

MVJCE CURRICULUM for DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING 2024 SCHEME

Semester: III								
Mathematics for AI & ML								
Course Code:	MVJAI301	CIE Marks: 50						
L: T:P:S	3:0:0:0 SEE Marks: 50							
Credits:	3	Total :100						
Hours:	40 Hrs Theory	SEE Duration: 3	Hrs.					
Course Learning	Objectives: The students will be able to							
Understand and ap	ply probability distribution, sampling theory a	nd joint probability						
distributions. Orga	nize, manage, and present data using statistica	l method.						
	UNIT-I							
Probability Distri	butions: Random variables (discrete and cont	inuous),	8 Hrs					
probability mass/de	ensity functions. Binomial distribution, Poisso	n distribution.						
Exponential and no	ormal distributions, problems.							
Joint probability	distribution: Joint Probability distribution for	two discrete						
random variables,	expectation, covariance, correlation coefficien	t.						
		1	0.11					
Sampling Theory	Sampling, Sampling distributions, standa	rd error, test of	8 Hrs					
hypothesis for me	ans and proportions, confidence limits for m	eans, student's t-						
distribution and Ch	ni-square distribution.							
		O 1 1 1 1 1 1	0.11					
Markov Chains:S	tates and transitions, I ransition probabilities,	General two-state	8 Hrs					
Markov chain, Pov	vers of the transition matrix for the m-state cha	ain, Gambler's						
ruin as a Markov c	hain, Classification of states, Classification of	chains, problems.						
	UNIT-IV							
Statistical Method			8 Hrs					
Correlation and R	Regression: Correlation, Regression coefficier	ts, line of						
regression problem	IS.	,						
Curve fitting: Fitting of the curves of the form $v = ax + b$, $v = ax^2 + bx + c$, $v = bx + c$.								
<i>ae</i> ^{bx} by the method of least squares.								
UNIT-V								
Design of Experin	Design of Experiments (ANOVA): 8 Hrs							
One way and Two	One way and Two way classifications, Completely randomized design,							
Randomized block	design, Latin square design.							

Cour	se Outcomes: After completing the course, the students will be able to
CO1	Develop probability distribution of discrete, continuous random variables and joint
	probability distribution occurring in digital signal processing, information theory and
	Design engineering.
CO2	Demonstrate testing of hypothesis of sampling distributions.
CO3	Define transition probability matrix of a Markov chain and solve problems related to
	discrete parameter random process.
CO4	Fit a suitable curve by the method of least squares and determine the lines of regression
	for a set of statistical data.
CO5	Understand the need and application of analytic.

Text Books:

1. B.S. Grewal, "Higher Engineering Mathematics" Khanna Publishers, 43rd Edition, 2013.

Reference Books:

1.	Erwin Kreyszig, "Advanced Engineering Mathematics", Wiley-India publishers, 10thedition,2014.
2.	Fundamentals of Statistics, S C Gupta, Himalaya Publications 2012.
3.	Ramana B. V., "Higher Engineering Mathematics", Tata Mc Graw-Hill, 2006.

Evaluation Method

Continuous Internal Evaluation (CIE):

- Three CIE Will be conducted for 50 marks each and average of three will be taken (A)
- Three Quizzes will be conducted along with CIE for 10 Marks Each. Sum of three quizzes will be considered for 30 marks (B)
- Two Assignments for 10 marks each and the sum of both the assignments will be taken for 20 Marks (C)

Final CIE Marks will be calculated as (A+B+C)/2 for 50 marks

Semester End Examination (SEE):

The theory exam consists of a written paper structured into two parts:

Part A: Carries 20 marks which include either objective-type or short descriptive questions. It is designed to cover the entire syllabus comprehensively.

Part B: This section carries a total of 80 marks and consists of 5 questions, with Either or choices. Students are required to answer one full question per module, selecting from the choices. Each question is valued at 16 marks and may include up to two sub-parts.

The SEE Theory marks of 100 will be scaled down to 50.

The final score for the course in the ratio of 50:50 of CIE and SEE Marks.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	-	3	-	-	-	-	-	-	-	1
CO2	3	3	-	3	-	-	-	-	-	-	-	1
CO3	3	3	-	2	-	-	-	-	-	-	-	1
CO4	3	3	-	3	-	-	-	-	-	-	-	1
CO5	3	2	-	3	-	-	-	-	-	-	-	1

Semester : III						
Course Code:	MVIAI302	CIE Marks: 50				
L·T·P·S	3.0.2.0	SEE Marks: 50				
Credits:	3	Total :100				
Hours:	40 Hrs Theory and 24 Hrs Practical	SEE Duration: 3 Hrs				
Course Objectives: This cour 1. To Demonstrate the n 2. To discuss suitable ted 3. To demonstrate different management	se will enable the students to: eed for OS and different types of OS chniques for management of different resourc rent APIs/Commands related to processor,	es memory, storage and f	ile system			
	Module-1					
 Introduction to operating systems, System structures: What operating systems do; Computer System organization; Computer System architecture; Operating System structure; Operating System operations; Process management; Memory management; Storage management; Protection and Security; Distributed system; Special-purpose systems; Computing environments. Operating System Services: User - Operating System interface; System calls; Types of system calls; System programs; Operating system design and implementation; Operating System structure; Virtual machines; Operating System debugging, Operating System generation; System boot. Textbook 1: Chapter – 1 (1.1-1.12), 2 (2.2-2.11) 						
	Module-2					
 Process Management: Process concept; Process scheduling; Operations on processes; Inter process communication Multi-threaded Programming: Overview; Multithreading models; Thread Libraries; Threading issues. Process Scheduling: Basic concepts; Scheduling Criteria; Scheduling Algorithms; Thread scheduling; Multiple-processor scheduling, 						
	Module-3					
Process Synchronization: S Synchronization hardware; So Deadlocks: System model; Deadlock prevention; Deadlo Textbook 1: Chapter – 6 (6.	ynchronization: The critical section problem emaphores; Classical problems of synchroniz Deadlock characterization; Methods for ck avoidance; Deadlock detection and recove 1-6.6), 7 (7.1 -7.7)	n; Peterson's solution; ation; handling deadlocks; ery from deadlock.	8 Hrs			
	Module-4					
 Memory Management: Memory management strategies: Background; Swapping; Contiguous memory allocation; Paging; Structure of page table; Segmentation. Virtual Memory Management: Background; Demand paging; Copy-on-write; Page replacement; Allocation of frames; Thrashing. Textbook 1: Chapter -8 (8.1-8.6), 9 (9.1-9.6) 						
Module-5						
File System, Implementation Directory and Disk structure File system structure; File methods; Free space manage structures; Disk structure; D Goals of protection, Principle Textbook 1: Chapter – 10 (19)	on of File System: File system: File conc ; File system mounting; File sharing; Imple system implementation; Directory impler ement. Secondary Storage Structure, Prot Disk attachment; Disk scheduling; Disk man so of protection, Domain of protection, Access 10.1-10.5), 11 (11.1-11.5), 12 (12.1-12.5), 14	ept; Access methods; ementing File system: nentation; Allocation tection: Mass storage nagement; Protection: s matrix. (14.1-14.4)	8Hrs			
	Laboratory Experiments- 24P					

1.Develop a c program to implement the Process system calls (fork (), exec(), wait(), create process, terminate process)

2 .Simulate the following CPU scheduling algorithms to find turnaround time and waiting time a) FCFS b) SJF c) Round Robin d) Priority.

3. Develop a C program to simulate producer-consumer problem using semaphores.

4. Develop a C program which demonstrates interprocess communication between a reader process and a writer process. Use mkfifo, open, read, write and close APIsPPPPP in your program

5. Develop a C program to simulate Bankers Algorithm for DeadLock Avoidance

6. Develop a C program to simulate the following contiguous memory allocation Techniques: a) Worst fitb) Best fit c) First fit

7. Develop a C program to simulate page replacement algorithms: a) FIFO b) LRU

8. Simulate following File Organization Techniques a) Single level directory b) Two level directory

9. Develop a C program to simulate the Linked file allocation strategies.

10. Develop a C program to simulate SCAN disk scheduling algorithm.

Textbooks:

1: Abraham Silberschatz, Peter Baer Galvin, Greg Gagne, Operating System Principles 8th edition, Wiley-India, 2015

Reference books:

1. Ann McHoes Ida M Fylnn, Understanding Operating System, Cengage Learning, 6th Edition

2. D.M Dhamdhere, Operating Systems: A Concept Based Approach 3rd Ed, McGraw-Hill, 2013

3. P.C.P. Bhatt, An Introduction to Operating Systems: Concepts and Practice 4th Edition, PHI(EEE), 2014

4. William Stallings Operating Systems: Internals and Design Principles, 6th Edition, Pearson.

Course Outcomes: At the end of the course, the student will be able to:

CO1: Explain the structure and functionality of operating system

CO2: Apply appropriate CPU scheduling algorithms for the given problem

CO3: Analyse the various techniques for process synchronization and deadlock handling.

CO4:Apply the various techniques for memory management

CO5:Explain file and secondary storage management strategies

CO6:Describe the need for information protection mechanisms

AssessmentDetails(bothCIEandSEE)

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

- Three CIE Will be conducted for 50 marks each and average of three will be taken (A)
- Three Quizzes will be conducted along with CIE for 10 Marks Each. Sum of three quizzes will be considered for 30 marks (B)
- Two Assignments for 10 marks each and the sum of both the assignments will be taken for 20 Marks (C)

Final CIE Marks will be calculated as (A+B+C)/2 for 50 marks

Laboratory- 50 Marks

Weekly Evaluation 30 Marks

Weekly evaluation will be conducted for every experiment. Marks of each evaluation includes Weekly

Attendance + Experiment conduction along with Record / Observation + Weekly viva for all the experiments. The total of all these evaluated marks are added and the total marks will be scaled to 30 marks. (A)

Two CIE for 20 Marks each and take the average for 20 Marks (B)

Final CIE Marks will be calculated as A+B for 50 marks

For IPCC Final CIE Marks will be calculated as Average of CIE and Lab CIE for 50 marks.

Semester End Examination (SEE)

SEE Theory Examination (100 Marks)

The theory exam consists of a written paper structured into two parts:

Part A: Carries 20 marks which include either objective-type or short descriptive questions. It is designed to cover the entire syllabus comprehensively.

Part B: This section carries a total of 80 marks and consists of 5 questions, with Either or choices. Students are required to answer one full question per module, selecting from the choices. Each question is valued at 16 marks and may include up to two sub-parts.

The SEE Theory marks of 100 will be scaled down to 50 (A)

SEE Laboratory Examination (50 Marks)

The laboratory SEE is also evaluated for 50 marks, distributed as follows:

Experiment Conduction with Results: 40 marks

Viva Voce: 10 marks

Total 50 marks (B)

The score for the SEE is A+B of total 100 marks

The final score for the course in the ratio of 50:50 of CIE and SEE Marks

CO-PO Mapping

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	3	2	2	2						
CO2	3	2	2	2	2						
CO3	3	2	2	2	2						
CO4	3	2	2	2	2						
CO5	3	2	2	3	3						

3- High, 2- Moderate, 1- low

Semester : III DICITAL DESIGN AND COMPUTED OPCANISATION							
Course Code	MVIAI303	CIE Marks: 50					
L: T:P:S	3:0:0:0	SEE Marks: 50					
Credits:	3	Total ·100					
Hours:	40 Hrs Theory	SEE Duration: 3 Hrs.					
 Course Objectives: This course will enable the students to: 1. To demonstrate the functionalities of binary logic system 2. To explain the working of combinational and sequential logic system 3. To realize the basic structure of computer system 4. To illustrate the working of I/O operations and processing unit 							
	Module-1						
Introduction to Digital Algebra, Boolean Function Map, Don't-Care Condi Language – Verilog Mod Text book 1: 1.9, 2.4, 2.5	Design: Binary Logic, Basic Theorems Andons, Digital Logic Gates, Introduction, The Mattions, NAND and NOR Implementation, Other el of a simple circuit. 5, 2.8, 3.1, 3.2, 3.3, 3.5, 3.6, 3.9	l Properties Of Boolean p Method, Four-Variable er Hardware Description	8 Hrs				
	Module-2						
 Combinational Logic: Introduction, Combinational Circuits, Design Procedure, Binary Adder-Subtractor, Decoders, Encoders, Multiplexers. HDL Models of Combinational Circuits – Adder, Multiplexer, Encoder. Sequential Logic: Introduction, Sequential Circuits, Storage Elements: Latches, Flip-Flops. Text book 1: 4.1, 4.2, 4.4, 4.5, 4.9, 4.10, 4.11, 4.12, 5.1, 5.2, 5.3, 5.4 							
	Module-3						
Basic Structure of Cor Performance – Process Measurement.Machine In Operations, Instruction an Text book 2: 1.2, 1.3, 1.4	nputers: Functional Units, Basic Operational or Clock, Basic Performance Equation, Cl nstructions and Programs: Memory Location ad Instruction sequencing, Addressing Modes.	Concepts, Bus structure, ock Rate, Performance and Addresses, Memory	8 Hrs				
1010 0001 1 112, 113, 11	Module-4						
Input/output Organizat and Disabling Interrupts Speed, size and Cost of m Text book 2: 4.1, 4.2.1, 4	tion: Accessing I/O Devices, Interrupts – Inter, Handling Multiple Devices, Direct Memory nemory systems. Cache Memories – Mapping Fu. 2.2, 4.2.3, 4.4, 5.4, 5.5.1	rupt Hardware, Enabling Access: Bus Arbitration, inctions.	8Hrs				
	Module-5						
Basic Processing Unit: Some Fundamental Concepts: Register Transfers, Performing ALU operations, fetching a word from Memory, Storing a word in memory. Execution of a Complete Instruction. Pipelining: Basic concepts, Role of Cache memory, Pipeline Performance Text book 2: 7.1, 7.2, 8.1							
Course Outcomes: At the CO1: Apply the K–Map the CO2: Design different typ CO3: Describe the fundation CO4: Explain the approace CO5: Analyze internal Official CO4: Explain the context of the context	e end of the course, the student will be able to: techniques to simplify various Boolean expression pes of combinational and sequential circuits alor mentals of machine instructions, addressing mod ches involved in achieving communication betwo rganization of Memory and Impact of cache/Pipe	ons g with Verilog programs es and Processor performa een processor and I/O devi elining on Processor Perfor	nce ces mance				

Textbooks:

- C O-PO Mapping
- 1. M. Morris Mano & Michael D. Ciletti, Digital Design With an Introduction to Verilog Design, 5e, Pearson Education.
- 2. Carl Hamacher, ZvonkoVranesic, SafwatZaky, Computer Organization, 5 th Edition, Tata McGraw Hill.

CIE ASSESSMENT:

Three CIE Will be conducted for 50 marks each and average of three will be taken (A)

Three Quizzes will be conducted along with CIE for 10 Marks Each. Sum of three quizzes will be considered for 30 marks (B)

Two Assignments for 10 marks each and the sum of both the assignments will be taken for 20 Marks (C) Final CIE Marks will be calculated as (A+B+C)/2 for 50 marks

SEE ASSESSMENT:

The theory exam consists of a written paper structured into two parts:

Part A: Carries 20 marks which include either objective-type or short descriptive questions. It is designed to cover the entire syllabus comprehensively.

Part B: This section carries a total of 80 marks and consists of 5 questions, with Either or choices. Students are required to answer one full question per module, selecting from the choices. Each question is valued at 16 marks and may include up to two sub-parts.

The SEE Theory marks of 100 will be scaled down to 50.

The final score for the course in the ratio of 50:50 of CIE and SEE Marks

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	3	2	2	1						
CO2	3	2	2	2	1						
CO3	3	3	2	2	1						
CO4	3	2	2	2	2						
CO5	3	3	3	3	3						

3- High, 2- Moderate, 1- Low

DATA STRUCTURES AND APPLICATION						
Course Code:	MVJAI304	CIE Marks: 50				
L: T:P:S	3:0:0:0	SEE Marks: 50				
Credits:	3	Total :100				
Hours:	40 Hrs Theory	SEE Duration: 3 Hrs.				
 Course Objectives: This course will enable the students to: 1. To explain fundamentals of data structures and their applications 2. To illustrate representation of Different data structures such as Stack, Queues, Linked Lists, Tree Graphs. 3. To Design and Develop Solutions to problems using Linear Data Structures 4. To discuss applications of Nonlinear Data Structures in problem solving 5. To introduce advanced Data structure concepts such as Hashing and Optimal Binary Search Trees 						
	Module-1					
INTRODUCTION TO DATA STRUCTURES: Data Structures, Classifications (Primitive & Non- Primitive), Data structure Operations Review of pointers and dynamic Memory Allocation, ARRAYS and STRUCTURES: Arrays, Dynamic Allocated Arrays, Structures and Unions, Polynomials, Sparse Matrices, representation of Multidimensional Arrays, Strings. STACKS: Stacks, Stacks Using Dynamic Arrays, Evaluation and conversion of Expressions. Text Book 1: Chapter-1:1.2 Chapter-2: 2.1 to 2.7 Chapter-3: 3.1,3.2,3.6						
	Module-2					
QUEUES: Queues, Circ LINKED LISTS: Singly Queues, Polynomials. Text Book 1: Chapter-3:	cular Queues, Using Dynamic Arrays, Mult Linked, Lists and Chains, Representing Chains 3.3, 3.4, 3.7 Chapter-4: 4.1 to 4.4	iple Stacks and queues. in C, Linked Stacks and	8HRS			
1	Module-3					
LINKED LISTS: Addition Introduction, Binary Tree Text Book 1: Chapter-4:	onal List Operations, Sparse Matrices, Doub s, Binary Tree Traversals, Threaded Binary Tre 4.5,4.7,4.8 Chapter-5: 5.1 to 5.3, 5.5	ly Linked List. TREES: es.	8HRS			
	Module-4					
TREES(Cont): Binary Counting Binary Trees, GRAPHS: The Graph Ab Text Book 1: Chapter-5:	Search trees, Selection Trees, Forests, Repres stract Data Types, Elementary Graph Operation 5.7 to 5.11 Chapter-6: 6.1, 6.2	entation of Disjoint sets, s	8HRS			
	Module-5					
HASHING: Introduction double ended Priority SEARCH TREES: Optim Text Book 1: Chapter 8: 8	, Static Hashing, Dynamic Hashing PRIORIT Queues, Leftist Trees INTRODUCTION TO al Binary Search Trees 8.1 to 8.3 Chapter 9: 9.1, 9.2 Chapter 10: 10.1	Y QUEUES: Single and EFFICIENT BINARY	8HRS			
Course Outcomes: At the end of the course, the student will be able to: CO1: Explain different data structures and their applications CO2: Apply Arrays, Stacks and Queue data structures to solve the given problems. CO3: Use the concept of linked list in problem solving. CO4: Develop solutions using trees and graphs to model the real-world problem CO5: Explain the advanced Data Structures concepts such as Hashing Techniques and Optimal Binary Search Trees. Textbooks:						
Universities Press, 2014	unni and Susan Anderson-Freed, Fundamentals	oi Data Structures in C,	2nd Ed,			

Reference Books:

- 1. Seymour Lipschutz, Data Structures Schaum's Outlines, Revised 1st Ed, McGraw Hill, 2014
- 2. Gilberg & Forouzan, Data Structures: A Pseudo-code approach with C, 2nd Ed, Cengage Learning,2014
- 3. Reema Thareja, Data Structures using C, 3rd Ed, Oxford press, 2012
- 4. Jean-Paul Tremblay & Paul G. Sorenson, An Introduction to Data Structures with Applications, 2 nd Ed, McGraw Hill, 2013
- 5. A M Tenenbaum, Data Structures using C, PHI, 1989
- 6. Robert Kruse, Data Structures and Program Design in C, 2 nd Ed, PHI, 1996

CIE ASSESSMENT:

- Three CIE Will be conducted for 50 marks each and average of three will be taken (A)
- Three Quizzes will be conducted along with CIE for 10 Marks Each. Sum of three quizzes will be considered for 30 marks (B)
- Two Assignments for 10 marks each and the sum of both the assignments will be taken for 20 Marks (C)

Final CIE Marks will be calculated as (A+B+C)/2 for 50 marks

SEE ASSESSMENT:

The theory exam consists of a written paper structured into two parts:

Part A: Carries 20 marks which include either objective-type or short descriptive questions. It is designed to cover the entire syllabus comprehensively.

Part B: This section carries a total of 80 marks and consists of 5 questions, with Either or choices. Students are required to answer one full question per module, selecting from the choices. Each question is valued at 16 marks and may include up to two sub-parts.

The SEE Theory marks of 100 will be scaled down to 50.

The final score for the course in the ratio of 50:50 of CIE and SEE Marks

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	3	2	2	2						2
CO2	3	2	2	2	2						2
CO3	3	3	2	2	3						2
CO4	3	2	2	2	3						2
CO5	3	3	3	3	3						2

Semester : III							
DATA STRUCTURES LABORATORY							
Course Code:	MVJAIL305	CIE Marks: 50					
L: T:P:S	L: T:P:S 0:0:2:0 SEE Marks: 50						
Credits:	1	Total :100					

Hours	•	24 Hrs of Practical	SEE Duration: 3 Hrs.						
Course	e Objectives: This	s laboratory course enables students to g	get practical experience in design, develop,						
Implen	nent, analyze and e	evaluation/testing of							
Dynam	Linear data structures and their applications such as stocks, queues and lists								
Linear	Linear data structures and their applications such as stacks, queues and lists								
Non-Li	Non-Linear data structures and their applications such as trees and graphs								
Descrij	ptions (if any):								
• Impl	ement all the prog	rams in "C" Programming Language and	d Linux OS.						
		Program list							
	Develop a Progra	am in C for the following:							
	a) Declare a cal	endar as an array of / elements (A dyna	amically Created array) to represent / days						
1	of a week. Each	Element of the array is a structure havin	g three fields. The first field is the name of						
	the Day (A dyna	imically allocated String), The second f	ield is the date of the Day (A integer), the						
	third field is the	description of the activity for a particula	r day (A dynamically allocated String).						
	b) Write function	ons create (), read() and display(); to cre	eate the calendar, to read the data from the						
	keyboard and to	print weeks activity details report on scr	reen						
	Develop a Progra	am in C for the following operations on	Strings.						
	a. Read a main S	String (STR), a Pattern String (PAT) and	a Replace String (REP)						
2	b. Perform Patte	ern Matching Operation: Find and Rep	place all occurrences of PAT in STR with						
	REP IT PAT exis	sts in SIR. Report suitable messages in	a case PAT does not exist in STR Support						
	the program with	1 functions for each of the above operation	ons. Don't use Built-in functions.						
	Develop a menu	driven Program in C for the following	g operations on STACK of Integers (Array						
	Implementation	of Stack with maximum size MAX)							
	a. Push an Eleme	ent on to Stack							
	b. Pop an Elemen	nt from Stack							
3	c. Demonstrate	how Stack can be used to check Palindro	ome						
	d. Demonstrate	Overflow and Underflow situations on S	Stack						
	e. Display the sta	atus of Stack							
	f. Exit								
	Support the prog	ram with appropriate functions for each	of the above operations						
4	Develop a Progr	am in C for converting an Infix Express	sion to Postfix Expression. Program should						
4	support for both	parenthesized and free parenthesized e	xpressions with the operators: $+, -, *, /, \%$						
	(Remainder), ^ (Power) and alphanumeric operands.							
5	Develop a Progr	am in C for the following Stack Appli	cations a. Evaluation of Suffix expression						
5	with single digit	operands and operators: $+, -, *, /, \%, \uparrow$							
	b. Solving Towe	r of Hanoi problem with n disks							
	Develop a men	u driven Program in C for the follow	wing operations on Circular QUEUE of						
	Characters (Arra	ly implementation of Queue with maxim	lum size MAA)						
	a. Insert an Elen	nent on to Circular QUEUE							
6	b. Delete an Eler	nent from Circular QUEUE							
	c. Demonstrate C	Jverflow and Underflow situations on C	ircular QUEUE						
	d. Display the sta	atus of Circular QUEUE							
	Support the prog	ram with appropriate functions for each	of the above operations						
	Develop a menu	driven Program in C for the following	operations on Singly Linked List (SLL) of						
	Student Data Wit	In the herds: USN, Name, Programme, S	beni, l'nino						
7	a. Create a SLL (of in Students Data by using front inserti	IOII.						
/	o. Display the st	tatus of SLL and count the number of no tion (D_{1})	des in it						
	c. Perform Insert	ion / Deletion at End of SLL	tration of starly						
	a. Perform Inser	auon / Deleuon at Front of SLL(Demons	tration of stack)						
	e. Exit								

	Develop a menu driven Program in C for the following operations on Doubly Linked List (DLL) of					
	Employee Data with the fields: SSN, Name, Dept, Designation, Sal, PhNo					
	a. Create a DLL of N Employees Data by using end insertion.					
8	b. Display the status of DLL and count the number of nodes in it					
0	c. Perform Insertion and Deletion at End of DLL					
	d. Perform Insertion and Deletion at Front of DLL					
	e. Demonstrate how this DLL can be used as Double Ended Queue.					
	f. Exit					
	Develop a Program in C for the following operationson Singly Circular Linked List (SCLL) with					
	header nodes					
9	a. Represent and Evaluate a Polynomial $P(x,y,z) = 6x2 y 2 z-4yz5+3x3 yz+2xy5 z-2xyz3$					
	b. Find the sum of two polynomials $POLY1(x,y,z)$ and $POLY2(x,y,z)$ and store the result in					
	POLYSUM(x,y,z) Support the program with appropriate functions for each of the above operations					
	Develop a menu driven Program in C for the following operations on Binary Search Tree (BST) of					
	Integers.					
10	a. Create a BST of N Integers: 6, 9, 5, 2, 8, 15, 24, 14, 7, 8, 5, 2					
10	b. Traverse the BST in Inorder. Preorder and Post Order					
	c. Search the BST for a given element (KEY) and report the appropriate message					
	d. Exit					
	Develop a Program in C for the following operations on Graph(G) of Cities					
11	a. Create a Graph of N cities using Adjacency Matrix.					
	b. Print all the nodes reachable from a given starting node in a digraph using DFS/BFS method					
	Given a File of N employee records with a set K of Keys (4-digit) which uniquely determine the					
	records in file F. Assume that file F is maintained in memory by a Hash Table (HT) of m memory					
	locations with L as the set of memory addresses (2-digit) of locations in HT. Let the keys in K and					
12	addresses in L are Integers. Develop a Program in C that uses Hash function H: $K \rightarrow L$ as H(K)=K					
	mod m (remainder method) and implement hashing technique to man a given key K to the address					
	space L. Resolve the collision (if any) using linear probing					
Laborat	For Outcomes: At the end of the course. The student should be able to:					
	nalyze various linear and non-linear data structures					
$CO2 \cdot Dc$	emonstrate the working nature of different types of data structures and their applications					
$CO3 \cdot Uc$	se appropriate searching and sorting algorithms for the give scenario					
$CO4 \cdot A$	nnly the annronriate data structure for solving real world problems					
	UCTION OF PRACTICAL FXAMINATION.					
Weekly	Evaluation 30 Marks					
Wookly	evaluation will be conducted for every experiment. Marks of each evaluation includes Weakly					
Attendance + Experiment conducted for every experiment. Marks of each evaluation includes Weekly						
Auendance + Experiment conduction along with Record / Observation + Weekly viva for all the						
(Λ)	experiments. The total of all these evaluated marks are added and the total marks will be scaled to 30 marks.					
(A) Two CIE for 20 Mortes each and take the average for 20 Mortes (D)						
Final C	In the rest of 20 warks each and take the average for 20 warks (B) IE Morks will be calculated as $A+B$ for 50 merks					
Final C	IE Marks will be calculated as A+B for 50 marks					
The lab	aratary SEE is also avaluated for 50 marks, distributed as follows:					
Fynamia	nont Conduction with Desults: 40 merks					
Uive V	non Conduction with Results. 40 marks					
VIVA V) mortes (D)					
The The	J Marks (D) we for the SEE is $A \perp D$ of total 100 max ¹ z					
I ne sco	The score for the SEE is A+B of total 100 marks					

Semester : III					
Course Code	FUNCTIONAL PROGRAMM	CIE Montrei 50			
		SEE Marks: 50			
L: I:F:S Credite:	3:0:0:0	SEE Warks: 50			
Credits:					
Hours: 40 Hrs Theory SEE Duration: 3 Hrs.					
Course Objectives: This	s course will enable the students	to:			
To learn primitive constr	ucts JAVA programming language	e.			
To understand Object Or	iented Programming Features of J	AVA			
To gain knowledge on n	ackages multithreaded programin	σ and excentions			
10 guin kilo vieuge on. p	Module-1	g und enceptions.			
An Overview of Java: (Direct-Oriented Programming (Tr	wo Paradigms Abstraction The Three			
OOP Principles) Using	a Blocks of Code Levical Issue	use (Whitespace Identifiers Literals			
Comments Senarators T	The Jove Konwords)	ues (whitespace, identifiers, Enerais,			
Comments, Separators, 1	ine Java Keywolds).	The sting Doint Trans			
Data Types, Variables,	and Arrays: The Primitive 1	ypes (integers, Floating-Point Types,			
Characters, Booleans), N	ariables, Type Conversion and Conversion and Conversion	Lasting, Automatic Type Promotion in			
Expressions, Arrays, Intr	Outcome Type Interence with Loca	al variables.	8HRS		
Operators: Arithmetic	Operators, Relational Operator	s, Boolean Logical Operators, The			
Assignment Operator, In	le ? Operator, Operator Precedence	e, Using Parentneses.			
Control Statements: Java	is Selection Statements (if, The I	raditional switch), Iteration Statements			
(while, do-while, for, 1h	e For-Each Version of the for Lo	op, Local Variable Type Inference in a			
for Loop, Nested Loops),	, Jump Statements (Using break, U	Jsing continue, return).			
	Module-2				
Introducing Classes: Class Fundamentals, Declaring Objects, Assigning Object Reference					
Variables, Introducing M	lethods, Constructors, The this Key	yword, Garbage Collection.			
Methods and Classes: Ov	verloading Methods, Objects as Pa	arameters, Argument Passing, Returning	8HRS		
Objects, Recursion, Access Control, Understanding static, Introducing final, Introducing Nested					
and Inner Classes.					
	Module-3				
Inheritance: Inheritance	Basics Using super Creating a M	Iultilevel Hierarchy When Constructors			
Are Executed Method	Overriding Dynamic Method Di	snatch Using Abstract Classes Using			
final with Inheritance I of	cal Variable Type Inference and I	nheritance The Object Class	8HRS		
Interfaces: Interfaces D	efault Interface Methods Use s	tatic Methods in an Interface Private	011105		
Interface Methods	erault interface methods, ose s	tatie Wiethous in an interface, Trivate			
	Module-4				
Packages Packages Pac	kages and Member Access Impo	rting Packages, Exceptions, Exception-			
Handling Fundamentals	Exception Types Uncaught Exc	centions Using try and catch Multiple			
catch Clauses Nested try	v Statements throw throws final	ly Java's Built-in Exceptions Creating	8HRS		
Vour Own Exception Subclasses Chained Exceptions					
Modulo 5					
Multithreaded Programm	ning: The Java Thread Model 7	The Main Thread Creating a Thread			
Creating Multiple Three	and Using is Alive() and join() Thread Priorities Synchronization			
Interthread Communication	ion Suspending Resuming and	Stopping Threads Obtaining a Thread's			
State Enumerations Tur	be Wranners and Autohoving: Env	imerations (Enumeration Fundamentals	8HBC		
The values of and value)f() Methods) Type Wronners ((Theracter Boolean The Numeric Type			
Wranners) Autoboxing	(Autoboxing and Methods, Autob	oving/Unboving Occurs in Everossions			
Autoboxing/Unboxing R	oolean and Character Values)	oring occurs in Expressions,			
	orican and Character Values).		<u> </u>		
Course Outcomes. At th	he and of the course the student	will be able to:			
Course Outcomes. At th	at the of the tourse, the student	WIII DU ADIU IU.			

CO1: Demonstrate proficiency in writing simple programs involving branching and looping structures.

CO2: Design a class involving data members and methods for the given scenario.

CO3: Apply the concepts of inheritance and interfaces in solving real world problems.

CO4: Use the concept of packages and exception handling in solving complex problem

CO5: Apply concepts of multithreading, autoboxing and enumerations in program development

Textbooks:

Java: The Complete Reference, Twelfth Edition, by Herbert Schildt, November 2021, McGraw-Hill, ISBN: 9781260463422

Reference Books:

Programming with Java, 6th Edition, by E Balagurusamy, Mar-2019, McGraw Hill Education, ISBN: 9789353162337.

Thinking in Java, Fourth Edition, by Bruce Eckel, Prentice Hall, 2006 (https://sd.blackball.lv/library/thinking_in_java_4th_edition.pdf)

CIE ASSESSMENT:

Continuous Internal Evaluation (CIE):

Three CIE Will be conducted for 50 marks each and average of three will be taken (A)

Three Quizzes will be conducted along with CIE for 10 Marks Each. Sum of three quizzes will be considered for 30 marks (B)

Two Assignments for 10 marks each and the sum of both the assignments will be taken for 20 Marks (C) Final CIE Marks will be calculated as (A+B+C)/2 for 50 marks

SEE ASSESSMENT:

The theory exam consists of a written paper structured into two parts:

Part A: Carries 20 marks which include either objective-type or short descriptive questions. It is designed to cover the entire syllabus comprehensively.

Part B: This section carries a total of 80 marks and consists of 5 questions, with Either or choices. Students are required to answer one full question per module, selecting from the choices. Each question is valued at 16 marks and may include up to two sub-parts.

The SEE Theory marks of 100 will be scaled down to 50.

The final score for the course in the ratio of 50:50 of CIE and SEE Marks

CO-PO Mapping

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	3	3	2	3						2
CO2	3	2	3	2	3						2
CO3	3	3	2	2	3						2
CO4	3	2	3	2	3						2
CO5	3	3	3	3	3						2

Semester : III				
	Python Progra	mming for AI & ML		
Course Code:	MVJAI3062	CIE Marks: 50		
L: T:P:S	3:0:0:0	SEE Marks: 50		
Credits:	3	Total :100		
Hours:	40 Hrs Theory	SEE Duration: 3 Hrs.		
Course Objectives: This	s course will enable the stu	idents to:		
1. To understand Python	constructs and use them to	build the programs.		
2. To analyse different co	onditional statements and t	heir applications in programs		
3. To learn and use basic	data structures in python I	anguage		
4. To learn and demonstr	ate array manipulations by	reading data from files		
5. To understand and use	different data in a data an	alytics context.		
T , 1 , 1 , 1	Modul	le-1		
Introduction to python:	Elements of python lan	guage, python block structure, variables and		
assignment statement, d	lata types in python, ope	erations, simple input/output print statements,	8HRS	
formatting print statemen			-	
Text Book 1: Chapter 3 (3.2, 3.3, 3.4, 3.6, 3.7, 3.9	and 3.10)		
	Modu	le-2		
Decision structure: form	ning conditions, if state	ment, the if-else and nested if-else, looping		
statements: introduction to looping, python built in functions for looping, loop statements, jump				
statement.			onno	
Text Book 1: Chapter 4 (4.2 to 4.6), Chapter 5 (5.1 to 5.4)				
Module-3				
Lists: lists, operation on	i list, Tuples: introduction	n, creating, indexing and slicing, operations on		
tuples. sets: creating, operation in sets, introduction dictionaries, creating, operations, nested				
dictionary, looping over dictionary.				
Text Book 1: Chapter 7 ((7.2 to 7.3), Chapter 8 (8.	1 to 8.4) and Chapter 9(9.1 to 9.3, 9.7 to 9.12)		
	Μ	odule-4		
The NumPy Library: No	darray: the heart of the la	ibrary, Basic operations, indexing, slicing and		
iterating, conditions and	boolean arrays, array man	ipulation, general concepts, reading and writing		
array data on files. The p	pandas Library: an introdu	iction to Data structure, other functionalities on	8HRS	
indexes, operations betwe	een data structures, functio	on application and mapping.		
Text Book 2: Chapter 3 a	and Chapter 4.			
	Μ	odule-5		
The pandas : Reading an	d Writing data: i/o API too	ols, CSV and textual files, Reading data in CSV		
or text files, reading and	writing HTML files, read	ing data from XML files, Microsoft excel files,		
JSON data, Pickle pyth	hon object serialization.	Pandas in Depth : data manipulation: data	8HDS	
preparation, concatenat	ing data transformation	discretization binning, permutation, string	01113	
manipulation, data aggre	gation group iteration.			
Text Book 2: Chapter 5 a	and Chapter 6			
Course Outcomes: At th	ne end of the course1, the s	student will be able to:		
CO1: Describe the constr	ructs of python programmi	ng		
CO2: Use looping and co	onditional constructs to bui	ld programs		
CO3: Apply the concept	of data structure to solve the	he real-world problem		
CO4: Use the NumPy co	nstructs for matrix manipu	lations		
CO5: Apply the Panda co	onstructs for data analytics			
Textbooks:				
1. S. Sridhar, J. Inc	lumathi, V.M. Hariharan	"Python Programming" Pearson publishers, 1st	edition	
2023.				
Fabio Nelli, "Python Dat	a Analytics", Apress, Publ	lishing, 1st Edition, 2015.		

Reference Books:

1. Paul Deitel and Harvey deitel,"Intro to Python for Computer Science and Data science", 1st edition Pearson Publisher 2020.

CIE ASSESSMENT:

- Three CIE Will be conducted for 50 marks each and average of three will be taken (A)
- Three Quizzes will be conducted along with CIE for 10 Marks Each. Sum of three quizzes will be considered for 30 marks (B)
- Two Assignments for 10 marks each and the sum of both the assignments will be taken for 20 Marks (C)

Final CIE Marks will be calculated as (A+B+C)/2 for 50 marks

SEE ASSESSMENT:

The theory exam consists of a written paper structured into two parts:

Part A: Carries 20 marks which include either objective-type or short descriptive questions. It is designed to cover the entire syllabus comprehensively.

Part B: This section carries a total of 80 marks and consists of 5 questions, with Either or choices. Students are required to answer one full question per module, selecting from the choices. Each question is valued at 16 marks and may include up to two sub-parts.

The SEE Theory marks of 100 will be scaled down to 50.

The final score for the course in the ratio of 50:50 of CIE and SEE Marks

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	3	3	2	3						2
CO2	3	2	3	2	3						2
CO3	3	3	2	2	3						2
CO4	3	2	3	2	3						2
CO5	3	3	3	3	3						2

CO-PO MAPPING

	DataAnalyticswit	hR
Course Code:	MVJAI3063	CIE Marks: 50
L: T:P:S	3:0:0:0	SEE Marks: 50
Credits:	1	Total :100
Hours:	40 Hrs Theory	SEE Duration: 2 Hrs.

Courseobjectives:

- $\bullet \quad {\rm To explore and understand how Rand RS tudio interactive environment.}$
- TounderstandthedifferentdataStructures,datatypesinR.
- TolearnandpracticeprogrammingtechniquesusingRprogramming.
- ToimportdataintoRfromvariousdatasourcesandgeneratevisualizations.

•	Todrawinsightsfromdatasets	susingdataanal	yticstechniques.
---	----------------------------	----------------	------------------

SI.N	Experiments						
0							
Ŭ							
1	DemonstratethestepsforinstallationofRandRStudio.Performthefollowing:						
	 a) Assign different type of values to variables and display the type of variable. Assign different types such as Double, Integer, Logical, Complex and Character and understand the difference between each data type. b) DemonstrateArithmeticandLogicalOperationswithsimpleexamples. c) Demonstrategenerationofsequencesandcreationofvectors. d) DemonstrateCreationofMatrices e) DemonstratetheCreationofMatricesfromVectorsusingBindingFunction. f) Demonstrateelementextractionfromvectors, matricesandarrays Suggested Reading – Text Book 1 – Chapter 1 (What is R, Installing R, Choosing an IDE – RStudio, How to Get Help in R, Installing Extra Related Software), Chapter 2 (Mathematical Operations and Vectors, Assigning Variables, Special Numbers, Logical Vectors), Chapter 3 (Classes, DifferentTypes of Numbers, 						
	OtherCommonClasses, Checking and Changing Classes, Examining Variables)						
2	Assess the Financial Statement of an Organization being supplied with 2 vectors of data: Monthly Revenue and Monthly Expenses for the Financial Year. You can create your own sample data vector for this experiment) Calculate the following financial metrics:						
	 a. Profitforeachmonth. b. Profitaftertaxforeachmonth(TaxRateis30%). c. Profitmarginforeachmonthequalstoprofitaftertaxdividedbyrevenue. d. GoodMonths- wheretheprofitaftertaxwasgreaterthanthemeanfortheyear. e. BadMonths- wheretheprofitaftertaxwaslessthanthemeanfortheyear. f. Thebestmonth-wherethe profitaftertaxwasmaxfortheyear. g. Theworstmonth-wheretheprofitaftertaxwasminforthe year. 						

	Note:
	 a. AllResultsneedtobepresentedasvectors b. Results for Dollar values need to be calculated with \$0.01 precision, but need to be presented in Units of \$1000 (i.e 1k) with no decimal points c. Resultsfortheprofitmarginrationeedtobepresentedinunitsof%withnodecimal point. d. Itisokayfortaxtobenegativeforanygivenmonth(deferredtax asset) e. GenerateCSVfileforthe data. SuggestedReading- TextBook1-Chapter4(Vectors,CombiningMatrices)
3	Developa program tocreatetwo 3 X3 matrices A and B and perform thefollowing operations a) Transpose of the matrix b) addition c) subtraction d) multiplication
	SuggestedReading- TextBook1-Chapter4(MatricesandArrays-ArrayArithmetic)
4	Developaprogramtofindthefactorialofgivennumberusingrecursivefunctioncalls.
	SuggestedReading-ReferenceBook1-Chapter5(5.5 -RecursiveProgramming)
	TextBook1–Chapter8(FlowControlandLoops–IfandElse,VectorizedIf,whileloops,for loops),Chapter 6 (Creating and Calling Functions, Passing Functions to and from other functions)
5	DevelopanRProgramusingfunctionstofindalltheprimenumbersuptoaspecifiednumberby themethod of Sieve of Eratosthenes.
	SuggestedReading–ReferenceBook
	1-Chapter5(5.5–RecursiveProgramming)
	TextBook1–Chapter8(FlowControlandLoops–IfandElse,VectorizedIf,whileloops,for loops),Chapter 6 (Creating and Calling Functions, Passing Functions to and from other functions)
6	Thebuilt-indatasetmammalscontaindataonbodyweightversusbrainweight.DevelopR commands to:
	 a) FindthePearsonandSpearmancorrelationcoefficients.Aretheysimilar? b) Plotthedatausingtheplotcommand. c) Plotthelogarithm(log)ofeachvariableandseeifthatmakesa difference. SuggestedReading-TextBook1-Chapter12-(Built-inDatasets)Chapter14-(Scatterplots) Reference Book 2 - 13.2.5 (Covariance and Correlation)

7	DevelopRprogramtocreateaDataFramewithfollowingdetailsanddothefollowing operations.					
	Item Code	Item Category	Item Price			
	1001	Electronics	700			
	1002	DesktopSupplies	300			
	1003	OfficeSupplies	350			
	1004	USB	400			
	1005	CDDrive	800			
	 a) SubsettheDataframeanddisp equal to 350. b) SubsettheDataframeanddisp "Desktop Supplies" c) CreateanotherDataFramecal details" withthreedifferentfie ItemReorderLvl and merge SuggestedReading-Textbook1 	Iaythedetailsofonlythoseito layonlytheitemswherethec led"item- ldsitemCode, ItemQtyonH the two frames :Chapter5(Listsand DataFi	emswhosepriceisgreaterthanor ategoryiseither "OfficeSupplies"or Iandand rames)			
8	Let us use the built-in dataset a York, May to September 19 appropriate arguments for the for a) Assigningnames, using th b) Changecolorsof the Histo c) RemoveAxis and Addlab d) ChangeAxislimits of a H e) AddDensity curve to the hi Suggested Reading – Reference H (Smoothing and Shading)	air quality which has Dail 73. Develop R program ollowing statements. eairqualitydata set. ogram elstoHistogram istogram stogram Book2–Chapter7(7.4–Theg	ly air quality measurements in New a to generate histogram by using ggplot2Package),Chapter24			
9	DesignadataframeinRforstoringabout20employeedetails.CreateaCSVfilenamed"input.csv" thatdefinesalltherequiredinformationabouttheemployeesuchasid,name,salary,start_date,dept. Import into R and do the following analysis. a) Findthetotalnumberrows&columns b) Findthemaximum salary c) Retrievethedetailsoftheemployeewithmaximumsalary d) RetrievealltheemployeesworkingintheITDepartment.					
	e) Retrievetneemployeesin	iner i Departmentwhosesar	aryisgreaterinan20000andwriteinese			
	uetallisintoanotherfile "o	uipui.csv Chanter12(CSVandTabD	elimitedFiles)			
	Using the built in dataset mtcars consumptionpatternsof32differe US magazine,andcomprises fuel performance for32automobiles(74models).FormatAdataframew	s which is a popular datase entautomobiles.Thedatawas l consumption and 10 aspe 1973- ith32observationson11var	et consisting of the design and fuel sextractedfromthe1974MotorTrend ects of automobile design and iables:[1] mpg Miles/(US) gallon,			
	axle ratio,[6] wt Weight (lb/100	0) [7] qsec 1/4 mile time,	[8] vs V/S, [9] am Transmission			

(0 = automatic, 1 = manual), [10] gear Number of forward gears, [11] carb Number of carburetors
DevelopRprogram,tosolve thefollowing:
 a) Whatisthetotalnumberof observationsandvariablesinthedataset? b) Findthecarwiththelargest hpandtheleasthpusingsuitablefunctions c) Plothistogram/densityforeachvariableanddeterminewhethercontinuousvariable s arenormally distributed or not. If not, what is their skewness? d) Whatistheaveragedifferenceofgrosshorsepower(hp)betweenautomobileswith3 and 4number of cylinders(cyl)? Also determine the difference in their standard deviations. e) WhichpairofvariableshasthehighestPearsoncorrelation?
References(Web links):
 https://cran.r-project.org/web/packages/explore/vignettes/explore_mtcars.html https://www.w3schools.com/r/r_stat_data_set.asp https://rpubs.com/BillB/217355
11 Demonstrate the progression of salary with years of experience using a suitable data set (You can create your own dataset). Plot the graph visualizing the best fit line on the plot of the given data points.PlotacurveofActualValuesvs.Predictedvaluestoshowtheircorrelationandperformance
of the model.
Interpret the meaning of the slope and y-intercept of the line with respect to the given data. Implement using Imfunction. Save the graphs and coefficients infiles. Attachthe predicted values of salaries as a new column to the original data set and save the data as a new CSV file.
SuggestedReading-ReferenceBook2-Chapter20(GeneralConcepts,StatisticalInference, Prediction)
Note: Data analyticspart isalso includedin the mathematics.

Courseoutcomes(CourseSkillSet):

 $\label{eq:Attheendofthecourse the student will be able to:$

- $\bullet \quad Explain the fundamental syntax of R data types, expressions and the usage of the R-Studio IDE$
- DevelopaprograminRwithprogrammingconstructs:conditionals,loopingandfunctions.
- ApplythelistanddataframestructureoftheRprogramming language.
- Usevisualizationpackages and filehandlers for data analysis..

SuggestedLearningResources:

Book:

1. Cotton,R.(2013).LearningR:AStepbyStepFunctionGuidetoDataAnalysis.1st ed.O'ReillyMedia Inc.

References:

- 1. Jones, O., Maillardet, R. and Robinson, A. (2014). Introduction to Scientific
- Programming and Simulation Using R. Chapman & Hall/CRC, The R Series. Davies, T.M. (2016) TheBookofR: A FirstCourseinProgramming and Statistics. NoStarchPress. 2.

AssessmentDetails(bothCIEandSEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. TheminimumpassingmarkfortheCIEis40% of the maximummarks (20 marksout of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together

ContinuousInternalEvaluation(CIE):

CIEmarksforthepracticalcourseare 50Marks.

Thesplit-upofCIEmarksforrecord/journalandtestareintheratio60:40.

- Each experiment is to be evaluated for conduction with an observation sheet and record write-۲ up. Rubricsfortheevaluationofthejournal/writeupforhardware/softwareexperimentsaredesigned by the faculty who is handling the laboratory session and are made known to students at he beginning of the practical session.
- *Recordshouldcontainallthespecifiedexperimentsinthesyllabusandeachexperimentwrite-up* • will be evaluated for 10 marks.
- Totalmarksscoredbythestudentsarescaleddownto30marks(60%ofmaximummarks). •
- Weightagetobegivenformeatnessandsubmissionofrecord/write-upontime.
- Departmentshallconductatestof100marksafterthecompletionofalltheexperimentslisted in the syllabus.
- Inatest,testwrite-up,conductionofexperiment,acceptableresult,andproceduralknowledgewill carry a weightage of 60% and the rest 40% for viva-voce.
- Thesuitablerubricscanbedesignedtoevaluateeachstudent'sperformanceandlearningability.

Themarksscoredshallbescaleddownto20marks(40%ofthemaximummarks). The Sum of scaled-down marks scored in the report write-up/journal and marks of a test is the total CIE marks scored by the student.

SemesterEndEvaluation(SEE):

- SEEmarksforthepracticalcourseare50Marks.
- SEE shall be conducted jointly by the two examiners of the same institute, examiners are appointed by the Head of the Institute.
- The examination schedule and names of examiners are informed to the university before the conduction of the examination. These practical examinations are to be conducted between the schedule mentioned in the academic calendar of the University.
- Alllaboratory experiments are to be included for practical examination.
- (*Rubrics*)Breakup of marks and the instructions printed on the cover page of the answer script tobestrictlyadheredtobytheexaminers.ORbasedonthecourserequirementevaluation

Semester : III					
SocialConnect&Responsibility					
MVJSCR307	CIE Marks: 100				
0:0:2:1	SEE Marks: -				
1	Total :100				
12 Hrs Theory	SEE Duration: -				
	Semester : III SocialConnect&Responsibility MVJSCR307 0:0:2:1 1 12 Hrs Theory				

Course Objectives: This course will enable the students to:

- 1. Provide a formal platform for students to communicate and connect to the surrounding.
- 2. create a responsible connection with the society
- 3. Understand the community in general in which they work
- 4. Identify the needs and problems of the community and involve them in problem –solving
- 5. Develop among themselves a sense of social & civic responsibility & utilize their knowledge in finding practical solutions to individual and community problems
- 6. Develop competence required for group-living and sharing of responsibilities & gain skills in mobilizing community participation to acquire leadership qualities and democratic attitudes

Pedagogy :

These are sample Strategies, which teachers can use to accelerate the attainment of the various course outcomes.

1. In addition to the traditional lecture method, different types of innovative teaching methods may be adopted so that the activities will develop students' theoretical and applied social and cultural skills.

- 2. State the need for activities and its present relevance in the society and Provide real-life examples.
- 3. Support and guide the students for self-planned activities

4. You will also be responsible for assigning homework, grading assignments and quizzes, and documenting students' progress in real activities in the field.

5. Encourage the students for group work to improve their creative and analytical skills

Contents:

The course is mainly activity-based that will offer a set of activities for the student that enables them to connect with fellow human beings, nature, society, and the world at large.

The course will engage students for interactive sessions, open mic, reading group, storytelling sessions, and semester-long activities conducted by faculty mentors.

In the following a set of activities planned for the course have been listed:

Part	1
------	---

Plantation and adoption of a tree: Plantation of a tree that will be adopted for four years by a group of BE / B.Tech students. (ONE STUDENT ONE TREE) They will also make an excerpt either as a documentary or a photo blog describing the plant's origin, its usage in daily life, its appearance in folklore and literature - Objectives, Visit, case study, report, outcomes.

Part 2

Heritage walk and crafts corner: Heritage tour, knowing the history and culture of the city, connecting to people around through their history, knowing the city and its craftsman, photo blog and documentary on evolution and practice of various craft forms - Objectives, Visit, case study, report, outcomes.

Part 3

Organic farming and waste management: Usefulness of organic farming, wet waste management in neighboring villages, and implementation in the campus – Objectives, Visit, case study, report, outcomes.

Part 4 Water conservation: Knowing the present practices in the surrounding villages and implementation in the campus, documentary or photoblog presenting the current practices – Objectives, Visit, case study, report, outcomes 4 Hrs

 Part 5

 Food walk: City's culinary practices, food lore, and indigenous materials of the region used in cooking – Objectives, Visit, case study, report, outcomes.
 4 Hrs

Course Outcomes: At the end of the course, the student will be able to:

CO1:Communicate and connect to the surrounding.

CO2: Create a responsible connection with the society

CO3:Involve in the community in general in which they work

CO4:: Notice the needs and problems of the community and involve them in problem –solving

CO5:Develop among themselves a sense of social & civic responsibility & utilize their knowledgein finding practical solutions to individual and community problems

CO6:Develop competence required for group-living and sharing of responsibilities & gain skills in mobilizing community participation to acquire leadership qualities and democratic attitudes.

ACTIVITITES :

Jamming session, open mic, and poetry: Platform to connect to others. Share the stories withothers. Share the experience of Social Connect. Exhibit the talent like playing instruments, singing, one-act play, art-painting, and fine art

Continuous Internal Evaluation (CIE): After completion of the course, the student shall prepare, with daily diary as reference, a comprehensive report in consultation with the mentor/s to indicate what he has observed and learned in the social connect period. The report should be signed by the mentor. The report shall be evaluated on the basis of the following criteria and/or other relevant criteria pertaining to the activity completed. Marks allotted for the diary are out of 50. Planning and scheduling the social connect Information/Data collected during the social connect Analysis of the information/data and report writing Considering all above points allotting the marks as mentioned below

Excellent : 80 to 100

Good : 60 to 79

Satisfactory: 40 to 59

Unsatisfactory and fail : <39

Pedagogy – Guidelines : It may differ depending on local resources available for the study as well as environment and climatic differences, location and time of execution

SL	Topic	GROUP	LOCATION	ACTIVITY	REPORTING	EVALUATION
NO	_	SIZE		EXECUTION		OF TOPIC
1	Plantation	May be	Farmers land/ parks /	Site selection	Report	Evaluation as
	and adoption	individual	Villages / roadside/	/proper	should be	per the rubrics
	of a tree	or team	community area /	consultation/Contin	submitted by	Ofscheme and
			College campus etc	uous monitoring/	individual to	syllabus by
				Information board	the concerned	Faculty
					evaluation	
					authority	
2	Heritage	May be	Temples / monumental	Site selection	Report	Evaluation as
	walk and	individual	places / Villages/ City	/proper	should be	per the rubrics
	crafts corner:	or team	Areas / Grama	consultation/Contin	submitted by	Ofscheme and
			panchayat/ public	uous monitoring/	individual to	syllabus by
			associations/Governme	Information board	the concerned	Faculty
			nt Schemes officers/		evaluation	
			campus etc		authority	
3	Organic	May be	Farmers land / parks /	Group selection /	Report	Evaluation as
	farming and	individual	Villages visits /	proper consultation	should be	per the rubrics
	waste	or team	roadside/ community	/ Continuous	submitted by	Ofscheme and
	management:		area / College campus	monitoring /	individual to	syllabus by
			etc	Information board	the concerned	Faculty
					evaluation	
					authority	

4	Water	May be	Villages/ City Areas /	Site selection	Report	Evaluation as
	conservation:	individual	Grama panchayat/	/proper	should be	per the rubrics
	&	or team	public	consultation/Contin	submitted by	Ofscheme and
	conservation		associations/Governme	uous monitoring/	individual to	syllabus by
	techniques		nt Schemes officers /	Information board	the concerned	Faculty
			campus etc		evaluation	
					authority	
5	Food walk:	May be	Villages/ City Areas /	Group selection /	Report	Evaluation as
	Practices in	individual	Grama panchayat/	proper consultation	should be	per the rubrics
	society	or team	public	/ Continuous	submitted by	Ofscheme and
			associations/Governme	monitoring /	individual to	syllabus by
			nt Schemes officers/	Information board	the concerned	Faculty
			campus etc		evaluation	

NATIONAL SERVICE SCHEME(NSS)					
Course Code:	MVJNSS 309/409/509/609	CIE Marks: 50			
L: T:P:S	0:0:2:0	SEE Marks:			
	1	Total :100			
Credits:					
Hours:	24 Hrs Practical	SEE Duration:			
	L	1			

Course Objectives: National Service Scheme (NSS) will enable the students to:

- 1. Understand the community in general in which they work.
- 2. Identify the needs and problems of the community and involve them in problem–solving.
- 3. Develop among themselves a sense of social & civic responsibility & utilize their knowledge in finding practical solutions to individual and community problems.
- 4. Develop competence required for group-living and sharing of responsibilities & gain skills in mobilizing community participation to acquire leadership qualities and democratic attitudes.
- 5. Develop capacity to meet emergencies and natural disasters & practice national integration and social harmony in general.

General Instructions - Pedagogy

These are sample strategies, which teachers can use to accelerate the attainment of the various course outcomes:

- 1. Use innovative teaching methods along with lectures to help students build both theoretical and practical social and cultural skills.
- 2. Explain the importance of NSS activities today with real-life examples like cleanliness drives or blood donation camps.
- 3. Motivate and guide students to plan and carry out their own activities.
- 4. Give homework, grade assignments and quizzes, and keep records of students' progress in real-life field activities.
- 5. Encourage students to work in groups to improve their creativity and problem-solving skills.

National Service Scheme (NSS) – Contents

- 1. Organic farming, Indian Agriculture (Past, Present and Future), Connectivity for marketing.
- 2. Waste management Public, Private and Govt organization, 5R's.
- 3. Setting of the information imparting club for women leading to contribution in social and economic issues.
- 4. Water conservation techniques Role of different stakeholders Implementation.
- 5. Preparing an actionable business proposal for enhancing the village income and approach for implementation.
- 6. Helping local schools to achieve good results and enhance their enrolment in Higher/technical/vocational education.
- 7. Developing Sustainable Water management system for rural areas and implementation approaches.
- 8. Contribution to any national level initiative of Government of India. For e.g. Digital India, Skill India, Swatch Bharat, Atmanirbhar Bharath, Make in India, Mudra scheme, Skill development programs etc.
- 9. Spreading public awareness under rural outreach programs. (Minimum 5 programs).
- 10. Plantation and adoption of plants. Know your plants.
- 11. Organize National integration and social harmony events/workshops/seminars. (Minimum 02 programs).
- 12. Govt. school rejuvenation and helping them to achieve good infrastructure.

NOTE:

- Student/s in individual or in a group should select any one activity at the beginning of each semester till end of that respective semester for successful completion as per the instructions of NSS officer with the consent of HOD of the department.
- At the end of the semester. an activity report should be submitted for evaluation.

Distribution of Activities

Topics/Activities to be Covered
 Organic farming, Indian Agriculture (Past, Present and Future), Connectivity for marketing. Waste management – Public, Private and Govt organization, 5R's. Setting of the information imparting club for women leading to contribution in social and economic issues
social and economic issues.
 Water conservation techniques – Role of different stakeholders – Implementation. Preparing an actionable business proposal for enhancing the village income and approach for implementation. Helping local schools to achieve good results and enhance their enrolment in Higher/technical/vocational education.

25 Marks	 Developing Sustainable Water management system for rural areas and implementation approaches. Contribution to any national level initiative of Government of India. For e.g. Digital India, Skill India, Swachh Bharat, Atmanirbhar Bharath, Make in India, Mudra scheme, Skill development programs etc. Spreading public awareness under rural outreach programs. (Minimum 5
	programs). 4. Plantation and adoption of plants. Know your plants
	1. Organize National integration and social harmony events/workshops/seminars.
25 Marks	 Govt. school rejuvenation and helping them to achieve good infrastructure.

Pedagogy–Guidelines, it may differ depending on local resources available for the study as well as environment and climatic differences, location and time of execution.

SI	Торіс	Grou	Location	Activity	Reporting	Evaluation
Ν		p size		executi		of the Topic
0				on		
1.	Organic farming, Indian Agriculture(Past, Present and Future) Connectivity for marketing.	May be individua l or team	Farmers land/Villages/roadsi de / Community area/ College campus etc.	Site selection /Proper consultation/Co ntinuous monitoring/ Information board	Report should be submitted by individuals to the concerned evaluation authority	Evaluation as per the rubrics of scheme and syllabus by NSS officer
2.	Waste management– Public, Private and Govt organization, 5 R's.	May be individua l or team	Villages/City Areas/ Grama panchayat/public associations/Govern ment t Schemes officers/ campus etc.	Site selection /Proper consultation/Co ntinuous monitoring/ Information board	Report should be submitted by individuals to the concerned evaluation authority	Evaluation as per the rubrics of scheme and syllabus by NSS officer
3.	Setting of the information imparting club for women leading to contribution in social and	May be individua l or team	Women empowerment groups/ Consulting NGO's & Govt. Teams/ College campuses etc.	Group selection/prope r consultation/Co ntinuous monitoring/ information	Report should be submitted by individuals to the concerned evaluation authority	Evaluation as per the rubrics of scheme and syllabus by NSS officer

	economic issues.			board		
4.	Water conservation techniques – Role of different stake holders– Implementation.	May be individua l or team	Villages/city Areas/ Grama panchayat/public associations/Govern ment t Schemes officers/ campuses etc.	site selection / proper consultation/C ontinuous monitoring/ Information board	Report should be submitted by individuals to the concerned evaluation authority	Evaluation as per the rubrics of scheme and syllabus by NSS officer
5.	Preparing an actionable business proposal for enhancing the village income and approach for implementation.	May be individua l or team	Villages/city Areas/ Grama panchayat/public associations/Govern ment t Schemes officers/ campuses.	Group selection/pro per consultation/Co ntinuous monitoring/ Information board	Report should be submitted by individuals to the concerned evaluation authority	Evaluation as per the rubrics of scheme and syllabus by NSS officer
6.	Helping local schools to achieve good results and enhance their enrolment in Higher/ technical/ vocational education.	May be individua l or team	Local government/ private/ aided schools/Governme nt Schemes officers/ etc	School selection/prope r consultation/Co ntinuous monitoring/ Information board	Report should be submitted by individuals to the concerned evaluation authority	Evaluation as per the rubrics of scheme and syllabus by NSS officer
7.	Developing Sustainable Water management system for rural areas and implementation approaches.	May be individua alorteam	Villages/City Areas/ Grama panchayat/public associations/Gover n ment Schemes officers/ campusetc	Site selection/prope r consultation/Co ntinuous monitoring/ Information board	Report should be submitted by individuals to the concerned evaluation authority	Evaluation as per the rubrics of scheme and syllabus by NSS officer

8.	Contribution to any national level initiative of Government of India. For e.g. Digital India, Skill India, Swachh Bharat, Atmanirbhar Bharath, Make in India, Mudra scheme, Skill development programs etc.	May be individua l orteam	Villages/City Areas/ Grama panchayat/publi c associations/Gov ernment Schemes officers/ campus etc.	Group selection/pro per consultation/Con tinu ous monitoring / Information board	Report should be submitted by individuals to the concerned evaluation authority	Evaluation as per the rubrics of scheme and syllabus by NSS officer
9.	Spreading public awareness under rural outreach programs. (minimum5programs). Socials connect and responsibilities.	May be individua l orteam	Villages /CityAreas / Grama panchayat/publi c associations/Gov ern ment Schemes officers/ campusetc	Group selection/pro per consultation/ Continuous monitoring / Information board	Report should be submitted by individuals to the concerned evaluation authority	Evaluation as per the rubrics of scheme and syllabus by NSS officer
10.	Plantation and adoption of plants. Know your plants.	May be individua l orteam	Villages/CityAr eas/ Grama panchayat/publi c associations/Gov ern ment nt Schemes officers/ campusetc	Place selection/proper consultation/Con tinu ous monitoring / Information board	Report should be submitted by individualsto the concerned evaluation authority	Evaluation as per the rubrics of scheme and syllabus by NSS officer
11.	Organize National integration and social harmonyevents /Workshops /Seminars.(Minim um 02 programs).	May be individu al orteam	Villages/CityAr eas/ Grama panchayat/publi c associations/Go vern ment Schemes officers/ campusetc	Place selection/proper consultation/Con tinu ous monitoring / Information board	Report should be submitted by individuals to the concerned evaluation authority	Evaluation as per the rubrics of scheme and syllabus by NSS officer

12.	Govt. school Rejuvenation and helping them to achieve good infrastructure.	May be individu al orteam	Villages/CityAr eas/ Grama panchayat/publi c associations/Go vern ment nt Schemes officers/ campusetc	Place selection/proper consultation/Con tinu ous monitoring / Information board	Report should be submitted by individuals to the concerned evaluation authority	Evaluation as per the rubrics of scheme and syllabus by NSS officer
-----	--	------------------------------------	---	---	---	--

Plan of Action (Execution of Activities)

SI.NO	Practice Session Description
1	Lecture session by NSS Officer
2	Students' Presentation Topics
3	Presentation-1, Selection of topic, PHASE-1
4	Commencement of activity and its progress-PHASE-2
5	Execution of Activity
6	Execution of Activity
7	Execution of Activity
8	Execution of Activity
9	Execution of Activity
10	Case study-based Assessment, Individual performance
11	Sector wise study and its consolidation
12	Video based seminar for 10minutes by each student at the end of semester with Report.
• Ir • A	semester end, each student should do activities according to the scheme and syllabus. t the end of the semester, student performance must be evaluated by the NSS officer for the

• At the end of the semester, student performance must be evaluated by the assigned activity progress and its completion.

• Finally, at the end of the semester, a consolidated report of activities should be compiled and submitted as per the instructions.

Course Outcomes (Course Skill Set)

At the end of the course, the student will be able to:

CO1: Understand the importance of his/her responsibilities towards society.

CO2: Analyze the environmental and societal problems/issues and will be able to design solutions for the same.

CO3: Evaluate the existing system and propose practical solutions for the same for sustainable development.

CO4: Implement government or self-driven projects effectively in the field.

CO5: Develop capacity to meet emergencies and natural disasters & practice national integration and social harmony in general

Weightage	CIE-100%	• Implementation strategies of the
Presentation-1	10 Marks	project(NSS work).
Selection of topic, PHASE-1		• The last report should be signed by NSSOfficer the
Commencement of activity and its	10 Marks	HOD and principal.
progress- PHASE-2		• Finally, the report should be
Case study-based Assessment	10 Marks	evaluated by the NSS officer of
Individual performance		the institute.
Sector wise study and its consolidation	10 Marks	• Finally, the consolidated marks
Video based seminar for 10minutes by each	10 Marks	sheet should be sent to the university and to be made
Student at the end of semester with Report.		available at LIC visit.
Total marks for the course in end semester	50Marks	
Marks scored for 50 by the students sh in end semester	ould be Scale o	lown to 25 Marks
For CIE entry in the VTU portal.		
CIE (50 Marks)		
Weekly Evaluation 30 Marks		

Assessment Details for CIE(both CIE and SEE)

Weekly evaluation will be conducted for each activity. Marks of each evaluation includes Weekly Attendance & activities performed by students. The total of all these evaluated marks are added and the total marks will be scaled to 30 marks.(A)

Two CIE for 20 Marks each and take the average for 20 Marks (B)

Final CIE Marks will be calculated as (A+B) for 50 marks

Suggested Learning Resources:

Books:

- 1. NSS Course Manual, Published by NSS Cell, VTU Belagavi.
- 2. Government of Karnataka, NSS cell, activities reports and its manual.
- 3. Government of India, NSS cell, Activities reports and its manual.

Semester : III / IV / V / VI

	PHYSICAL EDUCATION (SPORTS & ATHLETICS)											
Cour	seOutcomes(COs)	PO_	РО	PO	РО	РО	PO_	PO ´	РО	РО	РО	_PO
	Course Code: '	мүјре	399/40	9/509/0	502	5	6	CLÆ Ma	irks: 5	⁰ 9	10	11
CO1: of so engag	L:T:P:S Understand the importance	0:0:2:0					5	EE M	arks:			
	cial responsibility and civic	¹ 2	2	-	-	-	3	Foțal :1	09	2	2	-
CO2: Morresop leadership qualities2 and democratic attitudes		24 <u>Hrs</u>	Practic	al_	-	-	2 8	SEE Du	iration	• ₃	2	_
CO3 : Work effectively as an individual and as a team in diverse fields of community		2	-	-	-	-	3	2	3	3	2	-
CO4: Acquire skills in mobilizing community participation and local resources		-	-	2	-	1	3	3	2	2	2	2
CO5: Understand and apply health, hygiene, and environmental conservation knowledge		-	-	1	-	1	3	3	2	-	-	-
CO6 :Demonstrateethicalvalues, empathy, and compassion in social		-	-	-	-	-	3	3	3	2	-	-
work												

ours	e Objectives: the student will be able to						
1	Understand the meaning and importance of the fitness and the benefits of fitness						
2	Types of fitness and fitness tips.						
3	Importance of Sports, and Yoga in a day-to-day life.						
4	Understand the importance of aerobics and other activities for healthy lifestyle.						
5	Know about the different roles of organization and administration in sports events.						
opics	s / Activities to be Covered (100Marks)						
	Module I	4 Hours					
Drier	ntation						
	Lifestyle						
	· Lifestyle · Fitness						
	 Lifestyle Fitness Food & Nutrition: Sports diet. 						
	 Lifestyle Fitness Food & Nutrition: Sports diet. Stress Management 						
	 Lifestyle Fitness Food & Nutrition: Sports diet. Stress Management Module II	4 Hours					
Gene	 Lifestyle Fitness Food & Nutrition: Sports diet. Stress Management Module II eral Fitness & Components of Fitness	4 Hours					
A A A A Gene	 Lifestyle Fitness Food & Nutrition: Sports diet. Stress Management Module II Fral Fitness & Components of Fitness Warming up (Free Hand Exercises). 	4 Hours					
A A A A A A A A A A A A A A A A A A A	 Lifestyle Fitness Food & Nutrition: Sports diet. Stress Management Module II eral Fitness & Components of Fitness Warming up (Free Hand Exercises). Strength—Push-up/Pull-ups	4 Hours					
A A A A A A A A A A A A A A A A A A A	 Lifestyle Fitness Food & Nutrition: Sports diet. Stress Management Module II eral Fitness & Components of Fitness Warming up (Free Hand Exercises). Strength—Push-up/Pull-ups Speed—30MtrDash. 	4 Hours					
A A A Gene A A A	 Lifestyle Fitness Food & Nutrition: Sports diet. Stress Management Module II Fral Fitness & Components of Fitness Warming up (Free Hand Exercises). Strength—Push-up/Pull-ups Speed—30MtrDash. Agility—Shuttle Run 	4 Hours					
A A A A A A A A A A A A A A A A A A A	 Lifestyle Fitness Food & Nutrition: Sports diet. Stress Management Module II eral Fitness & Components of Fitness Warming up (Free Hand Exercises). Strength—Push-up/Pull-ups Speed—30MtrDash. Agility—Shuttle Run Flexibility—Sit and Reach	4 Hours					

- ➤ Volleyball—Attack, Block, Service, Upper Hand Pass and Lower Hand and Pass.
- > Throw ball—Service, Receive, Spin attack, Net Drop & Jump throw.
- ➤ Kabaddi—Hand touch, Toe Touch, Thigh Hold, Ankle hold and Bonus.
- Basketball-dribbling, passing, shooting etc.
- > Table Tennis—Service (Fore Hand & Back Hand)
- Receive (Fore Hand & Back Hand)
- Smash, Athletics (Track / Field Events) -Running, Jumping, Throwing.

		Module IV	6 Hours				
Role of Or	ganization and administration						
≻ Pl	anning.						
> Or	ganizing.						
≻ Sta	affing.						
> Di	recting.						
≻ Co	ordinating & controlling.						
≻ Re	porting & Recording.						
> Bu	dgeting.						
		Module V	4 Hours				
1	Aerobics						
≻ Da	nce Aerobics						
≻ Sp	ort Aerobics						
> Wa	arm up Aerobics						
≻ Ca	rdiovascular Aerobics						
Course Ou	tcomes: After completing the cou	rse, the students will be	able to				
CO1	Understand the fundamental con	cepts and skills of Physic	al Education, Health, Nutrition and Fitner	SS .			
CO2	Familiarization of health-related	Exercises, Sports for ove	rall growth and development.				
CO3	Create a foundation for the profe	ssionals in physical Educ	ation and Sports.				
CO4	Participate in the competition at	regional / state / national	/ international levels.				
CO5	Create consciousness among the lifestyle.	students on Health, Fitne	ss and Wellness in developing and maint	ainii			
Accessmon	tDotoils for CIE (both CIE and SE)	E.)					
Assessmen	iDetails for the double and shi	L)					
Weight ag	ge	CIE- 100%					
Participatio	n of student in all the modules	50 Marks	Implementationstrategiesoftheproject(The last report should be si				
Final presentation / exhibition / Participation			byPED,theHODandprincipal.				
In competitions / practical on specific tasks Assigned to the students		50Marks	 Atlastreportshould beevaluated institute. Finally,theconsolidatedmarksshe 				
Totalmar	ksforthecourseineachsemester	100Marks	to the Controller of Examinations	offic			

Marks scored for 100 by the students should be Scale to 50 marks in each semester.
Studentsshouldpresenttheprogressoftheactivitiesasperthescheduleintheprescribedpracticalsessioninthefield. Thereshou progressinthevertical order for thebenefitof societyingeneral.

	CO/PO Mapping										
CO/PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1	-	-	-	-	-	-	-	2	2	-	-
CO 2	-	-	-	-	-	-	-	2	2	-	-
CO 3	-	-	-	-	-	-	-	2	2	-	-
CO 4	-	-	-	-	-	-	-	2	2	-	-
CO 5	-	-	-	-	-	-	-	3	3	-	-

•

Semester : III / IV / V / VI								
YOGA								
Course Code:	MVJYO309/409/509/609	CIE Marks:100						
L: T:P:S	0:0:2:0	SEE Marks:						
Credits:	0	Total :100						
Hours:	24 Hrs Practical	SEE Duration:						

CourseObjectives:

- PromoteHolisticWellnessPracticeinStudents.
- DevelopPhysicalAwarenessandFlexibility.
- ImproveFocusandAcademicPerformance.
- EncourageHealthyLifestyleHabits.
- SupportmentalHealthandEmotionalbalance.
- MaintainphysicalBodyHealth.

1) TheHealthBenefitsofYoga:

Yogahelpswithaperson-centeredapproachtowell-beingoffering**physical**, **mental(cognitive),andspiritual(emotional)benefits**forstudents.Thesebenefitscan helpstudentscopewiththedemandsofacademicjourneys,improvetheiroverall health, and promote personal development.

- KeyBenefitsofVariousYogaTechniques:
- EnhancesPhysicalWell-being.
- BoostsMentalFocus.
- PromotesEmotionalStability.
- ReducesStressLevels.
- EncouragesInnerGrowth.

It is also used as an adjunct therapy to support recovery from various physical health conditions such as:

- ChronicPain.
- BackPain.
- Arthritis.
- CardiovascularDiseases.
- Asthma.
- ChronicFatigueSyndrome.

- MenstrualDisorders.
- DigestiveIssues.
- ThyroidImbalances.
- Migraineandheadache.

2) Coreobservationsonhowyogafunctionsasacomplementarymind-body interventiontosupportthepsychological,physiologicalandspiritualhealing processes associated with various health conditions. PsychologicalBenefits:

- Stressreduction.
- Anxietyrelief.
- Traumahealing.
- Cognitiveandclarityfocus.
- EmotionalRegulation.
- Aidinmanagingdepression.

PhysiologicalBenefits:

- EnhanceBloodCirculation.
- BoostCardiovascularHealth.
- SupportsOverallGutFunction.
- PromotesThyroidFunction.
- Relieffrom Headaches.
- IncreasedEnergylevel.

Spiritual Benefits:

- CultivatinggratitudeandCompassion
- Self-realization
- BalanceandHarmony
- InnerPeace
- Senseofoneness.
- Mindfulness.

Module I -Discipline and Awareness Reflect Habits s Thoughts	
• BasictheoryofYoga,YamassNiyamas Yogadefinition,AimsandObjectives,importanceofyogainstudents.	6 h
• IntroductiontoYogaasana Yogaasanameaning,principleandhealthbenefits.	
• Ashtangayoga Meaning,breathingtechniques.	
• Fourpathsofyoga Karmayoga,Bhakthiyoga,Rajayoga,Jnanayoga.	
• Suryanamaskar Suryanamaskarprayeranditsmeaning,benefitsandimportance.	
• Yogaasanas Asanasit'sneed,importance,nameandtechnique.	
Sitting: -Vajrasana, sukhasana Standing:- adasana,Ardhachakrasana Proneline:- Advasana,Bhujangasana	
Supineline:-Shavasana,Suptabaddhakonasana	
Balancingposture:-Vrikshasana, Garudasana	
ModuleII-Buildingstrengthandfocus Finding out the obstacle	
• Kriya Yoga Tapas, Svadhyaya, Ishwarapranidhana	6 h
• Five Kleshas Obstacles.	
• Pranayama	
Introduction to Pranayama.	
• Pratyahara	
Preparing mind for meditation, Breathe focus techniques.	15

• Yoga asanas									
Standing: -Virabhadrasana,Parshvakona Sitting: -Vajrasana, Paschimottanasana Prone Line: -Dhanurasana, Shalabhasana									
Supine Line: -Ananda Balasana, Supta Matsyendrasana									
Balancing: -Natarajasana (Dancer Pose)									
ModuleIII-Awarenessandinnerbalance									
Finding how focused is the mind									
Dharana : Concentration	6 h								
• Dhyana: Meditation									
• Swasthya.Smrithi.Sankalpa.									
Toolofacademicexcellence.									
• Samyama									
Patanjali'sconceptofsamyama									
• Yogasanas									
Standing: - ArdhaChandrasana, Utkatasana									
Sitting: - Padmasana (or prep),									
Gomukhasana ProneLine :-									
AdhoMukhaSyanasana Naukasana									
SupineLine:-									
SuptaBaddhaKonasana Chakrasana									
Balancing: - Garudasana (Fagle Pose)									
Dalancing Garudasana (Lagie 10se)									
ModuleIV-integratingYogaindailyLife									
YamaniyamaAcharam	6 h								
PracticeofethicalDiscipline(practicingnonviolence,truth,cleanliness)									
Ahara-ViharaSamyama									
PracticedisciplineindietClifestyle.									
• Asono propovomosodkono									
• Asana-pranayamasaunana Dailummatiaaafasanasandnmanayama									
Danypracticeorasanasandpranayama									
• Yogasanas									
Standing: - PrasaritaPadottanasana, ParivrttaTrikonasana									
Sitting: -BaddhaKonasana,Marichyasana									
ProneLine: -Ustrasana(Camel),Makarasana(relaxation)									
SupineLine: -Sarvangasana,Shavasana									
Balancing: -Bakasana(Crow-optionalormodified)									
Courseoutcomes									
1. Identifyandreflectonpersonalhabitsandthoughts.	16								

ExplainthebasictheoryofYoga,includingYamasCNiyama.
 Understandthedefinition,aims,objectives,andimportanceofYoga,especially for students.

- 4. EnhancephysicalandmentalstrengththroughadvancedYogasanas.
- 5. PracticeDharana(concentration)andDhyana(meditation)toimprovefocus.

CO/POMapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1		2						3	2	2	
CO2	2						2	2			
CO3	2					2	2	3			
CO4					2		3	3			
CO5		2					2	3			

assessment will be done by the instructor by giving different poses / Asanas. The final assessment scaled up to 100 marks.

	Semester : III							
	ADDITIONALMATHEMATICS-I							
Course Code:	MVJMATDIP-I	CIE Marks: 100						
L: T:P:S	2:0:0:0	SEE Marks:						
Credits:	0	Total :100						
Hours:	24 Hrs Theory	SEE Duration: -						
CourseLearning Objectives:T	Thestudents willbeable to							
To familiarize the important a differentiation, Probability, o problems.	nd introductory concepts of Differential cal rdinary differential equations of first o	culus, Integral calo rder,andanalyzethe	culus, Vector engineering					
	UNIT1							
Differential calculus: Recapite theorem (without proof) and P tangent, angle between two expansions- Illustrative example Self study: Radius of curvature.	5 Hrs.							
	UNIT 2							
Integral Calculus: Statement of reduction formulae for the integrals of $sinn(x)$, $cosn(x)$, $sinn(x) cosn(n)$ and evaluation of these integrals with standard limits-problems. Double and triple integrals-Simple examples. Self study: Volume revolution, Surface area of revolution.								
	UNIT 3							
Vector Differentiation: Differentiation of vector functions. Velocity and acceleration of a particle moving on a space curve. Scalar and Vector point functions, Gradient, Divergence, Curl, Solenoidal and Irrotational vector fields. Vector identities - $\overrightarrow{div}(\phi A)$, $curl(\phi A)$, $curl(grad(\phi))$, $div(curl A)$.								
Self study: Line integrals, Gree	en's theorem, Gauss and stokes theorem.							
	UNIT 4							
Probability: Basic terminolog and multiplication theorems. C examples.	gy, Sample space and events. Axioms of pro Conditional probability – illustrative example	bability. Addition s. Bayes theorem-	5 Hrs.					
Self study: Applications of Bay	yes' Theorem.							
UNIT 5								
Ordinary Differential Equat equation, solutions of first or form, homogeneous, exact, lin Bernoulli equation, Clairaut's o	ions of First Order: Introduction – Format der and firstdegree differential equations: v lear differential equations. Some special firs equation	ion of differential variable separable t order equations:	5 Hrs. 18					

Self stu	udy: Ap	plicatio	ons of di	fferenti	al equat	ions(OI	DE): Ne	wton's	law coo	ling.			
Course	Outcor	nes:Aft	ercomp	oletingt	he cour	se, thes	tudents	willbea	ble to				
CO1	A	Applytheknowledgeofcalculustosolveproblemsrelatedto polarcurvesand its											
	Al	oplicatio	ons										
CO2	Al	Applytheconceptofintegrationandvariablestoevaluatemultipleintegrals and their usage in computing the area and volumes.											
CO3	Ill	Illustrate the applications of multivariate calculus to understand the solenoid aland											
	irr	irrotationalvectorsandalsoexhibittheinterdependenceofline, surface and volume integrals.											
CO4	Uı	UnderstandthebasicConceptsofProbability											
C05	Reen	ecognize gineerir	eandsolv 1g.	vefirst-c	orderord	inarydif	ferentia	lequatio	onsoccu	rringin d	lifferent	t brar	nches of
Text Bo	ooks												
1.	B.S	.Grewa	l,"Higho	erEngin	eeringN	lathema	tics"Kh	annaPu	blishers	,43 rd Edit	tion,201	3.	
2.	Rar	nanaB.V	V.,"Higl	herEngi	neering	Mathem	natics",7	TataMc0	Graw-H	ill,2006.			
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11		
CO1													
CO2												_	

Γ

CO4 CO5

Analysis and Design of Algorithms								
Course Code:	MVJAI401	CIE Marks: 50						
L: T:P:S	3:0:0:0	SEE Marks: 50						
Credits:	3	Total :100						
Hours:	40 Hrs Theory	SEE Duration: 3 Hrs	5.					
Course Objectives: This course with	ill enable the students to:							
1. To learn the methods for anal	yzing algorithms and evaluating their perfe	ormance.						
2. To demonstrate the efficiency of algorithms using asymptotic notations.								
3. To solve problems using var	ious algorithm design methods, including	brute force, greedy, div	vide and					
conquer, decrease and conquer,	transform and conquer, dynamic program	ming, backtracking, and	d branch					
and bound.								
4. To learn the concepts of P an	d NP complexity classes.							
	Module-1							
INTRODUCTION: What is an Al	gorithm? Fundamentals of Algorithmic Pro	oblem Solving.						
FUNDAMENTALS OF THE	ANALYSIS OF ALGORITHM EFF	FICIENCY: Analysis						
Framework, Asymptotic Notation	s and Basic Efficiency Classes, Mathema	tical Analysis of Non						
recursive Algorithms, Mathematic	al Analysis of Recursive Algorithms.		8 hrs					
BRUTE FORCE APPROACHES	: Selection Sort and Bubble Sort, Sequer	itial Search and Brute						
Force String Matching.								
Chapter I (Sections 1.1,1.2), Chap	$\frac{1}{2}$ (Sections 2.1,2.2,2.3,2.4), Chapter 3(S	Section 3.1,3.2)						
	Module-2	0 1 1 1						
BRUTE FORCE APPROACHES	(contd): Exhaustive Search (Travelling	Salesman probem and						
Knapsack Problem).								
DECREASE-AND-CONQUER: I	nsertion Sort, Topological Sorting.		8 hrs					
DIVIDE AND CONQUER: Mer	ge Sort, Quick Sort, Binary Tree Travers	sais, Multiplication of						
Large Integers and Strassen's Mat	rix Multiplication	5 2 5 2 5 1)						
Chapter 5(Section 5.4), Chapter 4	(Sections 4.1,4.2), Chapter 5 (Section 5.1, Modulo 3	5.2,5.3, 5.4)						
TRANSFORM-AND-CONOLIER	· Balanced Search Trees. Heans and Heans	sort						
SPACE-TIME TRADEOFES	Sorting by Counting: Comparison	counting sort Input						
Enhancement in String Matching:	Horspool's Algorithm	ounting sort, input	8 hrs					
Chapter 6 (Sections 6 3 6 4) Char	oter 7 (Sections 7 1 7 2)							
	Module-4							
DYNAMIC PROGRAMMING:	Three basic examples. The Knapsack F	Problem and Memory						
Functions. Warshall's and Floyd's	Algorithms.	icerenii ana memory						
THE GREEDY METHOD: Pri	m's Algorithm, Kruskal's Algorithm,	Dijkstra's Algorithm.	8 hrs					
Huffman Trees and Codes.	8, 8,	5 6 ,	-					
Chapter 8 (Sections 8.1,8.2,8.4), 0	Chapter 9 (Sections 9.1,9.2,9.3,9.4)							
	Module-5							
LIMITATIONS OF ALGORITI	HMIC POWER: Decision Trees, P, N	P, and NP-Complete						
Problems.								
COPING WITH LIMITATION	S OF ALGORITHMIC POWER: Bad	ektracking (n-Queens	0 h.m.					
problem, Subset- sum problem	n), Branch-and-Bound (Knapsack prob	lem), Approximation	8 mrs					
algorithms for NP-Hard problems	(Knapsack problem).							
Chapter 11 (Section 11.2, 11.3), C	Chapter 12 (Sections 12.1,12.2,12.3)							
Course Outcomes: At the end of	the course, the students will be able to							
CO1: Apply Greedy and dynamic	programming method to solve computati	onal problem and back	tracking					
using approximation methods.								
CO2: Analyze the performance	of the algorithm in terms of time comple	exity for asymptotic no	otational					
method and for various classes of	problems such as P, NP hard and NP comp	olete.	20					
CO3:Compare and evaluate conqu	er approaches to solve computational prob	lems.						

CO4:Design a code by using modern tools (PyCharm, Visual Studio Code).

Textbooks

Introduction to the Design and Analysis of Algorithms, By Anany Levitin, 3rd Edition (Indian), 2017, Pearson.

Reference books:

- 1. Computer Algorithms/C++, Ellis Horowitz, SatrajSahni and Rajasekaran, 2nd Edition, 2014, Universities Press.
- 2. Introduction to Algorithms, Thomas H. Cormen, Charles E. Leiserson, Ronal L. Rivest, Clifford Stein, 3rd Edition, PHI.
- 3. Design and Analysis of Algorithms, S. Sridhar, Oxford (Higher Education)

CIE ASSESSMENT:

Continuous Internal Evaluation (CIE):

- Three CIE Will be conducted for 50 marks each and average of three will be taken (A)
- Three Quizzes will be conducted along with CIE for 10 Marks Each. Sum of three quizzes will be considered for 30 marks (B)
- Two Assignments for 10 marks each and the sum of both the assignments will be taken for 20 Marks (C)

Final CIE Marks will be calculated as (A+B+C)/2 for 50 marks

SEE ASSESSMENT:

The theory exam consists of a written paper structured into two parts:

Part A: Carries 20 marks which include either objective-type or short descriptive questions. It is designed to cover the entire syllabus comprehensively.

Part B: This section carries a total of 80 marks and consists of 5 questions, with Either or choices. Students are required to answer one full question per module, selecting from the choices. Each question is valued at 16 marks and may include up to two sub-parts.

The SEE Theory marks of 100 will be scaled down to 50.

The final score for the course in the ratio of 50:50 of CIE and SEE Marks

CO- PO MAPPING

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	3	3	2	3						2
CO2	3	3	3	2	3						2
CO3	3	3	2	2	3						2
CO4	3	2	3	2	3						2
CO5	3	3	3	3	3						2

Semester : IV									
	ARTIFICIALINTELLIGENCE	1							
Course Code:	MVJAI402	CIE Marks: 50							
L: T:P:S	3:0:2:0	SEE Marks: 50							
Credits:	4	Total :100							
Hours:	40 Hrs Theory and 24 Hrs Practical	SEE Duration: 3 Hrs.							
Courseobjectives: 1. Gainahistorical perspectiveof 2. Becomefamiliarwithbasicprine 3. Gettoknowapproachesofinfere Introduction:WhatisAI?Foundations	Alandits foundations. ciplesofAltowardproblemsolving\ ence,perception,knowledgerepresentation,a <u>Module-1</u> sandHistoryofAl IntelligentAg	ndlearning gents:Agentsand							
environment, Concept of Rationality,	The nature of environment, The structure	of agents.	8 hrs						
Textbook1:Chapter1-1.1,1.2, 1.3Chapt	ter2-2.1,2.2, 2.3, 2.4								
	Module-2		·						
 Problem-solving: Problem-solving agents, Example problems, Searching for Solutions Uninformed Search Strategies: Breadth First search, Depth First Search, Iterative deepening depth first search; Textbook1:Chapter3-3.1, 3.2,3.3, 3.4 									
	Module-3		1						
Informed Search Strategies: Heuri Functions Logical Agents: Knowledg Reasoning patterns in Propositional Lo Textbook1:Chapter3-3.5,3.6	istic functions, Greedy best first search, ge–based agents, The Wumpus world, Logi ogic	, A*search. Heuristic c, Propositional logic,	8 hrs						
Chapter 4 –4.1, 4.2Chapter 7-7.1,7.2, 7	.5, 7.4, 7.5 Module-4								
FirstOrderLogic :RepresentationRevi logic. Inference in First Order L Forward Chaining, Backward Chainin Textbook1:Chapter8-8.1, 8.2, 8.3Chapt	sited,SyntaxandSemanticsofFirstOrderlogi logic :Propositional Versus First Order lg, Resolution ter9-9.1, 9.2, 9.3, 9.4, 9.5	c,UsingFirstOrder Inference, Unification,	8 hrs						
	Module-5								
Uncertain Knowledge and Reasonin Probability Notation, Inference using Wumpus World Revisited ExpertSystems:Representingandusing Text Book 1: Chapter 13-13.1, 13.2, 1 Text Book2:Chapter 20	ng: Quantifying Uncertainty: Acting und Full Joint Distributions, Independence, Ba gdomainknowledge,ESshells.Explanation,I 13.3, 13.4, 13.5, 13.6	der Uncertainty, Basic aye's Rule and its use. knowledgeacquisition	8 hrs						

SI.N	Experiments
0	
1	ImplementandDemonstrate DepthFirst Search Algorithmon WaterJugProblem
2	ImplementandDemonstrateBestFirstSearchAlgorithmonMissionaries-CannibalsProblemsusing Python
3	ImplementA*Search algorithm
4	ImplementAO*Search algorithm
5	Solve8-QueensProblemwithsuitableassumptions
6	ImplementationofTSPusingheuristicapproach
7	Implementationoftheproblemsolvingstrategies:eitherusingForwardChainingorBackward Chaining
8	ImplementresolutionprincipleonFOPLrelated problems
9	ImplementTic-Tac-ToegameusingPython
Cours	eoutcomes(CourseSkillSet):
Atthee	ndofthecourse, the student will be able to:
	CO1:Applyknowledgeofagentarchitecture,searchingandreasoningtechniquesfordifferent applica
	CO2.ComparevariousSearchingandInferencingTechniques.
	CO3.Developknowledgebasesentencesusingpropositionallogicandfirstorderlogic CO 4. Describe the concepts of quantifyinguncertainty.

CO5: Use the concepts of Expert System stobuild applications.

Textbooks

- 1. StuartJ.Russell and PeterNorvig, ArtificialIntelligence, 3rdEdition, Pearson, 2015
- 2. ElaineRich,KevinKnight,ArtificialIntelligence,3rdedition,TataMcGrawHill,2013

Reference books:

- 1. GeorgeFLugar,ArtificialIntelligenceStructureandstrategiesforcomplex,PearsonEducation,5th Edition,2011
- 2. NilsJ.Nilsson, Principles of Artificial Intelligence, Elsevier, 1980
- 3. SarojKaushik, ArtificialIntelligence, Cengagelearning, 2014

AssessmentDetails(bothCIEandSEE)

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

- Three CIE Will be conducted for 50 marks each and average of three will be taken (A)
- Three Quizzes will be conducted along with CIE for 10 Marks Each. Sum of three quizzes will be considered for 30 marks (B)
- Two Assignments for 10 marks each and the sum of both the assignments will be taken for 20 Marks (C)

Final CIE Marks will be calculated as (A+B+C)/2 for 50 marks

Laboratory- 50 Marks

Weekly Evaluation 30 Marks

Weekly evaluation will be conducted for every experiment. Marks of each evaluation includes Weekly Attendance + Experiment conduction along with Record / Observation + Weekly viva for all the experiments. The total of all these evaluated marks are added and the total marks will be scaled to 30 marks. (A)

Two CIE for 20 Marks each and take the average for 20 Marks (B)

Final CIE Marks will be calculated as A+B for 50 marks

For IPCC Final CIE Marks will be calculated as Average of CIE and Lab CIE for 50 marks.

Semester End Examination (SEE)

SEE Theory Examination (100 Marks)

The theory exam consists of a written paper structured into two parts:

Part A: Carries 20 marks which include either objective-type or short descriptive questions. It is designed to cover the entire syllabus comprehensively.

Part B: This section carries a total of 80 marks and consists of 5 questions, with Either or choices. Students are required to answer one full question per module, selecting from the choices. Each question is valued at 16 marks and may include up to two sub-parts.

The SEE Theory marks of 100 will be scaled down to 50 (A)

The laboratory SEE is also evaluated for 50 marks, distributed as follows: Experiment Conduction with Results: 40 marks Viva Voce: 10 marks Total 50 marks (B)

The score for the SEE is A+B of total 100 marks

The final score for the course in the ratio of 50:50 of CIE and SEE Marks

CO-PO MAPPING

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	2									
CO2											
CO3											
CO4											
CO5											

Semester : IV									
DATA	DATABASE MANAGEMENT SYSTEM								
Course Code: MVJAI403 CIE Marks: 50									
L: T:P:S	3:0:2:0	SEE Marks: 50							
Credits:	4	Total :100							
Hours:	40 Hrs Theory and 24 Hrs	SEE Duration: 3 Hrs.							
	Practical								

Course Objectives: This course will enable the students to:

1. Provide a strong foundation in database concepts, technology, and practice.

2. Practice SQL programming through a variety of database problems.

- 3. Understand the relational database design principles.
- 4. Demonstrate the use of concurrency and transactions in database.
- 5. Design and build database applications for real world problems.
- 6. become familiar with database storage structures and access techniques.

Module-1

Introduction to Databases: Introduction, Characteristics of database approach, Advantages of using the DBMS approach, History of database applications.

Overview of Database Languages and Architectures: Data Models, Schemas, and Instances. Three schema architecture and data independence, database languages, and interfaces, The Database System environment. Conceptual Data Modelling using Entities and Relationships: Entity types, Entity sets and structural constraints, Weak entity types, ER diagrams, Specialization and Generalization.

Textbook 1:Ch 1.1 to 1.8, 2.1 to 2.6, 3.1 to 3.10

Module-2

Relational Model: Relational Model Concepts, Relational Model Constraints and relational	
database schemas, Update operations, transactions, and dealing with constraint violations.	
Relational Algebra: Unary and Binary relational operations, additional relational operations	
(aggregate, grouping, etc.) Examples of Queries in relational algebra.	8 hrs
Mapping Conceptual Design into a Logical Design: Relational Database Design using ER-to-	
Relational mapping.	26
Textbook 1: Ch 5.1 to 5.3, Ch 8.1 to 8.5; Ch 9.1 to 9.2 Textbook 2: 3.5	
Module-3	

Normalization: Database Design Theory – Introduction to Normalization using Functional and Multivalued Dependencies: Informal design guidelines for relation schema, Functional Dependencies, Normal Forms based on Primary Keys, Second and Third Normal Forms, Boyce- Codd Normal Form, Multivalued Dependency and Fourth Normal Form, Join Dependencies and Fifth Normal Form. SQL: SQL data definition and data types, Schema change statements in SQL, specifying constraints in SQL, retrieval queries in SQL, INSERT, DELETE, and UPDATE statements in SQL, Additional features of SQL Textbook 1: Ch 14.1 to 14.7, Ch 6.1 to 6.5	8 hrs
Module-4	
SQL: Advanced Queries: More complex SQL retrieval queries, Specifying constraints as assertions and action triggers, Views in SQL. Transaction Processing: Introduction to Transaction Processing, Transaction and System concepts, Desirable properties of Transactions, Characterizing schedules based on recoverability, Characterizing schedules based on Serializability, Transaction support in SQL. Textbook 1: Ch 7.1 to 7.3, Ch 20.1 to 20.6	8 Hrs
Module-5	
Concurrency Control in Databases: Two-phase locking techniques for Concurrency control, Concurrency control based on Timestamp ordering, Multiversion Concurrency control techniques, Validation Concurrency control techniques, Granularity of Data items and Multiple Granularity Locking. NOSQL Databases and Big Data Storage Systems: Introduction to NOSQL Systems, The CAP Theorem, Document-Based NOSQL Systems and MongoDB, NOSQL Key-Value Stores, Column-Based or Wide Column NOSQL Systems, NOSQL Graph Databases and Neo4j Textbook 1:Chapter 21.1 to 21.5, Chapter 24.1 to 24.6	8 hrs
Practical Experiments	24P
1. Create a table called Employee & execute the following.	
Employee(EMPNO,ENAME,JOB, MANAGER_NO, SAL, COMMISSION)	
 Create a user and grant all permissions to theuser. Insert the any three records in the employee table contains attributes EMPNO,ENAME JOB, MANAGER_NO, SAL, COMMISSION and use rollback. Check the result. 	
3. Add primary key constraint and not null constraint to the employee table. Insert null values to the employee table and verify the result.	
2. Create a table called Employee that contain attributes EMPNO,ENAME,JOB, MGR,SAL & exe	cute the
 following. Add a column commission with domain to the Employee table. Insert any five records into the table. Update the column details of job Rename the column of Employ table using alter command. Delete the employee whose Empno is 105. 	
 following. Add a column commission with domain to the Employee table. Insert any five records into the table. Update the column details of job Rename the column of Employ table using alter command. Delete the employee whose Empno is 105. Queries using aggregate functions(COUNT,AVG,MIN,MAX,SUM),Group by,Orderby. 	
 following. 1. Add a column commission with domain to the Employee table. 2. Insert any five records into the table. 3. Update the column details of job 4. Rename the column of Employ table using alter command. 5. Delete the employee whose Empno is 105. 3. Queries using aggregate functions(COUNT,AVG,MIN,MAX,SUM),Group by,Orderby. Employee(E_id, E_name, Age, Salary) 	

3. Find the Maximum age from employee table.

- 4. Find the Minimum age from employee table.
- 5. Find salaries of employee in Ascending Order.

Find grouped salaries of employees.

4. Create a row level trigger for the customers table that would fire for INSERT or UPDATE or DELETE operations performed on the CUSTOMERS table. This trigger will display the salary difference between the old & new Salary CUSTOMERS(ID,NAME,AGE,ADDRESS,SALARY)

5. Create cursor for Employee table & extract the values from the table. Declare the variables

,Open the cursor & extrct the values from the cursor. Close the cursor.

Employee(E_id, E_name, Age, Salary)

6. Write a PL/SQL block of code using parameterized Cursor, that will merge the data available

in the newly created table N_RollCall with the data available in the table O_RollCall. If the data in the first table already exist in the second table then that data should be skipped.

7. Install an Open Source NoSQL Data base MangoDB & perform basic CRUD(Create, Read,

Update & Delete) operations. Execute MangoDB basic Queries using CRUD operations.

Course Outcomes: At the end of the course, the students will be able to

CO1:Apply the concepts, models, operations, and techniques to query, manage, and optimize databases effectively for real-world applications.

CO2: Analyze the components, relationships, and constraints across database models, operations, and architectures to understand their inter dependencies and applications.

CO3: Construct and implement database systems by using concepts, architectures, models, and techniques to create efficient solutions for diverse applications.

CO4: Evaluate and validate the effectiveness, reliability, and scalability of database systems by critically assessing the application such as normalization, concurrency control, and transaction processing within real-world scenarios.

CO5: Design and develop innovative database systems using advanced tools, techniques, and technologies like mongodb to address modern data management challenges efficiently and effectively.

Textbooks

1. Fundamentals of Database Systems, Ramez Elmasri and Shamkant B. Navathe, 7th Edition, 2017,

Pearson.

Database management systems, Ramakrishnan, and Gehrke, 3rd Edition, 2014, McGraw Hill

AssessmentDetails(bothCIEandSEE)

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

- Three CIE Will be conducted for 50 marks each and average of three will be taken (A)
- Three Quizzes will be conducted along with CIE for 10 Marks Each. Sum of three quizzes will be considered for 30 marks (B)
- Two Assignments for 10 marks each and the sum of both the assignments will be taken for 20 Marks (C)

Final CIE Marks will be calculated as (A+B+C)/2 for 50 marks

Laboratory- 50 Marks

Weekly Evaluation 30 Marks

Weekly evaluation will be conducted for every experiment. Marks of each evaluation includes Weekly Attendance + Experiment conduction along with Record / Observation + Weekly viva for all the experiments. The total of all these evaluated marks are added and the total marks will be scaled to 30 marks. (A)

Two CIE for 20 Marks each and take the average for 20 Marks (B)

Final CIE Marks will be calculated as A+B for 50 marks

For IPCC Final CIE Marks will be calculated as Average of CIE and Lab CIE for 50 marks.

Semester End Examination (SEE)

SEE Theory Examination (100 Marks)

The theory exam consists of a written paper structured into two parts:

Part A: Carries 20 marks which include either objective-type or short descriptive questions. It is designed to cover the entire syllabus comprehensively.

Part B: This section carries a total of 80 marks and consists of 5 questions, with Either or choices. Students are required to answer one full question per module, selecting from the choices. Each question is valued at 16 marks and may include up to two sub-parts.

The SEE Theory marks of 100 will be scaled down to 50 (A)

SEE Laboratory Examination (50 Marks)

The laboratory SEE is also evaluated for 50 marks, distributed as follows:

Experiment Conduction with Results: 40 marks

Viva Voce: 10 marks

Total 50 marks (B)

The score for the SEE is A+B of total 100 marks

The final score for the course in the ratio of 50:50 of CIE and SEE Marks

CO-PO MAPPING

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	3	3	2	3			2			2
CO2	3	3	3	2	3			2			2
CO3	3	3	2	2	3			2			2
CO4	3	2	3	2	3			2			2
CO5	3	3	3	3	3			2			2

Semester : IV								
Analysis and Design of Algorithms lab								
Course Code:	MVJAIL404	CIE Marks: 50						
L: T:P:S	0:0:2:0	SEE Marks: 50						
Credits:	1	Total :100						
Hours:	24 Hrs Practical	SEE Duration: 3 Hrs.						

Course Objectives: This course will enable the students to:

To design and implement various algorithms in C/C++ programming using suitable development tools to address different computational challenges.

To apply diverse design strategies for effective problem-solving.

To Measure and compare the performance of different algorithms to determine their efficiency and suitability for specific tasks.

Sl No	Experiment List
1	Design and implement C/C++ Program to find Minimum Cost Spanning Tree of a given connected undirected graph using Kruskal's algorithm.
2	Design and implement C/C++ Program to find Minimum Cost Spanning Tree of a given connected undirected graph using Prim's algorithm.
3	Design and implement C/C++ Program to solve All-Pairs Shortest Paths problem using Floyd's algorithm. Design and implement C/C++ Program to find the transitive closure using Warshal's algorithm.
4	Design and implement C/C++ Program to find shortest paths from a given vertex in a weighted connected graph to other vertices using Dijkstra's algorithm.
5	Design and implement C/C++ Program to obtain the Topological ordering of vertices in a given digraph.
6	Design and implement C/C++ Program to solve 0/1 Knapsack problem using Dynamic Programming method.
7	Design and implement C/C++ Program to solve discrete Knapsack and continuous Knapsack problems using greedy approximation method.
8	Design and implement C/C++ Program to find a subset of a given set $S = \{sl, s2,,sn\}$ of n positive integers whose sum is equal to a given positive integer d.
9	Design and implement C/C++ Program to sort a given set of n integer elements using Selection Sort method and compute its time complexity. Run the program for varied values of $n > 5000$ and record the time taken to sort. Plot a graph of the time taken versus n. The elements can be read from a file or can be generated using the random number generator.
10	Design and implement C/C++ Program to sort a given set of n integer elements using Quick Sort method and compute its time complexity. Run the program for varied values of $n > 5000$ and record the time taken to sort. Plot a graph of the time taken versus n. The elements can be read from a file or can be generated using the random number generator.

11	Design and implement C/C++ Program to sort a given set of n integer elements using Merge Sort method and compute its time complexity. Run the program for varied values of $n > 5000$, and record the time taken to sort. Plot a graph of the time taken versus n. The elements can be read from a file or can be generated using the random number generator.
----	---

12 Design and implement C/C++ Program for N Queen's problem using Backtracking.

Course outcomes: At the end of the course, the student will be able to

CO1: Apply fundamental algorithmic techniques like divide-and-conquer, dynamic programming, greedy algorithms, backtracking, and branch-and-bound to solve computational problems.

CO2: Analyze the time and space complexity of algorithms using Big O notation and optimize algorithms to improve performance.

CO3: Evaluate different algorithmic approaches and select the most appropriate one based on problem constraints and efficiency.

CO4: Develop programs to solve computational problems be choosing appropriate design techniques to develop solutions for computational and complex problems.

CO5: Design and implement algorithms to solve real-world problems efficiently using programming languages such as Python, Java, or C++.

Assessment Details (both CIE and SEE)

Laboratory- 50 Marks

Weekly Evaluation 30 Marks

Weekly evaluation will be conducted for every experiment. Marks of each evaluation includes Weekly Attendance + Experiment conduction along with Record / Observation + Weekly viva for all the experiments. The total of all these evaluated marks are added and the total marks will be scaled to 30 marks. (A)

Two CIE for 20 Marks each and take the average for 20 Marks (B)

Final CIE Marks will be calculated as A+B for 50 marks

Semester End Evaluation (SEE): SEE Laboratory Examination (50 Marks) The laboratory SEE is also evaluated for 50 marks, distributed as follows: Experiment Conduction with Results: 40 marks Viva Voce: 10 marks Total 50 marks The final score for the course out of 100 is the SumTotal of SEE and CIE.

Semester:IV									
	Discrete Mathematics								
Course Code:	MVJAI4051	CIE Marks: 50							
L: T:P:S	3:0:0:0	SEE Marks: 50							
Credits:	3	Total :100							
Hours:	40 Hrs Theory	SEE Duration: 3 H	rs.						
Course Learning	Objectives: The students will be able to								
Identify the different	ences between a relation and a function. Und	lerstand the role of bet	ween-						
group and within-g	group variability in testing differences betwee	en group means.							
	UNIT-I								
Basic Connective	s and Truth Tables:Logic Equivalence – T	he Laws of Logic.	8 Hrs						
Logical Implicatio	n – Rules of Inference. The Use of Quantific	ers, Quantifiers,							

Definitions and the Proofs of Theorems.					
UNIT-II					
Cartesian Products and Relations: Properties of Relations, Computer	8 Hrs				
Recognition – Zero-One Matrices and Directed Graphs, Partial Orders and					
Hasse Diagrams, Equivalence Relations and Partitions.					
UNIT-III					
Functions: Plain and One-to-One, Onto Functions - Stirling Numbers of the	8 Hrs				
Second Kind, Special Functions, The Pigeon-hole Principle, Function					
Composition and Inverse Functions.					
UNIT-IV					
Mathematical Induction: The Well Ordering Principle – Mathematical	8 Hrs				
Induction,					
Groups: Definitions, Examples, and Elementary Properties, Homomorphisms,					
Isomorphism, and Cyclic Groups, Cosets, and Lagrange's Theorem.					
UNIT-V					
Coding Theory and Rings: Elements of Coding Theory, The Hamming					
Metric, The Parity Check, and Generator Matrices					
Group Codes: Decoding with Coset Leaders, Hamming Matrices					
Rings and Modular Arithmetic: The Ring Structure – Definition and					
Examples, Ring Properties and Substructures, The Integers Modulo-n					

se Outcomes: After completing the course, the students will be able to
Explain and apply basic notions of symbolic logic and define proposition and argument.
Solving logical problems using concepts of relations.
To determine whether a relation is a function and identify the domain and range of a
function.
Link the fundamental concepts of groups and symmetries of geometrical objects.
Use algebraic techniques to construct efficient codes.
Text Books
B.S. Grewal, "Higher Engineering Mathematics" Khanna Publishers, 43rd Edition,
2013.

Reference Books

1101	ci chee Do	UKS										
1.	Ralph	P.	Grima	aldi:	Discrete	and	Combinatorial			Mathematics,		5th
	Edition, Pearson Education, 2004.											
2.	Kenneth	Н.	Ros	en:	Discrete	Mathem	natics	and	its	Applicat	tions,	7th
	Edition, I	McGra	w Hill	, 2010	0.							
3.	Jayant	Gang	guly:	Α	Treatise	on	Discre	te	Mathe	matical	Struct	ures,
	Sanguine	-Pears	on, 20	10.								
4.	P B. Bh	attach	arya, S	5 K.	Jain & P.	Nagpaul	, "Basi	ic Ab	stract	Algebra",	Camb	ridge
	Universit	y Pres	s , Sec	ond e	dition,1994	1.						

Evaluation Method

Continuous Internal Evaluation (CIE):

- Three CIE Will be conducted for 50 marks each and average of three will be taken (A)
- Three Quizzes will be conducted along with CIE for 10 Marks Each. Sum of three quizzes will be considered for 30 marks (B)
- Two Assignments for 10 marks each and the sum of both the assignments will be taken for 20 Marks (C)

Final CIE Marks will be calculated as (A+B+C)/2 for 50 marks

Semester End Examination (SEE):

The theory exam consists of a written paper structured into two parts:

Part A: Carries 20 marks which include either objective-type or short descriptive questions. It is designed to cover the entire syllabus comprehensively.

Part B: This section carries a total of 80 marks and consists of 5 questions, with Either or choices. Students are required to answer one full question per module, selecting from the choices. Each question is valued at 16 marks and may include up to two sub-parts.

The SEE Theory marks of 100 will be scaled down to 50.

The final score for the course in the ratio of 50:50 of CIE and SEE Marks

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	-	3	-	-	-	-	-	-	-	1
CO2	3	3	-	3	-	-	-	-	-	-	-	1
CO3	3	3	-	2	-	-	-	-	-	-	-	1
CO4	3	3	-	3	-	-	-	-	-	-	-	1
CO5	3	2	-	3	-	-	-	-	-	-	-	1

	Semester : IV					
METRICSPACES						
Course Code:	MVJA I4052	CIE Marks: 50				
L: T:P:S	3:0:0:0	SEE Marks: 50				
Credits:	3	Total :100				
Hours:	40 Hrs Theory	SEE Duration: 3 Hrs.				

Courseobjectives:

1. Provideinsight into the theory of sets

2. Learnbasicconceptsofmetricspaces

3. Understandtheconceptsofconnectedsetsandcompact spaces

Module-1:Theoryof Sets

Finite and infinite sets, countable and uncountable sets, cardinality of sets, Schroder-Bernstein
theorem, cantor's theorem, Order relation in cardinal numbers, Arithmetic ofcardinal numbers,
Partially ordered set, Zorn's lemma and axioms of choice, various set-theoretic paradoxes.8 hrs

(RBTLevels:L1,L2andL3)

Module-2:ConceptsinMetricSpaces

Definition and examples of metric spaces, Open spheres and Closed spheres, Neighborhoods, Open sets, Interior, Exterior and boundary points, Closed sets, Limit points and isolated points, Interior and closure of a set, Boundary of a set, Bounded sets, Distance between two sets, Diameter of a set. 8 hrs

(RBTLevels:L1,L2andL3)

Module-3:CompleteMetricSpacesandContinuousFunctions

Cauchy and Convergent sequences, Completeness of metric spaces, Cantor's intersection theorem, Dense sets and separable spaces, Nowhere dense sets and Baire's category theorem, continuous and uniformly continuous functions, Homeomorphism. Banach contraction principle. 8 hrs

35

8 hrs

(RBTLevels:L1,L2andL3)

Module-4:Compactness

Compactspaces, Sequential compactness, Bolzano-Weierstrassproperty, Compactness and finite

intersectionproperty, Heine-Boreltheorem, Totallyboundedset, equivalence of compactness and	
sequential compactness.	
(RBTLevels:L1,L2andL3)	
Module-5:Connectedness	
Separated sets, Disconnected and connected sets, components, connected subsets of R, Continuous functions on connected sets. Local connectedness and arc-wise connectedness. (RBT Levels: L1, L2 and L3)	8 hrs
SuggestedLearningResources:	
Books(Nameoftheauthor/TitleoftheBook/Nameofthepublisher/EditionandYear) Text Books	
 P.K.Jain &Khalil Ahamad, "<i>MetricSpaces</i>".Narosa,2019. MichealO;Searcoid, "Metricspaces".Springer-Verlag,2009. ReferenceBooks: 	
 SatishShirali&HarikishanL.Vasudeva,"<i>MetricSpaces</i>", Springer-Verlag, 2006. E.T.Copson,"<i>Metricspaces</i>", CambridgeUniversityPress, 1988. P.R.Halmos,"<i>NaiveSetTheory</i>".Springer, 1974. 	
4. S.Kumaresan," <i>TopologyofMetricspaces</i> ", 2 nd edition, Narosa, 2011.	
G.F.Simmons, "Introductionto Topologyand Modern Analysis".McGraw-Hill,2004	
Courseoutcome(CourseSkill Set)	
Attheendofthecourse, the student will be able to:	
1. Explainbasic facts about the cardinality of a set and various set-theoretic paradoxes.	
2. Applythe conceptsof openandclosed spheres andboundedsetstosolveproblems.	
3. Demonstratestandardconceptsofmetricspacesandtheirproperties.	
Identify the continuity of a function defined on metric spaces and homomorphism.	

AssessmentDetails(bothCIEandSEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE, the minimum passing mark is 35% of the maximum marks (18 out of 50 marks). The student is declared as a pass in the course if he/she secures a minimumof40%(40marksout of100)inthe total oftheCIE (ContinuousInternal Evaluation)

andSEE(SemesterEnd Examination)taken together.

ContinuousInternalEvaluation:

- Thereare 25 marks for the CIE's Assignment component and 25 for the Internal Assessment Test component.
- Each test shall be conducted for 25 marks. The first test will be administered after 40-50% offethe coverage of the syllabus, and the second test will be administered after 85-90% of the coverage of the

syllabus. The average of the two tests shall be scaled down to 25 marks

- Any two assignment methods mentioned in the 22OB2.4, if an assignment is project-based then only one assignment for the course shall be planned. The schedule for assignments shall be planned properly by the course teacher. The teacher should not conduct two assignments at the end of the semester if two assignments are planned. Each assignment shallbeconductedfor25marks.(Iftwoassignmentsareconductedthenthesumofthetwo assignmentsshallbescaleddownto25marks)
- ThefinalCIEmarksofthecourseoutof50willbethesumofthescale-downmarksof tests and assignment/s marks.

Internal AssessmentTestquestion paperis designed toattain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester-EndExamination:

Theory SEE will be conducted by the University as per the scheduled timetable, with common question papers for the course (**duration 03 hours**).

- 1. Thequestion paper will havetenquestions. Each questionissetfor20 marks.
- 2. Therewillbe2questionsfromeachmodule.Eachofthetwoquestionsunderamodule (with a maximum of 3 sub-questions), **should have a mix of topics** under that module.
- 3. Thestudentshavetoanswer 5fullquestions, selecting one fullquestion from each module.
- Marksscoredshall beproportionallyreduced to50marks

-PO MA

CO

PPI

UVI I

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1											
CO2											
CO3											
CO4											
CO5											

	Semester : IV						
INTRODUCTION TO CONVEX OPTIMIZATION							
Course Code:	MVJAI4053	CIE Marks: 50					
L: T:P:S	L: T:P:S 3:0:0:0 SEE Marks: 50						
Credits:	3	Total :100					
Hours:40 Hrs TheorySEE Duration: 3 Hrs							
Courseobjectives: Theobjective • Appreciate the importan science. • Gain the knowledge of domain. • Improve their mathemate Functions of several variables valued functions, gradients of mathemate	esofthecoursearetofecilitatethelearners ace of linear algebra in computer scier linear algebra tools and concepts to icalthinkingandacquireskillsrequiredfo <u>Module-1:VECTORCALCULUS</u> , Differentiation and partial differention natrices, useful identities for computing	to: ace and allied engineering implememt them in their co rsustained lifelong learning. S Sals, gradients of vector- g gradients, linearization	ore				
and multivariate Taylor series. (RBTLevels:L1,L2andL3)			8 1115				
Modul	e-2:APPLICATIONSOFVECTORC	ALCULUS					
BackpropagationandautomaticGeneration, gradientsinadeepnetwork, TheGradientofQuadratic Cost, Descending the Gradient of Cost, The Gradient of MeanSquared Error.(RBTLevels:L1,L2andL3)							
	Module-3:ConvexOptimization-2	l					
Local and global optima, con Hessian matrix in optimization search and Fibonacci search.	wex sets and functions separating hy, Optimization using gradient descent,	vperplanes, application of Sequential search 3- point	8 hrs				
(KDTECVCIS.E1,E2anuE3)	Module-4:ConvexOntimization-2						
Unconstrained optimization -M Mini batch gradient descent,Sto	<i>Method of steepest ascent/descent, NR</i> <i>pchastic gradient descent.</i>	method, Gradient descent,	8 hrs				
(RB1Levels:L1,L2andL3)	Adula 5. Advanced Ontimization						
Momentum-basedoradientdese	entmethods: Adagrad RMSpropand Ada	m					
Non-ConvexOptimization:Conv	vergencetoCriticalPoints,Saddle-Pointr	nethods.	8 hrs				
(RBTLevels:L1,L2andL3)							
Courseoutcome(CourseSkillS	et)		38				
Attheendofthecourse, the student	willbeableto:						

- 1. Applytheconceptsofvectorcalculustosolvethegivenproblem.
- 2. Applytheconceptsofpartial differentiation in machinelearning and deep neural networks.
- *3.* Analyzetheconvexoptimizationalgorithmsandtheirimportanceincomputer science & engineering.
- 4. Applytheoptimizationalgorithmstosolvethe problem.

Analyzetheadvancedoptimizationalgorithmsformachinelearning.

SuggestedLearningResources:

Books(Nameoftheauthor/TitleoftheBook/Nameofthepublisher/Editionand Year)

TextBooks:

- 1. MathematicsforMachinelearning,MarcPeterDeisennroth,A.AldoFaisal,Cheng Soon Ong, 2020, Cambridge University Press.
- 2. S.Bubeck, ConvexOptimization: Algorithms and Complexity, Foundations and Trends in Optimization, 2015.
- 3. S. Boyd, N. Parikh, and E. Chu, "Distributed optimization and statistical learning via thealternating direction method of multipliers", Foundations and Trendsin Machine Learning, Now Publishers Inc.

ReferenceBooks:

- **1.** *LinearAlgebraandOptimizationforMachineLearning,CharuC.Aggarwal, Springer,* 2020.
- 2. A.Beck, First-OrderMethodsinOptimization, MOS-SIAMSeriesonOptimization, 2017.

F. Bach, "Learning with Submodular Functions: A Convex Optimization Perspective", Foundations and Trends in Machine Learning, Now Publishers Inc.

WeblinksandVideoLectures(e-Resources):

- <u>https://ocw.mit.edu/courses/mathematics/18-06sc-linear-algebra-fall-2011/index.htm</u>
- <u>https://www.math.ucdavis.edu/~linear.pdf</u>
- <u>https://www.coursera.org/learn/linear-algebra-machine-learning</u>
- https://nptel.ac.in/syllabus/111106051/
- <u>https://github.com/epfml/OptML_course</u>

https://www.youtube.com/playlist?list=PL4O4bXkI-fAeYrsBqTUYn2xMjJAqlFQzX

AssessmentDetails(bothCIEandSEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE, the minimum passing mark is 35% of the maximum marks (18 out of 50 marks). The student is declared as a pass in the course if he/she secures a minimum of 40% (40 marks out of 100) in the ³⁹/₃um

total of the CIE (Continuous

InternalEvaluation)andSEE(SemesterEndExamination)takentogether.

ContinuousInternalEvaluation:

- There are 25 marks for the CIE's Assignment component and 25 for the Internal Assessment Test component.
- Each test shall be conducted for 25 marks. The first test will be administered after 40- 50% of the coverage of the syllabus, and the second test will be administered after 85- 90% of the coverage of the syllabus. The average of the two tests shall be scaled down to 25 marks
- Any two assignment methods mentioned in the 22OB2.4, if an assignment is project-based then only one assignment for the course shall be planned. The schedule for conduct assignmentsshallbeplannedproperlybythecourseteacher. The teacher should not two at the end of the semester if two assignments are planned. assignments Eachassignmentshallbeconducted for 25 marks. (If two assignments are conducted then the sum of the two assignments shall be scaled down to 25 marks)
- Thefinal CIE marks of the course out of 50 will be the sum of the scale-down marks of tests and assignment/smarks.

InternalAssessmentTest questionpaperisdesignedtoattainthedifferentlevelsof Bloom's taxonomy as per the outcome defined for the course.

Semester-EndExamination:

TheorySEE willbe conducted by University as perthe scheduled timetable, with common question papers for the course (duration 03 hours).

- 1. Thequestionpaperwillhavetenquestions. Eachquestionissetfor 20 marks.
- 2. There will be 2 questions from each module. Each of the two questions under amodule(with a maximum of 3 sub-questions), should have a mix of topics under that module.
- *3. Thestudentshavetoanswer5fullquestions,selectingonefullquestionfromeach module. Marksscoredshallbeproportionallyreducedto50marks.*

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1											
CO2											
CO3											
CO4											
CO5											

CO -PO MAPPING

Semester : IV								
ALGORITHMICGAMETHEORY								
Course Code:	MVJAI 4054	CIE Marks: 50						
L: T:P:S	3:0:0:0	SEE Marks: 50						
Credits:	3	Total :100						
Hours:	40 Hrs Theory	SEE Duration: 3 Hrs.						

Courseobjectives:

- Comprehendthebasicsofstrategicgamingandmixedstrategicequilibrium.
- Enablestudentstodevelopskillsonextensivegamingstrategies.
- Analyzeanddiscussvariousgamingmodels.
- Illustratesomereal-timesituations.

Module-1	
Introduction to Strategic Games: What is game theory? The theory of rational choice,	
Strategic games; Examples: The prisoner's dilemma, Bach or Stravinsky, Matching pennies;	
Nash equilibrium; Examples of Nash equilibrium; Best response functions; Dominated actions.	8 hrs
(DDTL avalue 1 1 2 and 1 2)	
(KD1Levels:L1,L2alluL5) Modulo 2	
Introduction Stratogiczomoginy which nlower any mandomizer Mixed stratogy Nach aguilibrium	
Deminated estimate Dure equilibrium when rendemization is allowed	
Dominated actions; Pure equilibrium when randomization is allowed.	
Illustration: Expert Diagnosis; Equilibrium in a single population.	8 hrs
(RBT Levels: L1, L2 and L3)	
Module-3	
Extensive games with perfect information; Strategies and outcomes; Nash equilibrium; Sub-	
game perfect equilibrium; Finding sub-game perfect equilibria of finite horizon games:	
Backward induction; Illustrations: Theultimatumgame, Stackelberg's model of duopoly.	8 hrs
(RBTLevels:L1,L2andL3)	
Module-4	
Bayesian Games, Motivational examples; General definitions; Two examples concerning	
information; Illustrations: Cournot's duopoly game with imperfect information, Providing a	
public good; Auctions: Auctions with an arbitrary distribution of valuations.	8 hrs
(RBTLevels:L1,L2andL3)	
Module-5	
CompetativeGames:Strictlycompetitivegamesand maximization.	
Repeated games: The main idea; Preferences; Repeated games; Finitely and infinitely repeated	
Prisoner's dilemma; Strategies in an infinitely repeated Prisoner's dilemma; Nash equilibrium	0.1
of an infinitely repeated Prisoner's dilemma, Nash equilibrium payoffs of an infinitely repeated	8 hrs
Prisoner's dilemma.	
(KB1Levels:L1,L2andL3)	

Courseoutcome(CourseSkill Set)

Attheendofthecourse, the student will be able to:

- 1. Interpretthebasicsofstrategicgamingand extensive games.
- 2. Analyzegamingstrategiesonreal-timeincidence.
- *3.* Developthemodelsof gamingonreal-time incidence.

Applygametheoryin therealworld problems.

SuggestedLearningResources:

Books(Nameoftheauthor/TitleoftheBook/Nameofthepublisher/EditionandYear) Text Books:

1. MartinOsborne: "AnIntroductiontoGameTheory", OxfordUniversityPress, First Indian Edition, 2009, 7thimpression, ISBN – 0195128958.

ReferenceBooks:

- 1. **RogerB.Myerson:**"AnalysisofConflictGameTheory", Re-printEdition, Harvard University Press, 2008, ISBN 978-0674341166.
- 2. FrederickS.HillierandGeraldJ.Lieberman:"IntroductiontoOperationsResearch, Concepts and Cases", 9thEdition; Tata McGraw Hill, 2010, ISBN 0073376299.

JoelWatson:"AnIntroductiontoGameTheory"Strategy,2ndEdition,W.W.Norton &Company, 2007, ISBN – 9780393929348.

WeblinksandVideoLectures(e-Resources):

- http://nptel.ac.in/courses.php?disciplineID=111
- http://www.class-central.com/subject/math(MOOCs)
- http://academicearth.org/
- VTUe-ShikshanaProgram
- VTU EDUSAT Program.

AssessmentDetails(bothCIEandSEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE, the minimum passing mark is 35% of the maximum marks (18 out of 50 marks). The student is declared as a pass in the course if he/she secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous

InternalEvaluation) and SEE (SemesterEndExamination) taken together.

ContinuousInternalEvaluation:

- There are 25 marks for the CIE's Assignment component and 25 for the Internal Assessment Test component.
- Each test shall be conducted for 25 marks. The first test will be administered after 40- 50% of the coverage of the syllabus, and the second test will be administered after 85- 90% of the coverage of the syllabus. The average of the two tests shall be scaled down to 25 marks
- Any two assignment methods mentioned in the 22OB2.4, if an assignment is project-based then ⁴² only one assignment for the course shall be planned. The schedule for

assignmentsshallbeplannedproperlybythecourseteacher. Theteachershouldnot conduct two assignments at the end of the semester if two assignments are planned. Eachassignmentshallbeconductedfor25marks. (If two assignments are conducted then the sum of the two assignments shall be scaled down to 25 marks)

• The final CIE marks of the course out of 50 will be the sum of the scale-down marks of tests and assignment/smarks.

InternalAssessmentTest questionpaperisdesignedtoattainthedifferentlevelsof Bloom's taxonomy as per the outcome defined for the course.

Semester-EndExamination:

TheorySEE willbe conducted by University as perthe scheduled timetable, with common question papers for the course (duration 03 hours).

- 4. Thequestionpaperwillhavetenquestions. Eachquestionissetfor 20 marks.
- 5. There will be 2 questions from each module. Each of the two questions under amodule(with a maximum of 3 sub-questions), should have a mix of topics under that module.
- 6. Thestudentshavetoanswer5fullquestions, selecting one fullquestion from each module. Marksscoredshallbeproportionally reduced to 50 marks.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1											
CO2											
CO3											
CO4											
CO5											

CO -PO MAPPING

BIOLOGY FOR ENGINEERS								
Course Code:	MVJBI407	CIE Marks: 50						
L: T:P:S	2:0:0:0	SEE Marks: 50						
Credits:	2	Total :100						
Hours:	24 Hrs Theory	SEE Duration: 2 Hrs.						
Course Objectives: This cours	e will enable the students to:							
To familiarize the students with	the basic biological concepts and their e	ngineering applications.						
To enable the students with an	understanding of biodesign principles to	create novel devices and stru	ictures.					
To provide the students an appr	reciation of how biological systems can b	be re-designed as substitute j	products					
for natural systems.								
To motivate the students to dev	elop interdisciplinary vision of biologica	l engineering.						
	Module-1							
CELL BASIC UNIT OF LIFE								
Introduction. Structure and fur	nctions of a cell. Stem cells and their a	application. Biomolecules:	1Uma					
Properties and functions of Car	bohydrates, Nucleic acids, proteins, lipid	s.	41115					
Importance of special biomolecules: Properties and functions of enzymes, vitamins and hormones.								
Module-2								
APPLICATION OF BIOMOLI	ECULES							
Carbohydrates in cellulose-base	ed water filters production, PHA and PLA	A in bioplastics production,						
Nucleic acids in vaccines and	l diagnosis, Proteins in food productio	n, lipids in biodiesel and	5 Hrs					
detergents production, Enzyme	s in biosensors fabrication, food process	sing, detergent formulation						
and textile processing.								
	Module-3							
ADAPTATION OF ANATOM	ICAL PRINCIPLES FOR BIOENGINE	ERING DESIGN						
Brain as a CPU system. Eye as	s a Camera system. Heart as a pump sys	tem. Lungs as purification	5Hrs					
system. Kidney as a filtration s	ystem							
	Module-4							
NATURE-BIOINSPIRED MA	TERIALS AND MECHANISMS:							
Echolocation, Photosynthesis.	Bird flying, Lotus leaf effect, Plant bur	rs, Shark skin, Kingfisher	5Hrs					
beak. Human Blood subst	itutes - hemoglobin-based oxygen	carriers (HBOCs) and	01115					
perflourocarbons (PFCs).								
	Module-5							
TRENDS IN BIOENGINEERI	NG:							
Muscular and Skeletal Syste	ms as scaffolds, scaffolds and tissue	engineering, Bioprinting						
techniques and materials. Elect	rical tongue and electrical nose in food	science, DNA origami and	5Hrs					
Biocomputing, Bioimaging a	nd Artificial Intelligence for disease	e diagnosis. Bioconcrete.						
Bioremediation. Biomining.								

Textbooks

- 1. Biology for Engineers, Rajendra Singh C and Rathnakar Rao N, Rajendra Singh C and Rathnakar Rao N Publishing, Bengaluru, 2023.
- 2. Human Physiology, Stuart Fox, Krista Rompolski, McGraw-Hill eBook. 16th Edition, 2022
- 3. Biology for Engineers, Thyagarajan S., Selvamurugan N., Rajesh M.P., Nazeer R.A., Thilagaraj W., Barathi S., and Jaganthan M.K., Tata McGraw-Hill, New Delhi, 2012.
- 4. Biology for Engineers, Arthur T. Johnson, CRC Press, Taylor and Francis, 2011
- 5. Biomedical Instrumentation, Leslie Cromwell, Prentice Hall 2011.
- 6. Biology for Engineers, Sohini Singh and Tanu Allen, Vayu Education of India, New Delhi, 2014.
- 7. Biomimetics: Nature-Based Innovation, Yoseph Bar-Cohen, 1st edition, 2012, CRC Press.
- 8. Bio-Inspired Artificial Intelligence: Theories, Methods and Technologies, D. Floreano and C. Mattiussi, MIT Press, 2008.
- 9. Bioremediation of heavy metals: bacterial participation, by C R Sunilkumar, N GeethaA C Udayashankar Lambert Academic Publishing, 2019

Course Outcomes: At the end of the course, the students will be able to

CO1: Elucidate the basic biological concepts via relevant industrial applications and case studies.

CO2: Evaluate the principles of design and development, for exploring novel bioengineering projects.

CO3: Corroborate the concepts of biomimetics for specific requirements.

CO4: Think critically towards exploring innovative biobased solutions for socially relevant problems CIE ASSESSMENT:

The CIE for the mandatory credit courses common across all disciplines comprises of two components as follows:

Internal Assessment Tests (30 Marks):

Two Internal Assessment tests will be conducted, each comprising 50 multiple choice questions for a total of 50 marks. The average of the two test scores will be scaled down to 30 marks.

Assignments (20 Marks):

Students are required to complete two assignments, each carrying 10 marks. These assignments may include projects*, poster presentations*, seminars*, or similar academic activities. The marks of the two assignments are added to get 20 marks.

*Each assignment will undergo two rounds of evaluation to assess progress and quality

At the beginning of the semester, the instructor/faculty teaching the course has to announce the methods of Assignment for the course.

Together, these two components are added to get the Final CIE marks of 50.

Semester End Examination (SEE) – 50 Marks

A Semester End Examination is conducted for 50 marks comprising of multiple-choice questions (MCQ) type each of one mark. 45

The final score for the course out of 100 is the Sum Total of SEE and CIE

CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	-	-	-	-	-	-	-	-	1	-	1
CO2	-	-	-	-	-	-	-	-	1	-	1
CO3	-	-	-	-	-	-	-	-	1	-	1
CO4	-	-	-	-	-	-	-	-	1	-	1
CO5	-	-	-	-	-	-	-	-	1	-	1

UNIVERSAL HUMAN VALUES					
Course Code:	MVJUHV408	CIE Marks: 50			
L: T:P:S	1:0:0:0	SEE Marks: 50			
Credits:	1	Total :100			
Hours:	12 Hrs Theory	SEE Duration: 2 Hrs.			
 Course Objectives: This course will enable the students to: Appreciate the essential complementarily between "values and "skills" to ensure su happiness and prosperity which are the core aspirants of all human beings Facilitate the development of holistic perspective among the students towards life and profes well as towards happiness and prosperity based on a correct understanding of the human rea the rest of existence. Such a holistic perspective forms the basis of universal human value movement towards value-based living in a natural way Highlight plausible implications of such a holistic understanding in terms of ethical human contrustful and mutually enriching interaction with nature Module-1 Review on right understanding, Relationship and Physical Facility(Holistic Development and the role of Education), Self-exploration as the process for value Education, Happiness and Prosperity - current Scenario Value Education:Understanding value Education, Continuous Happiness and prosperity -the basic human Aspirants, Method to fulfil the basic human Aspirants. 					
2),Exploring Natural Acceptance(tutotial 3)					
Review on Understanding Human being as the Co-existence of the self and the body, The Body as an instrument of the self, Harmony of the self with the body Harmony in the human Being:Distinguishing between the needs of the self and the body, understanding harmony in the self,Program to ensure self regulation and health Practical Session:Exploring the difference of needs of self and Body(Tutorial 4),Exploring Sources of Imagination in the self(tutorial 5) Exploring Harmony of self with the body (tutorial 6)					
	Module-3				
Module-3 Review on harmony in the family-the basic unit of human Interaction , other feeling, justice in human-to-human relationship , understanding harmony in the society Harmony in the Family and society:Trust -the foundational value in the relationship , Repsect - as the right education , vision for the universal human order Practical session:exploring the feeling of trust (tutorial 7),Exploring the feeling of Respect(tutorial 8),Exploring system to fulfil human goal(tutorial 9)					
	Module-4				
Harmony in the Nature/Exister regulation and mutual Fulfillm existence at all levels, The Holic Practical Session:Exploring the Existence(Tutorial 11)	ence:Understanding Harmony in the nent among the four orders of Natur stic Perception of harmony in Exister ne four orders of Natures(Tutorial	Nature , Interconnection,self- re, Realizing Existence as Co- nce 10),Exploring Co-existence in			
	Module-5				
Review on natural Acceptance constitution and Universal I Management Models, Typical I Implication of Holistic Unders Conduct, Competence in profes profession	e of human values, Basics for Hum Human order, Holistic Technolog Case studies standing- a Look at professional Etl ssional Ethics, Strategies for transitio	anistic Education, Humanistic ies, Production System and nics: Definitiveness of Human n towards Value-based life and	3 Hrs 47		
Textbooks

AICTE SIP UHV-I teaching materials, https://fdp-si.aicte.india.org/AicteSipUHV_download.php

A foundation Course in Human values and Professional Ethics, R R Gaur, R Asthana, G P bagaria, 2nd Revised Edition, Excel books, New Delhi, 2019, ISBN-978-93-87034-47-1

Course Outcomes: At the end of the course, the students will be able to CO1: Explore themselves, get comfortable with each other and with the teacher. CO2: Enlist their desires and the desires are not vague CO3: Restate that natural acceptance is always for living in harmony only competence is lacking CO4: Differentiate between the characteristics and activities of different orders and study the mutual fulfilment among them CO5: Present sustainable solutions to the problems in society and nature

Continuous Internal Evaluation (CIE) – 50 Marks

The CIE for the mandatory credit courses common across all disciplines comprises of two components as follows:

Internal Assessment Tests (30 Marks):

Two Internal Assessment tests will be conducted, each comprising 50 multiple choice questions for a total of 50 marks. The average of the two test scores will be scaled down to 30 marks.

Assignments (20 Marks):

Students are required to complete two assignments, each carrying 10 marks. These assignments may include projects*, poster presentations*, seminars*, or similar academic activities. The marks of the two assignments are added to get 20 marks.

*Each assignment will undergo two rounds of evaluation to assess progress and quality

At the beginning of the semester, the instructor/faculty teaching the course has to announce the methods of Assignment for the course.

Together, these two components are added to get the Final CIE marks of 50.

Semester End Examination (SEE) – 50 Marks

A Semester End Examination is conducted for 50 marks comprising of multiple-choice questions (MCQ) type each of one mark.

The final score for the course out of 100 is the SumTotal of SEE and CIE

CO-PO Mapping

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1		1				2	2	3	2	1	2
CO2		1				2	2	3	2	1	2
CO3		1				2	2	3	2	1	2
CO4		1				2	2	3	2	1	2
CO5		1				2	2	3	2	1	2

	ADDITIONALMATHEMATICS-II						
Course Code:	MVJMATDIP-II	CIE Marks: 100					
L: T:P:S	2:0:0:0	SEE Marks:					
Credits:		Total :100					
Hours:	24 Hrs Theory	SEE Duration:					
Course Objectives: This course will enable the students to: TofamiliarizetheimportanttoolsLinearAlgebra,differentialCalculus,Beta andGammafunctions,Three- dimensionalGeometryandhigherorderODE's and PDE's for analyzing the engineering problems.							
	Module-1						
Introduction - Rank of matrix by elementary row operations - Echelon form. Consistency of system of linear equations - Gauss elimination method. Eigen values and eigen vectors of a square matrix. Diagonalization of a square matrix of order two. Self study: Application of Cayley-Hamilton theorem (without proof) to compute the inverse of a matrix- Examples.							
	Module_2						
Differential calculus:	Widduit-2						
 Indeterminate forms: L-Hospital rule (without proof), Total derivatives, Composite functions. Maxima and minima for a function of two variables. Jacobians- simple examples. Beta and Gamma functions: 							
study: Asymptotes, Curve trac	ing.						
	Module-3						
Analytical solid geometry: Introduction –Directional cos differentforms, Angle between plane in different forms and pr	sine and Directional ratio of a line, Equation of a line, Equation twoline, shortest distance between twoling oblems.	uation of line in space- ne, plane and equation of	5 hrs				
	Module-4						
Differential Equations of hig	her order:						
Linear differential equations Inverse Differential operator, variation of parameters, and E	of second and higher order equations w Operators methods for finding particul uler – Cauchy equation.	ith constant coefficients. ar integrals, Method of	5 hrs				
Self study: Undetermined coefficients							
Module-5							
Partial differential equation Introduction- Classification of equations. Method of elimin homogeneous partial different PDE.	: of partial differential equations, formation nation of arbitrary constants and function tial equations by direct integration. Solut	on of partial differential ions. Solutions of non- ion of Lagrange's linear	5 hrs 50				

Self-study: One dimensional heat and wave equations and solutions by the method of separable of variable

Textbooks:

- 1. B.S.Grewal, "HigherEngineeringMathematics" Khanna Publishers, 43rdEdition, 2013.
- 2. RamanaB.V., "HigherEngineeringMathematics", TataMcGraw-Hill, 2006.

Course Outcomes: At the end of the course, the students will be able to

CO1: Make use of matrix theory for solving system of linear equations and compute eigenvalues and eigen vectors required for matrix diagonalization process.

CO2: Learn the notion of partial differentiation to calculate rates of change of multivariate functions and solve problems related to composite functions and Jacobians.

CO3: Understand the Three-Dimensional geometry basic, Equation of line in space- different forms, Angle between two line and studying the shortest distance.

CO4: Demonstrate various physical models through higher order differential equations and solve such linear ordinary differential equations.

CO5: Construct a variety of partial differential equations and solution by exact methods.

CIE ASSESSMENT:

- Two CIE Will be conducted for 50 marks each and average of two will be taken (A)
- Two Quizzes will be conducted along with CIE for 10 Marks Each and scaled to 15 marks each. Sum of two quizzes will be considered for 30 marks (B)
- Two Assignments for 10 marks each and the sum of both the assignments will be taken for 20 Marks (C)

Final CIE Marks will be calculated as (A+B+C) for 100 marks

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	3	-	2	-	-	-	-	-	-	1
CO2	3	3	-	2	-	-	-	-	-	-	1
CO3	3	3	-	3	-	-	-	-	-	-	-
CO4	2	2	-	3	-	-	-	-	-	-	1
CO5	2	2	-	2	-	-	-	-	-	-	-

	Semester : V	V 51					
SOFTWARE ENGINEERING AND PROJECT MANAGEMENT							
Course Code:	MVJAI501	CIE Marks: 50					

L: T:P:S	3:0:0:0	SEE Marks: 50
Credits:	3	Total :100
Hours:	40 Hrs Theory	SEE Duration: 2 Hrs.

Course Objectives: This course will enable the students to:

1. Outline software engineering principles and activities involved in building large software programs and identify ethical and professional issues faced by Software Engineers.

2. Describe the process of requirement gathering, requirement classification, requirement specification and requirements validation.

3. Infer the fundamentals of object-oriented concepts, differentiate system models, use UML diagrams, apply design patterns and explain the role of DevOps in Agile Implementation.

4. Discuss various types of software testing practices and software evolution processes. Recognize the

importance of Project Management with its methods and methodologies and identify software quality

parameters and quantify software using measurements and metrics. List software quality standards and

outline the practices involved.

Module-1	
Introduction: The evolving role of software, Software, The changing nature of software, Software	
engineering, A Process Framework, Process Patterns, Process Assessment, Personal and Team	
Process Models, Process Technology, Product and Process.	
Process Models: Prescriptive models, Waterfall model, Incremental process models, Evolutionary.	0.11
process models, Specialized process models.	8 Hrs
Requirements Engineering: Requirements Engineering Task, Initiating the Requirements	
Engineering process, Eliciting Requirements, Developing use cases, Building the analysis model,	
Negotiating Requirements, Validating Requirements, Software Requirement Document.	
Module-2	
Introduction, Modelling Concepts and Class Modelling: What is Object orientation? What is OO	
development? OO Themes; Evidence for usefulness of OO development; OO modelling history.	
Modelling as Design technique: Modelling, abstraction, The Three models. Class Modelling:	
Object and Class Concept, Link and associations concepts, Generalization and Inheritance, A	0.11
sample class model, Navigation of class models, Introduction to RUP and UML diagrams.	8 Hrs
Building the Analysis Models: Requirement Analysis, Analysis Model Approaches, Data	
modelling Concepts, Object Oriented Analysis, Scenario-Based modelling, Flow-Oriented	
Modelling, class Based modelling, Creating a Behavioural Model.	
Module-3	
Software Testing: A Strategic Approach to Software Testing, Strategic Issues, Test Strategies for	
Conventional Software, Test Strategies for Object -Oriented Software, Validation Testing, System	
Testing, The Art of Debugging. Agile Methodology & DevOps: Before Agile - Waterfall, Agile	0.1
Development. What is DevOps? DevOps Importance and Benefits, DevOps Principles and	8 nrs
Practices, 7 C's of DevOps Lifecycle for Business Agility, DevOps and Continuous Testing, How	
to Choose Right DevOps Tools?, Challenges with DevOps Implementation	
Module-4	
Introduction to Project Management: Introduction, Project and Importance of Project	
Management, Contract Management, Activities Covered by Software Project Management, Plans,	
Methods and Methodologies, Some ways of categorizing Software Projects, Stakeholders, Setting	8 hrs
Objectives, Business Case, Project Success and Failure, Management and Management Control,	
Project Management life cycle, Traditional versus Modern Project Management Practices.	
Module-5	52
Activity Planning: Objectives of Activity Planning, When to Plan, Project Schedules, Sequencing	8 hrs

and Scheduling Activities, Network Planning Models, Forward Pass– Backward Pass, Identifying critical path, Activity Float, Shortening Project Duration, Activity on Arrow Networks. Software Economics: Evolution of Software Economics, Improving Software Economics, The old way and the new way. Life-Cycle Phases and Process artifacts.
1. Roger S. Pressman: Software Engineering-A Practitioners approach, 7th Edition, Tata McGraw
2.Michael Blaha, James Rumbaugh: Object Oriented Modelling and Design with UML, 2nd Edition, Pearson Education, 2005.
3.Bob Hughes, Mike Cotterell, Rajib Mall: Software Project Management, 6th Edition, McGraw Hill Education, 2018
4. Ian Sommerville: Software Engineering, 9th Edition, Pearson Education, 2012
5. Schaum's outline of theory and problems of software engineering, David A. Gustafson, McGraw-Hill's
Course Outcomes: At the end of the course, the students will be able to CO1: Understand the activities involved in software engineering and analyze the role of various process models CO2: Explain the basics of object-oriented concepts and build a suitable class model using modelling.
Techniques. CO3: Describe various software testing methods and to understand the importance of agile methodology and DevOps.
CO4: Illustrate the role of project planning and quality management in software development
CO5: Understand the importance of activity planning and different planning models.
 CIE ASSESSMENT: Continuous Internal Evaluation (CIE): Three CIE Will be conducted for 50 marks each and average of three will be taken (A) Three Quizzes will be conducted along with CIE for 10 Marks Each. Sum of three quizzes will be considered for 30 marks (B) Two Assignments for 10 marks each and the sum of both the assignments will be taken for 20 Marks (C)

Final CIE Marks will be calculated as (A+B+C)/2 for 50 marks

Semester End Examination (SEE):

The theory exam consists of a written paper structured into two parts:

Part A: Carries 20 marks which include either objective-type or short descriptive questions. It is designed to cover the entire syllabus comprehensively.

Part B: This section carries a total of 80 marks and consists of 5 questions, with Either or choices. Students are required to answer one full question per module, selecting from the choices. Each question is valued at 16 marks and may include up to two sub-parts.

The SEE Theory marks of 100 will be scaled down to 50.

The final score for the course in the ratio of 50:50 of CIE and SEE Marks

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	2	2	2	3						2
CO2	3	2	1	2	3						2
CO3	1	2	2	2	3						2

O-PO MA PPI NG

CO4	1	2	1	2	3			2
CO5	1	2	1	3	3			2

Semester : V											
COMPUTER NETWORKS											
Course Code:	MVJAI502	CIE Marks: 50									
L: T:P:S	3:0:2:0	SEE Marks: 50 54									
Credits:	4	Total :100									
Hours:	40 Hrs Theory and 24 Hrs	SEE Duration: 2 Hrs.									

Practical									
Course Objectives: This course will enable the students to: 1.To develop an understanding of modern network architectures from a design and perfor perspective.	mance								
 To introduce the student to the major concepts involved in network protocols. Get details about Functions of Network layer, Router and delivery of data to host network. 									
4.Learn the function of mobile networking and switching.									
5. Multimedia data transmission in network									
Module-1									
Data communication Components: Representation of data and its flow Networks, Various Connection Topology, Protocols and Standards, OSI model, Transmission Media, LAN: Wired LAN, Wireless LANs, Techniques for Bandwidth utilization: Multiplexing - Frequency division, Time division and Wave division.	8 hrs								
Module-2									
Data Link Layer: Error Detection and Error Correction - Fundamentals, Block coding, Hamming Distance, CRC; Flow Control and Error control protocols - Stop and Wait, Go back – N ARQ, Selective Repeat ARQ. Medium Access Sub Layer: Switching, Random Access, Multiple access protocols - Pure ALOHA, Slotted ALOHA, CSMA/CD, CDMA/CA, IEEE802 standard protocol	8 hrs								
Module-3									
The Network Layer: Network layer design issues, Logical Addressing: IPV4, IPV6; Address mapping, routing algorithms, Congestion control algorithms, Internetworking, the network layer in 8 hrs the internet (IPv4 and IPv6), Quality of Service.									
Module-4									
Transport Layer: Elements of Transport protocols: Addressing, Connection establishment, Connection release, Crash recovery, User Datagram Protocol (UDP), Transmission Control Protocol (TCP), TCP Congestion Control; Quality of Service, QoS improving techniques: Leaky Bucket and Token Bucket algorithm.	8 hrs								
Module-5									
Application Layer: Domain Name Space (DNS), DDNS, TELNET, EMAIL, File Transfer Protocol (FTP), WWW, HTTP, SNMP, Bluetooth, Firewalls; AI in network infrastructure, Self- Healing Networks.	8 hrs								
LABORATORY EXPERIMENTS – 24hrs									
 Learn to use commands like tcpdump, netstat, ifconfig, lookup and trace route. Capture pir trace route PDUs using a network protocol analyzer and examine. Screen effectiveness studies Write a program for error detecting code using CRC-CCITT (16- bits). Write a program to find the shortest path between vertices using the Pollman ford algorithm. 	ng and s.								
4. Applications using TCP and UDP sockets like: a) Chat b) File Transfer									
5. Simulation of DNS using UDP sockets.									
6. Write a code for simulating ARP /RARP protocols.									
7. Implementation of Stop and Wait Protocol and Sliding Window Protocol.									
8. Write a program for congestion control using leaky bucket algorithm.									
 9. Implement three nodes point – to- point networks with duplex links between them. Set the size, vary the bandwidth and find the number of packets dropped using NS 2. 10. Simulate the transmission of ping messages/trace route over a network targeter consisting the transmission. 	queue								
nodes and find the number of packets dropped due to congestion using NS 2.	g 01 0								
11. Simulate an Ethernet LAN using n nodes and set multiple traffic nodes and plot congestion w for different source / destination using NS 2	vindow								
 12. Simulate simple ESS and with transmitting nodes in wireless LAN by simulation and determing performance with respect to transmission of packets using NS 2 	ine the								

Textbooks :

1. Computer Networks:5th ed by Andrew. S. Tanenbaum PHI Publication.

2. Data Communications and Networks: 3 rd ed byBehrouz A. Forouzan. TataMcGraw Hill publication. Course Outcomes: At the end of the course,the students will be able to CO1:Analyze and compare different methods of bandwidth utilization to optimize data transfer efficiency.

CO2:Select the specific IEEE 802 standard protocols to be implemented in the network environment.

CO3:Apply theoretical knowledge of network layer design issues to real-world networking scenarios and troubleshoot network problems effectively.

CO4:Analyze metrics such as throughput, delay, and packet loss rate to see how the protocols behave in each scenario.

CO5:create a user-friendly website that meets modern standards in terms of navigation, design, and performance.

CIE ASSESSMENT:

Continuous Internal Evaluation (CIE):

- Three CIE Will be conducted for 50 marks each and average of three will be taken (A)
- Three Quizzes will be conducted along with CIE for 10 Marks Each. Sum of three quizzes will be considered for 30 marks (B)
- Two Assignments for 10 marks each and the sum of both the assignments will be taken for 20 Marks (C)

Final CIE Marks will be calculated as (A+B+C)/3 for 50 marks

Laboratory- 50 Marks

Weekly Evaluation 30 Marks

Weekly evaluation will be conducted for every experiment. Marks of each evaluation includes Weekly Attendance + Experiment conduction along with Record / Observation + Weekly viva for all the experiments. The total of all these evaluated marks are added and the total marks will be scaled to 30 marks. (A)

Two CIE for 20 Marks each and take the average for 20 Marks (B)

Final CIE Marks will be calculated as A+B for 50 marks

For IPCC Final CIE Marks will be calculated as Average of CIE and Lab CIE for 50 marks.

SEE ASSESSMENT:

SEE Theory Examination (100 Marks)

The theory exam consists of a written paper structured into two parts:

Part A: Carries 20 marks which include either objective-type or short descriptive questions. It is designed to cover the entire syllabus comprehensively.

Part B: This section carries a total of 80 marks and consists of 5 questions, with Either or choices. Students are required to answer one full question per module, selecting from the choices. Each question is valued at 16 marks and may include up to two sub-parts.

The SEE Theory marks of 100 will be scaled down to 50 (A)

SEE Laboratory Examination (50 Marks)

The laboratory SEE is also evaluated for 50 marks, distributed as follows: Experiment Conduction with Results: 40 marks Viva Voce: 10 marks Total 50 marks (B) The score for the SEE is A+B of total 100 marks

The final score for the course in the ratio of 50:50 of CIE and SEE Marks

CO-PO MAPPING

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	3	2	2	2				2	1	2
CO2	3	2	2	2	2				1	1	2
CO3	3	3	2	2	3				1		2
CO4	3	2	2	2	3				1	1	2
CO5	3	3	3	3	3				1	1	2

	Semester : V						
THEORY OF COMPUTATION							
Course Code: MVJAI503 CIE Marks: 50							
L: T:P:S	T:P:S 4:0:0:0 SEE Marks: 50						
Credits:	4	Total :100					
Hours:	40 Hrs Theory	SEE Duration: 2 Hrs.					
Course Objectives: This cours	e will enable the students to:						
Acquiring knowledge of Autom	ata Theory as the basis of all compu	ter science languages design.					
Understand the concept of Cont	ext Free Grammars and Languages.						
Understand the concepts of Turi	ng Machine and Chomskian Langua	iges.					
Acquire knowledge of Decidabi	lity.						
Enrich the knowledge in various	s phases of compiler ant its use.						
	Module-1						
Finite Automata: Mathematical	preliminaries and notations - Centr	al concepts of automata theory					
– Finite automata -Determin	istic Finite Automata - Nondete	rministic Finite Automata –	8 hrs				
Equivalence of DFA and NFA – Finite Automata with Epsilon transitions - Application of FA							
	Module-2						
Regular Expressions: Regular	languages: Regular Expressions -	Finite Automata and Regular	8 hrs				

Examples Describes of accular examples Analisations of accular examples						
Modulo 3						
Noule-5 Desular Lenguages: Droporties of regular languages: Duraning languages						
Closure properties of regular languages – Equivalence and Minimization of Finite Automata.	8 hrs					
Module-4						
Context Free Grammar: Context Free languages: Context Free Grammars – Parse Trees - Ambiguity in Grammars and languages– Applications of Context Free Grammars – Pushdown automata (PDA) – Languages of a PDA -Equivalence of PDA 's and CFG's, Conversion of PDA to CFG and CFG's to PDA	8 hrs					
Module-5						
Context Free Languages: Properties of Context Free Languages: Normal Forms (CNF, GNF) for Context Free Grammars - Pumping lemma for CFL 's - Closure properties of CFL Turing Machines: Turing Machines- Programming Techniques for Turing Machines – Multi tape Turing Machines.	8 hrs					
Textbooks:						
1.Hopcroft J E, MotwaniR and Ullman J D, Introduction to Automata Theory, Langua Computations, Second Edition, Pearson Education, 2012.	ges and					
Course outcomes: At the end of the course, the students will be able to						
CO1: Analyze and design finite Automata for solving computational problems.						
CO2: Design and implement regular expression, Analyze regular grammars, and optimize deter	rministic					
finite Automata						
CO3: Analyze and prove the properties of regular languages using pumping lemma and closure prop	perties.					
CO4: Design and Analyze context- free languages, Parse trees and pushdown automata for	efficient					
language recognition and processing						
CO5: Design and implement optimized turing machines for complete computational problems.						
CIE ASSESSMENT:						
Three CIE Will be conducted for 50 marks each and average of three will be taken (A)	.11 1					
Three Quizzes will be conducted along with CIE for 10 Marks Each. Sum of three quizzes	will be					
considered for 30 marks (B)	(\mathbf{C})					
I wo Assignments for 10 marks each and the sum of both the assignments will be taken for 20 Mark	s (C)					
Final CIE Marks will be calculated as $(A+B+C)/2$ for 50 marks						
SEE ASSESSMENT:						
The theory exam consists of a written paper structured into two parts:						
Part A: Carries 20 marks which include either objective-type or short descriptive questions. It is designed cover the entire syllabus comprehensively.						
Part B: This section carries a total of 80 marks and consists of 5 questions, with Either or choices. Stude are required to answer one full question per module, selecting from the choices. Each question is valued 16 marks and may include up to two sub-parts.						
The SEE Theory marks of 100 will be scaled down to 50.						

The final score for the course in the ratio of 50:50 of CIE and SEE Marks

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	3	2	2	2						
CO2	3	2	2	2	2						
CO3	3	3	2	2	3						
CO4	3	2	2	2	3						
CO5	3	3	3	3	3						

	Semester : V						
		DATA VISUALIZA	ATION LAB				
Course	Code:	MVJAIL504	CIE Marks: 50				
L: T:P:							
Credits:	Credits: 1 Total :100						
Hours:		24 Hrs of Practical	SEE Duration: 2 Hrs.	•			
		-					
Course	Objectives: This cours	se will enable the students	ts to:				
Effective	e use of Business Intelli	gence (BI) technology (Ta	ableau) to apply data visualization.				
To disce	rn patterns and relation	ships in the data.					
To build	Dashboard application	S.					
To com	nunicate the results clea	arly and concisely.					
To be ab	le to work with differen	nt formats of data sets.					
				24P			
Sl No	List of Experiments						
1	Understanding Data	, what is data, where	to find data, Foundations for	building Data			
1	Visualizations, Creati	ng Your First visualization	n?				
2	Getting started with	Fableau Software using Da	ata file formats, connecting your D	Data to Tableau,			
2	creating basic charts ((line, bar charts, Tree maps	s), Using the Show me panel.				
2	Tableau Calculations	s, Overview of SUM, A	AVR, and Aggregate features, Cr	reating custom			
3	calculations and fields						
Applying new data calculations to your visualizations, Formatting Visualizations, F							
4	Tools and Menus, Formatting specific parts of the view						
5	Editing and Formatting Axes, Manipulating Data in Tableau data, Pivoting Tableau data. 59						
6	Structuring your data. Sorting and filtering Tableau data. Pivoting Tableau data.						

7	Advanced Visualization Tools: Using Filters, Using the Detail panel, using the Size panels, customizing filters, Using and Customizing tooltips, Formatting your data with colors.							
8	Creating Dashboards & Storytelling, creating your first dashboard and Story, Design for different displays, adding interactivity to your Dashboard, Distributing & Publishing your Visualization							
9	Tableau file types, publishing to Tableau Online, Sharing your visualizations, printing, and Exporting							
10	Creating custom charts, cyclical data and circular area charts, Dual Axis charts.							
Course O	outcomes: At the end of the course, the student will be able to							
CO1: Un	derstand How to import data into Tableau							
CO2: Un	derstand Tableau concepts of Dimensions and Measures.							
CO3: Dev	velop Programs and understand how to map Visual Layouts and Graphical Properties							
CO4: Cre	eate a Dashboard that links multiple visualizations							
CO5: Use	e graphical user interfaces to create Frames for providing solutions to real world problems.							
Reference	e Books:							
1. Micros	soft Power BI cookbook, Brett Powell, 2nd edition.							
2. R Prog	ramming for Data Science by Roger D. Peng (References)							
3. The Ar	t of R Programming by Norman Matloff Cengage Learning India.							
CIE Asse	essment:							
CIE Labo	pratory (50 Marks)							
Weekly E	Evaluation 30 Marks							
Weekly a Attendan experime (A)	evaluation will be conducted for every experiment. Marks of each evaluation includes Weekly ce + Experiment conduction along with Record / Observation + Weekly viva for all the nts. The total of all these evaluated marks are added and the total marks will be scaled to 30 marks.							
Two CIE	for 20 Marks each and take the average for 20 Marks (B)							
Final CI	E Marks will be calculated as (A+B) for 50 marks							
SEE Labo The labor Experime Viva Voc Total 50 r	oratory Examination (50 Marks) ratory SEE is also evaluated for 50 marks, distributed as follows: ent Conduction with Results: 40 marks ee: 10 marks marks score for the course out of 100 is the SumTotal of SEE and CIE							
i ne final	al score for the course out of 100 is the SumTotal of SEE and CIE.							

CO-PO MAPPING

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	3	2	2	2						2
CO2	3	2	2	2	2						2
CO3	3	1	2	2							2
CO4	3	2	2	2	1						2
CO5	3	3	3	3	2						2

Semester : V 60							
	COMPUTER VISION						
Course Code:MVJAI5051CIE Marks: 50							

L: T:P:S	3:0:0:0	SEE Marks: 50
Credits:	3	Total :100
Hours:	40 Hrs Theory	SEE Duration: 2 Hrs.

Course Objectives: This course will enable the students to:

1.understanding of the fundamental concepts related to multi-dimensional signal processing, feature extraction, pattern analysis visual geometric modelling, stochastic optimization etc.

2.Applications range from Biometrics, Medical diagnosis, document processing, mining of visual content,to surveillance, advanced rendering.

 Module-1

 Overview of computer vision and its applications: Image Formation and Representation: Imaging geometry, radiometry, digitization, cameras and Projections, rigid and affine transformation Image Processing: Pixel transforms, color transforms, histogram processing, histogram equalization, filtering, convolution, Fourier transformation and its applications in sharpening, blurring and noise removal
 8 hrs

 Module-2
 Feature detection: edge detection, corner detection, line and curve detection, active contours, SIFT

and HOG descriptors, shape context descriptors, Morphological operations. Segmentation: Active contours, split & merge, watershed, region splitting, region merging, graph-based segmentation, mean shift and model finding, Normalized cut

Module-3

Camera calibration: camera models; intrinsic and extrinsic parameters; radial lens distortion; direct parameter calibration; camera parameters from projection matrices; orthographic, weak 8 hrs perspective, affine, and perspective camera models

Module-4Motion representation: the motion field of rigid objects; motion parallax; optical flow, the image
brightness constancy equation, affine flow; differential techniques; feature-based techniques;
regularization and robust estimation Motion tracking: statistical filtering; iterated estimation;
observability and linear systems; the Kalman filter8 hrs

Module-5

Object recognition and shape representation: alignment, appearance-based methods, invariants, image eigenspaces 8 hrs

Textbooks:

1.Computer Vision: Algorithms and Applications, R. Szeliski, Springer, 2011

2.Introductory techniques for 3D computer vision, E. Trucco and A. Verri, PrenticeHall,1998

Course outcomes: At the end of the course, the students will be able to

CO1: Learn fundamentals of computer vision and its applications.

CO2: Understand the basic image processing operations to enhance, segment the images.

CO3: Understand the analyzing and extraction of relevant features of the concerned domain problem.

CO4: Understand and apply the motion concepts and its relevance in real time applications.

CO5: Apply the knowledge in solving high level vision problems like object recognition, image classification etc

CIE ASSESSMENT:

Three CIE Will be conducted for 50 marks each and average of three will be taken (A)

Three Quizzes will be conducted along with CIE for 10 Marks Each. Sum of three quizzes will be considered for 30 marks (B)

Two Assignments for 10 marks each and the sum of both the assignments will be taken for 20 Marks (C)

Final CIE Marks will be calculated as (A+B+C)/2 for 50 marks

SEE ASSESSMENT:

The theory exam consists of a written paper structured into two parts:

Part A: Carries 20 marks which include either objective-type or short descriptive questions. It is designed to cover the entire syllabus comprehensively.

Part B: This section carries a total of 80 marks and consists of 5 questions, with Either or choices. Students are required to answer one full question per module, selecting from the choices. Each question is valued at 16 marks and may include up to two sub-parts.

The SEE Theory marks of 100 will be scaled down to 50.

The final score for the course in the ratio of 50:50 of CIE and SEE Marks

CO-PO MAPPING

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	3	2	2	2						2
CO2	3	2	2	2	2						2
CO3	3	3	2	2	3						2
CO4	3	2	2	2	3						2
CO5	3	3	3	3	3						2

Semester : V							
Information Theory and Coding							
Course Code:	MVJAI5052	CIE Marks: 50					
L: T:P:S	3:0:0:0	SEE Marks: 50					
Credits:	3	Total :100					
Hours:40 Hrs TheorySEE Duration: 3 Hrs.							

Course objectives: This course will enable the students to: 1. Explain concept of Dependent & Independent Source, measure of information, Entropy, Rate of information and Order of a source 2 Represent the information using Shannon Encoding, Shannon Fano, Prefix and Huffman Encoding Algorithms

3. Model the continuous and discrete communication channels using input, output and joint probabilities

4. Determine a codeword comprising of the check bits computed using Linear Block codes, cyclic codes & convolutional codes

5. Design the encoding and decoding circuits for Linear Block codes, cyclic codes, convolutional codes, BCH and Golay codes.

Module-1: Information Theory

Information Theory: Introduction, Measure of information, Information content of message, Average Information content of symbols in Long Independent sequences, Average Information content of symbols in Long dependent sequences, Markov Statistical Model for Information Sources, Entropy and Information rate of Mark off Sources 8 hrs

(Section 4.1, 4.2 of Text 1)

Module-2: Source Coding

Source Coding: Encoding of the Source Output, Shannon's Encoding Algorithm (Sections 4.3,
4.3.1 of Text 1), Shannon Fano Encoding Algorithm (Section 2.15 of Reference Book 4)
Source coding theorem, Prefix Codes, Kraft McMillan Inequality property KMI, Huffinan codes
(Section 2.2 of Text 2)8 hrs

Module-3: Information Channels:

Information Channels: Communication Channels, Discrete Communication channels Channel Matrix, Joint probability Matrix, Binary Symmetric Channel, System Entropies. (Section 4.4, 4.5, 4.51,4.5.2 of Text 1) Mutual Information, Channel Capacity, Channel Capacity of Binary Symmetric Channel, (Section 8

Mutual Information, Channel Capacity, Channel Capacity of Binary Symmetric Channel, (Section 8 hrs 2.5, 2.6 of Text 2)

Binary Erasure Channel, Muroga's Theorem (Section 2.27, 2.28 of Reference Book4)

Module-4:ErrorControl Coding

Error Control Coding: Introduction, Examples of Error control coding, methods of Controlling Errors, Types of Errors, types of Codes, Linear Block Codes: matrix description of Linear Block Codes, Error detection & Correction capabilities ofLinear Block Codes, Single error correction Hamming code, Table lookup Decoding using Standard Array.

Binary Cyclic Codes: Algebraic Structure of Cyclic Codes, Encoding using an (n-k) Bit Shift ^{8 hrs} register,

Syndrome Calculation, Error Detection and Correction

(Sections 9.1, 9.2, 9.3, 9.3.1, 9.3.2, 9.3.3 of Text 1)

Module-5:ConvolutionCodes

Convolution Codes: Convolution Encoder, Time domain approach, Transform domain approach, Code Tree, Trellis and State Diagram, The Viterbi Algorithm) (Section 8.5-Articles 1,2 and 3, 8.6-Article 1 of Text 2)

Course outcomes:

CO1: Overview of probability theory, significance of "information" with respect to information theory.

CO2: Derive equations of entropy, mutual information and channel capacity for all kinds of channels.

CO3: Implement various types of source coding algorithms and analyse their performance.

CO4: Explain various methods of generating and detecting different types of error correcting codes.

CO5: Design linear block codes and cyclic codes (encoding and decoding).

Textbooks:

1. Digitaland AnalogCommunicationSystems,K.SamShanmugam,JohnWtleyIndiaPvtLtd,1996

2. DigitalCommunication,SimonHaykin,JohnWtleyIndiaPvtLtd,2008

Reference Books:

1. Digital Conumnications- Fundamentals and Applications, Bernard Sklar, SecondEdition, Pearson Education, 2016, ISBN: 9780134724058

2.InformationTheory and Coding,HariBhat,GaneshRao,Cengage,2017

3.ErrorCorrectionCoding, ToddKMoon,Wiley Std.Edition, 2006

CIE ASSESSMENT:

CIEisbasedonquizzes,tests,assignments/seminarsandanyotherformofevaluation.Generally,therewill be: Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks to be awarded will be the average of three tests

Quizzes/minitests(4marks)

Mini Project / Case Studies (8 Marks) Activities/Experimentationsrelatedtocourses(8 Marks)

SEE ASSESSMENT:

- QuestionpaperfortheSEEconsistsoftwopartsi.e.PartAandPartB.PartAiscompulsoryandconsists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.
- Part B also covers the entire syllabus consisting of five questions having choices and may contain subdivisions, each carrying 16 marks. Students have to answer five full questions. On equestion must be set from each unit. The duration of examination is 3 hours.

				-	-			-			
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	2	2	3	2	3					2	3
CO2	1	3	3	2	2					2	3
CO3	2	2	2	2	3					2	3
CO4	2	2	2	2	2					2	3
CO5	1	2	3	2	2					2	3

CO-PO MAPPING

Semester : V

Nonlinear Control Techniques								
Course Code: MVJAI5053 CIE Marks: 50								
L: T:P:S	3:0:0:0	SEE Marks: 50						
Credits:	3	Total :100						
Hours:40 Hrs TheorySEE Duration: 3 Hrs.								
1								

Course objectives: This course will enable students to

To introduce the need and concept of nonlinear system.

- To Identify and describe key characteristics of non-linear systems• Apply analytical and numerical techniques to detect and study limit cycles in various systems.
- To Define Lyapunov stability and its importance in analyzing the behavior of nonlinear systems.
- To Understand the Centre Manifold Theorem and its significance in simplifying the analysis of nonlinear systems.
 - To Design stabilizing controllers based on exact feedback linearization and other methods.

Introduction-Characteristicsofnonlinearsystems-Classificationofequilibriumpoints-analysisof systems with piecewise constant inputs using phase plane analysis.	8 hrs					
Module-2						
periodicorbits-limitcycles-Poincare-BendixsoncriterionBendixson criterion.Existenceand	0.1					
uniquenessof solutions, Lipschitz condition.	8 hrs					
Module-3						
StabilityofNonlinearSystems-Lyapunovstability-localstability-locallinearizationandstabilityin the small- Direct method of Lyapunov - generation of Lyapunov function for linear and nonlinear systems – variable gradient method	8 hrs					
Module-4						
Centremanifold theorem-region of attraction-Feedback Control and Feedback Stabilisation- Analysis of feedback systems- Circle Criterion – Popov Criterion.	8 hrs					
Module-5:ConvolutionCodes						
Feedback linearization- Design via linearization- stabilization - regulation via integral control-						
gain scheduling.	8 hrs					
Exact Feedback Linearization - Input state linearization - input output linearization - state feedback control - stabilization - tracking - integral control.						
Course outcomes: CO1: LearnfundamentalsofAnalyzing behaviors and phenomenainnonlinear systems. CO2: Identifyandanalyzeperiodicsolutions invarious types of nonlinear systems . CO3: Understand the conceptsof local stability and stability in the small . CO4: Apply the Centre Manifold Theorem to analyze the local behavior of nonlinear systems . CO5: Evaluate the limitation sand benefits of linearization-based control design .						
Textbooks:						
 AlbertoIsidori, "NonlinearControlSystems:AnIntroduction", Springer-Verlag HassanKKhalil,NonlinearSystems,Prentice-HallInternational(UK),2002 Jean-JacquesE.SlotineandWeipingLi, "Applied NonlinearControl", Prentice-Hall,NJ, 1991 						
Reference Books:						
1. M.Vidyasagar, "NonlinearSystemsAnalysis", Prentice-Hall, India, 1991, 2. Shankar Sastry, "N System Analysis, Stability and Control", Springer, 1999	onlinear					
CIE ASSESSMENT: CIEisbasedonquizzes,tests,assignments/seminarsandanyotherformofevaluation.Generally,therewill Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks awarded will be the average of three tests	be: s to be					
Quizzes/minitests(4marks)						
Mini Project / Case Studies (8 Marks) Activities/Experimentationsrelatedtocourses(8 Marks)						
 SEE ASSESSMENT: QuestionpaperfortheSEEconsistsoftwopartsi.e.PartAandPartB.PartAiscompulsoryandconsists objective type or short answer type questions of 1 or 2 marks each for total of 20 marks cover 	of 65 ing the					

whole syllabus.

Part B also covers the entire syllabus consisting of five questions having choices and may contain subdivisions, each carrying 16 marks. Students have to answer five full questions. On equestion must be set fromeachunit. The duration of examination is 3 hours.

CO-PO MAPPING

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	2	2	2	2	-	-	-	-	-	-	2
CO2	2	2	2	2	2	2	-	-	-	-	2
CO3	2	2	2	2	2	-	-	-	-	-	2
CO4	2	2	2	2	2	-	-	-	-	-	2
CO5	1	2	3	2	2	-	-	-	-	-	2

Distributed Systems							
Course Code:	MVJAI5054	CIE Marks: 50					
L: T:P:S	3:0:0:0	SEE Marks: 50					
Credits:	3	Total :100					
Hours:	40 Hrs Theory	SEE Duration: 3 Hrs.					

Semester : V

Course objectives:

1. Understand the goals and challenges of distributed systems

2. Describe the architecture of RPC/RMI, distributed file systems and name services

3. Learn clock synchronization algorithms to monitor and order the events, mutual exclusion, election and consensus algorithms.

4. Study the fundamental concepts and algorithms related to distributed transactions and replication.

Module-1	
CHARACTERIZATION OF DISTRIBUTED SYSTEMS: Introduction, Focus on resource sharing, Challenges. REMOTE INVOCATION: Introduction, Request-reply protocols, Remote procedure call,	8 hrs
Introduction to Remote Method Invocation.	
Textbook: Chapter- 1.1,1.4,1.5, 5.1-5.5	
Module-2	
DISTRIBUTED FILE SYSTEMS: Introduction, File service architecture. NAME SERVICES: Introduction, Name services and the Domain Name System, Directory services. Textbook: Chapter, 12,1,12,2, 13,1,13,3	8 hrs
<u>Textolock. Chapter-12.1,12.2, 15.1-15.5</u> Madula 2	
TIME AND GLOBAL STATES: Introduction, Clocks, events and process states, Synchronizing Physical clocks, Logical time and logical clocks, Global states Textbook: Chapter- 14,1-14,5	8 hrs
Module-4	
COORDINATION AND AGREEMENT: Introduction. Distributed mutual exclusion.	

Elections, Coordination and agreement in group communication, Consensus and related 8 hrs problems. Textbook: Chapter -15.1-15.5 Module-5

66

DISTRIBUTED TRANSACTIONS: Introduction, Flat and nested distributed transactions, Atomic commit protocols, Concurrency control in distributed transactions, Distributed deadlocks, Transaction recovery. REPLICATION: Introduction. Textbook: Chapter -17.1-17.6, 18.1	8 hrs
Course outcomes: After completing the course, the students will be able to : CO1: Identify the goals and challenges of distributed systems CO2: Describe the architecture of distributed file systems and name services. CO3: Apply clock synchronization algorithms to monitor and order the events. CO4: Analyze the performance of mutual exclusion, election and consensus algorithms. CO5: Illustrate the fundamental concepts and algorithms related to distributed transactions and repli	cation.
Textbooks: 1. GeorgeCoulouris,JeanDollimoreandTimKindberg:DistributedSystems –Conceptsand Design, 5th Pearson Publications, 2009	Edition,
 Reference Books: 1. TAndrewSTanenbaum:DistributedOperatingSystems,3rdedition,Pearsonpublication, 2007 2. AjayD.KshemkalyaniandMukeshSinghal,DistributedComputing:Principles,Algorithms and SCambridge University Press, 2008 3. SunitaMahajan,SeemaShan,DistributedComputing,OxfordUniversityPress,2015 	Systems,
CIE ASSESSMENT: CIE isbasedonquizzes,tests,assignments/seminarsandanyotherformofevaluation.Generally,therewill Three Internal Assessment (IA) tests during the semester (30 marks each), the final IA marks awarded will be the average of three tests	be: s to be
Quizzes/minitests(4marks)Mini Project / Case Studies (8 Marks) Activities/Experimentationsrelatedtocourses(8 Marks)	
SEE ASSESSMENT:	0

- QuestionpaperfortheSEEconsistsoftwopartsi.e.PartAandPartB.PartAiscompulsoryandconsists of objective type or short answer type questions of 1 or 2 marks each for total of 20 marks covering the whole syllabus.
- Part B also covers the entire syllabus consisting of five questions having choices and may contain subdivisions, each carrying 16 marks. Students have to answer five full questions. On equestion must be set from each unit. The duration of examination is 3 hours.

CO-PO MAPPING

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	2	2	3	2	3					2	3
CO2	1	3	3	2	2					2	3
CO3	2	2	2	2	3					2	3
CO4	2	2	2	2	2					2	3
CO5	1	2	3	2	2					2	3

SEMESTER:V

Course Code:		MVJIE5055	CIE Marks: 50				
L: T:P:S		3:0:0:0	SEE Marks: 50				
Cre	dits:	3	Total :100				
Hou	irs:	40 Hrs Theory	SEE Duration: 3 Hrs.				
Cou	rseLearning	gObjectives:Thestudentswillbe	ableto				
1	Inspired;de	evelopentrepreneurialmindset and	lattributes;entrepreneurialskillsetsfor				
	venturecrea	ationandintrapreneurial leadership	р				
	Applythep	rocess ofproblem-opportunityide	ntificationandfeasibility assessmentby				
2	developing	amacroperspectiveoftherealmarke	et, industries, domains, and customers while using				
	design thin	king principles to refine and pive	ot their venture idea.				
2	AnalyzeCu	istomerandMarketsegmentation,	estimateMarketsize,anddevelopand				
3	validateCustomerPersona.						
4	InitiateSolutiondesign,developMVP,anddetermineProduct-Marketfitprototypes.						
5	Craftinitial Businessplan, Developgo-to-marketstrategies applystorytellingskillsin						
	presentingapersuasiveand defensibleVenturePitch.						
MODULE-I							

EntrepreneurshipFundamentals&Context Meaning and concept, attributes and mindset of entrepreneurial and intrapreneurial leadership,rolemodelsineachandtheirroleineconomicdevelopment.Gamifiedrole play-8Hrs based exploration aligned to one's short-term career aspiration and ambition. An understanding of how to build an entrepreneurial mindset, skillsets, attributes, and networks while on campus. Core Teaching Tool: Simulation, Game, Industry Case Studies (Personalized for students – 16 industries to choose from), Venture Activity **MODULE-II** Problem&CustomerIdentification: Understanding and analyzing the macro-problem and Industry perspective, technological, socio-economic, and urbanization trends and their implication on new opportunities. Identifying passion, identifying and defining problems using Design thinking principles. Analyzing problems and validating with the potential customer. Iterating problem-customer fit. Understanding customer segmentation, creating and 8Hrs validating customer personas. Competition and Industry trends mapping and assessing initial opportunity. CoreTeachingTool:SeveraltypesofactivitiesincludingClass,game,GenAI,'Get outofthebuilding', and Venture Activities. **MODULE-III** Solutiondesign&Prototyping:UnderstandingCustomerJobs-to-be-doneandcrafting innovative solution design to map to customers' needs and create a strong value proposition.DevelopingProblem-solutionfititeratively.Understandingprototypingand MVP. Developing a feasibility prototype with differentiating values, features, and 8Hrs benefits. Initial testing for proof-of-concept and iteration on the prototype. CoreTeachingTool: VentureActivity, nocode Innovation tools, Classactivity **MODULE-IV** OpportunityAssessmentandSizing,Business&FinancialModel:Assessrelative market position via competition analysis, sizing the market, and assessing the scope and potential scale of the opportunity. CoreTeachingTool:ClassandVentureActivity 8Hrs Introduction to Business model and types, Lean approach, 9 block lean canvas model, riskiestassumptionstoBusinessmodels.ImportanceofBuild-Measure-Leanapproach. Businessplanning:componentsofBusinessplan-Salesplan,Peopleplan,andfinancialplan.

Go-to-MarketPlan,ScaleOutlook,andVenturePitch Readiness:	8Hrs
Financial Planning: Types of costs, preparing a financial plan for profitability using a financialtemplate, understandingthebasicsof Uniteconomics, and analyzingfinancial performance. Introduction to Marketing and Sales, Selecting the Right Channel, creating a digital presence, and building customer acquisition strategy. Choosing a form of business organization specific to your venture, identifying sources of funds: Debt & Equity Map the Start-up Lifecycle to Funding Options	
Core Teaching Tool: FounderCaseStudies–SamaandSecurely Share;Classactivity and discussions; Venture Activities.	
Scale Outlook and Venture Pitch readiness: Understand and identify potential and aspiration for scale vis a vis your venture idea. Persuasive Storytelling and its key components. Build an Investor-ready pitch deck.	
CoreTeachingTool:Experttalks;Cases;Classactivityanddiscussions;VentureActivities	

CO	CourseOutcomes
CO1	UnderstandEntrepreneurialSkillsetandMindset
CO2	UnderstandandanalyzeindustryproblemsandEnhance customerperson asbasedon
	market/otherfeedback
CO3	UnderstandanddevelopMVPs
CO4	UnderstandandapplyBusinessmodelsandBusinessplanning.
CO5	Developago-to-marketstrategyandbuildaPersuasivesales pitch

Textbooks

1. Robert D. Hisrich, Michael P. Peters, Dean A. Shepherd, Sabyasachi Sinha (2020).

Entrepreneurship, McGrawHill, 11th Edition.

2. Ries, E. (2011). The Lean Startup: How Today's Entrepreneurs Use Continuous

Innovation to Create Radically Successful Businesses. Crown Business

3. Osterwalder, A., & Pigneur, Y. (2010). Business Model Generation: A Handbook for

Visionaries, Game Changers, and Challengers. John Wiley & Sons.

4. ChowdhryAjay, (2023) JustAspire: Notes on Technology, Entrepreneurship and the Future.

5.SimonSinek(2011)StartwithWhy,PenguinBooks limited.

6.BrownTim(2019)ChangebyDesignRevised&Updated:HowDesignThinking Transforms Organizations and Inspires Innovation, Harper Business
7.NamitaThapar(2022)TheDolphinandtheShark:StoriesonEntrepreneurship,Penguin Books Limited.
References CollinsJim, PorrasJerry, (2004) BuilttoLast: Successful Habitsof Visionary Companies
 BurlingtonBo, (2016) SmallGiants: Companies That Choose to BeGreat Instead of Big
 Saras D. Sarasvathy, (2008) Effectuation: Elements of Entrepreneurial Expertise, Elgar

3.SarasD.Sarasvathy,(2008)Effectuation:ElementsofEntrepreneurialExpertise,Elgar Publishing Ltd

WebResources

Learning resource- IgniteX Course Wadhwani platform (Includes 200+ components of customcreatedmodularcontent+500+componentsofthemostrelevantcuratedcontent)

Continuous Internal Evaluation (CIE):

- Three CIE Will be conducted for 50 marks each and average of three will be taken (A)
- Three Quizzes will be conducted along with CIE for 10 Marks Each. Sum of three quizzes will be considered for 30 marks (B)
- Two Assignments for 10 marks each and the sum of both the assignments will be taken for 20 Marks (C)

Final CIE Marks will be calculated as (A+B+C)/2 for 50 marks

Semester End Examination (SEE):

The theory exam consists of a written paper structured into two parts:

Part A: Carries 20 marks which include either objective-type or short descriptive questions. It is designed to cover the entire syllabus comprehensively.

Part B: This section carries a total of 80 marks and consists of 5 questions, with Either or choices. Students are required to answer one full question per module, selecting from the choices. Each question is valued at 16 marks and may include up to two sub-parts.

The SEE Theory marks of 100 will be scaled down to 50.

The final score for the course in the ratio of 50:50 of CIE and SEE Marks

MAPPINGOFCOsANDPOs:

CO/	PO	PO	РО	PO	РО	РО	РО	РО	PO	PO10	PO11
POs	1	2	3	4	5	6	7	8	9		
CO1	2	2	2						2		
CO2			2	2	2						
CO3			2		2	2			2		
CO4			2		2				2		
CO5			2			2	2	2		2	

Semester : V

Essence of Research Methodology and IPR							
Course Code: MVJRMI507 CIE Marks: 50							
L: T:P:S	3:0:0:0	SEE Marks: 50					
Credits:	3	Total :100					
Hours:40 Hrs TheorySEE Duration: 2 Hrs.							

Course Objectives: This course will enable the students to:

1. Give an overview of the research methodology and explain the technique of defining research problem. 2. Explain various research designs and their characteristics.

3.Explain the details of sampling designs, measurement and scaling techniques and also different methods of data collections.

4. Explain several parametric tests of hypotheses

5.Discuss leading International Instruments concerning Intellectual Property Rights

Module-1	
Research Methodology: Introduction, Meaning of Research, Objectives of Research, Types of	
Research, Research Approaches, Significance of Research, Research Methods versus	8 hra
Methodology, Research and Scientific Method, Research Process, Criteria of Good Research,	0 1115
Problems Encountered by Researchers in India.	

Module-2

Research Design: Meaning of Research Design, Need for Research Design, Features of a Good Design, Important Concepts Relating to Research Design, Different Research Designs, Basic Principles of Experimental Designs, Important Experimental Designs. Reviewing the literature: Place of the literature review in research, bringing clarity and focus to research problem, improving research methodology, broadening knowledge base in research area, enabling contextual findings, Review of the literature, searching the existing literature, reviewing the selected literature, developing a theoretical framework, developing a conceptual framework, writing about the literature reviewed

Module-3

Design of Sample Surveys: Design of Sampling: Introduction, Sample Design, Sampling and Non-
sampling Errors, Sample Survey versus Census Survey, Types of Sampling Designs. Measurement
and Scaling: Qualitative and Quantitative Data, Classifications of Measurement Scales, Goodness
of Measurement Scales, Sources of Error in Measurement, Techniques of Developing
Measurement Tools, Scaling, Scale Classification Bases, Scaling Technics, Multidimensional
Scaling, Deciding the Scale. Data Collection: Introduction, Experimental and Surveys, Collection
of Primary Data, Collection of Secondary Data.8 hrs

Module-4					
Testing of Hypotheses: Hypothesis, Basic Concepts Concerning Testing of Hypotheses, Testing of Hypothesis, Test Statistics and Critical Region, Critical Value and Decision Rule, Procedure for Hypothesis Testing, Hypothesis Testing for Mean, Proportion, Variance, for Difference of Two Mean, for Difference of Two Proportions, for Difference of Two Variances, P-Value approach, Power of Test, Limitations of the Tests of Hypothesis	8 hrs				
Module-5					
Intellectual Property: The Concept, Intellectual Property System in India, Development of TRIPS Complied Regime in India, Patents Act, 1970, Trade Mark Act, 1999, The Designs Act, 2000, TheGeographical Indications of Goods (Registration and Protection) Act1999, Copyright Act, 1957, TheProtection of Plant Varieties and Farmers' Rights Act, 2001, The Semi-Conductor Integrated Circuits Layout Design Act, 2000, Trade Secrets, Utility Models, IPR and Biodiversity, The Convention on Biological Diversity (CBD) 1992, Co, Leading International Instruments Concerning IPR, World Intellectual Property Organisation (WIPO), WIPO and WTO, Paris Convention for the Protection of Industrial Property, National Treatment, Right of Priority, Common Rules, Patents, Marks, Industrial Designs, Trade Names, Indications of Source, Unfair Competition, Patent Cooperation Treaty (PCT), Advantages of PCT Filing, Berne Convention for the Protection of Literary and Artistic Works, Basic Principles, Duration of Protection, Trade Related Aspects of Intellectual Property Rights(TRIPS) Agreement, Covered under TRIPS Agreement, Features of the Agreement, Protection of Intellectual Property under TRIPS, Copyright and Related Rights, Trademarks, Geographical indications, Industrial Designs, Patents, Patentable Subject Matter, Rights Conferred, Exceptions, Term of protection, Conditions on Patent Applicants, Process Patents, Other Use without Authorization of the Right Holder, Layout- Designs of Integrated Circuits, Protection of Undisclosed Information, Enforcement of Intellectual Property Rights, UNSECO.	8 hrs				
1.Research Methodology: Methods and Techniques, C.R. Kothari, GauravGarg, New Age Internation	onal, 4th				
 2. Study Material (For the topic Intellectual Property under module 5) Professional Programme Intellectual Property Rights, Law and Practice, The Institute of Company Secretaries of India, Statutory Body U Act of Parliament, September 2013. 3.Research Methods: the concise knowledge base, Trochim, Atomic DogPublishing,2005. 	ellectual Inder an				
Course outcomes: At the end of the course, the students will be able to CO1: overview of the research methodology and explain the technique of defining a research problem. CO2: explain various research designs and their characteristics CO3: explain the details of sampling designs, measurement and scaling techniques and also different methods of data collections CO4: explain several parametric tests of hypotheses CO5: discuss leading International Instruments concerning Intellectual Property Rights					
CIE ASSESSMENT: Continuous Internal Evaluation (CIE): Three CIE Will be conducted for 50 marks each and average of three will be taken (A) Three Quizzes will be conducted along with CIE for 10 Marks Each. Sum of three quizzes considered for 30 marks (B) Two Assignments for 10 marks each and the sum of both the assignments will be taken for 20 Marks Final CIE Marks will be calculated as (A+B+C)/2 for 50 marks	will be s (C)				
SEE ASSESSMENT: Semester End Examination (SEE):					

The theory exam consists of a written paper structured into two parts:

Part A: Carries 20 marks which include either objective-type or short descriptive questions. It is designed to cover the entire syllabus comprehensively.

Part B: This section carries a total of 80 marks and consists of 5 questions, with Either or choices. Students are required to answer one full question per module, selecting from the choices. Each question is valued at 16 marks and may include up to two sub-parts.

The SEE Theory marks of 100 will be scaled down to 50.

The final score for the course in the ratio of 50:50 of CIE and SEE Marks

CO-PO MAPPING

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	2	-	1	2	2	-	-	1	1	1
CO2	3	2	3	2	2	2	-	1	1	1	-
CO3	1	2	3	3	2	2	-	1	1	1	-
CO4	1	2	3	3	3	2	-	1	1	-	1
CO5	1	1	1	2	2	1	-	-	-	-	-

Semester : V								
Environmental Studies								
MVJENV508	CIE Marks: 50							
3:0:0:0	SEE Marks: 50							
3	Total :100							
40 Hrs Theory	SEE Duration: 2 Hrs.							
	Semester : V Environmental Studies MVJENV508 3:0:0:0 3 40 Hrs Theory							

Course Objectives: This course will enable the students to:

1.Relate interdisciplinary approach to complex environmental problems using basic tools of the natural and social sciences including geo-systems, biology, chemistry, economics, political science and international processes.

2.Study drinking water quality standards and to illustrate qualitative analysis of water.

3.Critically evaluate the science and policy ramifications of diverse energy portfolios on air and water quality, climate, weapons proliferation, and societal stability.

Module-1

Introduction to environmental studies, Multidisciplinary nature of environmental studies; Scope and importance; Concept of sustainability and sustainable development. Ecosystems (Structure and Function): Forest, Desert, Rivers, Ocean Biodiversity: Types, Hotspots; Threats and Conservation of biodiversity, Deforestation.

Module-2

Advances in Energy Systems (Merits, Demerits, Global Status and Applications): Hydrogen,
Solar, Tidal and Wind. Natural Resource Management (Concept and case-study): Disaster
Management, Sustainable Mining and Carbon Trading.8 hrs

Module-3Environmental Pollution: Surface and Ground Water Pollution, Noise pollution, Soil Pollution and
Air Pollution. Waste Management & Public Health Aspects: Bio-medical Waste, Solid waste,
Hazardous waste and E-waste.8 hrs

Module-4

Global Environmental Concerns (Concept, policies, and case-studies): Global Warming, Climate Change, Acid Rain, Ozone Depletion and Fluoride problem in drinking water.

Latest Developments in Environmental Pollution Mitigation Tools (Concept and Applications): G.I.S.& Remote Sensing, Environment Impact Assessment, Environmental Management Systems. **Textbooks:**

1.Raman Siva kumar, "Principals of Environmental Science and Engineering", 2ndEdition, Cengage learning, Singapur.

2.G. Tyler Miller, "Environmental Science – working with the Earth", 11thEdition, Jr. Thomson Brooks /Cole publications, California

3.Pratiba Singh, Anoop Singh & Piyush Malaviya, "Environmental and Ecology", 1st Edition, ACME Learning Pvt. Ltd. New Delhi.

Course outcomes: At the end of the course, the students will be able to

CO1: Describe the principles of ecology and environmental issues that apply to air, land, and water issues on a global scale.

CO2: Develop critical thinking and/or observation skills and apply them to the analysis of a problem or question related to the environment.

CO3: Demonstrate ecology knowledge of a complex relationship between biotic and Abiotic components. CO4: Apply their ecological knowledge to illustrate and graph a problem.

CO5: Describe the realities that managers face when dealing with complex issues.

CIE ASSESSMENT:

The CIE for the mandatory credit courses common across all disciplines comprises of two components as follows:

Internal Assessment Tests (30 Marks):

Two Internal Assessment tests will be conducted, each comprising 50 multiple choice questions for a total of 50 marks. The average of the two test scores will be scaled down to 30 marks.

Assignments (20 Marks):

Students are required to complete two assignments, each carrying 10 marks. These assignments may include projects*, poster presentations*, seminars*, or similar academic activities. The marks of the two assignments are added to get 20 marks.

*Each assignment will undergo two rounds of evaluation to assess progress and quality

At the beginning of the semester, the instructor/faculty teaching the course has to announce the methods of

Assignment for the course. Together, these two components are added to get the Final CIE marks of 50.

Semester End Examination (SEE) – 50 Marks

A Semester End Examination is conducted for 50 marks comprising of multiple-choice questions (MCQ) type each of one mark.

	CO-PO Mapping										
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	3	3	1	-	2	2	1	1	-	2
CO2	3	3	2	1	-	1	2	-	1	1	2
CO3	3	3	2	1	-	2	2	-	1	1	2
CO4	3	3	2	2	-	2	2	-	1	1	2
CO5	3	3	2	2	-	2	2	-	1	1	2

The final score for the course out of 100 is the Sum Total of SEE and CIE

Semester : VI									
NATURAL LANGUAGE PROCESSING									
Course Code:	MVJAI601	CIE Marks: 50							
L: T:P:S	3:0:2:0	SEE Marks: 50							
Credits:	4	Total :100							
Hours:	40 Hrs Theory and 24 Hrs	SEE Duration: 3 Hrs.							
	Practical								
Course objectives: The students	will be able to								
1. Understand the concept of natural language processing, its challenges, and applications.									
2. Understand the concepts of words form using morphology analysis.									
3. Acquire the knowledge of	of syntax and semantics related to nat	ural languages and implement them.							
4. Ability to design and ana	lyze various NLP algorithms.								
5. Understand and apply kn	owledge of machine learning technic	ques used in NLP.							
	Module-1: Introduction to NL	.P							
Introduction: Origin of Natu	ral Language Processing (NLP),	Challenges of NLP, NLP							
Applications, Processing Indian	Languages.	8 hrs							
Module-2: Words, Word Forms and Parsing									
Morphologyfundamentals; Mo	orphologyParadigms; FiniteStateMa	achine BasedMorphology;							
Automatic Morphology Learnin	g; Named Entities.	8 nrs							

Parsing: Definite clause grammars; shift-reduce parsing; chart parsing' Shallow Parsing, Statistical Parsing, Maximum Entropy Models; Random Fields, Scope Ambiguity and Attachment Ambiguity resolution, Approaches to discourse, generation.							
Module-3: Language Modeling and Part of Speech Tagging							
Language Modeling and Part of Speech Tagging: Markov models, N-grams, estimating the probability of a word, and smoothing, Parts-of-speech, examples, and its usage							
Module-4: : Machine Translation							
Machine Translation: Need of MT, Problems of Machine Translation, MT Approaches, Direct Machine Translations, Rule-Based Machine Translation, Knowledge Based MT System, Statistical Machine Translation.							
Video-link: https://www.youtube.com/watch?v=2XUhKpH0p4M&list=PLeo1K3hjS3uuvuAXhYjV2lMEShq2 UYSwX&index=12							
Module-5: : Meaning and Other Applications							
Meaning:LexicalKnowledgeNetworks,WorldNetTheory;SemanticRoles;WordSense Disambiguation; WSD and Multilinguality; Metaphors. OtherApplications:SentimentAnalysis;TextEntailment;QuestionAnsweringinMultilingual Setting; NLP in Information Retrieval, Cross-Lingual IR. Text-classification. Video-link: https://www.youtube.com/watch?v=ZeoqOybAzdc&list=PLeo1K3hjS3uuvuAXhYjV2lMEShq2UY S wX&index=26	8 hrs						

Laboratory Experiments – 24P

SI.NO	Experiments
1	Createacorpusofminimumfivefileswithminimumof5sentencesineachfile,searchfor agivenpatternusingregularexpressionfromthecorpusandlistallthesentencesthathave thesearchedpatternbyhighlightingthefirstoccurrenceofthepatter foreachsentenceand also print the name of the file each sentence belongs to
2	WriteaprogramthattakesaDFA and astring as an input and checks for the validity of the string
3	WriteaprogramthattakesanNFAandastringasaninputandchecksforthevalidityof the string using DFS/BFS strategy.
4	 ExploreNLTK/Spacyand anyotherequivalent toolsof thefollowing fundamentals: a) Performsentenceandwordtokenization b) Removestop wordsinatext. c) Removepunctuation. d) Tagthe words in agiven text using POS tagger. a) Stemmingand Lemmatization

5	Writeaprogram forpredicting next word in thesequenceusing n-grams.
6	Writeaprogramtocreateandreadaninputfile,performbasiccleanupoperationsonthe text in the file like removing HTML tags. URLs, remove the duplicate texts. perform spellingcorrectionandremovetheadditionalspaces.Finallywritethe cleanedtextinto an output file.
7	Writeaprogramtoreadaninputfile,deletetheoddnumbersintextsandreplacetheeven numbers with their equivalent words. Finally write the updated test into an output file.
8	WriteaprogramthattakesCFGforalanguageandasentencebelongstoalanguageasan input and generates parse tree for the same using various parsers available in NLTK and Spacy.
9	Writeaprogram toExtractnames, emails, and phonenumbers from a text.
10	Writeaprogramtoretrievetheinformationfromatextfileusingverb/nounkeywordsasa search query.

Course Outcomes:

CO1:Analyzenaturallanguage text.

CO2:Definetheimportanceofnatural languageprocessing.

CO3:Understandandapply theconceptsoftextmining.

CO4:Illustrateinformationretrieval techniques.

CO5:EvaluatevariousNLP algorithms.

SuggestedLearningResources:

Textbooks:

1. JurafskyD.andMartinH.J, Speech, and Language Processing: An

IntroductiontoNaturalLanguageProcessing,ComputationalLinguistics and Speech Recognition, Prentice Hall (2014), 2nd ed.

2.Manning D. C. and Schütze H., Foundations of Statistical Natural LanguageProcessingMITPress(1999)1sted. Reference Books: (Name of the author/Title of the Book/ Name of the publisher/Edition and Year)

ReferenceBooks:

1.DaleR.,MoislH.andSomersH.,HandbookofNaturalLanguage Processing, CRC Press (2010), 2nd ed.

2.BirdS.,KleinE.andLoperE.,NaturalLanguageProcessingwith Python, Oreilly Publication (2009), 2nd ed.

CIE ASSESSMENT: Theory for 50 Marks Three CIE Will be conducted for 50 marks each and average of three will be taken (A) Three Quizzes will be conducted along with CIE for 10 Marks Each. Sum of three quizzes will be considered for 30 marks (B) Two Assignments for 10 marks each and the sum of both the assignments will be taken for 20 Marks (C)

Final CIE Marks will be calculated as (A+B+C)/2 for 50 marks

Laboratory- 50 Marks

Weekly Evaluation 30 Marks

Weekly evaluation will be conducted for every experiment. Marks of each evaluation includes Weekly Attendance + Experiment conduction along with Record / Observation + Weekly viva for all the experiments. The total of all these evaluated marks are added and the total marks will be scaled to 30 marks. (A)

Two CIE for 20 Marks each and take the average for 20 Marks (B)

Final CIE Marks will be calculated as A+B for 50 marks

For IPCC Final CIE Marks will be calculated as Average of CIE and Lab CIE for 50 marks.

SEE ASSESSMENT: SEE Theory Examination (100 Marks)

The theory exam consists of a written paper structured into two parts:

Part A: Carries 20 marks which include either objective-type or short descriptive questions. It is designed to cover the entire syllabus comprehensively.

Part B: This section carries a total of 80 marks and consists of 5 questions, with Either or choices. Students are required to answer one full question per module, selecting from the choices. Each question is valued at 16 marks and may include up to two sub-parts.

The SEE Theory marks of 100 will be scaled down to 50 (A)

SEE Laboratory Examination (50 Marks)

The laboratory SEE is also evaluated for 50 marks, distributed as follows: Experiment Conduction with Results: 40 marks Viva Voce: 10 marks Total 50 marks (B)

The score for the SEE is A+B of total 100 marks

The final score for the course in the ratio of 50:50 of CIE and SEE Marks

CO-PO Mapping

	CO/PO	PO1	PO2	PO3	3 PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	
	CO1	3	3	3	1	- Semester : ŶI		1	1	-	2		
	CO2	3	3	2	1 1	ИАСН	INĘ LI	EAŖNI	NG	1	1	2	
Co	urse Code	;	2		MVJAI6	02	2			CIĘ Ma	arks: 50		
L:	T:P:S	3	3	2	3:0:0:0	-	2	2	-	<u>\$EË M</u>	arks: 50	2	
Cr	edits	3	3	2	$\frac{3}{2}$	-	2	2	_	Total :1	00 1	2	
H	CO5	3	3	2	<u>40 Hrs</u>	neory –	2	2		SEE DI	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<u>3 Hrs.</u> 2	
Co	Courseobjectiveisto: Thiscoursewillenablestudentsto												
1.	1. Understandmachinelearningandproblemsrelevanttomachinelearning.												
2.	2. Differentiatesupervised, unsupervised and reinforcement learning.												
3.	Applydata	-prepro	cessingr	netho	dssuchasd	ataclean	ning,tran	sformat	ion,red	uction,an	dscaling.		
4.	Applyvari	ousreg	ression	andc	lassificati	ontech	niquesa	indeval	uateth	em.			
5.	Performsta	tistical	analysis	ofma	chinelearn	ingtechn	iques.						
Un	UnderstandANNconceptsandapplythemonvariousdatasetstounderstandhowit's working.												
T 4	1	XX7 11 T	> 11		11		Modul	<u>e-1</u>	<u>, .</u>	· 1	•	4 T	
Int	roduction:	Well-H	osed le	earni	ng proble	ms, Bas	sic con	cepts, I	Jesign	ing a lea	urning sy Suparvia	stem, Issue	es a
III Un	supervised	learni	g. Type no and	Rein	forcemer	t learni	ng. Le	arning	associ	ations,	Supervis	eu leannig	5,
Da	ta Pre-prod	cessing	: Need	of D	ata Pre-p	rocessii	ng, Dat	a Pre-p	rocess	ing Met	hods: Da	ta Cleaning	g, 8 hrs
Da	ta Integrat	tion, D	Data Tr	ansfo	ormation,	Data 1	Reducti	ion; Fe	ature	Scaling	(Norma	lization an	d
Sta	indardizati	on), Sp	litting of	datas	et into Tra	aining a	and Tes	ting set		-			
Sh	ow Data V	isualiza	ation pr	oble	n exampl	es usin	g MAT	LAB.					
	Module-2												
Re	gression:	Linear	Regr	essioi	n, Multi	ple Li	near \mathbb{R}	legressi	on ar	nd Poly	nomial	Regression	n,
	aluating f	cegress oulariz	sion M	lodel	s Perio	mance	(KMS	E, Me	ean A	bsolute	Error,	Correlation	1,
	assification	: Need	and A	oplica	ations of (Classifi	cation.	Logisti	c Regr	ession. I	Decision	tree.	8 hrs
			1	. 1			,	0	0)			
Ca	se study of	classif	fication	and	regression	n algori	thms us	sing MA	ATLAI	3.			
							Modul	e-3					
	assification	(Cont	d): Tr	ee in	duction a	lgorith	m - spl	lit algoi	rithm l	based or	i informa	ation theor	у,
spi	it algorithi	m base		J1111 1	ndex; Ra	ndom I	Forest (Exelu	Naive	Bayes al	gorithm; K	-
	alest Neig	IIUUIS ((Sensit	ivity S	necif	icity Pre	cision	Recall	etc)	Evalu		lassificat		S 8 hrs
	istering: N	Jeed a	nd Apr	olicat	ions of (Clusteri	ng. Pa	rtitione	d met	hods. H	ierarchic	al method	S.
De	nsity- base	d meth	ods.										
Ca	se study of	classif	fication	and	clustering	g algorit	thms us	ing MA	TLAF	3.			
	Module-4												
As	sociation F	Rules L	earning	g: Ne	ed and A	pplicati	on of A	ssociat	ion Ru	les Lear	ming, Ba	sic concep	ts 8 hrs
of	Association	n Rule	Mining	g, Nai	ive algori	thm, Ap	oriori al	gorithn	1.				
<u> </u>	Module-5												
Pe	rceptron. R	acknro	pagatic	n alo	orithm.	, incula	I INCLW	ork rep	resenti	anon, A	рргорна		", 8 hrs
			rSauce										
L													

Courseoutcomes:

CO1 IdentifytheissuesinmachinelearningandAlgorithmsforsolving it.

CO2 Evaluatetheprobabilityandstatisticsrelatedtomachinelearning.

CO3 Investigateandapplyconceptlearning of allMachineLeaningAlgorithms.

CO4 Identify the difference between the real time application of Machine Learning and Deep Learning using real time scenarios.

CO5 Understandandapplytheconceptsofdeeplearning.

Textbooks:

1.TomM.Mitchell,MachineLearning,IndiaEdition2013,McGrawHillEducation. 2.AlpaydinE.,IntroductiontoMachineLearning,MITPress(2014)3rdEdition. 3.VijayvargiaAbhishek,MachineLearningwithPython,BPBPublication(2018) **ReferenceBooks:**

1.TrevorHastie,RobertTibshirani,JeromeFriedman,hTheElementsofStatistical Learning, 2nd edition, springer series in statistics.

CIE ASSESSMENT:

Continuous Internal Evaluation (CIE):

Three CIE Will be conducted for 50 marks each and average of three will be taken (A)

Three Quizzes will be conducted along with CIE for 10 Marks Each. Sum of three quizzes will be considered for 30 marks (B)

Two Assignments for 10 marks each and the sum of both the assignments will be taken for 20 Marks (C)

Final CIE Marks will be calculated as (A+B+C)/2 for 50 marks

SEE ASSESSMENT: Semester End Examination (SEE):

The theory exam consists of a written paper structured into two parts:

Part A: Carries 20 marks which include either objective-type or short descriptive questions. It is designed to cover the entire syllabus comprehensively.

Part B: This section carries a total of 80 marks and consists of 5 questions, with Either or choices. Students are required to answer one full question per module, selecting from the choices. Each question is valued at 16 marks and may include up to two sub-parts.

The SEE Theory marks of 100 will be scaled down to 50.

The final score for the course in the ratio of 50:50 of CIE and SEE Marks

CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	3	3	1	-	2	2	1	1	-	2
CO2	3	3	2	1	-	1	2	-	1	1	2
CO3	3	3	2	1	-	2	2	-	1	1	2
CO4	3	3	2	2	-	2	2	-	1	1	2
CO5	3	3	2	2	-	2	2	-	1	1	2

Semester : VI Human-centered AI	
3:0:0:0	SEE Marks: 50
3	Total :100
40 Hrs Theory	SEE Duration: 3 Hrs.
Course Objectives: This course will enable the students to:	
	Semester : N Human-center MVJAI6031 3:0:0:0 3 40 Hrs Theory course will enable the students to

1.Understand the history of AI and responsible AI.

2.Understand and analyse HCAI framework and how it is human-centred.

3. Understand different types of recommender systems and its application in HCAI.

4. Understand explainable AI and to analyse its societal impact.

5. Understand AI ethics and designing its moral agents.

Module-1

Introduction to HCAI:

Brief history of social control of technology from WWII until the present time, The current wave of legislation and ethical guidelines for AI, AI Ethics challenges, Brief introduction to the notion of Trustworthy AI, Responsible AI, Human-Centred AI, The background of Artificial Intelligence (AI), Basic notions: Autonomy, Adaptability, Interaction, Who or what is responsible for decisions and actions by AI systems?, What is Human-Centred Artificial Intelligence (HCAI)?, The United Nation's Sustainable Development Goals, What makes HCAI different from AI: Process, Product, The basic

concepts of HCAI

Module-2

HCAI framework and Design Metaphors: Motivation behind the HCAI Framework, rising above the levels of automation, Defining Reliable, Safe and Trustworthy systems, Two-dimensional 8 hrs

HCAI Framework, what is Human-Centred Design? Design guidelines and examples, Design metaphors: Intelligent Agents and Supertools, Teammates and Tele-bots, Assured autonomy and control centres, Social Robots and active appliances

Module-3

Short Introduction to recommender systems: Content-Based Recommendation, Collaborative Filtering, Hybrid Approaches, Model- vs Memory-Based, Item- vs User-Based, Evolution of 8 hrs Recommender Systems.

Module-4

Explainable AI: Explainable AI: Current state and some thought for the future A Journey towards Explainable AI and its Societal Implications, the need of interpreting AI systems, Understanding Interpretability and Explainability, Traditional interpretable models, Explaining the black box, Model-specific algorithms, Model- agnostic algorithms, Counterfactual explanations, evaluating explanation methods, Enhancing human-AI collaboration.

Module-5

AI ethics and responsible AI: A high-level overview of AI Ethics, Ethical decision-making, Ethical theories, Ethics in practice, implementing ethical reasoning, Responsible research and innovation, The ART of AI: Accountability, Responsibility, Transparency, Approaches to ethical reasoning by AI, designing artificial moral agents, implementing ethical deliberation, Levels of ethical behaviour, The ethical status of AI systems, Ensuring Responsible AI in practiceApplications: Network Storage, Google Apps and Microsoft office online

Course outcomes: At the end of the course, the students will be able to

CO1 Understand the history of AI and responsible AI.

CO2 Understand HCAI framework and analyse how it is human-centred.

CO3 Understand different types of recommender systems and its application in HCAI.

CO4 Understand explainable AI and its societal impact.

CO5 Apply and analyse different approaches of ethical AI.

Textbooks / Reference Books:

 Shneiderman, Ben, Human-Centered AI (Oxford, 2022; online edn, Oxford Academic, 17 Fe 2022), https://doi.org/10.1093/oso/9780192845290.001.0001, accessed 4 June 2024.
 Virginia Dignum, Responsible Artificial Intelligence, Springer Cham, https://doi.org/10.1007/978-3-030-30371-6.

CIE ASSESSMENT:

Three CIE Will be conducted for 50 marks each and average of three will be taken (A)

Three Quizzes will be conducted along with CIE for 10 Marks Each. Sum of three quizzes will be considered for 30 marks (B)

Two Assignments for 10 marks each and the sum of both the assignments will be taken for 20 Marks (C)

Final CIE Marks will be calculated as (A+B+C)/2 for 50 marks
SEE ASSESSMENT:

The theory exam consists of a written paper structured into two parts:

Part A: Carries 20 marks which include either objective-type or short descriptive questions. It is designed to cover the entire syllabus comprehensively.

Part B: This section carries a total of 80 marks and consists of 5 questions, with Either or choices. Students are required to answer one full question per module, selecting from the choices. Each question is valued at 16 marks and may include up to two sub-parts.

The SEE Theory marks of 100 will be scaled down to 50.

	CO-PO Mapping										
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	1	1	1	-	-	3	1	3	1	1	-
CO2	1	1	-	-	-	2	1	3	1	1	-
CO3	1	2	2	-	-	2	-	3	1	1	-
CO4	1	1	1	1	-	3	-	3	1	1	-
CO5	1	1	1	1	-	2	-	3	1	1	-

Semester : VI							
CLOUD COMPUTING							
Course Code:	MVJAI6032	CIE Marks: 50					

L: T:P:S	3:0:0:0	SEE Marks: 50
Credits:	3	Total :100
Hours:	40 Hrs Theory	SEE Duration: 3 Hrs.

Course Objectives: This course will enable the students to:

1.Understand the fundamental ideas behind Cloud Computing, the evolution of the paradigm, its applicability; benefits, as well as current and future challenges.

2.Understand and apply the basic ideas and principles in data center design; cloud management techniques and cloud software deployment considerations;.

3.Understand and analyze the different CPU, memory and I/O virtualization techniques that serve in offering software, computation and storage services on the cloud; Software Defined Networks (SDN) and Software Defined Storage (SDS);.

4.Understand and analyze cloud storage technologies and relevant distributed file systems, NoSQL databases and object storage;.

5.Analyze and create the variety of programming models and develop working experience in several of them .

Module-1	
Introduction to Cloud Computing: Cloud Computing in a Nutshell, Roots of Cloud Computing,	
Layers and Types of Clouds, Desired Features of a Cloud, Cloud Infrastructure Management,	
Infrastructure as a Service Providers, Platform as a Service Providers, Challenges and Risks,	8 hra
Broad Approaches to Migrating into the Cloud, The Seven-Step Model of Migration into a Cloud	0 1115
Applications:	
Microsoft Azure, Amazon Web Services	

Module-2

Integration as a Service' Paradigm for the Cloud Era:

An Introduction, The Onset of Knowledge Era, The Evolution of SaaS, The Challenges of SaaS Paradigm, Approaching the SaaS Integration Enigma, New Integration Scenarios, The Integration Methodologies, SaaS Integration Products and Platforms, SaaS Integration Services, Businessesto-Business Integration (B2Bi) Services, A Framework of Sensor- Cloud Integration, SaaS Integration Appliances, Issues for Enterprise Applications on the Cloud, Transition Challenges, Enterprise Cloud Technology and Market Evolution, Business Drivers Toward a Marketplace for Enterprise Cloud Computing, The Cloud Supply Chain

Laboratory Sessions/ Experimental learning:

1. Installation and Configuration of Hadoop.

Applications: PAAS (Facebook, Google App Engine)

Module-3

Virtual Machines Provisioning and Migration Services:

Introduction and Inspiration- Background and Related Work-Virtual Machines Provisioning and Manageability- Virtual Machine Migration Services- VM Provisioning and Migration in Action– Provisioning in the Cloud Context- The Anatomy of Cloud Infrastructures-Distributed Management of Virtual Infrastructures - Scheduling Techniques for Advance Reservation of Capacity- Capacity Management to meet SLA Commitments- RVWS Design and Cluster as a Service: The Logical Design 8 hrs

Laboratory Sessions/ Experimental learning:

Implementation of Para-Virtualization using VM Ware 's Workstation/ Oracle 's Virtual Box and Guest O.S

Applications:

Hardware Virtualization, Operating system Virtualization, Server Virtualization, Storage Virtualization

Module-4

Platform and Software as a Service: Technologies and Tools for Cloud Computing- Aneka Cloud Platform- Aneka Resource Provisioning Service- Hybrid Cloud Implementation – Comet Cloud 8 hrs Architecture- Autonomic Behavior of Comet Cloud- Overview of Comet Cloud-based Applications- Implementation and Evaluation- Workflow Management Systems and Clouds-Architecture of Workflow Management Systems - Utilizing Clouds for Workflow Execution- Case Study: Evolutionary Multi objective Optimizations- Visionary thoughts for Practitioners Laboratory Sessions/ Experimental learning:

Create an application (Ex: Word Count) using Hadoop Map/Reduce. Applications: Schedule book

Module-5

MapReduce Programming Model and Implementations: MapReduce Programming Model- Major MapReduce Implementations for the Cloud- The Basic Principles of Cloud Computing-A Model for Federated Cloud Computing- Traditional Approaches to SLO Management- Types of SLA-Life Cycle of SLA- SLA Management in Cloud- Automated Policy-based Management- The Current State of Data Security in the Cloud-Data Privacy and Security Issues-Producer Consumer Relationship-Cloud Service Life Cycle

Laboratory Sessions/ Experimental learning:

Create your resume in a neat format using google and zoho cloud Programs on PaaS Applications: Network Storage, Google Apps and Microsoft office online

Course outcomes: At the end of the course, the students will be able to

CO1 Recall the recent history of cloud computing, illustrating its motivation and evolution.

CO2 Analyze the enabling technologies in cloud computing and discuss their significance.

CO3 Articulate the economic benefits as well as issues/risks of the cloud paradigm for businesses as well as cloud providers.

CO4 Understand SLAs and SLOs and analyze their importance in Cloud Computing.

CO5 Recall some of the common cloud providers and their associated cloud stacks and compare popular cloud use case scenarios.

Textbooks / Reference Books:

Cloud Computing, Principles and Paradigms, Rajkumar Buyya, James Broberg, Wiley Publication.
 Dan C Marinescu: Cloud Computing Theory and Practice. Elsevier (MK) 2013

CIE ASSESSMENT:

Three CIE Will be conducted for 50 marks each and average of three will be taken (A) Three Quizzes will be conducted along with CIE for 10 Marks Each. Sum of three quizzes will be considered for 30 marks (B)

Two Assignments for 10 marks each and the sum of both the assignments will be taken for 20 Marks (C)

Final CIE Marks will be calculated as (A+B+C)/2 for 50 marks

SEE ASSESSMENT:

The theory exam consists of a written paper structured into two parts:

Part A: Carries 20 marks which include either objective-type or short descriptive questions. It is designed to cover the entire syllabus comprehensively.

Part B: This section carries a total of 80 marks and consists of 5 questions, with Either or choices. Students are required to answer one full question per module, selecting from the choices. Each question is valued at 16 marks and may include up to two sub-parts.

The SEE Theory marks of 100 will be scaled down to 50.

	CO-PO Mapping										
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	2	1	1	-	1	1	2	-	-	-	-
CO2	3	3	3	3	2	-	-	-	-	-	-
CO3	1	-	-	1	1	-	2	3	3	3	3
CO4	3	3	2	2	2	-	-	-	-	-	-
CO5	3	3	3	3	3	2	-	-	3	3	3

	Semester : VI	-							
	BLOCKCHAINTECH	NOLOGY							
Course Code:	MVJAI6033	CIE Marks: 50							
L: T:P:S	3:0:0:0	SEE Marks: 50							
Credits:	3	Total :100							
Hours:40 Hrs TheorySEE Duration: 3 Hrs.									
 Course Objectives: This course will enable the students to: 1. Familiarise the functional/operational aspects of cryptocurrency ecosystem. 2. Understand emerging abstract models for Blockchain Technology. 3. Understand how blockchain systems (mainly Bitcoin and Ethereum) work and how to securely interact with them. 4. Identify major research challenges and technical gaps existing between theory and Practice in cryptocurrency domain. 5. Design, build, and deploy smart contracts and distributed applications. 									
	Module-1								
Basics: Distributed Database, Two General Problem, Byzantine General problem and Fault Tolerance, Hadoop Distributed File System, Distributed Hash Table, ASIC resistance, Turing Complete. Cryptography: Hash function, Digital Signature - ECDSA, Memory Hard Algorithm, Zero Knowledge Proof. Applications: Telecommunications, finance, universities Video link / Additional online information (related to module if any): https://coincentral.com/byzantine- generals-problem/ https://www.tutorialspoint.com/distributed_dbms/distributed_dbms_database s htm https://blockonomi.com/merkle-tree/									
	Module-2								
Block chain: Introduction, Advantage over conventional distributed database, Block chain Network, Mining Mechanism, Distributed Consensus, Merkle Patricia Tree, Gas Limit, Transactions and Fee, Anonymity, Reward, Chain Policy, Life of Block chain application, Soft &									
	Module-3	,							
Distributed Consensus: Nakamoto consensus, Proof of Work, Proof of Stake, Proof of Burn, Difficulty Level, Sybil Attack, Energy utilization and alternate. Applications: Decentralized Applications, Encrypted messaging applications Video link / Additional online information (related to module if any): https://blockonomi.com/nakamoto-consensus/ https://aointelegraph.com/explained/proof.of.work.explained									
	Module-4								
Cryptocurrency: History, Distributed Ledger, Bitcoin protocols - Mining strategy and rewards, Ethereum - Construction, DAO, Smart Contract, GHOST, Vulnerability, Attacks, Sidechain, Namecoin. Applications: Peer - to - peer payment application. Video link / Additional online information (related to module if any): https://blockgeeks.com/guides/smart-contracts/									
	Module-5								
Cryptocurrency Regulation: Stakeholders, Roots of Bit coin, Legal Aspects- Crypto currency Exchange, Black Market and Global Economy. Applications: Internet of Things, Medical Record Management System, Domain Name Service and future of Blockchain.Video link / Additional online information (related to module if any): https://www.water-io.com/iot-vs-wot https://www.talend.com/resources/iot-cloud-architecture									
nttps://www.talend.com/resources/iot-cloud-architecture Textbooks: 1 Arvind Narayanan, Joseph Bonneau, Edward Felten, Andrew Miller and Steven Goldfeder, Bitcoin an Cryptocurrency Technologies: A Comprehensive Introduction, Princeton University Press (July 19, 2016). 2 Antonopoulos, Mastering Bitcoin: Unlocking Digital Cryptocurrencies 3 Satoshi Nakamoto, Bitcoin: A Peer-to-Peer Electronic Cash System. 4 DR. Gavin Wood, "ETHEREUM: A Secure Decentralized Transaction Ledger,"Yellow paper.2014.									

Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli, A survey of attacks on Ethereum smart contracts

Course outcomes: Students will able to

CO1 Basic Cryptography functions, digital signature, public key cryptosystems, zero- knowledge proof systems.

CO2 Policies and applications of Blockchain in Distributed databases.

CO3 Explain the Nakamoto consensus, List and describe differences between proof-of- work and proof-of-stake consensus.

CO4 Design, build, and deploy smart contracts and distributed applications.

CO5 Cryptocurrency governance, regulations and applications.

CIE ASSESSMENT:

Three CIE Will be conducted for 50 marks each and average of three will be taken (A)

Three Quizzes will be conducted along with CIE for 10 Marks Each. Sum of three quizzes will be considered for 30 marks (B)

Two Assignments for 10 marks each and the sum of both the assignments will be taken for 20 Marks (C) Final CIE Marks will be calculated as (A+B+C)/3 for 50 marks

SEE ASSESSMENT:

The theory exam consists of a written paper structured into two parts:

Part A: Carries 20 marks which include either objective-type or short descriptive questions. It is designed to cover the entire syllabus comprehensively.

Part B: This section carries a total of 80 marks and consists of 5 questions, with Either or choices. Students are required to answer one full question per module, selecting from the choices. Each question is valued at 16 marks and may include up to two sub-parts.

The SEE Theory marks of 100 will be scaled down to 50.

	CO-PO Mapping										
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	2	-	-	-	-	-	-	-	-	-
CO2	3	2	-	-	-	-	-	-	-	-	2
CO3	3	3	1	-	2	-	1	-	-	-	-
CO4	3	3	3	2	3	-	-	1	-	-	-
CO5	3	2	-	-	2	-	-	2	-	-	-

Semester : VI								
Time Series Analysis								
Course Code:	MVJAI6034	CIE Marks: 50						
L: T:P:S	3:0:0:0	SEE Marks: 50						
Credits:	3	Total :100						
Hours:	40 Hrs Theory	SEE Duration: 3 Hrs.						

Course Objectives: This course will enable the students to:

1.Understand the characteristics of time series data and their applications in different domains.

2.Learn various time series models and techniques for analyzing and forecasting time series data.

3.Develop skills in model identification, estimation, and diagnostic checking.

4. Apply time series analysis methods to real-world data sets using statistical software.

5. Interpret and communicate results obtained from time series analysis effectively.

Module-1

Introduction to Time Series Analysis: Time series data definition, Qualities of time series information, Time series analysis applications, Time Series Elements, and (partially) 8 hrs Decomposition

Module-2

Stationarity and Time Series Components: Seasonality, cyclical elements, and trends, Methods of decomposition: multiplicative and additive models, The meaning of stationarity 8 hrs

Module-3

Time Series Modeling Autocorrelation function (ACF) and partial autocorrelation function
(PACF): Models of moving averages (MAs), Models of Autoregressive (AR) ARIMA models, or
autoregressive integrated moving averages, Model Determination and Approximation (In part)8 hrs

Module-4

Forecasting and Model Evaluation: Jenkins-Box technique, Model selection standards: BIC and
AIC, estimating parameters and fitting models, Methods for Diagnostic Checking and Forecasting8 hrs

Module-5

Advanced Topics and Applications: SARIMA models (seasonal ARIMA models), Transfer function models, extended memory functions, Uses and Examples, Examine and Combine 8 hrs

Course outcomes: At the end of the course, the students will be able to

CO1 Showcase your ability to analyze time series data using relevant statistical approaches such as decomposition, trend analysis, and seasonal adjustment.

CO2 Use several time series models, including as ARIMA, SARIMA, and exponential smoothing, to reliably estimate future values and assess the uncertainty of such projections.

CO3 Evaluate the stationarity of time series data and apply the appropriate modifications to accomplish it. CO4 Implement time series models with statistical software such as R or Python, and effectively analyze the findings.

CO5 Utilize time series analysis techniques to analyze real-world datasets from a variety of fields, including environmental sciences, finance, and economics, and make intelligible findings to aid in decision-making.

Textbooks:

1. "Time Series Analysis and Its Applications: With R Examples" by Robert H. Shumway and David S. Stoffer ISBN: 978-3319524511.

2. "Time Series Analysis: Forecasting and Control" by George E.P. Box, Gwilym M. Jenkins, Gregory C. Reinsel, and Greta M. Ljung ISBN: 978-1118675021.

Reference Books:

1."The Analysis of Time Series: An Introduction" by Chris Chatfield ISBN: 978-1584883173

2. "Time Series: Theory and Methods" by Peter J. Brockwell and Richard A. Davis ISBN: 978-1441903198

3. "Time Series Analysis: With Applications in R" by Jonathan D. Cryer and Kung- Sik Chan ISBN: 978-0387759586.

CIE ASSESSMENT:

Three CIE Will be conducted for 50 marks each and average of three will be taken (A) Three Quizzes will be conducted along with CIE for 10 Marks Each. Sum of three quizzes will be considered for 30 marks (B)

Two Assignments for 10 marks each and the sum of both the assignments will be taken for 20 Marks (C)

Final CIE Marks will be calculated as (A+B+C)/2 for 50 marks

SEE ASSESSMENT:

The theory exam consists of a written paper structured into two parts:

Part A: Carries 20 marks which include either objective-type or short descriptive questions. It is designed to cover the entire syllabus comprehensively.

Part B: This section carries a total of 80 marks and consists of 5 questions, with Either or choices. Students are required to answer one full question per module, selecting from the choices. Each question is valued at 16 marks and may include up to two sub-parts.

The SEE Theory marks of 100 will be scaled down to 50.

	CO-PO Mapping										
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1											
CO2											
CO3											
CO4											
CO5											

Semester : VI INTRODUCTION TO DATA STRUCTURES								
L: T:P:S	3:0:0:0	SEE Marks: 50						
Credits:	3	Total :100						
Hours:	40 Hrs Theory	SEE Duration: 3 Hrs.						
Hours:	40 Hrs Theory	SEE Duration: 3 Hrs.						

Course Objectives: This course will enable the students to:

1. Discuss the fundamental concepts and principles of data structures.

2. Understand the importance of data structures in computer programming and problem solving.

3. A compressive overview of various data structures such as arrays, linked lists, stacks, queues, trees and graphs.

4. Prepare the students for advanced courses in algorithms, data analysis.

Widule-1							
Introduction : Data Structures definition , classification of data structures , Arrays - Definition,	8 hrs						
Declaration, Types of arrays, Structures, Pointers. Textbook 2 : chapter 2	0 111 5						
Module-2							
Stacks- definition, implementation of stacks using arrays, operations of stacks. Queues-	l						
Introduction, Types of queues, Linear queue using arrays, operations on linear queue, circular	8 hrs						
queue. Limitation of linear queue, Linear Queue vs circular queue. Textbook 2 : chapter 3	1						
Module-3							
Linked List -Linked-list and its types- singly linked lists- doubly-linked lists- circular linked lists,							
Applications of Linear Data Structures. Textbook 1 : Chapter3:3.2.1, 3.2.2, 3	0 1115						
Module-4							
Non Linear Data Structures: Trees – Introduction, Terminologies, Representation of trees, Types							
of Trees, Application of trees, Binary Tree – Representation, Traversal techniques, Binary Search	9 hrs						
trees - Tree Construction, Expression trees. Application of Binary search tree. Textbook 1 :							
Chapter4:4	l						
Module-5							

Graphs: Introduction, terminologies, Representation of graphs, Connected graph, graph traversal						
techniques, Application of graphs in data structures . Hashing- Hash Functions - Separate	Q hra					
Chaining – Open Addressing – Rehashing – Extensible Hashing. 44 Textbook 1 : Chapter9: 9.1-						
9.3,9.5, Chapter 5						

Textbooks:

1 Mark Allen Weiss, "Data Structures and Algorithm Analysis in C", 2nd Edition, Pearson Education, 2011 2 Fundamentals of Data structures, Ellis Horowitz, sartaj sahni,

3 Alfred V. Aho, John E. Hopcroft and Jeffry D. Ullman, Data Structures & Algorithms, Pearson Education, New Delhi, 2006.

Course outcomes: At the end of the course, the students will be able to

CO1 Evaluate the performance and efficiency of different operations on arrays, stacks, queues, and circular queues.

CO2 Understand the different types of linked list.

CO3 Implement basic operations on trees.

CO4 Demonstrate the representation and traversal techniques of graphs and their applications.

CO5 Use the concepts of Hashing.

CIE ASSESSMENT:

Continuous Internal Evaluation (CIE):

Three CIE Will be conducted for 50 marks each and average of three will be taken (A)

Three Quizzes will be conducted along with CIE for 10 Marks Each. Sum of three quizzes will be considered for 30 marks (B)

Two Assignments for 10 marks each and the sum of both the assignments will be taken for 20 Marks (C)

Final CIE Marks will be calculated as (A+B+C)/3 for 50 marks

SEE ASSESSMENT: Semester End Examination (SEE): The theory exam consists of a written paper structured into two parts:

Part A: Carries 20 marks which include either objective-type or short descriptive questions. It is designed to cover the entire syllabus comprehensively.

Part B: This section carries a total of 80 marks and consists of 5 questions, with Either or choices. Students are required to answer one full question per module, selecting from the choices. Each question is valued at 16 marks and may include up to two sub-parts.

The SEE Theory marks of 100 will be scaled down to 50.

The final score for the course in the ratio of 50:50 of CIE and SEE Marks

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	
CO1	2	2	1	3	3	-	-	-	1	-	-	
CO2	2	2	2	3	2	-	-	-	1	-	-	
CO3	2	2	2	3	2	-	-	-	1	-		
CO4	3	2	2	3	2	-	-	-	1	-	-	
CO5	3	2	2	3	2	-	-	-	1	-	-	

	Semester :	VI							
FUNDAMENTALS OF OPERATING SYSTEMS									
Course Code:	MVJAI6042	CIE Marks: 50							
L: T:P:S	3:0:0:0	SEE Marks: 50							
Credits:	3	Total :100							
Hours:	40 Hrs Theory	SEE Duration: 2 Hrs.							

Course Objectives: This course will enable the students to:

1. Understanding the fundamental concepts of operating systems.

2. Analyse the exchanging data between different process.

3. Discuss the deadlock mechanism in operating systems.

4. Recognize the importance of process and memory management. Outline the features of files and file management systems.

Module-1

The Basics: An overview: Introduction to operating systems, components of an operating systems,
Evolution of operating system, architecture of operating system, Functions of operating system.8 hrsTextbook 1: Chapter 1: 1.1-1.4

Module-2

Operating system services, user and operating system interface, system calls and services, operating system structure, Process: Introduction, Process management, OS view of processes. Process states. Interrupts: Interrupts in operating systems, Interprocess communication, types of interprocess communications. Textbook 1: Chapter 2: 2.1-2.8, Chapter 3: 3.1-3.6

Module-3	
Deadlocks: what is Deadlock, Deadlock Characteristics, resource management, conditions of deadlock – Handling Deadlocks, deadlock avoidance, Deadlock Detection, Deadlock Recovery. Textbook 1: Chapter 8: 8.3 to 8.8	8 hrs
Module-4	
Process scheduling: Concept of Process Scheduling, operation on Processes scheduling, Scheduling criteria. Memory Management: Memory organization in operating system, Memory Hierarchy, Memory Management Strategies. Contiguous Memory Allocation, Non-contiguous Memory Allocation. Textbook1: Chapter 3:3.3, Chapter 9: 9.1, 9.2	8 hrs
Module-5	
File and Database Systems: File concept, Access methods, Data Hierarchy, Directory Structure, File Protection, File System Structure. File access control. Textbook 1: Chapter 14:14.2-14.	8 hrs
 Pertubors. 1 "Operating System Concepts" by Abraham Silberschatz, Peter B. Galvin, and Greg Gagne, 10 th ed 2 "Modern Operating Systems" by Andrew S. Tanenbaum and Herbert Bos,5 th ed. 3 "Operating Systems: Internals and Design Principles" by William Stallings,7 th ed. 	d.
 understanding the fundamental concepts of operating systems. Analyse the exchanging data between different process. Discuss the deadlock mechanism in operating systems. Recognize the importance of process and memory management. Outline the features of files management system 	and file
CIE ASSESSMENT: Three CIE Will be conducted for 50 marks each and average of three will be taken (A) Three Quizzes will be conducted along with CIE for 10 Marks Each. Sum of three quizzes considered for 30 marks (B) Two Assignments for 10 marks each and the sum of both the assignments will be taken for 20 Marks Final CIE Marks will be calculated as (A+B+C)/3 for 50 marks	will be
 SEE ASSESSMENT: The theory exam consists of a written paper structured into two parts: Part A: Carries 20 marks which include either objective-type or short descriptive questions. It is d to cover the entire syllabus comprehensively. Part B: This section carries a total of 80 marks and consists of 5 questions, with Either or choices. S are required to answer one full question per module, selecting from the choices. Each question is v 16 marks and may include up to two sub-parts. The SEE Theory marks of 100 will be scaled down to 50. The final score for the course in the ratio of 50:50 of CIE and SEE Marks 	lesigned Students alued at

The	final	score	for	the	course	in	the	ratio	of	50:50	of	CIE	and	SEE	Mar	ks

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	
CO1	3	-	2	-	-	-	-	1	-	-	-	
CO2	3	3	1	2	-	-	-	1	-	-	-	
CO3	3	2	-	2	-	-	-	1	-	-	-	
CO4	3	2	2	1	-	-	-	1	-	-	-	

	CO5	3	1	2	-	-	-	-	1	1	-	-	
					0		X 7X						
		M		IFAD	Ser DI IC	nester	<u> </u>		DMEN	NT.			
Course Code		IVI		LE AF / 1 A 1 6 f	<u>110</u>	AIIU	IN DE	VELU		<u>v 1</u> Marks	· 50		
L. T.P.S			3.0	•0•0					SEE	Marke	s. 50 s. 50		
Credits:			3	••••					Total	·100	5. 50		
Hours:			40	Hrs Tł	neorv				SEE	Durat	ion: 3 F	Irs.	
					1001				~==	2 41 40			
Course Objectives: This course will enable the students to: 1. Understand system requirements for mobile applications. 2. Generate suitable design using specific mobile development frameworks. Implement the design us specific mobile development frameworks. 3. Deploy the mobile applications in marketplace for distribution.												ign using	
Module-1													
Introduction: Introduction to mobile application - Market values for mobile applications System requirements for mobile application, Mobile application development architecture. Video link / Additional online information (related to module if any): https://www.tutorialspoint.com/android/ Online											$\binom{n}{2}$ 8 hrs		
Module-2													
Designing Applications using Android: Developing user interfaces -Layout -Input Controls and Events- Menus - Dialogs, Notifications and Toasts Applications: Design a Simple Calculator App Video link / Additional online information (related to module if any): http://www.androidhive.info/											1 2 2 8 hrs		
Module-3													
Multimedia & video. Video https://nptel.ac.	Services: link / .in/course	: Lifecy / Add s/106/1	ycle itiona 06/10	of a S al on 061061	ervice line 47/	- Ma inform	naging ation	Servi (rela	ices,GI ted t	PS AP o mo	I Playin odule	ng audio if any)	, 8 hrs
Module-4		τ1			11.1.	(1	1	1		•		A 1 .	1
architecture Ac deployment.	, Android: ctivities a Video lii <u>r.android.</u>	nd view nk / <u>com/de</u>	s Int Addit	eractin tional	g with online	ng th UI Pe e info	e de ersistin ormatio	g data on (re	using elated	SQLit to m	nment te Packa 10dule	Androic aging and if any)	$\binom{1}{8}$ hrs
Module-5													
Technology II frameworks Da	IOS: In IOS: In IOS: In	ntroduc ence us	tion ing C	to Ob Core Da	jective ta and	e C I SQLit	OS fe	eatures	UI	implen	nentatio	n Touch	¹ 8 hrs
Textbooks: 1.James Dovey 2.Android in Pr	and Ash ractice",D	Furrow ream T	,"Be `ech,2	eginnin 2012 C	g objec harlie (ctive C Collins	?",Apro s,Mich	ess,202 ael Ga	212 Ipin ar	nd Mat	thiasKa	ppler	
Course outcom	es: At the	end of	the c	ourse,	the stu	dents	will be	able t	0				
CO1:Demonstr	ate know	ledge o	n bas	ics of r	nobile	applic	ation						
CO2:Understar	nd the frar	nework	of n	nobile a	applica	tion ar	nd desi	gn sim	ple int	terface	s		
CO3:Create an	applicatio	on using	g mul	ltimedi	a comp	ponent	s.						
CO4:Develop a	and deploy	y applic	ation	with s	server s	side co	nnecti	vity					
CO5:Understar	nd basic co	oncepts	of IC	OS									
CIE ASSESSM	IENT:												
Continuous Inte Three CIE Will	ernal Eval l be condu	luation	(CIE or 50): marks (each ai	nd ave	rage of	f three	will be	e taken	n (A)		

Three Quizzes will be conducted along with CIE for 10 Marks Each. Sum of three quizzes will be considered for 30 marks (B)

Two Assignments for 10 marks each and the sum of both the assignments will be taken for 20 Marks (C)

Final CIE Marks will be calculated as (A+B+C)/2 for 50 marks

SEE ASSESSMENT:

The theory exam consists of a written paper structured into two parts:

Part A: Carries 20 marks which include either objective-type or short descriptive questions. It is designed to cover the entire syllabus comprehensively.

Part B: This section carries a total of 80 marks and consists of 5 questions, with Either or choices. Students are required to answer one full question per module, selecting from the choices. Each question is valued at 16 marks and may include up to two sub-parts.

The SEE Theory marks of 100 will be scaled down to 50.

The final score for the course in the ratio of 50:50 of CIE and SEE Marks

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	
CO1	3	2	3	-	-	-	-	-	-	-	-	
CO2	3	2	3	-	1	-	-	-	-	-	-	
CO3	3	2	3	-	-	-	-	-	-	-	-	
CO4	3	2	3	-	1	-	-	-	-	-	-	
CO5	3	2	3	-	1	-	-	-	-	-	-	

Semester : VI									
	INTRODUCTIO	N TO AI							
Course Code:	MVJAI6044	CIE Marks: 50							
L: T:P:S	3:0:0:0	SEE Marks: 50							
Credits:	3	Total :100							
Hours:	40 Hrs Theory	SEE Duration: 3 Hrs.							

Course Objectives: This course will enable the students to:

1. Identify the problems where AI is required and the different methods available.

2. Compare and contrast different AI techniques available.

3. Define and explain learning algorithms.

4. Design different learning algorithms for improving the performance of AI systems.

5. Implement projects using different AI learning techniques.

Module-1

What is artificial intelligence, Problems, Problem Spaces and search, Heuristic search technique. Textbook 1,2

Widult-2	
Knowledge Representation Issues, Using Predicate Logic, Representing knowledge using Rules.	9 hrs
Textbook 1 :Chapter 3,4	0 111 5

Module_2

Module-3	
Symbolic Reasoning under Uncertainty, Statistical reasoning, Weak Slot and Filter Structures Textbook 1 : Chapter 5,6,7	8 hrs
Module-4	
Strong slot-and-filler structures, Game Playing. Application: Designing Smart Games. Textbook 1 : Chapter 8,9,10	8 hrs
Module-5	
Learning, Expert Systems. TextBook1: Ch 17 and 20 RBT: L1, L2	8 hrs
 Textbooks: 1 E. Rich , K. Knight & S. B. Nair - Artificial Intelligence, 3/e, McGraw Hill. 2 Stuart Russel, Peter Norvig, "Artificial Intelligence: A Modern Approach", 2nd Edition, Education, 2003. 	Pearson
3 Dan W. Patterson, Introduction to Artificial Intelligence and Expert Systems – Prentice Hal of Ind	ia.
Course outcomes: At the end of the course, the students will be able to CO1 Identify the AI based problems. CO2 Apply techniques to solve problems CO3 Define learning and explain various learning techniques. CO4 Discuss expert systems CO5 Implement projects using different AI learning techniques.	
CIE ASSESSMENT: Continuous Internal Evaluation (CIE): Three CIE Will be conducted for 50 marks each and average of three will be taken (A) Three Quizzes will be conducted along with CIE for 10 Marks Each. Sum of three quizzes considered for 30 marks (B) Two Assignments for 10 marks each and the sum of both the assignments will be taken for 20 Mark	will be s (C)
Final CIE Marks will be calculated as $(A+B+C)/2$ for 50 marks	
SEE ASSESSMENT:	
The theory exam consists of a written paper structured into two parts:	
Part A: Carries 20 marks which include either objective-type or short descriptive questions. It is a to cover the entire syllabus comprehensively	lesigned
Part B: This section carries a total of 80 marks and consists of 5 questions, with Either or choices. are required to answer one full question per module, selecting from the choices. Each question is v 16 marks and may include up to two sub-parts.	Students valued at

The SEE Theory marks of 100 will be scaled down to 50. The final score for the course in the ratio of 50:50 of CIE and SEE Marks

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	
CO1	2	-	-	-	-	1	1	2	-	-	-	
CO2	2	-	-	-	-	1	1	2	-	-	-	
CO3	2	2	2	2	-	1	1	2	2	1	-	
CO4	2	2	2	2	-	1	1	2	2	1	-	

CO5	2	-	-	-	-	1	1	2	-	-	-

Semester • VI										
MACHINE LEARNING LAB										
Course	Code:	MVJAIL606	CIE Marks: 50							
L: T:P:S	5	0:0:2:0	SEE Marks: 50							
Credits:		1	Total :100							
Hours:		24 Hrs of Practical	SEE Duration: 3 Hrs.							
Course (Diectives: This course	will enable the students to:								
Make us	e of Data sets in imple	menting the machine learning alg	orithms Implement the machine learning							
concepts	and algorithms in any s	suitable language of choice.								
Sl No	List of Experiments									
1	Implement and demor	istrate the FIND-S algorithm for the training data samples. Read the training	nding the most specific hypothesis based							
	Implement and demo	nstrate the Candidate Elimination	algorithm for finding the most specific							
2	hypothesis based on a	given set of training data samples. Read the training data from a .CS								
3	Develop a program t	Develop a program to demonstrate the prediction of values of a given dataset using Linear								
3	regression	regression								
	Write a program to d	emonstrate the working of the de	cision tree based ID3 algorithm. Use an							
4	appropriate data set for building the decision tree and apply this knowledge to classify a new									
	sample. Divid an Artificial Neural Network by implementing the Deckmon section elegenithm and test the									
5	same using appropriate data sets.									
(Write a program to in	nplement the naïve Bayesian class	ifier for a sample training data set stored							
6	as a .CSV file. Compu	ite the accuracy of the classifier, co	onsidering few test data sets.							
	Assuming a set of documents that need to be classified, use the naïve Bayesian Classifier model									
7	to perform this task. Built-in Java classes/API can be used to write the program. Calculate the									
	accuracy, precision, an	nd recall for your data set.	idening modical data. Use this model to							
8	demonstrate the diagnosis of heart nations using standard Heart Disease Data Set. You can use									
0	Java/Python ML library classes/API									
	Apply EM algorithm to cluster a set of data stored in a .CSV file. Use the same dataset for									
9	clustering using k- Means algorithm. Compare the results of these two algorithms and comment									
	on the quality of clustering. You can add Java/Python ML library classes/API in the program									
10	Write a program to implement k-Nearest Neighbour algorithm to classify the iris data set. Print									
	both correct and wrong predictions. Java/Python ML library classes can be used for this problem									
11	Implement the non-parametric Locally Weighted Regression algorithm in order to fit data points. Select appropriate data set for your experiment and draw graph									
Course (Dutcomes: At the end of	the course, the student will be able	e to							
CO1 Preprocess raw data for machine learning algorithms. to implement andevaluate linear regression										
models.	models.									
CO2 Implement and evaluate logistic regression models.										

CO3 Implement and evaluate KNN models for both classification and regression tasks. To implement and evaluate SVM models with different kernels.

CO4 Perform dimensionality reduction using PCA and understand its impact on the dataset. to implement and evaluate K-Means clustering and determine the optimal number of clusters.

CO5 To implement and evaluate ensemble methods and understand their advantages over individual models.

Reference Books:

1 Tom M. Mitchell, Machine Learning, India Edition 2013, McGraw Hill Education. 2 Trevor Hastie, Robert Tibshirani, Jerome Friedman, h The Elements of Statistical Learning, 2nd edition, springer series in statistics.

2. R Programming for Data Science by Roger D. Peng (References)

3. The Art of R Programming by Norman Matloff Cengage Learning India.

Semester: V	7
-------------	---

INDIANKNOWLEDGE SYSTEMS

Course Code:		MVJIKK608	CIE Marks: 50				
L: T:P:S		1:0:0:0	SEE Marks: 50				
Cre	dits:	1	Total :100				
Hours:		12 Hrs Theory	SEE Duration: 2 Hrs.				
Cou	rseLearningO	bjectives: The students will be able to					
1	TofacilitatethestudentswiththeconceptsofIndiantraditionalknowledgeandtomakethemunderstand the Importance of roots of knowledge system.						
2	Tomakethestudentsunderstandthetraditionalknowledgeandanalyseitandapplyit to their day-to- day life.						

Unit-I 05Hrs Introduction to Indian Knowledge Systems (IKS): Overview, Vedic Corpus, Philosophy,

Character scope and importance, traditional knowledge vis-a-vis indigenous knowledge, traditional knowledge vs. western knowledge.

05Hrs

05Hrs

Unit–II

Traditional Knowledge in Humanities and Sciences: Lingistics, Number and measurements-Mathematics, Chemistry, Physics, Art, Astronomy, Astrology, Crafts and Trade in India and Engineering and Technology.

Unit-III

TraditionalKnowledgeinProfessionaldomain: Townplanningandarchitecture-

Construction,Health,wellnessandPsychology-Medicine,Agriculture,Governanceandpublic administration, United Nations Sustainable development goals.

Course	Outcomes:Aftercompletingthecourse,thestudentswillbeableto
CO1:	ProvideanoverviewoftheconceptoftheIndianKnowledgeSystemanditsimportance.
CO2:	Appreciatetheneedfor and importance of protecting traditional knowledge.
CO3:	Recognize there levance of Traditional knowledge in different domains.
CO4:	EstablishthesignificanceofIndianKnowledgesystemsinthecontemporaryworld.

Refe	erenceBooks
	IntroductiontoIndianKnowledgeSystem-conceptsandapplications,BMahadevan,
1	VinayakRajatBhat,NagendraPavanaRN,2022,PHILearningPrivateLtd,ISBN-978-93- 91818- 21-0
	TraditionalKnowledgeSysteminIndia,AmitJha,2009,AtlanticPublishersandDistributors
	(P)Ltd.,ISBN-13:978-8126912230,
2	KnowledgeTraditionsandPracticesofIndia,KapilKapoor,AvadeshKumarSingh,Vol.1,
	2005,DKPrintWorld(P)Ltd.,ISBN81-246-0334,
	SuggestedWebLinks:
1.	https://www.youtube.com/watch?v=LZP1StpYEPM
2.	http://nptel.ac.in/courses/121106003/
3.	http://www.iitkgp.ac.in/department/KS;jsessionid=C5042785F727F6EB46CBF432D7683B63(Ce
	ntre of Excellence for Indian Knowledge System, IIT Kharagpur)
4.	https://www.wipo.int/pressroom/en/briefs/tk_ip.html
5.	https://unctad.org/system/files/official-document/ditcted10_en.pdf
6.	http://nbaindia.org/uploaded/docs/traditionalknowledge_190707.pdf
7.	https://unfoundation.org/what-we-do/issues/sustainable-development- goals/?gclid=EAIaIQobChMInp-Jtb_p8gIVTeN3Ch27LAmPEAAYASAAEgIm1vD_BwE

Continuous Internal Evaluation (CIE) – 50 Marks

The CIE for the mandatory credit courses common across all disciplines comprises of two components as follows:

Internal Assessment Tests (30 Marks):

Two Internal Assessment tests will be conducted, each comprising 50 multiple choice questions for a total of 50 marks. The average of the two test scores will be scaled down to 30 marks.

Assignments (20 Marks):

Students are required to complete two assignments, each carrying 10 marks. These assignments may include projects*, poster presentations*, seminars*, or similar academic activities. The marks of the two assignments are added to get 20 marks.

*Each assignment will undergo two rounds of evaluation to assess progress and quality

At the beginning of the semester, the instructor/faculty teaching the course has to announce the methods of Assignment for the course.

Together, these two components are added to get the Final CIE marks of 50.

Semester End Examination (SEE) – 50 Marks

A Semester End Examination is conducted for 50 marks comprising of multiple-choice questions (MCQ) type each of one mark.

CO-POMapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	2	-	-	-	-	-	-	3	-	-	1
CO2	-	-	-	-	-	2	-	-	-	-	-
CO3	-	-	2	2	-	-	-	-	-	-	-
CO4	-	-	-	-	-	3	2	-	-	-	-

High-3:Medium-2:Low-1

Somestor • VII							
Deep Learning and Reinforcement Learning							
Course Code:	MVJAI701	CIE Marks: 50					
L: T:P:S	3:0:0:0	SEE Marks: 50					
Credits:	4	Total :100					
Hours:	40 Hrs Theory	SEE Duration: 3 Hrs.					
Course Objectives: This course	e will enable the students to):					
1. Learn feed-forward dee	p networks.						
2. Understand convolutional networks and sequence modelling.							
3. Study probabilistic models and auto encoders.							
4. Expose the students to various deep generative models.							
5. Study the various appli	cations of deep learning.						
	Module-1: Intr	oduction					
Introduction: History of Deep	Learning, McCulloch Pitts	Neuron, Multilayer Perceptrons (MLPs),					
Representation Power of MLPs,	Sigmoid Neurons, Feed Forv	ward Neural Networks, Back propagation.					
Activation Functions & Param	eters: Gradient Descent (GD), Momentum Based GD, Nesterov	8 Hrs				
Accelerated GD, Stochastic GD,	Principal Component Analy	sis and its interpretations, Singular Value					
Decomposition,							
Module 2: Auto Encodors & Degularization							
Auto encoders and relation to PCA. Regularization in auto encoders. Denoising auto encoders							
Sparse auto encoders Regularization: Bias Variance Tradeoff 1.2 regularization Farly							
stopping Dataset augmentation Encoder Decoder Models Attention Mechanism Attention 8							
over images. Batch Normalization							
Module-3: Deen Learning Model							

Deep Learning Models:Introduction to CNNs, Architecture, Convolution/pooling layers, CNN						
Applications, LeNet, AlexNet, ZF-Net, VGGNet, GoogLeNet, ResNet. Introduction to RNNs						
KNN, Back propagation through time (BPTT), Vanishing and Exploding Gradients, Truncated	8 hrs					
BPTT, GRU, LSTMs, Deep Learning Applications: Image Processing, Natural Language						
Processing, Speech recognition, VideoAnalytics						
Module-4: INTRODUCTION AND MULTI ARMED BANDITS						
Reinforcement Learning Primitives: Introduction, Basics of RL, Defining RL Framework,						
Probability Basics: Probability Axioms, Random Variables, Probability Mass Function,	9 has					
Probability Density Function, CumulativeDistribution Function and Expectation. Introduction	8 nrs					
to Agents, Intelligent Agents- ProblemSolving - Searching, Logical Agents.						
Module-5: FINITE MARKOV DECISION PROCESS						
Finite Markov Decision Process: Basics, The Agent-Environment Interface, Goals and Rewards,						
Returns and Episodes, Unified Notation for Episodic and Continuing Tasks, Policies and Value						
Functions, Optimal Policies and optimal Value Functions, Optimality and Approximation.						
DYNAMIC PROGRAMMING						
Dynamic Programming: Definition, Policy Evaluation (Prediction), Policy Improvement, Policy	8 hrs					
Iteration,						
Value Iteration, Asynchronous dynamic programming, Generalized Policy Iteration, Efficiency						
of dynamic programming.						
	ļ					

Laboratory Experiments – 24P

SI.NO	Experiments
1	Build an Artificial Neural Network by implementing the Backpropagation algorithm and test the same using appropriate data sets.
2	Write a program to implement the naïve Bayesian classifier for a sample training data set stored as a .CSV file. Compute the accuracy of the classifier, considering few test data sets.
3	Writea programto construct a Bayesian network considering medical data. Use this model to demonstrate the diagnosis of heart patients using standard Heart Disease Data Set. You can use Python ML library classes/API.
4	Write a program to implement Continuous Bag of Words Model using KNN Algorithm (using Python).
5	Build an image classification model to detect if the person has cancer or not.
6	Build a chatbot to identify the context the user is asking and then provide it with the relevantanswer.

7	Implement a Human Face Recognition Model and determine the accuracy in detecting the boundingboxes of the human face							
8	Build a model that takes an image as input and determines whether the image contains a picture of adog or a cat.							
9	Implement Q-learning algorithm to navigate a grid world and learn an optimal policy.							
10	Implement Asynchronous dynamic programming in python.							
Course CO1: 1 CO2: 1 CO3: 1 CO4: 1 CO5: 1	Course outcomes: At the end of the course, the students will be able to CO1: Understand the fundamentals of deep learning and the main research activities in this field. CO2: Remember architectures and optimization methods for deep neural network training. CO3: Implement, apply, and test relevant learning algorithms in TensorFlow. CO4: Understand the fundamentals of Reinforcement learning. CO5: Understand the finite markov decision process.							
Text E	Books:							
1. Yo 2. Mig	shuaBengioand IanJ.GoodfellowandAaron Courville,"DeepLearning",MITPress,2015. guel Morales, Grokking Deep Reinforcement Learning, Manning Publications, 2020.							
Refere 1. Ric 2019.	Reference Books: 1. RichardS.SuttonandAndrewG.Barto,Reinforcementlearning:AnIntroduction, Second Edition, MIT Press, 2019.							
2. Ken Pythor Manni	2. Keng, Wah Loon, Graesser, Laura, Foundations of Deep Reinforcement Learning: Theory and Practice in Python, Addison Wesley Data & Analytics Series, 2020. 4. Francois Chollet, Deep Learning with Python, Manning Publications, 2018.							
	COECOMENT							
CIE A Theor	v for 50 Marks							
Three	CIE Will be conducted for 50 marks each and average of three will be taken (A)							
Three	Three Quizzes will be conducted along with CIE for 10 Marks Each. Sum of three quizzes will be							
consid	considered for 30 marks (B) Two Assignments for 10 marks each and the sum of both the assignments will be taken for 20 Marks (C)							
Final (CIE Marks will be calculated as $(A+B+C)/2$ for 50 marks							
Labor	ratory- 50 Marks							
Week	tly Evaluation 30 Marks	Westster						
Attend experi	Weekly evaluation will be conducted for every experiment. Marks of each evaluation includes Weekly Attendance + Experiment conduction along with Record / Observation + Weekly viva for all the experiments. The total of all these evaluated marks are added and the total marks will be scaled to 30 marks.							
(A)								

Two CIE for 20 Marks each and take the average for 20 Marks (B)

Final CIE Marks will be calculated as A+B for 50 marks

For IPCC Final CIE Marks will be calculated as Average of CIE and Lab CIE for 50 marks.

SEE ASSESSMENT:

The theory exam consists of a written paper structured into two parts:

Part A: Carries 20 marks which include either objective-type or short descriptive questions. It is designed to cover the entire syllabus comprehensively.

Part B: This section carries a total of 80 marks and consists of 5 questions, with Either or choices. Students are required to answer one full question per module, selecting from the choices. Each question is valued at 16 marks and may include up to two sub-parts.

The SEE Theory marks of 100 will be scaled down to 50 (A)

SEE Laboratory Examination (50 Marks)

The laboratory SEE is also evaluated for 50 marks, distributed as follows:

Experiment Conduction with Results: 40 marks

Viva Voce: 10 marks

Total 50 marks (B)

The score for the SEE is A+B of total 100 marks

The final score for the course in the ratio of 50:50 of CIE and SEE Marks

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	2	2	-	1	2	_	-	-	-	2
CO2	3	2	2	-	1	2	-	-	-	-	2
CO3	3	2	2	-	1	2	-	-	-	-	2
CO4	3	2	3	-	1	2	-	-	-	-	2
CO5	3	3	3	3	1	2	1	1	1	1	2

Semester : VII							
Machine learning II							
Course Code:	MVJAI702	CIE Marks: 50					
L: T:P:S	3:0:2:0	SEE Marks: 50					
Credits:	4	Total :100					
Iours:40 Hrs TheorySEE Duration: 3 Hrs.							
Hours:	40 Hrs Theory	SEE Duration: 3 Hrs.					

Course Objectives: This course will enable the students to:

• Understand eigenvalues, eigenvectors, and their significance in linear algebra and concepts related to singular value decomposition (SVD)

• Understanding Bayesian Approaches

• Understand the theoretical foundations of machine learning and how learning algorithms adapt based on observed errors.

• Understand the motivation behind using genetic algorithms (GAs) for solving complex problems and Understand the basics of reinforcement learning (RL).

• Explore how prior knowledge can enhance learning

Module-1: Matrix Analysis

Matrix Analysis: Eigen analysis, Rank Analysis, and Spectral Graph Theory, Probability:						
Exponential family of distribution, Sufficient Statistics, Overview of Statistical Estimation: MLE,						
MAP, and Bayes Principle	0 II					
Machine Learning Theory:Foundational Aspects of Learning, PAC Learning, VC Dimension,	δΠIS					
Learnability ,Structural and Empirical Risk ,Minimizing Risk: Minimizing the VC dimension,						
Minimal Complexity Machines, Data Augmentation						
Module-2: Bayesian learning						
Introduction, Bayes theorem, Bayes theorem and concept learning, Maximum Likelihood and least						
squared error hypotheses, maximum likelihood hypotheses for predicting probabilities, minimum	0 h.m.a					
description length principle, Bayes optimal classifier, Gibs algorithm, Naïve Bayes classifier, an	0 1115					
Introduction, Bayes theorem, Bayes theorem and concept learning, Maximum Likelihood and least squared error hypotheses, maximum likelihood hypotheses for predicting probabilities, minimum description length principle, Bayes optimal classifier, Gibs algorithm, Naïve Bayes classifier, an	8 hrs					

example: learning to classify text, Bayesian belief networks, the EM algorithm. Module-3: Computational learning theory and

Instance-Based Learning						
Computational learning theory –						
Introduction, probably learning an approximately correct hypothesis, sample complexity for finite hypothesis space, sample complexity for infinite hypothesis spaces, the mistake bound model of learning.	8 hrs					
Instance-Based Learning-						
Introduction, k-nearest neighbour algorithm, locally weighted regression, radial basis functions, case- based reasoning, remarks on lazy and eager learning.						
Module-4: Genetic Algorithms						
Genetic Algorithms –						
Motivation, Genetic algorithms, an illustrative example, hypothesis space search, genetic programming, models of evolution and learning, parallelizing genetic algorithms.						
Learning Sets of Rules –						
Introduction, sequential covering algorithms, learning rule sets: summary, learning First-Order rules, learning sets of First-Order rules: FOIL, Induction as inverted deduction, inverting resolution.	8 hrs					
Reinforcement Learning –						
Introduction, the learning task, Q-learning, non-deterministic, rewards and actions, temporal difference learning, generalizing from examples, relationship to dynamic programming.						
Module-5: Analytical Learning						
Analytical Learning-1-						
Introduction, learning with perfect domain theories: PROLOG-EBG, remarks on explanation- based learning, explanation-based learning of search control knowledge.						
Analytical Learning-2-	8 hrs					
Using prior knowledge to alter the search objective, using prior knowledge to augment search operators. Combining Inductive and Analytical Learning – Motivation, inductive-analytical approaches to learning, using prior knowledge to initialize the hypothesis.						
Laboratory Experiments: 24P						
 The probability that it is Friday and that a student is absent is 3%. Since there are 5 school days in a week, the probability that it is Friday is 20%. What is theprobability that a student is absent given that today is Friday? Apply Baye's rule in python to get the result. (Ans: 15%) Extract the data from database using python. Implement k-nearest neighbours classification using python Given the following data, which specify classifications for nine Combinations of VAR1 and VAR2 predict a classification for a case where VAR1=0.906 and VAR2=0.606, using the result of k- 						
 The following training examples map descriptions of individuals onto high, medium and lov 	v credit-					

5. The following training examples map descriptions of individuals onto high, medium and low creditworthiness.Input attributes are (from left to right) income, recreation, job, status, age-group, homeowner. Find the unconditional probability of 'golf' and the conditional probability of 'single' given 'medRisk' in the dataset.

- 6. Implement linear regression using python.
- 7. Implement naive baye's theorem to classify the English text
- 8. Implement an algorithm to demonstrate the significance of genetic algorithm.
- 9. Implement the finite words classification system using Back-propagation algorithm.

10. Carry out the performance analysis of classification algorithms on a specific dataset.

Course outcomes: At the end of the course, the students will be able to

CO1: Understand the theoretical foundations of machine learning.

CO2: Understand the foundations of Bayesian inference.

CO3: Understand a very broad collection of machine learning algorithms and problems .

CO4: Explore a practical example to see how GAs work.

CO5: Determining how to use explanations to guide search processes .

Textbooks and References:

1."Matrix Analysis for Statistics" by James R. Schott.

- 2. <u>https://archive.org/details/BolstadWilliamM.CurranJamesMIntroductionToBay</u>esianStatistics2016Wiley
- 3. An Introduction to Genetic Algorithms By Melanie Mitchell
- 4. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow" by Aurélien Géron.

CIE ASSESSMENT:

Theory for 50 Marks

Three CIE Will be conducted for 50 marks each and average of three will be taken (A)

Three Quizzes will be conducted along with CIE for 10 Marks Each. Sum of three quizzes will be considered for 30 marks (B)

Two Assignments for 10 marks each and the sum of both the assignments will be taken for 20 Marks (C) Final CIE Marks will be calculated as (A+B+C)/2 for 50 marks

Laboratory- 50 Marks

Weekly Evaluation 30 Marks

Weekly evaluation will be conducted for every experiment. Marks of each evaluation includes Weekly Attendance + Experiment conduction along with Record / Observation + Weekly viva for all the experiments. The total of all these evaluated marks are added and the total marks will be scaled to 30 marks. (A)

Two CIE for 20 Marks each and take the average for 20 Marks (B)

Final CIE Marks will be calculated as A+B for 50 marks

For IPCC Final CIE Marks will be calculated as Average of CIE and Lab CIE for 50 marks.

SEE ASSESSMENT: THEORY – 100 MARKS

The theory exam consists of a written paper structured into two parts:

Part A: Carries 20 marks which include either objective-type or short descriptive questions. It is designed to cover the entire syllabus comprehensively.

Part B: This section carries a total of 80 marks and consists of 5 questions, with Either or choices. Students are required to answer one full question per module, selecting from the choices. Each question is valued at 16 marks and may include up to two sub-parts.

The SEE Theory marks of 100 will be scaled down to 50 (A)

SEE Laboratory Examination (50 Marks)

The laboratory SEE is also evaluated for 50 marks, distributed as follows:

Experiment Conduction with Results: 40 marks

Viva Voce: 10 marks Total 50 marks (B)

The score for the SEE is A+B of total 100 marks The final score for the course in the ratio of 50:50 of CIE and SEE Marks

CO-PO MAPPING

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	2	2	2	1	2	_	-	-	-	2
CO2	3	2	2	2	1	2	-	-	-	-	2
CO3	3	2	2	2	1	2	-	-	-	-	2
CO4	3	2	3	2	1	2	-	-	-	-	2
CO5	3	2	2	2	1	2	-	-	1	1	2

Semester : VII						
Data Security and Privacy						
Course Code:	MVJAI703	CIE Marks: 50				
L: T:P:S	3:0:0:0	SEE Marks: 50				
Credits:	3	Total :100				
Hours:	40 Hrs Theory	SEE Duration: 3 Hrs.				

Course Objectives: This course will enable the students to:

1. Understand the fundamentals of database systems, data analysis, and security, including data storage and representation, exploratory data analysis, authentication and authorization, and database security measures to protect data from unauthorized access and threats.

2. Understand and implement techniques for protecting individual privacy and anonymity in data.

3. Understand fundamentals of Differential Privacy (DP), including its formalism, mechanisms, and properties, and to learn how to apply DP concepts.

4. Understand various adversarial attacks on AI/ML systems, including poisoning, evasion, and backdoor attacks.

5. Understand the fundamental concepts and principles of privacy, legal and ethical issues in computer security.

Module-1: Fundamentals of Data Privacy & Security

Databases and Exploratory Data Analysis, Data Representation and Storage, Authentication and Authorization, Database Security

Module-2: Anonymization							
Linkage and re-identification attacks, k-anonymity, 1-diversity, t-closeness, Implementing	0 h.m.a						
anonymization. Anonymizing complex data, Privacy and anonymity in mobile environments.	8 mrs						
Module-3: Differential Privacy (DP)							
Formalism and interpretation of DP, Fundamental DP mechanisms and properties Interactive and							
non-interactive DP, DP for complex data, Local Differential Privacy (LDP)	0 111 5						
Module-4: Security and Privacy in AI and Machine Learning (AI/ML)							
Adversary modeling in AI/ML, Poisoning, evasion, and backdoor attacks, Test-time attacks:							
Model inversion, model stealing, membership inference, adversarial examples.							
Architectures and algorithms for privacy-preserving machine learning.							

Module-5: Privacy, Legal and Ethical Issue:

Privacy: Privacy Concepts, Privacy Principles and Policies, Authentication and Privacy, Data Mining, Privacy on the Web, E-Mail Security, Impacts on Emerging Technologies. Legal and Ethical Issues in Computer Security: Protecting Programs and Data, Information and the Law, Rights of Employees and employers, Redress for Software Failures, Computer Crime, Ethical Issues in Computer Security.

Course outcomes: At the end of the course, the students will be able to

CO1 design, implement, and secure database systems, perform exploratory data analysis, and ensure data privacy and security through authentication, authorization, and database security measures.

CO2 design and implement privacy-preserving data analysis techniques, including anonymization,

differential privacy, and secure data sharing, to protect individual privacy and anonymity in various data settings.

CO3 apply the principles of Differential Privacy to design and analyze privacy-preserving algorithms and systems, ensuring robust privacy guarantees for individual data in various

applications.

CO4 Identify, analyze, and develop countermeasures against various adversarial attacks on AI/ML

systems, including data poisoning, evasion, and backdoor attacks, to ensure the security and robustness of machine learning models.

CO5 Evaluate the privacy, legal, and ethical implications of computer security practices and technologies, and design solutions that balance security with individual privacy rights and ethical considerations.

Textbooks:

1. DataPrivacyandSecuritybySalomon,David,Springer,2003.(Module III)

 $2. Security in Computing by Charles Pfleeger, Shari Lawrence Pfleeger, 5th Edition, PHI, 2015. \ (Module Charles Pfleeger, Shari Lawrence Pfleeg$

IV)

ReferenceBooks:

1. InformationSecurity:PrinciplesandPractice byMarkStamp,WileyInterScience,2011.

2. ComputerSecurity: ArtandSciencebyMattBishop,FirstEdition,Addison Wesley,2002.

CIE ASSESSMENT:

Three CIE Will be conducted for 50 marks each and average of three will be taken (A)

Three Quizzes will be conducted along with CIE for 10 Marks Each. Sum of three quizzes will be considered for 30 marks (B)

Two Assignments for 10 marks each and the sum of both the assignments will be taken for 20 Marks (C) Final CIE Marks will be calculated as (A+B+C)/2 for 50 marks

SEE ASSESSMENT:

The theory exam consists of a written paper structured into two parts:

Part A: Carries 20 marks which include either objective-type or short descriptive questions. It is designed to cover the entire syllabus comprehensively.

Part B: This section carries a total of 80 marks and consists of 5 questions, with Either or choices. Students are required to answer one full question per module, selecting from the choices. Each question is valued at 16 marks and may include up to two sub-parts.

The SEE Theory marks of 100 will be scaled down to 50.

The final score for the course in the ratio of 50:50 of CIE and SEE Marks

CO-PO MAPPING

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	2	2	2	-	-	-	-	1	2	2	2
CO2	2	2	2	-	-	1	-	1	2	2	2
CO3	2	2	2	2	1	1	-	1	2	2	2
CO4	1	2	2	2	1	1	-	1	2	2	2
CO5	1	2	2	1	1	1	2	1	2	2	2

Semester : VII								
	IOT ANALYTI							
Course Code:	MIVJA1/041	CIE Marks: 50						
	3:0:0:0	SEE Marks: 50						
Credits:								
Hours:40 Hrs TheorySEE Duration: 3 Hrs.								
Course Objectives: This course will enable the students to: The course provides a detailed description of IoT analytics and the integration of big datainto IoT. The course also has a detailed description on the toolsthat can be used for analytics.								
	Module-1							
Introduction, IoT data and big data, challenges of IOT analytics applications, IOT analytics lifecycle andtechniques, conclusions. IoT, Cloud and Big Data Integration for IoT Analytics troduction, cloud based IOT platforms, data analytics for the IOT, Data collection using low power Lawrence radios WAZIUP software platform iKaaS software platform								
	Module-2							
Introduction, VITAL archite Development Examples. Open as-a-Service, Sensing - as-a-Service Delivery, Sensing - as-a-Service Service.	Introduction, VITAL architecture for IoT Analytics, VITAL development environment, Development Examples. Open-Source Framework Introduction, Architecture for IoT Analytics- as-a-Service, Sensing - as-a-Service Infrastructure Anatomy, Scheduling, Metering and Service Delivery, Sensing - as-a-Service Example, From Sensing - as-a-Service to IoT Analytics- as-a- Service							
	Module-3							
Introduction, Related Work, Se	mantic Analytics, Tools and I	Platforms, A Practical Use Cases.	8 hrs					
	Module-4							
Data Analytics in Smart Buildin A proposal of a general architec for Energy Efficiency in Smart	ngs Introduction, Addressing cture for management system Buildings, Evaluation and Re	Energy Efficiency in Smart Buildings, s of smart buildings, IoT based system esults.	8 hrs					
	Module-5							
Introduction, Cloud based Io Edge based solutions, Edge bas	T Analytics, Cloud based ci ed IoT Analytics, Use case of	ity platform, new challenges towards f Edge based data analytics.	8 hrs					
Textbooks: 1. John Soldatos (Editor), Building Blocks for IoT Analytics Internet of Things Analytics, River Publishers Series in Signal, Image and Speech Processing.								
Course Outcome: The studen	Course Outcome: The students will be able to							
CO1:Interpret the impact and challenges posed by IoT networks leading to new architectural models CO2:Compare and Contrast the deployment of smart objects and technologies to connect them to network CO3: Appraise the role of IoT protocols for efficient network communication CO4:Elaborate the need for Data Analytics and security in IoT CO5: Illustrate different sensor technologies for sensing real world entities and identify the application of								
IoT in Industry								

CIE ASSESSMENT:

Continuous Internal Evaluation (CIE):

Three CIE Will be conducted for 50 marks each and average of three will be taken (A) Three Quizzes will be conducted along with CIE for 10 Marks Each. Sum of three quizzes will be considered for 30 marks (B) Two A seignments for 10 marks each and the sum of both the secience at will be taken for 20 Marks (C)

Two Assignments for 10 marks each and the sum of both the assignments will be taken for 20 Marks (C)

Final CIE Marks will be calculated as (A+B+C)/2 for 50 marks

SEE ASSESSMENT: Semester End Examination (SEE):

The theory exam consists of a written paper structured into two parts:

Part A: Carries 20 marks which include either objective-type or short descriptive questions. It is designed to cover the entire syllabus comprehensively.

Part B: This section carries a total of 80 marks and consists of 5 questions, with Either or choices. Students are required to answer one full question per module, selecting from the choices. Each question is valued at 16 marks and may include up to two sub-parts.

The SEE Theory marks of 100 will be scaled down to 50.

The final score for the course in the ratio of 50:50 of CIE and SEE Marks

CO-PO MAPPING

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	3	2	2	2						3
CO2	2	1	2	2	2						3
CO3	1	1	2	2	3						2
CO4	2	2	2	2	3						1
CO5	1	1	3	3	3						2

Semester : VII						
BUSINESS ANALYTICS						
Course Code:	MVJAI7042	CIE Marks: 50				
L: T:P:S	3:0:0:0	SEE Marks: 50				
Credits:	3	Total :100				
Hours:	40 Hrs Theory	SEE Duration: 3 Hrs.				

Course Objectives: This course will enable the students to:

1. Provide solutions, assessments, and validation to a broad range of situations by eliciting, planning, monitoring, and analyzing enterprise requirements.

2. Work as a professional maintaining high standards of practice, making ethical/legal judgments and decisions, and sustaining professional standing through a commitment to life-long learning.

3. Demonstrate effective use of written, verbal, and non-verbal communication, employing relevant knowledge, skills, and judgment in a business setting.

Module-1

Analytics and Data Science – Analytics Life Cycle – Types of Analytics – Business Problem 8hrs

Definition – Data Collection – Data Preparation – Hypothesis Generation – Modeling – Validation and Evaluation – Interpretation – Deployment and Iteration.					
Module-2					
Data Warehouses and Data Mart – Knowledge Management -Types of Decisions – Decision Making Process – Decision Support Systems – Business Intelligence -OLAP – Analytic function. Module-3	8 hrs				
Human Pasauraas Dianning and Pasauitment Training and Davalanment Sunnly shain					
network – Planning Demand, Inventory and Supply – Logistics – Analytics applications in HR & Supply Chain – Applying HR Analytics to make a prediction of the demand for hourly employees for a year. Pedagogy Chalk and Board, Problem-based learning.	8 hrs				
Module-4					
Marketing Strategy, Marketing Mix, Customer Behaviour -selling Process – Sales Planning - Analytics applications in Marketing and Sales – predictive analytics for customers' behaviour in marketing and sales.	8 hrs				
Module-5					
DSS- Executive and enterprise support- Automated decision support - Web analytics- Datamining- Applied artificial intelligence - Visual analysis: Data concepts – Data Dashboards -Data exploration & visualization – Scorecards	8 hrs				
Textbooks: 1.R. Evans James, Business Analytics, 2nd Edition, Pearson, 2017 2.R N Prasad, Seema Acharya, Fundamentals of Business Analytics, 2nd Edition, Wiley, 2016 3.Philip Kotler and Kevin Keller, Marketing Management, 15th edition, PHI, 2016 4.VSP RAO, Human Resource Management, 3rd Edition, Excel Books, 2010. 5.Mahadevan B, "Operations Management -Theory and Practice",3rd Edition, Pearson Education,2018. 6.Umesh R Hodeghatta and Umesha Nayak, Business Analytics Using R - A CIE ASSESSMENT: Three CIE Will be conducted for 50 marks each and average of three will be taken (A) Three Quizzes will be conducted along with CIE for 10 Marks Each. Sum of three quizzes will be considered for 30 marks (B) Two Assignments for 10 marks each and the sum of both the assignments will be taken for 20 Marks (C) Final CIE Marks will be calculated as (A+B+C)/2 for 50 marks					
SEE ASSESSMENT:					
The theory exam consists of a written paper structured into two parts:					
Part A: Carries 20 marks which include either objective-type or short descriptive questions. It is descover the entire syllabus comprehensively.	igned to				
Part B: This section carries a total of 80 marks and consists of 5 questions, with Either or choices. are required to answer one full question per module, selecting from the choices. Each question is v 16 marks and may include up to two sub-parts.	Students valued at				
The SEE Theory marks of 100 will be scaled down to 50.					
The final score for the course in the ratio of 50:50 of CIE and SEE Marks					

CO-PO MAPPING

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	3	1	2	2						
CO2	3	3		2	2						
CO3	3	3	2	2	3						
CO4	3	2	3	2	3						
CO5	3	3	3	3	3						

Semester : VII								
	SOFT COMPUTING							
Course Code:	MVJAI7043	CIE Marks: 50						
L: T:P:S	3:0:0:0	SEE Marks: 50						
Credits:	3	Total :100						
Hours:	40 Hrs Theory	SEE Duration: 3 Hrs.						

Course Objectives: This course will enable the students to:

1. Understand the fundamentals of soft computing, including machine learning and computational intelligence, and equip them with the knowledge and skills to apply soft computing techniques to real-world problems, such as sales forecast prediction using back propagation networks.

2. Understanding of artificial neural networks (ANNs), including their architecture, training, and applications, to enable them to design and implement ANNs to solve real-life problems, including natural language processing.

3. Analyze the principles and concepts of fuzzy logic, enabling them to design and apply fuzzy inference systems and controllers to solve real-world problems, including those that involve uncertainty and ambiguity.

4. Analyze the fundamental concepts and procedures of Genetic Algorithms (GA), including encoding, initialization, selection, and genetic operators, to enable them to design and apply GA to solve optimization and search problems.

5. Analyze the principles and applications of computational intelligence paradigms, including swarm intelligence and particle swarm optimization, to enable them to design and apply these techniques to solve

complex optimization and search problems.

Module-1	
INTRODUCTION TO SOFT COMPUTING: Evolution of Computing, Concept of computing systems. Soft Computing Constituents, From Conventional AI to Computational Intelligence, Machine Learning Basics, Some applications of soft computing techniques Real Time Applications: Framework for predicting analytics on sales forecast using back propagation network	8hrs
Module-2	
NEURAL NETWORKS: Biological neurons and it's working, Simulation of biological neurons to problem solving. Architecture-: Single Layer and Multilayer -Feed Forward Networks-Training and Learning methods, Applications of ANNs to solve some real-life problems. Real Time Applications: Natural Language processing using artificial neural networks.	8 hrs
Module-3	
 FUZZY LOGIC: Introduction to Fuzzy logic, Fuzzy Sets, Membership Functions, Operations on Fuzzy sets, Fuzzy Rules and Fuzzification and Defuzzification, Fuzzy Inference Systems, Fuzzy logic controller design, Some applications of Fuzzy logic. Real Time Applications: Traffic Simulation System Based on Fuzzy Logic Fuzzy logic rule based medical diagnosis system. Video link: https://onlinecourses.nptel.ac.in/noc20_ma48/ https://nptel.ac.in/courses/111/102/111102130/ 	8 hrs
Module-4	1
Basic Concepts – Working Principle – Procedures of GA – Flow Chart of GA - Genetic Representation: (Encoding) Initialization and Selection – Genetic Operators: Encoding,	8 hrs
Module-5	1
COMPUTATIONAL INTELLIGENCE: Computational Intelligence Paradigms, Swarm Intelligence Techniques, Basic Particle Swarm Optimization, Applications. Real Time Applications: Hybrid Computational Intelligence Systems for Real World Applications Video link: https://nptel.ac.in/courses/106/106/106106126/	8 hrs
Course outcomes: At the end of the course, the students will be able to	

CO1 Apply soft computing techniques, including machine learning and computational intelligence, to solve real-world problems, such as sales forecast prediction, and develop effective solutions using back propagation networks and other soft computing methods.

CO2 Design, train, and deploy artificial neural networks (ANNs) to solve complex real-life problems, including natural language processing, and develop practical solutions using ANN architectures and algorithms.

CO3 Analyze and apply fuzzy logic principles to develop fuzzy inference systems and controllers that effectively solve real-world problems, handling uncertainty and ambiguity in areas like control systems, decision-making, and expert systems.

CO4 Analyze and apply Genetic Algorithm (GA) concepts and procedures to design and implement effective solutions for optimization and search problems, leveraging encoding, initialization, selection, and genetic operators to drive efficient problem-solving.

CO5 Analyze and apply computational intelligence paradigms, including swarm intelligence and particle swarm optimization, to develop innovative solutions for complex optimization and search problems, leveraging the collective intelligence of swarm systems to drive efficient problem-solving.

Text / Reference Books:

1 Fuzzy Logic: A Practical approach, F. Martin, Mc neill, and Ellen Thro, AP Professional, 2000.

2 Fuzzy Logic with Engineering Applications (3rd Edn.), Timothy J. Ross, Willey, 2010.

3 Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering, Nikola K.Kasabov, MIT Press, 1998.

4 An Introduction to Genetic Algorithms, Melanie Mitchell, MIT Press, 2000.

5 Genetic Algorithms In Search, Optimization And Machine Learning, David E. Goldberg, Pearson Education,

2002.

6 Soft Computing, D. K. Pratihar, Narosa, 2008.

7 Neuro-Fuzzy and soft Computing, J.-S. R. Jang, C.-T. Sun, and E. Mizutani, PHI Learning, 2009.

8 Practical Genetic Algorithms, Randy L. Haupt and sue Ellen Haupt, John Willey & Sons, 2002.

9 Real World Applications of Computational Intelligence, Mircea Gh. Negoita, Bernd Reusch, Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 179)

CIE ASSESSMENT:

Three CIE Will be conducted for 50 marks each and average of three will be taken (A)

Three Quizzes will be conducted along with CIE for 10 Marks Each. Sum of three quizzes will be considered for 30 marks (B)

Two Assignments for 10 marks each and the sum of both the assignments will be taken for 20 Marks (C)

Final CIE Marks will be calculated as (A+B+C)/2 for 50 marks

SEE ASSESSMENT:

The theory exam consists of a written paper structured into two parts:

Part A: Carries 20 marks which include either objective-type or short descriptive questions. It is designed to cover the entire syllabus comprehensively.

Part B: This section carries a total of 80 marks and consists of 5 questions, with Either or choices. Students are required to answer one full question per module, selecting from the choices. Each question is valued at 16 marks and may include up to two sub-parts.

The SEE Theory marks of 100 will be scaled down to 50.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	2	2	2	-	-	-	-	-	-	-	-
CO2	2	2	2	2	2	-	-	-	-	-	-
CO3	2	2	2	2	1	-	-	-	-	-	-
CO4	2	2	2	2	1	-	-	-	-	-	-
CO5	2	2	2	2	1	-	-	-	-	-	-

	Semester : V	VII						
BIG DATA ANALYTICS								
Course Code:	MVJAI7044	CIE Marks: 50						
L: T:P:S	3:0:0:0	SEE Marks: 50						
Credits:	3	Total :100						
Hours:	40 Hrs Theory	SEE Duration: 3Hrs.						
Course Objectives: This 1. The scope and essenti 2. The technologies used 3. The techniques and pr 4. The hypothesis on opt	course will enable the students to: ality of Big Data and Business Ana to store, manage, and analyze big inciples in big data analytics with timized business decisions in solvin	alytics. data in a Hadoop ecosystem. scalability and streaming capability. ng complex real-world problems.						
	Module-1	l						
Module-1 INTRODUCTION TO BIG DATA: Characteristics of Data,Evolution of Big Data,Definition of Big Data,Challenges with Big Data, Traditional Business Intelligence (BI) versus Big Data. Big data analytics: Classification of Analytics, Importance and challenges facing big data, Terminologies Used in Big Data Environments, The Big Data Technology Landscape,industry examples of big data								
	Module-2							
INTRODUCTION TO HADOOP: Introducing Hadoop, RDBMS versus Hadoop,Distributed Computing Challenges, History and overview of Hadoop, Use Case of Hadoop,Hadoop Distributors,Processing Data with Hadoop, Interacting with Hadoop Ecosystem Video link: https://www.digimat.in/nptel/courses/video/106104189/L04.html								
	Module-3							
THE HADOOP DISTRIBUTED FILESYSTEM: Hadoop Distributed File System (HDFS): The Design of HDFS, HDFS Concepts, Basic Filesystem Operations, Hadoop Filesystems. The Java Interface- Reading Data from a Hadoop URL, Reading Data Using the Filesystem API, Writing Data. Data Flow- Anatomy of a File Read, Anatomy of a File Write, Limitations. Video link: https://www.digimat.in/nptel/courses/video/106104189/L04.html								
	Module-4	<u> </u>						
UNDERSTANDING MAP REDUCE FUNDAMENTALS: Map Reduce Framework: Exploring the features of Map Reduce, Working of Map Reduce, Exploring Map and Reduce Functions, Techniques to optimize Map Reduce jobs, Uses of Map Reduce. Controlling MapReduce Execution with Input Format, Reading Data with custom Record Reader, -Reader, Writer, Combiner, Partitioners, Map Reduce Phases, Developing simple MapReduce Application.								
Video link: https://www.digimat.in/nptel/courses/video/106104189/L06.html								
L	Module-5	5	1					
INTRODUCTION TO PIG: Introducing Pig: Pig architecture, Benefits, Installing Pig, Properties of Pig, Running Pig, Getting started with Pig Latin, working with operators in Pig, Working with functions in Pig.								
Video link: https://www.youtube.com/watch?v=qr_awo5vz0g								
Course outcomes: At the CO1 Explain the evolu	e end of the course, the students wi tion of big data with its character	ll be able to eristics and challenges with traditional	business					

intelligence.

CO2 Explain the big data technologies used to process and query the big data in Hadoop, MapReduce and Pig.

CO3 Make use of appropriate components for processing, scheduling, and knowledge extraction from large volumes in distributed Hadoop Ecosystem.

CO4 Develop a Map Reduce application for optimizing the jobs.

CO5 Develop applications for handling huge volume of data using Pig Latin.

Textbooks:

1 Seema Acharya, Subhashini Chellappan,F—BigData and Analytics,Wiley Publications,2nd Edition, 2014 DT Editorial Services,—BigData, Dream Tech Press,2nd Edition,2015.

2 Tom White,—Hadoop:The Definitive Guide,O'Reilly,3 rd Edition,2012.

3 Big Data Black Book, dream tech publications, 1st Edition, 2017.

Reference Books:

- 1 Michael Minelli, Michele Chambers, Ambiga Dhiraj, —Big Data, Big Analytics: Emerging Business Intelligence and Analytic Trends for Today's Business, Wiley CIO Series, 1stEdition, 2013.
- 2 Rajiv Sabherwal, Irma Becerra- Fernandez, —Business Intelligence –Practice, Technologies and Management, John Wiley, 1st Edition,2011.
- 3 Arvind Sathi, —Big Data Analytics: Disruptive Technologies for Changing the Game, IBM Corporation, 1st Edition,2012.

CIE ASSESSMENT:

Three CIE Will be conducted for 50 marks each and average of three will be taken (A) Three Quizzes will be conducted along with CIE for 10 Marks Each. Sum of three quizzes will be considered for 30 marks (B)

Two Assignments for 10 marks each and the sum of both the assignments will be taken for 20 Marks (C) Final CIE Marks will be calculated as (A+B+C)/2 for 50 marks

SEE ASSESSMENT:

The theory exam consists of a written paper structured into two parts:

Part A: Carries 20 marks which include either objective-type or short descriptive questions. It is designed to cover the entire syllabus comprehensively.

Part B: This section carries a total of 80 marks and consists of 5 questions, with Either or choices. Students are required to answer one full question per module, selecting from the choices. Each question is valued at 16 marks and may include up to two sub-parts.

The SEE Theory marks of 100 will be scaled down to 50.

CO-PO MAPPING

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	2	2		-	-	-	-	-	-	-	-
CO2	2	2		-	-	-	-	-	-	-	-
CO3	2	3	2	2	-	-	-	-	-	-	-
CO4	1	2	3	-	-	-	-	-	-	-	-
CO5	1	2	2	2	-	-	-	-	-	-	-

	Compation - VII								
	INTRODUCTION TO DBM	S							
Course Code:	MVJAI7051	CIE Marks: 50							
L: T:P:S	3:0:0:0	SEE Marks: 50							
Credits:	3	Total :100							
Hours:	40 Hrs Theory	SEE Duration: 2 Hrs.							
		· · ·							
Course Objectives: This course	will enable the students to:								
• To learn the fundamentals of d	lata models.								
• To conceptualize and depict a	database system using ER diagram.								
• To make a study of SOL and r	elational database design.								
• To understand the internal sto	prage structures using different file a	nd indexing techniques which y	will heln						
in physical DB design	rage structures using anterent me a	ha maexing teeninques which	viii neip						
• To know the fundamental	concepts of transaction processing	annourranay control tachnic	was and						
• To know the fundamental	concepts of transaction processing	- concurrency control techniq	ues anu						
Module_1									
INTRODUCTIONAND CONC	EPIUALMODELING: Introduction	to File and Database systems-							
Database system structure – Da	ata Models – Introduction to Netwo	rk and Hierarchical Models –							
ER model – Relational Model –	Relational Algebra.								
	Module-2								
RELATIONAL MODEL: SQL	– Data definition- Queries in SQL- U	Jpdates- Views – Integrity and							
Security – Relational Database design – Functional dependencies and Normalization for Relational 8 hrs									
Databases (up to BCNF).									
	Module-3								
NON-RELATIONAL MODEL:	Introduction to NOSQL Systems, T	he CAP Theorem, Document-							
Based NOSQL Systems and I	MongoDB, NOSQL Key-Value Sto	ores, Column-Based or Wide	8 hrs						

Column NOSQL Systems, NOSQL Graph Databases

Module-4

DATA STORAGE AND QUERY PROCESSING: Record storage and Primary file organization-Secondary storage Devices- Operations on FilesHeap File- Sorted Files- Hashing Techniques – 8 hrs

Index Structure for files –Different types of Indexes- B-Tree - B+ Tree – Query Processing. Module-5 TRANSACTION MANAGEMENT: Transaction management -Transaction Processing Introduction- Need for Concurrency control- Desirable properties of Transaction- Schedule and Recoverability- Serializability and Schedules - Concurrency Control - Types of Locks- Two 8 hrs Phases locking- Deadlock- Time stamp-based concurrency control - Recovery Techniques -Concepts- Immediate Update- Deferred Update - Shadow Paging Textbooks: 1 Abraham Silberschatz, Henry F. Korth and S. Sudarshan- "Database System Concepts", Seventh Edition, McGraw-Hill, 202 Course outcomes: At the end of the course, the students will be able to CO1 To learn the fundamentals of data models CO2 To conceptualize and depict a database system using ER diagram. CO3 To make a study of SQL and relational database design. CO4 To understand the internal storage structures using different file and indexing techniques which will help in physical DB design. CO5 To know the fundamental concepts of transaction processing- concurrency control techniques and recovery procedure CIE ASSESSMENT: Three CIE Will be conducted for 50 marks each and average of three will be taken (A) Three Quizzes will be conducted along with CIE for 10 Marks Each. Sum of three quizzes will be considered for 30 marks (B) Two Assignments for 10 marks each and the sum of both the assignments will be taken for 20 Marks (C) Final CIE Marks will be calculated as (A+B+C)/3 for 50 marks

SEE ASSESSMENT:

The theory exam consists of a written paper structured into two parts:

Part A: Carries 20 marks which include either objective-type or short descriptive questions. It is designed to cover the entire syllabus comprehensively.

Part B: This section carries a total of 80 marks and consists of 5 questions, with Either or choices. Students are required to answer one full question per module, selecting from the choices. Each question is valued at 16 marks and may include up to two sub-parts.

The SEE Theory marks of 100 will be scaled down to 50.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	2	2	1	2						1
CO2	3		2	2	2						1
CO3	3	1	2	1	3						1
CO4	3	2	2	2	3						2
CO5	3	2	3	1	3						1
	Semester : VII										
---	--	---	-----------------------------	--	--						
	INTRODUCTION TO ALGORI	ГНМЅ									
Course Code:	MVJAI7052	CIE Marks: 50									
L: T:P:S	3:0:0:0	SEE Marks: 50									
Credits:	3	Total :100									
Hours:	40 Hrs Theory	SEE Duration: 3 Hrs.									
	¥¥										
Course Objectives: This course 1. Learn the basics Algorithms 2. Learn to write algorithms and 3. Learn the different functions 4. Understand the concept of rec 5. Understand probabilistic analysis	will enable the students to: its performance. of algorithms. surrence algorithms ysis										
	Module-1										
Module 1: The Role of Algorit algorithms, Algorithms as a tech Textbook 1: Chapter 1	hms in Computing: Algorithms, kin nology, Efficiency, Data structures,	ds of problems are solved by Technique, Hard problems	8 Hrs								
	Module-2										
Module 2: Getting Started Insertion sort, Analyzing algorithms, Analysis of insertion sort, Worst- case and average-case analysis, Designing algorithms Textbook 1:Chapter 2,3											
	Module-3										
Module 3: Growth of Functions Growth of Functions, Asymptotic notation, Comparison of functions, Standard notations and common functions, Functional iteration Textbook 1: Chapter 4,5,6											
	Module-4										
Module 4: Recurrences The sub Proof of the master theorem, Th Textbook 1 Chapter 7,8,9	e proof for exact powers	e method, The master method,	8 hrs								
	Module-5										
Module 5: Probabilistic Analysis and Randomized Algorithms The hiring problem, Indicator random variables, Randomized algorithms, Probabilistic analysis and further uses of indicator random variables Textbook 1: Chapter 10.11											
Textbooks: 1 Introduction to Algorithms, 7 3rd Edition, PHI. 2 Introduction to the Design and 3 Design and Analysis of Algorit 4 Introduction to the Design a Links: <u>https://archive.nptel.a</u>	Thomas H. Cormen, Charles E. Leis Analysis of Algorithms, Anany Lev thms, S. Sridhar, Oxford (Higher Ed and Analysis of Algorithms, Anany	erson, Ronal L. Rivest, Cliffor ritin:, 2rd Edition, 2009. Pearson lucation). r Levitin:, 2rd Edition, 2009.	rd Stein, n. Pearson.								
Course outcomes: At the end of CO1 Explain the basic algorithm	the course, the students will be able and its characteristics	to									

CO2 Understanding of sorting algorithm CO3 Analysis of algorithm and performance CO4 Illustrate Recurrence algorithms CO5 Probabilistic Analysis and randomized algorithms. CIE ASSESSMENT: Three CIE Will be conducted for 50 marks each and average of three will be taken (A) Three Quizzes will be conducted along with CIE for 10 Marks Each. Sum of three quizzes will be considered for 30 marks (B) Two Assignments for 10 marks each and the sum of both the assignments will be taken for 20 Marks (C) Final CIE Marks will be calculated as (A+B+C)/2 for 50 marks SEE ASSESSMENT:

Semester End Examination (SEE):

The theory exam consists of a written paper structured into two parts:

Part A: Carries 20 marks which include either objective-type or short descriptive questions. It is designed to cover the entire syllabus comprehensively.

Part B: This section carries a total of 80 marks and consists of 5 questions, with Either or choices. Students are required to answer one full question per module, selecting from the choices. Each question is valued at 16 marks and may include up to two sub-parts.

The SEE Theory marks of 100 will be scaled down to 50.

The final score for the course in the ratio of 50:50 of CIE and SEE Marks

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	2	3	2	1	2						
CO2	2	2	2	2	2						
CO3	3	3	2	1	3						
CO4	2	2	2	3	3						
CO5	2	3	3	3	3						

Semester : VII							
SOFTWARE ENGINEERING							
Course Code:	MVJAI7053	CIE Marks: 50					
L: T:P:S	3:0:0:0	SEE Marks: 50					

Credits:	3	Total :100
Hours:	40 Hrs Theory	SEE Duration: 2 Hrs.
	J J	

Course Objectives: This course will enable the students to:

- 1. Understand principles, concepts, methods, and techniques of the software engineering approach to producing quality software (particularly for large, complex systems).
- 2. Impart skills in the design and implementation of efficient software systems across disciplines.
- 3. Familiarize engineering practices and standards used in developing software products and components. Gather knowledge on various software testing, maintenance method

Module-1

Fundamentals Of Software Engineering And Requirements Engineering Software Engineering Fundamentals; Software processes: Software life-cycle models; Software requirements and specifications: Requirements elicitation; Requirements analysis modeling techniques; Functional and non-functional requirements. Laboratory Sessions/ Experimental learning: To write the SRS for the given real time application using report writing tools. Applications: In Software development process.

Module-2

Software Design Fundamental design concepts and principles; Design characteristics; System
Models - Context, Behavioral, Data and, Object models. Laboratory Sessions/ Experimental
learning: Draw a class diagram, object diagram, Use case diagram, Sequence diagram and activity
diagram for the given real time application using rational rose tool. Applications: In Software
development process.8 hrs

Module-3

Software Validation And Maintenance Software validation: Validation planning; Testing fundamentals, including test plan creation and test case generation; Black-box and white-box testing techniques; Unit, integration, validation, and system testing; Object-oriented testing; Inspections. Laboratory Sessions/ Experimental learning: Using Selenium IDE write a test suite containing minimum 4 test cases. Applications: In Software development process.

Module-4

Component Based Software Engineering Engineering of Component-Based Systems; The CBSE Process; Domain Engineering; Component- Based Development; Classifying and Retrieving Components; Economics of CBSE Laboratory Sessions/ Experimental learning: Create a project using MS projects for any real time scenario. Applications: In Software development process.

Module-5

Software Quality Process Improvement Overview of Quality management and ProcessImprovement; Overview of SEI -CMM, ISO 9000, CMMI, PCMM, TQM and Six Sigma;
overview of CASE tools. Software tools and environments: Programming environments; Project
management tools; Laboratory Sessions/ Experimental learning: Estimation of test coverage
metrics using manual test metrics. Applications: In Software development process.8 hrs

Textbooks:

1. Ian Sommerville, "Software Engineering", 9th Edition, Addison- Wesley, 2011

- 2. R. S. Pressman, Software Engineering, a practitioner's approach, McGraw Hill,7th Edition, 2010
- 3. Rajib Mall, "Fundamentals of Software Engineering", PHI Publication, 3rd edition, 2009
- 4. PankajJalote: An Integrated Approach to Software Engineering, Wiley India.

Course outcomes: At the end of the course, the students will be able to

CO1 Comprehend software development life cycle and Prepare SRS document for a project

CO2 Apply software design and development techniques

CO3 Identify verification and validation methods in a software engineering project

CO4 Apply on Component based software development process.

CO5 Involve in continuous learning to solve issues of process and software product using the advanced CASE tools and techniques

CIE ASSESSMENT:

Three CIE Will be conducted for 50 marks each and average of three will be taken (A)

Three Quizzes will be conducted along with CIE for 10 Marks Each. Sum of three quizzes will be considered for 30 marks (B)

Two Assignments for 10 marks each and the sum of both the assignments will be taken for 20 Marks (C) Final CIE Marks will be calculated as (A+B+C)/2 for 50 marks

SEE ASSESSMENT:

The theory exam consists of a written paper structured into two parts:

Part A: Carries 20 marks which include either objective-type or short descriptive questions. It is designed to cover the entire syllabus comprehensively.

Part B: This section carries a total of 80 marks and consists of 5 questions, with Either or choices. Students are required to answer one full question per module, selecting from the choices. Each question is valued at 16 marks and may include up to two sub-parts.

The SEE Theory marks of 100 will be scaled down to 50.

The final score for the course in the ratio of 50:50 of CIE and SEE Marks

CO-PO MAPPING

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	3	2	3	2						2
CO2	3	1	2	3	2						2
CO3	3	2	2	3	3						2
CO4	3	1	2	3	3						2
CO5	3	1	3	3	3						2

Semester : VII								
ETHICAL HACKING								
Course Code:	MVJAI7054	CIE Marks: 50						
L: T:P:S	3:0:0:0	SEE Marks: 50						
Credits:	3	Total :100						
Hours:	40 Hrs Theory	SEE Duration: 3 Hrs.						

Course Objectives: This course will enable the students to:

1. Learn the skills to become responsible and effective ethical hackers, navigating the ethical and legal landscape of cybersecurity.

2. Understand various types of attacks, including social engineering, physical penetration, and insider attacks, to understand how to identify vulnerabilities, conduct simulated attacks, and develop effective defenses to protect organizations from these threats.

3. Apply the knowledge and skills to identify and mitigate various web application security threats, including content-type attacks, web application security vulnerabilities, and VoIP attacks, to protect their organization's digital assets from exploitation.

4. Analyze advanced reverse engineering techniques, including ethical reverse engineering, source code analysis, and fuzzing, to identify and mitigate software vulnerabilities, particularly browser- based vulnerabilities, and develop effective mitigation strategies.

5. Analyze the reverse engineer malware, using techniques such as honeynet technology, deobfuscation, and reverse engineering, to understand malware behavior and develop effective countermeasures.

Ethics Of Ethical Hacking: Why you need to Understand Your Enemy's Tactics? Recognizing The Gray Areas in Security – Vulnerability Assessment – Penetration Testing. Ethical Hacking and the Legal System: Understanding Individual Cyberlaws – 18 USC Section 1029, 1030, 2510 – Digital Millennium Copyright Act (DMCA) – Cyber Security Enhancement Act 2002. Proper and Ethical Disclosure: CERT's Current Process – Full Disclosure Policy – Organization for Internet Safety Applications: In-class activity to understand the penetration testing methodologies.	8 Hrs
Module-2	
Social Engineering Attacks: How A Social Engineering Attack Works? – Conducting A Social Engineering Attack – Common Attacks used in Penetration Testing – Defending Against Social Engineering Attacks. Physical Penetration Attacks: Why Physical Penetration is important – Conducting a Physical Penetration – Common Ways into A Building. Insider Attacks: Why Simulating an Insider Attack is Important – Conducting an Insider Attack – Defending against Insider Attack.	8 hrs
Module-3	
Understanding and Detecting Content-Type Attacks: How do Content-Type Attacks work? - Which File Formats are Being Exploited Today? - Tools to Detect Malicious PDF Files – Tools to test your Protections against Content-Type Attacks – How to protect your Environment from Content-Type Attacks. Web Application Security Vulnerabilities: Overview of Top Web Application Security Vulnerabilities – SQL Injection Vulnerabilities – Cross-Site Scripting Vulnerabilities. VoIP Attacks.	8 hrs
Module-4	
Passive Analysis: Ethical Reverse Engineering – Why Bother with Reverse Engineering? – Source Code Analysis. Advanced Reverse Engineering: Overview of Software Development Process – Instrumentation Tools – Fuzzing – Instrumented Fuzzying Tools and Techniques. Finding New Browser Based Vulnerabilities. Mitigation Alternatives.	8 hrs
Module-5	
Collecting Malware and Initial Analysis: Malware – Latest Trends in Honeynet Technology – Catching Malware – Initial Analysis of Malware. Hacking Malware: Trends in Malware – DeObfuscating Malware – Reverse Engineering Malware.	8 hrs
Course outcomes: At the end of the course, the students will be able to	
CO1 Conduct ethical hacking and penetration testing, identifying vulnerabilities and weaknesses adhering to ethical standards and legal frameworks to protect digital assets and organizations. CO2 Design and implement effective defenses against various types of attacks, including engineering, physical penetration, and insider attacks, to protect organizations from potential threats and vulnerab CO3 Identify and mitigate web application security threats, including content-type attacks, vulnera and VoIP attacks, to ensure the security and integrity of their organization's digital assets. CO4 Utilize advanced reverse engineering techniques to identify and mitigate software vulnera developing effective strategies to enhance browser security and protect against exploitation. CO5 Develop effective countermeasures to detect, prevent, and respond to malware threats, enhance organization's overall cybersecurity posture.	s, while g social dilities. abilities, abilities, abilities,
 Textbooks: 1 Stuart McClure, Joel Scambray and Goerge Kurtz, Hacking Exposed 7: Network Security Security Solutions, Tata Mc Graw Hill Publishers, 2010. 2 Bensmith, and Brian Komer, Microsoft Windows Security Resource Kit, Prentice Hall of India, 20 	ecrets &
Reference Books:	

1. Rafay Baloch, "A Beginners Guide to Ethical Hacking".

2. Allen Harper, Shon Harris, Jonathan Ness, Chris Eagle, "Gray Hat Hacking The Ethical Hackers Handbook", 3rd Edition, McGraw-Hill Osborne Media paperback(January 27, 2011)

Three CIE Will be conducted for 50 marks each and average of three will be taken (A)

Three Quizzes will be conducted along with CIE for 10 Marks Each. Sum of three quizzes will be considered for 30 marks (B)

Two Assignments for 10 marks each and the sum of both the assignments will be taken for 20 Marks (C)

Final CIE Marks will be calculated as (A+B+C)/2 for 50 marks

SEE ASSESSMENT:

The theory exam consists of a written paper structured into two parts:

Part A: Carries 20 marks which include either objective-type or short descriptive questions. It is designed to cover the entire syllabus comprehensively.

Part B: This section carries a total of 80 marks and consists of 5 questions, with Either or choices. Students are required to answer one full question per module, selecting from the choices. Each question is valued at 16 marks and may include up to two sub-parts.

The SEE Theory marks of 100 will be scaled down to 50.

The final score for the course in the ratio of 50:50 of CIE and SEE Marks

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	3	1	-	-	-	-	1	-	-	-
CO2	3	3	1	-	-	-	-	2	-	1	-
CO3	3	3	1	2	-	-	-	-	-	1	-
CO4	3	3	3	3	-	3	2	2	2	2	-
CO5	3	3	3	3	-	3	2	2	3	2	-

CO-PO MAPPING

CIE ASSESSMENT: