Semester: III								
	Probability and Statistics							
Course Code:	MVJ22CH31	CIE Marks: 50						
L: T:P:S	3:0:0:0	SEE Marks: 50						
Credits:	3	Total:100						
Hours: 40 Hrs Theory SEE Duration: 3								
Course Learning	Course Learning Objectives: The students will be able to							
Understand and apply probability distribution, sampling theory and joint probability								
distributions. Orga	nize, manage, and present data using statist	rical method.						

UNIT-I					
Probability Distributions: Random variables (discrete and continuous),	8 Hrs				
probability mass/density functions. Binomial distribution, Poisson distribution.					
Exponential and normal distributions, problems.					
Joint probability distribution: Joint Probability distribution for two discrete					
random variables, expectation, covariance, correlation coefficient.					
UNIT-II					
Sampling Theory: Sampling, Sampling distributions, standard error, test of	8 Hrs				
hypothesis for means and proportions, confidence limits for means, student's t-					
distribution and Chi-square distribution.					
UNIT-III					
Markov Chains: States and transitions, Transition probabilities, General two-					
state Markov chain, Powers of the transition matrix for the m-state chain,					
Gambler's ruin as a Markov chain, Classification of states, Classification of					
chains, problems.					
UNIT-IV					
Statistical Methods Correlation and Regression: Correlation, Regression	8 Hrs				
coefficients, line of regression problems.					
Curve fitting: Fitting of the curves of the form $y = ax + b$, $y = ax^2 + bx + c$,					
$y = ae^{bx}$ by the method of least squares.					
UNIT-V					
Design of Experiments (ANOVA):	8 Hrs				
Oneway and Two wayclassifications, Completely randomized design,					
Randomized block design, Latin square design.					

Cour	se Outcomes: After completing the course, the students will be able to							
CO1	Develop probability distribution of discrete, continuous random variables and joint							
	probability distribution occurring in digital signal processing, information theory and							
	Design engineering.							
CO2	Demonstrate testing of hypothesis of sampling distributions.							
CO3	Define transition probability matrix of a Markov chain and solve problems related to							
	discrete parameter random process.							
CO4	Fit a suitable curve by the method of least squares and determine the lines of regression							
	for a set of statistical data.							
CO5	Understand the need and application of analytic.							

Text Books:

1. B.S. Grewal, "Higher Engineering Mathematics" Khanna Publishers, 43rd Edition, 2013.

Reference Books:

1.	Erwin Kreyszig, "Advanced Engineering Mathematics", Wiley-India publishers, 10thedition, 2014.
2.	Fundamentals of Statistics, S C Gupta, Himalaya Publications 2012.
3.	Ramana B. V., "Higher Engineering Mathematics", Tata Mc Graw-Hill, 2006.

Evaluation Method

Continuous Internal Evaluation (CIE):

- Three CIE Will be conducted for 50 marks each and average of three will be taken (A)
- Three Quizzes will be conducted along with CIE for 10 Marks Each. Sum of three quizzes will be considered for 30 marks (B)
- Two Assignments for 10 marks each and the sum of both the assignments will be taken for 20 Marks (C)

Final CIE Marks will be calculated as (A+B+C)/2 for 50 marks:

Semester End Examination (SEE)

SEE Theory Examination (100 Marks)

The question paper consists of two parts, A and B

Part A: consists of 10 questions of 2 marks each. It is designed to cover the entire syllabus comprehensively.

Part B: The question paper will have 10 questions. Each question is set for 16 marks. There will be 2 questions from each module, with a maximum of 2 subdivisions. Students have to answer any 5 questions choosing one full question from each module.

The SEE Theory marks of 100 will be scaled down to 50.

The final score for the course in the ratio of 50:50 of CIE and SEE Marks

CO-PO Mapping

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	-	3	-	_	_	_	_	-	-	1
CO2	3	3	-	3	-	-	-	-	-	-	-	1
CO3	3	3	-	2	-	-	-	-	-	-	-	1
CO4	3	3	-	3	-	-	-	-	-	-	-	1
CO5	3	2	-	3	-	-	-	-	-	-	-	1

		Semester: III							
	MOMENTUM TRANSFER								
Cours	Course Code: MVJ22CH32 CIE Marks:50								
L:T:F	L:T:P:S 3:0:2:1 SEE Marks: 50								
Credi	its	4	Total Marks: 100						
Hours	Hours: 40 Hrs Theory and 24 Hrs Practical SEE Duration: 03+03 Hrs								
Cours	se Learning Ob	jectives: The students will be able to							
	Understand con	w and boundary layer relations,							
1 1	pressure concepts and its measurement by various experimental methods, and								
	enhancement of	problem-solving skills.							
	Understand the relationship between kinetic energy, potential energy, internal energy, and								
2	work complex flow systems using Bernoulli's equation with application to industrial								
	problems.								
	Understand clea	ar concepts on Flow of compressible and is	ncompressible fluids in conduits						
3	and thin layers and friction factor variations with velocity and friction losses using								
	Bernoulli's Equations and they will be demonstrated experimentally.								
4	Study Dimension	onal analysis and working of pumps, trans	portation, and metering of fluids						
4	using various te	chniques and applications to industry.							

MODULE-I	
Fluid statics and its applications – the concept of unit operations; introduction to	
momentum transfer, nature of fluids and pressure concept, variation of pressure	
with height – hydrostatic equilibrium, barometric equation; measurement of fluid	
pressure – manometers, continuous gravity decanter, centrifugal decanter.	
Fluid flow phenomena –the type of fluids; shear stress and velocity gradient	8 Hrs
relation, newtonian and non- newtonian fluids, the viscosity of gases and liquids.	
Types of flow – laminar and turbulent flow, Reynolds stress, eddy viscosity; flow	
in boundary layers; Reynolds number, boundary layer separation, and wake	
formation.	
MODULE-II	
Basic equations of fluid flow -average velocity, mass velocity, continuity equation,	
Euler, and Bernoulli equations; modified equations for real fluids with correction	8 Hrs
factors; pump work in Bernoulli equation, angular momentum equation.	
MODULE-III	
The flow of incompressible fluids in conduits and thin layers - laminar flow	
through circular and non-circular conduits, Hagen Poiseuille equation, laminar flow	
of non-newtonian liquids, turbulent flow in pipes and closed channels. Friction	
factor chart, friction from changes in velocity or direction, form friction losses in	
Bernoulli equation, flow of fluids in thin layers	8 Hrs
The flow of compressible fluids - continuity equation, Mach number, total energy	
balance, the velocity of sound, Ideal gas equations, flow through variable-area	
conduits, adiabatic frictional flow, isothermal frictional flow (elementary treatment	
only).	
MODULE-IV	

8 Hrs

MODULE-V

Flow of fluid past immersed bodies: Drag, drag coefficient, Pressure drop – Kozeny-Carman equation, Blake-Plummer, Ergun equation, Fluidization, conditions for fluidization, Minimum fluidization velocity, Pneumatic conveying, Industrial application of Fluidization.

8 Hrs

Dimensional analysis: Dimensional homogeneity, Rayleigh's, and Buckingham Π-methods, Significance of different dimensionless numbers.

LABORATORY EXPERIMENTS - 24 Hrs

- 1. Friction in circular pipes.
- 2. Friction in non-circular pipes.
- 3. Friction in helical/spiral coils.
- 4. Flow measurement using venturi meter (incompressible fluid).
- 5. Flow measurement using orifice meters (incompressible fluid).
- 6. Flow over notches find the coefficient of discharge through various notches.
- 7. Flow over rectangular notches- generalized correlation between Reynold's number & friction factor
- 8. Flow through open orifice-Hydraulic coefficients.
- 9. Flow through Packed bed -Verify ERGUN'S Equation
- 10. Flow through Fluidized bed- to calculate the minimum fluidization velocity
- 11. Study of characteristics for centrifugal, Positive displacement pump
- 12. Study of various pipe fittings and their equivalent lengths.
- 13. Unsteady flows Emptying of Tank

Cour	ourse Outcomes: After completing the course, the students will be able to								
CO1	Apply the concepts of fluid statics and dynamics to measure pressure and differentiate								
	various flow phenomena.								
CO2	Derive the fundamental equations and apply to solve various fluid flow problems.								
CO3	Understand the various equations for incompressible and compressible fluids in conduits.								
CO4	Demonstrate the knowledge of fluid flow principles in various types of flow								
	measurements, transportation and metering of fluids using experimental techniques and								
	applications to industry.								
CO5	Develop functional relationships using dimensional analysis and similitude to solve								
	technical problems also to analyze the flow past immersed bodies.								

Boo	oks
1.	Unit operations of chemical engineering, McCabe, W. L., Smith, J. C., & Harriott, P.,
	2005, New York: McGraw-hill, ISBN: 9780071247108, 0071247106
2.	A textbook of fluid mechanics, Bansal, R. K., 2005, Laxmi Publication (P) Ltd.

Reference Books 1. Engineering fluid mechanics, Kumar, K. L., 4th edn, 1988, New Delhi: Eurasia. 2. Chemical Engineering, Coulson J.H. and Richardson J.F., 1998. Vol-I, 5thedn.

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

- Three CIE Will be conducted for 50 marks each and average of three will be taken (A)
- Three Quizzes will be conducted along with CIE for 10 Marks Each. Sum of three quizzes will be considered for 30 marks (B)
- Two Assignments for 10 marks each and the sum of both the assignments will be taken for 20 Marks (C)

Final CIE Marks will be calculated as (A+B+C)/2 for 50 marks

Laboratory- 50 Marks

Weekly Evaluation 30 Marks

Weekly evaluation will be conducted for every experiment. Marks of each evaluation includes Weekly Attendance + Experiment conduction along with Record / Observation + Weekly viva for all the experiments. The total of all these evaluated marks are added and the total marks will be scaled to 30 marks. (A)

Two CIE for 20 Marks each and take the average for 20 Marks (B)

Final CIE Marks will be calculated as A+B for 50 marks

For IPCC Final CIE Marks will be calculated as Average of CIE and Lab CIE for 50 marks.

Semester End Examination (SEE)

SEE Theory Examination (100 Marks)

The question paper consists of two parts, A and B

Part A: consists of 10 questions of 2 marks each. It is designed to cover the entire syllabus comprehensively.

Part B: The question paper will have 10 questions. Each question is set for 16 marks. There will be 2 questions from each module, with a maximum of 2 subdivisions. Students have to answer any 5 questions choosing one full question from each module.

The SEE Theory marks of 100 will be scaled down to 50 (A)

SEE Laboratory Examination (50 Marks)

The laboratory SEE is also evaluated for 50 marks, distributed as follows:

Experiment Conduction with Results: 40 marks

Viva Voce: 10 marks Total 50 marks (B)

The score for the SEE is A+B of total 100 marks

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2									1
CO2	3	3	3									1
CO3	3	3	3									1
CO4	3	3	3									1
CO5	3	3	3									1

High-3, Medium-2, Low-1

	Semester: III							
MECHANICAL UNIT OPERATIONS								
Course Code:		MVJ22CH33	CIE Marks:50					
L:T	:P: S	3:0:2:0	SEE Marks: 50					
Credits		4	Total Marks: 100					
Hou	irs:	40 Hrs Theory and 24 Hrs Practical	SEE Duration: 03+03 Hrs					
Cou	rse Learning (Objectives: The students will be able to						
1	Study different properties of particulate solids.							
2	Study princip	les of comminution and different types of e	equipment for size reduction like					
crushers.								
3	Understand mechanical separation aspect such as screening.							
4	Understand energy requirements in solids handling.							

MODULE-I	
Particle Technology: particle shape, particle size, different ways of expression of particle size, shape factor, sphericity, particle size analysis; screens – ideal and actual screens, Tyler series, differential and cumulative size analysis, effectiveness of screen, specific surface of a mixture of particles, number of particles in a mixture, standard screens, motion of screen; industrial screening equipment- Grizzly, Gyratory screen, Vibrating screen, Trommels, sub sieve analysis – air permeability test, air elutriation, beaker decantation.	8 Hrs
MODULE-II	
Size Reduction: Introduction – types of forces used for comminution, criteria for comminution, characteristics of comminute products, laws of size reduction, work index, energy utilization, methods of operating crushers – free crushing, choke feeding, open circuit grinding, closed circuit grinding, wet and dry grinding; equipment for size reduction – classification of size reduction equipment; equipment – blake jaw crusher, gyratory crusher, smooth roll crusher, toothed roll crusher, impactor, ball mill, critical speed of ball mill; cutters – knife cutter, ultrafine grinder-fluid energy mill, colloid mill.	8 Hrs
MODULE-III	
Filtration: Introduction, classification of filtration, cake filtration, clarification, batch, and continuous filtration, pressure and vacuum filtration, derivation of constant rate filtration and constant pressure filtration, characteristics of filter media; industrial filters-sand filter, filter press, leaf filter, rotary drum filter; principles of centrifugal filtration, Rate of washing – suspended batch centrifuge, filter aids, application of filter aids.	8 Hrs
MODULE-IV	
The motion of particles through fluids: mechanics of particle motion, the equation for one-dimensional motion of particles through a fluid in the gravitational and centrifugal field, terminal velocity, motion of spherical particles in Stokes's region, Newton's region, and intermediate region, the criterion for settling regime, hindered settling, modification of equation for hindered settling. Sedimentation:	8 Hrs

Batch settling test, Coe and Clevenger theory, Kynch theory, thickener design,					
Equipment: Gravity Settling Tank, Disk Bowl Centrifuge.	İ				
MODULE-V					
Agitation and mixing: application of agitation, agitation equipment, types of					
impellers - propellers, paddles and turbines, flow patterns in agitated vessels,	İ				
prevention of swirling, standard turbine design, power correlation and power	ı				
calculation, mixing of solids, mixing index, types of mixers –, muller mixers,					
mixing index, ribbon blender, internal screw mixer. Sampling, storage and	8 Hrs				
conveying of solids: sampling of solids, storage of solids, open and closed storage,	опг				
bulk and bin storage, conveyors – belt conveyers, chain conveyor, apron conveyor,	İ				
bucket conveyor, screw conveyor. Miscellaneous separation: centrifugal	İ				
separators: cyclones and hydro cyclones, magnetic separation, electrostatic	İ				
separation.	1				

LABORATORY EXPERIMENTS – 24 Hrs

- 1. Ball mill- verify the crushing laws using given sample
- 2. Batch sedimentation- determine area of thickener required for given sample
- 3. Free settling- determine settling velocity of various samples
- 4. Drop weight crusher- verify the crushing laws using given sample
- 5. Sieve analysis-find the particle size distribution of the given sample
- 6. Screen effectiveness-find the separation efficiency of given screen
- 7. Jaw crusher- verify the crushing laws using given sample
- 8. Leaf filter-find the specific cake resistance
- 9. Grindability index
- 10. Froth floatation- Efficiency of frothing agent in separating given ore sample
- 11. Plate and frame filter press find the specific cake resistance
- 12. Cyclone separator- Efficiency of separation

Any 10 experiments to be conducted

Cours	se Outcomes: After completing the course, the students will be able to
CO1	Study different properties of particulate solids, handling and mixing of solid particles.
CO2	Study principles of comminution and different types of equipment for size reduction like
CO2	crushers, grinders etc.
CO3	Derive the expression to find rate of filtration for various types of filtrations and to study
003	the working of various filtration equipment's.
CO4	Explain the phenomenon of motion of particles through fluids in various flow fields and regimes; Outline the various theories of Sedimentation in designing industrial thickeners.
CO4	regimes; Outline the various theories of Sedimentation in designing industrial thickeners.
CO5 Explain various miscellaneous separation process and illustrates the working	
CO3	of agitation and mixing and describe the sampling of solid and conveying of it.

Boo	oks
1.	McCabe, W. L., Smith, J. C., & Harriott, P. (1993). Unit Operations of Chemical Engineering. 7 th ed. McGraw-hill.
	Engineering. 7 th ed. McGraw-hill.
2.	Mechanical Operations for Chemical Engineers, CM Narayanan, BC Bhattacharya,
	Khanna Publications
3.	Mechanical Operations (Unit Operations) of Chemical Engineering, Hiremath and
	Kulkarni, Everest Publications

Reference Books Badger, W. L., & Banchero, J. L. (2010). Introduction to Chemical Engineering. 4th ed. McGraw-hill. Richardson J.F., Coulson J.M, Backhurst J.R, and Harker J.H. (2002). 5th ed. Particle Technology and Separation Processes. Elsevier. Brown G.G, (2018). Unit Operations. CBS Publisher.

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

- Three CIE Will be conducted for 50 marks each and average of three will be taken (A)
- Three Quizzes will be conducted along with CIE for 10 Marks Each. Sum of three quizzes will be considered for 30 marks (B)
- Two Assignments for 10 marks each and the sum of both the assignments will be taken for 20 Marks (C)

Final CIE Marks will be calculated as (A+B+C)/2 for 50 marks

Laboratory- 50 Marks

Weekly Evaluation 30 Marks

Weekly evaluation will be conducted for every experiment. Marks of each evaluation includes Weekly Attendance + Experiment conduction along with Record / Observation + Weekly viva for all the experiments. The total of all these evaluated marks are added and the total marks will be scaled to 30 marks. (A)

Two CIE for 20 Marks each and take the average for 20 Marks (B)

Final CIE Marks will be calculated as A+B for 50 marks

For IPCC Final CIE Marks will be calculated as Average of CIE and Lab CIE for 50 marks.

Semester End Examination (SEE)

SEE Theory Examination (100 Marks)

The question paper consists of two parts, A and B

Part A: consists of 10 questions of 2 marks each. It is designed to cover the entire syllabus comprehensively.

Part B: The question paper will have 10 questions. Each question is set for 16 marks. There will be 2 questions from each module, with a maximum of 2 subdivisions. Students have to answer any 5 questions choosing one full question from each module.

The SEE Theory marks of 100 will be scaled down to 50 (A)

SEE Laboratory Examination (50 Marks)

The laboratory SEE is also evaluated for 50 marks, distributed as follows:

Experiment Conduction with Results: 40 marks

Viva Voce: 10 marks

Total 50 marks (B)

The score for the SEE is A+B of total 100 marks

					CO-l	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2									
CO2	3	3	2									
CO3	3	3	2									
CO4	3	3	3									
CO5	3	3	1									

High-3, Medium-2, Low-1

Semester: III							
	CHEMICAL PROCESS CALCULATIONS						
Course Code: MVJ22CH34 CIE Marks:50							
L:T:P	2:2:0	SEE Marks: 50					
Credits	3	Total Marks: 100					
Hours:	40 Hrs Theory	SEE Duration: 3 Hrs					
Course Learning Objectives: The students will be able to							
Convert Units from one system to the other.							
Make material balances for unit operations and processes.							
Make material balances for systems with bypass, recycle and recycle with purge							
Calculate the adiaba	atic reaction temperatures/ theoretical fl	ame temperatures					

MODULE-I	
Units and dimensions: Fundamental and derived units, inter conversion of units from one system to another (FPS, CGS, MKS, SI). Conversion of equations. Basic Chemical Calculations: Concept of mole. Expressions for composition of mixtures of solids, liquids and gases, percentage by weight, mole and volume. Composition of mixtures and solutions- Normality, Molarity, Molality and ppm. Concentration scales based on specific gravity-Baume, Twaddle, Brix and API gravity scales.	8 Hrs
MODULE-II	
Ideal gases- Gas laws, mole volume relation, effect of temperature on volume of gases. Gas laws for mixtures. Average molecular weight, density and specific gravity of gas mixtures. Vapor Pressure: Definition of vapor pressure, partial pressure, relative saturation % saturation, humidity, molal humidity, relative humidity, % humidity, Psychometric. Simple problems solving using psychometric charts. Evaporation and condensation processes.	8 Hrs
MODULE-III	
Introduction to material balances : Material balance without reactions, General methods of solving problems. Material balance for unit operations like mixing, Distillation, extraction, crystallization, evaporation, drying, absorption, leaching.	8 Hrs
MODULE-IV	
Steady-state material balance with reaction: Principles of stoichiometry, Concept of limiting and excess reactants, fractional and percentage conversion, fractional yield and percentage yield, selectivity, related problems. Fuels and combustion-ultimate and proximate analysis of fuels, Material balances with and without reactions involving bypass, recycle and purging.	8 Hrs
MODULE-V	
Energy Balance: General energy balance equation for steady state. Thermo chemistry, heat capacity, estimation of heat capacity for solids, liquids, gases and their mixtures. Standard heat of formation, standard heat of reaction, standard Heat of combustion, and calorific value of fuels. Calculation of Δ HR at elevated temperatures. Adiabatic reaction temperature and adiabatic flame temperature and their calculations.	8 Hrs

Cou	ırse	Outcomes: After completing the course, the students will be able to				
CC	Ol Comprehend the basic theories in stoichiometry and perform unit conversions and					
		calculations.				
CC	2	To understand the basic calculations of air water system and calculate various				
		quantities related to air water system				
CC)3	Solve material balance problems of steady state unit operation like drying, mixing,				
	evaporation, distillation, extraction, crystallization, absorption and leaching					
CC	CO4 To understand chemical engineering calculation and solve material balance problem					
		with reactions including bypass and recycling				
CC)5	Explain the concepts of thermo chemistry and solve steady-state enthalpy balance				
	problems.					
Boo	ks					
1	Cł	nemical Process Principles. Part I: Material and Energy Balances, Hougen, O. A.,				
	Watson, K. M., and Ragatz, R. A. (1962), John Wiley and Sons.					
2	Basic principles and calculations in chemical engineering, Himmelblau, D. M., & Riggs,					
	J. B., (2012), FT press.					
3.	Stoichiometry, Bhatt, B. I., & Thakore, S. B. (2010), Tata McGraw-Hill Education.					

1 Elementary principles of chemical processes, Felder, R. M., Rousseau, R. W., & Bullard, L. G. (2020), John Wiley & Sons.

Continuous Internal Evaluation (CIE):

- Three CIE Will be conducted for 50 marks each and average of three will be taken (A)
- Three Quizzes will be conducted along with CIE for 10 Marks Each. Sum of three quizzes will be considered for 30 marks (B)
- Two Assignments for 10 marks each and the sum of both the assignments will be taken for 20 Marks (C)

Final CIE Marks will be calculated as (A+B+C)/2 for 50 marks:

Semester End Examination (SEE)

SEE Theory Examination (100 Marks)

The question paper consists of two parts, A and B

Part A: consists of 10 questions of 2 marks each. It is designed to cover the entire syllabus comprehensively.

Part B: The question paper will have 10 questions. Each question is set for 16 marks. There will be 2 questions from each module, with a maximum of 2 subdivisions. Students have to answer any 5 questions choosing one full question from each module.

The SEE Theory marks of 100 will be scaled down to 50.

					CO-l	PO Ma	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3			1						1
CO2	3	3	3	1		1						
CO3	3	3	3	1		1						-
CO4	3	3	3	1		1						1
CO5	3	3	3	1		1						

High-3, Medium-2, Low-1

Semester: III							
	Computer Aided Drawing Lab						
Course Code:	MVJ22CHL35	CIE Marks:50					
L:T:P	0:0:2	SEE Marks: 50					
Credits	1	Total Marks: 100					
Hours:	24 Hrs Practical	SEE Duration: 03 Hours					

Course Learning Objectives: The students will be able to

- 1. Demonstrate basic concepts of the computer aided drawing software
- 2. Apply basic concepts to develop construction (drawing) techniques
- 3. Ability to manipulate drawings through editing and plotting techniques
- 4. Understand geometric construction, Produce 2D Orthographic Projections
- 5. Understand and demonstrate dimensioning concepts and techniques, Section and Auxiliary Views

LABORATORY EXPERIMENTS - 24 Hrs

- 1. INTRODUCTION TO SECTIONAL VIEWS: Representation of the sectional planes, Sectional lines and hatching, selection of section planes and types of sectional views.
- 2. PROPORTIONATE DRAWINGS: Equipment and piping symbols
- 3. VESSEL COMPONENTS: Vessel openings, Manholes
- 4. Vessel enclosures, Vessel support, Jackets
- 5. Shell and tube heat exchanger,
- 6. Reaction vessel
- 7. Different types of Evaporators.
- 8. P & I Diagrams

ASSEMBLY DRAWINGS:

- 9. Cotter joint with sleeve
- 10. Socket and Spigot joint
- 11. Flanged pipe joint
- 12. Union joint (Demonstration)
- 13. Stuffing box (Demonstration)
- 14. Expansion joint (Screw type or flanged type) (Demonstration)

Cour	Course Outcomes: After completing the course, the students will be able to					
CO1	Analyze the general projections of given object.					
CO2	Represent two-dimensional proportionate drawings of process symbols of various pipes					
	and fittings.					
CO3	Demonstrate the proportionate drawings of reaction vessel, jacketed vessels,					
	evaporator, STHE and DPHE					
CO4	Identify the parts of industrially used equipment.					
CO5	Draw the assembly drawings of socket and spigot, flanged pipe and union joints					
	showing sectional, front, top, and side					

Weekly evaluation will be conducted for every experiment. Marks of each evaluation includes Weekly Attendance + Experiment conduction along with Record / Observation + Weekly viva for all

the experiments. The total of all these evaluated marks are added and the total marks will be scaled to 30 marks. (A)

Two CIE for 20 Marks each and take the average for 20 Marks (B)

Final CIE Marks will be calculated as (A+B) for 50 marks

SEE Laboratory Examination (50 Marks)

The laboratory SEE is also evaluated for 50 marks, distributed as follows:

Experiment Conduction with Results: 40 marks

Viva Voce: 10 marks

Total 50 marks

The final score for the course out of 100 is the Sum Total of SEE and CIE.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2										
CO2	3	2										
CO3	3	2		2								
CO4	3	2		2								
CO5	3	2										

High-3, Medium-2, Low-1

	Semester: III							
	MATERIAL SCIENCE & TECHNOLOGY							
Cou	rse Code:	MVJ22CH361	CIE Marks:50					
L:T	: P	3:0:0	SEE Marks: 50					
Cre	dits	3	Total Marks: 100					
Hou	rs:	40 Hrs Theory	SEE Duration: 3 Hrs					
Cou	rse Learning O	bjectives: The students will be able to						
1	To understand concepts on properties and selection of metals, ceramics, and polymer							
1	design and Manufacturing.							
2	To identify the phase transformation that can be adopted to predict the various							
2	structure of metals							
3	To determine Young's modulus of elasticity of the material of a given wire and hea							
٦	treatment process							
4	To Study detailed information on types of corrosion and its prevention.							
5	To select the m	aterial of construction in automotive, stru	ctural, failure analysis and other					
)	types of industries							

MODULE-I	
Introduction: Engineering Materials – Classification – levels of structure, structure	
property relationships in materials.	
Crystal Geometry and Structure Determination: Geometry of crystals – the	
Bravais lattices, Crystal directions and planes – the miller indices, Structure	
determination – X –Ray diffraction- Bragg law, the powder method, Electron	8 Hrs
diffraction &Neutron diffraction.	
Atomic structure and Chemical bonding & Structure of solids: Periodic table,	
Ionization potential, Electron affinity and Electro-negativity, Correlation between	
Bonding and the Properties of Solids (Ionic, molecular, covalent, metallic solids)	
MODULE-II	
Crystal Imperfection: Point Imperfections, Line imperfections – edge and screw	
dislocations, the Burgers vector, line energy of dislocations, Surface imperfections	
Basic thermodynamic functions: phase diagrams and phase transformation:	8 Hrs
Single component systems, Binary phase diagrams, Lever rule, typical phase	0 1113
diagrams for Magnesia-Alumina, Copper – Zinc, iron – carbon systems, Nucleation	
and growth. Solidification, Allotropic transformation	
MODULE-III	
Deformation of Materials and Fracture: Elastic deformation, Plastic	
deformation, Visco-elastic deformation, Stress and strain curve for ductile & brittle	
material, creep, Different types of fracture.	8 Hrs
Heat Treatment: Annealing, Normalizing Hardening, Martempering,	
Austempering, Hardenability, Quenching, Tempering, Furnace types.	
MODULE-IV	
Corrosion and its Prevention: corrosion and its manifestations, consequences,	
direct corrosion, Electro-chemical corrosion, Galvanic cells, High temperature	8 Hrs
corrosion, Passivity, factors influencing corrosion rate, control and prevention of	

corrosion-modification of corrosive environment, inhibitors, protective coatings,	
Specific types of corrosion	
MODULE-V	
Typical Engineering materials: Ferrous metals, non-ferrous metals and alloys,	
Aluminum and its alloys, Copper and its alloy, Lead and its alloy, Tin, Zinc and its	8 Hrs
alloy, silicon and its alloys, Alloys for high temperature service, Ceramic materials	

Cours	Course Outcomes: After completing the course, the students will be able to					
CO1	Classify different types of engineering materials depending on structure property, crystal					
	geometry and X-Ray diffraction, atomic structures, types of bonding.					
CO2	Explain crystal imperfections and. draw phase diagrams of different metals, TTT curves.					
CO3	Enumerate deformation of materials and suggest different type of heat treatment					
	techniques depending on the type of the material.					
CO4	Interpret different types of corrosions and suggest preventive methods					
CO5	Select materials depending on type of application.					

Boo	oks
1.	Materials Science and Engineering: A First Course, Raghavan V, 2015, Prentice Hall India
	Learning Private Limited.
2.	Material Science & Engineering, William Callister, BalaSubramanian, Wiley Publications

Ref	Reference Books					
1.	Principles of Electronic Materials and Devices, Kasap. S.O. 2018, Mc-Graw Hill.					
2.	Semiconductor Optoelectronics: Physics and Technology, Jasprit Singh, 2019, Mc-Graw					
	Hill India.					
3.	Elements of X-ray Diffraction, Cullity B.D., 4th edn, 1978, Addison Wiley					

Continuous Internal Evaluation (CIE):

- Three CIE Will be conducted for 50 marks each and average of three will be taken (A)
- Three Quizzes will be conducted along with CIE for 10 Marks Each. Sum of three quizzes will be considered for 30 marks (B)
- Two Assignments for 10 marks each and the sum of both the assignments will be taken for 20 Marks (C)

Final CIE Marks will be calculated as (A+B+C)/2 for 50 marks

Semester End Examination (SEE):

The question paper consists of two parts, A and B

Part A: consists of 10 questions of 2 marks each. It is designed to cover the entire syllabus comprehensively.

Part B: The question paper will have 10 questions. Each question is set for 16 marks. There will be 2 questions from each module, with a maximum of 2 subdivisions. Students have to answer any 5 questions choosing one full question from each module.

The SEE Theory marks of 100 will be scaled down to 50.

					CO-P	O Map	ping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2										2
CO2	3	2										2
CO3	3	2										2
CO4	3	2										2
CO5	3	2										2

High-3, Medium-2, Low-1

	Semester: III							
	CARBON SEQUESTRATION TECHNOLOGY							
Cou	rse Code:	MVJ22CH362	CIE Marks:50					
L:T	:P	3:0:0	SEE Marks: 50					
Cre	dits	3	Total Marks: 100					
Hou	rs:	40 Hrs Theory	SEE Duration: 3 Hrs					
Cou	rse Learning	Objectives: The students will be able to						
1	Understand the concept of carbon sequestration and its significance in mitigating							
1	change.	change.						
Gain knowledge of different carbon capture techniques, including pre-combusti								
	combustion, and oxy-fuel combustion.							
3	Identify and assess various methods of carbon storage, including geological, oceanic, and							
3	terrestrial options.							
Familiarize with different monitoring techniques used in carbon sequestration p								
7	including remote sensing, geophysical monitoring, and geochemical monitoring.							
5	Analyze the	economic aspects of carbon sequestration pro-	ojects, including cost estimation,					
3	financial inc	entives, and market mechanisms.						

techniques like absorption, adsorption, and membrane separation. Oxyfuel combustion, Direct air capture. MODULE-III Carbon storage methods: an overview of geological, oceanic, and terrestrial storage options. Enhanced oil recovery (EOR), Saline aquifer storage, and deep geological formations. Ocean-based carbon sequestration methods. Terrestrial storage and utilization: afforestation, reforestation, and carbon farming	MODULE-I	
Sources and sinks of carbon dioxide (CO2): natural and anthropogenic sources; identification of potential carbon sinks. Greenhouse gases (GHGs): Overview of different GHGs, their contributions to global warming, and the role of CO2 as the primary GHG Climate change and its impacts: understanding the consequences of increased CO2 levels, global temperature rise, and climate-related events. MODULE-II Carbon capture techniques: an overview of pre-combustion, post-combustion, and oxy-fuel combustion capture technologies. Pre-combustion capture: coal gasification and syngas cleaning. Post-combustion capture: a detailed study of techniques like absorption, adsorption, and membrane separation. Oxyfuel combustion, Direct air capture. MODULE-III Carbon storage methods: an overview of geological, oceanic, and terrestrial storage options. Enhanced oil recovery (EOR), Saline aquifer storage, and deep geological formations. Ocean-based carbon sequestration methods. Terrestrial storage and utilization: afforestation, reforestation, and carbon farming	to Carbon Sequestration: Concept, Importance, and Relevance	in
identification of potential carbon sinks. Greenhouse gases (GHGs): Overview of different GHGs, their contributions to global warming, and the role of CO2 as the primary GHG Climate change and its impacts: understanding the consequences of increased CO2 levels, global temperature rise, and climate-related events. MODULE-II Carbon capture techniques: an overview of pre-combustion, post-combustion, and oxy-fuel combustion capture technologies. Pre-combustion capture: coal gasification and syngas cleaning. Post-combustion capture: a detailed study of techniques like absorption, adsorption, and membrane separation. Oxyfuel combustion, Direct air capture. MODULE-III Carbon storage methods: an overview of geological, oceanic, and terrestrial storage options. Enhanced oil recovery (EOR), Saline aquifer storage, and deep geological formations. Ocean-based carbon sequestration methods. Terrestrial storage and utilization: afforestation, reforestation, and carbon farming	limate Change.	
Greenhouse gases (GHGs): Overview of different GHGs, their contributions to global warming, and the role of CO2 as the primary GHG Climate change and its impacts: understanding the consequences of increased CO2 levels, global temperature rise, and climate-related events. MODULE-II Carbon capture techniques: an overview of pre-combustion, post-combustion, and oxy-fuel combustion capture technologies. Pre-combustion capture: coal gasification and syngas cleaning. Post-combustion capture: a detailed study of techniques like absorption, adsorption, and membrane separation. Oxyfuel combustion, Direct air capture. MODULE-III Carbon storage methods: an overview of geological, oceanic, and terrestrial storage options. Enhanced oil recovery (EOR), Saline aquifer storage, and deep geological formations. Ocean-based carbon sequestration methods. Terrestrial storage and utilization: afforestation, reforestation, and carbon farming	sinks of carbon dioxide (CO2): natural and anthropogenic sour	es;
Greenhouse gases (GHGs): Overview of different GHGs, their contributions to global warming, and the role of CO2 as the primary GHG Climate change and its impacts: understanding the consequences of increased CO2 levels, global temperature rise, and climate-related events. MODULE-II Carbon capture techniques: an overview of pre-combustion, post-combustion, and oxy-fuel combustion capture technologies. Pre-combustion capture: coal gasification and syngas cleaning. Post-combustion capture: a detailed study of techniques like absorption, adsorption, and membrane separation. Oxyfuel combustion, Direct air capture. MODULE-III Carbon storage methods: an overview of geological, oceanic, and terrestrial storage options. Enhanced oil recovery (EOR), Saline aquifer storage, and deep geological formations. Ocean-based carbon sequestration methods. Terrestrial storage and utilization: afforestation, reforestation, and carbon farming	of potential carbon sinks.	011
Climate change and its impacts: understanding the consequences of increased CO2 levels, global temperature rise, and climate-related events. MODULE-II Carbon capture techniques: an overview of pre-combustion, post-combustion, and oxy-fuel combustion capture technologies. Pre-combustion capture: coal gasification and syngas cleaning. Post-combustion capture: a detailed study of techniques like absorption, adsorption, and membrane separation. Oxyfuel combustion, Direct air capture. MODULE-III Carbon storage methods: an overview of geological, oceanic, and terrestrial storage options. Enhanced oil recovery (EOR), Saline aquifer storage, and deep geological formations. Ocean-based carbon sequestration methods. Terrestrial storage and utilization: afforestation, reforestation, and carbon farming	gases (GHGs): Overview of different GHGs, their contribution	to 8Hrs
RODULE-II Carbon capture techniques: an overview of pre-combustion, post-combustion, and oxy-fuel combustion capture technologies. Pre-combustion capture: coal gasification and syngas cleaning. Post-combustion capture: a detailed study of techniques like absorption, adsorption, and membrane separation. Oxyfuel combustion, Direct air capture. MODULE-III Carbon storage methods: an overview of geological, oceanic, and terrestrial storage options. Enhanced oil recovery (EOR), Saline aquifer storage, and deep geological formations. Ocean-based carbon sequestration methods. Terrestrial storage and utilization: afforestation, reforestation, and carbon farming	ing, and the role of CO2 as the primary GHG	
Carbon capture techniques: an overview of pre-combustion, post-combustion, and oxy-fuel combustion capture technologies. Pre-combustion capture: coal gasification and syngas cleaning. Post-combustion capture: a detailed study of techniques like absorption, adsorption, and membrane separation. Oxyfuel combustion, Direct air capture. MODULE-III Carbon storage methods: an overview of geological, oceanic, and terrestrial storage options. Enhanced oil recovery (EOR), Saline aquifer storage, and deep geological formations. Ocean-based carbon sequestration methods. Terrestrial storage and utilization: afforestation, reforestation, and carbon farming	age and its impacts: understanding the consequences of increased ()2
Carbon capture techniques: an overview of pre-combustion, post-combustion, and oxy-fuel combustion capture technologies. Pre-combustion capture: coal gasification and syngas cleaning. Post-combustion capture: a detailed study of techniques like absorption, adsorption, and membrane separation. Oxyfuel combustion, Direct air capture. MODULE-III Carbon storage methods: an overview of geological, oceanic, and terrestrial storage options. Enhanced oil recovery (EOR), Saline aquifer storage, and deep geological formations. Ocean-based carbon sequestration methods. Terrestrial storage and utilization: afforestation, reforestation, and carbon farming	l temperature rise, and climate-related events.	
oxy-fuel combustion capture technologies. Pre-combustion capture: coal gasification and syngas cleaning. Post-combustion capture: a detailed study of techniques like absorption, adsorption, and membrane separation. Oxyfuel combustion, Direct air capture. MODULE-III Carbon storage methods: an overview of geological, oceanic, and terrestrial storage options. Enhanced oil recovery (EOR), Saline aquifer storage, and deep geological formations. Ocean-based carbon sequestration methods. Terrestrial storage and utilization: afforestation, reforestation, and carbon farming	MODULE-II	
gasification and syngas cleaning. Post-combustion capture: a detailed study of techniques like absorption, adsorption, and membrane separation. Oxyfuel combustion, Direct air capture. MODULE-III Carbon storage methods: an overview of geological, oceanic, and terrestrial storage options. Enhanced oil recovery (EOR), Saline aquifer storage, and deep geological formations. Ocean-based carbon sequestration methods. Terrestrial storage and utilization: afforestation, reforestation, and carbon farming	are techniques: an overview of pre-combustion, post-combustion,	nd
techniques like absorption, adsorption, and membrane separation. Oxyfuel combustion, Direct air capture. MODULE-III Carbon storage methods: an overview of geological, oceanic, and terrestrial storage options. Enhanced oil recovery (EOR), Saline aquifer storage, and deep geological formations. Ocean-based carbon sequestration methods. Terrestrial storage and utilization: afforestation, reforestation, and carbon farming	ombustion capture technologies. Pre-combustion capture:	oal
MODULE-III Carbon storage methods: an overview of geological, oceanic, and terrestrial storage options. Enhanced oil recovery (EOR), Saline aquifer storage, and deep geological formations. Ocean-based carbon sequestration methods. Terrestrial storage and utilization: afforestation, reforestation, and carbon farming	and syngas cleaning. Post-combustion capture: a detailed study	of 8 Hrs
MODULE-III Carbon storage methods: an overview of geological, oceanic, and terrestrial storage options. Enhanced oil recovery (EOR), Saline aquifer storage, and deep geological formations. Ocean-based carbon sequestration methods. Terrestrial storage and utilization: afforestation, reforestation, and carbon farming	like absorption, adsorption, and membrane separation. Oxy	le1
Carbon storage methods: an overview of geological, oceanic, and terrestrial storage options. Enhanced oil recovery (EOR), Saline aquifer storage, and deep geological formations. Ocean-based carbon sequestration methods. Terrestrial storage and utilization: afforestation, reforestation, and carbon farming		
options. Enhanced oil recovery (EOR), Saline aquifer storage, and deep geological formations. Ocean-based carbon sequestration methods. Terrestrial storage and utilization: afforestation, reforestation, and carbon farming	MODULE-III	
formations. Ocean-based carbon sequestration methods. Terrestrial storage and utilization: afforestation, reforestation, and carbon farming	ge methods: an overview of geological, oceanic, and terrestrial stor	ge
formations. Ocean-based carbon sequestration methods. Terrestrial storage and utilization: afforestation, reforestation, and carbon farming	anced oil recovery (EOR), Saline aquifer storage, and deep geolog	al
Ÿ	Ocean-based carbon sequestration methods. Terrestrial storage	nd 8Hrs
MODIII E IV	fforestation, reforestation, and carbon farming	
MODULE-IV	MODULE-IV	
Monitoring techniques: an overview of remote sensing, geophysical monitoring,	techniques: an overview of remote sensing, geophysical monitor	g,
and geochemical monitoring methods	nical monitoring methods	
Verification of carbon sequestration projects: understanding the importance of 8Hi	of carbon sequestration projects: understanding the importance	of 8Hrs
accurate measurement, reporting, and verification (MRV) for carbon credits and	asurement, reporting, and verification (MRV) for carbon credits	nd
compliance.	,	

Risk assessment and mitigation: Analyzing potential risks associated with carbon	
sequestration and developing strategies to mitigate them	
Legal and regulatory frameworks: discussion of national and international policies	
governing carbon sequestration projects	
MODULE-V	
Economic analysis of carbon sequestration projects: cost estimation, financial	
incentives, and market mechanisms like carbon trading and carbon taxes.	
Life cycle assessment (LCA): evaluating the environmental impact of carbon	
capture and storage (CCS) technologies.	8Hrs
Role of innovation and research: exploring emerging technologies, breakthroughs,	
and future directions in carbon sequestration	
Analyzing real-world carbon sequestration projects.	

Cou	Course Outcomes: After completing the course, the students will be able to					
CO	1 Understand carbon sequestration as a climate change mitigation method and its					
	relevance to global environmental issues after completing this module.					
CO	Analyze carbon capture technologies, appraise their strengths and weaknesses, and					
	propose suitable capture procedures for specific industrial applications.					
CO	B Evaluate carbon storage and utilization systems and choose the best ones based on					
	environmental, economic, and technological factors					
CO	Use various monitoring methods, accurately measure and report carbon sequestration					
	projects, and analyze and manage risks.					
CO:	Analyze the economics of carbon sequestration projects, and grasp life cycle					
	evaluation.					
Boo	ks					
1.	"Carbon Capture and Storage: Physical, Chemical, and Biological Methods" by					
	Chunshan Song and Detlef Stolten					
2.	Carbon Capture and Storage: CO ₂ Management Technologies" by Shaojun Liu, Yuzhuo					
	Zhang, and Fengwei Yang					
3.	"Carbon Capture, Storage, and Use: Technical, Economic, Environmental, and Societal					
	Perspectives," edited by David Reiner					

Continuous Internal Evaluation (CIE):

- Three CIE Will be conducted for 50 marks each and average of three will be taken (A)
- Three Quizzes will be conducted along with CIE for 10 Marks Each. Sum of three quizzes will be considered for 30 marks (B)
- Two Assignments for 10 marks each and the sum of both the assignments will be taken for 20 Marks (C)

Final CIE Marks will be calculated as (A+B+C)/2 for 50 marks

Semester End Examination (SEE):

The question paper consists of two parts, A and B

Part A: consists of 10 questions of 2 marks each. It is designed to cover the entire syllabus comprehensively.

Part B: The question paper will have 10 questions. Each question is set for 16 marks. There will be 2 questions from each module, with a maximum of 2 subdivisions. Students have to answer any 5 questions choosing one full question from each module.

The SEE Theory marks of 100 will be scaled down to 50.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3				2	1					1
CO2	3	3				2	1					1
CO3	3	3				2	1					1
CO4	3	3				2	1					1
CO5	3	3				2	1					1

High-3, Medium-2, Low-1

	Semester: III										
	MATLAB FOR CHEMICAL ENGINEERS										
Cou	rse Code:	MVJ22CH363	CIE Marks:50								
L:T	:P	3:0:0	SEE Marks: 50								
Cre	dits	3	Total Marks: 100								
Hou	rs:	40 Hrs Theory	SEE Duration: 3 Hrs								
Course Learning Objectives: The students will be able to											
1	Understand	the MATLAB programming, enabling them to write basic scripts a									
1	perform fun	damental operations in the MATLAB environment.									
2	Equip with	Equip with data manipulation and visualization skills in MATLAB, allowing them to									
	analyze and present chemical engineering data effectively.										
3	Familiarize	with numerical techniques in MATLAB for solving chemical engineering									
3	problems, in	ncluding optimization and root finding									
4	Create and	simulate mathematical models of chemical engineering processes using									
7	MATLAB, 1	MATLAB, providing valuable insights into system behavior.									
	Apply MA	Apply MATLAB to various chemical engineering applications, including reaction									
5	kinetics, hea	t and mass transfer, process control, optimiz	ation, and introductory machine								
	learning tech	learning techniques.									

MODULE-I						
Introduction to MATLAB: Introduction to MATLAB and its applications in						
chemical engineering; MATLAB environment, basic commands, and syntax;	8 Hrs					
Variables, arrays, and matrices in MATLAB; MATLAB functions and scripts;						
Logical operations and control structures						
MODULE-II						
Data Handling and Visualization: Importing and exporting data in MATLAB; Data manipulation and preprocessing techniques; Plotting and customizing various types of graphs and charts; 2D and 3D visualization of chemical engineering data; Animating data and creating interactive visualizations	8 Hrs					
MODULE-III						
Numerical Methods and Optimization: Solving algebraic equations and systems of equations; Root-finding and optimization techniques; Numerical integration and differentiation; Application of numerical methods to chemical engineering problems; MATLAB toolboxes for advanced numerical computing.	8 Hrs					
MODULE-IV						
Simulations and Modeling: Developing mathematical models of chemical engineering processes; Simulation of chemical engineering systems using MATLAB; Solving ordinary differential equations (ODEs) and partial differential equations (PDEs); Model validation and sensitivity analysis; Introduction to Simulink for system-level simulations	8 Hrs					
MODULE-V						
Applications in Chemical Engineering: MATLAB applications in reaction kinetics and reactor design; Heat and mass transfer simulations using MATLAB; MATLAB for process control and optimization; Introduction to machine learning	8 Hrs					

with MATLAB in chemical engineering; Case studies and real-world projects in chemical engineering using MATLAB

Cours	se Outcomes: After completing the course, the students will be able to
CO1	Write MATLAB scripts to solve simple chemical engineering problems, demonstrate an
	understanding of variables, arrays, and logical operations, and apply control structures in
	their scripts.
CO ₂	Proficient in importing and preprocessing data in MATLAB, creating various types of
	graphs and charts to visualize chemical engineering data, and producing interactive
	visualizations to communicate results
CO3	apply numerical methods to solve algebraic equations, implement optimization
	algorithms, perform numerical integration and differentiation, and utilize MATLAB
	toolboxes for advanced numerical computations in chemical engineering
CO4	Ability to develop mathematical models for chemical engineering systems, simulate
	dynamic processes using MATLAB, solve ODEs and PDEs relevant to chemical
	engineering, and conduct model validation and sensitivity analysis.
CO5	Gain hands-on experience in applying MATLAB to solve chemical engineering
	problems, such as simulating reaction kinetics and reactor designs, conducting heat and
	mass transfer simulations, implementing process control strategies, optimizing
	chemical processes, and exploring introductory machine learning concepts

Ref	Reference Books								
1.	MATLAB For Engineers, 6th Edition, Holly Moore, Pearson education								
2.	Chemical Engineering Computation with MATLAB®. 2nd Edition, Yeong Koo Yeo,								
	CRC Press								
3.	"Numerical Methods for Chemical Engineering: Applications in MATLAB" by Kenneth								
	J. Beers, Cambridge Press								

Continuous Internal Evaluation (CIE):

- Three CIE Will be conducted for 50 marks each and average of three will be taken (A)
- Three Quizzes will be conducted along with CIE for 10 Marks Each. Sum of three quizzes will be considered for 30 marks (B)
- Two Assignments for 10 marks each and the sum of both the assignments will be taken for 20 Marks (C)

Final CIE Marks will be calculated as (A+B+C)/2 for 50 marks

Semester End Examination (SEE):

The question paper consists of two parts, A and B

Part A: consists of 10 questions of 2 marks each. It is designed to cover the entire syllabus comprehensively.

Part B: The question paper will have 10 questions. Each question is set for 16 marks. There will be 2 questions from each module, with a maximum of 2 subdivisions. Students have to answer any 5 questions choosing one full question from each module.

The SEE Theory marks of 100 will be scaled down to 50.

	CO-PO Mapping												
CO/PO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12											PO12		
CO1	3	3	2		2				2			1	
CO2	3	3	2		2				2			1	
CO3	3	3	2		2				2			1	
CO4	3	3	2	1	2				2			1	
CO5	3	3	2	1	2				2			1	

High-3, Medium-2, Low-1

	Semester: III										
DATA SCIENCE FOR ENGINEERS											
Cou	rse Code:	MVJ22CH364	CIE Marks:50								
L:T	:P:	3:0:0	SEE Marks: 50								
Cre	dits	3	Total Marks: 100								
Hou	irs:	40 Hrs Theory	SEE Duration: 3 Hrs								
Cou	rse Learning	GObjectives: The students will be ab	le to								
1	Develop a f	foundational understanding of key data science concepts and principles									
1	applicable t	oplicable to engineering problems.									
2	Gain proficiency in using Python for data analysis, with a focus on Pandas, and apply										
	these skills to manipulate and preprocess engineering datasets.										
3	Apply statis	stical concepts, hypothesis testing, and	machine learning algorithms to								
3	analyze and model relationships within engineering datasets.										

UNIT-I							
Introduction to Data Science and Python Programming: Overview of data							
science and its applications in engineering; Introduction to Python programming for	8 Hrs						
data analysis; Data types, variables, and basic data structures in Python							
UNIT-II							
Data Manipulation and Exploratory Data Analysis: Introduction to Pandas							
library for data manipulation, Handling data frames and series, Data cleaning and	8 Hrs						
preprocessing techniques, Descriptive statistics and data visualization, Exploratory	0 111 8						
data analysis techniques, Case studies in EDA for engineering datasets							
UNIT-III							
Statistical Concepts and Machine Learning Basics: Probability and statistical							
distributions, Hypothesis testing and confidence intervals, Regression analysis for							
engineering applications, Introduction to machine learning, Supervised and	8 Hrs						
unsupervised learning, Linear regression, classification, and clustering algorithms							
UNIT-IV							
Feature Engineering, Model Evaluation, and Big Data: Feature selection and							
extraction, Model evaluation metrics, Cross-validation and over fitting,	8 Hrs						
Introduction to big data concepts, Basics of distributed computing and storage,	оптѕ						
Overview of data engineering tools and frameworks							
UNIT-V							
Application: Application of data science techniques to Chemical Engineering	8 Hrs						
problems, Presentation of capstone projects.	0 111 8						

Cour	Course Outcomes: After completing the course, the students will be able to								
CO1	Articulate the significance of data science in engineering,								
CO2	clean, preprocess, and analyze engineering datasets and apply exploratory data analysis								
	techniques.								
CO3	Apply statistical concepts and regression analysis to model engineering relationships,								
	and gain a foundational understanding of machine learning algorithms for data-driven								
	decision-making.								

CO4	Gain an awareness of big data concepts and tools relevant to engineering datasets
CO5	Demonstrate the practical application of data science techniques to solve a real-world
	Chemical Engineering problem.

Ref	Reference Books								
1.	"Data Science for Engineers" by John C. Zikopoulos								
2.	"Introduction to Python for Engineers and Scientists" by Hans Fangohr								

Continuous Internal Evaluation (CIE):

- Three CIE Will be conducted for 50 marks each and average of three will be taken (A)
- Three Quizzes will be conducted along with CIE for 10 Marks Each. Sum of three quizzes will be considered for 30 marks (B)
- Two Assignments for 10 marks each and the sum of both the assignments will be taken for 20 Marks (C)

Final CIE Marks will be calculated as (A+B+C)/2 for 50 marks

Semester End Examination (SEE):

The question paper consists of two parts, A and B

Part A: consists of 10 questions of 2 marks each. It is designed to cover the entire syllabus comprehensively.

Part B: The question paper will have 10 questions. Each question is set for 16 marks. There will be 2 questions from each module, with a maximum of 2 subdivisions. Students have to answer any 5 questions choosing one full question from each module.

The SEE Theory marks of 100 will be scaled down to 50.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2		2				2			1
CO2	3	3	2		2				2	-		1
CO3	3	3	2		2				2	-		1
CO4	3	3	2	1	2				2			1
CO5	3	3	2	1	2				2			1

High-3, Medium-2, Low-1

Semester: III					
Social Connect & Responsibility					
Course Code:	MVJ22SCR37	CIE Marks: 100			
L: T:P:S	0:0:2:0	SEE Marks: -			
Credits:	1	Total :100			
Hours:	24 Hrs Practical	SEE Duration: -			

Course objectives: The course will enable the students to:

- 1. Provide a formal platform for students to communicate and connect to the surroundings.
- 2. create a responsible connection with society.
- 3. Understand the community in general in which they work.
- 4. Identify the needs and problems of the community and involve them in problem –solving.
- 5. Develop among themselves a sense of social & civic responsibility & utilize their knowledge in finding practical solutions to individual and community problems.
- 6. Develop competence required for group-living and sharing of responsibilities & gain skills in mobilizing community participation to acquire leadership qualities and democratic attitudes.

Social Connect & Responsibility - Contents

MODULE I 4 Hours

Plantation and adoption of a tree:

Plantation of a tree that will be adopted for four years by a group of BE / B.Tech students. (ONE STUDENT ONE TREE) They will also make an excerpt either as a documentary or a photo blog describing the plant's origin, its usage in daily life, its appearance in folklore and literature - Objectives, Visit, case study, report, outcomes.

MODULE II 5 Hours

Heritage walks and crafts corner:

Heritage tour, knowing the history and culture of the city, connecting to people around through their history, knowing the city and its craftsman, photo blog and documentary on evolution and practice of various craft forms - Objectives, Visit, case study, report, outcomes.

MODULE III

5 Hours

Organic farming and waste management:

Usefulness of organic farming, wet waste management in neighboring villages, and implementation in the campus – Objectives, Visit, case study, report, outcomes.

MODULE IV

5 Hours

Water conservation:

Knowing the present practices in the surrounding villages and implementation in the campus, documentary or photoblog presenting the current practices – Objectives, Visit, case study, report, outcomes.

MODULE V 5 Hours

Food walk:

City's culinary practices, food lore, and indigenous materials of the region used in cooking – Objectives, Visit, case study, report, outcomes.

Course outcomes (Course Skill Set):

At the end of the course, the student will be able to:

CO1: Communicate and connect to the surroundings.

CO2: Create a responsible connection with society.

CO3: Involve in the community in general in which they work.

CO4: Notice the needs and problems of the community and involve them in problem – solving.

CO5: Develop among themselves a sense of social & civic responsibility & utilize their knowledge in finding practical solutions to individual and community problems.

CO6: Develop competence required for group-living and sharing of responsibilities & gain skills in mobilizing community participation to acquire leadership qualities and democratic attitudes.

Duration:

A total of 40 - 50 hrs engagement per semester is required for the 3rd semester of the B.E.

/B.Tech. program. The students will be divided into groups. Each group will be handled by faculty mentors. Faculty mentor will design the activities (particularly Jamming sessions open mic, and poetry) Faculty mentors has to design the evaluation system as per VTU guidelines of scheme & syllabus.

Plan of Action (Execution of Activities)

Sl.NO	Practice Session Description
1	Lecture session in field to start activities
2	Students' Presentation on Ideas
3	Commencement of activity and its progress
4	Execution of Activity
5	Execution of Activity

6	Execution of Activity
7	Execution of Activity
8	Case study-based Assessment, Individual performance
9	Sector/ Team wise study and its consolidation
10	Video based seminar for 10 minutes by each student at the end of semester with Report.

- Each student should do activities according to the scheme and syllabus.
- At the end of semester student performance has to be evaluated by the faculty for the assigned activity progress and its completion.
- At last consolidated report of all activities from 1st to 5th, the compiled report should be submitted as per the instructions and scheme.

Assessment Details for CIE (both CIE and SEE, no SEE)

Weightage CIE – 100% Implementation strategies of the project (NSS work). The last report should be signed by NSS officer of the institute / Department SCR Faculty, the HOD and Principal. At last report should be evaluated by the NSS officer of the institute / Department SCR Faculty. Finally, the consolidated marks sheet should be sent to the Controller of Examination office.

Rubrics to be followed:

Field Visit, Plan, Discussion - 10 Marks

Commencement of activities and its progress weekly - 20 Marks

Case study-based Assessment Individual performance with report - 20 Marks

Sector wise study & its consolidation 5*5 = 25 Marks

Seminar for 10 minutes by each student at the end of semester with Report.

Activities 1 to 5, 5*5 = 25 Marks

Total marks for the course in each semester 100 Marks

For each activity, 20 marks CIE will be evaluated for IA marks at the end of semester, Report and assessment copy should be made available in the department.

Students should present the progress of the activities as per the schedule in the prescribed practical session in the field. There should be positive progress in the vertical order for the benefit of society in general through activities.

Please follow the following allocation of number of hours to be taken per semester and the credits for different subjects.

Semester: 3/4/5/6					
NATIONAL SERVICE SCHEME(NSS)					
Course Code: MVJ22NSS 39/49/59/69 CIE Marks: 50					
L: T:P:S	0:0:2:0	SEE Marks			
Credits: 0 Total:100					
Hours:	30 Hrs Practical	SEE Duration			

Course Objectives: National Service Scheme (NSS) will enable the students to:

- 1. Understand the community in general in which they work.
- 2. Identify the needs and problems of the community and involve them in problem–solving.
- 3. Develop among themselves a sense of social & civic responsibility & utilize their knowledge in finding practical solutions to individual and community problems.
- 4. Develop competence required for group-living and sharing of responsibilities & gain skills in mobilizing community participation to acquire leadership qualities and democratic attitudes.
- 5. Develop capacity to meet emergencies and natural disasters & practice national integration and social harmony in general.

National Service Scheme (NSS) – Contents

- 1. Organic farming, Indian Agriculture (Past, Present and Future), Connectivity for marketing.
- 2. Waste management Public, Private and Govt organization, 5R's.
- **3.** Setting of the information imparting club for women leading to contribution in social and economic issues.
- **4.** Water conservation techniques Role of different stakeholders Implementation.
- **5.** Preparing an actionable business proposal for enhancing the village income and approach for implementation.
- **6.** Helping local schools to achieve good results and enhance their enrolment in Higher/technical/vocational education.
- 7. Developing Sustainable Water management system for rural areas and implementation approaches.
- **8.** Contribution to any national level initiative of Government of India. For e.g. Digital India, Skill India, Swatch Bharat, Atmanirbhar Bharath, Make in India, Mudra scheme, Skill development programs etc.
- **9.** Spreading public awareness under rural outreach programs. (Minimum 5 programs).
- **10.** Plantation and adoption of plants. Know your plants.
- **11.** Organize National integration and social harmony events/workshops/seminars. (Minimum 02 programs).
- 12. Govt. school rejuvenation and helping them to achieve good infrastructure.

NOTE:

- Student/s in individual or in a group should select any one activity at the beginning of each semester till end of that respective semester for successful completion as per the instructions of NSS officer with the consent of HOD of the department.
- At the end of the semester, an activity report should be submitted for evaluation.

Plan of Action (Execution of Activities)

Sl.NO	Practice Session Description
1	Lecture session by NSS Officer
2	Students' Presentation Topics
3	Presentation-1, Selection of topic, PHASE-1
4	Commencement of activity and its progress-PHASE-2
5	Execution of Activity
6	Execution of Activity
7	Execution of Activity
8	Execution of Activity
9	Execution of Activity
10	Case study-based Assessment, Individual performance
11	Sector wise study and its consolidation
12	Video based seminar for 10minutes by each student at the end of semester with Report.

- In semester end, each student should do activities according to the scheme and syllabus.
- At the end of the semester, student performance must be evaluated by the NSS officer for the assigned activity progress and its completion.
- Finally, at the end of the semester, a consolidated report of activities should be compiled and submitted as per the instructions.

Course Outcomes (Course Skill Set)

At the end of the course, the student will be able to:

CO1: Understand the importance of his/her responsibilities towards society.

CO2: Analyze the environmental and societal problems/issues and will be able to design solutions for the same.

CO3: Evaluate the existing system and propose practical solutions for the same for sustainable development.

CO4: Implement government or self-driven projects effectively in the field.

CO5: Develop capacity to meet emergencies and natural disasters & practice national integration and social harmony in general

Assessment Details for CIE (both CIE and SEE)

Weightage	CIE-100%		Implementation strategies of the
Presentation-1	10 Marks		project(NSS work). The last report should be signed by
Selection of topic, PHASE-1			NSSOfficer, the HOD and principal.
Commencement of activity and its	10 Marks	•]	Finally, the report should be evaluated
progress- PHASE-2		1	bythe NSS officer of the institute.
Case study-based Assessment	10 Marks		Finally, the consolidated marks sheet should be sent to the university and to
Individual performance		1	be made available at LIC visit.
Sector wise study and its consolidation	10 Marks		
Video based seminar for 10minutes by each	10 Marks		
Student at the end of semester with Report.			
Total marks for the course in end semester	50Marks		

Marks scored for 50 by the students should be Scale down to 25 Marks in end semester For CIE entry in the VTU portal.

CIE (50 Marks)

Weekly Evaluation 30 Marks

Weekly evaluation will be conducted for each activity. Marks of each evaluation includes Weekly Attendance & activities performed by students. The total of all these evaluated marks are added and the total marks will be scaled to 30 marks. (A)

Two CIE for 20 Marks each and take the average for 20 Marks (B)

Final CIE Marks will be calculated as (A+B) for 50 marks

Suggested Learning Resources:

Books:

- 1. NSS Course Manual, Published by NSS Cell, VTU Belagavi.
- 2. Government of Karnataka, NSS cell, activities reports and its manual.
- 3. Government of India, NSS cell, Activities reports and its manual.

CO/P O	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10	PO11
CO1:	2	2	-	-	-	3	3	2	2	2	-
CO2 :	-	2	-	-	-	2	2	3	3	2	-
CO3:	2	-	-	-	-	3	2	3	3	2	-
CO4:	-	-	2	-	1	3	3	2	2	2	2
CO5:	-	-	1	-	1	3	3	2	-	-	-
CO6 :	-	-	_	-	-	3	3	3	2	-	-

		SEMESTER 3/4/5/6			
		PHYSICAL EDUCATION (SPORTS	& ATHLETICS)		
Co	urse Code:	MVJ22PE39/49/59/69	CIE Marks: 100		
-	L: T:P:S	0:0:2:0	SEE Marks: -		
	Credits: 0 Total:1				
	Hours: 24 Hrs Practical		SEE Duration: -		
Cour	se Objectives:	the student will be able to	I		
1	Understand the meaning and importance of the fitness and the benefits of fitness				
2	Types of fitness and fitness tips.				
3	Importance of Sports, and Yoga in a day-to-day life.				
4	Understand the importance of aerobics and other activities for healthy lifestyle.				
5	Know about the different roles of organization and administration in sports events.				

Topics / Activities to be Covered (100Marks)

Specific Games (Anyone to be selected by the student)

Mo	dule I	4 Hours
Orientation		
Lifestyle		
> Fitness		
Food & Nutrition: Sports diet.		
Stress Management		
Module 3	II	4 Hours
General Fitness & Components of Fitness		
Warming up (Free Hand Exercises).		
> Strength—Push-up/Pull-ups		
Speed—30MtrDash.		
Agility—Shuttle Run		
Flexibility—Sit and Reach		
Module III		6 Hours

➤ Volleyball— Attack, Block, Service, Upper Hand Pass and Lower Hand and Pass.

- ➤ Throw ball—Service, Receive, Spin attack, Net Drop & Jump throw.
- ➤ Kabaddi— Hand touch, Toe Touch, Thigh Hold, Ankle hold and Bonus.
- ➤ Basketball-dribbling, passing, shooting etc.
- ➤ Table Tennis—Service (Fore Hand & Back Hand)
- Receive (Fore Hand & Back Hand)
- > Smash, Athletics (Track / Field Events) -Running, Jumping, Throwing.

Module IV 6 Hours

Role of Organization and administration

- Planning.
- > Organizing.
- > Staffing.
- > Directing.
- ➤ Coordinating & controlling.
- > Reporting & Recording.
- > Budgeting.

Module V 4 Hours

Aerobics

- Dance Aerobics
- Sport Aerobics
- Warm up Aerobics
- Cardiovascular Aerobics

Course Outcomes: After completing the course, the students will be able to

CO1	Understand the fundamental concepts and skills of Physical Education, Health, Nutrition and Fitness.
	rimess.
CO2	Familiarization of health-related Exercises, Sports for overall growth and development.
CO3	Create a foundation for the professionals in physical Education and Sports.
CO4	Participate in the competition at regional / state / national / international levels.
CO5	Create consciousness among the students on Health, Fitness and Wellness in developing and maintaining a healthy lifestyle.

Assessment Details for CIE (both CIE and SEE)

Weight age	CIE – 100%	•	Implementation strategies of the
------------	------------	---	----------------------------------

Participation of student in all the	50 Marks	project (PE work).
modules		• The last report should be signed
Final presentation / exhibition /		by PED, the HOD and principal.
Participation		At last report should be evaluated
In competitions / practical on specific tasks Assigned to the students	50 Marks	 by the PED of the institute. Finally, the consolidated marks sheet should be sent to the Controller of Examinations
Total marks for the course in eachsemester	100 Marks	office.

Marks scored for 100 by the students should be Scale to 50 marks in each semester.

Students should present the progress of the activities as per the schedule in the prescribed practical session in the field. There should be positive progress in the vertical order for the benefit of society in general.

CO/PO Mapping											
CO/PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1	-	-	-	-	-	-	-	2	2	-	-
CO 2	-	-	-	-	-	-	-	2	2	-	-
CO 3	-	-	-	-	-	-	-	2	2	-	-
CO 4	-	-	-	-	-	-	-	2	2	-	-
CO 5	-	-	-	-	-	-	-	3	3	-	-

Semester:3/4/5/6							
	YOGA						
Course Code:	MVJ22YO39/49/59/69	CIE Marks:100					
L: T:P:S	0:0:2:0	SEE Marks:					
Credits:	0	Total :100					
Hours:	24 Hrs Practical	SEE Duration:					

Course Objectives:

- Promote Holistic Wellness Practice in Students.
- Develop Physical Awareness and Flexibility.
- Improve Focus and Academic Performance.
- Encourage Healthy Lifestyle Habits.
- Support mental Health and Emotional balance.
- Maintain physical Body Health.

Basic theory of Yoga, Yamas s Niyamas	6 h
Yoga definition, Aims and Objectives, importance of yoga in students.	0
Introduction to Yoga asana	
Yoga asana meaning, principle and health benefits.	
• Ashtanga yoga	
Meaning, breathing techniques.	
• Four paths of yoga	
Karma yoga, Bhakthi yoga, Raja yoga, Jnana yoga.	
Surya namaskar	
Surya namaskar prayer and its meaning, benefits and importance.	
 Yoga asanas 	
Asanas it's need, importance, name and technique.	
Sitting: -Vajrasana, sukhasana Standing: - adasana, Ardhachakrasana Prone	
line: -Advasana, Bhujangasana Supine line: -Shavasana, Supta	
baddhakonasana	
Balancing posture: -Vrikshasana, Garudasana	
Module II-Building strength and focus Finding out the obstacle	
• Kriya Yoga	6 h
Tapas, Svadhyaya, Ishwarapranidhana	
• Five Kleshas	
Obstacles.	
• Pranayama	
Introduction to Pranayama.	
• Pratyahara	
Preparing mind for meditation, Breathe focus techniques.	
• Yoga asanas	

Standing: -Virabhadrasana, Parshvakona Sitting: -Vajrasana, Paschimottanasana Prone Line: -Dhanurasana, Shalabhasana Supine Line: -Ananda Balasana, Supta

Matsyendrasana

Balancing: -Natarajasana (Dancer Pose)

Module III - Awareness and inner balance Finding how focused is the mind

• Dharana: Concentration

6 h

- Dhyana: Meditation
- Swasthya, Smrithi, Sankalpa.

Tool of academic excellence.

• Samyama

Patanjali's concept of samyama

Yogasanas

Standing: - ArdhaChandrasana, Utkatasana **Sitting**: - Padmasana (or prep), Gomukhasana **Prone Line**: - Adho Mukha Svanasana, Naukasana **Supine Line**: - SuptaBaddhaKonasana, Chakrasana **Balancing**: - Garudasana (Eagle Pose)

Module IV - integrating Yoga in daily Life

• Yama niyama Acharam

6 h

Practice of ethical Discipline (practicing nonviolence, truth, cleanliness)

• Ahara-Vihara Samyama

Practice discipline in diet C lifestyle.

Asana- pranayama sadhana

Daily practice of asanas and pranayama

Yogasanas

Standing: -PrasaritaPadottanasana, ParivrttaTrikonasana

Sitting: -Baddha Konasana, Marichyasana

Prone Line: -Ustrasana (Camel), Makarasana (relaxation)

Supine Line: -Sarvangasana, Shavasana

Balancing: - Bakasana (Crow – optional or modified)

Course outcomes

- 1. Identify and reflect on personal habits and thoughts.
- 2. Explain the basic theory of Yoga, including Yamas C Niyama.
- 3. Understand the definition, aims, objectives, and importance of Yoga, especially for students.
- 4. Enhance physical and mental strength through advanced Yog asanas.
- 5. Practice Dharana (concentration) and Dhyana (meditation) to improve focus.

CO/PO Mapping											
CO/PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1		2						3	2	2	
CO 2	2						2	2			
CO 3	2					2	2	3			
CO 4					2		3	3			
CO 5		2					2	3			

Weekley assessment will be done by the instructor by giving different poses / Asanas. The final assessment scaled up to 100 marks.

	Semester: II	I					
Additional Mathematics-I (Common to all branches)							
Course Code:	MVJ22MATDIP-1	CIE Marks:100					
L:T:P:S:	2:0:0:0	SEE Marks: 0					
Credits:	0	Total:100					
Hours:	25 Hrs Theory						

Course Learning Objectives: The students will be able to

To familiarize the important and introductory concepts of Differential calculus, Integral calculus, Vector differentiation, Probability, ordinary differential equations of first order, and analyze the engineering problems.

UNIT 1	
Differential calculus: Recapitulation of successive differentiation -nth derivative -Leibnitz theorem (without proof) and Problems, Polar curves - angle between the radius vector and tangent, angle between two curves, pedal equation, Taylor's and Maclaurin's series expansions- Illustrative examples. Self study: Radius of curvature. Video link: https://www.khanacademy.org/ https://www.youtube.com/watch?v=s6F5yjY6jWk&list=PLMLsjhQWWlUqBoTCQDtYllo I-o-9hxp11	5 Hrs.
UNIT 2	
Integral Calculus: Statement of reduction formulae for the integrals of sinn (x), cosn (x), sinn (x) cosn (n) and evaluation of these integrals with standard limits-problems. Double and triple integrals-Simple examples. Self study: Volume revolution, Surface area of revolution. Video link: https://www.youtube.com/watch?v=rCWOdfQ3cwQ https://www.khanacademy.org/math/ap-calculus-ab/ab-integration-new/ab-6-1/v/introduction-to-integral- calculus	5 Hrs.
UNIT 3	
Vector Differentiation: Differentiation of vector functions. Velocity and acceleration of a particle moving on a space curve. Scalar and Vector point functions, Gradient, Divergence, Curl, Solenoidal and Irrotational vector fields. Vector identities - div(□ A), curl(□ A), curl(grad(□)), div(curl A). Self study: Line integrals, Green's theorem, Gauss and stokes theorem. Video link: https://www.whitman.edu/mathematics/calculus_online/chapter16.html https://www.math.ust.hk/~machas/vector-calculus-for-engineers.pdf	5 Hrs.

https://www.youtube.com/watch?v=sO9Z2RSeH4s	
UNIT 4	
Probability: Basic terminology, Sample space and events. Axioms of probability. Addition	
and multiplication theorems. Conditional probability - illustrative examples. Bayes	
theorem-examples.	
Self study: Applications of Bayes' Theorem.	5 Hrs.
Video link:	
https://www.khanacademy.org/math/statistics-probability/probability-library	
https://nptel.ac.in/courses/111/105/111105041/	
UNIT 5	
Ordinary Differential Equations of First Order: Introduction – Formation of differential	
equation, solutions of first order and first degree differential equations: variable separable	
form, homogeneous, exact, linear differential equations. Some special first order equations:	5 Hrs.
Bernoulli equation, Clairaut's equation	S III'S.
Self study: Applications of differential equations(ODE): Newton's law cooling.	
Video link: https://www.mathsisfun.com/calculus/differential-equations.html	

Course C	Outcomes: After completing the course, the students will be able to
CO1	Apply the knowledge of calculus to solve problems related to polar curves and its
	applications
CO2	Apply the concept of integration and variables to evaluate multiple integrals and their usage
	in computing the area and volumes.
CO3	Illustrate the applications of multivariate calculus to understand the solenoidal and
	irrotational vectors and also exhibit the inter dependence of line, surface and volume
	integrals.
CO4	Understand the basic Concepts of Probability
CO5	Recognize and solve first-order ordinary differential equations occurring in different
	branches of engineering.

Text Book	S
1.	B.S. Grewal, "Higher Engineering Mathematics" Khanna Publishers, 43rd Edition, 2013.
2.	Ramana B. V., "Higher Engineering Mathematics", Tata Mc Graw-Hill, 2006.
Reference	Books
1.	Erwin Kreyszig, "Advanced Engineering Mathematics", Wiley-India publishers, 10th edition,2014.
2.	G. B. Gururajachar: Calculus and Linear Algebra, Academic Excellent Series

	Publication, 2018-19
3.	Erwin Kreyszig, "Advanced Engineering Mathematics", Wiley-India publishers, 10th
	edition,2014.

- Two CIE Will be conducted for 50 marks each and average of two will be taken (A)
- Two Quizzes will be conducted along with CIE for 10 Marks Each and scaled to 15 marks each. Sum of two quizzes will be considered for 30 marks (B)
- Two Assignments for 10 marks each and the sum of both the assignments will be taken for 20 Marks (C)

Final CIE Marks will be calculated as (A+B+C) for 100 marks

CO-PC	CO-PO Mapping											
CO/PO	PO1	PO2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10	PO 11	PO12
CO1	3	3	-	2	-	-	-	-	-	-	1	1
CO2	3	3	-	2	-	-	-	-	-	-	1	1
CO3	3	3	-	3	-	-	-	-	-	-	-	1
CO4	2	2	-	3	-	-	-	-	-	-	1	1
CO5	2	2	-	2	-	-	-	-	-	-	-	1

	Semester: IV							
	CHEMICAL ENGINEERING THERMODYNAMICS							
Cou	rse Code:	MVJ22CH41	CIE Marks: 50					
L:T	L:T:P:S 3:0:0:0 SEE Marks: 50							
Cre	dits	3	Total Marks: 100					
Hou	irs:	40 Hrs Theory	SEE Duration: 3 Hrs.					
Cou	rse Learning (Objectives: The students will be able to						
1	Learn fundam	entals of thermodynamics such as types of	f properties, processes, and laws					
1	of thermodyn	amics for flow and non-flow process.						
2	Understand th	the clear concepts on P-V-T behavior, Equations of state, thermodynamic						
	diagrams and	compressibility charts, entropy, irreversibil	lity, and problem-solving skills.					
3	Learn the thermodynamic properties of pure fluids, energy relations and fugacity							
3	concepts.							
4	Study the esti	mation of partial molar properties, proper	ty changes of mixing, and ideal					
	and non-ideal	solutions.						
	Learn the fu	ndamentals of phase equilibrium, conce	ept of chemical potential and					
5 chemical reaction equilibrium to find feasibility and extent of conversion for								
	industrial read	ctions.						

MODULE-I				
BASIC CONCEPTS:System, surrounding and processes, Closed and open systems, Intensive and extensive properties, equilibrium state and phase rule, Zeroth law of thermodynamics, Heat reservoir and heat engines, Reversible and Irreversible processes. FIRST LAW OF THERMODYNAMICS: General statement of First law of thermodynamics, First law for cyclic processand non-flow processes, Heat capacity.	8 Hrs			
MODULE-II				
P-V-T Behaviour: P-V-T behaviour of pure fluids, equations of state and ideal gas law; processes involving ideal gas law: constant volume, constant pressure, constant temperature, adiabatic and polytropic processes. Equation of state for real gases: Vander Waals equation, Redlich – Kwong equation, Peng – Robinson equation, Virial equation, Compressibility charts: principles of corresponding states, generalized compressibility charts. Second law of thermodynamics: General statements of the second law, concept of entropy, the Carnot principle, calculation of entropy changes, Clausius inequality, entropy, and irreversibility, Third law of thermodynamics.	8 Hrs			
MODULE-III				
Thermodynamic Properties of Pure Fluids: Reference properties, energy properties, derived properties, work function, Gibbs free energy, relationships among thermodynamic properties, exact differential equations, fundamental	8 Hrs			

property relations, Maxwell's equations, Clapeyron equations, entropy heat capacity relations, modified equations for U & H, effect of temperature on U, H & S, Relationships between $C_P \& C_V$, Gibbs- Helmholtz equation, fugacity, fugacity coefficient, effect of temperature and pressure on fugacity, determination of fugacity of pure gases, fugacity of solids and liquids, activity, effect of temperature	
and pressure on activity.	
MODULE-IV	
Properties of solutions: Partial molar properties, chemical potential, fugacity in	
solutions, Henry's law and dilute solutions, activity in solutions, activity	8 Hrs
coefficients, property changes of mixing, excess properties.	
MODULE-V	
Phase Equilibria: Criteria of phase equilibria, Criterion of stability, Duhem's	
theorem, Vapor - Liquid Equilibria, VLE in ideal solutions, non-Ideal solutions,	8 Hrs
VLE at low pressures, VLE at high pressures, consistency test for VLE data,	0 1118
Calculation of Activity coefficients using Gibbs – Duhem's equation.	

Cours	Course Outcomes: After completing the course, the students will be able to				
CO1	Calculate the heat and work requirements for the given flow or non-flow processes.				
CO2	Analyse and find properties such as pressure, volume, and temperature for equations of				
	states and from the fundamentals of first law of thermodynamics.				
CO3	Calculate entropy for the processes, and various types of energies such as internal energy,				
	enthalpy, Helmholtz free energy and Gibbs free energy.				
CO4	Differentiate between ideal and non-ideal solution and estimate partial molar properties.				
CO5	Identify the role of thermodynamics in the design and operation of chemical reaction				
	system.				

Refe	Reference Books					
1	Smith, J. M., Van Ness, H. C., & Abbott, M. M. (1987). Introduction to Chemical					
1	Engineering Thermodynamics, McGraw Hill. Inc.: New York.					
2	Rao, Y. V. C. (1997). Chemical Engineering Thermodynamics. Universities Press.					
2	Narayanan, K. V. (2004). A Textbook of Chemical Engineering Thermodynamics. PHI					
3	Learning Pvt. Ltd.					

- Three CIE Will be conducted for 50 marks each and average of three will be taken (A)
- Three Quizzes will be conducted along with CIE for 10 Marks Each. Sum of three quizzes will be considered for 30 marks (B)
- Two Assignments for 10 marks each and the sum of both the assignments will be taken for 20 Marks (C)

Final CIE Marks will be calculated as (A+B+C)/2 for 50 marks

Semester End Examination (SEE):

The question paper consists of two parts, A and B

Part A: consists of 10 questions of 2 marks each. It is designed to cover the entire syllabus comprehensively.

Part B: The question paper will have 10 questions. Each question is set for 16 marks. There will be 2 questions from each module, with a maximum of 2 subdivisions. Students have to answer any 5 questions choosing one full question from each module.

The SEE Theory marks of 100 will be scaled down to 50.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	3									
CO2	2	3	3	2								
CO3	2	3	3	2								
CO4	2	3	3									
CO5	2	3	3									

High-3, Medium-2, Low-1

Semester: IV						
	UNIT PROCESS IN ORGANIC SYNTHESIS					
Course Code:	MVJ22CH42	CIE Marks: 50				
L: T:P:S	3:0:0:0	SEE Marks: 50				
Credits	3	Total Marks: 100				
Hours:	40 Hrs Theory	SEE Duration: 3 Hrs.				
Course Learning Objectives: The students will be able to						

Acquire a deep understanding of diverse chemical processes employed in industrial settings. Cultivate expertise in formulating and constructing process flow diagrams (PFDs) tailored to a range of industrial sectors.

UNIT-I	
Introduction: Definition and importance of unit processes in chemical engineering,	8 Hrs
Concept of unit operation and unit processes and their role in systematizing the	
cognitive structure of chemical industries, Classification of unit processes,	
Chemical process kinetics and Factors affecting, Symbols used in Chemical	
Engineering, Process flow diagram.	
UNIT-II	
Nitration: Introduction, Nitrating Agents, Aromatic Nitration – Theory of aromatic	8 Hrs
nitration, Kinetics & Mechanism of Aromatic Nitration	
UNIT-III	
Amination: Amination by reduction introduction, definition, methods of reduction,	8 Hrs
Reaction mechanism, synthesis of aniline by reduction, catalytic hydrogenation-	
production of Hydrogen by amination.	
UNIT-IV	
Halogenation: Introduction, Chlorination, Iodination, fluorination, chlorination of	8 Hrs
ethane, propane. Design &construction of Halogenations, Photo halogenations.	
UNIT-V	
Hydrocarbon & Hydro formylation: Introduction, Fischer-Tropsch process,	8 Hrs
catalysts, thermodynamics of FisherTropsch processes, processes related to fisher	
Tropsch processes. Esterification: Introduction, Esterification of carboxylic acid	
derivatives, design & operation of esterification process.	

Cours	e Outcomes: After completing the course, the students will be able to
CO ₁	Comprehend the role and significance of unit processes in chemical industries,
	distinguishing between unit operations and unit processes.
CO ₂	Explain the mechanisms and kinetics of aromatic nitration reactions.
CO3	Analyze the principles of Amination.
CO4	Identify the types of halogenations reactions and evaluate their commercial significance.
CO5	Understand the principles of Hydrocarbon process, esterification and hydrolysis
	reactions, and their relevance in organic synthesis and chemical process equipment
	design.

Refer	Reference Books				
1.	Unit Processing of Organic Synthesis, 5th edition, Groggins P. H. Tata-McGraw Hill,				
	New Delhi, 2001				
2.	Organic Chemistry (7th Edition) by Paula YurkanisBruice, published by Pearson in				
	2014.				
3.	Shreve's Chemical Process Industries, 5th Edition, Austin G. T, McGraw-Hill Pub.,				
	1994.				
4.	Dryden's Outlines of Chemical Tech. 2nd Ed, East-West Pub., New Delhi, 1997.				

- Three CIE Will be conducted for 50 marks each and average of three will be taken (A)
- Three Quizzes will be conducted along with CIE for 10 Marks Each. Sum of three quizzes will be considered for 30 marks (B)
- Two Assignments for 10 marks each and the sum of both the assignments will be taken for 20 Marks (C)

Final CIE Marks will be calculated as (A+B+C)/2 for 50 marks

Semester End Examination (SEE):

The question paper consists of two parts, A and B

Part A: consists of 10 questions of 2 marks each. It is designed to cover the entire syllabus comprehensively.

Part B: The question paper will have 10 questions. Each question is set for 16 marks. There will be 2 questions from each module, with a maximum of 2 subdivisions. Students have to answer any 5 questions choosing one full question from each module.

The SEE Theory marks of 100 will be scaled down to 50.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2		2		-			I			1
CO2	3	2		2		I			I			1
CO3	3	3		2								1
CO4	3	3		2								1
CO5	3	2		2								1

	Semester: IV						
	PROCESS HEAT TRANSFER						
Cou	rse Code:	MVJ22CH43	CIE Marks:50				
L:T	:P:S	2:2:2:2	SEE Marks: 50				
Cree	dits	4	Total Marks: 100				
Hou	rs:	40 Hrs Theory 24 Hrs Practical	SEE Duration: 03+03 Hrs				
Cou	rse Learning (Objectives: The students will be able to					
1	Study various modes of Heat transfer and their fundamental relations.						
Understand different types of heat transfer coefficients and their estimations in vari							
2	types of flows in different geometries.						
3	Study the Boiling phenomenon and to generate pool boiling curve.						
4	Understand the working and basic design of Heat exchangers.						
5	Understand the phenomenon of radiation, radiation shields and estimation of emissivity.						

MODULE-I	
Introduction: the importance of heat transfer in chemical engineering operations,	
modes of heat transfer. Conduction : Fourier's law, steady state unidirectional heat	
flow through single and multiphase layers slabs, cylinders, and spheres for constant	0.77
and variable thermal conductivity. thermal conductivity measurement; effect of	8 Hrs
temperature on thermal conductivity, properties of insulation materials, types of	
insulation, the critical and optimum thickness of insulation.	
MODULE-II	
Extended Surfaces: types of fins, fin efficiency for longitudinal fins, fin	
effectiveness. Convection: individual and overall heat transfer coefficient, LMTD,	
LMTD correction factor, dimensionless numbers, dimensional analysis, empirical	8 Hrs
correlation for forced and natural convection, analogy between momentum and heat	
transfer; Reynold, Colburn, Prandtl analogies.	
MODULE-III	
Heat Transfer with Phase Change: heat transfer to fluids with phase change; heat	
transfer from condensing vapors, drop wise and film wise condensation, nusselt	
equation for vertical and horizontal tubes, condensation of superheated vapors,	8 Hrs
effect of non-condensable gases on rate of condensation. Heat transfer to boiling	8 Hrs
liquids - mechanism of boiling, nucleate boiling and film boiling.	
MODULE-IV	
Radiation: properties and definitions, emissive power and intensity of radiation,	
black body radiation, grey body radiation, Stefan – Boltzmann law, Wein's	8 Hrs
displacement law, Kirchhoff's law, radiation shape factor, radiation between large	0 111 5
parallel plates.	
MODULE-V	

Heat Transfer Equipment: double pipe heat exchanger. Shell and tube heat exchangers, condensers, construction and working, types of shell and tube heat exchangers, type of condensers. **Design of Heat Transfer Equipment:** elementary design of double pipe heat exchanger. Shell and tube heat exchanger and condensers. **Evaporation:** single and multiple effect operation, material and energy balance in evaporators, forward and backward feeds, capacity and economy of evaporators, multiple effect evaporator; methods of feeding.

8 Hrs

LABORATORY EXPERIMENTS – 24 Hrs

- 1 Bare tube heat exchanger
- 2 vertical shell and tube heat exchanger (Condenser)
- 3 Horizontal Shell and tube Heat exchanger (Condenser)
- 4 Helical Coil Heat exchanger
- 5 An emissivity of grey surface
- 6 Heat transfer coefficients in a packed bed
- 7 Double pipe Heat exchanger
- 8 Heat transfer in a jacketed vessel
- 9 Transient heat conduction
- 10 Heat Transfer in Fluidized Beds
- 11 Single effect evaporator
- 12 Spiral plate heat exchanger
- 13 Cross flow heat exchanger
- 14 Finned tube heat exchanger
- 15 Stefan Boltzmann constant for radiation heat transfer
- 16 Experiment to verify Fourier's law

Any 12 experiments to be conducted

Cour	Course Outcomes: After completing the course, the students will be able to					
CO1	Develop flux equations for steady state heat conduction and critical thickness of					
	insulation in different geometry of solids.					
CO2	Explain the types of fins, fin effectiveness and apply various correlations of convective					
	heat transfer to different problems.					
CO3	Derive the Nusselt equation for heat transfer with phase change.					
CO4	Interpret the phenomenon of radiation in different types of solids.					
CO5	Develop the elementary design equations for various Heat exchangers.					

Reference Books

- 1. Unit operations of ChemicalEngineering, McCabe, W. L., Smith, J. C., & Harriott, P., 1993, McGraw-Hill.
- 2. Heat Transfer, Rao, Y.V.C, 2002, Universities Press.

- 3. Fluid Flow, Heat Transfer and Mass Transfer, Coulson J.M, Richardson J.F, Backhurst JR and Harker J.H., 2002, 5th ed.,Elsevier.
- 4. Heat transfer: principles and applications, Dutta, B. K., 2000, PHI Learning.

Theory for 50 Marks

- Three CIE Will be conducted for 50 marks each and average of three will be taken(A)
- Three Quizzes will be conducted along with CIE for 10 Marks Each. Sum of three quizzes will be considered for 30 marks (B)
- Two Assignments for 10 marks each and the sum of both the assignments will be taken for 20 Marks (C)

Final CIE Marks will be calculated as (A+B+C)/2 for 50 marks

Laboratory- 50 Marks

Weekly Evaluation 30 Marks

Weekly evaluation will be conducted for every experiment. Marks of each evaluation include Weekly Attendance +Experiment conduction along with Record / Observation + Weekly viva for all the experiments. The total of all these evaluated marks are added and the total marks will be scaled to 30 marks. (A)

Two CIE for 20 Marks each and take the average for 20 Marks (B)

Final CIE Marks will be calculated as A+B for 50 marks

For IPCC Final CIE Marks will be calculated as Average of CIE and Lab CIE for 50 marks.

Semester End Examination (SEE)

SEE Theory Examination (100 Marks)

The question paper consists of two parts, A and B

Part A: consists of 10 questions of 2 marks each. It is designed to cover the entire syllabus comprehensively.

Part B: The question paper will have 10 questions. Each question is set for 16 marks. There will be 2 questions from each module, with a maximum of 2 subdivisions. Students have to answer any 5 questions choosing one full question from each module.

The SEE Theory marks of 100 will be scaled down to 50 (A)

SEE Laboratory Examination (50 Marks)

The laboratory SEE is also evaluated for 50 marks, distributed as follows:

Experiment Conduction with Results: 40 marks

Viva Voce: 10 marks

Total 50 marks (B)

The score for the SEE is A+B of total 100 marks

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2								
CO2	3	3	2									
CO3	3	3	2									
CO4	3	3	2									
CO5	3	3	2									

High-3, Medium-2, Low-1

Semester: IV						
UNIT PROCESS IN ORGANIC SYNTHESIS LAB						
Course Code:	MVJ22CHL44	CIE Marks:50				
L: T: P	0:0:2	SEE Marks: 50				
Credits	1	Total Marks: 100				
Hours:	24 Hrs Practical	SEE Duration: 03 Hours				
Course Learning Objectives: The students will be able to						

To Understand the practical aspects of organic synthesis reactions employed in chemical process industries

LABORATORY EXPERIMENTS – 24 Hrs

- 1. Preparation of Benzoic acid from Toluene by KMnO4
- 2. Estimation of glycine
- 3. Preparation of P-Nitroacetanalide from acetanalide
- 4. Preparation of Aniline from Nitrobenzene
- 5. Estimation of Glucose by Iodometric method
- 6. Preparation of Hippuric acid
- 7. Preparation of Benzamide from Benzoyl chloride
- 8. Estimation of Phenol by bromination method
- 9. Chemical structure & reactions by using chem sketch / chem draw (Can be Demo experiments for CIE)
- 10. Synthesis of BaSO4 by gravimetric method

(Can be Demo experiments for CIE)

11. Synthesis of ester by esterification (Can be Demo experiments for CIE)

Cour	Course Outcomes: After completing the course, the students will be able to					
CO1	Able to carry out nitration reactions, use nitrating agents calculate conversion yield					
CO2	To carryout amination reaction, calculate % conversion and yield					
CO3	Able to conduct chlorination reactions and report yield					
CO4	Select sulphating agents carryout sulfonation and sulfation reactions					
CO5	Design and operation of esterification					

Weekly evaluation will be conducted for every experiment. Marks of each evaluation includes Weekly Attendance + Experiment conduction along with Record / Observation + Weekly viva for all the experiments. The total of all these evaluated marks are added and the total marks will be scaled to 30 marks.(A)

Two CIE for 20 Marks each and take the average for 20 Marks (B)

Final CIE Marks will be calculated as (A+B) for 50 marks

SEE Laboratory Examination (50 Marks)

The laboratory SEE is also evaluated for 50 marks, distributed as follows:

Experiment Conduction with Results: 40 marks

Viva Voce: 10 marks

Total 50 marks

The final score for the course out of 100 is the Sum Total of SEE and CIE.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3					3	3	3				-
CO2	3					3	3	3				-
CO3	3			2		3	3	3				-
CO4	3			2		3	3	3				
CO5	3					3	3	3				

High-3, Medium-2, Low-1

	Semester: IV									
	INDUSTRIAL BIOTECHNOLOGY									
Cou	rse Code:	MVJ22CH451	CIE Marks:50							
L:T	:P: S	3:0:0:0	SEE Marks: 50							
Cre	dits	3	Total Marks: 100							
Hou	irs:	40 Hrs Theory	SEE Duration: 3 Hrs							
Cou	rse Learning	Objectives: The students will be able to								
1	Understand	the fundamental principles of industrial biot	echnology and its applications in							
1	chemical en	gineering industries.								
2	Familiarize	with the principles of microbial fermentation and its role in the production of								
	bio-based products in industrial settings.									
3	Describe the	e engineering aspects of bioprocessing, inclu-	uding mass and energy balances,							
3	and the chal	lenges of scale-up in industrial biotechnolog	gy.							
Understand about the separation, purification, and recovery of bio-based productions are separated as a separation of the separation of th										
7	fermentation	n broth in industrial biotechnology								
5	Explore var	ious industrial applications of biotechnolo	gy, including the production of							
	biofuels, enz	biofuels, enzymes, pharmaceuticals, and other bio-based products.								

MODULE-I				
Introduction to Industrial Biotechnology: Overview of Biotechnology and its applications in Industries; Introduction to microbial bioprocessing and its significance in chemical engineering; Comparison of conventional chemical processes with bioprocessing; Overview of bioreactors and their types used in industrial biotechnology.	8 Hrs			
MODULE-II				
Microbial Fermentation: Microorganisms and their role in bioprocessing: Fermentation processes and their applications in industry: Design and optimization of fermentation processes for bio-based products; Factors affecting microbial growth and product formation in fermentations.	8 Hrs			
MODULE-III				
Bioprocess Engineering and Scale-Up: Engineering aspects of bioprocessing: mass and energy balances; Kinetics of microbial growth and product formation in bioreactors; Scale-up principles and challenges in industrial biotechnology; Bioreactor design and operation for large-scale production.	8 Hrs			
MODULE-IV				
Downstream Processing and Product Recovery: Separation and purification of bio-based products from fermentation broth; Techniques for downstream processing, including filtration, chromatography, and centrifugation; Product recovery methods and their impact on process economics; Case studies on downstream processing in industrial biotechnology.	8 Hrs			

MODULE-V						
Industrial Applications of Biotechnology: Production of biofuels, enzymes,						
pharmaceuticals, and biopolymers; Biotechnology in waste treatment and	8 Hrs					
bioremediation processes; Biotechnology in the food and beverage industries.						

Cours	se Outcomes: After completing the course, the students will be able to							
CO1	Describe the idea of industrial biotechnology and its significance in chemical							
	engineering processes and industries.							
CO2	Describe the fermentation processes used in industrial biotechnology and their							
	applications in producing bio-based products.							
CO3	Apply engineering principles to bioprocessing, including understanding mass and							
	energy balances; and discuss the principles and challenges of scale-up in industrial							
	biotechnology.							
CO4	Explain various techniques used in downstream processing, including filtration,							
	chromatography, and centrifugation, and evaluate their impact on product recovery in							
	industrial biotechnology							
CO5	Identify and discuss the use of biotechnology in different industries, such as biofuel							
	production, pharmaceuticals, and waste treatment, and understand the current trends							
	and future prospects of industrial biotechnology.							

Ref	Reference Books						
1.	"Bioprocess Engineering Principles" by Pauline M. Doran, Academic Press						
2.	Bioprocess Engineering: Basic Concepts, by Michael L. Shuler, Fikret Kargi, Pearson						
	Publications						
3.	Biotechnology for Beginners, Reinhard Renneberg, Academic Press						

- Three CIE Will be conducted for 50 marks each and average of three will be taken (A)
- Three Quizzes will be conducted along with CIE for 10 Marks Each. Sum of three quizzes will be considered for 30 marks (B)
- Two Assignments for 10 marks each and the sum of both the assignments will be taken for 20 Marks (C)

Final CIE Marks will be calculated as (A+B+C)/2 for 50 marks

Semester End Examination (SEE):

The question paper consists of two parts, A and B

Part A: consists of 10 questions of 2 marks each. It is designed to cover the entire syllabus comprehensively.

Part B: The question paper will have 10 questions. Each question is set for 16 marks. There will be 2 questions from each module, with a maximum of 2 subdivisions. Students have to answer any 5 questions choosing one full question from each module.

The SEE Theory marks of 100 will be scaled down to 50.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2									
CO2	3	3	2									
CO3	3	3	2									
CO4	3	3	2									
CO5	3	3	2									

High-3, Medium-2, Low-1

	Semester: IV									
	BIOFUELS									
Cou	rse Code:	MVJ22CH452	CIE Marks:50							
L:T	L:T:P: S 3:0:0:0 SEE Marks: 50		SEE Marks: 50							
Cre	dits	3	Total Marks: 100							
Hou	irs:	40 Hrs Theory	SEE Duration: 3 Hrs							
Cou	rse Learning	Objectives: The students will be able to								
1	Understand	the concept of biofuels and their significa-	nce as sustainable alternatives to							
1	conventiona	l fossil fuels								
2	familiarize	with the different biomass feedstocks use	different biomass feedstocks used in biofuel production and the							
	consideratio	considerations for sustainable feedstock selection								
3	Understand	the key production processes for biodiesel,	bioethanol, biogas, and emerging							
3	biofuels									
Explore the chemical and enzymatic conversion technologies employed in										
7	production and their optimization									
5	Describe the	e environmental impact and economic as	pects of biofuel production and							
)	usage.	usage.								

MODULE-I					
Introduction to Biofuels: Introduction to biofuels and their significance as					
renewable energy sources; Types of biofuels: biodiesel, bioethanol, biogas, and	8 Hrs				
others; Comparison of biofuels with fossil fuels in terms of environmental impact	о пгу				
and sustainability; Government policies and initiatives promoting biofuel adoption.					
MODULE-II					
Biomass Feedstocks for Biofuel Production: Overview of biomass sources for					
biofuel production (e.g., agricultural residues, energy crops, algae); Feedstock					
selection criteria and considerations for sustainable feedstock supply; Pre-treatment	8 Hrs				
and handling of biomass for efficient biofuel conversion; Life cycle analysis and					
carbon footprint assessment of different feedstocks.					
MODULE-III					
Biofuel Production Processes: Biodiesel production through the transesterification					
of vegetable oils and animal fats; Bioethanol production through fermentation of					
sugars and lignocellulosic biomass; Biogas production through anaerobic digestion	8 Hrs				
of organic matter; Emerging technologies for advanced biofuels (e.g., bio-syngas,					
bio-hydrogen).					
MODULE-IV					
Biofuel Conversion Technologies: Chemical and enzymatic conversion processes					
for biofuel production; Process engineering and optimization of biofuel conversion	8 Hrs				
reactors; Co-products and by-products in biofuel production and their utilization;	о пгѕ				
Techno-economic analysis of biofuel production processes					

MODULE-V

Environmental and Economic Aspects of Biofuels: Environmental impacts of biofuel production and use: greenhouse gas emissions, land use, and water consumption; Sustainability considerations and challenges in large-scale biofuel implementation; Economic viability and market potential of biofuels compared to conventional fossil fuels; Integration of biofuels in existing energy infrastructure and future energy scenarios.

8 Hrs

Cours	se Outcomes: After completing the course, the students will be able to
CO1	Explain the various types of biofuels, understand their environmental impact, and
	recognize their potential as renewable energy sources.
CO2	Identify various biomass sources suitable for biofuel production, evaluate their
	sustainability, and understand the pre-treatment requirements for efficient conversion.
CO3	Describe the processes involved in biodiesel, bioethanol, and biogas production, and
	appreciate the potential of emerging biofuels like bio-syngas and bio-hydrogen
CO4	Understand the chemical and enzymatic conversion processes used in biofuel
	production, analyze reactor design considerations, and identify potential co-products
	and by-products.
CO5	Evaluate the environmental impacts of biofuels, discuss sustainability challenges, and
	analyze the economic viability and market potential of biofuels in comparison to
	conventional fossil fuels.

Ref	Reference Books						
1.	"Bioprocess Engineering Principles" by Pauline M. Doran, Academic Press						
2.	Bioprocess Engineering: Basic Concepts, by Michael L. Shuler, Fikret Kargi, Pearson						
	Publications						
3.	Biotechnology for Beginners, Reinhard Renneberg, Academic Press						

Continuous Internal Evaluation (CIE):

- Three CIE Will be conducted for 50 marks each and average of three will be taken (A)
- Three Quizzes will be conducted along with CIE for 10 Marks Each. Sum of three quizzes will be considered for 30 marks (B)
- Two Assignments for 10 marks each and the sum of both the assignments will be taken for 20 Marks (C)

Final CIE Marks will be calculated as (A+B+C)/2 for 50 marks

The question paper consists of two parts, A and B

Part A: consists of 10 questions of 2 marks each. It is designed to cover the entire syllabus comprehensively.

Part B: The question paper will have 10 questions. Each question is set for 16 marks. There will be 2 questions from each module, with a maximum of 2 subdivisions. Students have to answer any 5 questions choosing one full question from each module.

The SEE Theory marks of 100 will be scaled down to 50.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2									
CO2	3	3	2									
CO3	3	3	2									
CO4	3	3	2									
CO5	3	3	2									

High-3, Medium-2, Low-1

	Semester: IV							
	COMPUTATIONAL FLUID DYNAMICS							
	(Theory)							
Cou	rse Code:	MVJ22CH453	CIE Marks:50					
L:T:P:S		3:0:0:0	SEE Marks: 50					
Credits		3	Total Marks: 100					
Hou	rs:	40 Hrs Theory	SEE Duration: 3 Hrs					
Cou	Course Learning Objectives: The students will be able to							
1	To introduce Governing Equations of viscous fluid flows.							
2	To introduce numerical modeling and its role in the field of fluid flow and heat transfer.							
3	To enable the students to understand the various discretization methods, solution							
3	procedures and turbu	procedures and turbulence modeling.						
4	To create confidence	to solve complex problems in the f	ield of fluid flow and heat					
4	transfer by using hig	transfer by using high speed computers.						

MODULE-I					
Introduction: Illustration of the CFD approach, CFD as an engineering analysis					
tool, Review of governing equations, Modelling in engineering, Partial differential					
equations- Parabolic, Hyperbolic and Elliptic equation, CFD application in	8 Hrs				
Chemical Engineering, CFD software packages and tools.					
MODULE-II					
Finite difference and finite volume methods: Derivation of finite difference					
equations – Simple Methods – General Methods for first and second order accuracy					
- Finite volume formulation for steady state One, Two and Three -dimensional	0.11				
diffusion problems – Parabolic equations – Explicit and Implicit schemes – Example	8 Hrs				
problems on elliptic and parabolic equations – Use of Finite Difference and Finite					
Volume methods					
MODULE-III					
Solution algorithms: Steady one-dimensional convection and diffusion – Central,					
upwind differencing schemes properties of discretization schemes –	0.11				
Conservativeness, Boundedness, Transportiveness, Hybrid, Power-law, QUICK	8 Hrs				
Schemes.					
MODULE-IV					
Flow field analysis: Finite volume methods -Representation of the pressure					
gradient term and continuity equation – Staggered grid – Momentum equations –	0.11				
Pressure and Velocity corrections - Pressure Correction equation, SIMPLE	8 Hrs				
algorithm and its variants – PISO Algorithms.					
MODULE-V					

Turbulence models, mixing length model, Two equation (k-E) models – High and low Reynolds number models – Structured Grid generation – Unstructured Grid generation – Mesh refinement – Adaptive mesh – Software tools

8 Hrs

Cours	Course Outcomes: After completing the course, the students will be able to						
CO1	Understand the concept of computational fluid dynamics and its application						
CO2	Analyze the consistency, stability and convergence of various discretization schemes						
	for parabolic, elliptic and hyperbolic partial differential equations.						
CO3	Apply finite difference and finite volume methods to various chemical engineering						
	problems.						
CO4	Analyze variations of SIMPLE schemes for incompressible flows and variations of						
	Flux Splitting algorithms for compressible flows.						
CO5	Evaluate the grid sensitivity and analyse the accuracy of a numerical solution.						

Ref	erence Books
1.	An introduction to computational fluid dynamics: the finite volume method, Versteeg, H.
	K., & Malalasekera, W., 2007, Pearson education.
2.	Computational Fluid Flow and Heat Transfer, Muralidhar, K. and Sundararajan (Narosa),
	T., 2 nd Edition, 2011.
3.	Numerical Heat Transfer and Fluid Flow, Patankar, S.V., 2004, Hemisphere Publishing
	Corporation.
4.	Computational fluid dynamics, Chung, T. J., 2002, Cambridge university press.

Continuous Internal Evaluation (CIE):

- Three CIE Will be conducted for 50 marks each and average of three will be taken (A)
- Three Quizzes will be conducted along with CIE for 10 Marks Each. Sum of three quizzes will be considered for 30 marks (B)
- Two Assignments for 10 marks each and the sum of both the assignments will be taken for 20 Marks (C)

Final CIE Marks will be calculated as (A+B+C)/2 for 50 marks

Semester End Examination (SEE):

The question paper consists of two parts, A and B

Part A: consists of 10 questions of 2 marks each. It is designed to cover the entire syllabus comprehensively.

Part B: The question paper will have 10 questions. Each question is set for 16 marks. There will be 2 questions from each module, with a maximum of 2 subdivisions. Students have to answer any 5 questions choosing one full question from each module.

The SEE Theory marks of 100 will be scaled down to 50.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3			2							
CO2	3	3			2							
CO3	3	3	2		2							
CO4	3	3	2		2			-				
CO5	3	3	1	1	2	1		1	1			

High-3, Medium-2, Low-1

	Semester: IV							
	INTRODUCTION TO R LANGUAGE							
Cou	rse Code:	MVJ22CH454	CIE Marks:50					
L:T:P:S		3:0:0:0	SEE Marks: 50					
Cree	dits	3	Total Marks: 100					
Hou	irs:	40 Hrs Theory	SEE Duration: 3 Hrs					
Cou	Course Learning Objectives: The students will be able to							
1	learn the basics of R Language and its fundamental components							
2	learn about star	learn about statistical data analysis and building interactive applications						

MODULE-I				
Introduction : R interpreter, Introduction to major R data structures like vectors,				
matrices, arrays, list and data frames, Control Structures, vectorized if and multiple	8 Hrs			
selection, functions.				
MODULE-II				
Installing, loading and using packages: Read/write data from/in files, extracting				
data from web-sites, Clean data, Transform data by sorting, adding/removing				
new/existing columns, centring, scaling and normalizing the data values, converting				
types of values, using string in-built functions.				
MODULE-III				
Statistical analysis of data for summarizing and understanding data, Visualizing	8 Hrs			
data using scatter plot, line plot, bar chart, histogram and box plot.				
MODULE-IV				
Designing GUI : Building interactive application and connecting it with data base.				
MODULE-V				
Building Packages.	8 Hrs			

Cours	Course Outcomes: After completing the course, the students will be able to				
CO1	Learn about the essential components of R Language				
CO2	Understand about installing, loading and using packages.				
CO3	Learn about statistical analysis of data using packages.				
CO4	Understand the visualization of data using scatter plot, line plot, tools, etc.,				
CO5	Build interactive application and connecting with database				

Ref	Reference Books					
1.	R for Data Science by Hadley Wickham and Garrett Grolemund					
2.	The Book of R by Tilman M. Davies					
3.	Discovering Statistics using R by Andy Field, Jeremy Miles, and Zoe Field.					
4.	The Art of R Programming by Jared P. Lander					

- Three CIE Will be conducted for 50 marks each and average of three will be taken (A)
- Three Quizzes will be conducted along with CIE for 10 Marks Each. Sum of three quizzes will be considered for 30 marks (B)
- Two Assignments for 10 marks each and the sum of both the assignments will be taken for 20 Marks (C)

Final CIE Marks will be calculated as (A+B+C)/2 for 50 marks

Semester End Examination (SEE):

The question paper consists of two parts, A and B

Part A: consists of 10 questions of 2 marks each. It is designed to cover the entire syllabus comprehensively.

Part B: The question paper will have 10 questions. Each question is set for 16 marks. There will be 2 questions from each module, with a maximum of 2 subdivisions. Students have to answer any 5 questions choosing one full question from each module.

The SEE Theory marks of 100 will be scaled down to 50.

					CO-P	O Map	ping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3			2							
CO2	3	3			2							
CO3	3	3	2		2							
CO4	3	3	2		2							
CO5	3	3			2							

High-3, Medium-2, Low-1

	Semeste	er: IV
	BIOLOGY FOR	ENGINEERS
Course Code:	MVJ22BI47	CIE Marks: 50
L: T:P:S	2:0:0:0	SEE Marks: 50
Credits:	2	Total :100
Hours:	24 Hrs Theory	SEE Duration: 2 Hrs.

Course objectives:

- To familiarize the students with the basic biological concepts and their engineering applications.
- To enable the students with an understanding of bio design principles to create novel devices and structures.
- To provide the students with an appreciation of how biological systems can be redesigned as substitute products for natural systems.
- To motivate the students to develop interdisciplinary vision of biological engineering.

Module-1 (4 Hours)

CELL BASIC UNIT OF LIFE: Introduction. Structure and functions of a cell. Stem cells and their application. Biomolecules: Properties and functions of Carbohydrates, Nucleic acids, proteins, lipids. Importance of special biomolecules: Properties and functions of enzymes, vitamins and hormones.

Module-2 (5 Hours)

APPLICATION OF BIOMOLECULES: Carbohydrates in cellulose-based water filters production, PHA and PLA in bioplastics production, Nucleic acids in vaccines and diagnosis, Proteins in food production, lipids in biodiesel and detergents production, Enzymes in biosensors fabrication, food processing, detergent formulation and textile processing.

Module-3 (5 Hours)

ADAPTATION OF ANATOMICAL PRINCIPLES FOR BIOENGINEERING DESIGN:

Brain as a CPU system. Eye as a Camera system. Heart as a pump system. Lungs as purification system. Kidney as a filtration system.

Module-4 (5 Hours)

NATURE-BIOINSPIRED MATERIALS AND MECHANISMS: Echolocation.

Photosynthesis. Bird flying, Lotus leaf effect, Plant burrs, Shark skin, Kingfisher beak. Human Blood substitutes - hemoglobin-based oxygen carriers (HBOCs) and perfluoro carbons (PFCs).

Module-5 (5 Hours)

TRENDS IN BIOENGINEERING: Muscular and Skeletal Systems as scaffolds, scaffolds and tissue engineering, Bioprinting techniques and materials. Electrical tongue and electrical nose in food science, DNA origami and Biocomputing, Bioimaging and Artificial Intelligence for disease diagnosis. Bio concrete. Bioremediation. Biomining.

Course outcome (Course Skill Set)

At the end of the course, the student will be able to:

- 1. Elucidate the basic biological concepts via relevant industrial applications and case studies.
- 2. Evaluate the principles of design and development, for exploring novel bioengineering projects.
- 3. Corroborate the concepts of biomimetics for specific requirements.
- 4. Think critically towards exploring innovative biobased solutions for socially relevant problems.

Continuous Internal Evaluation (CIE) – 50 Marks

The CIE for the mandatory credit courses common across all disciplines comprises of two components as follows:

Internal Assessment Tests (30 Marks):

Two Internal Assessment tests will be conducted, each comprising 50 multiple choice questions for a total of 50 marks. The average of the two test scores will be scaled down to 30 marks.

Assignments (20 Marks):

Students are required to complete two assignments, each carrying 10 marks. These assignments may include projects*, poster presentations*, seminars*, or similar academic activities. The marks of the two assignments are added to get 20 marks.

*Each assignment will undergo two rounds of evaluation to assess progress and quality

At the beginning of the semester, the instructor/faculty teaching the course has to announce the methods of Assignment for the course.

Together, these two components are added to get the Final CIE marks of 50.

Semester End Examination (SEE) – 50 Marks

A Semester End Examination is conducted for 50 marks comprising of multiple-choice questions (MCQ) type each of one mark.

The final score for the course out of 100 is the Sum Total of SEE and CIE.

Suggested Learning Resources:

- Biology for Engineers, Rajendra Singh C and Ratnakar Rao N, Rajendra Singh C and Ratnakar Rao N Publishing, Bengaluru, 2023.
- Human Physiology, Stuart Fox, Krista Rompolski, McGraw-Hill eBook. 16th Edition, 2022
- Biology for Engineers, Thyagarajan S., Selvamurugan N., Rajesh M.P., Nazeer R.A., Thilagaraj W., Barathi S., and Jaganthan M.K., Tata McGraw-Hill, New Delhi, 2012.

- Biology for Engineers, Arthur T. Johnson, CRC Press, Taylor and Francis, 2011
- Biomedical Instrumentation, Leslie Cromwell, Prentice Hall 2011.
- Biology for Engineers, Sohini Singh and Tanu Allen, Vayu Education of India, New Delhi,
 2014. Biomimetics: Nature-Based Innovation, Yoseph Bar-Cohen, 1st edition, 2012, CRC
 Press.
- Bio-Inspired Artificial Intelligence: Theories, Methods and Technologies, D. Floreano and C. Mattiussi, MIT Press, 2008.
- Bioremediation of heavy metals: bacterial participation, by C R Sunilkumar, N GeethaA C Udayashankar Lambert Academic Publishing, 2019.
- 3D Bioprinting: Fundamentals, Principles and Applications by Ibrahim Ozbolat, Academic Press, 2016. Electronic Noses and Tongues in Food Science, Maria Rodriguez Mende, Academic Press, 2016

				(CO-PO N	Mapping	5				
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	-	-	-	-	-	-	-	-	1	-	1
CO2	-	-	-	-	-	-	-	-	1	-	1
CO3	-	-	-	-	-	-	-	-	1	-	1
CO4	-	-	-	-	-	-	-	-	1	-	1
CO5	-	-	-	-	-	-	-	-	1	-	1

		Semester: IV	
		Universal human values c	ourse
Cours	se Code:	MVJ22UHV48	CIE Marks: 50
L: T:	P:S	1:0:0:0	SEE Marks: 50
Credi	its:	1	Total :100
Hours	s:	12 Hrs Theory	SEE Duration: 2 Hrs.
Cours	se Learning (Objectives: The students will be able to	
1		the essential complementarily between appiness and prosperity which are the core	
2	profession a the Human	ne development of a Holistic perspectives well as towards happiness and prosperit reality and the rest of existence. Such a luman Values and movement towards values	by based on a correct understanding of molistic perspective forms the basis of
3		lausible implications of such a Holistic un stful and mutually fulfilling human behav	•

UNIT-I

Review on Right Understanding, Relationship and Physical Facility (Holistic Development and the Role of Education), Self-exploration as the Process for Value Education, Happiness and Prosperity—Current Scenario

Value Education: Understanding Value Education, Continuous Happiness and Prosperity – the Basic Human Aspirations, Method to Fulfill the Basic Human Aspirations.

Practical Sessions: Sharing about Oneself (Tutorial 1), Exploring Human Consciousness (Tutorial 2), Exploring Natural Acceptance (Tutorial 3)

2 Hrs

Video link:

- https://www.youtube.com/watch?v=85XCw8SU084
- https://www.youtube.com/watch?v=E1STJoXCXUU&list=PLWDeKF97v9SP_Kt6 jqzA3p Z3yA7g OAQz
- https://www.youtube.com/channel/UCQxWr5QB eZUnwxSwxXEkQw

UNIT-II

Review on Understanding Human being as the Co-existence of the Self and the Body, The Body as an Instrument of the Self, Harmony of the Self with the Body.

Harmony in the human being: Distinguishing between the Needs of the Self and the Body, Understanding Harmony in the Self, Programme to ensure self-regulation and Health.

3 Hrs

Practical Sessions: Exploring the difference of Needs of Self and Body (Tutorial 4)	
Exploring Sources of Imagination in the Self (Tutorial 5) Exploring Harmony of Self with	
the Body (Tutorial 6)	
Widee links	
Video link:	
https://www.youtube.com/watch?v=GpuZo495F24	
https://www.youtube.com/channel/UCQxWr5QB_eZUnwxSwxXEkQw	
UNIT-III	
Review on Harmony in the Family – the Basic Unit of Human Interaction, Other Feelings,	
Justice in Human-to-Human Relationship, Understanding Harmony in the Society.	
vasioe in Trainan to Trainan Relationship, Chaerstanding Trainiony in the Society.	
Harmony in the Family and Society: 'Trust' – the Foundational Value in Relationship,	
'Respect' – as the Right Evaluation, Vision for the Universal Human Order.	
The special section of the section o	
Practical Sessions: Exploring the Feeling of Trust (Tutorial 7), Exploring the Feeling of	3 Hrs
Respect (Tutorial 8), Exploring Systems to fulfill Human Goal (Tutorial 9)	
Video link:	
• https://www.youtube.com/watch?v=F2KVW4WNnS	
https://www.youtube.com/channel/UCQxWr5QB_eZUnwxSwxXEkQw	
UNIT-IV	
Harmony in the Nature/Existence: Understanding Harmony in the Nature,	
Interconnectedness, self-regulation and Mutual Fulfillment among the Four Orders of	
Nature, Realizing Existence as Co-existence at All Levels, The Holistic Perception of	
Harmony in Existence.	
Practical Sessions : Exploring the Four Orders of Nature (Tutorial 10), Exploring Co-	
existence in Existence (Tutorial 11)	2 Hrs
Video link:	
• https://www.youtube.com/watch?v=1HR-QB2mCF0	
• https://www.youtube.com/watch?v=lfN8q0xUSpw	
https://www.youtube.com/channel/UCQxWr5QB_eZUnwxSwxXEkQw	
UNIT-V	
Review on Natural Acceptance of Human Values, Basis for Humanistic Education,	
Humanistic Constitution and Universal Human Order, Holistic Technologies, Production	
Systems and Management Models-Typical Case Studies.	
Implications of the Holistic Understanding – a Look at Professional Ethics:	
Definitiveness of (Ethical) Human Conduct, Competence in Professional Ethics,	
Strategies for Transition towards Value-based Life and Profession	2 11
Practical Sessions: Exploring Ethical Human Conduct (Tutorial 12) Exploring	2 Hrs
Humanistic Models in Education (Tutorial 13) Exploring Steps of Transition towards	
Universal Human Order (Tutorial 14)	
Video link:	

• https://www.youtube.com/channel/UCQxWr5QB eZUnwxSwxXEkQw

Cours	e Outcomes: After completing the course, the students will be able to
CO1	Explore themselves, get comfortable with each other and with the teacher
CO2	Enlist their desires and the desires are not vague.
CO3	Restate that the natural acceptance (intention) is always for living in harmony, only
	competence is lacking
CO4	Differentiate between the characteristics and activities of different orders and study the
	mutual fulfillment among them
CO5	Present sustainable solutions to the problems in society and nature

T.	
Tex	tbooks
2.	AICTE SIP UHV-I Teaching Material, https://fdp-si.aicte india.org/ AicteSipUHV
	download.php
3.	A Foundation Course in Human Values and Professional Ethics, R R Gaur, R Asthana, G P
	Bagaria, 2nd Revised Edition, Excel Books, New Delhi, 2019. ISBN 978-93-87034-47-1
3.	Teachers' Manual for A Foundation Course in Human Values and Professional Ethics, R R
	Gaur, R Asthana, G P Bagaria, 2nd Revised Edition, Excel Books, New Delhi, 2019. ISBN
	978-93-87034-53-2
D C	
Refe	erence Books
1.	Human Values and Professional Ethics by R R Gaur, R Sangal, G P Bagaria, Excel Books,
	New Delhi, 2010
2.	
2.	Jeevan Vidya Ek Parichaya. A Nagaraj, Jeevan Vidya Prakashan, Amarkantak, 1999.
3.	Y
٥.	Human Values, A N Tripathi, New Age Intl. Publishers, New Delhi, 2004.
4.	TTI (1) (2) (1) (1)
	The Story of Stuff (Book)
5.	TI C (M.E. : 4 :4 T 4 1 M 1 1 W 1 1 C 11:
••	The Story of My Experiments with Truth – by Mohandas Karamchand Gandhi

Continuous Internal Evaluation (CIE) – 50 Marks

The CIE for the mandatory credit courses common across all disciplines comprises of two components as follows:

Internal Assessment Tests (30 Marks):

Two Internal Assessment tests will be conducted, each comprising 50 multiple choice questions for a total of 50 marks. The average of the two test scores will be scaled down to 30 marks.

Assignments (20 Marks):

Students are required to complete two assignments, each carrying 10 marks. These assignments may include projects*, poster presentations*, seminars*, or similar academic activities. The marks of the two assignments are added to get 20 marks.

*Each assignment will undergo two rounds of evaluation to assess progress and quality

At the beginning of the semester, the instructor/faculty teaching the course has to announce the methods of Assignment for the course.

Together, these two components are added to get the Final CIE marks of 50.

Semester End Examination (SEE) – 50 Marks

A Semester End Examination is conducted for 50 marks comprising of multiple-choice questions (MCQ) type each of one mark.

The final score for the course out of 100 is the SumTotal of SEE and CIE.

				C	O-PO	Mappi	ng				
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1		1				2	2	3	2	1	2
CO2		1				2	2	3	2	1	2
CO3		1				2	2	3	2	1	2
CO4		1				2	2	3	2	1	2
CO5		1				2	2	3	2	1	2

Additional Mathematics-II (Common to Course Code: MVJ22MATDIP2 L:T:P:S: 2:0:0:0 Credits: 0 Hours: 25 Hrs Theory Course Learning Objectives: The students will be able to To familiarize the important tools Linear Algebra, differential Canada Three-dimentional Geometry and higher order ODE's and PErproblems. UNIT 1 Linear Algebra: Introduction - Rank of matrix by elementary row operations - Economics - Eco	CIE Marks:100 SEE Marks: 0 Total:100 Calculus, Beta and Gamma	
L:T:P:S: Credits: Hours: 25 Hrs Theory Course Learning Objectives: The students will be able to To familiarize the important tools Linear Algebra, differential Confidence of the company and higher order ODE's and Propositions. UNIT 1 Linear Algebra: Introduction - Rank of matrix by elementary row operations - Economics -	SEE Marks: 0 Total:100 Calculus, Beta and Gamma	
Credits: Hours: 25 Hrs Theory Course Learning Objectives: The students will be able to To familiarize the important tools Linear Algebra, differential Canada Three-dimentional Geometry and higher order ODE's and PE problems. UNIT 1 Linear Algebra: Introduction - Rank of matrix by elementary row operations - Eclarations.	Total:100	
Hours: 25 Hrs Theory Course Learning Objectives: The students will be able to To familiarize the important tools Linear Algebra, differential Caracter Course Course Learning Objectives: The students will be able to To familiarize the important tools Linear Algebra, differential Caracter Course Cours	Calculus, Beta and Gamma	
Course Learning Objectives: The students will be able to To familiarize the important tools Linear Algebra, differential Control Three-dimentional Geometry and higher order ODE's and PE problems. UNIT 1 Linear Algebra: Introduction - Rank of matrix by elementary row operations - Ecl		
To familiarize the important tools Linear Algebra, differential Carlor Three-dimentional Geometry and higher order ODE's and PE problems. UNIT 1 Linear Algebra: Introduction - Rank of matrix by elementary row operations - Ecl		
Three-dimentional Geometry and higher order ODE's and PE problems. UNIT 1 Linear Algebra: Introduction - Rank of matrix by elementary row operations - Ecl		
Linear Algebra: Introduction - Rank of matrix by elementary row operations - Ecl		
Introduction - Rank of matrix by elementary row operations - Ecl		
of system of linear equations - Gauss elimination method. Eigen of a square matrix. Diagonalization of a square matrix of order two Self study: Application of Cayley-Hamilton theorem (without proo of a matrix- Examples. Video Links: https://www.math.ust.hk/~machas/matrix-algebra-fohttps://nptel.ac.in/content/storage2/courses/122104018/node18.htmom/watch?v=Pq- tUQzeSRw	values and eigen vectors o. of) to compute the inverse or-engineers.pdf	5 Hrs.
UNIT 2	<u> </u>	
Differential calculus:		
Indeterminate forms: L-Hospital rule (without proof), Total functions. Maxima and minima for a function of two variables. Jaco	-	
Beta and Gamma functions: Beta and Gamma functions, Relation between Beta and Gamma fu		5 Hrs.

Beta and Gamma functions, Relation between Beta and Gamma function-simple problems. Self study: Asymptotes, Curve tracing.

Video Links: https://www.youtube.com/watch?v=6RwOoPN2zqE

https://www.youtube.com/watch?v=s6F5yjY6jWk&list=PLMLsjhQWWlUqBoTCQDtYllol-o-9hxp11

UNIT 3

Analytical solid geometry:

Introduction –Directional cosine and Directional ratio of a line, Equation of line in space-differentforms, Angle between two line, shortest distance between two line, plane and equation of plane in different forms and problems.

Video Link: https://www.toppr.com/guides/maths/three-dimensional-geometry/https://www.toppr.com/guides/maths/three-dimensional-geometry/distance-between-

skew-lines/

5 Hrs.

UNIT 4	
Differential Equations of higher order: Linear differential equations of second and higher order equations with constant coefficients. Inverse Differential operator, Operators methods for finding particular integrals, Method of variation of parameters, and Euler – Cauchy equation. Self study: Undetermined coefficients Video link: https://www.slideshare.net/ayeshajavednoori/application-of-higher-order-differential-equations https://www.math24.net/topics-higher-order-differential-equations/	5 Hrs.
UNIT 5	
Partial differential equation: Introduction- Classification of partial differential equations, formation of partial differential equations. Method of elimination of arbitrary constants and functions. Solutions of non-homogeneous partial differential equations by direct integration. Solution of Lagrange's linear PDE. Self study: One dimensional heat and wave equations and solutions by the method of separable of variable Video Link: https://www.khanacademy.org/PDE http://www.nptelvideos.in/	5 Hrs.

Course Ou	Course Outcomes: After completing the course, the students will be able to						
CO1	Make use of matrix theory for solving system of linear equations and compute						
	eigenvalues and eigen vectors required for matrix diagonalization process.						
CO2	Learn the notion of partial differentiation to calculate rates of change of multivariate						
	functions and solve problems related to composite functions and Jacobians.						
CO3	Understand the Three-Dimensional geometry basic, Equation of line in space- different						
	forms, Angle between two line and studying the shortest distance.						
CO4	Demonstrate various physical models through higher order differential equations and						
	solve such linear ordinary differential equations.						
CO5	Construct a variety of partial differential equations and solution by exact methods.						

Text Book	S
1.	B.S. Grewal, "Higher Engineering Mathematics" Khanna Publishers, 43rd Edition,
	2013.
2.	Ramana B. V., "Higher Engineering Mathematics", Tata Mc Graw-Hill, 2006.
Reference	Books
1.	Erwin Kreyszig, "Advanced Engineering Mathematics", Wiley-India publishers, 10th
	edition,2014.
2.	G. B. Gururajachar: Calculus and Linear Algebra, Academic Excellent Series

	Publication, 2018-19
3.	Erwin Kreyszig, "Advanced Engineering Mathematics", Wiley-India publishers, 10th edition,2014.

- Two CIE Will be conducted for 50 marks each and average of two will be taken (A)
- Two Quizzes will be conducted along with CIE for 10 Marks Each and scaled to 15 marks each. Sum of two quizzes will be considered for 30 marks (B)
- Two Assignments for 10 marks each and the sum of both the assignments will be taken for 20 Marks (C)

Final CIE Marks will be calculated as (A+B+C) for 100 marks

CO-P	CO-PO Mapping											
CO/ PO	PO 1	P O2	P O 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	P O 12
CO1	3	3	-	2	-	-	-	-	-	-	1	1
CO2	3	3	-	2	-	-	-	-	-	-	1	1
CO3	3	3	-	3	-	-	-	-	-	-	-	1
CO4	2	2	-	3	-	-	-	-	-	-	1	1
CO5	2	2	-	2	-	-	-	-	-	-	-	1

	Semester: V							
	Industrial Process Management							
Cou	rse Code:	MVJ22CH51	CIE Marks: 50					
L:T	:P: S	3:0:0:0	SEE Marks: 50					
Cre	dits	3	Total Marks: 100					
Hou	irs:	40 Hrs Theory	SEE Duration: 3 Hrs.					
Cou	rse Learning	Objectives: The students will be able to						
1	Introduce the	field of management, task of the manager, importance of planning and types						
1	of planning, staff recruitment and selection process.							
2	Explain need	of coordination between the manager and staff, the social responsibility of						
	business and leadership.							
Explain the role and importance		ole and importance of the entrepreneur in	economic development and the					
3	concepts of entrepreneurship.							
4	Discuss the i	Discuss the importance of Small-Scale Industries and the related terms and problems						
7	involved.							
5	Explain project feasibility study and project appraisal and discuss project financing.							

MODULE-I	
Management: Definition, Importance — Nature and Characteristics of Management, Management Functions, Roles of Manager, Levels of Management, Managerial Skills, Management & Administration, Management as a Science, Art & Profession. Planning: Nature, Importance and Purpose of Planning, Types of Plans, Steps in Planning, Limitations of Planning, Decision Making — Meaning, Types of Decisions- Steps in Decision Making.	8 Hrs
MODULE-II	
Organizing and Staffing: Meaning, Nature and Characteristics of Organization – Process of Organization, Principles of Organization, Departmentalization, Committees – meaning, Types of Committees, Centralization Vs Decentralization of Authority and Responsibility, Span of Control, Nature and Importance of Staffing, Process of Selection and Recruitment. Directing and Controlling: Meaning and Nature of Directing-Leadership Styles, Motivation Theories, Communication – Meaning and Importance, Coordination-Meaning and Importance, Techniques of Coordination. Controlling – Meaning, Steps in Controlling.	8 Hrs
MODULE-III	
Social Responsibilities of Business : Meaning of Social Responsibility, Social Responsibilities of Business towards Different Groups, Social Audit, Business Ethics and Corporate Governance.	8 Hrs

Entrepreneurship: Definition of Entrepreneur, Importance of Entrepreneurship, concepts of Entrepreneurship, Characteristics of successful Entrepreneur, Classification of Entrepreneurs, Comparison between Entrepreneur and Intrapreneur, Myths of Entrepreneurship, Entrepreneurial Development models, Entrepreneurial development cycle, Problems faced by Entrepreneurs and capacity building for Entrepreneurship.

MODULE-IV

Modern Small Business Enterprises: Role of Small Scale Industries, Concepts and definitions of SSI Enterprises, Government policy and development of the Small Scale sector in India, Growth and Performance of Small Scale Industries in India, Sickness in SSI sector, Problems for Small Scale Industries, Impact of Globalization on SSI, Impact of WTO/GATT on SSIs, Ancillary Industry and Tiny Industry

8 Hrs

Institutional Support for Business Enterprises: Introduction, Policies & Schemes of Central– Level Institutions, State-Level Institutions.

MODULE-V

Project Management: Meaning of Project, Project Objectives & Characteristics, Project Identification- Meaning & Importance; Project Life Cycle, Project Scheduling, Capital Budgeting, Generating an Investment Project Proposal, Project Report-Need and Significance of Report, Contents, Formulation, Project Analysis-Market, Technical, Financial, Economic, Ecological, Project Evaluation and Selection, Project Financing, Project Implementation Phase, Human & Administrative aspects of Project Management, Prerequisites for Successful Project Implementation. New Control Techniques- PERT and CPM, Steps involved in developing the network, Uses and Limitations of PERT and CPM.

8 Hrs

Cour	Course Outcomes: After completing the course, the students will be able to					
CO1	Understand the concept of Management and planning.					
CO2	Understand the staffing process.					
CO3	Explain the social responsibilities of business towards different groups.					
CO4	Explain the role of small scale industries.					
CO5	Interpret the project objectives.					

Text Books

- 1. Principles of Management, Tripathy PC & Reddy PN,1999, , Tata McGraw Hill.
- 2. Management, JAF Stoner, Freeman R.E and Daniel R Gilbert, 2004, Pearson Education, 6th Edition.

Reference Books

1. Essentials of management, Harold Koontz & Heinz Weihrich ,1998, Tata McGraw Hill.

2. Management, Stephen P. Robbins & Mary Coulter, 2009, Prentice Hall (India) Pvt. Ltd., 10th Edition,

Continuous Internal Evaluation (CIE):

- Three CIE Will be conducted for 50 marks each and average of three will be taken (A)
- Three Quizzes will be conducted along with CIE for 10 Marks Each. Sum of three quizzes will be considered for 30 marks (B)
- Two Assignments for 10 marks each and the sum of both the assignments will be taken for 20 Marks (C)

Final CIE Marks will be calculated as (A+B+C)/2 for 50 marks

Semester End Examination (SEE):

The question paper consists of two parts, A and B

Part A: consists of 10 questions of 2 marks each. It is designed to cover the entire syllabus comprehensively.

Part B: The question paper will have 10 questions. Each question is set for 16 marks. There will be 2 questions from each module, with a maximum of 2 subdivisions. Students have to answer any 5 questions choosing one full question from each module.

The SEE Theory marks of 100 will be scaled down to 50.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	2	1	2					1		2	1
CO2	1	2	1	2					1		2	1
CO3	1	2	1	2					1		2	1
CO4	1	2	1	1					1		2	1
CO5	1	2	1	2				-	1		2	1

High-3, Medium-2, Low-1

	Semester: V							
	CHEMICAL REACTION ENGINEERING							
Cou	rse Code:	MVJ22CH52	CIE Marks:50					
L:T	:P:S	3:0:2:0	SEE Marks: 50					
Cree	dits	4	Total Marks: 100					
Hou	rs:	40 Hrs Theory and 24 Hrs Practical	SEE Duration: 03+03 Hours					
Cou	rse Learning	Objectives: The students will be able to						
1	Understand the scope of Chemical Reaction Engineering.							
2	Analyze and interpret the experimental data to determine kinetic rate equation and							
2	understand the design of ideal reactor systems.							
3	Understand the concept of non-isothermal reactors.							
4	Understand and apply the principles of non-ideal flow in the design of reactor.							

MODULE-I	
Introduction to Chemical Reactions. Homogeneous and heterogeneous reactions	
with their basic definitions, Elementary and non-elementary reactions, reaction rate	8 Hrs
and rate constant, order and molecularity of a reaction, Temperature dependency of	оптѕ
rate constant, Testing of mechanisms of kinetic study, interpretation of kinetic data.	
MODULE-II	
Types of Reactors: Batch, Semi-batch, laminar, and mixed flow reactors.	
Multiphase reactors of Industrial Importance (fixed, fluidized and bubble column	
reactors) and their practical demonstration.	
Design of Reactors : Design of Batch, Semi-batch, and mixed flow ideal reactors	8 Hrs
and their performance equations. Constant volume and variable volume reactors.	
Space time and space velocity, Holding time for flow reactors. Size comparison of	
ideal reactors.	
MODULE-III	
Multiple Reactor Systems: Plug flow and /or Mixed flow reactors in Series,	
parallel and series-parallel. Reactors of different types and sizes in series. Design	
of Reactors for Multiple Reactions: Design of Batch reactor, Plug and Mixed flow	8 Hrs
reactors for Parallel, Series and Series- Parallel reactions (Only irreversible	
reactions must be considered).	
MODULE-IV	
Basics of Non-Ideal Flow: importance & interpretation of RTD, C, E & F curves	
& statistical interpretation. Dispersion model. Tanks in series model. Conversion in	8 Hrs
non-ideal flow reactors for simple systems.	
MODULE-V	
Catalysis: introduction to catalysis. Properties of catalysts. Estimation methods for	
catalytic properties. Promoters, Inhibitors etc, mechanism of catalysis. Rate	8 Hrs
equations for different rate controlling step. Deactivation: deactivating catalyst.	

Cour	se Outcomes: After completing the course, the students will be able to					
CO1	Explain various types of reactions, factors affecting rate equation, theories for predicting					
	temperature dependency of rate constant and kinetics.					
CO2	Interpret experimental data using differential, integral, and half-life methods, and types					
	of chemical reactors with real practice and Develop design equations for ideal reactors.					
CO3	Develop the design of single and multiple reactor systems and non-isothermal reactors					
	and discuss optimum temperature progression.					
CO4	Interpret non ideality in a reactor using RTD data and predict conversion using various					
	models like Dispersion and tanks in series model.					
CO5	Derive the rate expressions for heterogeneous catalytic reactions and Catalytic					
	deactivation					

Text B	Books
1.	Chemical Reaction Engineering, 3ed, An Indian Adaptation, Octave Levenspiel, Wiley Publications
2.	Chemical engineering kinetics, Smith, J. M., 1981, 3 rd ed. McGraw-Hill.

Refere	Reference Books									
1	Elements of Chemical Reaction Engineering, Fogler, H.S., 2010, 4 th ed, Pearson New									
1.	International Edition.									
2.	Chemical and catalytic reaction engineering, Carberry, J. J., 2001, Dover.									
3.	Chemical reaction engineering - I, K A Gavhane, Nirali Prakashan									
4.	Chemical reaction engineering - II, K A Gavhane, Nirali Prakashan									

Theory for 50 Marks

- Three CIE Will be conducted for 50 marks each and average of three will be taken(A)
- Three Quizzes will be conducted along with CIE for 10 Marks Each. Sum of three quizzes will be considered for 30 marks (B)
- Two Assignments for 10 marks each and the sum of both the assignments will be taken for 20 Marks (C)

Final CIE Marks will be calculated as (A+B+C)/2 for 50 marks

Laboratory- 50 Marks

Weekly Evaluation 30 Marks

Weekly evaluation will be conducted for every experiment. Marks of each evaluation includes Weekly Attendance + Experiment conduction along with Record / Observation + Weekly viva for all the experiments. The total of all these evaluated marks are added and the total marks will be scaled to 30 marks. (A)

Two CIE for 20 Marks each and take the average for 20 Marks (B)

Final CIE Marks will be calculated as A+B for 50 marks

For IPCC Final CIE Marks will be calculated as Average of CIE and Lab CIE for 50 marks.

LABORATORY EXPERIMENTS – 24 Hrs

- 1. Interpreting isothermal batch reactor experimental data using the Integral method of analysis.
- 2. Performing saponification reaction in an isothermal plug flow reactor
- 3. Performance of an isothermal mixed flow reactor
- 4. Study the performance of a semi-batch reactor for a saponification reaction
- 5. Degradation kinetics of dye in a photochemical reactor.
- 6. Performing esterification reaction in an adiabatic batch reactor.
- 7. Performing saponification reaction in a packed bed reactor.
- 8. RTD studies in Tubular reactor
- 9. Effect of temperature on Rate of reaction
- 10. RTD Studies in mixed flow reactor.
- 11. Degradation kinetics of dye in a sonochemical reactor.
- 12. Estimating Physico-chemical properties of a catalyst.

12 experiments to be conducted

Semester End Examination (SEE)

SEE Theory Examination (100 Marks)

The question paper consists of two parts, A and B

Part A: consists of 10 questions of 2 marks each. It is designed to cover the entire syllabus comprehensively.

Part B: The question paper will have 10 questions. Each question is set for 16 marks. There will be 2 questions from each module, with a maximum of 2 subdivisions. Students have to answer any 5 questions choosing one full question from each module.

The SEE Theory marks of 100 will be scaled down to 50(A)

SEE Laboratory Examination (50 Marks)

The laboratory SEE is also evaluated for 50 marks, distributed as follows:

Experiment Conduction with Results: 40 marks

Viva Voce: 10 marks Total 50 marks (B)

The score for the SEE is A+B of total 100 marks

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	2	3	1	-	-		-	1	2	1	-	
CO2	3	2	3	1	-	-		-	1	2	1	-	
CO3	3	3	3	1	-	-		-	1	2	1	-	
CO4	3	3	3	2	-	-		-	1	2	1	-	
CO5	3	3	3	2	-	-		-	1	2	1	-	

	Semester: V										
	MASS TRANSFER – I										
Course Code: MVJ22CH53 CIE Marks: 50											
L:T:P: S		3:2:0:2	SEE Marks: 50								
Cre	dits	4	Total Marks: 100								
Hou	irs:	50 Hrs Theory	SEE Duration: 3 Hrs.								
Cou	rse Learning	Objectives: The students wil	be able to								
1	Formulate ed	quations for estimation of diffus	ivities in fluids & solids using first principles								
1	of engineering	ng sciences.									
2 Apply mass t		transfer fundamentals to calculate mass transfer rates and design the mass									
	transfer equi	transfer equipment									

MODULE-I	
Diffusion: Types of diffusion in fluids and solids. Measurement and calculations of diffusivities. Multi component diffusion. Mass transfer coefficients and their	0.44
correlations. Theories of mass transfer. Inter phase mass transfer. Material balance for co-current, cross-current and counter-current operations. concept of stages, cascades operation, NTU and HTU concepts	8 Hrs
MODULE-II	
Humidification: general theory, psychometric chart. Adiabatic saturation temperature, wet bulb temperature, concepts in humidification dehumidification. Cooling tower calculations.	8 Hrs
MODULE-III	
Drying: Introduction, equilibrium, drying rate curves. Mechanism of drying, types of dryers. Drying time calculations, Design of batch and continuous dryers.	8 Hrs
MODULE-IV	
Adsorption: Theories of adsorption. Isotherms, industrial adsorbents. equipment, batch and continuous multistage adsorption, Adsorption calculations-single stage, multi stage cross current, counter current operations, Application of Freundlich equation	8 Hrs
MODULE-V	
Crystallization: Factors governing nucleation and crystal growth rates. Controlled growth of crystals. Incorporation of principles into design of equipment. Different	8 Hrs
types of crystallizer equipment.	
Introduction to Separation Techniques: Ion exchange, Membrane Processes-Reverse Osmosis, Dialysis, Ultra and Micro-filtrations, Super-critical fluid extraction. (Working principle and operations only)	

Cour	Course Outcomes: After completing the course, the students will be able to							
CO1	Explain the principles of diffusion in solids and fluids and interpret the behaviour the							
COI	mass transfer coefficients using various theories and HTU and NTU concepts.							
CO2	Explain concepts, application of humidification, dehumidification and design of cooling							
CO2	towers.							
CO3	Comprehend operation, concepts and types of dryers.							
CO4	Explain various isotherms, modes of adsorption operations, types of adsorber and							
004	design of packed bed adsorber.							
CO5	Apply principles of crystallization in design of crystallizer and illustrate the working							
003	principle of various novel separation techniques.							

Tex	t Books
1.	Mass transfer operations. Treybal, R. E., 1980 New York, 466.
2	MASS TRANSFER: THEORY AND PRACTICE, ANANTHARAMAN, N.
	BEGUM, K. M. MEERA SHERIFFA, PHI Learning Publications

Ref	erence Books
1.	Unit Operations in Chemical Engineering, McCabe & Smith, 2001, 6th edn, McGraw Hill.
2.	Transport processes and separation principles (include unit operation), Geankoplis, C. J.
	2003.
3.	Chemical Engineering Vol I, II, III, IV and V, Coulson and Richardson, 1988, 4th edn,
	Pergamon Press.

- Three CIE Will be conducted for 50 marks each and average of three will be taken (A)
- Three Quizzes will be conducted along with CIE for 10 Marks Each. Sum of three quizzes will be considered for 30 marks (B)
- Two Assignments for 10 marks each and the sum of both the assignments will be taken for 20 Marks (C)

Final CIE Marks will be calculated as (A+B+C)/2 for 50 marks

Semester End Examination (SEE):

The question paper consists of two parts, A and B

Part A: consists of 10 questions of 2 marks each. It is designed to cover the entire syllabus comprehensively.

Part B: The question paper will have 10 questions. Each question is set for 16 marks. There will be 2 questions from each module, with a maximum of 2 subdivisions. Students have to answer any 5 questions choosing one full question from each module.

The SEE Theory marks of 100 will be scaled down to 50.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3		-	-	-		-	1	2	-	-
CO2	3	3		-	-	-		-	1	2	-	-
CO3	3	3	2	1	-	-		-	1	2	-	-
CO4	3	3	2	1	-	-		-	1	2	-	-
CO5	3	3	2	1	-	-		-	1	2	-	-

High-3, Medium-2, Low-1

	Semester: V									
	Pollution Control and Instrumental analysis Lab									
Cou	rse Code:	MVJ22CHL54	CIE Marks:50							
L:T:P:S		0:0:2:0	SEE Marks: 50							
Credits		1	Total Marks: 100							
Hou	irs:	24 Hrs Practical	SEE Duration: 03 Hours							
Cou	rse Learning	g Objectives: The students will be able to								
1	To familia	rize students with essential experimental	techniques used for measuring							
environme		ntal samples								
2 Equip with		the practical skills and knowledge necessary to understand, analyze, and								
<i>_</i>	design the p	pollution analysis methods effectively								

LABORATORY EXPERIMENTS – 24 Hrs

- 1. Analysis of effluents for pH and alkalinity
- 2. Determination of BOD
- 3. Volatile, Fixed, Filterable and Dissolved solid analysis
- 4. Analysis by ion selective electrode (any two anions)
- 5. Measurement of particulate matter in Air
- 6. Measurement of SO2 in air
- 7. Analysis of exhaust by Orsat apparatus
- 8. Determination of COD
- 9. UV Spectrophotometer
- 10. Determination of turbidity by turbidometer
- 11. Flame photometer
- 12. Dissolved Oxygen measurement
- 13 Bomb calorimeter
- 14 Viscometer
- 15 Potentiometer titration
- 16 Jar test apparatus

Cour	Course Outcomes: After completing the course, the students will be able to									
CO1	Demonstrate Competence in Experimental Techniques: to proficiently perform									
	experiments in the laboratory, including setting up reactors, monitoring reaction									
	progress, and collecting accurate and reliable data.									
CO2	Analyze the data: capable of analyzing experimental data, enabling them to understand									
	the fundamental principles of chemical reaction engineering.									
CO3	Design: to design and optimize treatment protocols									

Weekly evaluation will be conducted for every experiment. Marks of each evaluation includes Weekly Attendance + Experiment conduction along with Record / Observation + Weekly viva for

all the experiments. The total of all these evaluated marks are added and the total marks will be scaled to 30 marks.(A)

Two CIE for 20 Marks each and take the average for 20 Marks (B)

Final CIE Marks will be calculated as (A+B) for 50 marks

SEE Laboratory Examination (50 Marks)

The laboratory SEE is also evaluated for 50 marks, distributed as follows:

Experiment Conduction with Results: 40 marks

Viva Voce: 10 marks

Total 50 marks

The final score for the course out of 100 is the Sum Total of SEE and CIE.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3											
CO2	3											
CO3	3			2								
CO4	3			2								
CO5	3											

High-3, Medium-2, Low-1

	Semester: V								
	CHEMICAL PROCESS INDUSTRIES								
Cou	rse Code:	MVJ22CH551	CIE Marks: 50						
L:T	:P: S	3:0:0:0	SEE Marks: 50						
Credits		3	Total Marks: 100						
Hou	irs:	40 Hrs Theory	SEE Duration: 3 Hrs.						
Cou	rse Learning (Objectives: The students will be able to							
1	Understand the basic concepts of Industrial Processes practiced in different Inorgani								
1									
2	2 Get insight into the safety and environmental management schemes practiced.								
3	Assess different engineering problems of individual processes.								
4	Understand th	ne plant layout and equipment used in the p	processes.						

MODULE-I					
Symbolic Representation of different unit operations and processes to build a flow					
sheet. Industrial gases and acids: Industrial Gases: CO ₂ , H ₂ , O ₂ , N ₂ , SO ₂ , SO ₃ .					
Industrial Acids: Sulphuric, Nitric, Hydrochloric and Phosphoric Acids.					
Water: Introduction, impurities in water, soft water-hard water, causes of hardness,	8 Hrs				
disadvantages of hard water, measurement of hardness, methods of softening of					
water, purification of water, treatment of boiler feed water.					
Soaps and detergents: Soaps and detergents, theory of detergency.					
MODULE-II					
Fermentation industries: Production of alcohol, Manufacture of beer, wines and					
liquors.	8 Hrs				
Oils, fats, waxes: Vegetable and animal oils and fats. Extraction of vegetable oils,	о пгѕ				
refining of edible oils. Hydrogenation of oils, waxes and their applications.					
MODULE-III					
Chlor-alkali and cement industries: sodium chloride, soda ash, caustic soda,					
chlorine.	0.11				
Cement industries: Classification, manufacture, reactions, flow diagrams, major	8 Hrs				
and minor engineering problems, applications.					
MODULE-IV					
Petroleum industries and petrochemicals: Origin and classification. Petroleum					
refining and processing Coal: Formation and Classification of coal, mining of coal,					
destructive distillation of coal, coking of coal, coal tar distillation, chemicals from	0.11				
coal.	8 Hrs				
Pulp and Paper Industries: Raw materials, manufacture of pulp, paper and its					
major engineering problems.					
MODULE-V					
Inorganic fertilizers: Ammonia, urea, ammonium phosphate, ammonium nitrate,	8 Hrs				

ammonium sulphate, DAP, phosphorous pentoxide, super phosphate and triple super phosphate.

Polymers & Rubber: Macromolecules. Polymerization. PVC, LDPE. Polypropylene. Natural rubber.

Cour	se Outcomes: After completing the course, the students will be able to							
CO1	Explain the basic processes for manufacture of industrial gases, acids, soaps and							
	Detergents also sources, impurities and treatment methods of water.							
CO2	Get insight of cement manufacture, fermentation products and basic concepts of							
	industrial processes practiced in the manufacture of Oils, Fats, and Waxes.							
CO3	Outline the manufacture of Chlor-alkali and Cement industries.							
CO4	Explain the refining of petroleum, formation, classification of coal, destructive							
	distillation of coal and manufacture of pulp and paper.							
CO5	Learn industrial scale operations and processes employed in manufacture of fertilizers &							
	polymers and rubber.							

Tex	Text Books								
1	Outlines of chemical technology, Dryden, C. E., Rao, M. G., & Sittig, M., 1973,								
1.	Affiliated East-West P.								
2.	Chemical Process Industries, Shreve, R. N., & Brink Jr, J. A., 1977, 4th Edition,								
	McGraw-Hill Book Co.								

Refe	erence Books
1	Encyclopedia of chemical technology, Kroschwitz, J. I., Howe-Grant, M., Kirk, R. E.,
1.	& Othmer, D. F., 1996, John Wiley & Sons.

Continuous Internal Evaluation (CIE):

- Three CIE Will be conducted for 50 marks each and average of three will be taken (A)
- Three Quizzes will be conducted along with CIE for 10 Marks Each. Sum of three quizzes will be considered for 30 marks (B)
- Two Assignments for 10 marks each and the sum of both the assignments will be taken for 20 Marks (C)

Final CIE Marks will be calculated as (A+B+C)/2 for 50 marks

Semester End Examination (SEE):

The question paper consists of two parts, A and B

Part A: consists of 10 questions of 2 marks each. It is designed to cover the entire syllabus comprehensively.

Part B: The question paper will have 10 questions. Each question is set for 16 marks. There will be 2 questions from each module, with a maximum of 2 subdivisions. Students have to answer any 5 questions choosing one full question from each module.

The SEE Theory marks of 100 will be scaled down to 50.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	1		1				1	2		
CO2	2	1	1		1				1	2		
CO3	2	1	1		1				1	2		
CO4	2	1	1		1				1	2		
CO5	2	1	1	ı	1	ı	ı	1	1	2		

High-3, Medium-2, Low-1

	Semester: V									
	PIPING ENGINEERING									
Cou	rse Code:	MVJ22CH552	CIE Marks:50							
L:7	T:P:S	3:0:0:0	SEE Marks: 50							
Cre	dits	3	Total Marks: 100							
Hou	ırs:	40 Hrs Theory	SEE Duration: 3 Hrs							
Cou	rse Learning Obje	ectives: The students will b	e able to							
1	Understand the ro	Understand the role and responsibilities of a piping engineer and the significance of								
1	piping engineering	g in various industries								
2	Design piping sys	tems, perform hydraulic cal	culations, and layout piping routes							
	efficiently within a plant									
3			oriate piping materials, and understand							
	fabrication techniques used in piping construction.									
4	Gain knowledge of safe and effective piping installation practices, including pre-									
		ecks and pressure testing pr								
5	-	•	mitigate piping system hazards, and							
J	implement safety	implement safety protocols in piping operations								

MODULE-I	
Introduction to Piping Engineering: Overview of Piping Engineering: Role, significance, and responsibilities of a piping engineer in various industries; Piping Codes and Standards: An Introduction to International Codes and Standards Governing the Design, Fabrication, and Installation of Pipe Systems; Piping Materials: Study of different piping materials, their properties, and selection criteria for specific applications; Piping Components: Detailed examination of various piping components, such as fittings, valves, flanges, and supports	8 Hrs
MODULE-II	
Piping System Design and Layout: Piping System Design Basics: Understanding flow rates, pressure drops, and hydraulic calculations for designing piping systems; Piping Layout and Routing: Principles of Layout Planning, Equipment Arrangement, and Routing of Piping Systems Within a Plant; Isometric Drawings and Piping Symbols: Interpretation of Isometric Drawings and Standard Piping Symbols Used in Engineering Drawings; Pipe Stress Analysis: An Introduction to Pipe Stress Analysis to Ensure the Safety and Integrity of Pipe Systems Under Various Operating Conditions	8 Hrs
MODULE-III	
Piping Material Specifications and Fabrication: Piping Material Specifications: Developing material specifications based on design requirements and industry standards; Piping Fabrication Techniques: An Overview of Fabrication Methods, including Welding, Bending, and Joining of Pipe Materials; Non-Destructive	8 Hrs

Testing (NDT) Techniques: An Introduction to NDT Techniques for Inspecting				
Welds and Detecting Flaws in Pipelines; Quality Control and Inspection:				
Implementation of quality control procedures during piping fabrication to ensure				
compliance with standards.				
MODULE-IV				
Piping Installation and Commissioning: Piping Erection and Installation:				
Guidelines for Safe and Efficient Pipe Installation Practices, including Pre-				
Commissioning Checks; Pipe Cleaning and Flushing: Procedures for Cleaning and				
Flushing of Pipe Systems to Remove Debris and Contaminants Before	0.11			
Commissioning; Piping Testing and Commissioning: Conducting pressure tests and	8 Hrs			
leak testing of piping systems before commissioning; Piping System Start-Up:				
Steps involved in the commissioning and start-up of piping systems, including				
safety measures and troubleshooting				
MODULE-V				
Piping Maintenance and Safety: Piping Maintenance Practices: Routine				
maintenance and inspection strategies to ensure the reliability and longevity of				
piping systems. Corrosion and Corrosion Protection: Understanding corrosion				
mechanisms and methods for corrosion protection in piping systems; Piping Safety	0.11			
Practices: Identification and mitigation of potential hazards in piping systems,	8 Hrs			
including safety protocols and emergency procedures; Environmental				
Considerations: Environmental impacts of piping operations and methods for				
minimizing environmental footprints				

Cour	Course Outcomes: After completing the course, the students will be able to							
CO1	Demonstrate an understanding of the role and importance of piping engineering in							
	various industries and its impact on overall plant operations.							
CO2	Design and analyze piping systems, considering flow rates, pressure drops, and layout							
	principles, to meet specific process requirements.							
CO3	Select appropriate piping materials based on design specifications and understand							
	various fabrication techniques used in piping construction.							
CO4	Acquire the skills to safely and efficiently install piping systems, conduct pre-							
	commissioning checks, and perform pressure testing to ensure system integrity.							
CO5	Knowledge and awareness of maintenance practices, corrosion protection methods, and							
	safety protocols required for the proper functioning and longevity of piping systems.							
Text	Books							
1.	Introduction to Process Engineering and Design" by Thakore and Bhatt, McGraw Hill							
	Publishers							
2.	Piping Handbook by Mohinder Nayyar, McGraw Hill Publishers							

Reference Books

- 1. Piping and Pipeline Engineering: Design, Construction, Maintenance, Integrity, and Repair by George A. Antaki
- 2. Process Piping: The Complete Guide to ASME B31.3, Third edition by IV Becht, Charles

Continuous Internal Evaluation (CIE):

- Three CIE Will be conducted for 50 marks each and average of three will be taken (A)
- Three Quizzes will be conducted along with CIE for 10 Marks Each. Sum of three quizzes will be considered for 30 marks (B)
- Two Assignments for 10 marks each and the sum of both the assignments will be taken for 20 Marks (C)

Final CIE Marks will be calculated as (A+B+C)/2 for 50 marks

The question paper consists of two parts, A and B

Part A: consists of 10 questions of 2 marks each. It is designed to cover the entire syllabus comprehensively.

Part B: The question paper will have 10 questions. Each question is set for 16 marks. There will be 2 questions from each module, with a maximum of 2 subdivisions. Students have to answer any 5 questions choosing one full question from each module.

The SEE Theory marks of 100 will be scaled down to 50.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2			1				1	2		
CO2	3	3			1				1	2		
CO3	3	3	3	3	1				1	2		
CO4	3	3			1				1	2		
CO5	3	3			1				1	2		

High-3, Medium-2, Low-1

	Semester: V									
	PETROLEUM REFINING & PETROCHEMICALS									
Cou	ırse Code:	MVJ22CH553	CIE Marks:50							
L:T	:P:	3:0:0	SEE Marks: 50							
Cre	edits	3	Total Marks: 100							
Hot	ırs:	40 Hrs Theory	SEE Duration: 3 Hrs							
Cou	ırse Learning Obje	ectives: The students will be ab	le to							
1	Gain a compreher	sive understanding of the various processes involved in petroleum								
1	refining, including	refining, including crude oil separation, distillation, conversion, and treatment.								
2	Analyze the Petro	chemical Production, the key rea	actions and processes involved.							
3	Evaluate and com	npare different refining and petrochemical technologies to determine								
3	their advantages, limitations, and environmental impacts.									
4	Understand the role of catalysts in refining and petrochemical processes and learn how									
7	to optimize these processes for maximum efficiency and yield.									
	Examine the envir	conmental and economic implica	tions of petroleum refining and							
5	petrochemical pro	petrochemical production, including energy consumption, greenhouse gas emissions,								
	and economic viability.									

MODULE-I						
Introduction: Origin and occurrence of petroleum crude, status of petroleum refining industry in India, classification and physical properties of petroleum testing, uses and blending of petroleum products. Petroleum refining processes, atmospheric and vacuum distillation, thermal and catalytic cracking, vapor, liquid and mixing phases, hydro cracking. MODULE-II						
Catalyst reforming: Catalytic reforming, polymerization, Isomerization,						
hydrogenation, production of aviation gasoline, motor fuel, kerosene, diesel oil and	8 Hrs					
jet fuel.						
MODULE-III						
Treatment of Petroleum Products: Vacuum distillation, solvent extraction, uses of						
lubricating oils and petroleum waxes, chemical and clay treatment of petroleum						
products, desulfurization process for petroleum product, catalyst delayed coking,						
hydro treating & visbreaking.						
MODULE-IV						
Petroleum and Petrochemical Industries: Introduction to petrochemical industries						
in India, structure of petrochemical complexes, product profile of petrochemicals						
units. Olefin production (naptha & gas cracking), separation of aromatics (benzene,	8 Hrs					
xylene and toluene), aromatic conversion processes (depropanization,						
isomerisation, dealkylation).						
MODULE-V						

Manufacture of major petrochemical, methanol and formaldehyde, ethylene oxide
and ethylene glycol, acetaldehyde, butadiene, linear alkyl benzene.

8 Hrs

Cour	Course Outcomes: After completing the course, the students will be able to							
CO1	Outline the overview of the modern, integrated petroleum refinery, its feedstocks,							
	product state and the processes employed to convert crude oil and intermediate streams							
	into finished products.							
CO2	Classify the various treatment techniques employed in petroleum refining for the							
	Production of wide spectrum of useful products.							
CO3	Discuss the thermal and catalytic cracking methods employed in petroleum refining.							
CO4	Identify suitable refining technology for maximizing the product yield.							
CO5	Interpret the coking and the hydrocracking process employed and the environmental							
	issues and new trends in petroleum refining.							

Te	Text Books						
1.	Modern Petroleum Refining Processes, Rao, B., 2002, Oxford & IBH Publishing.						
2.	A textbook on petrochemicals, Rao, B., 2004, Khanna.						

Ref	Reference Books						
1.	Petroleum refining technology, Prasad, R., 2000, Khanna.						
2.	Petroleum processing handbook [Book chapter], Bland, W. F., & Davidson, R. L.						
3.	Austin G.T, Shreves Chemical Process industries						

Continuous Internal Evaluation (CIE):

- Three CIE Will be conducted for 50 marks each and average of three will be taken (A)
- Three Quizzes will be conducted along with CIE for 10 Marks Each. Sum of three quizzes will be considered for 30 marks (B)
- Two Assignments for 10 marks each and the sum of both the assignments will be taken for 20 Marks (C)

Final CIE Marks will be calculated as (A+B+C)/2 for 50 marks

Semester End Examination (SEE):

The question paper consists of two parts, A and B

Part A: consists of 10 questions of 2 marks each. It is designed to cover the entire syllabus comprehensively.

Part B: The question paper will have 10 questions. Each question is set for 16 marks. There will be 2 questions from each module, with a maximum of 2 subdivisions. Students have to answer any 5 questions choosing one full question from each module.

The SEE Theory marks of 100 will be scaled down to 50.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2							1	2		
CO2	3	3							1	2		
CO3	3	3							1	2		
CO4	3	3							1	2		
CO5	3	3							1	2		

High-3, Medium-2, Low-1

	Semester: V									
	Principles of Downstream Techniques in Bio process									
Cou	Course Code: MVJ22CH554 CIE Marks:50									
L:T	:P:S	3:0:0:0	SEE Marks: 50							
Cre	dits	3	Total Marks: 100							
Hou	ırs:	40 Hrs Theory	SEE Duration: 3 Hrs							
Cou	rse Learning Obje	ectives: The students will be able to								
1	Understand the principles and significance of downstream techniques in bio processing,									
1	and identify the ke	lentify the key stages involved in bioprocess engineering.								
2	Describe and diffe	erentiate various separation techniques	s used in bio processing, such as							
	centrifugation, filtration, and chromatography.									
3	Compare and cor	trast different cell disruption techniq	ues and extraction methods for							
<i></i>	releasing intracellular products.									
4	Analyze and design processes for product purification and refining, including									
T										
5	Describe the form	nulation techniques and final produc	t processing steps essential for							
3	ensuring product stability and safety.									

MODULE-I	
Introduction to Downstream Techniques in Bioprocess: Overview of Bioprocess Engineering: An Introduction to the Principles and Applications of Bioprocess Technology in Chemical Engineering. Downstream Processing: Understanding the significance of downstream techniques in the purification and recovery of bio-products. Bio processing Steps: Examination of the Different Stages in Bio processing, including Upstream and Downstream Operations	8 Hrs
MODULE-II	
Separation Techniques in Bio processing Centrifugation: Principles and Applications of Centrifugation for Cell Separation and Bio product Recovery Filtration: Understanding various filtration techniques, such as microfiltration and ultra filtration, in bio processing Chromatography: An Introduction to Chromatographic Methods for the Purification and Separation of Bio molecules. MODULE-III	8 Hrs
Cell Disruption Techniques: Study of mechanical, chemical, and enzymatic methods for cell disruption to release intracellular products Liquid-Liquid Extraction: Principles and Applications of Liquid-Liquid Extraction in Separating Valuable Compounds from Fermentation Broth	8 Hrs

Solid-Liquid Extraction: An Introduction to Solid-Liquid Extraction Methods,	
including Maceration and Percolation, in Bioprocesses	
MODULE-IV	
Product Purification and Refining	
Precipitation: Understanding the use of precipitation techniques to purify and	,
concentrate bioproducts	,
Crystallization: Principles of Crystallization for the Purification and Isolation of	8 Hrs
Biologically Derived Compounds	,
Refining Techniques: An Introduction to Refining Methods, such as Distillation and	,
Solvent Extraction, for Product Purification	
MODULE-V	
Formulation and Final Product Processing	
Product Formulation: Principles of Product Formulation, including Stabilization,	,
Preservation, and Dosage Preparation	,
Final Product Processing: Study of final processing steps, including sterilization	8 Hrs
and aseptic packaging, to ensure product safety and stability	,
Quality Control and Regulatory Compliance: An Overview of Quality Control	
Measures and Regulatory Requirements in Downstream Bioprocessing	

Cour	se Outcomes: After completing the course, the students will be able to
CO1	Comprehensive understanding of the role of downstream techniques in bioprocessing and
	their application in the purification and recovery of bioproducts.
CO2	Acquire the knowledge and skills to select appropriate separation techniques for specific
	bioprocessing tasks and understand their advantages and limitations.
CO3	Demonstrate the ability to apply suitable cell disruption and extraction techniques to
	efficiently recover target biomolecules from cells and fermentation broth.
CO4	Implementing effective product purification and refining strategies to obtain high-purity
	bioproducts and improve overall process yield
CO5	Develop the skills to formulate bioproducts, apply final processing techniques, and
	adhere to quality control measures and regulatory requirements in bioprocessing.

Text Books

1. Principles of Downstream Techniques in Biological and Chemical Processes Mukesh Doble CRC press

Reference Books

1. Ladisch, M.R., (2001), Bioseparation Engineering: Principles, Practice and Economics, Wiley, Interscience.

- Three CIE Will be conducted for 50 marks each and average of three will be taken (A)
- Three Quizzes will be conducted along with CIE for 10 Marks Each. Sum of three quizzes will be considered for 30 marks (B)
- Two Assignments for 10 marks each and the sum of both the assignments will be taken for 20 Marks (C)

Final CIE Marks will be calculated as (A+B+C)/2 for 50 marks

Semester End Examination (SEE):

The question paper consists of two parts, A and B

Part A: consists of 10 questions of 2 marks each. It is designed to cover the entire syllabus comprehensively.

Part B: The question paper will have 10 questions. Each question is set for 16 marks. There will be 2 questions from each module, with a maximum of 2 subdivisions. Students have to answer any 5 questions choosing one full question from each module.

The SEE Theory marks of 100 will be scaled down to 50.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2							1	2		
CO2	3	3							1	2		
CO3	3	3							1	2		
CO4	3	3							1	2		
CO5	3	3							1	2		

High-3, Medium-2, Low-1

		Semester: V						
		Innovation & Entrepreneurship (
	urse Code:	MVJ22IE555	CIE Marks:50					
	L:T:P:S 3:0:0:0 SEE Marks:50							
	edits	3	Total Marks: 100					
	urs:	40 Hrs Theory	SEE Duration: 3 Hrs					
		g Objectives: The students will be able to						
1		evelop entrepreneurial mindset and attribu	utes; entrepreneurial skill	sets for				
		ation and intrapreneurial leadership	1.0 11.11					
2		process of problem-opportunity identification						
	1 0	a macro perspective of the real market, indu		mers				
3		design thinking principles to refine and pivestomer and Market segmentation, estimate		d				
3		•	iviarket size, and develop al	na				
	validate Cu	stomer Persona.						
4	Initiate Sol	ation design, develop MVP, and determine l	Product-Market fit prototyp	es.				
5	Craft initial	Business plan, develop go-to-market strate	gies apply story telling skil	ls in				
	presenting	a persuasive and defensible Venture Pitch.						
		MODULE-I						
	=	ip Fundamentals & Context						
	_	ncept, attributes and mindset of entrepren	-					
lead	dership, role n	nodels in each and their role in economic de	velopment. Gamified role					
pla	y-based explo	ration aligned to one's short-term career as	piration and ambition. An					
unc	lerstanding of	how to build an entrepreneurial mindset,	skill sets, attributes, and	8Hrs				
net	works while o	n campus.						
Co	re Teaching	Tool: Simulation, Game, Industry Case	Studies (Personalized for					
stu	dents – 16 ind	ustries to choose from), Venture Activity	,					
		<i>,</i> ,						
	MODULE-II							
Pro	oblem & Cus	tomer Identification:						
Un	derstanding	and analyzing the macro-problem an	d Industry perspective,					
tecl	nnological, so	cio-economic, and urbanization trends and	their implication on new					
opp	ortunities. Id	entifying passion, identifying and defining	g problems using Design					

thinking principles. Analyzing problems and validating with the potential customer. 8Hrs Iterating problem-customer fit. Understanding customer segmentation, creating and validating customer personas. Competition and Industry trends mapping and assessing initial opportunity.

Core Teaching Tool: Several types of activities including Class, game, Gen AI, 'Get out of the building', and Venture Activities.

MODULE-III

Solution design & Prototyping: Understanding Customer Jobs-to-be-done and crafting innovative solution design to map to customers' needs and create a strong value proposition. Developing Problem-solution fit iteratively. Understanding prototyping and MVP. Developing a feasibility prototype with differentiating values, features, and 8Hrs benefits. Initial testing for proof-of-concept and iteration on the prototype.

Core Teaching Tool: Venture Activity, no code Innovation tools, Class activity

MODULE-IV

Opportunity Assessment and Sizing, Business & Financial Model: Assess relative market position via competition analysis, sizing the market, and assessing the scope and potential scale of the opportunity.

Core Teaching Tool: Class and Venture Activity

8Hrs

Introduction to Business model and types, Lean approach, 9 block lean canvas model, riskiest assumptions to Business models. Importance of Build-Measure-Lean approach. Business planning: components of Business plan -Sales plan, People plan, and financial plan.

MODULE-V

Go-to-Market Plan, Scale Outlook, and Venture Pitch Readiness:

Financial Planning: Types of costs, preparing a financial plan for profitability using a financial template, understanding the basics of Unit economics, and analyzing financial performance. Introduction to Marketing and Sales, Selecting the Right Channel, creating a digital presence, and building customer acquisition strategy. Choosing a form of business organization specific to your venture, identifying sources of funds: Debt & Equity, Map the Start-up Lifecycle to Funding Options.

8Hrs

Core Teaching Tool: Founder Case Studies – Sama and Securely Share; Class activity and discussions: Venture Activities.

Scale Outlook and Venture Pitch readiness: Understand and identify potential and aspiration for scale vis a vis your venture idea. Persuasive Storytelling and its key components. Build an Investor-ready pitch deck.

Core Teaching Tool: Expert talks; Cases; Class activity and discussions; Venture Activities

Cour	Course Outcomes: After completing the course, the students will be able to								
CO1	Understand Entrepreneurial Skill set and Mindset								
CO2	Understand and analyze industry problems and Enhance customer person as based on								
	market/other feedback								
CO3	Understand and develop MVPs								
CO4	Understand and apply Business models and Business planning.								
CO5	Develop a go-to-market strategy and build a Persuasive sales pitch								

Tex	t Books								
1.	Robert D.Hisrich, Michael P.Peters, Dean A. Shepherd, Sabyasachi Sinha (2020).								
	Entrepreneurship, McGrawHill, 11th Edition.								
2	Osterwalder, A., & Pigneur, Y. (2010). Business Model Generation: A Handbookfor								
	Visionaries, Game Changers, and Challengers. John Wiley & Sons.								
3	Chowdhry Ajay, (2023) Just Aspire: No teson Technology, Entrepreneurship and the								
	Future.								
4	Simon Sinek (2011) Start with Why, Penguin Books limited								
5	Brown Tim (2019) Change by Design Revised & Updated: How Design Thinking								
	Transforms Organizations and Inspires Innovation, Harper Business								
6	Namita Thapar (2022) The Dolphin and the Shark: Stories on Entrepreneurship, Penguin								
	Books Limited								

Ref	Reference Books									
1.	Collins Jim, Porras Jerry, (2004) Built to Last: Successful Habits of Visionary Companies									
2	Burlington Bo, (2016) Small Giants: Companies That Choose to Be Great Instead of Big									
3	Saras D. Sarasvathy, (2008) Effectuation: Elements of Entrepreneurial Expertise, Elgar									
	Publishing Ltd									

Web Resources

Learning resource- IgniteX Course Wadhwani platform (Includes 200+ components of custom created modular content + 500 + components of the most relevant curated content)

Continuous Internal Evaluation (CIE):

- Three CIE Will be conducted for 50 marks each and average of three will be taken (A)
- Three Quizzes will be conducted along with CIE for 10 Marks Each. Sum of three quizzes will be considered for 30 marks (B)
- Two Assignments for 10 marks each and the sum of both the assignments will be taken for 20 Marks (C)

Final CIE Marks will be calculated as (A+B+C)/2 for 50 marks

Semester End Examination (SEE):

The question paper consists of two parts, A and B

Part A: consists of 10 questions of 2 marks each. It is designed to cover the entire syllabus comprehensively.

Part B: The question paper will have 10 questions. Each question is set for 16 marks. There will be 2 questions from each module, with a maximum of 2 subdivisions. Students have to answer any 5 questions choosing one full question from each module.

The SEE Theory marks of 100 will be scaled down to 50.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2						2			2
CO2			2	2	2							2
CO3			2		2	2			2			2
CO4			2		2				2			2
CO5			2			2	2	2		2		2

High-3, Medium-2, Low-1

	Semester: V								
MINI PROJECT									
Course Code:	MVJ22CHP56	CIE Marks: 100							
L:T:P:S	0:0:4	SEE Marks: 0							
Credits	2	Total Marks: 100							
Hours:	4 Hrs per week	SEE Duration: 3 Hrs							

Course Objective:

- To support independent learning.
- To develop interactive, communication, organization, time management, and presentation skills.
- To impart flexibility and adaptability.
- To inspire independent and team working.
- To expand intellectual capacity, credibility, judgment, intuition.
- To adhere to punctuality, setting and meeting deadlines.
- To instill responsibilities to oneself and others.
- To train students to present the topic of project work in a seminar without any fear, face audience confidently, enhance communication skill, involve in group discussion to present and exchange ideas.

MINI PROJECT: Each student of the project batch shall involve in carrying out the project work jointly in constant consultation with internal guide, co-guide, and external guide and prepare the project report as per the norms avoiding plagiarism.

1 3	1 1 61 6								
Cours	Course outcomes: At the end of the course the student will be able to:								
CO1	Describe the project and be able to defend it. Develop critical thinking and problem solving								
	skills.								
CO2	Learn to use modern tools and techniques. Communicate effectively and to present ideas								
	clearly and coherently both in written and oral forms.								
CO3	Develop skills to work in a team to achieve common goal. Develop skills of project								
	management and finance.								
CO4	Develop skills of self-learning, evaluate their learning and take appropriate actions to improve								
	it.								
CO5	Prepare them for life-long learning to face the challenges and support the technological								
	changes to meet the societal needs.								

Scheme of Evaluation:

Internal Marks: The Internal marks (100 marks) evaluation shall be based on Phase wise completion of the project work, Project report, Presentation and Demonstration of the actual/model/prototype of the project.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	3	3	2	1	1	2	1	1	2
CO2	2	2	2	3	3	2	1	1	2	1	2	2
CO3	2	2	2	3	3	2	1	1	2	1	2	2
CO4	2	2	2	3	3	2	1	1	2	1	2	2
CO5	2	2	2	3	3	2	1	1	2	1	2	2

High-3, Medium-2, Low-1

	Semester: V										
	RESEARCH METHODOLOGY AND IPR										
Cou	rse Code:	MVJ22RMI57	CIE Marks:50								
L:T	: P	3:0:0	SEE Marks: 50								
Cred	dits	3	Total Marks: 100								
Hou	rs:	SEE Duration: 3 Hrs									
Cou	rse Learning	Objectives: The students will be able to									
1		To give an overview of the research methodology and explain the technique.									
1	of defining a	of defining a research problem and explain the basic ethics in research.									
2		suitable outline for research studies throug	h various sources of information								
	from literatur	re review and data collection.	review and data collection.								
3	To develop a	n understanding of the results and on analy	sis of the work carried.								
4	To Demonstrate enhanced Scientific writing skills.										
5	To Develop a	an Understanding on Various Intellectual Pr	operty Rights and importance of								
5	filing patents	- 9.	-								

UNIT-I

Research Methodology: Introduction, Meaning of Research, Objectives of Research, Types of Research, Research Approaches, Significance of Research, Research Methods versus Methodology, Research and Scientific Method, Research Process, Criteria of Good Research, Defining the Research Problem: Research Problem, Selecting the Problem, Necessity of Defining the Problem. Technique Involved in defining a problem and Illustrations.

Ethics in Engineering Research: Ethics in Engineering Research Practice, Types of Research Misconduct, Ethical Issues Related to Authorship.

UNIT-II

Research Writing and Journal Publication Skills:

8Hrs

8 Hrs

Understanding the importance of quality research papers, Differences between conference papers, journal articles, and other academic publications, criteria for selecting a journal, understanding impact factors and journal rankings. place of the literature review in research, how to review the literature, structure of a research paper, effective use of figures and tables, preparing a cover letter and author contributions, Responding to reviewers' comments.

Attributions and Citations: Giving Credit Wherever Due, Citations: Functions and Attributes, Impact of Title and Keywords on Citations, Knowledge Flow through Citation, Citing Datasets, Styles for Citations, Tools for citation management, Acknowledgments and Attributions, What Should Be Acknowledged, Acknowledgments in, Books Dissertations, Dedication or Acknowledgments.

UNIT-III

Research Design: Meaning of Research Design, Need for Research Design, Features of a Good Design, Important Concepts Relating to Research Design, Different Research Designs case of Exploratory research studies, case of descriptive and diagnostic research, case of hypothesis -testing, Basic Principles of Experimental Designs, Important Experimental Designs.

8Hrs

Results and Analysis: Importance and scientific methodology in recording results, importance of negative results, different ways of recording, industrial requirement, artifacts versus true results, types of analysis (analytical, objective, subjective), outcome as new idea, hypothesis, concept, theory, model etc.

8Hrs

Interpretation and Report Writing: Meaning of Interpretation, Technique of Interpretation, Precaution in Interpretation, Significance of Report Writing, Different Steps in Writing Report, Layout of the Research Report, types of reports, Oral Presentation, Mechanics of Writing a Research Report, Precautions for Writing Research Reports.

UNIT-V

UNIT-IV

Introduction to Intellectual Property Rights: Meaning of property, Origin, Nature, Meaning of Intellectual Property Rights.

8Hrs

Kinds of Intellectual property rights—Copy Right, Patent, Trademark, Trade Secret and trade dress, Design, Layout Design, Geographical Indication, Plant Varieties and Traditional Knowledge.

Patents: Trips Definition, Patentable and Non-Patentable inventions, Legal requirements for patents.

Patent application process: Prior art search, drafting of a patent, Filing of a patent, Patent document: specification and claims, Granting of patent, Management of IP, Commercialization of IP – Assignment, licensing and infringement.

Cour	Course Outcomes: After completing the course, the students will be able to									
CO1	Formulate the research problem and follow research ethics.									
CO2	Carry out a Literature survey for the topic identified									
CO3	Analyse the research and interpret the outcomes of the research.									
CO4	Enhance their technical writing skills									
CO5	Understand the importance of Patenting, Licensing and technology transfer.									

Text Books

- 1. C.R. Kothari, Research Methodology, Methods and Techniques, 2nd Revised edition, New Age International Publishers, 2015
- 2. Neeraj Pandey and Khushdeep Dharni, Intellectual Property Rights, PHI Learning Pvt Ltd, 2014

Dof	owana Daaks
Kei	erence Books
1.	Geoffrey Marczyk, David De Matteo, David Festinger (2005) Essentials of Research
	Design and Methodology, John Wiley & Sons, Inc.
2.	Carol Ellison (2010) McGraw-Hill's Concise Guide to Writing Research Papers, McGraw-
	Hill
3.	Sinha, S.C. and Dhiman, A.K., (2002). Research Methodology, Ess Publications. 2nd
	volume.
4.	Wadehra, B.L. (2000). Law relating to patents, trademarks, copyright designs and
	geographical indications. Universal Law Publishing

- Three CIE Will be conducted for 50 marks each and average of three will be taken (A)
- Three Quizzes will be conducted along with CIE for 10 Marks Each. Sum of three quizzes will be considered for 30 marks (B)
- Two Assignments for 10 marks each and the sum of both the assignments will be taken for 20 Marks (C)

Final CIE Marks will be calculated as (A+B+C)/2 for 50 marks

The question paper consists of two parts, A and B

Part A: consists of 10 questions of 2 marks each. It is designed to cover the entire syllabus comprehensively.

Part B: The question paper will have 10 questions. Each question is set for 16 marks. There will be 2 questions from each module, with a maximum of 2 subdivisions. Students have to answer any 5 questions choosing one full question from each module.

The SEE Theory marks of 100 will be scaled down to 50.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	1	2	2	-	-	1	1	1	2
CO2	3	2	3	2	2	2	-	1	1	1	-	1
CO3	1	2	3	3	2	2	-	1	1	1	-	1
CO4	1	2	3	3	3	2	-	1	1	1	1	2

High-3, Medium-2, Low-1

		¥7	
	Semeste ENVIRONMENT		
Course Code:	MVJ22ENV58	CIE Marks: 50	
L: T:P:S	2:0:0:0	SEE Marks: 50	
Credits:	2	Total :100	
Hours:	24 Hrs Theory	SEE Duration: 3 Hrs.	
Course objective	· · · · · · · · · · · · · · · · · · ·	12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
of the natural political scie Study drinkin Critically even	l and social sciences including g nce and international processes ng water quality standards and t	to illustrate qualitative analysis of wa amifications of diverse energy portfo	nomics,
	Modul	le-1	
Introduction to	environmental studies, Multidi	sciplinary nature of environmental	
studies; Scope	and importance; Concept of	of sustainability and sustainable	4 Hrs
development. Ed	cosystems (Structure and Funct	tion): Forest, Desert, Rivers, Ocean	
Biodiversity: T	ypes, Hot spots; Threats ar	nd Conservation of biodiversity,	
Deforestation			
	Modul	le-2	•
Advances in En	ergy Systems (Merits, Demerit	s, Global Status and Applications):	
	• •	arce Management (Concept and case	4 Hrs
•	Management, Sustainable Mini		
	Modul	le-3	
Environmental 1	Pollution: Surface and Ground	Water Pollution, Noise pollution,	
Soil Pollution ar	nd Air Pollution. Waste Manage	ement & Public Health Aspects: Bio-	6 Hrs
	Solid waste, Hazardous waste a	-	
· · · · · · · · · · · · · · · · · · ·	Modul		1
Global Environ	mental Concerns (Concert n	policies, and case-studies): Global	
	nte Change, Acid Rain, Ozone I	· · · · · · · · · · · · · · · · · · ·	6 Hrs
Problem in drink	<u> </u>	Depiction and 1 fuoride	0 111 5
1 TOOLEM III GIIII	Modul	e-5	
Latast Davidson			Ī
-		ion Mitigation Tools (Concept and Environment Impact Assessment,	4 Hrs
Environmental N	Management Systems.	-	
Course outcome	<u> </u>		1
At the end of the	course the student will be able	to:	
		environmental issues that apply to air	r, land,
CO 2 Develop	ter issues on a global scale. o critical thinking and/or observ blem or question related to the	ration skills, and apply them to the an environment	alysis

CO 3	Develop critical thinking and/or observation skills, and apply them to the analysis
	of a Problem or question related to the environment
CO 4	Apply their ecological knowledge to illustrate and graph a problem
CO 5	Describe the realities that managers face when dealing with complex issues

Continuous Internal Evaluation (CIE) – 50 Marks

The CIE for the mandatory credit courses common across all disciplines comprises of two components as follows:

Internal Assessment Tests (30 Marks):

Two Internal Assessment tests will be conducted, each comprising 50 multiple choice questions for a total of 50 marks. The average of the two test scores will be scaled down to 30 marks.

Assignments (20 Marks):

Students are required to complete two assignments, each carrying 10 marks. These assignments may include projects*, poster presentations*, seminars*, or similar academic activities. The marks of the two assignments are added to get 20 marks.

*Each assignment will undergo two rounds of evaluation to assess progress and quality At the beginning of the semester, the instructor/faculty teaching the course has to announce the methods of Assignment for the course. Together, these two components are added to get the Final CIE marks of 50.

Semester End Examination (SEE) – 50 Marks

A Semester End Examination is conducted for 50 marks comprising of multiple-choice questions (MCQ) type each of one mark.

The final score for the course out of 100 is the Sum Total of SEE and CIE

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	
CO1	3	3	3	1	_	2	2	1	1	-	2	
CO2	3	3	2	1	-	1	2	-	1	1	2	
CO3	3	3	2	1	_	2	2	_	1	1	2	
CO4	3	3	2	2	_	2	2	_	1	1	2	
CO5	3	3	2	2	-	2	2	-	1	1	2	

	Semester: VI									
	CHEMICAL PROCESS EQUIPMENT DESIGN & DRAWING									
Cou	rse Code:	MVJ22CH61	CIE Marks:50							
L:T	:P:S	3:0:2:2	SEE Marks: 50							
Credits:		4	Total Marks: 100							
Hours:		40 Hrs Theory and 24 Hrs	SEE Duration: 03+03 Hours							
		Practical								
Cou	rse Learning Ob	jectives: The students will be able to								
1	To study various	s phases in process design & development	nt.							
2	To determine co	st involved in various processes.								
3	Estimation of ca	pital cost, alternative investments and re-	placement analysis.							
Understand the		chemical engineering principles applicable for designing chemical								
engineering equipment										
5	To study how to	calculate about profitability, depreciation	on & taxes.							

MODULE-I					
Introduction: chemical engineering plant design, general overall design considerations, cost estimation; factors effecting profitability of investments. optimum design: optimum economic design, optimum operating design, the design approach Process Design Development: Design project procedure; types of designs, design information from the literature.					
MODULE-II					
Equipment design and Specification: factors in equipment scale up and design, safety factors, materials of constructions, health and safety hazards; sources of exposure, exposure evaluation, safety regulation.	8 Hrs				
MODULE-III					
Mechanical design of process equipment: Design of Cylindrical and Spherical Vessels under internal pressure, heads and closures and tall vessels					
UNIT-IV					
Heat transfer equipment design: Basic theory of heat transfer in exchangers, determination of heat transfer coefficients and pressure drop in heat exchangers, selection of heat exchange equipment, design of shell & tube exchangers).					
UNIT-V					
Process Design of Distillation column: Design of sieve tray Distillation column. Types of reactors, process design of batch reactor and continuous flow reactors, selection of reactors, mechanical features of reactor design.	8 Hrs				
LABORATORY EXPERIMENTS					
Proportionate Drawing: Equipment and Piping Symbols (Introductory only) Design of Shall & Tube Heat Evelonger					
Design of Shell & Tube Heat Exchanger Design of Kettle type Reboiler					

Design of Standard Vertical Short Tube Evaporator

Design of Bubble cap Distillation Column

Design of Packed Bed Ceramic Absorber

Cour	Course Outcomes: After completing the course, the students will be able to							
CO1	Develop an understanding for the general designs considerations.							
CO2	Understanding of materials cost and handling.							
CO3	Design the pressure vessels							
CO4	Apply chemical engineering principles to design chemical process equipment							
	applicable for heat transfer operations.							
CO5	Understand design procedure of chemical separation equipment and reactors							

Toxt	\mathbf{D}_{α}	oks
ı ext	150	OKS

- 1. Maidargi, S. C. (2015). Chemical Process Equipment: Design And Drawing (Volume I), Second Edition. PHI Learning Pvt. Ltd.
- 2. Peters, M. S., Timmerhaus, K. D., & West, R. E. (2003). *Plant design and economics for chemical engineers*.

Reference Books

- 1. L, W. (1976). *Unit Operations of Chemical Engineering*.
- 2. Introduction to Chemical Engineering Equipment Design: Mechanical Aspects, 1st Edition, CBS

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

- Three CIE Will be conducted for 50 marks each and average of three will be taken(A)
- Three Quizzes will be conducted along with CIE for 10 Marks Each. Sum of three quizzes will be considered for 30 marks (B)
- Two Assignments for 10 marks each and the sum of both the assignments will be taken for 20 Marks (C)

Final CIE Marks will be calculated as (A+B+C)/2 for 50 marks

Laboratory- 50 Marks

Weekly Evaluation 30 Marks

Weekly evaluation will be conducted for every experiment. Marks of each evaluation includes Weekly Attendance +Experiment conduction along with Record / Observation + Weekly viva for all the experiments. The total of all these evaluated marks are added and the total marks will be scaled to 30 marks. (A)

Two CIE for 20 Marks each and take the average for 20 Marks (B)

Final CIE Marks will be calculated as A+B for 50 marks

For IPCC Final CIE Marks will be calculated as Average of CIE and Lab CIE for 50 marks.

Semester End Examination (SEE)

SEE Theory Examination (100 Marks)

The question paper consists of two parts, A and B

Part A: consists of 10 questions of 2 marks each. It is designed to cover the entire syllabus comprehensively.

Part B: The question paper will have 10 questions. Each question is set for 16 marks. There will be 2 questions from each module, with a maximum of 2 subdivisions. Students have to answer any 5 questions choosing one full question from each module.

The SEE Theory marks of 100 will be scaled down to 50(A)

SEE Laboratory Examination (50 Marks)

The laboratory SEE is also evaluated for 50 marks, distributed as follows:

Experiment Conduction with Results: 40 marks

Viva Voce: 10 marks Total 50 marks (B)

The score for the SEE is A+B of total 100 marks

CO/P	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1
0	1	2	3	4	5	6	7	8	9	0	1	2
CO1	3	2	3	2	2		-	2			2	1
CO2	2	2	3	1	2	3	3	2		1	2	
CO3	2	2	3	1	3		1	1			2	1
CO4	3	3	3	2	3	1	1	1			3	2
CO5	3	3	3	2	3	1	1	1			2	1

High-3, Medium-2, Low-1

Semester: VI									
MASS TRANSFER – II									
Course Code:		MVJ22CH62	CIE Marks:50						
L:T	:P:S	2:2:0:0	SEE Marks: 50						
Cred	dits:	3	Total Marks: 100						
Hou	rs:	40 Hrs Theory	SEE Duration: 03 Hours						
Cou	rse Learning (Objectives: The students will be able to							
1	Be able to un	derstand different separation techniques.							
2	Acquire the	knowledge of separation processes like distillation, adsorption, and							
	extraction.	traction.							
3	Be able to use the phase equilibrium concepts in mass transfer related problems.								
4	4 Be able to design staged /packed column for mass transfer operations.								
5	Be able to des	sign distillation column, absorber and calcu	lations involved in liquid-liquid						
3	extraction.								

MODULE-I				
Gas Liquid Contacting Systems: Types, construction and working of plate and packed columns, types and properties of industrial packing's, plate efficiencies, HETP and HTU concepts. Absorption: Solvent selection for absorption. Material balance and concept of driving force and minimum solvent rates. Multistage absorption columns. Design of Plate columns. Absorption and desorption factors.				
MODULE-II				
Packed Tower Absorption: Liquid phase hold up and pressure drop in absorption towers. Design of packed towers (process design-height of the absorber). Distillation: Introduction. Vapor liquid equilibrium (T-x,y, P-x,y. H-x,y and x-y diagrams for binary mixtures). Relative volatility. Prediction of VLE from vapor pressure data using Raoult's law. VLE for multi-component systems. Non-ideal systems. Azeotropes. Immiscible systems. Flash and simple distillation.	8 Hrs			
MODULE-III				
Distillation (Contd.) : Multi-stage rectification column. Design using McCabe Thiele and Lewis-Sorel methods for binary mixtures. Ponchon- Savarit method. Introduction to Multi component distillation, Vacuum, molecular, extractive and azeotropic distillations.	8 Hrs			
MODULE-IV				
Liquid-Liquid Extraction : Ternary liquid-liquid equilibrium. Solvent selection. Single stage and multi-stage cross-current, counter-current extraction. Extraction calculations- quantity and composition of extract and raffinate, number of stages required. Equipment for liquid-liquid extraction.				
MODULE-V				
Leaching Operation: Equipment for leaching. Phase diagrams, Preparation of solids for leaching. Equilibrium diagrams. Calculation of single stage and multistage leaching operation.	8 Hrs			

Cour	Course Outcomes: After completing the course, the students will be able to								
CO1	Apply the concepts of HETP, NTU and HTU to design various gas-liquid contacting								
	systems.								
CO2	Apply the concept of absorption to calculate the number of plates and height of								
	continuous absorber.								
CO3	Estimate the composition of distillate and residue using VLE data and explain the								
	different distillation processes.								
CO4	Apply McCabe Thiele, Ponchon - Savarit method and Lewis-Sorel methods for binary								
	mixtures to calculate no of trays in multi-stage rectification column.								
CO5	Develop the material balance equations for stage wise operations in liquid-liquid								
	extraction and leaching operations and working of the equipment.								

Text Books

- 1. Mass transfer operations, Treybal, R. E., Third Edition, 2017, New York: McGraw Hill Education, ISBN:1259029158
- 2. Unit Operations in Chemical Engineering, McCabe & Smith, Seventh Edition, 2017, New York: McGraw Hill Education, ISBN:9339213238

Reference Books

- 1. Principles of Unit operations, Foust, A. S., Wenzel, L. A., Clump, C. W., Maus, L., & Andersen, L. B., Second Edition, 2008, John Wiley & Sons.ISBN:9788126518296
- 2. Chemical Engineering, Coulson and Richardson, Third Edition, 1999, Pergamon Press., ISBN:0750641428

Continuous Internal Evaluation (CIE):

- Three CIE Will be conducted for 50 marks each and average of three will be taken (A)
- Three Quizzes will be conducted along with CIE for 10 Marks Each. Sum of three quizzes will be considered for 30 marks (B)
- Two Assignments for 10 marks each and the sum of both the assignments will be taken for 20 Marks (C)

Final CIE Marks will be calculated as (A+B+C)/2 for 50 marks

Semester End Examination (SEE):

The question paper consists of two parts, A and B

Part A: consists of 10 questions of 2 marks each. It is designed to cover the entire syllabus comprehensively.

Part B: The question paper will have 10 questions. Each question is set for 16 marks. There will be 2 questions from each module, with a maximum of 2 subdivisions. Students have to answer any 5 questions choosing one full question from each module.

The SEE Theory marks of 100 will be scaled down to 50.

CO/P	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1
O	1	2	3	4	5	6	7	8	9	0	1	2
CO1	2	3	2	2		1	1	1			1	1
CO2	2	2	3	3		1					2	1
CO3	2	3	2	3	1						2	1
CO4	3	3	3	3	1						2	1
CO5	3	2	3	2		1	3	1			1	1

High-3, Medium-2, Low-1

	Semester: VI								
	NANOSCIENCE & NANOTECHNOLOGY								
Cou	rse Code:	MVJ22CH631	CIE Marks:50						
L:T	:P:S	3:0:0:0	SEE Marks: 50						
Cre	dits:	3	Total Marks: 100						
Hou	irs:	40 Hrs Theory	SEE Duration: 3 Hrs						
Cou	rse Learning	Objectives: The students will be able to							
1	Understand th	ne behavior of various smart materials and	its applications.						
2	Understand b	asics and synthesis of nano materials and t	heir properties.						
3	3 Learn to analyze and assess parameters involved in synthesis and characterization.								
4	<u> </u>								
5	Understand th	ne applications of nano technology in vario	ous fields.						

MODULE-I	
Introduction and scope - Introduction to nanoscale, history, evolution of various	
disciplines towards nanoscale potential applications, recent achievements in	
nanotechnology, short-term commercial nanotechnology products, specific	8 Hrs
applications, challenges and opportunities, technology scope, areas and sub	
disciplines, commercialization scope, present course of investigation.	
MODULE-II	
Nanomaterials Synthesis and Characterization: Introduction, basic nanostructures:	
CNTs, nanowires, nanocones; quantum dots, quantum dot nanocrystals, ultra-	
nanocrystalline diamond, nanocomposites, thin films, nanofoams, nanoclusters,	8 Hrs
smart nanostructures	
MODULE-III	
Characterization of Nano materials: Microscopy-Scanning tunnelling microscope,	
atomic force microscope, scanning electron microscopy, Field Emission Scanning	
Electron Microscopy (FESEM), Transmission Electron Microscopy (TEM),	
Environmental Scanning Electron Microscopy (ESEM) High Resolution	8 Hrs
Transmission Electron Microscope (HRTEM), Surface enhanced Raman	OIIIS
Spectroscopy, X-ray diffraction technique, X ray Photoelectron Spectroscopy	
Surface area analysis, Particle size analysis, gravimetric analysis.	
MODULE-IV	
Nanoscale Manufacturing: Nano manipulation, Nanolithography- Optical	
lithography, Photolithography, Dip pen nanolithography, Extreme UV	
Lithography, Electron beam (e-beam) lithography,	
Epitaxial Growth: classical growth modes, techniques for epitaxy: Liquid Phase	8 Hrs
Epitaxy (LPE), Physical Vapor Deposition (PVD), Molecular Beam Epitaxy	OIIIS
(MBE). Physical Vapor Deposition (PVD), Chemical Vapor Deposition (CVD),	
Self-Assembly.	
MODULE-V	
Application of Nanotechnology: Environment: remediation and mitigation using	
metal oxide nano particles, magnetic particles, Nanomembranes and nanofilters,	
Pollution prevention: nanocatalysis, environmental sensors Medicine and	8 Hrs
healthcare: diagnosis, biosensors, drug delivery, therapy Energy: Solar energy-	UIIIS
Photovoltaic's, Dye-sensitized solar cell, Quantum-dot- sensitized solar cells.	
Thoustonians, Dye sensinged some cen, Quantum det sensinged some cens.	

Hydrogen energy-Hydrogen production and Hydrogen storage, hydrogen fuel cell, Energy Savings-Insulators and smart coatings, Energy- harvesting materials, Information and communication technologies: Integrated circuits, Data storage, Photonics, Displays, Information storage devices, Wireless sensing and communication.

Cour	Course Outcomes: After completing the course, the students will be able to						
CO1	Understand the concept of nano and its opportunities in various fields						
CO2	Understand the basic science of basic nano technology						
CO3	Identify various nano materials and recall nano materials synthesis, characterization						
	techniques						
CO4	Identify various nano manufacturing techniques.						
CO5	Understand the applications of Nano technology in various fields.						

Text	t Books
1	A textbook of nanoscience and nanotechnology, Varghese, P. I., & Pradeep, T., 2003,
1	Tata McGraw-Hill Education.
	Nanotechnologies: principles, applications, implications and hands-on activities: A
2	compendium for educators, Fipponi, L., & Sutherland, D., 2012, European Union,
	Directorate General for Research and Innovation.

Refe	Reference Books								
1	Nano Materials, Bandyopadhyay. K., 2007, First edition, New Age International Publishers.								
2	An introduction: material science and engineering, Callister, W. D., 2007, John Wiley and Sons Inc.								

Continuous Internal Evaluation (CIE):

- Three CIE Will be conducted for 50 marks each and average of three will be taken (A)
- Three Quizzes will be conducted along with CIE for 10 Marks Each. Sum of three quizzes will be considered for 30 marks (B)
- Two Assignments for 10 marks each and the sum of both the assignments will be taken for 20 Marks (C)

Final CIE Marks will be calculated as (A+B+C)/2 for 50 marks

Semester End Examination (SEE):

The question paper consists of two parts, A and B

Part A: consists of 10 questions of 2 marks each. It is designed to cover the entire syllabus comprehensively.

Part B: The question paper will have 10 questions. Each question is set for 16 marks. There will be 2 questions from each module, with a maximum of 2 subdivisions. Students have to answer any 5 questions choosing one full question from each module.

The SEE Theory marks of 100 will be scaled down to 50.

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	1		1		1	2	2	1				2	
CO2	1					2	2					2	
CO3	2				2	1	2					2	
CO4	2				2	1	2	1				1	
CO5	2	1			1	2	3	1				1	

High-3, Medium-2, Low-1

	Semester: VI						
		PHARMACEUTICAL TECHNOL	LOGY				
Co	urse	MVJ22CH632	CIE Marks:50				
Co	de:						
L:	Γ:P:S	3:0:0:0	SEE Marks: 50				
Cr	edits:	3	Total Marks: 100				
Ho	urs:	40 Hrs Theory	SEE Duration: 3 Hrs				
Co	urse Learni	ng Objectives: The students will be able to					
1	Learn form	ulations, tablet and capsule making.					
2	Know about biodegradation, natural and synthetic biopolymers.						
3	Learn about drug development, testing of materials/cosmetics.						
4	4 Learn pharmaceuticals manufacturing technology.						
5	Understand	ing the packaging of pharmaceuticals products					

MODULE-I			
Overview of pharmaceutical industry, classification of pharmaceutical dosage. Introduction to bio pharmaceutics, solubilisation techniques, suspensions, emulsions etc. Biochemical analysis of pharmaceutical. Introduction to reaction, electrophilic substitution reaction, electrophilic substitution reaction mechanism & application, nucleophilic addition reaction.	8 Hrs		
MODULE-II			
Preformulation: Physical form (crystal & amorphous), polymorphism, particle size, shape, solubility profile (pKa, pH), partition coefficient, flow properties, hydrolysis, oxidation, reduction, racemisation, dissolution, permeability, BCS classification and polymerization, mechanism, important chemicals, oxidation-reduction reactions. Rheology of fluids in mixing and blending.	8 Hrs		
MODULE-III			
Tablets: Introduction, classification of tablets, formulation/preparing of tablets, granulation methods, tablet coating, types, coating materials, formulation of coating composition, methods of coating, equipment's employed and defects in coating, QC of tablets, apparatus, methods, graphical presentations and analytical tests.	8 Hrs		
MODULE-IV			
Capsules:Introduction, advantages, disadvantages, capsule production. Hard and soft gelatine capsules. Evaluation of commercial capsules. Pellets: Introduction, formulation, pelletization process, equipment needed. Pharmaceutical aerosols: Definitions, advantages, limitation, uses, components of aerosols. Cosmetics: Introduction, types of cosmetic preparations, formulation of toothpastes, lipsticks, shampoos, hair dyes, cold cream and vanishing cream, sunscreens. Preparation: Test for purity of capsules/pellets/cosmetics.	8 Hrs		
MODULE-V			
Packaging of pharmaceuticals/ capsules/pellets/cosmetics products, factors influencing choice of containers. Legal and official requirements, stability aspects. Quality control tests of packaging materials. Preparation: Analyzing the Packaging of any pharmaceuticals/ capsules/pellets/cosmetics.	8 Hrs		

Cour	Course Outcomes: After completing the course, the students will be able to					
CO1	Comprehend the overall life cycle of pharmaceuticals.					
CO2	Summarize the integral parts of pharmaceuticals.					
CO3	Illustrate the rheology of pharmaceuticals.					
CO4	Explains preparation and testing for compounds in medical application					
CO5	Outline preparation, purity test and uses of pharmaceuticals.					

Text Books

- 1. Pharmaceutical product development, Jain, N. K. first edition, 2006, CBS publishers & distributors. ISBN:9788123913216, 8123913214.
- 2. Essentials of pharmaceutical technology, Semalty, A., Semalty, M., & Rawat, M. S. M. second edition, 2011, PharmaMed Press / BSP Books.ISBN:9789386819994.

Reference Books

- 1. The Theory and Practice of Industrial Pharmacy, Lachman, L., & Lieberman, H. A. fourth edition, 2012, CBS Publishers and Distributors Pvt. Ltd.
- 2. Organic chemistry, by Clayden J., Greeves N., Warren S., second edition, 2012, Oxford University Press, ISBN 9780199270293

Continuous Internal Evaluation (CIE):

- Three CIE Will be conducted for 50 marks each and average of three will be taken (A)
- Three Quizzes will be conducted along with CIE for 10 Marks Each. Sum of three quizzes will be considered for 30 marks (B)
- Two Assignments for 10 marks each and the sum of both the assignments will be taken for 20 Marks (C)

Final CIE Marks will be calculated as (A+B+C)/2 for 50 marks

Semester End Examination (SEE):

The question paper consists of two parts, A and B

Part A: consists of 10 questions of 2 marks each. It is designed to cover the entire syllabus comprehensively.

Part B: The question paper will have 10 questions. Each question is set for 16 marks. There will be 2 questions from each module, with a maximum of 2 subdivisions. Students have to answer any 5 questions choosing one full question from each module.

The SEE Theory marks of 100 will be scaled down to 50.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2				1	2	3	1				1
CO2	2		1			1	3	2				2
CO3	2					2	3	1				2
CO4	3	1	2	1		1	3	3				1
CO5	3	1	2	1		1	3	3				1

High-3, Medium-2, Low-1

	Semester: VI							
	FOOD TECHNOLOGY							
Cou	rse Code:	MVJ22CH633	CIE Marks:50					
L:T	:P:S	3:0:0:0	SEE Marks: 50					
Cre	dits:	3	Total Marks: 100					
Hou	rs:	40 Hrs Theory	SEE Duration: 3 Hrs					
Cou	rse Learning	Objectives: The students will be able to						
1	Impart know	rledge to the students about food proce	essing and various MODULE					
1	operations.							
2	Understand th	ne knowledge of formation of foods.						
3	3 Understand the concepts of enzymatic reactions.							
4 Gain knowledge on the preservatives and additives.								
5	5 Know the importance of the food safety.							

MODULE-I				
Introduction and Quality Attributes of Food: Function of foods. Food in relation to health. Aim of food science and technology. Quality attributes – Appearance factors, Textural factors, Flavor factors. Visual and objectively measurable attributes. Aroma of foods – introductory ideas, formation, chemistry and analysis. Taste – introductory ideas, formation and chemistry. Additional quality; quality standards, quality control. Introduction to sensory evaluation of foods and beverages. Modern Trends In Food Science: Biotechnology in food. Biofortification, Nutraceuticals. Organic foods. Low cost nutrient supplements. Packaging of foods and nutrition labeling. Careers in food science and food industries.	8 Hrs			
MODULE-II				
Formation and Chemistry of Food: Carbohydrates. Proteins. Lipids. Vitamins. Minerals. Water. Biotin. Choline. Phytochemicals. Food Processing and Preservation: Food deterioration — Causes. Aims and objectives of preservation and processing. MODULE operations in processing. Different methods of food preservation — low temperature, high temperature, preservatives, osmotic pressure, dehydrations. food irradiation; processing and preservations of milk and dairy, vegetables and fruits, cereals, legumes and nuts, meat and meat products, fats and oils, beverages, sugars, sweeteners, honey and confectionary, salt and spices.	8 Hrs			
MODULE-III				
Enzymatic and Non-Enzymatic Reactions During Storages: Introduction to enzymes. Nature and function of enzymes. Classification of enzymes. Hydrolases – Esterases, amylases, pectic enzymes. Proteases. Oxidoreductases – phenolases, glucose oxidase, catalase, peroxidase, lipoxygenase, xanthine oxidase. Immobilized enzymes. Uses and suggested uses of enzyme in food processing. Non-enzymatic reactions.	8 Hrs			
MODULE-IV				
Food Additives: Introduction and need for food additives. Types of additives – antioxidants, chelating agents, coloring agents, curing agents, emulsions, flavors and flavor enhancers, flavor improvers, humectants and anti-choking agents,				

leavening agents, nutrient supplements, non- nutritive sweeteners, pH control	
agents. Preservatives – types and applications. Stabilizers and thickeners, other	
additives. Additives and food safety. Food Contamination and Adulteration: Types	
of adulterants and contaminants. Intentional adulterants. Metallic contamination.	
Incidental adulterants. Nature and effects. Food laws and standards.	
MODULE-V	
Environmental Concerns and Food Safety: Water in food production. Properties and	
requirements of processing water. Environmental concerns – solid waste disposal,	0 11
wastewater properties, wastewater treatment. Safety hazards and risks. Food related	8 Hrs
hazards. Processing and handling. Cleaning and sanitizing.	

Cour	Course Outcomes: After completing the course, the students will be able to						
CO1	Explain the quality attributes and chemistry of foods						
CO2	Apply principles of packaging, storing and preservation, food poisoning, food related						
	hazards and safety						
CO3	Explain the various causes of food deterioration and food poisoning.						
CO4	Identify appropriate processing, preservation, and packaging method.						
CO5	Analyze product quality and effect of processing technique on it.						

Text I	Text Books						
1	Food Science, B. Srilakshmi, 2007, 4th edn, New Age International.						
2	Foods: Facts and Principles, N. Shakuntala Manay and M. Shadaksharamurthy, 2005, New Age Publishers.						

Reference Books						
1	Introduction to Food Science, Rick Parker, 2001, Thomsan Detmer.					
2	Food Processing and Preservation, G. Subbulakshmi and Shobha A. Udupi, 2001, New Age International.					

Continuous Internal Evaluation (CIE):

- Three CIE Will be conducted for 50 marks each and average of three will be taken (A)
- Three Quizzes will be conducted along with CIE for 10 Marks Each. Sum of three quizzes will be considered for 30 marks (B)
- Two Assignments for 10 marks each and the sum of both the assignments will be taken for 20 Marks (C)

Final CIE Marks will be calculated as (A+B+C)/2 for 50 marks

Semester End Examination (SEE):

The question paper consists of two parts, A and B

Part A: consists of 10 questions of 2 marks each. It is designed to cover the entire syllabus comprehensively.

Part B: The question paper will have 10 questions. Each question is set for 16 marks. There will be 2 questions from each module, with a maximum of 2 subdivisions. Students have to answer any 5 questions choosing one full question from each module.

The SEE Theory marks of 100 will be scaled down to 50.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2				1	2	3	1				1
CO2	2		1			1	3	2				2
CO3	2					2	3	1				2
CO4	3	1	2	1		1	3	3				1
CO5	3	1	2	1		1	3	3				1

High-3, Medium-2, Low-1

Semester: VI								
	HETEROGENEOUS REACTION SYSTEMS							
Course Code:	MVJ22CH634	CIE Marks:50						
L:T:P:S	3:0:0:0	SEE Marks: 50						
Credits	3	Total Marks: 100						
Hours:	40 Hrs Theory	SEE Duration: 3 Hrs						
Course Learning (Objectives: The students will be able to							

To impart knowledge on different types of catalysis and heterogeneous reactions, Transport processes and industrial catalytic process under isothermal and non-isothermal conditions.

MODULE-I				
Introduction to catalysis and heterogeneous reactions: general definition of catalysts, solid catalysts, components of catalyst, industrial catalysts, preparation of solid catalysts, precipitation and co-precipitation methods, sol gel method, supported catalysts, impregnation and ion exchange method,	8 Hrs			
MODULE-II				
Introduction to catalysis and heterogeneous reactions: catalyst drying calcinations and formulations, catalyst characterization techniques, structural analysis, chemisorptions technique, thermal analysis, spectroscopic techniques, microscopic technique.	8 Hrs			
MODULE-III				
Kinetics of heterogeneous catalytic reactions: reaction mechanism and rate equations, power law model, Langmuir-Hinshelwood –Hougen- Watson (lhhw) model, Eeyrideal model, rate controlling step, estimation of model parameters, reactor types- fixed bed reactor, fluidized bed reactor, berty reactor, multiphase reactors- slurry reactor, trickle bed reactor, bioreactors, catalysts tests.	8 Hrs			
MODULE-IV				
Transport processes with reactions catalyzed by solids: effect of external transport on catalytic reaction rate, effect of external mass transfer resistance on order of reaction, effect of external transport on selectivity, effect of internal mass transport on catalytic reaction rate, bulk diffusion, knudsen diffusion, surface diffusion, effectiveness factor at isothermal conditions, significance of intrapellet diffusion, effect of intra-pellet mass transfer on activation energy.	8 Hrs			
MODULE-V				
Catalyst deactivation: types of catalyst deactivation, the kinetics of catalyst poisoning, kinetics of catalyst deactivation by coke formation. Industrial catalytic processes: steam reforming, catalytic cracking, three lumped kinetic model for catalytic cracking of gas oil hydrocracking, hydrogenation, and dehydrogenation catalytic reactions.	8 Hrs			

Cour	Course Outcomes: After completing the course, the students will be able to					
CO1	Derive the rate expressions for heterogeneous catalytic reactions and Catalytic					
	deactivation.					
CO2	Develop the rate equations for heterogeneous fluid particle systems and the fluid-fluid					
	noncatalytic reactions to solve problems.					
CO3	Analyze different steps in reaction mechanisms on solid catalytic surfaces and identify					
	the factors affecting the rate.					
CO4	Derive the Kinetics of Catalyst Deactivation for different industrial applications.					
CO5	Derive the performance equation of solid catalyzed reaction in various reactors with					
	industrial application of green catalysis.					

Tex	Text Books						
1.	Chemical reaction engineering, Levenspiel, O., 1998, John Wiley & sons.						
2.	Fundamentals of chemical reaction engineering, Davis, M. E., & Davis, R. J., 2012,						
	Courier Corporation.						

Ref	Reference Books						
1.	Chemical reactor analysis and design, Froment, G. F., Bischoff, K. B., & De Wilde, J.,						
	1990, New York: Wiley.						
2.	Elements of chemical reaction engineering, Fogler, H. S., & Fogler, S. H., 1999, Pearson						
	Education.						

Continuous Internal Evaluation (CIE):

- Three CIE Will be conducted for 50 marks each and average of three will be taken (A)
- Three Quizzes will be conducted along with CIE for 10 Marks Each. Sum of three quizzes will be considered for 30 marks (B)
- Two Assignments for 10 marks each and the sum of both the assignments will be taken for 20 Marks (C)

Final CIE Marks will be calculated as (A+B+C)/2 for 50 marks

Semester End Examination (SEE)

SEE Theory Examination (100 Marks)

The question paper consists of two parts, A and B

Part A: consists of 10 questions of 2 marks each. It is designed to cover the entire syllabus comprehensively.

Part B: The question paper will have 10 questions. Each question is set for 16 marks. There will be 2 questions from each module, with a maximum of 2 subdivisions. Students have to answer any 5 questions choosing one full question from each module.

The SEE Theory marks of 100 will be scaled down to 50.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	2	3	2	2			2			2	1	
CO2	2	2	3	1	2	3	3	2		1	2		
CO3	2	2	3	1	3		1	1			2	1	
CO4	3	3	3	2	3	1	1	1			3	2	
CO5	3	3	3	2	3	1	1	1			2	1	

	Semester: VI							
	INDUSTRIAL POLLUTION & CONTROL							
Cou	rse Code:	MVJ22CH641	CIE Marks:50					
L:T:	:P:S	3:0:0:0	SEE Marks: 50					
Cred	dits:	3	Total Marks: 100					
Hou	Hours: 40 Hrs Theory SEE Duration: 3 Hrs							
Cou	rse Learning Ob	jectives: The students will be able to						
1	To enhance know	To enhance knowledge and skills in the areas of importance of pollution, analysis & treatment						
1	of wastewater, polluted air, solid waste, noise and its control.							
2	To inculcate awa	areness on environmental, societal, ethical, h	nealth and safety issues and their					
	relevance in eng	ineering.						
3	3 To understand different types of pollutions.							
4	To encourage for optimal resource utilization and sustainable lifestyles.							
5	To promote environmental design.							

MODULE-I					
Introduction: Importance of environment for mankind. Types of pollution. Damages from environmental pollution. Need of environmental legislations and environmental Acts in India. Environmental Impact Assessment and Challenges. Functions of central and state pollution control boards. Sampling and Analysis of Wastewater: Evaluation, classification and characterization of wastewater. Physical and chemical characteristics. BOD, COD and their importance. Types of water pollutants and their effects.	8 Hrs				
MODULE-II					
Wastewater Treatment: Preliminary, primary, secondary, and tertiary treatments of wastewater. Advanced wastewater treatment. Recovery of materials from process effluents. Applications to Industries: Norms and standards of treated water. Origin, characteristics, and treatment methods in typical industries – petroleum refinery, pulp and paper, distillery, and textile processing.	8 Hrs				
MODULE-III					
Air Pollution: Nature of air pollution. Classification of air pollutants. Sources of air pollutants. Air quality criteria and standards. Plume behavior and dispersion of air pollutants. Sampling of pollutants. Methods of estimation of air pollutants.	8 Hrs				
MODULE-IV					
Air Pollution Control: Control methods for particulates and gaseous pollutants. Air pollution control methods and equipment. Source collection methods: raw material changes, process changes, and equipment modification. Air pollution Control equipment. Origin, control methods, and equipment used in typical industries- metallurgical industries, and cement industries.	8 Hrs				
MODULE-V					
Solid Waste Management: Origin, classification and microbiology. Engineered systems for solid waste management – generation, onsite handling, storage, collection, transfer and transport, composting, sanitary land filling.	8 Hrs				

Noise Pollution: Generation of noise, control strategies in industries. Recent trends in industrial waste management, cradle to grave concept, lifecycle analysis, clean technologies.

Cour	Course Outcomes: After completing the course, the students will be able to				
CO1	Discuss the fundamentals of environmental pollution and the associated legal aspects.				
CO2	Explain various wastewater treatment methods and the origin, characteristics, and				
	treatment methods in typical industries.				
CO3	Interpret the aspects of air pollution and the methods of estimating various air pollutants.				
CO4	Outline the control strategies for industrial air pollution control to be within the ambit				
	of environmental regulations.				
CO5	Explain different techniques for municipal solid waste management, noise pollution and				
	the recent trends in industrial waste management.				

Text Books

- 1. Environmental Pollution Control Engineering, C.S. Rao, second Edition (Reprint), 2015, New Age International, ISBN: 978-81-224-1835-4.
- 2. Waste Water Engineering Treatment Disposal Reuse, Metcalf and Eddy, fourth Edition, 2003, Tata McGraw Hill, ISBN: 978-0071241403.

Reference Books

- 1. Pollution Control in Process Industries, S.P. Mahajan, 27th Edition, 2012, Tata McGraw Hill, ISBN: 9780074517727.
- 2. Principles and practices of air pollution control and analysis, Mudakavi, J. R. first Edition, 2010. IK International Pvt Ltd. ISBN: 9789380026381

Continuous Internal Evaluation (CIE):

- Three CIE Will be conducted for 50 marks each and average of three will be taken (A)
- Three Quizzes will be conducted along with CIE for 10 Marks Each. Sum of three quizzes will be considered for 30 marks (B)
- Two Assignments for 10 marks each and the sum of both the assignments will be taken for 20 Marks (C)

Final CIE Marks will be calculated as (A+B+C)/2 for 50 marks

Semester End Examination (SEE):

The question paper consists of two parts, A and B

Part A: consists of 10 questions of 2 marks each. It is designed to cover the entire syllabus comprehensively.

Part B: The question paper will have 10 questions. Each question is set for 16 marks. There will be 2 questions from each module, with a maximum of 2 subdivisions. Students have to answer any 5 questions choosing one full question from each module.

The SEE Theory marks of 100 will be scaled down to 50.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1		1		1	2	2	1				2
CO2	1					2	2					2
CO3	2				2	1	2					2
CO4	2				2	1	2	1				1
CO5	2	1			1	2	3	1				1

High-3, Medium-2, Low-1

	Semester: VI						
	NANOSCIENCE & NANOTECHNOLOGY						
Cou	rse Code:	MVJ22CH642	CIE Marks:50				
L:T:P:S		3:0:0:0	SEE Marks: 50				
Cre	dits:	3	Total Marks: 100				
Hou	irs:	40 Hrs Theory	SEE Duration: 3 Hrs				
Cou	rse Learning	Objectives: The students will be able to					
1	1 Understand the behavior of various smart materials and its applications.						
2	2 Understand basics and synthesis of nano materials and their properties.						
3	3 Learn to analyze and assess parameters involved in synthesis and characterization.						
4							
5	Understand th	ne applications of nano technology in vario	us fields.				

MODULE-I	
Introduction and scope - Introduction to nanoscale, history, evolution of various	
disciplines towards nanoscale potential applications, recent achievements in	
nanotechnology, short-term commercial nanotechnology products, specific	8 Hrs
applications, challenges and opportunities, technology scope, areas and sub	
disciplines, commercialization scope, present course of investigation.	
MODULE-II	
Nanomaterials Synthesis and Characterization: Introduction, basic nanostructures:	
CNTs, nanowires, nanocones; quantum dots, quantum dot nanocrystals, ultra-	
nanocrystalline diamond, nanocomposites, thin films, nanofoams, nanoclusters,	8 Hrs
smart nanostructures	
MODULE-III	
Characterization of Nano materials: Microscopy-Scanning tunnelling microscope,	
atomic force microscope, scanning electron microscopy, Field Emission Scanning	
Electron Microscopy (FESEM), Transmission Electron Microscopy (TEM),	
Environmental Scanning Electron Microscopy (ESEM) High Resolution	8 Hrs
Transmission Electron Microscope (HRTEM), Surface enhanced Raman	OIIIS
Spectroscopy, X-ray diffraction technique, X ray Photoelectron Spectroscopy	
Surface area analysis, Particle size analysis, gravimetric analysis.	
MODULE-IV	
Nanoscale Manufacturing: Nano manipulation, Nanolithography- Optical	
lithography, Photolithography, Dip pen nanolithography, Extreme UV	
Lithography, Electron beam (e-beam) lithography,	
Epitaxial Growth: classical growth modes, techniques for epitaxy: Liquid Phase	8 Hrs
Epitaxy (LPE), Physical Vapor Deposition (PVD), Molecular Beam Epitaxy	OIIIS
(MBE). Physical Vapor Deposition (PVD), Chemical Vapor Deposition (CVD),	
Self-Assembly.	
MODULE-V	
Application of Nanotechnology: Environment: remediation and mitigation using	
metal oxide nano particles, magnetic particles, Nanomembranes and nanofilters,	
Pollution prevention: nanocatalysis, environmental sensors Medicine and	8 Hrs
healthcare: diagnosis, biosensors, drug delivery, therapy Energy: Solar energy-	0 1113
Photovoltaics, Dye-sensitised solar cell, Quantum-dot- sensitized solar cells.	
Thousestates, Dyc-sensitised solar cen, Quantum-dot- sensitized solar cens.	

Hydrogen energy-Hydrogen production and Hydrogen storage, hydrogen fuel cell, Energy Savings-Insulators and smart coatings, Energy- harvesting materials, Information and communication technologies: Integrated circuits, Data storage, Photonics, Displays, Information storage devices, Wireless sensing and communication.

Cour	Course Outcomes: After completing the course, the students will be able to					
CO1	Understand the concept of nano and its opportunities in various fields					
CO2	Understand the basic science of basic nano technology					
CO3	Identify various nano materials and recall nano materials synthesis, characterization					
	techniques					
CO4	Identify various nano manufacturing techniques.					
CO5	Understand the applications of Nano technology in various fields.					

Text	Text Books					
A textbook of nanoscience and nanotechnology, Varghese, P. I., & Pradeep, T						
1	Tata McGraw-Hill Education.					
	Nanotechnologies: principles, applications, implications and hands-on activities: A					
2	compendium for educators, Fipponi, L., & Sutherland, D., 2012, European Union,					
	Directorate General for Research and Innovation.					

Refe	Reference Books						
1	Nano Materials, Bandyopadhyay. K., 2007, First edition, New Age International Publishers.						
2	An introduction: material science and engineering, Callister, W. D., 2007, John Wiley and Sons Inc.						

Continuous Internal Evaluation (CIE):

- Three CIE Will be conducted for 50 marks each and average of three will be taken (A)
- Three Quizzes will be conducted along with CIE for 10 Marks Each. Sum of three quizzes will be considered for 30 marks (B)
- Two Assignments for 10 marks each and the sum of both the assignments will be taken for 20 Marks (C)

Final CIE Marks will be calculated as (A+B+C)/2 for 50 marks

Semester End Examination (SEE):

The question paper consists of two parts, A and B

Part A: consists of 10 questions of 2 marks each. It is designed to cover the entire syllabus comprehensively.

Part B: The question paper will have 10 questions. Each question is set for 16 marks. There will be 2 questions from each module, with a maximum of 2 subdivisions. Students have to answer any 5 questions choosing one full question from each module.

The SEE Theory marks of 100 will be scaled down to 50.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1		1		1	2	2	1				2
CO2	1					2	2					2
CO3	1				2	1	1					2
CO4	1				2	1	2	1				1
CO5	1	1			1	2	3	1				1

High-3, Medium-2, Low-1

	Semester: VI					
	GREEN TECHNOLOGY					
Cou	rse Code:	MVJ22CH643	CIE Marks:50			
L:T	:P:S	3:0:0:0	SEE Marks: 50			
Credits:		3	Total Marks: 100			
Hou	rs:	40 Hrs Theory	SEE Duration: 3 Hrs			
Cou	rse Learning	Objectives: The students will be able to				
1	1 Learn the tools of green technology					
2	Know various forms of renewable energy					
3						
4						
5.	Understand the application of green technology in various industries					

MODULE-I	
Current Practices and Future Sustainability: Need for green technology, fundamentals of energy and its impact on society and the environment, the mechanics, advantages and disadvantages of renewable energy sources, energy conservation and audits, zero waste technology, life cycle assessment, extended product responsibility, concept of atom economy, tools of Green technology Cleaner Production: Promoting cleaner production, benefits and obstacles of cleaner production, cleaner production technologies.	8 Hrs
MODULE-II	
Solar Radiation and Its Measurement: Solar constant, solar radiation at the earth's surface, solar radiation geometry, solar radiation measurements Applications of Solar Energy: Introduction, solar water heating, space-heating (or solar heating of buildings), space cooling (or solar cooling of building), solar thermal electric conversion, agriculture and industrial process heat, solar distillation, solar pumping, solar cooking Geothermal Energy: Resource identification and development, geothermal power generation systems, geothermal power plants case studies and environmental impact assessment.	8 Hrs
MODULE-III	
Energy from biomass (bio-energy): Introduction, biomass conversion technologies, wet Processes, dry Processes, biogas generation, factors affecting bio digestion, types of biogas plants (KVIC model & Janata model), selection of site for biogas plant Bio Energy (Thermal Conversion): Methods for obtaining energy from biomass, thermal gasification of biomass, classification of biomass gasifiers, chemistry of the gasification process, applications of the gasifiers.	8 Hrs
MODULE-IV	
Wind Energy: Introduction, basic components of WECS (Wind Energy Conversion system), classification of WEC systems, types of wind machines (Wind Energy Collectors), horizontal-axial machines and vertical axis machines. Ocean Thermal Energy: OTEC-Introduction, ocean thermal electric conversion (OTEC), methods of ocean thermal electric power generation, open cycle OTEC system, the closed or Anderson, OTEC cycle, Hybrid cycle Energy from Tides: Basic principles of tidal power, components of tidal power plants, operation methods of utilization of tidal	8 Hrs

energy, advantages and limitations of tidal power generation	
MODULE-V	
Hydrogen as a Fuel: Introduction, methods of hydrogen production (principles	
only), storage transportation, utilization of hydrogen gas, hydrogen as alternative	
fuel for motor vehicle, safety and management, hydrogen technology development	
in India.	0 II
Application of Green Technology: Electronic waste management, bioprocesses,	8 Hrs
green composite materials, green construction technology Sustainability of	
industrial waste management: Case studies on cement industry, iron and steel	
industry, petroleum sectors, marble and granite industry, sugar industry.	

Cour	Course Outcomes: After completing the course, the students will be able to					
CO1	Recall the fundamentals of various forms of energy					
CO2	Explain the principles of various forms of renewable energy					
CO3	Apply the concept of zero waste, atom economy for waste management					
CO4	Create a waste management plan incorporating tools of green technology in various					
	industries					
CO5	Explain the various methods for Hydrogen production, storage, transportation and					
	utilization.					

Textbooks:						
1	Rai, G. D. (2004). Non-conventional energy resources. <i>Khpu Khanna, India</i> , 369, 331-337.					
2	Twidell, J., & Weir, T. (2015). Renewable energy resources. Routledge.					

Refere	Reference books:						
1	Boyle, G. (1996). Renewable energy: power for a sustainable future (Vol. 2). Oxford University Press.						
2	Everett, R., Boyle, G., Peake, S., & Ramage, J. (2012). Energy systems and sustainability: power for a sustainable future. Oxford University Press.						

Continuous Internal Evaluation (CIE):

- Three CIE Will be conducted for 50 marks each and average of three will be taken (A)
- Three Quizzes will be conducted along with CIE for 10 Marks Each. Sum of three quizzes will be considered for 30 marks (B)
- Two Assignments for 10 marks each and the sum of both the assignments will be taken for 20 Marks (C)

Final CIE Marks will be calculated as (A+B+C)/2 for 50 marks

Semester End Examination (SEE):

The question paper consists of two parts, A and B

Part A: consists of 10 questions of 2 marks each. It is designed to cover the entire syllabus comprehensively.

Part B: The question paper will have 10 questions. Each question is set for 16 marks. There will be 2 questions from each module, with a maximum of 2 subdivisions. Students have to answer any 5 questions choosing one full question from each module.

The SEE Theory marks of 100 will be scaled down to 50.

СО-РО	CO-PO Mapping											
CO/P	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1
O	1	2	3	4	5	6	7	8	9	0	1	2
CO1	2	1				1	2	1		1		
CO2	2	1				1	2					
CO3	1	2	1	2	1	3	3	3	2	1	1	
CO4	2	1	2	2			2			1	3	
CO5	2	1				1	2					

High-3, Medium-2, Low-1

	Semester: VI								
	SOLID WASTE MANAGEMENT								
Co	urse Code:	MVJ22CH644	CIE Marks:50						
L:	Γ:P:S	3:0:0:0	SEE Marks: 50						
Cr	edits:	3	Total Marks: 100						
Ho	ours:	40 Hrs Theory	SEE Duration: 3 Hrs						
Co	urse Learning (Objectives: The students will be able to							
1	Impart the kno	owledge of present methods of solid waste management system an							
1	analyze the dra	wbacks.							
2	Understand var	rious waste management statutory rules for	the present system.						
3	Analyze differe	ent elements of solid waste management ar	nd design and develop recycling						
3	options for biod	degradable waste by composting.							
4 Identify hazardous waste, e-waste, plastic waste and bio medical waste and									
7	management systems.								
Identify and discuss the public health, regulatory, planning, technical, and econom									
5	principles that	influence the solid waste management syste	em.						

MODULE-I	
Definition, characteristics and perspectives of solid waste, types of solid waste, physical and chemical characteristics, variation of composition and characteristics, municipal, industrial, special and hazardous wastes. General Aspects: Overview of material flow in society, Reduction in raw material usage, Reduction in solid waste generation, Reuse and material recovery, General effects on health and environment, Legislations.	8 Hrs
MODULE-II	
Engineered systems: Typical generation rates, Estimation and factors affecting generation rates, on site handling, Storage and processing, Collection systems and devices, Transfer and transport.	8 Hrs
MODULE-III	
Processing techniques: Mechanical volume reduction, Thermal volume reduction, Component separation, Land filling and land forming, Deep well injection.	8 Hrs
MODULE-IV	
Material recovery: mechanical size alteration, electromagnetic separation, drying and dewatering, other material recovery systems, recovery of biological conversion products, recovery of thermal conversion products. Energy recovery: energy recovery systems and efficiency factors, determination of output and efficiency, details of energy recovery systems, combustion incineration and heat recovery, gasification and pyrolysis, refuse derived fuels (RDF).	8 Hrs
MODULE-V	
Hazardous wastes: classification, origin and reduction at source, collection and handling, management issues and planning methods, environmental acts. Case studies: major industries and management methods used in typical industries – coal fired power stations, textile industry, oil refinery, distillery, sugar industry, radioactive and e-waste generation MODULEs.	8 Hrs
Course Outcomes: After completing the course, the students will be able to	

CO1	Explain the physical and chemical characteristics of solid waste and interpret the various
	techniques involved in reduction of solid waste.
CO2	Explain the various handling, storage, processing, collection, transfer & transport
	techniques involved in solid waste management.
CO3	Explain the various handling and processing techniques involved in solid waste
	management.
CO4	Demonstrate the different techniques involved in material and energy recovery from solid
	waste.
CO5	Explain various techniques to handle hazardous waste and outline the case study on solid
	waste management with respect to various chemical industries

Text Books

- 1. Solid Waste Management. Environmental Engineering: Environmental Health and Safety for Municipal Infrastructure, Land Use and Planning, And Industry, Tchobanoglous, G., Sixth Edition, 2009, Wiley, New Jersey. ISBN:9780470083055.
- 2. Industrial Solid Waste Management and Land Filling Practice", Dutta, M., Parida, B., Guha, B., & Shreekrishnan, T. K. international edition, 1999, Narosa Publishing House.

Reference Books

- 1. Electronic Waste Management, R.E. Hester, Roy M Harrison, Cambridge, UK, 2009, RSC Publication, ISBN: 9780854041121.
- 2. Integrated Solid Waste Management, George.C. Tchobanoglous, International edition ,1993, McGraw hill publication. ISBN: 978-0070632370.

Continuous Internal Evaluation (CIE):

- Three CIE Will be conducted for 50 marks each and average of three will be taken (A)
- Three Quizzes will be conducted along with CIE for 10 Marks Each. Sum of three quizzes will be considered for 30 marks (B)
- Two Assignments for 10 marks each and the sum of both the assignments will be taken for 20 Marks (C)

Final CIE Marks will be calculated as (A+B+C)/2 for 50 marks

Semester End Examination (SEE):

The question paper consists of two parts, A and B

Part A: consists of 10 questions of 2 marks each. It is designed to cover the entire syllabus comprehensively.

Part B: The question paper will have 10 questions. Each question is set for 16 marks. There will be 2 questions from each module, with a maximum of 2 subdivisions. Students have to answer any 5 questions choosing one full question from each module.

The SEE Theory marks of 100 will be scaled down to 50.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1		1		1	2	2	1				2
CO2	1	-		-		2	2					2
CO3	2				2	1	2					2
CO4	2	1		1	2	1	2	1				1
CO5	2	1		1	1	2	3	1				1

High-3, Medium-2, Low-1

Semester: VI							
PROJECT PHASE – I							
Course Code:	MVJ22CHP65	CIE Marks:100					
L:T:P:S	0:0:4	SEE Marks: 0					
Credits:	2	Total Marks: 100					
Hours:	4 Hrs per week	SEE Duration:					

Course Objective:

- To support independent learning.
- To develop interactive, communication, organization, time management, and presentation skills.
- To impart flexibility and adaptability.
- To inspire independent and team working.
- To expand intellectual capacity, credibility, judgment, intuition.
- To adhere to punctuality, setting and meeting deadlines.
- To instill responsibilities to oneself and others.
- To train students to present the topic of project work in a seminar without any fear, face audience confidently, enhance communication skill, involve in group discussion to present and exchange ideas.

Project Work Phase - I: Each student of the project batch shall involve in carrying out the project work jointly in constant consultation with internal guide, co-guide, and external guide and prepare the project report as per the norms avoiding plagiarism.

Course outcomes: At the end of the course the student will be able to:

CO1	Describe the project and be able to defend it. Develop critical thinking and problem
	solving skills.
CO2	Learn to use modern tools and techniques. Communicate effectively and to present ideas
	clearly and coherently both in written and oral forms.
CO3	Develop skills to work in a team to achieve common goal. Develop skills of project
	management and finance.
CO4	Develop skills of self-learning, evaluate their learning and take appropriate actions to
	improve it.
CO5	Prepare them for life-long learning to face the challenges and support the technological
	changes to meet the societal needs.

Scheme of Evaluation:

Internal Marks: The Internal marks (50 marks) evaluation shall be based on Phase wise completion of the project work, Project report, Presentation and Demonstration of the actual/model/prototype of the project.

Semester End Examination: SEE marks for the project (50 marks) shall be based on Project report, Presentation and Demonstration of the actual/model/prototype of the project, as per the norms by the examiners appointed

	CO-PO Mapping											
CO/P	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1
O	1	2	3	4	5	6	7	8	9	0	1	2
CO1	2	2	2	3	3	2	1	1	2	1	1	2
CO2	2	2	2	3	3	2	1	1	2	1	2	2
CO3	2	2	2	3	3	2	1	1	2	1	2	2
CO4	2	2	2	3	3	2	1	1	2	1	2	2
CO5	2	2	2	3	3	2	1	1	2	1	2	2

High-3, Medium-2, Low-1

	Semester VI							
	MASS TRANSFER OPERATIONS LAB							
Course Code:		MVJ22CHL66	CIE Marks:50					
L:T:P		0:0:2	SEE Marks: 50					
Cre	dits:	1	Total Marks: 100					
Hou	irs:	24 Hrs Practical	SEE Duration: 03 Hours					
Cou	rse Learning O	bjectives: The students will be a	ble to					
1	Apply theoretical knowledge gained from classroom instruction to real-world scenarios and practical experiments.							
2	Learn to measure critical parameters, collect experimental data accurately, and analyze the results.							

LABORATORY EXPERIMENTS – 24 Hrs

- 1. Determination of diffusivity
- 2. Verification of Rayleigh's equation by conducting simple distillation
- 3. Determination of HETP using packed column distillation
- 4. Study the characterization of steam distillation
- 5. Solid liquid leaching: Single stage and three stage cross current
- 6. Verification of Himus equation
- 7. Study the drying characteristics in a tray dryer
- 8. Adsorption studies: single stage and two stage cross-current operation
- 9. Determination of Vapor Liquid Equilibrium (VLE)data
- 10. Liquid extraction: single stage and three stage cross current operation
- 11. Hold up studies in packed columns
- 12. Study the drying characteristics in a vacuum dryer
- 13. Determination of mass transfer coefficient by conducting wetted wall column experiment
- 14. Measurement of cooling tower characteristic parameter
- 15. Solid dissolution Studies

Any 12 experiments to be conducted

Cour	se Outcomes: After completing the course, the students will be able to
CO1	Demonstrate proficiency in setting up and operating laboratory equipment used in mass
	transfer processes, including distillation columns, absorption units, and extraction
	equipment.
CO2	Gather experimental data systematically, apply appropriate statistical and
	computational techniques to analyze the data, and draw meaningful conclusions from
	the results.
CO3	Independently plan, execute, and troubleshoot mass transfer experiments, including
	distillation, absorption, extraction, and adsorption, to obtain reliable results.
CO4	Prepare detailed and accurate laboratory reports, including experimental setups,
	procedures, data tables, results, discussions, and conclusions.
CO5	Develop the ability to identify and address challenges and issues that may arise during
	experiments, demonstrating problem-solving skills in a laboratory context.

CIE Laboratory (50 Marks)

Weekly Evaluation 30 Marks

Weekly evaluation will be conducted for every experiment. Marks of each evaluation includes Weekly Attendance + Experiment conduction along with Record / Observation + Weekly viva for all the experiments. The total of all these evaluated marks are added and the total marks will be scaled to 30 marks. (A)

Two CIE for 20 Marks each and take the average for 20 Marks (B)

Final CIE Marks will be calculated as (A+B) for 50 marks

SEE Laboratory Examination (50 Marks)

The laboratory SEE is also evaluated for 50 marks, distributed as follows:

Experiment Conduction with Results: 40 marks

Viva Voce: 10 marks

Total 50 marks

The final score for the course out of 100 is the SumTotal of SEE and CIE.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	2	2	1						1	1
CO2	2	2	3	3	1						1	1
CO3	2	3	2	3	1						1	1
CO4	3	3	3	3	1						1	1
CO5	3	2	3	2	1						1	1

High-3, Medium-2, Low-1

Semester: VII						
CHEMICAL PROCESS MODELLING AND SIMULATION						
Cou	rse Code:	MVJ22CH71	CIE Marks:50			
L:T:P:S		3:0:2:0	SEE Marks: 50			
Credits:		4	Total Marks: 100			
Hours:		40 Hrs Theory and 24 Hrs Practical	SEE Duration: 03+03 Hours			
Course Learning Objectives: The students will be able to						
1	1 Apply numerical techniques to solve chemical engineering problems.					
2	2 Analyze chemical engineering system in term of modeling principle.					
3	Develop simple chemical engineering models.					
4	4 Develop algorithm for modelling & solve the model.					
5	Distinguish simulation from design of equipment.					

MODULE-I				
Modelling Fundamentals Uses of Mathematical models; Deterministic versus stochastic processes; Physical modelling, Mathematical modelling; Principles of formulation; Fundamental Laws – Continuity equation, Energy equation, Equation of Motion, Transport equation, Equations of state, Equilibrium, Chemical Kinetics, Strategy of process engineering	8 Hrs			
MODULE-II				
Classification of Mathematical Modelling Variables and parameters; Classification based on variation of independent variables; Classification based on the state of process; Classification based on the type of the process; Boundary Conditions; The black box principle; Artificial Neural Network. Basic formulation of mathematical modelling: Basic tank model – Level V/s time.	8 Hrs			
MODULE-III				
Models in separation process: Batch Distillation – Vapour composition with time, Multistage distillation and multi-component flash drum, solvent extraction (steady & unsteady state). Models in heat transfer operation: Heat conduction through cylindrical pipe (steady & unsteady state) Models in fluid flow operation: The continuity equation; Flow through a packed bed column; Laminar flow in a narrow slit; Flow of a film on the outside of a circular tube.	8 Hrs			
MODULE-IV				
Models in reaction engineering: Chemical reaction with diffusion in a tubular reactor, gas phase pressurized CSTR, two phase CSTR, reactors in series (constant and variable hold-ups), batch reactor with mass transfer.	8 Hrs			
MODULE-V				
Simulation of the models, tearing and flow sheeting, modular and equation-solving approach (elementary treatment only). Introduction and use of process simulation software (DWSIM/ASPEN PLUS/ ASPEN HYSYS) for flow sheet simulation.	8 Hrs			

LABORATORY EXPERIMENTS – 24 Hrs

- 1. Introduction to suggested software available (flow sheeting)
- 2. Simulation of shell and tube heat exchanger.
- 3. Simulation of centrifugal pump/compressor.
- 4. Simulation of flash drum/separator.
- 5. Simulation of single stream gas heater/cooler.
- 6. Simulation of CSTR for liquid phase reaction.
- 7. Simulation of distillation column.
- 8. Mixing of ideal liquid streams.
- 9. Generation of VLE data of binary component system.
- 10. Determination of equilibrium conversion of reversible reactions.
- 11. Material balance on reactor based on yield/conversion data.
- 12. Process simulation study involving mixing, reactor, heat exchanger for the following.
- 13. Ethylene glycol from ethylene oxide.
- 14. Propylene glycol from propylene oxide.
- 15. Aromatic stripper with recycle stream (Benzene, Toluene, Xylene).
- 16. Styrene from ethyl benzene.
- 17. Process simulation study involving distillation for the atmospheric distillation of crude oil.

Any 12 experiments to be conducted

Cour	Course Outcomes: After completing the course, the students will be able to					
CO1	Apply the various equations to simple chemical engineering problems.					
CO2	Develop the modelling equations for chemical engineering problems pertaining to mass					
	transfer.					
CO3	Strategies in developing mathematical models for momentum and heat transfer					
	applications.					
CO4	Applying the modeling concepts to the transport problems involving chemical reactions.					
CO5	Simulate a process using process simulators (DWSIM/ASPEN Plus/ ASPEN Hysys).					

Ref	erence Books
1.	"Process plant simulation", Babu, B. V. First edition, 2004, Oxford University Press, USA.
	ISBN: 9780195668056.
2.	"Process Modeling Simulation, and Control for Chemical Engineers", William, L., &
	William, L., Second Edition, 2003, McGraw-Hill Publishing Company.
3.	"Chemical engineering computation with MATLAB", Yeo, Y. K. First edition, 2017, CRC
	Press, ISBN: 9781315114880
4.	Process Simulation and Control using Aspen: Second Edition, PHI Learning

Continuous Internal Evaluation (CIE):

Theory for 50 Marks

- Three CIE Will be conducted for 50 marks each and average of three will be taken(A)
- Three Quizzes will be conducted along with CIE for 10 Marks Each. Sum of three quizzes will be considered for 30 marks (B)
- Two Assignments for 10 marks each and the sum of both the assignments will be taken for 20 Marks (C)

Final CIE Marks will be calculated as (A+B+C)/2 for 50 marks

Laboratory- 50 Marks

Weekly Evaluation 30 Marks

Weekly evaluation will be conducted for every experiment. Marks of each evaluation includes Weekly Attendance +Experiment conduction along with Record / Observation + Weekly viva for all the experiments. The total of all these evaluated marks are added and the total marks will be scaled to 30 marks. (A)

Two CIE for 20 Marks each and take the average for 20 Marks (B)

Final CIE Marks will be calculated as A+B for 50 marks

For IPCC Final CIE Marks will be calculated as Average of CIE and Lab CIE for 50 marks.

Semester End Examination (SEE) SEE Theory Examination (100 Marks

The question paper consists of two parts, A and B

Part A: consists of 10 questions of 2 marks each. It is designed to cover the entire syllabus comprehensively.

Part B: The question paper will have 10 questions. Each question is set for 16 marks. There will be 2 questions from each module, with a maximum of 2 subdivisions. Students have to answer any 5 questions choosing one full question from each module.

The SEE Theory marks of 100 will be scaled down to 50 (A)

SEE Laboratory Examination (50 Marks)

The laboratory SEE is also evaluated for 50 marks, distributed as follows:

Experiment Conduction with Results: 40 marks

Viva Voce: 10 marks Total 50 marks (B)

The score for the SEE is A+B of total 100 marks

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
661												
CO1	3	3	3	-	3	-	-	-	-	-	-	-
CO2	3	3	3	-	3	-	-	-	2	-	-	1
CO3	3	3	3	2	3	-	-	-	2	-	ı	2
CO4	3	3	3	2	3	-	-	-	2	-	•	2
CO5	3	3	3	2	3	-	-	-	2	-	•	2

High-3, Medium -2, Low-1

	Semester: VII							
	PROCESS CONTROL & HOT							
		(Theory and Practice)						
Cou	rse Code:	MVJ22CH72	CIE Marks:50					
L:T	:P:S	3:0:2:2	SEE Marks: 50					
Cree	dits:	4	Total Marks: 100					
Hou	rs:	40 Hrs Theory and 24 Hrs Practical	SEE Duration: 03+03 Hours					
Cou	rse Learning	g Objectives: The students will be able to						
1	To determi	ne possible control objectives, input variab	les (manipulated variables and					
1	disturbance	disturbances) and, to model the dynamic behavior of a process.						
2	To deal w	To deal with control equipment and various controllers and their functions and						
applications.								
3	To understa	To understand the frequency response and analyze stability of closed loop and open loop						
3	systems.							
4	To study ab	out the various industrial revolutions and role	e of IOT & IIOT in industry.					

MODULE-I	
Introduction to process control and modeling consideration: Introduction to chemical process control, process modeling and an example, linearization of a non-linear model, linearization and its application in process control, Laplace Transforms - Standard functions. First Order Systems: Development of transfer functions, open loop systems, thermometer, level, mixing tank, STR, Ist order systems in series. Response for various input forcing functions, first order systems and their transient response for standard input functions, first order systems in series.	8 Hrs
MODULE-II	
Second Order Systems: Characteristics of manometer and damped vibrator. Transfer functions. Response for various input forcing functions, response for step input for under damped case – Terms associated with it. Transportation lag. Closed Loop System: Development of block diagram for feed-back control systems, servo and regulatory problems, transfer function for controllers and final control element, principles of pneumatic controllers	8 Hrs
MODULE-III	
Stability: Stability of linear control systems. Routh Test. Frequency response: Introduction to frequency response of closed-loop systems, control system design by frequency response techniques, Bode diagram, Principle of Nyquist diagram, stability criterion. Control System Design By Frequency Response: Bode criterion. Gain and Phase margins, Tuning of controller settings, Ziegler – Nichols controller tuning, Cohen-Coon controller tuning.	8 Hrs
MODULE-IV	
Advanced Control System: Introduction to advanced control systems, cascade control, feed forward control. Introduction to computer control of chemical processes: Digital Computer control loops	8 Hrs
MODULE-V	
Introduction to Industrial IoT (IIoT) Systems: The Various Industrial	8 Hrs

Revolutions, Role of Internet of Things (IoT) & Industrial Internet of Things (IIoT) in Industry, Industry 4.0 revolutions, Support System for Industry 4.0, Smart Factories.

LABORATORY EXPERIMENTS – 24 Hrs

- 1. Determination of time constant of thermocouple
- 2. Step response of a single tank system
- 3. Step response of non-interacting Tanks
- 4. Step Response of interacting tanks
- 5. Transient behaviour of pressure vessel system
- 6. Dynamics of a 2nd order under damped process- U Tube Manometer
- 7. Impulse Response of a single tank system
- 8. Impulse Response of non-interacting Tanks
- 9. Impulse Response of Interacting Tanks
- 10. Level/Flow/Pressure/pH/Temperature control P controller
- 11. Level/Flow/Pressure/pH/Temperature control PI controller
- 12. Level/Flow/Pressure/pH/Temperature control PD controller
- 13. Level/Flow/Pressure/pH/Temperature control PID controller
- 14. Determination of valve characteristics
- 15. Characteristics of flapper nozzle system

Any 12 experiments to be conducted

Cour	se Outcomes: After completing the course, the students will be able to
CO1	Interpret the process control and modelling considerations and model the dynamics of a
	first order process.
CO2	Develop the transfer functions for a second system and derive the transient response of
	servo and regulator control with various control modes.
CO3	Analyze the stability for a given linear control systems using Routh Hurwitz criteria and
	the frequency response using Bode and Nyquist diagrams, Analyze the control system
	design by frequency response and plot root locus diagram for different process.
CO4	Discuss cascade control, feed forward control and the digital digital computer control
	loops.
CO5	Study about the role of Internet of Things (IOT) and Industrial Internet of Things (IIOT)
	in industry.

Boo	Books						
1.	Process systems analysis and control, Coughanowr, D. R., & Koppel, L. B., (1965). New						
	York: McGraw-Hill.						
2.	Chemical process control (Vol. 2), Stephanopoulos, G. (1984), New Jersey: Prentice						
	Hall.						
3.	Industry 4.0: The Industrial Internet of Things, Alasdair Gilchrist Publications: A press						
4.	Process Dynamics and Control, 4th ed, An Indian Adaptation, Wiley Publication						

Reference Books

- 1. Industry 4.0: The Industrial Internet of Things, Alasdair Gilchrist Publications: A press
- 2. Process modeling, simulation and control for chemical engineers, Benenati, R. F., (1973). William L. Luyben, McGraw-Hill, New York.

Theory for 50 Marks

- Three CIE Will be conducted for 50 marks each and average of three will be taken(A)
- Three Quizzes will be conducted along with CIE for 10 Marks Each. Sum of three quizzes will be considered for 30 marks (B)
- Two Assignments for 10 marks each and the sum of both the assignments will be taken for 20 Marks (C)

Final CIE Marks will be calculated as (A+B+C)/2 for 50 marks

Laboratory- 50 Marks

Weekly Evaluation 30 Marks

Weekly evaluation will be conducted for every experiment. Marks of each evaluation includes Weekly Attendance +Experiment conduction along with Record / Observation + Weekly viva for all the experiments. The total of all these evaluated marks are added and the total marks will be scaled to 30 marks. (A)

Two CIE for 20 Marks each and take the average for 20 Marks (B)

Final CIE Marks will be calculated as A+B for 50 marks

For IPCC Final CIE Marks will be calculated as Average of CIE and Lab CIE for 50 marks.

Semester End Examination (SEE)

SEE Theory Examination (100 Marks)

The question paper consists of two parts, A and B

Part A: consists of 10 questions of 2 marks each. It is designed to cover the entire syllabus comprehensively.

Part B: The question paper will have 10 questions. Each question is set for 16 marks. There will be 2 questions from each module, with a maximum of 2 subdivisions. Students have to answer any 5 questions choosing one full question from each module.

The SEE Theory marks of 100 will be scaled down to 50 (A)

SEE Laboratory Examination (50 Marks)

The laboratory SEE is also evaluated for 50 marks, distributed as follows:

Experiment Conduction with Results: 40 marks

Viva Voce: 10 marks

Total 50 marks (B)

The score for the SEE is A+B of total 100 marks

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2		2			I	1			2
CO2	3	2	2	2	2			I	1			2
CO3	3	2	2	2	2			-	1			2
CO4	3	2	2		2			I	1			2
CO5	3	2	2	2	2				1			2

High-3, Medium-2, Low-1

	Semester: VII								
	APPLIED MATHEMATICS IN CHEMICAL ENGINEERING								
	(Theory)								
Cou	rse Code:	MVJ22CH73	CIE Marks:50						
L:T:	:P:	3:2:0	SEE Marks: 50						
Cred	dits:	4	Total Marks: 100						
Hou	rs:	50 Hrs Theory	SEE Duration: 3 Hrs						
Cou	rse Learning (Objectives: The students will be able to							
1	Apply mather	natical techniques to solve chemical engine	eering problems.						
2	Analyze and	model chemical engineering processes usin	g mathematical equations.						
3	Understand the importance of mathematical tools in optimizing and designing chemical								
3	processes.								
4	Interpret and communicate mathematical results effectively in a chemical engineering								
7	context.								
5	Use software	tools for numerical analysis and simulation	ns in chemical engineering						
3	applications.	,							

MODULE-I					
Differential Equations in Chemical Engineering					
Ordinary differential equations (ODEs) and their applications in chemical					
processes					
First-order ODEs and their solutions	10 Hrs				
Higher-order ODEs and initial value problems					
Boundary value problems (BVPs) and their relevance in chemical					
engineering					
MODULE-II					
Linear Algebra for Chemical Engineering					
Matrices and matrix operations					
Systems of linear equations	10 Hrs				
Eigenvalues and eigenvectors					
Matrix transformations and their applications in chemical engineering					
MODULE-III					
Numerical Methods for Chemical Engineers					
Root-finding methods (Newton-Raphson, bisection.)					
Interpolation and curve fitting	10 Hrs				
Numerical integration and differentiation					
Solving differential equations numerically					
MODULE-IV					
Optimization Techniques in Chemical Engineering					
Introduction to optimization problems in chemical engineering	10 II				
Linear programming and its applications	10 Hrs				
Nonlinear programming and gradient-based methods					

Optimization under constraints and sensitivity analysis	
MODULE-V	<u> </u>
Statistical Analysis in Chemical Engineering	
Basics of probability and statistics	
Data analysis and visualization	10.11
Probability distributions and their applications	10 Hrs
Statistical inference and hypothesis testing in chemical engineering	
experiments	

Cour	se Outcomes: After completing the course, the students will be able to
CO1	Apply Mathematical Techniques to solve complex chemical engineering problems
	effectively.
CO2	Develop mathematical models for chemical engineering processes, showcasing an ability
	to translate real-world engineering scenarios into mathematical equations, enabling
	predictive analysis and optimization.
CO3	Apply numerical methods for root-finding, interpolation, numerical integration, and
	solving differential equations to address practical challenges encountered in chemical
	engineering applications.
CO4	Understand and implement optimization techniques, including linear and nonlinear
	programming, for the efficient design and operation of chemical processes under various
	constraints, leading to improved resource utilization.
CO5	Employ statistical tools and techniques to analyze experimental data, make data-driven
	decisions, and draw meaningful conclusions to enhance the quality of chemical
	engineering experiments and processes.

Boo	Books							
1.	"Applied Mathematics for Chemical Engineers" by Louis Theodore and J. S. Vrentas							
2.	"Numerical Methods for Engineers" by Steven C. Chapra and Raymond P. Canale							
3.	"Linear Algebra and Its Applications" by Gilbert Strang							
4.	"Introduction to Probability and Statistics for Engineers and Scientists" by Sheldon M.							
	Ross							

- Three CIE Will be conducted for 50 marks each and average of three will be taken (A)
- Three Quizzes will be conducted along with CIE for 10 Marks Each. Sum of three quizzes will be considered for 30 marks (B)
- Two Assignments for 10 marks each and the sum of both the assignments will be taken for 20 Marks (C)

Final CIE Marks will be calculated as (A+B+C)/2 for 50 marks

Semester End Examination (SEE):

The question paper consists of two parts, A and B

Part A: consists of 10 questions of 2 marks each. It is designed to cover the entire syllabus comprehensively.

Part B: The question paper will have 10 questions. Each question is set for 16 marks. There will be 2 questions from each module, with a maximum of 2 subdivisions. Students have to answer any 5 questions choosing one full question from each module.

The SEE Theory marks of 100 will be scaled down to 50.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2							1			
CO2	3	3							1			
CO3	3	3	3	3	2				1			
CO4	3	3			2				1			
CO5	3	3			2				1			

High-3, Medium-2, Low-1

	Semester: VII										
	TRANSPORT PHENOMENA										
Course Code:		MVJ22CH741	CIE Marks:50								
Cred	dits: L:T:P:	3:0:0	SEE Marks: 50								
Credits:		3	Total Marks: 100								
Hou	rs:	40 Hrs Theory	SEE Duration: 3 Hrs								
Cou	rse Learning (Objectives: The students will be able to									
1	To introduce	the students about basic laws of momentur	n, heat and mass transfer.								
2	To determine	the heat transfer rate and temperature distribution for different heat trans									
	situations.										
2	To determine	the mass transfer rate and concentration	distribution for different mass								
3	transfer situations.										
4	To study the o	different analogies between mass, momenta	um and mass transfer.								
5	To study the o	different transport process analogies of the	fluid.								

MODULE-I						
Introduction: Momentum energy and mass transport newton's law of viscosity. Newtonian and non-newtonian fluids. Fourier's law of heat conduction, Fick's law of diffusion, effect of temperature and pressure on transport properties of fluids. numerical problems on the application and use of NLV, FLHC and FLD.	10 Hrs					
MODULE-II						
Velocity Distribution in Laminar Flow : Different flow situations, steady state shell momentum balances, boundary conditions applicable to momentum transport problems, flow over a flat plate, flow through a circular tube, flow through annulus.	10 Hrs					
MODULE-III						
Steady state shell energy balances: general boundary conditions applicable to energy transport problems of chemical engineering. Temperature Distribution in Solids and in Laminar Flow: Different situations of heat transfer: heat conduction with internal generation by electrical nuclear energy sourcesand Viscous sources, heat conduction in a cooling fin: forced and free convection heat transfer.	10 Hrs					
MODULE-IV						
Concentration Distributions in laminar flow: Steady state shell mass balances. general boundary conditions applicable to mass transport problems of chemical engineering. equimolar counter diffusion. numerical problems: Diffusion through stagnant gas and liquid films, diffusion with homogeneous reaction, diffusion with heterogeneous reaction-diffusion into falling film – forced convection mass transfer. Numerical problems.	10 Hrs					
MODULE-V						
Analogies between Momentum, Heat and Mass Transport: Analogies between momentum, heat and mass transport - Reynolds, Prandtl and Chilton & Colburn analogies. Equations of change: equation of continuity, equation of motion; Navier – stokes equation. Macroscopic balance for isothermal systems (mass, momentum, and mechanical energy balance).	10 Hrs					

Course Outcomes: After completing the course, the students will be able to

CO1	Explain the basic transport equations for momentum, heat & mass transfer.
CO2	Develop the mathematical model to develop flux equations for steady state momentum
	transfer in various situations.
CO3	Develop mathematical models to determine temperature and concentration distribution
	for heat sources.
CO4	Develop the flux equations for steady state mass transfer in various situations.
CO5	Apply equation of change in solving steady state problems & analyze analogies between
	momentum, heat and mass transport.

Boo	oks
1.	Transport phenomena, Bird, R. B., Stewart, W. E., & Lightfoot, E. N., Second Edition,
	2006, John Wiley & Sons, ISBN: 9752843670
2.	Transport Phenomena: As per AICTE, Wiley Publication, Amit Keshav, Bidyut
	Mazumdar
	Reference Books
3.	Transport phenomena, Brodkey, R. S., & Hershey, H. C., First Edition, 2003, Brodkey
	publishing, ISBN: 0972663592
4.	Transport Phenomena, J. W. Van Heuven, W. J. Beek, K. M. K. Muttzall, Second Edition,
	1999, Wiley, ISBN: 0471999903

- Three CIE Will be conducted for 50 marks each and average of three will be taken (A)
- Three Quizzes will be conducted along with CIE for 10 Marks Each. Sum of three quizzes will be considered for 30 marks (B)
- Two Assignments for 10 marks each and the sum of both the assignments will be taken for 20 Marks (C)

Final CIE Marks will be calculated as (A+B+C)/2 for 50 marks

Semester End Examination (SEE):

The question paper consists of two parts, A and B

Part A: consists of 10 questions of 2 marks each. It is designed to cover the entire syllabus comprehensively.

Part B: The question paper will have 10 questions. Each question is set for 16 marks. There will be 2 questions from each module, with a maximum of 2 subdivisions. Students have to answer any 5 questions choosing one full question from each module.

The SEE Theory marks of 100 will be scaled down to 50.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	2					1			1
CO2	3	3	2	2					1			1
CO3	3	3	2	2					1			-
CO4	3	3	2	2					1			-
CO5	3	3	2	2					1			I

High-3, Medium-2, Low-1

	Semester: VII									
	PROCESS INTENSIFICATION									
Cou	rse Code:	MVJ22CH742	CIE Marks: 50							
L:T	:P:	3:0:0	SEE Marks: 50							
Cre	dits:	3	Total Marks: 100							
Hou	rs:	40 Hrs Theory	SEE Duration: 3 Hrs.							
Cou	rse Learning O	bjectives: The students will be able to								
1	To provide kno	owledge and understanding of application	of intensification techniques to							
1	a range of proc	cesses e.g. heat and mass transfer, separation processes								
2	To understand	To understand the scientific background, techniques and applications of intensification								
	in the process industries									

MODULE-I						
Introduction: Theory of Process Intensification, Process Intensification (PI) Applications, Main benefits from process intensification, Process-Intensifying equipment, Process intensification toolbox, Techniques for PI application	8 Hrs					
MODULE-II						
Process intensification through micro reaction technology: Effect of miniaturization on unit operations and reactions, Design rules, Implementation of Micro reaction Technology, Micro fabrication of reaction and unit operation devices - Scales of mixing Flow patterns in reactors, Mixing in stirred tanks: Scale up of mixing, Heat transfer. Mixing in intensified equipment. AI and Data-Driven Approaches in Micro reaction Technology	8 Hrs					
MODULE-III						
Combined chemical reactor heat exchangers and reactor separators: Principles of operation; Applications, Reactive absorption, Reactive distillation, Applications of RD Processes, Fundamentals of Process modeling, Reactive Extraction Case Studies: Absorption of NOx Coke Gas Purification	8 Hrs					
MODULE-IV						
Compact heat exchangers: classification of compact heat exchangers, plate heat exchangers, spiral heat exchangers, flow pattern, heat transfer and pressure drop, flat tube-and-fin heat exchangers, micro channel heat exchangers, phase-change heat transfer, selection of heat exchanger technology, feed/effluent heat exchangers, integrated heat exchangers in separation processes	8 Hrs					
MODULE-V						
Enhanced fields: energy-based intensifications, sonochemistry, basics of cavitation, cavitation reactors, the rotating electrolytic cell, electrostatic fields, sono crystallization, supercritical fluids	8 Hrs					

Cour	Course Outcomes: After completing the course, the students will be able to								
CO1	Explain the concept of Process Intensification and the methodologies for PI								
CO2	Explain the benefits of PI in the process industries								
CO3	Explain the operating principles of several intensified technologies								
CO4	Analyse the range of potential applications of intensified equipment								
CO5	Solve process challenges using intensification technologies								

Ref	erence Books
1.	Re-engineering the chemical processing plant: process intensification. Stankiewicz, A., &
	Moulijn, J. A. (2003). CRC Press.
2.	The fundamentals of process intensification. Sankiewicz, A., Van Gerven, T., &
	Stefanidis, G. (2019). John Wiley & Sons.
3.	Process Intensification: Engineering for efficiency, sustainability and flexibility.Reay, D.,
	Ramshaw, C., & Harvey, A.(2013). Butterworth-Heinemann.
4.	Process intensification technologies for green chemistry: engineering solutions for
	sustainable chemical processing. Boodhoo, K., & Harvey, A. (2013). John Wiley & Sons.

- Three CIE Will be conducted for 50 marks each and average of three will be taken (A)
- Three Quizzes will be conducted along with CIE for 10 Marks Each. Sum of three quizzes will be considered for 30 marks (B)
- Two Assignments for 10 marks each and the sum of both the assignments will be taken for 20 Marks (C)

Final CIE Marks will be calculated as (A+B+C)/2 for 50 marks

Semester End Examination (SEE):

The question paper consists of two parts, A and B

Part A: consists of 10 questions of 2 marks each. It is designed to cover the entire syllabus comprehensively.

Part B: The question paper will have 10 questions. Each question is set for 16 marks. There will be 2 questions from each module, with a maximum of 2 subdivisions. Students have to answer any 5 questions choosing one full question from each module.

The SEE Theory marks of 100 will be scaled down to 50.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2		I						I			I
CO2	3	2	2						I			
CO3	3	2	2						I			
CO4	3	2	2									
CO5	3	2										

High-3, Medium-2, Low-1

	Semester: VII					
		BIOSENSORS AND BIOELECTR	ONICS			
Cou	rse Code:	MVJ22CH743	CIE Marks: 50			
L:T:P:S		3:0:0	SEE Marks: 50			
Credits:		3	Total Marks: 100			
Hours:		40 Hrs Theory	SEE Duration: 3 Hrs.			
Cou	Course Learning Objectives: The students will be able to					
1	Understand the significance of Biosensors					
2	2 Understand the fundamentals and applications of Biosensors					
3	Understand Bio	osensing Technology and Biomedical app	lications			

MODULE-I			
Introduction to Biosensors: Definitions, biological inspiration, types of sensors, target analytes, various recognition. Recognition event: Catalytic, Single and multiple enzyme, bioaffinity- labeled and label free, whole cell sensing – bacteria, yeast, mammalian cell. Generation of biosensors. Biomolecule immobilization techniques, enzyme kinetics	8 Hrs		
MODULE-II			
Basic Design and Transducer: Considerations calibration, dynamic Range, signal to noise, sensitivity, selectivity, interference. Recognition/Transduction membrane protein sensors- ion channels, types of transducer. Optical fiber- Optic, ECL, surface plasmon resonance, electrochemical Recognition/Transduction membrane protein sensors: ion channels, Types of Transducer, Optical; Fiber Optic, ECL, Surface Plasmon Resonance, Electrochemical; FET, Impedance, Piezoelectric; Cantilever	8 Hrs		
MODULE-III			
Applications of Biosensors: Biosensors and diabetes management, Micro fabricated biosensors and point-of-care diagnostics systems, Non-invasive biosensors in clinical analysis; Surface plasmon resonance and evanescent wave biosensors, Biosensor in cancer and HIV early diagnosis	8 Hrs		
MODULE-IV			
Applications of Nanomaterials in Biosensors: Nano Materials in biosensors; Carbon based Nano Material, Metal oxide and nano particle, Quantum dots, Role of nano material in Signal Amplifications, Detection and Transducer fabrication	8 Hrs		
MODULE-V			
Bioelectronics: Potential advantages & Developments towards a biomolecular computer, development of molecular arrays as memory stores; molecular wires and switches; mechanisms of unit assembly	8 Hrs		

Cour	Course Outcomes: After completing the course, the students will be able to					
CO1	Develop insight the basics of biosensing technology.					
CO2	Understand the Requisites of basic components and transducer types.					
CO3	Develop and Design the biosensor for specific application.					
CO4	Understand the concepts Nanomaterials in biosensors.					

CO5 Comprehend the gap between the conventional technology and the biosensor and bioelectronics.

Ref	erence Books
1.	Introduction to biosensors. In Biosensors and bioelectronics, Karunakaran, C., Rajkumar,
	R., & Bhargava, K. (2015). Elsevier.
2.	Introduction to biosensors. Turner, A. P. F., & Newman, J. D. (1998). Special Publication-
	Royal Society of Chemistry.
3.	Novel approaches in biosensors and rapid diagnostic assay. Liron, Z., Bromberg, A., &
	Fisher, M. (2001). Springer Science & Business Media.

Continuous Internal Evaluation (CIE):

- Three CIE Will be conducted for 50 marks each and average of three will be taken (A)
- Three Quizzes will be conducted along with CIE for 10 Marks Each. Sum of three quizzes will be considered for 30 marks (B)
- Two Assignments for 10 marks each and the sum of both the assignments will be taken for 20 Marks (C)

Final CIE Marks will be calculated as (A+B+C)/2 for 50 marks

Semester End Examination (SEE):

The question paper consists of two parts, A and B

Part A: consists of 10 questions of 2 marks each. It is designed to cover the entire syllabus comprehensively.

Part B: The question paper will have 10 questions. Each question is set for 16 marks. There will be 2 questions from each module, with a maximum of 2 subdivisions. Students have to answer any 5 questions choosing one full question from each module.

The SEE Theory marks of 100 will be scaled down to 50.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2		ı									
CO2	2	3	I							-	-	
CO3	3	3	2									
CO4	2	3	2									
CO5	2	3	2									

High-3, Medium-2, Low-1

	Semester: VII						
		PROCESS AND INDUSTRIAL SA	AFETY				
Cou	rse Code:	MVJ22CH744	CIE Marks: 50				
L:T	:P: S	3:0:0:0	SEE Marks: 50				
Credits:		3	Total Marks: 100				
Hou	rs:	40 Hrs Theory	SEE Duration: 3 Hrs.				
Cou	rse Learning	Objectives: The students will be able to					
1	To know about Industrial safety programs and toxicology, Industrial laws, regulation						
and source models.							
2	To understand about fire and explosion, preventive methods, relief and its sizing methods.						
3	To analyze industrial hazards and its risk assessment.						

MODULE-I	
Introduction: safety programs, engineering ethics, accident and loss statistics, acceptable risk, public perceptions, nature of the accident process, inherent safety, seven significant disasters. Toxicology: effect of toxicants on biological organisms, toxicological studies, dose versus response, models for dose and response curves, relative toxicity, threshold limit values, national fire protection association (NFPA) diamond.	8 Hrs
MODULE-II	
Government Laws and Regulations, OSHA: process safety management, epa: risk management plan, dhs: chemical facility anti-terrorism standards (CFATS) industrial hygiene: anticipation and identification, evaluation, control. Source Models: introduction to source models, flow of liquid through holes, and pipes, flow of gases or vapors through holes and pipes, flashing liquids, liquid pool evaporation or boiling, conservative analysis.	8 Hrs
MODULE-III	
Fires and Explosions: the fire triangle, distinction between fires and explosions, definitions, flammability characteristics of liquids and vapors, limiting oxygen concentration and inserting, flammability diagram, ignition energy, auto-ignition, auto-oxidation, adiabatic compression, ignition sources, sprays and mists, explosions. Concepts to prevent fires and explosions: inserting, static electricity and its control, explosion-proof equipment and instruments, ventilation, sprinkler systems, miscellaneous concepts for preventing fires and explosions.	8 Hrs
MODULE-IV	
Introduction to Reliefs: relief concepts, definitions, location of reliefs, relief types and characteristics, relief scenarios, data for sizing reliefs, relief systems. relief sizing: conventional spring-operated reliefs in liquid and in vapor or gas services, rupture disc reliefs in liquid in vapor or gas services, two-phase flow during runaway reaction relief, pilot-operated and bucking-pin reliefs, deflagration venting for dust and vapor explosions, venting for fires external to process vessels, reliefs for thermal expansion of process fluids.	8 Hrs
MODULE-V	

Hazards Identification: process hazards checklists, hazards surveys, hazards and operability studies, safety reviews, other methods, risk assessment: review of probability theory, event trees, fault trees, QRA and LOPA

8 Hrs

Cour	Course Outcomes: After completing the course, the students will be able to					
CO1	Analyse the effect of release of toxic substances.					
CO2	Understand the industrial laws, regulations, and source models and also responsible for					
	minimising the accidents in work environment.					
CO3	Apply the methods of prevention of fire and explosions.					
CO4	Understand the relief and its sizing methods.					
CO5	Understand the methods of hazard identification and preventive measures.					

Continuous Internal Evaluation (CIE):

- Three CIE Will be conducted for 50 marks each and average of three will be taken (A)
- Three Quizzes will be conducted along with CIE for 10 Marks Each. Sum of three quizzes will be considered for 30 marks (B)
- Two Assignments for 10 marks each and the sum of both the assignments will be taken for 20 Marks (C)

Final CIE Marks will be calculated as (A+B+C)/2 for 50 marks

Semester End Examination (SEE):

The question paper consists of two parts, A and B

Part A: consists of 10 questions of 2 marks each. It is designed to cover the entire syllabus comprehensively.

Part B: The question paper will have 10 questions. Each question is set for 16 marks. There will be 2 questions from each module, with a maximum of 2 subdivisions. Students have to answer any 5 questions choosing one full question from each module.

The SEE Theory marks of 100 will be scaled down to 50.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1										1
CO2	2	1										1
CO3	2	1										1
CO4	2	1										1
CO5	2	1										1

High-3, Medium-2, Low-1

	Semester: VII							
	ENERGY TECHNOLOGY							
Co	urse Code:	MVJ22CH751	CIE Marks:50					
L:	T:P:S	3:0:0:0	SEE Marks: 50					
Credits:		3	Total Marks: 100					
Ho	ours:	40 Hrs Theory	SEE Duration: 3 Hrs					
Co	urse Learning	Objectives: The students will be able to						
1		nowledge and skills in the areas of importance of pollution, analy						
1	treatment of wa	astewater, polluted air, solid waste, noise and its control.						
2 Understand Concepts of nonconventional energy sources and allied technology requ								
	for energy conversion							
3	3 Understand the general classification of energy.							
4								
5	Assess different methodologies for energy audit.							

MODULE-I	
Introduction to energy – Global energy scene, Indian energy scene, MODULEs of energy, conversion factors, a general classification of energy, energy crisis, energy alternatives.	8 Hrs
MODULE-II	
Conventional energy resources, thermal, hydel and nuclear reactors, thermal, hydel and nuclear power plants, efficiency, merits and demerits of the above power plants, combustion processes, fluidized bed combustion.	8 Hrs
MODULE-III	
Solar energy, solar thermal systems, flat plate collectors, focusing collectors, solar water heating, solar cooling, solar distillation, solar refrigeration, solar dryers, solar pond, solar thermal power generation, solar energy application in India, energy plantations. Wind energy, types of windmills, types of wind rotors, Darrieus rotor and Gravian rotor, wind electric power generation, wind power in India, the economics of wind farm, ocean wave energy conversion, ocean thermal energy conversion, tidal energy conversion, geothermal energy.	8 Hrs
MODULE-IV	
Biomass origin – resources, biomass estimation. Thermochemical conversion – biological conversion, chemical conversion – hydrolysis & hydrogenation, solvolysis, biocrude, biodiesel power generation gasifier, biogas, integrated gasification.	8 Hrs
MODULE-V	
Energy conservation – Act; energy management importance, duties and responsibilities. Energy audit – types methodology, reports, instruments. Benchmarking and energy performance, material and energy balance, thermal energy management.	8 Hrs

Cours	Course Outcomes: After completing the course, the students will be able to								
CO1	Explain the general classification of energy and discuss on energy crisis and								
	identification of energy alternatives.								
CO2	Understand conventional energy sources and to study on power plants.								
CO3	Outline the non-conventional energies.								
CO4	Explain the resources, estimation, and generation of biomass.								
CO5	Learn the energy conservation in process industries.								

Ref	Reference Books						
1.	Energy Technology, Rao, S. and Parulekar, B.B, second edition, 2005, Khanna						
	Publishers.978-81-7409-040-9						
2.	Power Plant Engineering, Nagpal, G.R., 16 th edition, 2008, Khanna Publishers. ISBN:978-						
	81-7409-309-7						
3.	Non-conventional Energy Sources, Rai, G.D., sixth edition, 1984, Khanna Publishers, New						
	Delhi.ISBN:978-81-7409-073-7						

- Three CIE Will be conducted for 50 marks each and average of three will be taken (A)
- Three Quizzes will be conducted along with CIE for 10 Marks Each. Sum of three quizzes will be considered for 30 marks (B)
- Two Assignments for 10 marks each and the sum of both the assignments will be taken for 20 Marks (C)

Final CIE Marks will be calculated as (A+B+C)/2 for 50 marks

Semester End Examination (SEE):

The question paper consists of two parts, A and B

Part A: consists of 10 questions of 2 marks each. It is designed to cover the entire syllabus comprehensively.

Part B: The question paper will have 10 questions. Each question is set for 16 marks. There will be 2 questions from each module, with a maximum of 2 subdivisions. Students have to answer any 5 questions choosing one full question from each module.

The SEE Theory marks of 100 will be scaled down to 50.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	I		2			I		I		1
CO2	2	1	I		2			I		I		1
CO3	2	1			2							
CO4	2	1			2							
CO5	2	1			2							1

High-3, Medium-2, Low-1

	Semester: VI						
	FOOD TECHNOLOGY						
Cou	rse Code:	MVJ22CH752	CIE Marks:50				
L:T	:P: S	3:0:0:0	SEE Marks: 50				
Cred	dits:	3	Total Marks: 100				
Hou	rs:	40 Hrs Theory	SEE Duration: 3 Hrs				
Cou	rse Learning	Objectives: The students will be able to					
1	1 Impart knowledge to the students about food processing and various unit operations.						
2	2 Understand the knowledge of formation of foods.						
3	3 Understand the concepts of enzymatic reactions.						
4	4 Gain knowledge on the preservatives and additives.						
5	Know the im	portance of the food safety.					

MODULE-I	
Introduction and Quality Attributes of Food: Function of foods. Food in relation to health. Aim of food science and technology. Quality attributes – Appearance factors, Textural factors, Flavor factors. Visual and objectively measurable attributes. Aroma of foods – introductory ideas, formation, chemistry and analysis. Taste – introductory ideas, formation and chemistry. Additional quality; quality standards, quality control. Introduction to sensory evaluation of foods and beverages. Modern Trends In Food Science: Biotechnology in food. Biofortification, Nutraceuticals. Organic foods. Low cost nutrient supplements. Packaging of foods and nutrition labeling. Careers in food science and food industries.	8 Hrs
MODULE-II	
Formation and Chemistry of Food: Carbohydrates. Proteins. Lipids. Vitamins. Minerals. Water. Biotin. Choline. Phytochemicals. Food Processing and Preservation: Food deterioration – Causes. Aims and objectives of preservation and processing. MODULE operations in processing. Different methods of food preservation – low temperature, high temperature, preservatives, osmotic pressure, dehydrations. food irradiation; processing and preservations of milk and dairy, vegetables and fruits, cereals, legumes and nuts, meat and meat products, fats and oils, beverages, sugars, sweeteners, honey and confectionary, salt and spices. MODULE-III	8 Hrs
Enzymatic and Non-Enzymatic Reactions During Storages: Introduction to enzymes. Nature and function of enzymes. Classification of enzymes. Hydrolases – Esterases, amylases, pectic enzymes. Proteases. Oxidoreductases – phenolases, glucose oxidase, catalase, peroxidase, lipoxygenase, xanthine oxidase. Immobilized enzymes. Uses and suggested uses of enzyme in food processing. Non-enzymatic reactions.	8 Hrs
MODULE-IV	
Food Additives: Introduction and need for food additives. Types of additives – antioxidants, chelating agents, coloring agents, curing agents, emulsions, flavors and flavor enhancers, flavor improvers, humectants and anti-choking agents, leavening agents, nutrient supplements, non- nutritive sweeteners, pH control	

agents. Preservatives – types and applications. Stabilizers and thickeners, other	
additives. Additives and food safety. Food Contamination and Adulteration: Types	
of adulterants and contaminants. Intentional adulterants. Metallic contamination.	
Incidental adulterants. Nature and effects. Food laws and standards.	
MODULE-V	
Environmental Concerns and Food Safety: Water in food production. Properties and	
requirements of processing water. Environmental concerns – solid waste disposal,	8 Hrs
wastewater properties, wastewater treatment. Safety hazards and risks. Food related	опт
hazards. Processing and handling. Cleaning and sanitizing.	

Cour	Course Outcomes: After completing the course, the students will be able to					
CO1	Explain the quality attributes and chemistry of foods					
CO2	Apply principles of packaging, storing and preservation, food poisoning, food related					
	hazards and safety					
CO3	Explain the various causes of food deterioration and food poisoning.					
CO4	Identify appropriate processing, preservation, and packaging method.					
CO5	Analyze product quality and effect of processing technique on it.					

Refere	Reference Books						
1	Food Science, B. Srilakshmi, 2007, 4th edn, New Age International.						
2	Foods: Facts and Principles, N. Shakuntala Manay and M. Shadaksharamurthy, 2005, New Age Publishers.						
3	Introduction to Food Science, Rick Parker, 2001, Thomsan Detmer.						
4	Food Processing and Preservation, G. Subbulakshmi and Shobha A. Udupi, 2001, New Age International.						

- Three CIE Will be conducted for 50 marks each and average of three will be taken (A)
- Three Quizzes will be conducted along with CIE for 10 Marks Each. Sum of three quizzes will be considered for 30 marks (B)
- Two Assignments for 10 marks each and the sum of both the assignments will be taken for 20 Marks (C)

Final CIE Marks will be calculated as (A+B+C)/2 for 50 marks

The question paper consists of two parts, A and B

Part A: consists of 10 questions of 2 marks each. It is designed to cover the entire syllabus comprehensively.

Part B: The question paper will have 10 questions. Each question is set for 16 marks. There will be 2 questions from each module, with a maximum of 2 subdivisions. Students have to answer any 5 questions choosing one full question from each module.

The SEE Theory marks of 100 will be scaled down to 50.

CO-PO	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3		3							
CO2	3	3	3		3							1
CO3	3	3	3		3							2
CO4	3	3	3		3							2
CO5	3	3	3		3				-			2

High-3, Medium-2, Low-1

	Semester: VII						
	MATERIAL SCIENCE AND TECHNOLOGY						
Co	ourse Code:	MVJ22CH753	CIE Marks:50				
L:'	T:P:S	3:0:0:0	SEE Marks: 50				
Cr	edits:	3	Total Marks: 100				
Ho	ours:	40 Hrs Theory	SEE Duration: 3 Hrs				
Co	urse Learning (Objectives: The students will be able to					
1	To make the students understand the basics of crystallography and its importance in studying materials properties.						
2	To understand the electrical proporties of materials including free electron theory						
3	To instill knowledge on characterization of materials for various applications in material						
4	To establish a sound grasp of knowledge on different optical properties of materials, optical displays and applications.						
5	To inculcate an idea of significance of biomaterials and polymers used in biomedical applications.						

MODULE-I	
Introduction to Material Science: Introduction and structure of materials, why study properties of materials, Structure of atoms – quantum states, atomic bonding in solids, binding energy interatomic spacing, variation in bonding characteristics – single crystals polycrystalline, Non-crystalline solids, Imperfection in solids, Vacancies, Interstitials geometry of dislocation, Schmid's law, Surface imperfection, Importance of defects, Microscopic techniques – grain size distribution.	8 Hrs
MODULE-II	
Electrical and Magnetic properties of Materials: Classical free electron theory – expression for electrical conductivity, Thermal conductivity, expression, Quantum free electron theory: Tunneling, degenerate states – Fermi- Dirac statistics, Density of energy states, Electron in periodic potential, Energy bands in solids, tight binding approximation – Electron effective mass, concept of hole. Magnetic materials: Dia, para and ferromagnetic effects, paramagnetism in the conduction electrons in metals, exchange interaction and ferromagnetism, quantum interference devices – GMR devices.	8 Hrs
MODULE-III	
Characterization of Materials: Principle, theory, working and application; X-Ray diffraction, X-Ray reflectivity, Scanning electron microscopy, Transmission electron microscopy, High resolution transmission electron microscopy, Field emission scanning electron microscopy, Atomic force microscopy, Scanning tunnelling spectroscopy / microscopy, photoluminescence spectroscopy, Electrochemical impedance spectroscopy, polarized neutron reflectivity, differential thermal and gravimetric analysis, dynamic mechanical analysis, Universal testing machine, vibrating sample magnetometer, Vector network analyzer, vibrating sample magnetometer, Brunauer-Emmett Teller surface areas, Zeta sizer, environmental mode.	8 Hrs

MODULE-IV	
Optical Properties of Materials: Classification of optical materials – Optical processes in semiconductors: optical absorption and emission, charge injection and recombination, optical absorption, loss and gain. Optical processes in quantum wells – Optoelectronic devices: light detectors and solar cells – light emitting diode – laser diode – optical processes in organic semiconductor devices – excitonic state – Electro-optics and nonlinear optics: Modulators and switching devices – plasmonics.	8 Hrs
MODULE-V	
Polymers and Biomaterials: Natural polymers: chemical & physical structure, properties, source, Important chemical modifications, Applications of polymers such as cellulose, lignin, starch, rosin, shellac, latexes, vegetable oils and gums, proteins etc. Molecular weight and its distribution determination (Mn to Mz& MWD), Carothers equation, States of polymers, Transition temperatures such as Tg, Tc, Tm, Solubility parameter, Solution properties, Temperature, Good/ bad solvent. Introduction to biomaterials for biomedical applications, Chemical structure and property of biomaterials, Degradation of biomaterials.	8 Hrs

Cour	Course Outcomes: After completing the course, the students will be able to				
CO1	To know the basics of crystallography and its importance for varied materials. Properties.				
CO2	To gain knowledge on the electrical and magnetic properties of materials and their				
	applications.				
CO3	To understand clearly the techniques used in material characterization.				
CO4	To understand the optical properties of materials and working principles of various				
	optical devices.				
CO5	To appreciate the importance of materials used in biomedical applications.				

Books								
1.	Materials Science and Engineering: A First Course, Raghavan V. sixth edition,							
	2015., Prentice Hall India Learning Private Limited ISBN:978-81-203-5092-2							
Reference								
2.	Foundations of Materials Science and Engineering 6th Edition, Mc Graw Hill,							
	William F. Smith, Javad Hashemi, Dr. Francisco Presuel-Moreno							
3.	Semiconductor Optoelectronics: Physics and Technology, Jasprit Singh first							
	edition, 2019, Mc-Graw Hill India							

- Three CIE Will be conducted for 50 marks each and average of three will be taken (A)
- Three Quizzes will be conducted along with CIE for 10 Marks Each. Sum of three quizzes will be considered for 30 marks (B)
- Two Assignments for 10 marks each and the sum of both the assignments will be taken for 20 Marks (C)

Final CIE Marks will be calculated as (A+B+C)/2 for 50 marks

The question paper consists of two parts, A and B

Part A: consists of 10 questions of 2 marks each. It is designed to cover the entire syllabus comprehensively.

Part B: The question paper will have 10 questions. Each question is set for 16 marks. There will be 2 questions from each module, with a maximum of 2 subdivisions. Students have to answer any 5 questions choosing one full question from each module.

The SEE Theory marks of 100 will be scaled down to 50.

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1								I	I	2
CO2	2	1	I							I	I	2
CO3	2	1	I							I	I	2
CO4	2	1	I							-	-	2
CO5	2	1										2

High-3, Medium-2, Low-1

	Semester: VII								
	PROCESS & INDUSTRIAL SAFETY								
Co	ourse Code:	MVJ22CH754	CIE Marks:50						
L:	T:P:	3:0:0	SEE Marks: 50						
Cr	edits:	3	Total Marks: 100						
Ho	ours:	40 Hrs Theory	SEE Duration: 3 Hrs						
Co	ourse Learning O	bjectives: The students will be able to							
1	To know about I	ndustrial safety programs and toxicology,	Industrial laws, regulations, and						
1	source models.								
2	To understand about fire and explosion, preventive methods, relief and its sizing methods.								
3	3 To analyze industrial hazards and its risk assessment.								
4	4 Relate safety, economics and human factors.								
5	Carry out risk assessment in process industries.								

MODULE-I	
Introduction: safety programs, engineering ethics, accident and loss statistics, acceptable risk, public perceptions, nature of the accident process, inherent safety, seven significant disasters. Toxicology: effect of toxicants on biological organisms, toxicological studies, dose versus response, models for dose and response curves, relative toxicity, threshold limit values, national fire protection association (NFPA) diamond. MODULE-II	8 Hrs
Government Laws and Regulations, OSHA: process safety management, EPA: risk management plan, DHS: chemical facility anti-terrorism standards (CFATS) industrial hygiene: anticipation and identification, evaluation, control. Source Models: introduction to source models, flow of liquid through holes, and pipes, flow of gases or vapors through holes and pipes, flashing liquids, liquid pool evaporation or boiling, conservative analysis.	8 Hrs
MODULE-III	
Fires and Explosions: the fire triangle, distinction between fires and explosions, definitions, flammability characteristics of liquids and vapors, limiting oxygen concentration and inserting, flammability diagram, ignition energy, auto-ignition, auto-oxidation, adiabatic compression, ignition sources, sprays and mists, explosions. Concepts to prevent fires and explosions: inserting, static electricity and its control, explosion-proof equipment and instruments, ventilation, sprinkler systems, miscellaneous concepts for preventing fires and explosions.	8 Hrs
MODULE-IV	
Introduction to Reliefs: relief concepts, definitions, location of reliefs, relief types and characteristics, relief scenarios, data for sizing reliefs, relief systems. Relief sizing: conventional spring-operated reliefs in liquid and in vapor or gas services, rupture disc reliefs in liquid in vapor or gas services, two-phase flow during runaway reaction relief, pilot-operated and bucking-pin reliefs, deflagration venting for dust and vapor explosions, venting for fires external to process vessels, reliefs for thermal expansion of process fluids.	8 Hrs
MODULE-V	

Hazards Identification: process hazards checklists, hazards surveys, hazards and operability studies, safety reviews, other methods, risk assessment: review of probability theory, event trees, fault trees, QRA and LOPA

8 Hrs

Cour	Course Outcomes: After completing the course, the students will be able to							
CO1	Analyse the effect of release of toxic substances.							
CO2	Understand the industrial laws, regulations, and source models and also responsible for							
	minimizing the accidents in work environment.							
CO3	Apply the methods of prevention of fire and explosions.							
CO4	Understand the relief and its sizing methods.							
CO5	Understand the methods of hazard identification and preventive measures.							

Ref	Reference Books						
1.	Chemical Process Safety (Fundamentals with Applications), Crowl D.A. and Louvar J.F.						
	2011., Prentice Hall.						
2.	Fundamentals of Industrial safety & health, Mistry.K.U.(2012) (3 rd edn.), Volume 1 and 2,						
	Siddarth Publishers						
3.	Chemical Engineering, Sinnott R.K. Coulson & Richardson (2006), Vol. 6. Elsevier India						
4.	Safety and accident prevention in Chemical operations (2 nd ed.), Fawcett H.H. and Wood						
	W.S. (1982) John Wiley and Sons Inc						

Continuous Internal Evaluation (CIE):

- Three CIE Will be conducted for 50 marks each and average of three will be taken (A)
- Three Quizzes will be conducted along with CIE for 10 Marks Each. Sum of three quizzes will be considered for 30 marks (B)
- Two Assignments for 10 marks each and the sum of both the assignments will be taken for 20 Marks (C)

Final CIE Marks will be calculated as (A+B+C)/2 for 50 marks

The question paper consists of two parts, A and B

Part A: consists of 10 questions of 2 marks each. It is designed to cover the entire syllabus comprehensively.

Part B: The question paper will have 10 questions. Each question is set for 16 marks. There will be 2 questions from each module, with a maximum of 2 subdivisions. Students have to answer any 5 questions choosing one full question from each module.

The SEE Theory marks of 100 will be scaled down to 50.

CO-PO	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	-	-				-	-	ı		1
CO2	2	1	-	-				-	-	-		1
CO3	2	1	-	-				-	-	ı		1
CO4	2	1	-	-				-	-	-		1
CO5	2	1										1

High-3, Medium-2, Low-1

	Semester:	VII	
	PROJECT PHA	ASE – II	
Course Code	MVJ22CHP76	CIE Marks	100
L:T:P:S	0:0:12	SEE Marks	100
Credits:	6	Total Marks	200
Hours:	12 Hrs per week	SEE Duration:	3 Hrs

Course Objective:

- To support independent learning.
- To develop interactive, communication, organization, time management, and presentation skills.
- To impart flexibility and adaptability.
- To inspire independent and team working.
- To expand intellectual capacity, credibility, judgment, intuition.
- To adhere to punctuality, setting and meeting deadlines.
- To instill responsibilities to oneself and others.
- To train students to present the topic of project work in a seminar without any fear, face audience confidently, enhance communication skill, involve in group discussion to present and exchange ideas.

Project Work Phase - II: Each student of the project batch shall involve in carrying out the project work jointly in constant consultation with internal guide, co-guide, and external guide and prepare the project report as per the norms avoiding plagiarism.

Course outcomes: At the end of the course the student will be able to:

CO1	Describe the project and be able to defend it. Develop critical thinking and problem solving
	skills.
CO2	Learn to use modern tools and techniques. Communicate effectively and to present ideas
	clearly and coherently both in written and oral forms.
CO3	Develop skills to work in a team to achieve common goal. Develop skills of project
	management and finance.
CO4	Develop skills of self-learning, evaluate their learning and take appropriate actions to improve
	it.
CO5	Prepare them for life-long learning to face the challenges and support the technological
	changes to meet the societal needs.

Scheme of Evaluation:

Internal Marks: The Internal marks (50 marks) evaluation shall be based on Phase wise completion of the project work, Project report, Presentation and Demonstration of the actual/model/prototype of the project.

Semester End Examination: SEE marks for the project (50 marks) shall be based on Project report, Presentation and Demonstration of the actual/model/prototype of the project, as per the norms by the examiners appointed

	CO-PO Mapping											
CO/P	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1
O	1	2	3	4	5	6	7	8	9	0	1	2
CO1	2	2	2	3	3	2	1	1	2	1	1	2
CO2	2	2	2	3	3	2	1	1	2	1	2	2
CO3	2	2	2	3	3	2	1	1	2	1	2	2
CO4	2	2	2	3	3	2	1	1	2	1	2	2
CO5	2	2	2	3	3	2	1	1	2	1	2	2

High-3, Medium-2, Low-1

Semester: VIII						
Research/ Industrial Internship						
Course Code	MVJ22CHI83	CIE Marks	100			
Credits: L:T:P:	0:0:12	SEE Marks	100			
Credits:	10	SEE Duration	3 Hours			

Course Objective:

- To get the field exposure and experience
- To apply the theoretical concept in field application
- To prepare the comparison statement of difference activities

Internship: This shall be carried out by students in industry set-up related to the construction/materials testing laboratories/research organizations/project management consulting firms/QS and QA organizations/planning and design offices/Professional organizations and other avenues related to the civil engineering domain in consultation and approval of internship guide/HOD /internship committees of the institutions.

Cour	Course outcomes: At the end of the course the student will be able to:					
CO1	Develop skills to work in a team to achieve common goal. Develop skills of project					
	management and finance.					
CO2	Develop skills of self-learning, evaluate their learning and take appropriate actions to improve.					
CO3	Prepare them for life-long learning to face the challenges and support the technological changes					
	to meet the societal needs.					

Scheme of Evaluation:

Internal Marks: The Internal marks (50 marks) evaluation shall be based on midterm and final presentation of the activities undertaken during the internship, to a panel comprising internship guide, a senior faculty from the department and head of the department. Each student should submit the internship report at the end of semester with internship certificate.

Semester End Examination: Viva-Voce examination shall be conducted by a panel of examiners consisting of internship supervisor, a senior faculty from the department and head of the department.

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	3	3	2	1	1	2	1	1	2
CO2	2	2	2	3	3	2	1	1	2	1	2	2
CO3	2	2	2	3	3	2	1	1	2	1	2	2
CO4	2	2	2	3	3	2	1	1	2	1	2	2
CO5	2	2	2	3	3	2	1	1	2	1	2	2

High-3, Medium-2, Low-1