
	1. Add a col	lumn	commiss	ion with do	main to the Emp	ployeet	table.			
	2. Insert any	v five	records in	to the table.						

	3. Update the column details of job	
	4. Rename the column of Employ table using alter command.	
	5. Delete the employee whose Empno is 105.	
Exp 4:	Queries using aggregate functions(COUNT,AVG,MIN,MAX,SUM),Group by,Orderby.	2 hrs
	Employee(E_id, E_name, Age, Salary)	
	1. Create Employee table containing all Records E_id, E_name, Age, Salary.	
	2. Count number of employee names from employeetable	
	3. Find the Maximum age from employee table.	
	4. Find the Minimum age from employeetable.	
Exp 5:	Queries using aggregate functions(COUNT,AVG,MIN,MAX,SUM),Group by,Orderby.	2 hrs
	Employee(E_id, E_name, Age, Salary)	
	5. Find salaries of employee in Ascending Order.	
	6. Find grouped salaries of employees.	
Exp 6:	Create a row level trigger for the customers table that would fire for INSERT or UPDATE or	2 hrs
	DELETE operations performed on the CUSTOMERS table.	
	This trigger will display the salary difference between the old C new Salary.	
	CUSTOMERS(ID,NAME,AGE,ADDRESS,SALARY)	
Exp 7:	Implementations of Normal Forms	2 hrs
Exp 8:	Create cursor for Employee table C extract the values from the table. Declare the	2 hrs
	variables, Open the cursor C extrct the values from the cursor.	
	Close the cursor. Employee(E_id, E_name, Age, Salary)	
Exp 9:	Write a PL/SQL block of code using parameterized Cursor, that will merge the data available	2 hrs
	in the newly created table N_RollCall with the data available in the table O_RollCall. If the	
	data in the first table already exist in the second table then that data	
	should be skipped.	
Exp	Install an Open Source NoSQL Data base MangoDB C perform basic CRUD(Create, Read,	2 hrs
10:	Update C Delete) operations. Execute MangoDB basic Queries using CRUD	
	operations.	

Cours	Course Outcomes: After completing the course, the students will be able to							
CO1	Describe the basic elements of a relational database management system							
CO2	Design entity relationship for the given scenario.							
CO3	Apply various Structured Query Language (SQL) statements for database manipulation							
CO4	Analyse various normalization forms for the given application							
CO5	Develop database applications for the given real world problem. And Understand the concepts related to							
	NoSQL databases.							

Text	Fext Books									
1. Fundamentals of Database Systems, Ramez Elmasri and Shamkant B. Navathe, 7th Edition, 2017, Pearson										
2.	Database management systems, Ramakrishnan, and Gehrke, 3rd Edition, 2014, McGraw Hill									

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

Mini Project:

Project Based Learning

Continuous Internal Evaluation (CIE): Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE. A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 50% (50 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together

CIE for the theory component of IPCC

1. Two Tests each of 20 Marks

2. Two assignments each of 10 Marks/One Skill Development Activity of 20 marks

3. Total Marks of two tests and two assignments/one Skill Development Activity added will be CIE for 60 marks,

marks scored will be proportionally scaled down to 30 marks.

CIE for the practical component of IPCC

On completion of every experiment/program in the laboratory, the students shall be evaluated and marks shall be awarded on the same day. The 15 marks are for conducting the experiment and preparation of the laboratory record, the other 05 marks shall be for the test conducted at the end of the semester.

The CIE marks awarded in the case of the Practical component shall be based on the continuous evaluation of the laboratory report. Each experiment report can be evaluated for 10 marks. Marks of all experiments" write-ups are added and scaled down to 15 marks.

The laboratory test at the end /after completion of all the experiments shall be conducted for 50 marks and scaled down to 05 marks.

Scaled-down marks of write-up evaluations and tests added will be CIE marks for the laboratory component of IPCC for 20 marks.

SEE for IPCC

Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the course (duration 03 hours)

- 1. The question paper will be set for 100 marks and marks scored will be scaled down proportionately to 50 marks.
- 2. The question paper will have ten questions. Each question is set for 20 marks.
- 3. There will be 2 questions from each module. Each of the two questions under a module (with a maximum
- of 3 sub-questions), should have a mix of topics under that module.
- 4. The students have to answer 5 full questions, selecting one full question from each module.

The theory portion of the IPCC shall be for both CIE and SEE, whereas the practical portion will have a CIE component only. Questions mentioned in the SEE paper shall include questions from the practical component).

The minimum marks to be secured in CIE to appear for SEE shall be the 15 (50% of maximum marks-30) in the theory component and 10 (50% of maximum marks -20) in the practical component. The laboratory component of the IPCC shall be for CIE only. However, in SEE, the questions from the laboratory component shall be included. The maximum of 04/05 questions to be set from the practical component of IPCC, the total marks of all questions should not be more than the 20 marks.

SEE will be conducted for 100 marks and students shall secure 40% of the maximum marks to qualify in the SEE. Marks secured will be scaled down to 50. (Student has to secure an aggregate of 50% of maximum marks of the course(CIE+SEE)

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	POG	PO10	PO11	PO12
CO1	1											
CO2	1		2	2			1			2	2	
CO3	1							2	2	2	1	
CO4	1	2				2						2

DISCRETE MATHEM	Semester	IV								
Course Code	BCS405A	CIE Marks	50							
Teaching Hours/Week (L:T:P:S)	2:2:0:0	SEE Marks	50							
Total Hours of Pedagogy	40	Total Marks	100							
Credits	03	Exam Hours	03							
Examination type (SEE)	Theor	у								

Course objectives:

- 1. To help students to understand discrete and continuous mathematical structures
- 2. To impart basics of relations and functions.
- 3. To facilitate students in applying principles of Recurrence Relations to find the generating functions and solve the Recurrence relations.
- 4 To have the knowledge of groups and their properties to understand the importance of algebraic properties relative to various number systems

Teaching-Learning Process

Pedagogy (General Instructions):

These are sample Strategies, teachers can use to accelerate the attainment of the various course outcomes.

- 1. In addition to the traditional lecture method, different types of innovative teaching methods may be adopted so that the delivered lessons shall develop students' theoretical and applied Mathematical skills.
- 2. State the need for Mathematics with Engineering Studies and Provide real-life examples.
- 3. Support and guide the students for self-study.
- 4. You will assign homework, grading assignments and quizzes, and documenting students' progress.
- 5. Encourage the students to group learning to improve their creative and analytical skills.
- 6. Show short related video lectures in the following ways:
 - As an introduction to new topics (pre-lecture activity).
 - As a revision of topics (post-lecture activity).
 - As additional examples (post-lecture activity).
 - As an additional material of challenging topics (pre-and post-lecture activity).
 - As a model solution for some exercises (post-lecture activity).

Module-1: Fundamentals of Logic

Basic Connectives and Truth Tables, Logic Equivalence – The Laws of Logic, Logical Implication – Rules of Inference. The Use of Quantifiers, Quantifiers, Definitions and the Proofs of Theorems. (8 hours)

(RBT Levels: L1, L2 and L3)

Module-2: Properties of the Integers

Mathematical Induction, The Well Ordering Principle _ Mathematical Induction, Recursive Definitions.

Fundamental Principles of Counting: The Rules of Sum and Product, Permutations, Combinations _The Binomial Theorem, Combinations with Repetition.(8 Hours)

(RBT Levels: L1, L2 and L3)

Module-3: Relations and Functions

Cartesian Products and Relations, Functions – Plain and One-to-One, Onto Functions. The Pigeonhole Principle, Function Composition and Inverse Functions

Properties of Relations, Computer Recognition – Zero-One Matrices and Directed Graphs, Partial Orders – Hasse Diagrams, Equivalence Relations and Partitions. (8 hours)

(RBT Levels: L1, L2 and L3)

Module-4: The Principle of Inclusion and Exclusion

The Principle of Inclusion and Exclusion, Generalizations of the Principle, Derangements – Nothing is in its Right Place, Rook Polynomials.

Recurrence Relations:First Order Linear Recurrence Relation, The Second Order LinearHomogeneous Recurrence Relation with Constant Coefficients.(8 Hours)

(RBT Levels: L1, L2 and L3)

Module-5: Introduction to Groups Theory

Definitions and Examples of Particular Groups Klein 4-group, Additive group of Integers modulo n, Multiplicative group of Integers modulo-p and permutation groups, Properties of groups, Subgroups, cyclic groups, Cosets, Lagrange's Theorem. (8 Hours)

(RBT Levels: L1, L2 and L3)

Course outcome (Course Skill Set)

At the end of the course, the student will be able to:

- 1. Apply concepts of logical reasoning and mathematical proof techniques in proving theorems and statements.
- 2. Demonstrate the application of discrete structures in different fields of computer science.
- **3.** Apply the basic concepts of relations, functions and partially ordered sets for computer representations.
- 4. Solve problems involving recurrence relations and generating functions.
- 5. Illustrate the fundamental principles of Algebraic structures with the problems related to computer science & engineering.

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE, the minimum passing mark is 35% of the maximum marks (18 out of 50 marks). The student is declared as a pass in the course if he/she secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- There are 25 marks for the CIE's Assignment component and 25 for the Internal Assessment Test component.
- Each test shall be conducted for 25 marks. The first test will be administered after 40-50% of the coverage of the syllabus, and the second test will be administered after 85-90% of the coverage of the syllabus. The average of the two tests shall be scaled down to 25 marks
- Any two assignment methods mentioned in the 220B2.4, if an assignment is project-based then only one assignment for the course shall be planned. The schedule for assignments shall be planned properly by the course teacher. The teacher should not conduct two assignments at the end of the semester if two assignments are planned. Each assignment shall be conducted for 25 marks. (If two assignments are conducted then the sum of the two assignments shall be scaled down to 25 marks) The final CIE marks of the course out of 50 will be the sum of the scale-down marks of tests and assignment/s marks.

The Internal Assessment Test question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester-End Examination:

Theory SEE will be conducted by the University as per the scheduled timetable, with common question papers for the course (duration 03 hours).

- The question paper will have ten questions. Each question is set for 20 marks. 1.
- There will be 2 questions from each module. Each of the two questions under a module (with a 2 maximum of 3 sub-questions), **should have a mix of topics** under that module.
- The students have to answer 5 full questions, selecting one full question from each module. 3.

Marks scored shall be proportionally reduced to 50 marks

Suggested Learning Resources:

Books (Name of the author/Title of the Book/Name of the publisher/Edition and Year) Text Books:

- 1. Ralph P. Grimaldi, B V Ramana: "Discrete Mathematical Structures an Applied Introduction", 5th Edition, Pearson Education, 2004.
- 2. Ralph P. Grimaldi: "Discrete and Combinatorial Mathematics", 5th Edition, Pearson Education. 2004. **Reference Books:**

- 1. Basavaraj S Anami and Venakanna S Madalli: "Discrete Mathematics A Concept-based approach", Universities Press, 2016
- 2. Kenneth H. Rosen: "Discrete Mathematics and its Applications", 6th Edition, McGraw Hill, 2007.
- 3. Jayant Ganguly: "A Treatise on Discrete Mathematical Structures", Sanguine-Pearson, 2010.
- 4 **D.S.** Malik and M.K. Sen: "Discrete Mathematical Structures Theory and Applications, Latest Edition, Thomson, 2004.

5. Thomas Koshy: "Discrete Mathematics with Applications", Elsevier, 2005, Reprint 2008. Web links and Video Lectures (e-Resources):

- http://nptel.ac.in/courses.php?disciplineID=111 •
- http://www.class-central.com/subject/math(MOOCs) •
- http://academicearth.org/
- VTU e-Shikshana Program •
- VTU EDUSAT Program. •
- http://www.themathpage.com/
- http://www.abstractmath.org/
- http://www.ocw.mit.edu/courses/mathematics/

Activity-Based Learning (Suggested Activities in Class)/Practical-Based Learning

- Quizzes
- Assignments
- Seminar

BIOLOGY	Semester	IV	
Course Code	BBOK407	CIE Marks	50
Teaching Hours/Week (L:T:P: S)	3:0:0:0	SEE Marks	50
Total Hours of Pedagogy	40	Total Marks	100
Credits	03	Exam Hours	3
Examination type (SEE)	Theory		

Course objectives:

- To familiarize the students with the basic biological concepts and their engineering applications.
- To enable the students with an understanding of biodesign principles to create novel devices and structures.
- To provide the students an appreciation of how biological systems can be re-designed as substitute products for natural systems.
- To motivate the students to develop interdisciplinary vision of biological engineering.

Teaching-Learning Process (General Instructions)

These are sample Strategies, which teachers can use to accelerate the attainment of the various course outcomes.

- 1. Explanation via real life problem, situation modelling, and deliberation of solutions, hands-on sessions, reflective and questioning /inquiry-based teaching.
- 2. Instructions with interactions in classroom lectures (physical/hybrid).
- 3. Use of ICT tools, including YouTube videos, related MOOCs, AR/VR/MR tools.
- 4. Flipped classroom sessions ($\sim 10\%$ of the classes).
- 5. Industrial visits, Guests talks and competitions for learning beyond the syllabus.
- 6. Students' participation through audio-video based content creation for the syllabus (as assignments).
- 7. Use of gamification tools (in both physical/hybrid classes) for creative learning outcomes.
- 8. Students' seminars (in solo or group) /oral presentations.

Module-1 (8 Hours)

INTRODUCTION TO BIOLOGY:

The cell: the basic unit of life, Structure and functions of a cell. The Plant Cell and animal cell, Prokaryotic and Eukaryotic cell, Stem cells and their application. Biomolecules: Properties and functions of Carbohydrates, Nucleic acids, proteins, lipids. Importance of special biomolecules; Enzymes (Classification (with one example each), Properties and functions), vitamins and hormones.

Module-2(8 Hours)

BIOMOLECULES AND THEIR APPLICATIONS (QUALITATIVE):

Carbohydrates (cellulose-based water filters, PHA and PLA as bioplastics), Nucleic acids (DNA Vaccine for Rabies and RNA vaccines for Covid19, Forensics – DNA fingerprinting), Proteins (Proteins as food – whey protein and meat analogs, Plant based proteins), lipids (biodiesel, cleaning agents/detergents), Enzymes (glucose-oxidase in biosensors, lignolytic enzyme in bio-bleaching).

Module-3(8 Hours)

HUMAN ORGAN SYSTEMS AND BIO DESIGNS (QUALITATIVE):

Brain as a CPU system (architecture, CNS and Peripheral Nervous System, signal transmission, EEG, Robotic arms for prosthetics. Engineering solutions for Parkinson's disease).Eye as a Camera system (architecture of rod and cone cells, optical corrections, cataract, lens materials, bionic eye). Heart as a pump system (architecture, electrical signalling - ECG monitoring and heart related issues, reasons for blockages of blood vessels, design of stents, pace makers, defibrillators). Lungs as purification system (architecture, gas exchange mechanisms, spirometry, abnormal lung physiology - COPD, Ventilators, Heart-lung machine). Kidney as a filtration system (architecture, mechanism of filtration, CKD, dialysis systems).

Module-4 (8 Hours)

NATURE-BIOINSPIRED MATERIALS AND MECHANISMS (QUALITATIVE):

Echolocation (ultrasonography, sonars), Photosynthesis (photovoltaic cells, bionic leaf). Bird flying (GPS and aircrafts), Lotus leaf effect (Super hydrophobic and self-cleaning surfaces), Plant burrs (Velcro), Shark skin (Friction reducing swim suits), Kingfisher beak (Bullet train). Human Blood substitutes - hemoglobin-based oxygen carriers (HBOCs) and perflourocarbons (PFCs).

Module-5(8 Hours)

TRENDS IN BIOENGINEERING (QUALITATIVE):

Muscular and Skeletal Systems as scaffolds (architecture, mechanisms, bioengineering solutions for muscular dystrophy and osteoporosis), scaffolds and tissue engineering, Bioprinting techniques and materials, 3D printing of ear, bone and skin. 3D printed foods. Electrical tongue and electrical nose in food science, DNA origami and Biocomputing, Bioimaging and Artificial Intelligence for disease diagnosis. Self-healing Bioconcrete (based on bacillus spores, calcium lactate nutrients and biomineralization processes) and Bioremediation and Biomining via microbial surface adsorption (removal of heavy metals like Lead, Cadmium, Mercury, Arsenic).

Course outcome (Course Skill Set)

At the end of the course, the student will be able to :

- 1. Elucidate the basic biological concepts via relevant industrial applications and case studies.
- 2. Evaluate the principles of design and development, for exploring novel bioengineering projects.
- 3. Corroborate the concepts of biomimetics for specific requirements.
- 4. Think critically towards exploring innovative biobased solutions for socially relevant problems.

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- For the Assignment component of the CIE, there are 25 marks and for the Internal Assessment Test component, there are 25 marks.
- The first test will be administered after 40-50% of the syllabus has been covered, and the second test will be administered after 85-90% of the syllabus has been covered
- Any two assignment methods mentioned in the 220B2.4, if an assignment is project-based then only one assignment for the course shall be planned. The teacher should not conduct two assignments at the end of the semester if two assignments are planned.
- For the course, CIE marks will be based on a scaled-down sum of two tests and other methods of assessment.

Internal Assessment Test question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester-End Examination:

Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the course (**duration 03 hours**).

- 1. The question paper will have ten questions. Each question is set for 20 marks.
- 2. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 2 sub-questions), **should have a mix of topics** under that module.
- 3. The students have to answer 5 full questions, selecting one full question from each module.
- 4. Marks scored shall be proportionally reduced to 50 marks

Suggested Learning Resources:

Books

- Biology for Engineers, Rajendra Singh C and Rathnakar Rao N, Rajendra Singh C and Rathnakar Rao N Publishing, Bengaluru, 2023.
- Human Physiology, Stuart Fox, Krista Rompolski, McGraw-Hill eBook. 16th Edition, 2022
- Biology for Engineers, Thyagarajan S., Selvamurugan N., Rajesh M.P., Nazeer R.A., Thilagaraj W., Barathi S., and Jaganthan M.K., Tata McGraw-Hill, New Delhi, 2012.
- Biology for Engineers, Arthur T. Johnson, CRC Press, Taylor and Francis, 2011
- Biomedical Instrumentation, Leslie Cromwell, Prentice Hall 2011.
- Biology for Engineers, Sohini Singh and Tanu Allen, Vayu Education of India, New Delhi, 2014.
- Biomimetics: Nature-Based Innovation, Yoseph Bar-Cohen, 1st edition, 2012, CRC Press.
- Bio-Inspired Artificial Intelligence: Theories, Methods and Technologies, D. Floreano and C. Mattiussi, MIT Press, 2008.
- Bioremediation of heavy metals: bacterial participation, by C R Sunilkumar, N GeethaA C Udayashankar Lambert Academic Publishing, 2019.
- 3D Bioprinting: Fundamentals, Principles and Applications by Ibrahim Ozbolat, Academic Press, 2016.
- Electronic Noses and Tongues in Food Science, Maria Rodriguez Mende, Academic Press, 2016

Web links and Video Lectures (e-Resources):

- https://nptel.ac.in/courses/121106008
- https://freevideolectures.com/course/4877/nptel-biology-engineers-other-non-biologists
- https://ocw.mit.edu/courses/20-020-introduction-to-biological-engineering-design-spring-2009
- https://ocw.mit.edu/courses/20-010j-introduction-to-bioengineering-be-010j-spring-2006
- https://www.coursera.org/courses?query=biology
- https://onlinecourses.nptel.ac.in/noc19_ge31/preview
- https://www.classcentral.com/subject/biology
- https://www.futurelearn.com/courses/biology-basic-concepts

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

- Group Discussion of Case studies
- Model Making and seminar/poster presentations
- Design of novel device/equipment like Cellulose-based water filters, Filtration system

		Semester: IV					
	UNIVERSAL HUMAN VALUES						
Cou	rse Code:	MVJ22UHV48	CIE Marks: 50				
Cred	its:	L: T:P: 1:0:0	SEE Marks: 50				
Hou	rs:	15 L	SEE Duration: 02 Hrs.				
Cou	rse Learning O	bjectives: The students will be able to					
1	Appreciate the sustained happ	essential complementary between 'VALU iness and prosperity which are the core	JES' and 'SKILLS' to ensure e aspirations of all human-beings.				
2	Facilitate the de as well as too Human reality perspective for living in a natu	evelopment of a Holistic perspective amon wards happiness and prosperity based and the rest of existence. Such a hol- ms the basis of Universal Human Value ral way.	ng students towards life and profession on a correct understanding of the istic s and movement towards value-based				
3	Highlight plaus human conduct interaction with	sible implications of such a Holistic under et, trustful and mutually fulfilling hum n Nature.	standing in terms of ethical an behavior and mutually. enriching				

UNIT-I	
Introduction to Value Education: Right Understanding, Relationship and Physical	
Facility (Holistic Development and the Role of Education), Understanding Value	
Education, Self-exploration as the Process for Value Education, Continuous	
Happiness, and Prosperity – the Basic Human Aspirations, Happiness, and Prosperity	
- Current Scenario, Method to Fulfill the Basic Human Aspirations.	

Practical Sessions: (1) Sharing about Oneself (2) Exploring Human Consciousness (3) Exploring Natural Acceptance.

Video link:

- 1. https://www.youtube.com/watch?v=85XCw8SU084
- 2. https://www.youtube.com/watch?v=E1STJoXCXUU&list=PLWDeKF97v9SP_ Kt6jqzA3p Z3yA7g_OAQz
- $\label{eq:linear} \texttt{Matters://www.youtube.com/channel/UCQxWr5QB} eZUnwxSwxXEkQw$

UNIT-II

Harmony in the Human Being: Understanding Human being as the Co- existence of the Self and the Body, distinguishing between the Needs of the Self and the Body, The Body as an Instrument of the Self, Understanding Harmony in the Self, Harmony of the Self with the Body, Program to ensure self-regulation and Health.

Practical Sessions: (4) Exploring the difference of Needs of Self and Body (5) Exploring Sources of Imagination in the Self (6) Exploring Harmony of Self with the Body

3 Hrs.

Video link:	
1. https://www.youtube.com/watch?y=GpuZo495F24	
 https://www.youtube.com/channel/UCQxWr5QB_eZUnwxSwxXEkQw 	
UNIT-III	
 Harmony in the Family and Society: Harmony in the Family – the Basic Unit of Human Interaction, 'Trust' – the Foundational Value in Relationship, 'Respect' – as the Right Evaluation, Other Feelings, Justice in Human-to-Human Relationship, Understanding Harmony in the Society, Vision for the Universal Human Order. Practical Sessions: (7) Exploring the Feeling of Trust (8) Exploring the Feeling of Respect (9) Exploring Systems to fulfill Human Goal Video link: 1. https://www.youtube.com/watch?v=F2KVW4WNnS 2. https://www.youtube.com/channel/LICOxWr5OB_e7UnwxSwxXEkOw 	3 Hrs.
UNIT-IV	
 Harmony in the Nature/Existence: Understanding Harmony in the Nature, Interconnectedness, self-regulation and Mutual Fulfillment among the Four Orders of Nature, Realizing Existence as Co-existence at All Levels, The Holistic Perception of Harmony in Existence. Practical Sessions: (10) Exploring the Four Orders of Nature (11) Exploring Co- existence in Existence. Video link: https://www.youtube.com/watch?v=1HR-QB2mCF0 https://www.youtube.com/watch?v=lfN8q0xUSpw https://www.youtube.com/channel/UCQxWr5QB_eZUnwxSwxXEkQw 	3 Hrs.
UNIT-V Implications of the Holistic Understanding – a Look at Professional Ethics: Natural	
 Acceptance of Human Values, Definitiveness of (Ethical) Human Conduct, A Basis for Humanistic Education, Humanistic Constitution and Universal Human Order, Competence in Professional Ethics, Holistic Technologies, Production Systems and Management Models-Typical Case Studies, Strategies for Transition towards Value-based Life and Profession Practical Sessions: (12) Exploring Ethical Human Conduct (13) Exploring Humanistic Models in Education (14) Exploring Steps of Transition towards Universal Human Order Video link: 1. https://www.youtube.com/watch?v=BikdYub6RY0 2. https://www.youtube.com/channel/UCQxWr5QB_eZUnwxSwxXEkQw 	3 Hrs.

Course Outcomes: After completing the course, the students will be able toCO1Explore themselves, get comfortable with each other and with the teacher

CO2	Enlist their desires and the desires are not vague.
CO3	Restate that the natural acceptance (intention) is always for living in harmony,
	only competence is lacking
CO4	Differentiate between the characteristics and activities of different orders. and study
	the mutual fulfillment among them
CO5	Present sustainable solutions to the problems in society and nature

Reference Books

3.	AICTE SIP UHV-I Teaching Material, https://fdp-si.aicte india.org/ AICTE Sip UHV
	_download.php
4.	A Foundation Course in Human Values and Professional Ethics, R R Gaur, R Asthana,
	G P Bagaria, 2nd Revised Edition, Excel Books, New Delhi, 2019. ISBN 978-93-87034-47-1
3.	Teachers' Manual for A Foundation Course in Human Values and Professional Ethics,
	R R Gaur, R Asthana, G P Bagaria, 2nd Revised Edition, Excel Books, New Delhi, 2019. ISBN
	978-93-87034-53-2
4.	Human Values and Professional Ethics by R R Gaur, R Sangal, G P Bagaria, Excel Books,
	New Delhi 2010

Continuous Internal Evaluation (CIE):

CIE for 50 marks is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. The test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in tests, quizzes and assignment are added to get marks out of 100 and report CIE for 50 marks. Semester End Examination (SEE):

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the entire syllabus. Part – B Students must answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three subdivisions. Each unit will have an internal choice in which both questions cover the entire unit having same complexity in terms of COs and Bloom's taxonomy level. Total marks: 50+50=100

					CO	-PO M	apping	,				
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	1	-	-	-	2	2	3	2	1	2	1
CO2	-	1	-	-	-	2	2	3	2	1	2	1
CO3	-	1	-	-	-	2	2	3	2	1	2	1
CO4	-	1	-	-	-	2	2	3	2	1	2	1
CO5	-	1	_	-	_	2	2	3	2	1	2	1

V Semester

Course Title	Software Engineering	Semester	V
	and Project		
	Management		
Course code	MVJ22IS51	CIE	50
Total No.of Contact	40	SEE	50
Hours			
No.Of Contact	3(L:T:P:S::3:0:0:0)	Total	100
Hours/week			
Credits	3	Exam Duration	3 hours

Course Objective : This course will enable students to

1. Outline software engineering principles and activities involved in building large software programs and identify ethical and professional issues faced by Software Engineers.

2. Describe the process of requirement gathering, requirement classification, requirement specification and requirements validation.

3. Infer the fundamentals of object-oriented concepts, differentiate system models, use UML diagrams, apply design patterns and explain the role of DevOps in Agile Implementation.

4. Discuss various types of software testing practices and software evolution processes. Recognize the importance of Project Management with its methods and methodologies and identify software quality parameters and quantify software using measurements and metrics. List software quality standards and outline the practices involved.

MODULE 1	8 HRS
Introduction: The evolving role of software, Software, The changing nature of software	re, Software
engineering, A Process Framework, Process Patterns, Process Assessment, Personal and To	eam Process
Models, Process Technology, Product and Process.	

Process Models: Prescriptive models, Waterfall model, Incremental process models, Evolutionary. process models, Specialized process models.

Requirements Engineering: Requirements Engineering Task, Initiating the Requirements Engineering process, Eliciting Requirements, Developing use cases, Building the analysis model, Negotiating Requirements, Validating Requirements, Software Requirement Document.

MODULE 2	8 HRS
Introduction, Modelling Concepts and Class Modelling: What is Object orientation?	What is OO
development? OO Themes; Evidence for usefulness of OO development; OO model	ling history.
Modelling as Design technique: Modelling, abstraction, The Three models. Class Modelling	g: Object and
Class Concept, Link and associations concepts, Generalization and Inheritance, A sample	class model,
Navigation of class models, Introduction to RUP and UML diagrams.	
Building the Analysis Models: Requirement Analysis, Analysis Model Approaches, Dat	ta modelling
Concepts, Object Oriented Analysis, Scenario-Based modelling, Flow-Oriented Modelling,	class Based
modelling, Creating a Behavioural Model.	
MODULE 3	QUDC
MODULES	<u>о пкэ</u>
Software Testing: A Strategic Approach to Software Testing, Strategic Issues, Test S	trategies for
Software Testing: A Strategic Approach to Software Testing, Strategic Issues, Test S Conventional Software, Test Strategies for Object -Oriented Software, Validation Test	trategies for ting, System
Software Testing: A Strategic Approach to Software Testing, Strategic Issues, Test S Conventional Software, Test Strategies for Object -Oriented Software, Validation Test Testing, The Art of Debugging. Agile Methodology & DevOps: Before Agile – Wat	trategies for ting, System terfall, Agile
Software Testing: A Strategic Approach to Software Testing, Strategic Issues, Test S Conventional Software, Test Strategies for Object -Oriented Software, Validation Test Testing, The Art of Debugging. Agile Methodology & DevOps: Before Agile – Wat Development. What is DevOps? DevOps Importance and Benefits, DevOps Principles and	trategies for ting, System terfall, Agile Practices, 7
Software Testing: A Strategic Approach to Software Testing, Strategic Issues, Test S Conventional Software, Test Strategies for Object -Oriented Software, Validation Test Testing, The Art of Debugging. Agile Methodology & DevOps: Before Agile – Wat Development. What is DevOps? DevOps Importance and Benefits, DevOps Principles and C's of DevOps Lifecycle for Business Agility, DevOps and Continuous Testing, How to C	trategies for ting, System terfall, Agile Practices, 7 Choose Right
Software Testing: A Strategic Approach to Software Testing, Strategic Issues, Test S Conventional Software, Test Strategies for Object -Oriented Software, Validation Test Testing, The Art of Debugging. Agile Methodology & DevOps: Before Agile – Wat Development. What is DevOps? DevOps Importance and Benefits, DevOps Principles and C's of DevOps Lifecycle for Business Agility, DevOps and Continuous Testing, How to C DevOps Tools?, Challenges with DevOps Implementation	trategies for ting, System terfall, Agile Practices, 7 Choose Right
Software Testing: A Strategic Approach to Software Testing, Strategic Issues, Test S Conventional Software, Test Strategies for Object -Oriented Software, Validation Test Testing, The Art of Debugging. Agile Methodology & DevOps: Before Agile – Wat Development. What is DevOps? DevOps Importance and Benefits, DevOps Principles and C's of DevOps Lifecycle for Business Agility, DevOps and Continuous Testing, How to C DevOps Tools?, Challenges with DevOps Implementation MODULE 4	8 HRS trategies for ting, System terfall, Agile Practices, 7 Choose Right 8 HRS

Contract Management, Activities Covered by Software Project Management, Plans, Methods and Methodologies, Some ways of categorizing Software Projects, Stakeholders, Setting Objectives, Business Case, Project Success and Failure, Management and Management Control, Project Management life cycle, Traditional versus Modern Project Management Practices.

MODULE 58 HRSActivity Planning: Objectives of Activity Planning, When to Plan, Project Schedules, Sequencing and
Scheduling Activities, Network Planning Models, Forward Pass– Backward Pass, Identifying critical
path, Activity Float, Shortening Project Duration, Activity on Arrow Networks.Software Economics: Evolution of Software Economics, Improving Software Economics, The old way
and the new way. Life-Cycle Phases and Process artifacts.

Course Outcome: students will be able to

CO1	Understand the activities involved in software engineering and analyze the role of various
	process models
CO2	Explain the basics of object-oriented concepts and build a suitable class model using modelling.
	Techniques.
CO3	Describe various software testing methods and to understand the importance of agile
	methodology and DevOps.
CO4	Illustrate the role of project planning and quality management in software development
CO5	Understand the importance of activity planning and different planning models

Textbooks :

1	Roger S. Pressman: Software Engineering-A Practitioners approach, 7th Edition, Tata McGraw			
2	Michael Blaha, James Rumbaugh: Object Oriented Modelling and Design with UML, 2nd			
	Edition, Pearson Education, 2005.			
3	Bob Hughes, Mike Cotterell, Rajib Mall: Software Project Management, 6th Edition, McGraw			
	Hill Education, 2018			
4	Deepak Gaikwad, Viral Thakkar, DevOps Tools from Practitioner's Viewpoint, Wiley			
5	Ian Sommerville: Software Engineering, 9th Edition, Pearson Education, 2012.			
6	Management and Entrepreneurship, N V R Naidu, T Krishna Rao 4th reprint Willey Publications.			
7	Schaum's outline oftheory and problems ofsoftware engineering, David A. Gustafson,			
	McGrawHill's			

References:

1	Principles of Management, P C Tripathi, P N Reddy, 5th edition, Tata Mc Graw Hill, 2012
2	Dynamics of Entrepreneurial Development & Management, Vasant Desai, Himalaya publishing
	house, 2009

CIE Marks:

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

SEE Assessment:

Question paper for the SEE consists of two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus. Part B also covers the entire syllabus consisting of five questions having

choices and may contain sub-divisions, each carrying 16 marks. Students must answer five full questions.

One question must be set from each unit. The duration of examination is 3 hours.

CO-PO Mapping :	ping :	Mar	CO-PO
------------------------	--------	-----	-------

0010	coromapping.											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	3	2	3					2	3	3
CO2	1	3	3	2	2					2	3	3
CO3	2	3	2	2	3					2	3	3
CO4	2	2	2	2	2					3	3	3
CO5	1	2	3	2	2					2	3	3

3-HIGH 2-MODERATE 1-LOW

Course Title	Computer Networks	Semester	V
Course Code	MVJ22IS52	CIE	50
Total No. Of Contact	40T+26P	SEE	50
Hours			
No.of Contact	5(L:T:P:S::3:0:2:0)	Total	100
Hours/week			
Credits	4	Exam Duration	3
			-

Course Objectives : This course will enable students to

1. To develop an understanding of modern network architectures from a design and performance perspective.

2. To introduce the student to the major concepts involved in network protocols.

3. Get details about Functions of Network layer, Router and delivery of data to host network.

4. Learn the function of mobile networking and switching. 5. Multimedia data transmission in network.

Module 18 hrsData communication Components: Representation of data and its flow Networks, Various Connection
Topology, Protocols and Standards, OSI model, Transmission Media, LAN: Wired LAN, Wireless
LANs, Techniques for Bandwidth utilization: Multiplexing - Frequency division, Time division and
Wave division.

Module 28 hrsData Link Layer: Error Detection and Error Correction - Fundamentals, Block coding, Hamming
Distance, CRC; Flow Control and Error control protocols - Stop and Wait, Go back – N ARQ, Selective
Repeat ARQ. Medium Access Sub Layer: Switching, Random Access, Multiple access protocols - Pure
ALOHA, Slotted ALOHA, CSMA/CD, CDMA/CA, IEEE802 standard protocol

Module 3

The Network Layer: Network layer design issues, Logical Addressing: IPV4, IPV6; Address mapping, routing algorithms, Congestion control algorithms, Internetworking, the network layer in the internet (IPv4 and IPv6), Quality of Service.

Module 4

8 hrs

8 hrs

8 hrs

Transport Layer: Elements of Transport protocols: Addressing, Connection establishment, Connection release, Crash recovery, User Datagram Protocol (UDP), Transmission Control Protocol (TCP), TCP Congestion Control; Quality of Service, QoS improving techniques: Leaky Bucket and Token Bucket algorithm.

Module 5

Application Layer: Domain Name Space (DNS), DDNS, TELNET, EMAIL, File Transfer Protocol (FTP), WWW, HTTP, SNMP, Bluetooth, Firewalls; AI in network infrastructure, Self-Healing Networks.

LABORATORY EXPERIMENTS

1. Learn to use commands like tcpdump, netstat, ifconfig, lookup and trace route. Capture ping and trace route PDUs using a network protocol analyzer and examine. Screen effectiveness studies.

2. Write a program for error detecting code using CRC-CCITT (16- bits).

3. Write a program to find the shortest path between vertices using the Bellman-ford algorithm.

4. Applications using TCP and UDP sockets like: a) Chat b) File Transfer

5. Simulation of DNS using UDP sockets.

6. Write a code for simulating ARP /RARP protocols.

7. Implementation of Stop and Wait Protocol and Sliding Window Protocol.

8. Write a program for congestion control using leaky bucket algorithm.

9. Implement three nodes point – to- point networks with duplex links between them. Set the queue size, vary the bandwidth and find the number of packets dropped using NS 2.

10. Simulate the transmission of ping messages/trace route over a network topology consisting of 6 nodes and find the number of packets dropped due to congestion using NS 2.

11. Simulate an Ethernet LAN using n nodes and set multiple traffic nodes and plot congestion window for different source / destination using NS 2.

12. Simulate simple ESS and with transmitting nodes in wireless LAN by simulation and determine the performance with respect to transmission of packets using NS 2

Course O	Course Outcome : At the end of the course students will be able to					
CO1	Analyze and compare different methods of bandwidth utilization to optimize data transfer					
	efficiency.					
CO2	Select the specific IEEE 802 standard protocols to be implemented in the network					
	environment.					
CO3	Apply theoretical knowledge of network layer design issues to real-world networking					
	scenarios and troubleshoot network problems effectively.					
CO4	Analyze metrics such as throughput, delay, and packet loss rate to see how the protocols					
	behave in each scenario.					
CO5	create a user-friendly website that meets modern standards in terms of navigation, design, and					
	performance.					

Textbooks :

1. Computer Networks:5th ed by Andrew. S. Tanenbaum PHI Publication.

2. Data Communications and Networks: 3 rd ed byBehrouz A. Forouzan. TataMcGraw Hill publication.

References :

1. William Stallings, Data and Computer Communication, Tenth Edition, Pearson Education, 2013.

2. James F. Kurose and Keith W. Ross: Computer Networking: A Top-Down Approach Featuring the Internet, 3 rd Edition

CIE Assessment:

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

SEE Assessment:

Question paper for the SEE consists of two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus. Part B also covers the entire syllabus consisting of five questions having choices and may contain sub-divisions, each carrying 16 marks. Students must answer five full questions.

One question must be set from each unit. The duration of examination is 3 hours.

CO-PO N	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	1	2						1	2
CO2	1	1	2	2	3						2	2
CO3	2	2	2	2	2						2	2
CO4	3	2	2	3	3						2	2
CO5	2	2	2	3	3						1	2

3-High 2-Moderate 1-low

Cour	se Title	Theory of Computation	Semester	V					
Cour	se Code	MVJ22IS53	CIE	50					
Total	No. Of Contact Hours	40	SEE	50					
No. C	of Contact Hours/week	4(L:T:P:S::4:0:0:0)	Total	100					
Cred	its	3	Exam Duration	3 hours					
Cour	Course Objectives : This Course will enable the students to								
1. Ac	quire knowledge of Automat	ta Theory as the basis of all computer s	cience languages d	esign.					
2. Un	derstand the concept of Con	text Free Grammars and Languages.							
3. Un	derstand the concepts of Tur	ing Machine and Chomskian Language	es.						
4. AC	quire knowledge of Decidab	a phagog of commiler ant its use							
J. En	rich the knowledge in variou	s phases of complier ant its use.		0 II.uc					
Finito	Automata: Mathamatiaal	proliminarias and notations Car	stral concenta of	опго					
Finite	Automata: Mathematical	preliminaries and notations – Cer	Nondeterministic						
Finite	Automata – Equivalence	of DEA and NEA _Finite Automata	ata with Ensilon						
transi	tions - Application of FA	of DIA and WIA -Time Autom	ata with Epsiton						
Mod	ile 2			8 Hrs					
Regul	lar Expressions: Regular	languages: Regular Expressions –	Finite Automata	and Regular					
Expre	essions – Applications of Re	gular Expressions - Regular Grammar	s. Problems on CF	G, pushdown					
auton	nata			· 1					
Modu	ıle 3								
Regul	lar Languages: Properties o	f regular languages: Pumping lemma	for regular languag	ges – Closure					
prope	rties of regular languages	-Equivalence and Minimization of F	inite Automata. C	Problems on					
Turin	g Machine, Halting Problem	L							
Modu	ile 4			8Hrs					
Conte	ext Free Grammar: Context	Free languages: Context Free Gramma	ars – Parse Trees -	Ambiguity in					
Gram	mars and languages– Appl	ications of Context Free Grammars -	- Pushdown auton	nata (PDA) –					
Langu	lages of a PDA -Equivalence	ce of PDA's and CFG's, Conversion	of PDA -CFG and	a CFG - PDA					
Mod	alo 5	plexity		QUre					
Conte	ne 5 Nt Free Languages: Properti	es of Context Free Languages: Normal	Forms (CNF GNI	ONIS E) for Context					
Eree (Grammars - Pumping lemma	for CEL 's - Closure properties of CE							
Turin	σ Machines. Turing Machin	es- Programming Techniques for Turi	L ng Machines – Mu	ltitane Turing					
Mach	ines. Problems on lexical an	alvsis		intupe runng					
		<u> </u>							
Cour	se Outcomes: At the end of	f the course students will be able to							
CO1	Construct finite automata f	or given pattern and find its equivalent	regular expression	s.					
CO2	Design and simplify contended	ext free grammar and find equivalen	t pushdown autom	ata for given					
	language								
CO3 Design Turing Machines for any languages									
CO4 Derive whether a problem is decidable or not									
CO5	Understand the basic conce	pts of compiler Design							
Texth	books:								
1.Hop	ocroft J E, MotwaniR and	l Ullman J D, Introduction to Aut	omata Theory, La	anguages and					
Comp	outations, Second Edition, Pe	earson Education, 2012.							
2.Ric	h Eiane—Automata Compu	itability and Complexity: Theory and	d Applications, Se	cond Edition,					
PHI, 2	2003.								

References:

1. Padma Reddy.A, —Finite Automata and Formal Languages: A Simple Approach.

2. Raghavan V, Principles of Compiler Design, Third Edition, Tata Mc-Graw Hill Education Pvt. Ltd., New Delhi, 2009

CIE Assessment:

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

SEE Assessment:

Question paper for the SEE consists of two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus. Part B also covers the entire syllabus consisting of five questions having choices and may contain sub-divisions, each carrying 16 marks. Students must answer five full questions.

One question must be set from each unit. The duration of examination is 3 hours.

CO_PO Manning												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	3	3	2	3	100	107	100	107	1010	1011	1012
CO2	2	2	2	2	3							
CO3	1	3	3	2	3							
CO4	2	3	2	2	3							
CO5	2	3	1	2	3							

3-High

2-Moderate 1-low

Course	e Title	Data Visualization LabSemesterV							
Course	e Code	MVJ22ISL54	CIE	50					
Total I	No. Of Contact Hours	26	SEE	50					
No. Of	f Contact Hours/week	2(L:T:P:S::0:0:2:0)	Total	100					
Credit	S	1	Exam Duration	3 hours					
Course	e Objectives : This Cou	rse will enable the students to							
1. Effective use of Business Intelligence (BI) technology (Tableau) to apply data visualization									
2. Di	scern patterns and relation	onships in the data.							
3. Build Dashboard applications.									
4. Co	ommunicate the results c	learly and concisely.							
5. Work with different formats of data sets.									
Sl no		LIST OF PROGRAMS							
1	Understanding Data	, what is data, where to find data,	Foundations for b	uilding Data					
	Visualizations, Creat	ing Your First visualization?							
2	Getting started with	Tableau Software using Data file format	s, connecting						
	your Data to Tableau	i, creating basic charts (line, bar charts,	Tree maps), Using	the Show me					
	panel.								
3	Tableau Calculation	s, Overview of SUM, AVR, and Agg	regate features, Crea	ating custom					
	calculations and field	ls.							
4	Applying new data c	alculations to your visualizations, Form	natting Visualizations	s, Formatting					
	Tools and Menus, Fo	rmatting specific parts of the view	1 51 1 55 11						
5	Editing and Formatti	ng Axes, Manipulating Data in Tableau	data, Pivoting Table	au data.					
6	Structuring your data	, Sorting and filtering Tableau data, Piv	oting Tableau data	~ 1					
7	Advanced Visualizat	ion Tools: Using Filters, Using the De	tail panel, using the	Size panels,					
0	customizing filters, U	Jsing and Customizing tooltips, Formati	ing your data with co	olors.					
8	Creating Dashboard	s & Storytelling, creating your first d	lashboard and Story	r, Design for					
	Visualization.	dding interactivity to your Dashboard,	Distributing & Put	olishing your					
9	Tableau file types, p	ublishing to Tableau Online, Sharing	your visualizations,	printing, and					
	Exporting.								
10	Creating custom char	rts, cyclical data and circular area charts	, Dual Axis charts						
Course	e Outcomes: At the end	of the course students will be able to							
CO1	Understand How to imp	ort data into Tableau							
CO2	Understand Tableau cor	cepts of Dimensions and Measures.							
CO3	Develop Programs and	understand how to map Visual Layouts	and Graphical Prope	rties					
CO4	Create a Dashboard that	links multiple visualizations							
CO5	Use graphical user inter	faces to create Frames for providing sol	utions to real world p	problems.					
Textbo	ooks:								
1.Micro	osoft Power BI cookboo	k, Brett Powell, 2nd edition							
2.R Pro	ogramming for Data Scie	ence by Roger D. Peng (References)							
3. The	Art of R Programming b	y Norman Matloff Cengage Learning In	ndia						

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	2	3							
CO2	2	2	3	2	3							
CO3	2	3	3	2	3							
CO4	2	3	3	2	3							
CO5	2	3	3	2	3							

Course Title	Computer Vision	semester	V
Course Code	MVJ22IS551	CIE	50
Total No. Of Contact	40	SEE	50
Hours			
No. Of Contact	3 (L: T : P :S:: 3: 0: 0 : 0)	Total	100
Hours/week			
Credits	3	Exam	3 hours
		Duration	

Course Objectives : This Course will enable the students to

1. Understanding of the fundamental concepts related to multi-dimensional signal processing, feature extraction, pattern analysis visual geometric modeling, stochastic optimization

2. Knowledge of these concepts is necessary in this field, to explore and contribute to research and further developments in the field of computer vision

3. Applications range from Biometrics, Medical diagnosis, document processing, mining of visual content, to surveillance, advanced rendering etc.

Module 1

Overview of computer vision and its applications: Image Formation and Representation: Imaging geometry, radiometry, digitization, cameras and Projections, rigid and affine transformation Image Processing: Pixel transforms, color transforms, histogram processing, histogram equalization, filtering, convolution, Fourier transformation and its applications in sharpening, blurring and noise removal

Module 2

Feature detection: edge detection, corner detection, line and curve detection, active contours, SIFT and HOG descriptors, shape context descriptors, Morphological operations.

Segmentation: Active contours, split & merge, watershed, region splitting, region merging, graphbased segmentation, mean shift and model finding, Normalized cut

Module 3

Camera calibration: camera models; intrinsic and extrinsic parameters; radial lens distortion; direct parameter calibration; camera parameters from projection matrices; orthographic, weak perspective, affine, and perspective camera models.

Module 4

Motion representation: the motion field of rigid objects; motion parallax; optical flow, the image brightness ,constancy equation, affine flow; differential techniques; feature-based techniques; regularization and robust estimation

Motion tracking: statistical filtering; iterated estimation; observability and linear systems; the Kalman filter

Module 5

Object recognition and shape representation: alignment, appearance-based methods, invariants, image eigenspaces

Course Outcome					
CO1	Learn fundamentals of computer vision and its applications				
CO2	Understand the basic image processing operations to enhance, segment the images.				
CO3	Understand the analyzing and extraction of relevant features of the concerned domain				
	problem				

CO4	Understand and apply the motion concepts and its relevance in real time applications											
CO5	Apply the knowledge in solving high level vision problems like object recognition, image											
	classification etc											
Textbooks:												
1	Computer Vision: Algorithms and Applications, R. Szeliski, Springer, 2011											
2	Introductory techniques for 3D computer vision, E. Trucco and A. Verri, Prentice Hall, 1998											
CIE Assessment:												
CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with												
tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for												
conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best												
three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for												
the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks, out of 100 and report CIE for 50 marks.												
SEE Assessment												
Ouestion paper for the SEE consists of two parts i.e. Part A and Part B. Part A is compulsory and												
consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks												
covering the whole syllabus												
Part F	R also cove	ers the e	ntire svl	labus co	nsistino	of five	question	ns having	o choice	es and ma	av contai	in sub-
divisions each carrying 16 marks. Students must answer five full questions												
One question must be set from each unit. The duration of examination is 3 hours												
One question must be set from each unit. The duration of examination is 5 nours.												
CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	2	3							2
CO2	2	2	3	2	3							2
CO3	2	3	3	2	3							2
CO4	2	3	3	2	3							2
CO5	2	3	3	2	3							2

 CO5
 2
 3
 3
 2
 3

 3-High
 2-Moderate
 1-Low
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3

Course	e Title	Artificial Intelligence	semester		
Course Code		MVJ22IS552	CIE	50	
Total N	No. Of Contact Hours	40	SEE	50	
No. Of	Contact Hours/week	3 (L: T : P :S:: 3: 0: 0 : 0)	Total	100	
Credit	S	3	Exam Duration	3 hours	
Course	• Objectives : This Cou	rse will enable the students to			
1.Unde	rstand fundamental conc	epts in Artificial Intelligence.	1		
2.Unde 2 D^{-1}	rstand and analyze the pr	roblem-solving techniques and knowl	edge representation.		
3.Desig	intelligent components	s or programs to meet desired needs.			
4.Imple 5 Undo	restand fundamental cond	onts in Artificial Intelligence			
<u>Modul</u>		epts in Artificial intelligence.		9 hrs	
Introdu	ction: AI problems fo	nundation of AI and history of A	I Intelligent agents:	Agents an	
Enviroi	nments The concept of	rationality. The nature of environm	ents Structure of age	ents Probler	
solvino	agents. Problem formula	ation	onto, ou docure or age		
Modul	e 2			8 hrs	
Knowle	edge Representation & R	Reasons: Knowledge – Based Agents,	The Wumpus world.	Propositiona	
Logic:	Reasoning patterns in	propositional logic - Resolution,	Forward & Backwa	rd Chaining	
Inferen	ce in First order logic:	Propositional vs. first order inferen	ce, Unification & lift	ting, Forwar	
chainin	g, Backward chaining, R	lesolution		U,	
Modul	e 3			8 hrs	
Searchi	ing: Searching for solution	ons, uniformed search strategies - Bre	adth first search, dept	h first search	
Depth l	limited search, Iterative	deepening depth first search bi-direct	ion search, Comparing	g uninforme	
search a	strategies. Search with p	artial information (Heuristic search),	Greedy best first searc	h, A* search	
Memor	y bounded heuristic sear	ch, Heuristic functions.			
Local	search Algorithms: Hill	climbing, Simulated annealing sea	arch, Local beam sea	arch, Geneti	
algorith	nms			1	
Modul	<u>e 4</u>			8 hrs	
Constra	ain satisfaction problems	s: Backtracking search for CSPs loca	al search for constrain	nt satisfactio	
problen	ns.		1. 1		
Game	Playing: Games, Minin	nax algorithm, Optimal decisions i	n multiplayer games	, Alpha-Bet	
pruning Modul	s, Evaluation functions, C	Jutting of search.		0 hug	
Diannin	e 5 au Classical planning pr	while Language of planning proble		o III's	
rlannin	ig. Classical plaining pl	rob Eorward state spare search Real	ms, Expressiveness a	ah Houristia	
for stat	e space search Partial or	der planning Graphs Planning graphs	ward state space searc		
I earnir	or what is learning For	ns of learning Inductive learning I e	, arning Decision Trees		
Learnn	1 <u>5</u> . what is fourning, 1 off	is of featining, inductive featining, Dec		•	
Course	e Outcome				
CO1	Understand the various t	ypes and working units of an expert s	ystems		
CO2	Evaluate the logic behind	d the building of knowledge base and	knowledge representa	ition	
CO3	Deploy Searching Techn	iques to design intelligent agents	C		
CO4	Implement various Cons	straint Satisfaction Problem, Game P	laying techniques to u	ise in variou	
	intelligent system design	IS	1		
CO5	Apply suitable learning	methodology while designing systems	s based on their applic	ations	
Textbo	ooks:				
1	Stuart Russel, Peter No.	orvig, (2009), Artificial Intelligence -	- A Modern Approach	n.3rd Edition	

	Pearson Education.
2	E.Rich and K.Knight, (2008), Artificial Intelligence, 3rd Edition, Tata McGraw Hill
3	
Ref	erences:
1	Patterson, (2009), Artificial Intelligence and Expert Systems, 2nd Edition, PHI.
2	Ivan Bratka, (2000), PROLOG Programming for Artificial Intelligence. 3rdEdition – Pearson
	Education.

CIE Assessment:

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

SEE Assessment:

Question paper for the SEE consists of two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.

Part B also covers the entire syllabus consisting of five questions having choices and may contain subdivisions, each carrying 16 marks. Students must answer five full questions.

One question must be set from each unit. The duration of examination is 3 hours.

CO-PO MAPPING

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	2	3	2							1
CO2	2	3	3	2	3							1
CO3	3	3	2	2	2							2
CO4	2	3	3	3	3							1
CO5	2	3	2	2	2							1

3-High 2- Moderate 1- Low
Course Title	Unix System Programming	semester	V
Course Code	MVJ22IS553	CIE	50
Total No. Of Contact Hours	40	SEE	50
No. Of Contact Hours/week	3(L:T:P:S::3:0:0:0)	Total	100
Credits	3	Exam Duration	3 hours

Course Objectives : This Course will enable the students to

1. Understand fundamental concepts in Unix Programming.

2.Understand the problem solving techniques and knowledge representation.

3.Design intelligent components or programs to meet desired needs.

4. Ability to understand and reason out the working of Unix Systems

5. Build an application/service over a Unix system.

Module 1

UNIX and ANSI Standards: The ANSI C Standard, The ANSI/ISO C++ Standards, Difference between ANSI C and C++, The POSIX Standards, The POSIX.1 FIPS Standard, The X/Open Standards. UNIX and POSIX APIs: The POSIX APIs, The UNIX and POSIX Development Environment, API Common Characteristics.

Introduction to UNIX - Introduction, History, Architecture, Experience the Unix environment, Basic commands ls, cat, cal, date, calendar, who, printf, tty, sty, uname, passwd, echo, tput, and bc.

Module 2

UNIX Files and APIs : File Types, The UNIX and POSIX File System, The UNIX and POSIX File Attributes, Inodes in UNIX System V, Application Program Interface to Files, UNIX Kernel Support for Files, Relationship of C Stream Pointers and File Descriptors, Directory Files, Hard and Symbolic Links. UNIX File APIs.

Module 3

UNIX Processes and Process Control: The Environment of a UNIX Process: Introduction, main function, Process Termination, Command-Line Arguments, Environment List, Memory Layout of a C Program, Shared Libraries, Memory Allocation, Environment Variables, setjimp and longjimp Functions, getrlimit, setrlimit Functions, UNIX Kernel Support for Processes.

Process Control: Introduction, Process Identifiers, fork, vfork, exit, wait, waitpid, wait3, wait4 Functions, Race Conditions, exec Functions, Changing User IDs and Group IDs, Interpreter Files, system Function, Process Accounting, User Identification, Process Times, I/O Redirection.

Module 4

Signals and Daemon Processes: Signals: The UNIX Kernel Support for Signals, signal, Signal Mask, sigaction, The SIGCHLD Signal and the waitpid Function, The sigsetjmp and siglongjmp Functions, Kill, Alarm, Interval Timers, POSIX.lb Timers. Daemon Processes: Introduction, Daemon Characteristics, Coding Rules, Error Logging, Client- Server Model

Module 5

Interprocess Communication : Overview of IPC Methods, Pipes, popen, pclose Functions, Coprocesses, FIFOs, System V IPC, Message Queues, Semaphores. Shared Memory, Client-Server Properties, Stream Pipes, Passing File Descriptors, An Open Server-Version 1, Client-Server Connection Functions.

Cours	Course Outcomes: At the end of the course the students will be able to					
CO1	Learn fundamentals of Unix system and its applications					
CO2	Understand the basic image processing operations to enhance, segment the images					
CO3	Understand the analyzing and extraction of relevant features of the concerned domain					
	problem					

CO4Understand and apply the motion concepts and its relevance in real time applicationsCO5Apply the knowledge in solving high level unix system problems.Textbooks:

1	Charlie jacob. "Unix Programming System: An Introduction". Springer-Verlag						
-	ennene juees, ennenegemenning ejeenneren en e						
2	Hassan K Khalil, Unix Systems, Prentice - Hall International (US), 2006.						
Refere	References:						
1	V R Ganapthi, "Interprocess Communication", Prentice-Hall, India, 1991, 2. Shankar						
	Sastry, "Nonlinear System Analysis, Stability and Control", Springer, 1999						

CIE Assessment :

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

SEE Assessment:

Question paper for the SEE consists of two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.

Part B also covers the entire syllabus consisting of five questions having choices and may contain subdivisions, each carrying 16 marks. Students must answer five full questions.

One question must be set from each unit. The duration of examination is 3 hours.

CO-PO MAPPING

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	3	3	3							
CO2	2	3	3	2	3							
CO3	2	2	3	2	3							
CO4	2	2	3	2	3							
CO5	2	2	2	2	3							

Cours	e Title	Distributed Systems	semester	V			
Cours	e Code	MVJ22IS554	CIE	50			
Total	No. Of Contact Hours	40	SEE	50			
No. O	f Contact Hours/week	3(L:T:P:S::3:0:0:0)	Total	100			
Credi	ts	3	Exam Duration	3 hours			
Cours	e Objectives : This Cour	se will enable the students to					
Under	stand fundamental concep	ts in Distributed systems					
Under	stand the problem-solving	techniques and knowledge representation	n.				
Design	n intelligent components o	r programs to meet desired needs.					
	nent, and evaluate a comp	uter-based distributed systems.					
Under	stand fundamental concep	ts in Distributed systems.		0.11			
Modu				8 Hrs			
Distrit	outed Systems: Characteriz	zation of Distributed Systems: Introducti	ion, Examples of DS	, Resource			
sharin	g and the Web, Challenges	s System Models: Architectural Models,	Fundamental Models	<u>6 11</u>			
Modu		11 1 1 1, 1 , 1 , 1 1	1 1 1 1 1 0	8 Hrs			
Files a 1°	ind APIs: For complete sy	llabus and results, class timetable and m	ore pls download 1Si	tudy. It's a			
light w	Veight, easy to use, no ima	ges, no pdfs platform to make students li	ie easier.	0.11			
Nioau	le s	hat The OS large Destantion Des		ð Hrs			
Opera	ting System Support: Intro	oduction, The OS layer, Protection, Proce	esses and Threads,				
Eilo S	numeration and invocation,	, Operating system architecture Distribu	ted Flie Systems: In	roduction,			
File Se Modu	lo 4	etwork rife System		9 Uma			
Time	nd Clabal Statas: Intradu	ation Cloaks avants and process status	aumohronizing nhugi				
	and Global States. Introdu	Clobal states Coordination and A grass	synchronizing physic monty Introduction I	Cal Clocks,			
Logica	a unite and logical clocks	, Giobal states Cooldination and Agreen	ment. Introduction, I	Jistituted			
Modu				8 Hrs			
Inter_r	ncess Communication: I	atroduction The API for the Internet Pro	tocols External Data	01115			
Repres	sentation and Marshalling	Client-Server Communication Group	Communication C	ase Study			
IPC in	UNIX	", chent Server Communication, Group	Communication, Co	use Study.			
II C III							
Cours	e Outcome: At the end o	f the course the students will be able to	0				
CO1	Illustrate the mechanism	of IPC between distributed objects	<u> </u>				
CO2	Describe the distributed f	ile service architecture and the importan	t characteristics of SI	UN			
001	NFS.						
CO3	Discuss concurrency con-	trol algorithms applied in distributed trar	nsactions				
CO4	Apply logical time and lo	gical clocks to order events correctly in	a distributed system				
CO5	Design and implement	communication systems between pro	ocesses in various	computing			
	environments.	, , , , , , , , , , , , , , , , , , ,		1 0			
Textb	ooks:						
1	George Coulouris, Jean	Dollimore and Tim Kindberg: Distrib	outed Systems – Con	ncepts and			
	Design, 5th Edition, Pearson Publications, 2009						
Refer	ences:						
1	T Andrew S Tanenbaum	: Distributed Operating Systems, 3rd edi	tion, Pearson publica	tion, 2007			
2	AjayD. Kshemkalyani a	nd MukeshSinghal, Distributed Computi	ing: Principles, Algor	rithms and			
	Systems, Cambridge Uni	iversity Press, 2008					
3	Sunita Mahajan, Seema	Shan, Distributed Computing, Oxford Un	niversity Press,2015				
	• ·	<u> </u>	- · · · ·				
CIE A	Assessment:						

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks

SEE Assessment:

Question paper for the SEE consists of two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.

Part B also covers the entire syllabus consisting of five questions having choices and may contain subdivisions, each carrying 16 marks. Students must answer five full questions.

One question must be set from each unit. The duration of examination is 3 hours.

CO-PO Mapping

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	2	3							3	3
CO2	2	2	3	3							2	3
CO3	2	2	2	3							3	2
CO4	3	2	3	2							2	3
CO5	2	3	3	2							3	2

3-High 2- Moderate 1-low

VI SEMESTER (2022 SCHEME)

Course Title	Full Stack Development	Semester	VI
Course code	MVJ22IS61	CIE	50
Total No. of Contact Hours	3:0:1	SEE	50
No. of Contact Hours/week	40 L+26 P	Total	100
Credits	4	Exam. Duration	3
	•	•	

COURSE OBJECTIVES: This course will enable students to

- 1. Explain the use of learning full stack web development.
- 2. Make use of rapid application development in the design of responsive web pages.
- 3. Illustrate Models, Views and Templates with their connectivity in Django for full stack web development.
- 4. Demonstrate the use of state management and admin interfaces automation in Django.Module 18hrs

The Modern Web: Rise of the web, Mobile web, The state of HTML, Applications vs web sites

Planning your Work: Identifying Requirements, Defining the work, Tracking the work, Continuous Improvements

User Experience: Information Architecture, Getting the user Experience, Polishing the user Experience, Implementing The user Experience.

MODULE-II

8hrs

8hrs

Front End: HTML, From Server to browser, Styling, Components, Responsive design, Progressive Enhancement, search engine Optimization.

Javascript: Asynchronicity, Javascript in the browser, Offline First Development, Document object Model, Server side javascript, Javascript Modules, Structuring your javascript, javascript types, Functional Programming, Connecting components together, communication between components

MODULE-III

Accessibility : working with Assistive Technologies, Dealing with interative UI, Testing for Accessibility, Avoiding common mistakes

API: API responsibilities, Designing REST API, Securing Your API, Event Based APIs, Discovering APIs, Using APIs, API testing – postman

MODULE-IV8hrsDeployment: Twelve Factor Apps, Developer Machines, Production Environments, Moving
code into Production, Infrastructure, Immutable infrastructure, Continuous Delivery and
Continuous Deployment

MODULE-V

8hrs

Introduction to React JS: Introduction, understanding Components and Props, State and Lifecycle, React Hooks, handling Events, Working with Forms, Conditional Rendering, List and Keys, Styling in React JS.

LABORATORY EXPERIMENTS

Programs:

- 1. Write a program to create a simple webpage using HTML.
- 2. Write a program to create a website using HTML CSS and JavaScript
- 3. Write a program to build a Chat module using HTML CSS and JavaScript
- 4. Write a program to create a simple calculator Application using React JS
- 5. Write a program to create a voting application using React JS
- 6. Write a program to create and Build a Password Strength Check using JQuery
- 7. Write a program to create and Build a star rating system using JQuery
- 8. Create a Simple Login form using React JS
- 9. Using the CMS users must be able to design a web page using the drag and drop method
- 10. Create a project on Grocery delivery application
- 11. Connecting our TODO React js Project with Firebase

Cours	e outcomes: Students will able to
CO1	Understand the basics of Web Application Development
CO2	Learn the Front End Developing Tools.
CO3	Develop the REST APIs for Real time Applications
CO4	Apply different Deployment strategies for Producing products
CO5	Create Applications using React JS
Textb	ooks:
1	The Full Stack Developer Your Essential Guide to the Everyday Skills Expected of a
	Modern Full Stack Web Developer, Chris Northwood
	nttps://doi.org/10.1007/978-1-4842-4152-3
2	Learning React JavaScript Library From Scratch eBook : Sidelnikov, Greg.

CIE Assessment:

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

SEE Assessment:

Question paper for the SEE consists of two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.

Part B also covers the entire syllabus consisting of five questions having choices and may contain sub-divisions, each carrying 16 marks. Students must answer five full questions. One question must be set from each unit. The duration of examination is 3 hours.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	2	3	3						3	3
CO2	2	2	3	3	3						2	3
CO3	2	2	2	3	3						3	2
CO4	3	2	3	2	3						2	3
CO5	2	3	3	2	3						3	2

3- High 2- Moderate 1- Low

Course Title	Machine Learning	Semester	VI
Course code	MVJ22I862	CIE	50
Total No. of Contact Hours :	3:0:0:0(L:T:P:S::3:0:0:0)	SEE	50
No. of Contact Hours/week	40	Total	100
Credits	3	Exam. Duration	3

Course objectives: The course will enable the students to

1.Understand fundamentals of machine learning, including the types of learning, data pre-processing techniques, and design principles, to enable them to develop effective learning systems that can tackle real-world problems.

2. Implement and evaluate regression and classification models, including linear and polynomial regression, logistic regression, and decision trees, to solve real-world problems and make informed decisions.

3.Understand classification techniques, including decision trees, random forests, naive Bayes, K-NN, SVM, and evaluation metrics, to develop robust and accurate classification models that can handle complex data sets and real-world applications.

4. Understand the concepts and techniques of clustering and artificial neural networks, enabling them to apply clustering algorithms and design neural networks to solve real-world problems, including data clustering, classification, and prediction.

5. Understand the fundamentals of reinforcement learning and deep learning, enabling them to understand the concepts of learning from feedback and building deep neural networks to solve complex problems in artificial intelligence, such as decision-making and pattern recognition.

problems in artificial intempence, such as decision-making and pattern recognition.						
Module 1 8hr						
Introduction: Well-Posed learning problems, Basic concepts, Designing a learning system, Issues in						
machine learning. Types of machine learning: Learning associations, Supervised	learning,					
Unsupervised learning, and Reinforcement learning.						
Data Pre-processing: Need of Data Pre-processing, Data Pre-processing Methods: Data Clear	ning, Data					
Integration, Data Transformation, Data Reduction; Feature Scaling (Normaliza	ation and					
Standardization), Splitting dataset into Training and Testing set.						
Association Rules Learning: Need and Application of Association Rules Learning, Basic co	oncepts of					
Association Rule Mining, Naïve algorithm, Apriori algorithm.						
Module 2	8hrs					
Regression: Linear Regression, Multiple Linear Regression and Polynomial Regression, Evaluation Regression Model's Performance (RMSE, Mean Absolute Error, Correlation, RSquare), Regularization Methods Classification: Need and Applications of Classification, Logistic Regression, Decision tree.						
Module 3 8hrs						
Advanced Classification: Tree induction algorithm – split algorithm based on information theory						

split algorithm based on Gini index; Random Forest classification, Naïve Bayes algorithm; K-Nearest Neighbors (K-NN), Support Vector Machine (SVM), Evaluating Classification Model's Performance (Sensitivity, Specificity, Precision, Recall, etc.)

	Module 4	8hrs				
Clustering: Need and Applications of Clustering, Partitioned methods, Hierarchical methods, I						
based method	s. Artificial Neural Networks: Introduction, Neural Network representation, Ap	propriate				
problems, Per	ceptron, Backpropagation algorithm					
	Module 5	8hrs				
Reinforcement Learning: Introduction, Learning Task, Q Learning. Deep Learning: Introduction to						
Deep Learning	g-Reasons to go Deep Learning.					
Course outco	Course outcomes: Students will able to					
CO1	Identify the issues in machine learning and Algorithms for solving it.					
CO2	Explain theory of probability and statistics related to machine learning.					
CO3	Investigate concept learning, ANN, Bayes classifier, k nearest					
	neighbor.					
004						

CO4	Describe protocols of resource constraint network.
CO5	Explain the concepts of deep learning.
Textbooks:	
1	Tom M. Mitchell, Machine Learning, India Edition 2013, McGraw Hill E

Tom M. Mitchell, Machine Learning, India Edition 2013, McGraw Hill Education.
 Alpaydin E., Introduction to Machine Learning, MIT Press (2014) 3rd Edition.
 Vijayvargia Abhishek, Machine Learning with Python, BPB Publication (2018)

Reference Books:

Reference Do	JOKS:
1	Trevor Hastie, Robert Tibshirani, Jerome Friedman, h The Elements of Statistical Learning, 2nd edition, springer series in statistics.
2	Ethem Alpaydin, Introduction to Machine learning, 2nd Edition, MIT Press.

CIE Assessment:

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

SEE Assessment:

Question paper for the SEE consists of two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.

Part B also covers the entire syllabus consisting of five questions having choices and may contain subdivisions, each carrying 16 marks. Students must answer five full questions.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	2	3	3						3	3
CO2	2	2	3	3	3						2	3
CO3	2	2	2	3	3						3	2
CO4	3	2	3	2	3						2	3
CO5	2	3	3	2	3						3	2

Course Title	Blockchain Technology	Semester	VI
Course code	MVJ22IS631	CIE	50+50
Total No. of Contact Hours	3:0: 0:0 (L:T:P:S)	SEE	50+50
No. of Contact Hours/week	40	Total	100
Credits	3	Exam. Duration	3

COURSE OBJECTIVES: This course will enable students to

- 1. Familiarise the functional/operational aspects of cryptocurrency ecosystem.
- 2. Understand emerging abstract models for Blockchain Technology.
- 3. Understand how blockchain systems (mainly Bitcoin and Ethereum) work and how to securely interact with them.
- 4. Identify major research challenges and technical gaps existing between theory and practice in cryptocurrency domain.
- 5. Design, build, and deploy smart contracts and distributed applications.

Module 1		8hrs
IN Basics: Distributed Database, Two General Problem, Byzantin	ne General problem a	nd Fault
Tolerance, Hadoop Distributed File System, Distributed Hash Ta	able, ASIC resistance.	Turing

Complete. Cryptography: Hash function, Digital Signature - ECDSA, Memory Hard Algorithm, Zero Knowledge Proof.

Module 2	8hrs

Blockchain: Introduction, Advantage over conventional distributed database, Blockchain Network, Mining Mechanism, Distributed Consensus, Merkle Patricia Tree, Gas Limit, Transactions and Fee, Anonymity, Reward, Chain Policy, Life of Blockchain application, Soft & Hard Fork, Private and Public blockchain.

Module 3		8hrs
Distributed Consensus: Nakamoto consensus, Proof of Work, H	Proof of Stake, Proof	of Burn,
Difficulty Level, Sybil Attack, Energy utilization and alternate.		
Module 4		8hrs
Cryptocurrency: History, Distributed Ledger, Bitcoin protocols -	Mining strategy and	rewards,
Ethereum - Construction, DAO, Smart Contract, GHOST, Vulr	erability, Attacks, Si	dechain,
Namecoin		
Module 5		8hrs

Cryptocurrency Regulation: Stakeholders, Roots of Bit coin, Legal Aspects- Crypto currency Exchange, Black Market and Global Economy. Applications: Internet of Things, Medical Record Management System, Domain Name Service and future of Blockchain.

Course outcomes: Students will able to

CO1 | Basic Cryptographic primitives used in Blockchain – Secure, Collison-resistant hash

CO2 | functions, digital signature, public key cryptosystems, zero-knowledge proof systems.

CO3 | Policies and applications of Blockchain in Distributed databases.

CO4 | Explain the Nakamoto consensus, List and describe differences between proof-of-

CO5 work and proof-of-stake consensus.

Textbooks:

- 1 Arvind Narayanan, Joseph Bonneau, Edward Felten, Andrew Miller and Steven Goldfeder, Bitcoin and Cryptocurrency Technologies: A Comprehensive Introduction, Princeton University Press (July 19, 2016).
- 2 Antonopoulos, Mastering Bitcoin: Unlocking Digital Cryptocurrencies.

Reference Books:

|--|

- 2 DR. Gavin Wood, "ETHEREUM: A Secure Decentralized Transaction Ledger,"Yellow paper.2014.
- **3** Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli, A survey of attacks on Ethereum smart contracts

CIE Assessment:

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

SEE Assessment:

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the entire syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

					CC)-PO N	AAPPI	NG					
COPO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	1	-	-	-	-	-	-	-	-	3	
CO2	3	3	1	-	-	-	-	-	-	-	-	3	
CO3	3	3	1	2	-	-	-	-	-	1	-	3	
CO4	3	3	3	3	-	-	-	2	2	2	-	3	
CO 5	3	3	3	3	-	-	2	2	3	2	-	3	

Course Title	Internet of Things	Semester	VI							
Course code	MVJ22IS632	CIE	50							
Total No. of Contact Hours L:T:P:S	: 3:0:0:0	SEE	50							
No. of Contact Hours/week	40	Total	100							
Credits	lits 3 Exam. Duration									
Course Objective : This course wi	l enable the students to									
1.Assess the genesis and impact of 2.Illustrate diverse methods of dep 3.Compare different Application p	IoT applications, architectures in loying smart objects and connect rotocols for IoT.	real world them to network.								
	Module 1		8hrs							
What is IoT, Genesis of IoT, Ic Challenges, IoT Network Archit Comparing IoT Architectures, A S Management and Compute Stack.	What is IoT, Genesis of IoT, IoT and Digitization, IoT Impact, Convergence of IT and IoT, IoT Challenges, IoT Network Architecture and Design, Drivers Behind New Network Architectures, Comparing IoT Architectures, A Simplified IoT Architecture, The Core IoT Functional Stack, IoT Data Management and Compute Stack									
	Module 2		8hrs							
Smart Objects: The "Things" in IoT, Sensors, Actuators, and Smart Objects, Sensor Networks, Connecting Smart Objects, Communications Criteria, IoT Access Technologies, IP as the IoT Network Layer, The Business Case for IP, the need for Optimization, Optimizing IP for IoT, Profiles and Compliances.										
	Module 3		8hrs							
Application Protocols for IoT: Analytics for IoT, An Introduction Tools and Technology, Edge Streat IOT Security	The Transport Layer, IoT Applic n to Data Analytics for IoT, Ma ming Analytics, Network Analyti	ation Transport Meth chine Learning, Big I cs, Securing IoT, A B	ods, Data and Data Analytics rief History of							
	Module 4		8hrs							
Common Challenges in OT Security, How IT and OT Security Practices and Systems Vary, Formal Risk Analysis Structures: OCTAVE and FAIR, The Phased Application of Security in an Operational Environment, IoT Physical Devices and Endpoints - Arduino UNO: Introduction to Arduino, Arduino UNO, Installing the Software, Fundamentals of Arduino Programming. IoT Physical Devices and Endpoints.										
	Module 5		8hrs							
RaspberryPi: Introduction to RaspberryPi, About the RaspberryPi Board: Hardware Layout, Operating Systems on RaspberryPi, Configuring RaspberryPi, Programming RaspberryPi with Python, Wireless Temperature Monitoring System Using Pi, DS18B20 Temperature Sensor, Connecting Raspberry Pi via SSH, Accessing Temperature from DS18B20 sensors, Remote access to RaspberryPi, Smart and Connected Cities, An IoT Strategy for Smarter Cities, Smart City IoT Architecture, Smart City Security Architecture, Smart City Use-Case Examples.										
Course outcomes: Students will	able to	a victore								
CO2 Interfacing Sensor and	atuator with Ardving development	system								
CO3 Implementing IoT devic	Interfacing Sensor and Actuator with Arduino development board. Implementing IoT device by interfacing communication module and cloud Describe protocols of resource constraint network									

CO5	Elaborate the need for Data Analytics and Security in IoT.
Textboo	ks:
1	"IoTFundamentals: Networking Technologies, Protocols, and Use Cases for the Internet
	ofThings", David Hanes, Gonzalo Salgueiro, Patrick Grossetete, Robert Barton, Jerome
	Henry, 1stEdition, Pearson Education (Cisco Press Indian Reprint). (ISBN: 978-9386873743
2	"Internet of Things", Srinivasa K G,CENGAGE Leaning India,2017

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

SEE Assessment:

Question paper for the SEE consists of two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.

Part B also covers the entire syllabus consisting of five questions having choices and may contain subdivisions, each carrying 16 marks. Students must answer five full questions.

	CO-PO MAPPING											
COPO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	0	3	0	0	0	0	0	0	1	1
CO2	2	3	0	3	0	0	0	0	0	0	1	1
CO3	2	3	0	3	0	0	0	0	0	0	1	1
CO4	3	3	0	3	0	0	0	0	0	0	1	1
C05	3	3	0	3	0	0	0	0	0	0	1	1

Course Thee	Compiler Design	Semester	VI								
Course code	MVJ22IS633	CIE	50								
Total No. of Contact Hours :	3:0:0:0(L:T:P:S)	SEE	50								
No. of Contact Hours/week	40	Total	100								
Credits	3	Exam. Duration	3								
COURSE OBJECTIVES: This c	ourse will enable students t	<i></i>									
 Learn the various parsing to Learn how to obtain specifi Learn how to optimize the 	echniques and different leve ic object code from source la code and schedule for optim	els of translation. anguage. nal performance.									
	Module 1		8hrs								
FRONT END OF COMPILER	S: The Structure of Comp	iler – Lexical Analysis: R	ole of Lexical								
Analyzer, Specification and Reco	ognition of Tokens, Syntax	Analysis: Top Down Parsi	ng, Bottom up								
Parsing, LR Parsers: SLR, CLR, a	and LALR.										
	Module 2		8hrs								
INTERMEDIATE CODE GEI	NERATION: Syntax Direct	cted Definitions, Evaluati	on Orders for								
Syntax Directed Definitions, Syn	tax Directed Translation Sc	chemes, Intermediate Lang	guages: Syntax								
Tree, Three Address Code, Post	fix Code, Declarations, Trai	nslation of Expressions, T	ype Checking,								
Back Patching.			Back Patching								
	Module 3										
RUNTIME AND OBJECT CODE CENERATION. Storage Organization Stack Allocation Space											
RUNTIME AND OBJECT CO	DE GENERATION: Stora	ge Organization, Stack All	8hrs ocation Space,								
RUNTIME AND OBJECT CO Access to Non-local Data on the	DE GENERATION: Storag Stack, Heap Management	ge Organization, Stack All - Issues in Code Generati	8hrs ocation Space, on - Design of								
RUNTIME AND OBJECT CO Access to Non-local Data on the Code Generator - Register Alloc	DE GENERATION: Storag Stack, Heap Management sation and Assignment – In	ge Organization, Stack All - Issues in Code Generati struction Selection by Tre	8hrs ocation Space, on - Design of ee Rewriting –								
RUNTIME AND OBJECT CO Access to Non-local Data on the Code Generator - Register Alloc Optimal Code Generation for Exp	DE GENERATION: Storag Stack, Heap Management ation and Assignment – In pressions – Dynamic Program	ge Organization, Stack All - Issues in Code Generati struction Selection by Tre mming Code Generation.	8hrs ocation Space, on - Design of ee Rewriting –								
RUNTIME AND OBJECT CO Access to Non-local Data on the Code Generator - Register Alloc Optimal Code Generation for Exp	DE GENERATION: Storag Stack, Heap Management ation and Assignment – In pressions – Dynamic Program Module 4	ge Organization, Stack All - Issues in Code Generati struction Selection by Tre mming Code Generation.	8hrs ocation Space, on - Design of ee Rewriting – 8hrs								
RUNTIME AND OBJECT CO Access to Non-local Data on the Code Generator - Register Alloc Optimal Code Generation for Exp CODE OPTIMIZATION: Ba	DE GENERATION: Stora Stack, Heap Management ation and Assignment – In pressions – Dynamic Program Module 4	ge Organization, Stack All - Issues in Code Generati struction Selection by Tro mming Code Generation.	8hrs ocation Space, on - Design of ce Rewriting – 8hrs asic Blocks –								
RUNTIME AND OBJECT CO Access to Non-local Data on the Code Generator - Register Alloc Optimal Code Generation for Exp CODE OPTIMIZATION: Ba Principal Sources of Optimization	DE GENERATION: Stora Stack, Heap Management ation and Assignment – In pressions – Dynamic Prograt Module 4 sic Blocks and Flow Gray	ge Organization, Stack All - Issues in Code Generati struction Selection by Tre mming Code Generation. phs – Optimization of B ysis – Constant Propaga	8hrs ocation Space, on - Design of ce Rewriting – 8hrs asic Blocks – tion – Partial								
RUNTIME AND OBJECT CO Access to Non-local Data on the Code Generator - Register Alloc Optimal Code Generation for Exp CODE OPTIMIZATION: Ba Principal Sources of Optimizat Redundancy Elimination – Peeph	DE GENERATION: Stora Stack, Heap Management ation and Assignment – In pressions – Dynamic Program Module 4 sic Blocks and Flow Grap tions – Data Flow Analy ole Optimizations.	ge Organization, Stack All - Issues in Code Generati struction Selection by Tro mming Code Generation. phs – Optimization of B vsis – Constant Propaga	8hrs ocation Space, on - Design of ee Rewriting – 8hrs asic Blocks – tion – Partial								
RUNTIME AND OBJECT CO Access to Non-local Data on the Code Generator - Register Alloc Optimal Code Generation for Exp CODE OPTIMIZATION: Ba Principal Sources of Optimizat Redundancy Elimination – Peeph	DE GENERATION: Storag Stack, Heap Management ation and Assignment – In pressions – Dynamic Program Module 4 sic Blocks and Flow Gray tions – Data Flow Analy ole Optimizations. Module 5	ge Organization, Stack All - Issues in Code Generation struction Selection by Tro mming Code Generation. phs – Optimization of B vsis – Constant Propaga	8hrs ocation Space, on - Design of ee Rewriting – 8hrs asic Blocks – tion – Partial 8hrs								
RUNTIME AND OBJECT COL Access to Non-local Data on the Code Generator - Register Alloc Optimal Code Generation for Exp CODE OPTIMIZATION: Ba Principal Sources of Optimizat Redundancy Elimination – Peeph SCHEDULING AND OPTI	DE GENERATION: Stora Stack, Heap Management ation and Assignment – In pressions – Dynamic Prograt Module 4 sic Blocks and Flow Gray tions – Data Flow Analy ole Optimizations. Module 5 MIZING FOR PARAL	ge Organization, Stack All - Issues in Code Generation struction Selection by Tro- mming Code Generation. phs – Optimization of B vsis – Constant Propaga	8hrs ocation Space, on - Design of ee Rewriting – 8hrs asic Blocks – tion – Partial 8hrs								
RUNTIME AND OBJECT COL Access to Non-local Data on the Code Generator - Register Alloc Optimal Code Generation for Exp CODE OPTIMIZATION: Ba Principal Sources of Optimizat Redundancy Elimination – Peeph SCHEDULING AND OPTI Scheduling Constraints – Basic	DE GENERATION: Stora; Stack, Heap Management ation and Assignment – In pressions – Dynamic Program Module 4 sic Blocks and Flow Gray tions – Data Flow Analy ole Optimizations. Module 5 MIZING FOR PARAI Block Scheduling – Globa	ge Organization, Stack All - Issues in Code Generation struction Selection by Tro- mming Code Generation. phs – Optimization of B vsis – Constant Propaga LLELISM: Code 1 Code Scheduling - Basi	8hrs ocation Space, on - Design of ee Rewriting – 8hrs asic Blocks – tion – Partial 8hrs ic Concepts in								
RUNTIME AND OBJECT COL Access to Non-local Data on the Code Generator - Register Alloc Optimal Code Generation for Exp CODE OPTIMIZATION: Ba Principal Sources of Optimizat Redundancy Elimination – Peeph SCHEDULING AND OPTI Scheduling Constraints – Basic Parallelization – Parallelizing Ma	DE GENERATION: Storag Stack, Heap Management sation and Assignment – In pressions – Dynamic Prograv Module 4 sic Blocks and Flow Gray tions – Data Flow Analy ole Optimizations. Module 5 MIZING FOR PARAI Block Scheduling – Globa trix Multiplication – Iteratic	ge Organization, Stack All - Issues in Code Generation struction Selection by Tra- mming Code Generation. phs – Optimization of B vsis – Constant Propaga LELISM: Code 1 Code Scheduling - Basis on Spaces – Affine Array I	8hrs ocation Space, on - Design of ee Rewriting – 8hrs asic Blocks – tion – Partial 8hrs ic Concepts in ndexes.								

CO1	Design compiler phases from language specification.
CO2	Design code generators for the specified machine.
CO3	Analyze Object Code Generation techniques.
CO4	Apply the various optimization techniques.
CO5	Understand the Optimizing for Parallelism
Textboo	ks:
1	Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffrey D. Ullman, -Compilers: Principles,
	Techniques and ToolsI, Second Edition, Pearson Education, 2009.
2	Randy Allen, Ken Kennedy, —Optimizing Compilers for Modern Architectures: A
	Dependence based Approach ^{II} , Morgan Kaufmann Publishers, 2002.
3	Keith D Cooper and Linda Torczon, —Engineering a Compiler, Morgan Kaufmann
	Publishers Elsevier Science, 2004
4	V. Raghavan, —Principles of Compiler Design ^I , Tata McGraw Hill Education
	Publishers, 2010.
5	Allen I. Holub, —Compiler Design in CI, Prentice-Hall Software Series, 1993.
6	Steven S. Muchnick, —Advanced Compiler Design and Implementation, Morgan
	Kaufmann Publishers - Elsevier Science, India, Indian Reprint 2003.
7	Keith D Cooper and Linda Torczon, —Engineering a Compiler, Morgan Kaufmann
	Publishers Elsevier Science, 2004

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

SEE Assessment:

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the entire syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO MAPPING												
СОРО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	1	2	-	-	-	-	-	-	-	2
CO2	3	3	2	3	1	-	-	-	-	-	-	2
CO3	3	3	2	3	1	-	-	-	-	-	-	2
CO4	3	3	2	3	2	-	-	-	-	-	-	2
C05	3	3	2	3	2	-	-	-	-	-	-	2

Course Title	Cloud Computing	Semester	VI							
Course code	MVJ22IS634	CIE	50							
Total No. of Contact Hou	rs: 3:0:0:0(L:T:P:S)	SEE	50							
No. of Contact Hours/wee	ek 40	Total	100							
Credits	3	Exam. Duration	3							
COURSE OBJECTIVES	COURSE OBJECTIVES: This course will enable students to									
 To explain the function To illustrate the closes To Contrast difference 	amentals of cloud computing ud application programming and nt cloud platforms used in industr	aneka platform ry								
Module 1			8hrs							
Introduction, Cloud Infras Ethical issues, Cloud vul perspective, Microsoft Win	tructure: Cloud computing, Clou nerabilities, Cloud computing a ndows Azure and online services	Id computing delivery mod at Amazon, Cloud compu	els and services, ting the Google							
Module 2			8hrs							
cloud computing: Appli cloud computing, Workf machine model: The Zoc Web application, Cloud for Module 3	lows: Coordination of multiple keeper, The Map Reduce progra	activities, Coordination b amming model, A case stud- performance computing on	actorial styles of based on a state dy: The Gre The a cloud. 8hrs							
Cloud Resource Virtualiza Virtual Machines, Perform Case Study: Xen a VMM Performance comparison o	tion: Virtualization, Layering and ance and Security Isolation, Full based paravirtualization, Optim f virtual machines, The dark side	l virtualization, Virtual mac virtualization and paravirtua nization of network virtual of virtualization, Exercises	hine monitors, alization ization, vBlades, and problems							
Module 4			Shrs							
Cloud Resource Managem Application of control theo architecture, Feedback con performance managers, A Combinatorial auctions for Exercises and problems.	ent and Scheduling: Policies and ry to task scheduling on a cloud, trol based on dynamic thresholds, utility-based model for cloud-base cloud resources, Scheduling algo	mechanisms for resource m Stability of a two-level reso , Coordination of specialize ed Web services, Resourcin prithms for computing cloud	anagement, ource allocation d autonomic g bundling: ls,							
Module 5			8hrs							
Cloud Security, Cloud Application Development: Cloud security risks, Security: The top concern for cloud users, Privacy and privacy impact assessment, Trust, Operating system security, Virtual machine Security, Security of virtualization, Security risks posed by shared images, Security risks posed by a management OS, A trusted virtual machine monitor, A trust management service, A cloud service for adaptive data streaming, Cloud based optimal FPGA synthesis .Exercises and problems.										
Course outcomes: Studen	ts will able to									
CO1 Compare the strengths and limitations of cloud computing										
	ngths and limitations of cloud co	mputing								

CO4	Choose the appropriate cloud player
CO5	Address the core issues of cloud computing such as security, privacy and interoperability (can
Textbool	ks:
1	Cloud Computing Theory and Practice, Dan C Marinescu ,Elsevier(MK) 2013.
2	Computing Principles and Paradigms, Rajkumar Buyya , James Broberg, Andrzej Goscinski
	Willey 2014.
3	Cloud Computing Implementation, Management and Security, John W Rittinghouse, James F
	Ransome CRC Press
	2013
CIE A aa	

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

SEE Assessment:

SEE for 50 marks is executed by means of an examination. The Question paper for each course contains two parts, Part - A and Part - B. Part - A consists of objective type questions for 20 marks covering the entire syllabus. Part - B Students have to answer five questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have a maximum of three sub divisions. Each unit will have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO MAPPING													
СОРО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	-	-	-	2	2	-	-	-	-	-	
CO2	3	3	-	-	3	-	2	-	-	-	-	-	
CO3	3	3	3	-	3	-	-	-	-	-	-	-	
CO4	3	3	-	-	-	-	2	-	-	-	2	-	
CO5	3	3	-	3	-	2	-	2	-	2	2	2	

Course	Fitle	Introduction To Data Structures	Semester	VI						
Course	code	MVJ22IS641	CIE	50						
Total No	o. of Contact Hours :	3:0:0:0(L:T:P:S)	SEE	50						
No. of C	ontact Hours/week	40	Total	100						
Credits		3	Exam. Duration	3						
COURS	COURSE OBJECTIVES: This course will enable students to									
1. Discu	uss the fundamental concept	ots and principles of data structur	es.	1 .						
2. Unde	erstand the importance of d	ata structures in computer progra	imming and problem	solving.						
3. A CO	mpressive overview of val	nous data structures such as arra	ys, miked lists, stacks	s, queues, trees						
4. Prepa	are the students for advanc	ed courses in algorithms, data and	alvsis.							
		Module 1		8hrs						
Introdu	rtion : Data Structures def	inition classification of data stru	ctures Arrays – Def	inition.						
Declarat	ion, Types of arrays, Stru	ctures, Pointers.	iotaros, mirays Dor							
		Module 2		8hrs						
Stacks-	definition, implementation	of stacks using arrays, operation	s of stacks.							
Queues- queue. L	Introduction, Types of qu imitation of linear queue, l	eues, Linear queue using arrays, Linear Queue vs circular queue.	operations on linear	queue, circular						
	· · · ·	Module 3		8hrs						
Linked Applicat	L ist - Linked-list and its typ ions of Linear Data Structu	bes- singly linked lists- doubly-lin ares.	nked lists- circular lin	ked lists,						
		Module 4		8hrs						
Non Li	near Data Structures: Tr	ees – Introduction, Terminologie	es, Representation of t	trees, Types of						
Tree Co	pplication of trees, Binar	Application of Binary search t	al techniques, Binary	Search trees –						
	istruction, Expression rec	Module 5		8hrs						
Graphs: techniqu Hashing	Graphs: Introduction, terminologies, Representation of graphs, Connected graph, graph traversal techniques, Application of graphs in data structures. Hashing- Hash Functions – Separate Chaining – Open Addressing – Rehashing – Extensible Hashing.									
Course	outcomes: Students will a	ble to								
CO1	Evaluate the performance and efficiency of different operations on arrays, stacks, queues, and circular queues.									
CO2	Understand the different	types of linked list.								
CO3	Implement basic operation	ons on trees.								
CO4	Demonstrate the represer	tation and traversal techniques of	f graphs and their app	lications.						

CO5	Use the concepts of Hashing in storing data.
Textbool	ks:
1	Mark Allen Weiss, "Data Structures and Algorithm Analysis in C", 2nd Edition, Pearson
	Education, 2011
2	Fundamentals of Data structures, Ellis Horowitz, sartaj sahni,
3	Alfred V. Aho, John E. Hopcroft and Jeffry D. Ullman, Data Structures & Algorithms,
	Pearson Education, New Delhi, 2006

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks

SEE Assessment:

Question paper for the SEE consists of two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.

Part B also covers the entire syllabus consisting of five questions having choices and may contain subdivisions, each carrying 16 marks. Students must answer five full questions.

CO-PO MAPPING													
СОРО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	2	3	3	3							2	
CO2	3	2	2	3	3							2	
CO3	3	2	2	3	3							2	
CO4	3	2	3	3	3							2	
C05	3	2	3	3	3							2	

Course	Title	Fundamentals of Operating	Semester	VI					
Course	code	MVJ22IS642	CIE	50					
Total N L:T:P:S	o. of Contact Hours :	3:0:0:0	SEE	50					
No. of C	ontact Hours/week	40	Total	100					
Credits		3	Exam. Duration	3					
 COURSE OBJECTIVES: <i>This course will enable students to</i> 1. understanding the fundamental concepts of operating systems. 2. Analyse the exchanging data between different process. 3. Discuss the deadlock mechanism in operating systems. 4. Recognize the importance of process and memory management. 5. Outline the features of files and file management systems. 									
		Module 1		8hrs					
The Bas Evolution	sics: An overview: Introdu n of operating system, archi	iction to operating systems, con tecture of operating system, Fun	mponents of an oper ctions of operating sy	rating systems, vstem.					
		Module 2		8hrs					
system s Interrup commun	tructure, Process: Introduct ots: Interrupts in operating s ications.	ion, Process management, OS vi ystems, Interprocess communica	ew of processes. Proc ation, types of interpr	cess states. ocess					
		Module 3		8hrs					
Deadloc	ks: what is Deadlock, Dead	llock Characteristics, resource n	nanagement, conditio	ns of deadlock					
– Handli	ng Deadlocks, deadlock avo	bidance, Deadlock Detection, De	adlock Recovery.	01					
Process	scheduling: Concept of Pr	NIGAULE 4	Processes scheduling	Scheduling					
criteria.	senerating. Concept of T	seess senedaning, operation on r	iocesses seneduling,	Seneduling					
Memory	Management: Memory	organization in operating syst	tem, Memory Hierar	rchy, Memory					
Manager	nent Strategies. Contiguous	Memory Allocation, Non-contig	guous Memory Alloca	ation.					
		Module 5		anrs					
File and Protectio	Database Systems : File co on, File System Structure. Fi	ncept, Access methods, Data Hi le access control.	erarchy, Directory Str	ucture, File					
Course	outcomes: Students will al	ole to							
CO1	Demonstrate need for OS	and different types of OS							
CO2	Understand the process an	d interprocess communication							
CO3	Apply suitable methods to	handle and avoid deadlock							
CO4	Analyze and solve problem	ns related to process managemen	nt, memory managem	ent					
CO5	create, modify, and delete	files and directories within an or	perating system.						
Textboo	ks:		Z						
1	"Operating System Concepts" by Abraham Silberschatz, Peter B. Galvin, and Greg Gagne.								

- 10th ed. "Modern Operating Systems" by Andrew S. Tanenbaum and Herbert Bos,5th ed.

3 "Operating Systems: Internals and Design Principles" by William Stallings,7th ed

CIE Assessment:

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks

SEE Assessment:

Question paper for the SEE consists of two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.

Part B also covers the entire syllabus consisting of five questions having choices and may contain subdivisions, each carrying 16 marks. Students must answer five full questions.

CO-PO MAPPING												
СОРО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	3	2	3							
CO2	2	3	3	3	3							
CO3	2	3	3	2	3							
CO4	2	3	2	3	3							
CO5	2	3	2	2	2							

Course 7	Fitle	Mobile Application	Semester	VI						
Course o	code	Development MV 12218643	CIE	50						
Total No	of Contact Hours ·	3.0.0.0(L.T.P.S)	SFF	50						
		5.0.0.0(L.1.1.5)		30						
No. of C	ontact Hours/week	40	Total	100						
Credits		3	Exam. Duration	3						
COURS 1.Unders	COURSE OBJECTIVES: <i>This course will enable students to</i> 1.Understand system requirements for mobile applications.									
2.Genera 3.Implem	te suitable design using spe	cific mobile development france	meworks. works.							
	6 6 1	1								
4.Deploy	the mobile applications in	marketplace for distribution.		9h mg						
				onrs						
Introd	uction: Introduction to mo	oile application - Market valu	es for mobile application	s System						
require	ements for mobile application	on,Mobile application develop	oment architecture.	_						
		Module 2		8hrs						
Design	ing Applications using An	droid: Developing user inter	faces -Layout -Input Con	trols and						
Events	- Menus - Dialogs, Notifica	tions and Toasts								
		Module 3		8hrs						
Multin video.	nedia & Services: Lifecycl	e of a Service - Managing Se	rvicesGPS API Play	ing audio,						
		Module 4		8hrs						
Techn enviror SQLite	nment, Android architec Packaging and deploymen	Introduction Establishing the ture Activities and views Inte	development racting with UI Persistin	g data using						
		Module 5		8hrs						
Technology II IOS: Introduction to Objective C IOS features UI implementation Touch frameworks Data persistence using Core Data and SQLite.										
CO1	Demonstrate knowledge o	n basics of mobile application	1.							
CO2	Understand the frameworl	of mobile application and de	esion simple interfaces							
CO2	Create an application usin	g multimedia components.	sign simple interfaces							
CO4	Develop and deploy appli	cation with server side connec	ctivity.							
CO5	Understand basic concept	s of IOS								

Textboo	ks:
1	James Dovey and Ash Furrow, "Beginning objective C", Apress, 20212
2	
	Android in Practice", Dream Tech, 2012 Charlie Collins, Michael Galpin and Matthias Kappler.

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks

SEE Assessment:

Question paper for the SEE consists of two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.

Part B also covers the entire syllabus consisting of five questions having choices and may contain subdivisions, each carrying 16 marks. Students must answer five full questions.

	CO-PO MAPPING												
СОРО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	1	-	-	-	-	-	-	-	-	3	
CO2	3	3	1	-	-	-	-	-	-	-	-	3	
CO3	3	3	1	2	-	-	-	-	-	1	-	3	
CO4	3	3	3	3	-	-	-	2	2	2	-	3	
C05	3	3	3	3	-	-	2	2	3	2	-	3	

Course	Fitle	Introduction to AI	SEMESTER	VI					
Course	code	MVJ22IS644	CIE	50					
Total N L:T:P:S	o. of Contact Hours :	3:0:0:0	SEE	50					
No. of C	of Contact Hours/week 40 Total								
Credits	Credits3Exam. Duration3								
COURSE OBJECTIVES: This course will enable students to 1. Identify the problems where AI is required and the different methods available 2. Compare and contrast different AI techniques available. 3. Define and explain learning algorithms Module 1 8hrs What is artificial intelligence? Problems Problem Spaces and search									
		Module 2		8hrs					
Knowled	lge Representation Issues, U	Jsing Predicate Logic, Rep	resenting knowledge using	g Rules.					
Module 3 8hrs									
Symboli	c Reasoning under Uncertai	nty, Statistical reasoning							
Module 4 8hrs									
Heurist	ic search techniques: Gene	erate and test, Hill Climbir	ng, Best First Search, Prol	olemReduction,					
Constrai	nt Satisfaction, Means-ends	Analysis.							
		Module 5		8hrs					
Learning	Learning Expert Systems								
Course	wtaamaa Studanta will ak	.l.							
Course o	Identify the AThead and								
	Identity the AI based problems.								
C02	CO2 Apply techniques to solve problems CO3 Define learning and explain various learning techniques								
CO3 Define learning and explain various learning techniques. CO4 Implement projects using different AI learning techniques.									
CO5 Discuss Expert system.									
Textbooks:									
1 E. Rich , K. Knight & S. B. Nair - Artificial Intelligence, 3/e, McGraw Hill.									
2	2 Stuart Russel, Peter Norvig, "Artificial Intelligence: A Modern Approach", 2nd Edition,								
	Pearson Education, 2003.								
3	Dan W. Patterson, Introdu Prentice Hal of India.	ction to Artificial Intelliger	nce and Expert Systems –						
CIF Ass	assmant.								

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50

marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks

SEE Assessment:

Question paper for the SEE consists of two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.

Part B also covers the entire syllabus consisting of five questions having choices and may contain subdivisions, each carrying 16 marks. Students must answer five full questions.

	CO-PO MAPPING												
СОРО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	2	2	3	3	2							2	
CO2	2	3	3	3	2							2	
CO3	3	2	2	2	3							2	
CO4	3	2	2	3	3							2	
CO5	3	3	3	3	3							2	

SEMESTER -6 th MACHINE LEARNING LAB								
Course code	MVJ22ISL66	CIE	50					
Total No. of Contact Hours : L:T:P:S	0:0:2:0	SEE	50					
No. of Contact Hours/week	20	Total	100					
Credits	1	Exam. Duration	3					

COURSE OBJECTIVES: This course will enable students to

1. Make use of Data sets in implementing the machine learning algorithms

2.Implement the machine learning concepts and algorithms in any suitable language of choice.

LIST O	OF PROGRAMS
1	Implement and demonstrate the FIND-S algorithm for finding the most specific hypothesis
	based on a given set of training data samples. Read the training data from a
	.CSV file.
2	Implement and demonstrate the FIND-S algorithm for finding the most specific hypothesis
	based on a given set of training data samples. Read the training data from a
	.CSV file.
3	Develop a program to demonstrate the prediction of values of a given dataset using Linear regression.
4	Write a program to demonstrate the working of the decision tree based ID3 algorithm. Use an appropriate data set for building the decision tree and apply this knowledge to classify a new sample.
5	Build an Artificial Neural Network by implementing the Backpropagation algorithm and test the same using appropriate data sets.
6	Write a program to implement the naïve Bayesian classifier for a sample training data set
	stored as a .CSV file. Compute the accuracy of the classifier, considering
	few test data sets.
7	Assuming a set of documents that need to be classified, use the naïve Bayesian Classifier
	model to perform this task. Built-in Java classes/API can be used to write the program.
	Calculate the accuracy, precision, and recall for
	your data set.
8	Write a program to construct a Bayesian network considering medical data. Use this model
	to demonstrate the diagnosis of heart patients using standard Heart Disease Data Set. You
	can use Java/Python ML library
	classes/API.

9 Apply EM algorithm to cluster a set of data stored in a .CSV file. Use the same dataset for clustering using k- Means algorithm. Compare the result of these two algorithms and comment on the quality of clustering. You can add Java/Pytho ML library classes/API in the program. 10 Write a program to implement k-Nearest Neighbour algorithm to classify the iris data see Print both correct and wrong predictions. Java/Python ML library classes 11 Implement the non-parametric Locally Weighted Regression algorithm i order to fit data points. Select appropriate data set for your experiment and draw graphs Course outcomes: Students will able to CO1 CO2 Implement and evaluate logistic regression models. CO3 Implement and evaluate logistic regression models. CO4 Perform dimensionality reduction using PCA and understand its impact on the dataset. to implement and evaluate ensemble methods and understand their advantages over individual models CO5 To implement and evaluate ensemble methods and understand their advantages over individual models CO4 Perform dimensionality reduction using PCA and understand their advantages over individual models CO5 To implement and evaluate ensemble methods and understand their advantages over individual models Cut and evaluate for machine Learning, India Edition 2013, McGraw Hill Education. 2 Tervor Hastie, Robert Tibshirani, Jerome Friedman, h The Elements of Statistical Learning, 2nd edition, spr										
.CSV file. Use the same dataset for clustering using k- Means algorithm. Compare the result of these two algorithms and comment on the quality of clustering. You can add Java/Pytho ML library classes/API in the program. 10 Write a program to implement k-Nearest Neighbour algorithm to classify the iris data se Print both correct and wrong predictions. Java/Python ML library classes can be used for this problem. 11 Implement the non-parametric Locally Weighted Regression algorithm i order to fit data points. Select appropriate data set for your experiment and draw graphs Course outcomes: Students will able to CO1 CO2 Implement and evaluate logistic regression models. CO3 Implement and evaluate logistic regression models. CO4 Perform dimensionality reduction using PCA and understand its impact on the dataset. to implement and evaluate K-Means clustering and determine the optimal number of clusters. CO5 To implement and evaluate ensemble methods and understand their advantages over individual models Textbooks: 1 1 Tom M. Mitchell, Machine Learning, India Edition 2013, McGraw Hill Education. 2 Trevor Hastie, Robert Tibshirani, Jerome Friedman, h The Elements of Statistical Learning, 2nd edition, springer series in statistics. Cut between the series of the avery session. The average of the marks over number of the student is revery usession is held every week as per the time table and the performance of the student is revery macon fill avery session. The average of the mar	9	Apply EM algorithm to cluster a set of data stored in a								
of these two algorithms and comment on the quality of clustering. You can add Java/Pytho ML library classes/API in the program. 10 Write a program to implement k-Nearest Neighbour algorithm to classify the iris data se Print both correct and wrong predictions. Java/Python ML library classes can be used for this problem. 11 Implement the non-parametric Locally Weighted Regression algorithm i order to fit data points. Select appropriate data set for your experiment and draw graphs Course outcomes: Students will able to C01 Preprocess raw data for machine learning algorithms. to implement andevaluate linear regression models. C02 Implement and evaluate logistic regression models. C03 Implement and evaluate SVM models for both classification and regression tasks. To implement and evaluate SVM models with different kernels C04 Perform dimensionality reduction using PCA and understand its impact on the dataset, to implement and evaluate K-Means clustering and determine the optimal number of clusters. C05 To implement and evaluate learning, India Edition 2013, McGraw Hill Education. 1 Tom M. Mitchell, Machine Learning, India Edition 2013, McGraw Hill Education. 2 Trevor Hastie, Robert Tibshirani, Jerome Friedman, h The Elements of Statistical Learning, 2nd edition, springer seris in statistics.		.CSV file. Use the same dataset for clustering using k- Means algorithm. Compare the results								
ML library classes/API in the program. 10 Write a program to implement k-Nearest Neighbour algorithm to classify the iris data se Print both correct and wrong predictions. Java/Python ML library classes can be used for this problem. 11 Implement the non-parametric Locally Weighted Regression algorithm i order to fit data points. Select appropriate data set for your experiment and draw graphs Course outcomes: Students will able to CO1 Preprocess raw data for machine learning algorithms. to implement andevaluate linear regression models. CO2 Implement and evaluate logistic regression models. CO3 Implement and evaluate KNN models for both classification and regression tasks. To implement and evaluate SVM models with different kernels CO4 Perform dimensionality reduction using PCA and understand its impact on the dataset. to implement and evaluate clustering and determine the optimal number of clusters. CO5 To implement and evaluate clustering india Edition 2013, McGraw Hill Education. 1 Tom M. Mitchell, Machine Learning, India Edition 2013, McGraw Hill Education. 2 Trevor Hastie, Robert Tibshirani, Jerome Friedman, h The Elements of Statistical Learning, 2nd edition, springer series in statistics. Cotinuous Internal Evaluation (CIE): Laboratory session is held every week a		of these two algorithms and comment on the quality of clustering. You can add Iava/Python								
ML library classes/API in the program. 10 Write a program to implement k-Nearest Neighbour algorithm to classify the iris data se Print both correct and wrong predictions. Java/Python ML library classes can be used for this problem. 11 Implement the non-parametric Locally Weighted Regression algorithm i order to fit data points. Select appropriate data set for your experiment and draw graphs Course outcomes: Students will able to CO1 C01 Preprocess raw data for machine learning algorithms. to implement andevaluate linear regression models. C02 Implement and evaluate logistic regression models. C03 Implement and evaluate SVM models for both classification and regression tasks. To implement and evaluate SVM models with different kernels C04 Perform dimensionality reduction using PCA and understand its impact on the dataset. to implement and evaluate ensemble methods and understand their advantages over individual models Textbooks: I 1 Tom M. Mitchell, Machine Learning, India Edition 2013, McGraw Hill Education. 2 Trevor Hastie, Robert Tibshirani, Jerome Friedman, h The Elements of Statistical Learning, 2nd edition, springer series in statistics. CIE Assessment: Continuous Internal Evaluation (CIE): Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of <th></th> <th colspan="8">of these two algorithms and comment on the quanty of clustering. You can add Java/Python</th>		of these two algorithms and comment on the quanty of clustering. You can add Java/Python								
program. 10 Write a program to implement k-Nearest Neighbour algorithm to classify the iris data se Print both correct and wrong predictions. Java/Python ML library classes can be used for this problem. 11 Implement the non-parametric Locally Weighted Regression algorithm i order to fit data points. Select appropriate data set for your experiment and draw graphs Course outcomes: Students will able to CO1 Preprocess raw data for machine learning algorithms. to implement andevaluate linear regression models. CO2 Implement and evaluate logistic regression models. CO3 Implement and evaluate SVM models for both classification and regression tasks. To implement and evaluate SVM models for both classification et explained evaluate SVM models with different kernels CO4 Perform dimensionality reduction using PCA and understand its impact on the dataset. to implement and evaluate K-Means clustering and determine the optimal number of clusters. CO5 To implement and evaluate carning, India Edition 2013, McGraw Hill Education. 2 Trevor Hastic, Robert Tibshirani, Jerome Friedman, h The Elements of Statistical Learning, 2nd edition, springer series in statistics. CIE Assessment: Continuous Internal Evaluation (CIE): Laboratory session is held every week as per the time table and the performance of the studet is evaluated in every se		ML library classes/API in the								
 10 Write a program to implement k-Nearest Neighbour algorithm to classify the iris data se Print both correct and wrong predictions. Java/Python ML library classes can be used for this problem. 11 Implement the non-parametric Locally Weighted Regression algorithm i order to fit data points. Select appropriate data set for your experiment and draw graphs Course outcomes: Students will able to CO1 Preprocess raw data for machine learning algorithms. to implement andevaluate linear regression models. CO2 Implement and evaluate logistic regression models. CO3 Implement and evaluate SVM models for both classification and regression tasks. To implement and evaluate SVM models for both classification and regression tasks. To implement and evaluate KNN models for both classification and regression tasks. To implement and evaluate KNN models for both classification and regression tasks. To implement and evaluate KNN models and understand its impact on the dataset. to implement and evaluate K-Means clustering and determine the optimal number of clusters. CO5 To implement and evaluate ensemble methods and understand their advantages over individual models Textbooks: 1 Tom M. Mitchell, Machine Learning, India Edition 2013, McGraw Hill Education. 2 Trevor Hastie, Robert Tibshirani, Jerome Friedman, h The Elements of Statistical Learning, 2nd edition, springer series in statistics. CIE Assessment: Continuous Internal Evaluation (CIE): Laboratory- 50 Marks The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of 		program.								
 Print both correct and wrong predictions. Java/Python ML library classes can be used for this problem. Implement the non-parametric Locally Weighted Regression algorithm i order to fit data points. Select 	10	Write a program to implement k-Nearest Neighbour algorithm to classify the iris data set.								
can be used for this problem. 11 Implement the non-parametric Locally Weighted Regression algorithm i order to fit data points. Select appropriate data set for your experiment and draw graphs Course outcomes: Students will able to CO1 Preprocess raw data for machine learning algorithms. to implement andevaluate linear regression models. CO2 Implement and evaluate logistic regression models. CO3 Implement and evaluate SVM models for both classification and regression tasks. To implement and evaluate SVM models with different kernels CO4 Perform dimensionality reduction using PCA and understand its impact on the dataset. to implement and evaluate K-Means clustering and determine the optimal number of clusters. CO5 To implement and evaluate ensemble methods and understand their advantages over individual models Textbooks: 1 1 Tom M. Mitchell, Machine Learning, India Edition 2013, McGraw Hill Education. 2 Trevor Hastie, Robert Tibshirani, Jerome Friedman, h The Elements of Statistical Learning, 2nd edition, springer series in statistics. CIE Assessment: Continuous Internal Evaluation (CIE): Laboratory. 50 Marks The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of		Print both correct and wrong predictions. Java/Python ML library classes								
 Implement the non-parametric Locally Weighted Regression algorithm i order to fit data points. Select appropriate data set for your experiment and draw graphs Course outcomes: Students will able to CO1 Preprocess raw data for machine learning algorithms. to implement andevaluate linear regression models. CO2 Implement and evaluate logistic regression models. CO3 Implement and evaluate KNN models for both classification and regression tasks. To implement and evaluate SVM models with different kernels CO4 Perform dimensionality reduction using PCA and understand its impact on the dataset. to implement and evaluate K-Means clustering and determine the optimal number of clusters. CO5 To implement and evaluate ensemble methods and understand their advantages over individual models Textbooks: 1 Tom M. Mitchell, Machine Learning, India Edition 2013, McGraw Hill Education. 2 Trevor Hastie, Robert Tibshirani, Jerome Friedman, h The Elements of Statistical Learning, 2nd edition, springer series in statistics. CIE Assessment: Continuous Internal Evaluation (CIE): Laboratory- 50 Marks The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of		can be used for this problem.								
order to fit data points. Select appropriate data set for your experiment and draw graphs Course → tcomes: Students will able to CO1 Preprocess raw data for machine learning algorithms. to implement andevaluate linear regression models. CO2 Implement and evaluate logistic regression models. CO3 Implement and evaluate SVM models for both classification and regression tasks. To implement and evaluate SVM models with different kernels CO4 Perform dimensionality reduction using PCA and understand its impact on the dataset. to implement and evaluate K-Means clustering and determine the optimal number of clusters. CO5 To implement and evaluate ensemble methods and understand their advantages over individual models Textbooks: I 1 Tom M. Mitchell, Machine Learning, India Edition 2013, McGraw Hill Education. 2 Trevor Hastie, Robert Tibshirani, Jerome Friedman, h The Elements of Statistical Learning, 2nd edition, springer series in statistics. CIEE Assessment: Continuous Internal Evaluation (CIE): Laboratory- 50 Marks The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of	11	Implement the non-parametric Locally Weighted Regression algorithm in								
appropriate data set for your experiment and draw graphs Course outcomes: Students will able to CO1 Preprocess raw data for machine learning algorithms. to implement andevaluate linear regression models. CO2 Implement and evaluate logistic regression models. CO3 Implement and evaluate SVM models for both classification and regression tasks. To implement and evaluate SVM models with different kernels CO4 Perform dimensionality reduction using PCA and understand its impact on the dataset. to implement and evaluate K-Means clustering and determine the optimal number of clusters. CO5 To implement and evaluate ensemble methods and understand their advantages over individual models Textbooks: 1 1 Tom M. Mitchell, Machine Learning, India Edition 2013, McGraw Hill Education. 2 Trevor Hastie, Robert Tibshirani, Jerome Friedman, h The Elements of Statistical Learning, 2nd edition, springer series in statistics. CIE Assessment: Continuous Internal Evaluation (CIE): Laboratory- 50 Marks The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of		order to fit data points. Select								
Course outcomes: Students will able to CO1 Preprocess raw data for machine learning algorithms. to implement andevaluate linear regression models. CO2 Implement and evaluate logistic regression models. CO3 Implement and evaluate SVM models for both classification and regression tasks. To implement and evaluate SVM models with different kernels CO4 Perform dimensionality reduction using PCA and understand its impact on the dataset. to implement and evaluate K-Means clustering and determine the optimal number of clusters. CO5 To implement and evaluate ensemble methods and understand their advantages over individual models Textbooks: 1 1 Tom M. Mitchell, Machine Learning, India Edition 2013, McGraw Hill Education. 2 Trevor Hastie, Robert Tibshirani, Jerome Friedman, h The Elements of Statistical Learning, 2nd edition, springer series in statistics. CIE Assessment: Continuous Internal Evaluation (CIE): Laboratory- 50 Marks The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of		appropriate data set for your experiment and draw graphs								
Course outcomes: Students will able to CO1 Preprocess raw data for machine learning algorithms. to implement andevaluate linear regression models. CO2 Implement and evaluate logistic regression models. CO3 Implement and evaluate KNN models for both classification and regression tasks. To implement and evaluate SVM models with different kernels CO4 Perform dimensionality reduction using PCA and understand its impact on the dataset. to implement and evaluate K-Means clustering and determine the optimal number of clusters. CO5 To implement and evaluate ensemble methods and understand their advantages over individual models Textbooks: 1 1 Tom M. Mitchell, Machine Learning, India Edition 2013, McGraw Hill Education. 2 Trevor Hastie, Robert Tibshirani, Jerome Friedman, h The Elements of Statistical Learning, 2nd edition, springer series in statistics. CIE Assessment: Continuous Internal Evaluation (CIE): Laboratory- 50 Marks The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of	0									
 CO1 Preprocess raw data for machine learning algorithms, to implement andevaluate linear regression models. CO2 Implement and evaluate logistic regression models. CO3 Implement and evaluate KNN models for both classification and regression tasks. To implement and evaluate SVM models with different kernels CO4 Perform dimensionality reduction using PCA and understand its impact on the dataset, to implement and evaluate K-Means clustering and determine the optimal number of clusters. CO5 To implement and evaluate ensemble methods and understand their advantages over individual models Textbooks: 1 Tom M. Mitchell, Machine Learning, India Edition 2013, McGraw Hill Education. 2 Trevor Hastie, Robert Tibshirani, Jerome Friedman, h The Elements of Statistical Learning, 2nd edition, springer series in statistics. CO5 Continuous Internal Evaluation (CIE): Laboratory 50 Marks The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of the student is evaluated in every session. 	Course	outcomes: Students will able to								
CO2 Implement and evaluate logistic regression models. CO3 Implement and evaluate KNN models for both classification and regression tasks. To implement and evaluate SVM models with different kernels CO4 Perform dimensionality reduction using PCA and understand its impact on the dataset. to implement and evaluate K-Means clustering and determine the optimal number of clusters. CO5 To implement and evaluate ensemble methods and understand their advantages over individual models Textbooks: 1 1 Tom M. Mitchell, Machine Learning, India Edition 2013, McGraw Hill Education. 2 Trevor Hastie, Robert Tibshirani, Jerome Friedman, h The Elements of Statistical Learning, 2nd edition, springer series in statistics. CIE Assessment: Continuous Internal Evaluation (CIE): Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of the student is evaluated in every session.	COI	Preprocess raw data for machine learning algorithms, to implement andevaluate linear								
 CO2 Implement and evaluate logistic regression models. CO3 Implement and evaluate KNN models for both classification and regression tasks. To implement and evaluate SVM models with different kernels CO4 Perform dimensionality reduction using PCA and understand its impact on the dataset. to implement and evaluate K-Means clustering and determine the optimal number of clusters. CO5 To implement and evaluate ensemble methods and understand their advantages over individual models Textbooks: 1 Tom M. Mitchell, Machine Learning, India Edition 2013, McGraw Hill Education. 2 Trevor Hastie, Robert Tibshirani, Jerome Friedman, h The Elements of Statistical Learning, 2nd edition, springer series in statistics. CIE Assessment: Continuous Internal Evaluation (CIE): Laboratory 50 Marks The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of the student is evaluated in every session. 	CO2	Implement and evaluate logistic regression models								
 CO3 Implement and evaluate KNN models for both classification and regression tasks. To implement and evaluate SVM models with different kernels CO4 Perform dimensionality reduction using PCA and understand its impact on the dataset. to implement and evaluate K-Means clustering and determine the optimal number of clusters. CO5 To implement and evaluate ensemble methods and understand their advantages over individual models Textbooks: 1 Tom M. Mitchell, Machine Learning, India Edition 2013, McGraw Hill Education. 2 Trevor Hastie, Robert Tibshirani, Jerome Friedman, h The Elements of Statistical Learning, 2nd edition, springer series in statistics. CIE Assessment: Continuous Internal Evaluation (CIE): Laboratory- 50 Marks The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of the student is evaluated in every session. 	C02	Implement and evaluate KNN models for both classification and regression tasks. To								
CO4 Perform dimensionality reduction using PCA and understand its impact on the dataset. to implement and evaluate K-Means clustering and determine the optimal number of clusters. CO5 To implement and evaluate ensemble methods and understand their advantages over individual models Textbooks: 1 1 Tom M. Mitchell, Machine Learning, India Edition 2013, McGraw Hill Education. 2 Trevor Hastie, Robert Tibshirani, Jerome Friedman, h The Elements of Statistical Learning, 2nd edition, springer series in statistics. CIE Assessment: Continuous Internal Evaluation (CIE): Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of the student is evaluated in every session.	05	implement and evaluate SVM models for both classification and regression tasks. To								
implement and evaluate K-Means clustering and determine the optimal number of clusters. CO5 To implement and evaluate ensemble methods and understand their advantages over individual models Textbooks: 1 1 Tom M. Mitchell, Machine Learning, India Edition 2013, McGraw Hill Education. 2 Trevor Hastie, Robert Tibshirani, Jerome Friedman, h The Elements of Statistical Learning, 2nd edition, springer series in statistics. CIE Assessment: Continuous Internal Evaluation (CIE): Laboratory- 50 Marks The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of	CO4	Perform dimensionality reduction using PCA and understand its impact on the dataset. to								
CO5 To implement and evaluate ensemble methods and understand their advantages over individual models Textbooks: 1 1 Tom M. Mitchell, Machine Learning, India Edition 2013, McGraw Hill Education. 2 Trevor Hastie, Robert Tibshirani, Jerome Friedman, h The Elements of Statistical Learning, 2nd edition, springer series in statistics. CIE Assessment: Continuous Internal Evaluation (CIE): Laboratory- 50 Marks The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of		implement and evaluate K-Means clustering and determine the optimal number of clusters.								
individual models Textbooks: 1 Tom M. Mitchell, Machine Learning, India Edition 2013, McGraw Hill Education. 2 Trevor Hastie, Robert Tibshirani, Jerome Friedman, h The Elements of Statistical Learning, 2nd edition, springer series in statistics. CIE Assessment: Continuous Internal Evaluation (CIE): Laboratory - 50 Marks The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of	CO5	To implement and evaluate ensemble methods and understand their advantages over								
Textbooks: 1 Tom M. Mitchell, Machine Learning, India Edition 2013, McGraw Hill Education. 2 Trevor Hastie, Robert Tibshirani, Jerome Friedman, h The Elements of Statistical Learning, 2nd edition, springer series in statistics. CIE Assessment: Continuous Internal Evaluation (CIE): Laboratory- 50 Marks The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of		individual models								
1 Tom M. Mitchell, Machine Learning, India Edition 2013, McGraw Hill Education. 2 Trevor Hastie, Robert Tibshirani, Jerome Friedman, h The Elements of Statistical Learning, 2nd edition, springer series in statistics. CIE Assessment: Continuous Internal Evaluation (CIE): Laboratory- 50 Marks The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of	Textboo	oks:								
 Trevor Hastie, Robert Tibshirani, Jerome Friedman, h The Elements of Statistical Learning, 2nd edition, springer series in statistics. CIE Assessment: Continuous Internal Evaluation (CIE): Laboratory- 50 Marks The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of 	1	Tom M. Mitchell, Machine Learning, India Edition 2013, McGraw Hill Education.								
CIE Assessment: Continuous Internal Evaluation (CIE): Laboratory- 50 Marks The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of	2	Trevor Hastie, Robert Tibshirani, Jerome Friedman, h The Elements of Statistical Learning,								
CIE Assessment: Continuous Internal Evaluation (CIE): Laboratory- 50 Marks The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of		2nd edition, springer series in statistics.								
CIE Assessment: Continuous Internal Evaluation (CIE): Laboratory- 50 Marks The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of										
Continuous Internal Evaluation (CIE): Laboratory- 50 Marks The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of	CIE Ass	sessment:								
Laboratory- 50 Marks The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of	Continu	uous Internal Evaluation (CIE):								
The laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average of the marks over number of	Labora	tory- 50 Marks								
the student is evaluated in every session. The average of the marks over number of	The lab	poratory session is held every week as per the time table and the performance of								
ine statent is evaluated in every session. The average of the marks ever number of	the stu	the student is evaluated in every session. The average of the marks over number of								
weeks is considered for 30 marks. At the end of the semester a test is conducted for 10	weeks	is considered for 30 marks. At the end of the semester a test is conducted for 10								
marks. The students are encouraged to implement additional innovative experiments in	marks.	The students are encouraged to implement additional innovative experiments in								
the lab and are awarded 10 marks. Total marks for the laboratory is 50.	the lab	and are awarded 10 marks. Total marks for the laboratory is 50.								
	-									

SEE Assessment:

SEE for 50 marks are executed by means of an examination.

	CO-PO MAPPING												
COPO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	2	1	1	-	-	-	-	-	-	2	-	1	
CO2	2	1	1	-	-	-	-	-	-	2	-	1	

CO3	2	1	1	-	-	-	-	-	-	2	-	1	
CO4	2	1	1	-	-	-	-	-	-	2	-	1	
CO5	2	1	1	-	-	-	-	-	-	2	-	1	

VII SEMESTER (2022 SCHEME)

Course Title	Big Data Analytics	Semester	VII
Course code	MVJ22IS71	CIE	50+50
Total No. of Contact Hours	3:0:1	SEE	50+50
No. of Contact Hours/week	40 L+26 P	Total	100
Credits	4	Exam. Duration	3

COURSE OBJECTIVES: *This course will enable students to*

- 1. Understand the Big Data Platform and its Use cases
- 2. Provide an overview of Apache Hadoop
- 3. Provide HDFS Concepts and Interfacing with HDFS
- 4. Understand Map Reduce Jobs
- 5. Provide hands on Hadoop Eco System.
- 6. Explain different approaches for text analysis and big data. Module 1

8hrs

Introduction To Big Data :Types of Digital Data, Introduction to Big Data, Analysing Data with Unix tools, The Big Data Foundation, Big Data Computing Platforms (or Computing Platforms That Handle the Big Data Analytics Tsunami), Big Data Computation, More on Big Data Storage, Big Data Computational Limitations, Big Data Emerging Technologies.

Module 28hrsBasics of Hadoop: Hadoop Architecture, The Design of HDFS, HDFS Concepts, Command Line
Interface, Hadoop file system interfaces, Data flow, Data Ingest with Flume and Scoop and Hadoop
archives, Hadoop I/O: Compression, Serialization, Avro and File-Based Data structures. Anatomy of
File Write and Read, NameNode, Secondary NameNode, and DataNode, Hadoop MapReduce
paradigm, Map and Reduce tasks, Job, Task trackers - Cluster Setup – SSH & Hadoop Configuration
– HDFS Administering –Monitoring & Maintenance. Analysing Data with Hadoop, Hadoop
Streaming, IBM Big Data Strategy, Introduction to Infosphere BigInsights and Big Sheets.

Module 3	8hrs
Map Reduce: Anatomy of a Map Reduce Job Run, Failures, Job Scheduling, Shuffle and	l Sort, Task
Execution, Map Reduce Types and Formats, Map Reduce Features.	
Hadoop Ecosystem And Yarn: Hadoop ecosystem components - SPARK, FLUME, I	Hadoop 2.0
New Features- NameNode High Availability, HDFS Federation, MRv2, YARN.	-
Module 4	8hrs
Pig: Introduction to PIG, Execution Modes of Pig, Comparison of Pig with Databases,	Grunt, Pig
Latin, User Defined Functions, Data Processing operators.	
Hive: Hive Shell, Hive Services, Hive Metastore, Comparison with Traditional Database	es, HiveOL,
Tables, Querying Data and User Defined Functions.	, <u> </u>
Zookeeper - how it helps in monitoring a cluster, HBase uses Zookeeper and ho	w to Build
Applications with Zookeeper.	

Module 5	8hrs

Understanding Text Analytics and big Data: Exploring Unstructured data, Understanding Text Analytics, Analysis and extraction techniques, Putting the results together with structured data, putting big data to use, Text analytics tools for Big Data.

Customized approaches for Analysis of Big Data: Different approaches to big data Analysis, custom and semi-custom applications for big data analysis.

LABORATORY EXPERIMENTS

1. Installation of Hadoop and basic commands execution on Hadoop.

2. Implementation of wordcount program using MapReduce.

3. Implementation of max avg of student marks using MapReduce programs.

4. Implement MapReduce program to find the max temperature.

5. Implementation of matrix multiplication using map reduce program.

6. Implement MapReduce program to find the max. Fuel consumed by the vehicles in the city.

7. Implement MapReduce program to find the average of city MPG just for electric cars for the given data sets

8. Implement the MapReduce program to find Even and odd numbers.

9. Implement the MapReduce program to find the list of prime numbers in the given data sets.

10. Implement MapReduce program to find the total and Average salary of the employees.

Cours	e outcomes: Students will able to
CO1	Describe big data and use cases from selected business domains
CO2	Install, configure, and run Hadoop and HDFS
CO3	Perform map-reduce analytics using Hadoop
CO4	Use Hadoop related tools such as HBase, Pig, and Hive for big data Analytics
CO5	Understand different Applications of big data approaches
Textb	ooks:
1	Big Data Analytics", Seema Acharya, Subhasini Chellappan, Wiley 2015
2	Understanding Big data: Analytics for Enterprise Class Hadoop and Streaming Data, Chris
	Eaton, Dirk deroos et al., 1 st edition, Tata McGraw Hill, 2015, ISBN 13: 978-9339221270
3	Tom White "Hadoop: The Definitive Guide" Third Edit on, O'reily Media, 2012.
4	Big data for dummies, Judith Hurwitz, Alan Nugent, Fern Halper, Marcia Kaufman, Wiley
	Publications, 1st edition, 2013, ISBN: 978-1-118-50422-2
5	Big Data, Big Analytics: Emerging Business Intelligence and Analytic Trends for Today's
	Businesses, Michael Minelli ,Michele Chambers , Ambiga Dhiraj

CIE Assessment:

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

SEE Assessment:

Question paper for the SEE consists of two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.

Part B also covers the entire syllabus consisting of five questions having choices and may contain sub-divisions, each carrying 16 marks. Students must answer five full questions.

					CC	D-PO N	ЛАРРІ	NG					
СОРО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	2	1	2	2	-							1	
CO2	2	2	2	2	-							1	
CO3	2	2	2	2	3							1	
CO4	2	2	2	2	3							1	
CO5	2	2	2	2	3							1	

Course Title	Parallel Computing	Semester	VII
Course code	MVJ22IS72	CIE	50+50
Total No. of Contact Hours	3:0:1	SEE	50+50
No. of Contact Hours/week	40 L+26 P	Total	100
Credits	4	Exam. Duration	3

COURSE OBJECTIVES: This course will enable students to

1. Understand fundamental concepts in Parallel Computing.

2. Understand Distributed-Memory Programming with MPI.

3. Understand parallel programming model, analyse synchronization in real computing problems.

4. Apply open MP on Shared memory programming.

Module 1

8hrs

Introduction to Parallel Computing: Motivating Parallelism, Scope of Parallel Computing. Parallel Programming Platforms: Trends in microprocessor architectures - limitations of memory system performance – parallel computing platforms – communication costs in parallel machines – routing mechanisms for interconnection networks.

Module 2

Module 3

Module 4

8hrs

Shre

8hrs

Principles of Parallel Algorithm Design: Preliminaries – decomposition techniques – characteristics of tasks and interactions – mapping techniques for load balancing – methods for containing interaction overheads – parallel algorithm models. Basic Communication Operations: One-to-all broadcast and all-to-one reduction – all-to-all broadcast reduction – all-reduce and prefix-sum operations – scatter and gather – all to-all personalized communication – circular shift – improving the speed of some communication Operation.

Module 5	0111 5
Examples of Distributed Systems–Trends in Distributed Systems – Focus on resou Challenges. Case study: World Wide Web.	rce sharing –

System Model Inter process Communication – the API for internet protocols – External data representation and Multicast communication. Network virtualization: Overlay networks. Case study: MPI Remote Method Invocation And Objects: Remote Invocation – Introduction – Request-reply protocols – Remote procedure call – Remote method invocation. Case study: Java RMI.

Module 5	8hrs
Peer-to-peer Systems - Introduction - Napster and its legacy - Peer-to-peer - Middlev	vare – Routing
overlays. Overlay case studies: Pastry, Tapestry. Distributed File Systems -Introduction	– File service
architecture – Andrew File system.	

LABORATORY EXPERIMENTS

1.Familiarization with HPC programming paradigms: Single program multiple data (SPMD) & MPMD

2. To interface Speeding up C/Fortran/Python programs: Vectorization; Compiler options.

3. Programming in Message Passing Interface (MPI): Point-to-point and collective communications;

Parallel I/O; MPI for Python and C/Fortran.

- 4. Programming in OpenMP.
- 5. Programming GPUs using OpenACC.
- 6. Programming GPUs using CuPy and CUDA
- 7. Reduction clause in OpenMP
- 8. Scheduling loops in OpenMP-odd even transposition sort
- 9. Synchronization in OpenMp Producer Consumer problem

10. OpenMP program for fork join model

Cours	e outcomes: Students will able to
CO1	Acquire the skills to implement software effectively and efficiently on parallel hardware
	platforms
CO2	Discuss trends in Distributed Systems
CO3	Apply network virtualization.
CO4	Apply remote method invocation and objects.
CO5	Differentiate the file systems.
Textb	ooks:
1	P. S. Pacheco, An Introduction to Parallel Programming, Elsevier (2011)
2	M. Quinn, Parallel Programming in C and OpenMP, McCraw Hill Education (India) (2003)
3	A. Grama, A. Gupta, G. Karypis, and V. Kumar, Introduction to Parallel Computing, Pearson
	(2007)
4	G. Zaccone. Python Parallel Programming Cookbook, Packt Publ. (2015)
5	R. Farber, Parallel Programming with OpenACC, Morgan Kaufmann

CIE Assessment:

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

Laboratory- 50 Marks

Experiment Conduction with proper results is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

SEE Assessment:

Question paper for the SEE consists of two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.

Part B also covers the entire syllabus consisting of five questions having choices and may contain subdivisions, each carrying 16 marks. Students must answer five full questions.

CO-PO MAPPING												
СОРО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3							
CO2	3	2	3	3	3							
CO3	2	3	2	3	3							
CO4	3	2	3	3	3							
CO5	2	3	3	3	3							
Course Title	Information and Network Security	Semester	VII									
----------------------------	-------------------------------------	----------------	-------									
Course code	MVJ22IS73	CIE	50+50									
Total No. of Contact Hours	3:0:0	SEE	50+50									
No. of Contact Hours/week	40	Total	100									
Credits	3	Exam. Duration	3									

- 1. Identify the major types of threats to information security and the associated attacks, Services and Mechanisms.
- 2. Design and develop cryptographic algorithms using public key cryptography.
- 3. Generate the own key for developing cryptography algorithms.
- 4. Understand various Transport-level Security and Wireless Network Security

Module 1

5. Generate and distribute a PGP key pair and use the PGP package to send an encrypted e- mail message.

Computer Security Concepts: Introduction, The need for security, Security approaches, Principles of security, The OSI Security Architecture, Types of Security attacks, Security services, Security Mechanisms, A model for Network Security. **Cryptography:** Symmetric Encryption Principles, Symmetric Block Encryption Algorithms, Random and Pseudorandom Numbers, Stream Ciphers and RC4 45, Cipher Block Modes of Operation, Approaches to Message Authentication, Secure Hash Functions, Message Authentication Codes, Public-Key Cryptography Algorithms (Knapsack, RSA, Diffie-Hellman, Elliptic Curve Cryptography), Digital Signatures.

Module 2

8hrs

8hrs

Network Security Applications: Symmetric Key Distribution Using Symmetric Encryption, Kerberos, Key Distribution Using Asymmetric Encryption, Public key infrastructure, Federated Identity Management. **Transport Level Security:** Secure Socket Layer and Transport Layer Security, Transport Layer Security, HTTPS, Secure Shell (SSH). **Wireless Network Security:** Wireless Application Protocol Overview, Wireless Transport Layer Security, WAP End-to-End Security.

Module 3	8hrs					
Electronic Mail Security: Pretty Good Privacy, S/MIME 241, DomainKeys Identified Mail. IP Security: IP Security Policy, Encapsulating Security Payload, Combining Security Associations,						
Internet Key Exchange, Cryptographic Suites, Intrusion Detection, Password Management, Firewalls						
- Types, Location and Configurations, Basics of SNMP, Legal and Ethical Aspects - Intellectual						
Property, Privacy, Ethical Issue						
Module 4	8hrs					
Hash Functions: Introduction, The Birthday Problem, Non-Cryptographic Hashes, Tiger Hash, HMAC,						
Uses. Advanced Cryptanalysis: Linear and differential Cryptanalysis, Side Channel Attack on RSA,						
Lattice Reduction and Knapsack, Hellman's time memory trade off. Access Control: Authentication,						
Authorization, Simple Authentication Protocols						

Module 5

8hrs

Malware: Introduction, Types Insecurity in software: Software Reverse Engineering, Software Tamper Resistance, Digital Rights Management, Software Development. Operating System and Security: Operating System Security Functions, Trusted Operating Systems

Cours	e outcomes: Students will able to
CO1	Identify common security threats and vulnerabilities in networks and information systems.
CO2	learn about encryption techniques, access control mechanisms, and security protocols.
CO3	Evaluate and propose solutions to legal and ethical challenges in the context of technology and
	information systems.
CO4	Apply mathematical and statistical methods to cryptanalysis and develop strategies for breaking
	encrypted messages.
CO5	Develop skills in malware analysis, reverse engineering, and incident response to effectively
	combat malware threats.
Textb	ooks:
1	Principles of Information Security - Michael E. Whitman and Herbert J. Mattord, 2nd
	Edition, Thompson, 2005.
2	Network Security Essentials Applications and Standards - William Stallings, Person Education,
	2000
3	Cryptography and Network Security - Behrouz A. Forouzan, Tata McGraw-Hill, 2007

CIE Assessment:

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

SEE Assessment:

Question paper for the SEE consists of two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.

Part B also covers the entire syllabus consisting of five questions having choices and may contain subdivisions, each carrying 16 marks. Students must answer five full questions.

One question must be set from each unit. The duration of examination is 3 hours.

CO-PO MAPPING												
СОРО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3							2
CO2	2	3	2	2	3							2
CO3	3	3	3	2	2							3
CO4	2	3	3	2	3							2
CO5	3	3	2	2	3							3

Cours	Durse TitleDeep LearningSemesterV										
Cours	se code	MVJ22IS741	CIE	50							
Total	No. of Contact Hours	3:0:0	SEE	50							
No. of	f Contact Hours/week	40	Total	100							
Credi	ts	3	Exam. Duration	3							
COU	DSE ODIECTIVES. This	agunga will an abla studa	146 40								
1. Lea	rn feed forward deep netw	orks.									
2. Und	derstand convolutional net	works and sequence mode	lling.								
3. Stu	dy probabilistic models and	d auto encoders.									
4. Exp	pose the students to various	s deep generative models.									
5. Stu	dy the various applications	of deep learning.									
		Module 1		8hrs							
DEE learnii	P NETWORKS: Machine ng – Feed forward Deep ne	e Learning Basics: Learnir etworks – regularization –	ng Algorithms – Supervised a Optimization for training Dec	nd Unsupervised pp models.							
		Madula 2		9 Phug							
		Iviouule 2		01118							
and re Auto 1	ecursive nets : Recurrent regressive networks – Long	neural networks – Basic Co g term dependencies – Ter	ctional RNN – Recursive No mporal dependencies – Appro	ums – Recurrent eural networks – ximate search.							
		Module 3		8hrs							
PROB	BABILISTIC MODELS A	ND AUTO ENCODERS :	: Structured Probabilistic mod	lels : Challenges							
of uns	structured modelling – usin	ng graphs to describe mod	lel structure – Learning abou	t dependencies –							
inferen	nce – Deep learning approa	ach – Monte carlo models	Linear Factor models and Au	to encoders							
		Module 4		Shrs							
DEEP Boltzr	GENERATIVE MODEL mann machine – Convoluti	S : Restricted Boltzmann onal Boltzmann machine	n Machines – Deep Belief r	etworks – Deep							
		Module 5		8hrs							
APPL proces task le	ICATIONS: Speech, Aud ssing – information retriev earning	io and Music processing val – object recognition a	 Language modelling and l nd computer vision – Multi 	Natural language modal and multi							
	~ ~ ~										
Cours	se outcomes: Students wi	II able to									
$\frac{COI}{CO2}$	CO2 Apply convolutional networks and convolution for much law column										
$\frac{CO2}{CO3}$	CO3 Use probabilistic models and auto encoders										
CO4	Use deep generative mod	els for problem solving									
CO5	CO5 Apply the deep learning techniques										
Textb	ooks:	I									
1	Yoshua Bengio and Ian J	.Goodfellow and Aaron C	ourville, "Deep Learning", M	IT Press, 2015							
	I oshua bengio and fan J.Goodfellow and Aaron Courville, "Deep Learning", MIT Press, 2015 I i Deng, Dong Yu, "Deep Learning" Methods and Applications" now publishers 2014										
2	Li Deng, Dong Yu, "Dee	ep Learning: Methods and	Applications", now publisher	rs, 2014							

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

SEE Assessment:

Question paper for the SEE consists of two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.

Part B also covers the entire syllabus consisting of five questions having choices and may contain subdivisions, each carrying 16 marks. Students must answer five full questions.

One question must be set from each unit. The duration of examination is 3 hours.

CO-PO MAPPING												
COPO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3							2
CO2	2	3	2	2	3							2
CO3	3	3	3	2	2							3
CO4	2	3	3	2	3							2
CO5	3	3	2	2	3							3

Course Title	Natural	Language	Semester	VII
	Processing			
Course code	MVJ22IS742		CIE	50
Total No. of Contact Hours	3:0:0		SEE	50
No. of Contact Hours/week	40		Total	100
Credits	3		Exam. Duration	3

- 1. Learn the fundamentals of natural language processing
- 2. Understand the use of CFG and PCFG in NLP
- 3. Understand the role of semantics of sentences and pragmatics
- 4. Gain knowledge in automated Natural Language Generation and Machine Translation.

Module 1

8hrs

INTRODUCTION: Origins and challenges of NLP – Language Modelling: Grammar-based LM, Statistical LM –Regular Expressions, Finite-State Automata – English Morphology, Transducers for lexicon and rules, Tokenization, Detecting and Correcting Spelling Errors, Minimum Edit Distance values of real symmetric matrices: Jacobi and Givens method.

Module 28hrsWORD LEVEL AND SYNTACTIC ANALYSIS: N grams Models of Syntax - Counting Words
Unsmoothed N grams-Smoothing-Back off Deleted Interpolation – Entropy – English Word Classes -
Tag sets for English-Part of Speech Tagging-Rule Based Part of Speech Tagging - Stochastic Part of
Speech Tagging - Transformation-Based Tagging -Issues in PoS tagging – Hidden Markov and
Maximum Entropy models.

Module 3	8hrs
CONTEXT FREE GRAMMARS: Context-Free Grammars, Grammar rules for English Normal Forms for grammar – Dependency Grammar – Syntactic Parsing, Ambig Programming parsing – Shallow parsing Probabilistic CFG, Probabilistic CYK Lexicalized CFGs – Feature structures, Unification of feature structures.	sh, Tree banks, guity, Dynamic , Probabilistic
Lexicalized CFGs – Feature structures, Unification of feature structures.	

Module 4	8hrs					
Representing Meaning - Meaning Structure of Language, First Order Predicate Calculus-Representing						
Linguistically Relevant Concepts -SyntaxDriven Semantic Analysis - Semantic Attachments -Syntax						
Driven Analyzer- Robust Analysis - Lexemes and Their Senses - Internal Structure	- Word Sense					
Disambiguation -Information Retrieval.						
Module 5	8hrs					

LANGUAGE GENERATION AND DISCOURSEANALYSIS: Discourse segmentation, Coherence – Reference Phenomena, Anaphora Resolution using Hobbs and Centering Algorithm – Co reference Resolution – Resources: Porter Stemmer, Lemmatize, Penn ,Treebank, Brill's Tagger, Word Net, Prop Bank, Frame Net, Brown Corpus, and British National Corpus (BNC).

Cours	e outcomes: Students will able to
CO1	Tag a given text with basic Language features.
CO2	Design an innovative application using NLP components
CO3	Implement a rule-based system to tackle morphology/syntax of a language
CO4	Design a tag set to be used for statistical processing for real-time applications
CO5	Compare the use of different statistical approaches for different types of NLP applications
Textb	ooks:
1	Daniel Jurafsky, James H. Martin-Speech and Language Processing: An Introduction to
	Natural Language Processing, Computational Linguistics and Speech, Pearson Publication, 2014
2	C. Manning and H. Schutze, "Foundations of Statistical Natural Language Processing",
	MITPress Cambridge MA:1999

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

SEE Assessment:

Question paper for the SEE consists of two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.

CO-PO MAPPING												
СОРО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	3	3	2							
CO2	3	2	3	3	2							
CO3	3	3	3	3	3							
CO4	2	2	3	3	3							
CO5	3	3	3	3	3							

Course Title	Embedded Systems	Semester	VII
Course code	MVJ22IS743	CIE	50
Total No. of Contact Hours	3:0:0	SEE	50
No. of Contact Hours/week	40	Total	100
Credits	3	Exam. Duration	3

- 1. Comprehend the underlying features and building blocks of embedded system development.
- 2. Outline the advanced architecture components of 8051 microcontroller.
- 3. Build the assembly language routines using 8051 microcontroller.
- 4. Analyze various models of embedded system development
- 5. Evaluate the RTOS concepts of embedded system applications
- 6. Design embedded systems prototypes for real-time applications.

8hrs

Introduction to Embedded Systems: Definition, Purpose, Embedded systems Vs. General computing systems, Classifications, Applications, Innovative bonding of lifestyle with embedded technologies, Building Blocks of Embedded Systems: Core components including all types of processor/controller, Memory, Sensors, Actuators, LED, 7 segment LED display, stepper motor, Keyboard, Push button switch, Communication Interface (on board and external types), Embedded firmware, Other system components

Module 2

Module 1

8hrs

Microprocessors versus Microcontrollers, ARM Embedded Systems: The RISC design philosophy, The ARM Design Philosophy, Embedded System Hardware, Embedded System Software. ARM Processor Fundamentals: Registers, Current Program Status Register, Pipeline, Exceptions, Interrupts, and the Vector Table, Core Extensions

Module 3	8hrs				
Introduction to the ARM Instruction Set : Data Processing Instructions, Programme Instructions Software Interrupt Instructions, Program Status Register Instructions, Co-processor Instructions Loading Constants, ARM programming using Assembly language: Writing Assembly code, Profiling					
Module 4	8hrs				
Exception, Interrupt Handling : Exception handling, Interrupts, Interrupt handling Scheme	s.				

Memory Management Unit : The Memory Hierarchy and Cache Memory, Cache Architecture, Cache Policy, Moving from MPU to an MMU,How Virtual Memory Works, Details of ARM MMU. Module 5

Module 5

Real Time Operating System (RTOS) based Embedded System Design: Operating System basics, Types of operating systems, Task, process and threads (Only POSIX Threads with an example program), Thread pre-emption, Multiprocessing and Multitasking, Task Communication (without any program), Task synchronization issues – Racing and Deadlock, Concept of Binary and counting semaphores (Mutex example without any program), How to choose an RTOS.

Course outcomes: Students will able to

CO1 Comprehend the underlying features and building blocks of embedded system development

CO2	Describe the architectural features and instructions of ARM microcontroller
CO3	Develop Assembly Programs in ARM for Embedded applications
CO4	Describe the fundamentals of Exception, Interrupt Handling and Memory Management Unit of
	ARM Controller
CO5	Demonstrate the need of real time operating system for embedded system applications.
Textb	ooks:
1	Andrew N Sloss, Dominic Symes and Chris Wright, ARM system developer's guide, Elsevier,
	Morgan Kaufman publishers, 2008.
2	Shibu K V, "Introduction to Embedded Systems", Tata McGraw Hill Education, Private

Limited, 2nd Edition

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

SEE Assessment:

Question paper for the SEE consists of two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.

CO-PO MAPPING												
СОРО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	3	3	3							
CO2	3	-	3	3	3							
CO3	3	-	3	3	3							
CO4	2	2	3	3	3							
CO5	3	3	3	3	3							

Course Title	Distributed File Systems	Semester	VII
Course code	MVJ22IS744	CIE	50+50
Total No. of Contact Hours	3:0:0	SEE	50+50
No. of Contact Hours/week	40	Total	100
Credits	3	Exam. Duration	3

- 1. To get knowledge in distributed architecture, naming, synchronization, consistency and replication, fault tolerance, security, and distributed file systems.
- 2. To understand Distributed on multiple file servers or multiple locations. It allows programs to access or store isolated files as they do with the local ones, allowing programmers to access files from any network or computer.
- 3. Illustrates DFS is executed as a part of the operating system.
- 4. Analyse DFS, a namespace is created, and this process is transparent for the clients.

Module 1	8hrs
Distributed file System: What is distributed file system, File Service architecture, Need of	of Distributed
File system, Distributed file system requirement, - Case Study 1: Sun Network File S	System, Case
Study 2: The Andrew File System. Name Services, Domain Name System, Directory Serv	vices.
Module 2	8hrs
Name Services and Domain Name System: Name servers and Navigation, Domain Name s	ystems, Main
Features, Directory service protocol, Name Hierarchy, Case study Global Name service, Th	he X.500
directory service, X.500 Infrastructure.	
Module 3	8hrs
Distributed File system: Motivation, Naming and Transparency, Remote File Access, Sta	teful vs State
less service, why did we choose these systems, GFS, GFS2- Google colossus system,	Hyper scale:
Facebook Tectonic system	
Module 4	8hrs
Desirable Features of a Good Distributed File System, Goal of Distributed File System, File	e models,
File-Accessing Models, File - Sharing Semantics, File - Caching Schemes, File Replicatio	on, Fault
Tolerance, Atomic Transactions and Design Principles, Trends in Distributed File system,	
Module 5	8hrs
Hadoop Distributed File System: The Design of HDFS, HDFS Concepts, Command Line In	nterface,
Hadoop File System interfaces, Data flow, Data Ingest with Flume and Scoop and Hadoop	Archives,
Apache Storm, Spark, Oozie	
Course outcomes: Students will able to	
CO1 Demonstrate Proficiency in understanding of Distributed file system	
CO2 Analyze the Name services and Domain Name system.	
CO3 Illustrate DFS its Motivation, GFS	
COA Interpret File Accessing Models Caching Schemes Replication Models sufficien	

	on File access.					
CO5	Discussion about Hadoop Distributed File System, Hadoop File System interfaces					
Textbooks:						
1	Distributed File Systems: Concepts and Examples" by Jurai Hromkovic					

2 Distributed File Systems" by Sun Microsystems

3 Modern Distributed File Systems: Design and Implementation" by Ricardo Morin

Video links: http://acl.digimat.in/nptel/courses/video/106104189/lec4.pdf

CIE Assessment:

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

SEE Assessment:

Question paper for the SEE consists of two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.

	CO-PO MAPPING												
СОРО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
C01	3	3	2	3	3							2	
CO2	3	3	2	3	2							2	
CO3	3	3	2	2	2							2	
CO4	2	2	2	2	2							2	
CO5	2	2	2	3	3							2	

Cours	se Title	Introduction To DBMS	Semester	VII			
Cours	se code	MVJ22IS7551	CIE	50			
Total	No. of Contact Hours	3:0:0	SEE	50			
No. of	f Contact Hours/week	40	Total	100			
Credi	ts	3	Exam. Duration	3			
COUI	RSF OB IFCTIVES . Thi	is course will enable students	10				
 Pra Pra Der Des 	ovide a strong foundation ctice SQL programming t nonstrate the use of concu sign and build database ap	in database concepts, technol hrough a variety of database p urrency and transactions in da pplications for real world prob	logy, and practice. problems. tabase. lems				
		Module 1		8hrs			
Intro on th datab	duction to Databases: Int le scene; workers behind base Applications; when N	roduction; An example; characteristic the scene; advantages of using lot to use a DBMS.	acteristics of the database ng the DBMS approach; A	approach; actors brief history of			
		Module 2		8hrs			
relatio relatio	onal operations, additional onal algebra.	relational operations (aggreg Module 3	ate, grouping, etc.) Exampl	es of Queries in 8hrs			
SQL: action	Advances Queries: More triggers, Views in SOL	complex SQL retrieval queri Schema change statements in	es, Specifying constraints a	as assertions and			
		Module 4		8hrs			
Norma Multiv Norma	alization: Database Desig valued Dependencies: Info al Forms based on Primar	n Theory – Introduction to No ormal design guidelines for re v Kevs, Second and Third No	ormalization using Function lation schema, Functional I ormal Forms, Boyce- Codd	al and Dependencies, Normal Form.			
		Module 5		8hrs			
Transa Desira schedu	action Processing: Introdu able properties of Transac ules based on Serializabili	action to Transaction Processi tions, Characterizing schedule ity, Transaction support in SQ	ng, Transaction and System es based on recoverability, 0 L.	n concepts, Characterizing			
Cours	se outcomes: Students w	ill able to					
CO1	Identify, analyse and dea RDBMS.	fine database objects, enforce	integrity constraints on a d	atabase using			
CO2	O2 Use Structured Query Language (SQL) for database manipulation.						
CO3	D3 Design and build simple database systems.						
CO4	Apply the concepts of N	ormalization and design datal	base which possess no anor	nalies.			
CO5	Develop application to i	nteract with databases					
Textb	ooks:						
1	Fundamentals of Datab	ase Systems, Ramez Elmasr	ri and Shamkant B. Navat	he, 7th Edition,			

	2017, Pearson
2	Database management systems, Ramakrishnan, and Gehrke, 3rd Edition, 2014, McGraw Hill
3	Silberschatz Korth and Sudharshan, Database System Concepts, 6th Edition, McGrawHill, 2013.

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

SEE Assessment:

Question paper for the SEE consists of two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.

					(CO-PO	MAPI	PING				
СОРО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	3	3	2	2				1			2
CO2	3	3	3	2	2				1			2
CO3	3	3	3	2	2				1			2
CO4	2	3	3	2	2				1			2
CO5	2	3	3	3	3				2			2

		Open Electi Semester	ve II 7 th				
Cours	I.	NTRODUCTION TO	ALGORITHMS	50+50			
Cours		MIVJ22157552		50+50			
Total	No. of Contact Hours	3:0:0	SEE	50+50			
No. of	f Contact Hours/week	40	Total	100			
Credi	ts	3	Exam. Duration	3			
COUI	RSE OBJECTIVES: This	course will enable stud	lents to				
 Learn the basics Algorithms Learn to write algorithms and its performance. Learn the different functions of algorithms. Understand the concept of recurrence algorithms Understand probabilistic analysis. 							
		Module 1		8hrs			
The l Algori	Role of Algorithms in C ithms as a technology, Effi	omputing: Algorithms, ciency, Data structures,	kinds of problems are solved Technique, Hard problems	by algorithms,			
		Module 2		8hrs			
Gettir averag	ng Started Insertion sort ge-case analysis, Designing	, Analyzing algorithn g algorithms	ns, Analysis of insertion sort,	Worst-case and			
		Module 3		8hrs			
Growt notatio	th of Functions Growth of ons and common functions	Functions, Asymptoti , Functional iteration	c notation, Comparison of funct	ions, Standard			
		Module 4		8hrs			
Recun master	rrences The substitution r r theorem, The proof for ex	nethod, The recursion-tact powers	ree method, The master metho	d, Proof of the			
		Module 5		8hrs			
Probabilistic Analysis and Randomized Algorithms The hiring problem, Indicator random variables, Randomized algorithms, Probabilistic analysis and further uses of indicator random variables							
Cours	e outcomes: Students will Explain the basic algori	II able to thm and its characteristi	CS				
CO2	Understanding of sorting	g algorithm	•••				
CO3	Analysis of algorithm ar	nd performance					
CO4	Illustrate Recurrence al	gorithms					
CO5	Interpret Probabilistic A	nalysis and randomized	algorithms				
Textb	ooks:						

1	Introduction to Algorithms, Thomas H. Cormen, Charles E. Leiserson, Ronal L. Rivest, Clifford
	Stein, 3rd Edition, PHI.
2	Introduction to the Design and Analysis of Algorithms, Anany Levitin:, 2rd Edition, 2009.
	Pearson.
3	Design and Analysis of Algorithms, S. Sridhar, Oxford (Higher Education).
4	Introduction to the Design and Analysis of Algorithms, Anany Levitin:, 2rd Edition, 2009.
	Pearson.
5	Introduction to Algorithms, Thomas H. Cormen, Charles E. Leiserson, Ronal L. Rivest, Clifford
	Stein, 3rd Edition, PHI.

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

SEE Assessment:

Question paper for the SEE consists of two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.

CO-PO MAPPING												
СОРО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	2	-	-		-	3	1	3	1	1
CO2	3	2	3	3	2	-	2	2	2	3	2	3
CO3	3	2	3	3	2	2	2	3	3	3	2	3
CO4	3	3	3	3	2	2	3	3	3	3	2	3
CO5	3	2	2	2	2	2	3	3	3	3	2	3

COurse Title	Software Engineering	Semester	VII
Course code	MVJ22IS7553	CIE	50
Total No. of Contact Hours	3:0:0	SEE	50
No. of Contact Hours/week	40	Total	100
Credits	3	Exam. Duration	3

1. Understand principles, concepts, methods, and techniques of the software engineering approach to producing quality software (particularly for large, complex systems).

2. Impart skills in the design and implementation of efficient software systems across disciplines.

3. Familiarize engineering practices and standards used in developing software products and components.

4. Gather knowledge on various software testing, maintenance methods.

	Module 1	8hrs								
FUNI Softwa	FUNDAMENTALS OF SOFTWARE ENGINEERING AND REQUIREMENTS ENGINEERING Software Engineering Fundamentals; Software processes: Software life-cycle models; Software									
Functi	requirements and specifications: Requirements elicitation; Requirements analysis modeling techniques; Functional and non-functional requirements									
1 uncu	Module 2	8hrs								
F 1										
Behav	Fundamental design concepts and principles; Design characteristics; System Models - Context, Behavioral, Data and, Object models.									
	Module 3	8hrs								
SOFT	WARE VALIDATION AND MAINTENANCE Software validation: Validat	tion planning;								
Testin testing	Testing fundamentals, including test plan creation and test case generation; Black-box and white-box testing techniques; Unit, integration, validation, and system testing; Object-oriented testing: Inspections									
	Module 4 8hrs									
COM	PONENT BASED SOFTWARE ENGINEERING Engineering of Component-Base	d Systems;								
The C	BSE Process; Domain Engineering; Component Based Development; Classifying an	nd Retrieving								
Comp	onents; Economics of CBSE									
	Module 5	8hrs								
SOFT	WARE QUALITY PROCESS IMPROVEMENT Overview of Quality management	t and Process								
Impro	vement; Overview of SEI -CMM, ISO 9000, CMMI, PCMM, TQM and Six Sigma;	overview of								
CASE	tools. Software tools and environments: Programming environments; Project mana	gement tools;								
Cours	e outcomes: Students will able to									
CO1	Comprehend software development life cycle and Prepare SRS document for a pr	oject								
CO2	Apply software design and development techniques									
CO3	Identify verification and validation methods in a software engineering project									
CO4	Apply on Component based software development process.									
CO5	Involve in continuous learning to solve issues of process and software proc	duct using the								
	advanced CASE tools and techniques									

Textb	ooks:
1	Ian Sommerville, "Software Engineering", 9th Edition, Addison- Wesley, 2011
2	R. S. Pressman, Software Engineering, a practitioner's approach, McGraw Hill,7th Edition,
	2010
3	Rajib Mall, "Fundamentals of Software Engineering", PHI Publication, 3rd edition, 2009
4	Pankaj Jalote: An Integrated Approach to Software Engineering, Wiley India.

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

SEE Assessment:

Question paper for the SEE consists of two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.

	CO-PO MAPPING											
СОРО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	2	2	-			1	2		
CO2	2	2	2	2	2	1			1	2		
CO3	2	2	2	2	2	1			1	2		
CO4	1	2	2	2	2	1			1	2		
CO5	1	2	2	1	2	1			2	2		

Course Title	Cloud Computing	Semester	VII
Course code	MVJ22IS7554	CIE	50
Total No. of Contact Hours	3:0:0	SEE	50
No. of Contact Hours/week	40	Total	100
Credits	3	Exam. Duration	3

1.Understands cloud computing models and infrastructure for larger networks

2. Identify policies, mechanisms and scheduling for resource management, virtualization, and optimization of networks.

3. Compare multiple approaches to cloud system design and solve real world problems.

4. Illustrate storage concept and self-organizing capability for different cloud systems.

5. Understands cloud security and risk

Module 1	8hrs

Defining a Cloud, Cloud Computing Reference Model, Characteristics and Benefits, Historical Developments, Building Cloud Computing Environments, Computing Platforms and Technologies, Eras of Computing, Parallel vs. Distributed Computing, Elements of Parallel Computing.

Module 2

8hrs

Characteristics of Virtualized Environments, Taxonomy of Virtualization Techniques, Virtualization and Cloud Computing, Pros and Cons of Virtualization, Technology Examples, Xen, VMware, Microsoft Hyper-V, Cloud Reference Model and Architecture, Infrastructure as a Service, Platform as a Service, Software as a Service, Types of Clouds, Economics of the Cloud, Open Challenges in Clouds Module 3 8hrs

Data-intensive computing Characterizing data-intensive computations, Challenges ahead, Historical perspective, Technologies for data-intensive computing – Storage systems, Programming platforms – Map Reduce. Public Cloud Infrastructures: Amazon Web Services - Compute, Storage, and Communication Services; Google App Engine – Architecture, Application Life-Cycle, Cost Model; and Microsoft Azure

Module 4

8hrs

ECG Data Analysis on Cloud, Protein Structure Prediction, Satellite Image Processing; Business and
Consumer Applications – CRM, Social Networks, Media Applications, and Multiplayer Online Gaming.
Advanced Topics in Cloud Computing, Energy efficiency in clouds, Energy-efficient and green cloud
computing architecture, Market-based management of clouds, Market-oriented cloud computing, A
reference model for MOCC,3 Technologies and initiatives supporting MOCC, ObservationsModule 5Module 58hrs

Cloud security risks, Security: The top concern for cloud users, Privacy and privacy impact assessment, Trust, Operating system security, Virtual machine Security, Security of virtualization, Security risks posed by shared images, Security risks posed by a management OS, A trusted virtual machine monitor.

Cours	e outcomes: Students will able to										
CO1	Explore the basic concepts of cloud computing, cloud infrastructure, cloud models, cloud										
	services, distributed computing, and other related concepts.										
CO2	Understand Virtualization and working of some of industrially popular Virtualization										
	technologies.										
CO3	Apply Map Reduce programming model to solve some data-intensive computing applications										
	over public or private cloud platforms.										
CO4	Analyzing the security risks in cloud from different perspectives and study some of the										
	available solutions.										
CO5	05 Explain Operating system security, Virtual machine Security and Security of virtualization.										
Textb	ooks:										
1	Mastering Cloud Computing, Rajkumar Buyya, Christian Vecchiola, and ThamaraiSelvi, 2013,										
	McGraw Hill, New Delhi, India, ISBN-13: 978-1-25-902995-0.										
	(Module 1, Module 2, Module 3, Module 4, Module 5)										
2	Cloud Computing Theory and Practice, Dan C Marinescu, 1st Edition, 2013, Elsevier (MK),										
	ISBN: 9780124046276. (Module 5)										
3	Distributed Computing and Cloud Computing, from parallel processing to internet of things, Kai										
	Hwang, GeofferyC. Fox, Jack J Dongarra, 1st Edition, 2012, Elsevier (MK), ISBN: 978-0-12-										
	385880-1.										

CIE is executed by way of quizzes (Q), tests (T) and assignments. A minimum of three quizzes are conducted along with tests. Test portion is evaluated for 50 marks and quiz is evaluated for 10 marks. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three (conduct additional quizzes and take best three). The three tests are conducted for 50 marks each and the average of all the tests are calculated for 50. The marks for the assignments are 20 (2 assignments for 10 marks each). The marks obtained in test, quiz and assignment are added to get marks out of 100 and report CIE for 50 marks.

SEE Assessment:

Question paper for the SEE consists of two parts i.e. Part A and Part B. Part A is compulsory and consists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.

CO-PO MAPPING												
СОРО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	3	-	-	-	-	2	3	3
CO2	3	3	3	2	3	-	-	-	-	2	3	3
CO3	3	3	2	2	3	-	-	-	-	2	3	3

CO4	3	3	2	2	3	-	-	-	-	2	3	3
CO5	2	2	-	2	2	-	-	-	-	-	-	-